
Copyright  1996 Intel Corporation

Choosing a Platform Architecture for
Cost Effective MPEG-2 Video

Playback

Platform Architecture Labs/Platform Technical Marketing
Desktop Products Group
Intel Corporation

April 1996

2

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs,
or MPEG-enabled platforms may require licenses from various entities, including Intel Corporation. Intel makes no representation
as to the need for licenses from any entity. No licenses, either express, implied or by estoppel are granted herein. For
information on licensing Intel patents, please contact Intel.

Intel retains the right to make changes to these specifications at any time, without notice.

* Other brands and names are the property of their respective owners.

Copyright © 1996 INTEL CORPORATION

3

Choosing a Platform Architecture for Cost
Effective MPEG-2 Video Playback

Paul Buckley, Bob Faber, Rick Mangold, Tim Mostad, Joe Nardone
Platform Architecture Labs/Platform Technical Marketing

Intel Corp. Desktop Products Group
Revision 1.0, 4/12/96

4

Introduction
Adding movie playback to personal computers is a natural step in the continuing evolution of PCs as
entertainment devices. MPEG-1 has recently become established on PCs as the standard for video
playback, particularly in some geographies. Partly because of inexpensive, widely available content and
partly because of a limited installed base of VCRs, MPEG-1 on PCs became an attractive alternative in
Asia/Pacific countries and to some extent in Europe. In the U.S., low cost, widely available cable
programming and the inherently inferior MPEG-1 picture quality, among other factors, prevented MPEG-
1 from gaining any real momentum. However, with the advent of MPEG-2 with its higher resolution
picture and with the high density and low cost of new DVD (originally Digital Video Disk or Digital
Versatile Disk) drives, a significant new video playback capability is on the horizon.

Left to evolve on their own, MPEG-2 and DVD would probably take a path that would preclude them
from having a major impact on the personal computer for some time. From the PC industry’s perspective,
the worst case scenario would have expensive drives (>$400 U.S.) with integrated MPEG-2 and audio
decode with only composite video and 4 or 5-channels of analog audio output. These devices would be the
equivalent of today’s laser discs. Some amount of PC integration would probably occur but a major
opportunity to create new uses and capture new users would be lost.

To maximize the potential for movie playback of MPEG-2 content from DVD drives in PCs, the industry
should recognize that there are potential problems and then coordinate to produce the desired results.
This paper details efforts underway by Intel’s Platform Architecture Labs, one of the main drivers behind
system architecture initiatives such as PCI, Plug and Play, and DMI, to provide this capability to the
industry.

We have two main objectives:

1. Ensure that DVD and MPEG-2 playback technologies develop for cost effective integration into
personal computers.

2. Accelerate the availability of DVD drives and MPEG-2 movie content.

These are very broad, aggressive objectives and require significant commitment to accomplish.
Comprehensive programs at Intel are in place to address related issues at all levels, from digital copyright
issues to disc production issues. The successful outcome of those programs (whose details are not covered
here) must be matched with platforms and software that both have the necessary performance and are cost
effective in implementation. The bewildering choices of technologies leaves open the possibility for false
starts and dead ends. The industry cannot afford limited or proprietary implementations if we are to be
successful in accelerating the availability of MPEG-2 and DVD on PCs. This paper represents some of
Intel’s commitment in the form of basic research aimed at reducing the burden of assimilating these new
technologies by identifying the best way to implement the system architecture.

At Intel, the process of architecting PC platform solutions is referred to as “partitioning”. This process is
less than intuitive. Partitioning requires a global platform understanding and view. We have developed
an extensive tool set that enables us to monitor all aspects of system operation, from the way an
instruction gets executed on the processor, to its eventual affect on, for examples, the frame buffer or the
cache on the disk drive. This whitepaper is based on results from studies done in Intel’s Platform
Architecture Labs. It reflects our view of how you can partition your platform to deliver the best
performance MPEG-2 movie playback from a DVD drive for the lowest cost.

5

Accelerating DVD
We believe that DVD drives will develop in two stages. The drive specification is fairly solid: data
encoding, track format, and file structure are defined (see Table 1 below) but it will take an intermediate
step to get the bus interface to its eventual, lowest cost, goal. Initially the target is bus mastering, ATOP
drives that support DMA mode 2 on the standard IDE bus. This will enable rapid integration into
existing system architectures. The next step in our plan is to help move the interface electronics to the PC
chip set or highly integrated peripheral chip to further cost reduce DVD drives.

The table below compares CD-ROM and DVD-ROM drives. The increased capacity of DVD-ROM drives
enables large amounts of video data to be stored on a single disk. The increased resolution brings
laserdisk quality video to the PC. The DVD-Movie specification calls for a bit rate of 4.7Mbps continuous
transfer, similar to today’s 4X CD-ROM drives (both the DVD spec and the MPEG-2 spec allow for
higher data rates; 4.7Mbps is specifically for DVD-Movies).

Since the cost reduction strategy is not complete, not much more can be said about DVD at this time. A
future design guide will build on this white paper to add more DVD information. For the purposes of this
document, it is assumed that cost-effective DVD drives will be in the market in the required time frame
and will deliver an MPEG-2 data stream per the above resolution and performance.

Audio Playback
Audio is an important element of the movie playback process, at least equal to that of the video quality.
While the eye will tolerate dropped frames or slight picture degradation, the ear is much more sensitive.
There is no equivalent phenomena to visual persistence for sound. This means listeners are very
intolerant to dropouts but it has been shown that some amount of degradation will be tolerated. CD quality
audio is sampled at up to 48 kHz resulting in a frequency bandwidth well beyond the range of human
hearing. This bandwidth results in rich sound with excellent clarity but very few people can even detect

Standard CDs DVD-Video CDs
CD-ROM Xfer Rate 2-4X ~ 6X (~ 5 Mbps) for DVD-Movie disks
CD-ROM Capacity 650 MB 4.7 GB for single layer/single sided DVD disks
CD Data Rate 1.5 Mb/s fixed 4.7 Mbps (DVD-Movie)
Video Algorithm MPEG-1 (ISO 11172-2) MPEG-2 (ISO 13818-2) Main Profile @ Main

Level
Video Support Progressive Progressive or Interlaced
Video Format YUV4:2:0 YUV4:2:0
Video Quality VHS Quality Broadcast Quality - CCIR 601
NTSC 352x240x30fps 704x240x60 fields/s (interlaced or progressive)
PAL/SECAM 352x288x25fps 704x288x50 fields/s (interlaced or progressive)
Video Aspect Ratio 4:3 4:3 or 16:9
Video Compression ~ 26:1 ~ 26:1
Audio MPEG-1 (ISO 11172-3) Dolby AC-3 w/NTSC in US and Japan

2 channel layer-2 stereo MPEG-2 5.1 channel (ISO 13818-3) w/PAL in
Europe

Audio Sample Rates 32, 44.1, 48 kHz 16, 22.05, 24, 32, 44.1, and 48 kHz
Audio Compression ~6:1 ~6:1, but with support for 5.1 channels
Video Run Time 74 min. VHS Quality 133 min./layer with 3 languages + 4 subtitles
Audio Run Time 74 min. CD quality ~8 CD quality CDs

Table 1: Video Playback Comparison

6

the difference between sound sampled at the full rate and sound sampled at 22 kHz. As long as the data
stream is maintained without break-ups and the audio is synchronized with the video during playback,
there is some amount of flexibility in the way audio decoding can occur on an MPEG-2 playback system.

The target for sound reproduction is always at the full sample rate but if the goal is to keep the platform
cost low, then we can use the flexibility that we have with sound reproduction to make system
implementation tradeoffs. Flexibility is especially important since there are at least a couple of audio
encoding formats in the DVD drive specification (see Table 1 above). The DVD specification doesn’t
reflect the reality of the PC market where two speakers is typical and multi-channel standards like Dolby’s
AC3 will probably be mixed down to two channels for playback. For low cost, the ideal decoder
implementation would be done on the CPU and output to a high quality, split digital/analog CODEC.
This would allow for the system to adjust to the CPU work load and still maintain high audio fidelity.

Other options, like dedicated audio decoders either on the motherboards or an add-in card or even
embedded in speakers on the end of a USB cable, are also possible. The wealth of options promises to
provide many solutions at differing price/performance points but also means that there is still a lot of work
to be done before the all of the options are well enough understood to provide specific design guidance.
For the purposes of the whitepaper, like DVD drives, we will assume that the appropriate audio subsystem
at the right performance points are available. Many of the tradeoffs and implementation details will be
included. in our upcoming design guide. Look for more information on Intel’s website (www.intel.com).

This white paper will explore some of the issues involved in MPEG-2 video playback on the PC, based on
the analysis thus far. When the analysis is complete, a Design Guide will be published which is meant to
provide a method of integrating DVD/MPEG-2 Movie Playback capabilities into the PC platform.

Part I. Platform Partitioning for DVD/MPEG-2: A Balanced
System Approach

System Cost/Performance
If the problem was strictly to implement MPEG-2 decode on PCs as quickly as possible, the answer would
be clear. Dedicated decoder ICs are already available from a few vendors and others are nearly ready with
several more. With the right amount of memory and associated support logic, MPEG-2 decode can be
added to a PC platform today. However, as with most things, the price has to be right. With demand in
the PC market being highly price elastic, the more a system costs, the smaller the volume that will be sold.
Adding significant cost to a platform to include MPEG-2 playback will counter the opportunity to increase
the total available market through new uses such as MPEG-2 movie playback.

The trick is to add cost, when necessary, to the right places. The “right places” are the ones that yield
general performance benefits and make the platform run better for most applications as opposed to just a
few or one. Some of these things need to be part of the basic platform architecture and others can be
options which can be added at the point of sale or left for future user upgrade via hardware or software.

For MPEG-2, adding cost to the right places will result in the ability to do partial or full software
MPEG-2 decode and playback. Software CODECs may not always offer the highest performance but they
are always the least expensive and are of high enough quality to replace dedicated hardware for the mass
market. Best of all, they can be added and/or inexpensively upgraded later as needed.

7

Support For Real-time Processing
As we discovered when we examined what it takes to do software decode of MPEG-1, poor system design
causes substandard playback performance. The problem was caused by an incomplete understanding of
how a system operates in real-time, particularly in light of the data processing requirements of today’s
emerging multimedia applications. Where does the microprocessor spend its time? How much value does
cache have when executing real applications? Previous generations of PC benchmarks reflected single task
environments executing programs that could tolerate long latencies. New real-time, multimedia,
applications like MPEG playback required a more sophisticated “platform” approach.

To help characterize the problem we developed a model called the “balanced system approach”. It divides
system performance elements into the quadrants of a 2x2 matrix:

Figure 1. Elements of a Balanced System

We can then approximately map possible system features into the matrix:

Figure 2. Mapping System Components to the Model

The microprocessor has traditionally been the focus of the platform, serving roles in each quadrant but
optimized for integer computing chores like running spreadsheets and word processors. I/O and memory
are the general system resources that, along with the processor comprise the core of the system. Over time
I/O and memory support functions have moved from discrete logic into integrated chip sets. More
recently fixed function accelerators have been added to systems, mostly in response to the unique

8

requirements of graphical user interfaces. The new, real-time part of the system model is enabled by
commodity, low latency operating systems like Windows* 95 and Windows NT*. Until now, platforms
have not really had to contend with the difficulties of dealing with real-time data streaming from multiple
sources to different destinations.

Also as you can see from the diagram above, in our view, the real-time element of the system has not been
adequately addressed in the past or even in current generations of systems. Digital signal processors have
served part of the job by integrating some fixed functions along with some amount of reprogrammability
to do things like adaptive filters for telephony. This role is relatively specialized but will continue for
point solutions needing the highest performance where cost is less of a concern. An inexpensive, general
purpose, real-time processing capability was unavailable until now.

With the introduction of MMX™ technology, Intel has provided a key element to complete the balanced
system picture for dealing with real-time data processing (see the picture below). The single instruction,
multiple data (SIMD) instructions added to all future generations of Intel architecture microprocessors
help to streamline data processing in multimedia systems; reducing or eliminating the need for dedicated
processors for many applications. For more information on MMX technology, see our web site at
www.intel.com.

Figure 3. MMX Technology adds Media Processing

The main design challenge for system designers is to ensure that the additional processing power that
MMX technology offers can be used effectively. This is done by adding performance to the system in a
balanced way, i.e. the right supporting system elements in each of the quadrants of the model. Now let’s
look at how to create a balanced system for MPEG-2 video playback.

9

MPEG-2 Playback System Operation
To know how to improve system performance and spend the system budget wisely, a more detailed
understanding of MPEG-2 soft playback is helpful. The first step is to look at what is happening in the
system.

Figure 4. Data Coming in from a DVD-ROM

Data streams off of a source such as a DVD drive at a data rate of 4.7 Megabits per second and is written
into the system memory array by a bus mastering IDE controller. Bus mastering is required to eliminate
the burden from the CPU from doing a simple control function like doing data movement. It then has
more bandwidth to do more valuable system functions like soft decode.

Figure 5. Processor Decodes Data in Memory

10

The processor begins to parse the data stream, dividing the work between video and audio compression.
As data is read from main memory, the cache controller saves a copy to speedup later accesses.

Figure 6. Decoded Data is Written to Memory

The processor begins the decompression process which, for video, includes algorithms such as inverse
Huffman, inverse Discrete Cosine Transforms, and other computations. These are highly integer
intensive algorithms, well suited for processing on a Pentium  processor. The set of information that is
needed to be repeatedly accessed by these algorithms, in this case for decoding a frame of video, is called
the “working set”. For MPEG-2, as we will show later, the working set is large and quite complex.

Figure 7. Write to Frame Buffer is Posted in Chip Set

After a video frame is decoded, it is written out to the frame buffer, but there is an important intermediate
step. To improve the transfer efficiency on the PCI bus, the chip set buffers writes and then efficiently
bursts them across the PCI bus. How this works and its impact upon system performance is rather
interesting and something we examined in detail.

11

Figure 8. Chip Set Bursts Video Data over PCI to Frame Buffer

The chip set then bursts packed pixel information into the frame buffer. Concurrently, the graphics
controller is reading video memory to refresh the screen. This concurrent operation limits the available
frame buffer bandwidth significantly which is another area for potential performance improvement as we
see later.

Figure 9. Audio Data Written to PCI/ISA Bridge

Interleaved with the video frame buffer writes, are writes to the audio CODEC to replay the audio portion
of the program.

There are a couple of key things to note from the above description. All transfers go through the chip set.
It handles reads and writes to and from main memory, L2 cache, and the frame buffer and audio CODEC
on the PCI bus. Secondly, the large MPEG-2 working set causes a significant “thrashing” of the level 2
cache. Thrashing is caused by a significant number of level 2 cache misses; the result is increased bus
utilization “wasted” in an attempt to keep the L2 cache full.

12

Understanding System Stalls
If you think of the MPEG-2 connection from the CPU doing soft decode to the frame buffer as one
continuous pipe with YUY2 data flowing through it, then a stoppage at any point along the way will halt
everything behind it. If the system (hardware and software architecture) is designed such that the
processor is stopped by stalls at the frame buffer then soft decode of MPEG-2 (or any other high data rate
real-time application) cannot work. The frame buffer has a much more limited bandwidth than the
processor which means the processor can easily overwhelm it. The frame buffer also becomes periodically
busy as the graphics controller does a screen refresh, causing the data in the pipe to halt.

In order to be as flexible as possible and capable of connecting to a broad number of device types, PC’s are
intentionally not designed as a single, continuous data pipe. Chip sets and peripherals have evolved to
include buffering to break the single pipe into segments so that each can start and stop without necessarily
affecting others before it. Buffering in each segment allows the previous pipe to accumulate some data
until the next segment in the pipe frees up. PCI chip sets work this way. Processor write buffering in the
chip set enablesbursting data onto the PCI bus and reduces the effects of stalls at the destination from
affecting the processor.

Bursting also has the benefit of increasing the transfer rate across the bus. The processor writes data into
the chipset as fast as it is instructed to do, even if the result is a series of single-write transfers with
contiguous addresses. If the addresses are indeed contiguous, the chip set is able to group together all the
contiguous writes and burst the data in a single burst transfer. The signal overhead for a burst transaction
remains constant, so the greater the burst length, measured in bytes, the higher the transfer rate (see
figure 10).

One can use the target data rate to determine what the ideal transfer rate is, and hence what the desired
burst length is. For example, the required display data rate for an MPEG-2 video stream in CCIR601
format is 15.2 MB/s. If the goal is to have this load consume no more than 15% of all bus activity, then
the data transfer rate should be at least 100 MB/s. This (from the given assumptions in the chart below)
indicates that bursts should be at least 20 DWORDS or greater in length. Note, however, that buffer
overflow at the target (e.g., a PCI graphics controller) can cause the bus to stall, which in turn can cause
the processor to halt. Longer burst length is not advantageous in all situations. This will be discussed in
greater detail later in the paper.

Taking advantage of the burst capabilities of the PCI bus and PCI chip set is critical for applications
involving large amounts of data, like decoding MPEG-2 video.

13

Assume: Initial Latency = 3 PCI Clocks
Wait States = 0 PCI Clocks

Disconnect Time = 2 PCI Clocks
Turnaround Time = 1 PCI Clocks

32-bit, 33-MHz PCI Bus

0

25

50

75

100

125

0 10 20 30 40

Burst Size (DWORDS)

T
ra

n
sf

er
 R

at
e

(M
B

/s
)

Figure 10. PCI Transfer Rate as a Function of Burst Size

Still, because the data rates of each segment of the pipe are not equal, stalls will occur when the bus is
heavily loaded. The key to making the most efficient use of the environment is to understand the stalls,
and determine if anything can be done about them. Changing the speed of one or more of the pipes might
provide the answer. This is likely to add cost, but, if done correctly it will also benefit overall system
performance, which is easier to justify. Another solution might be as simple as optimizing the length and
the frequency of the bursts, much like managing automobile traffic in a city. If you avoid gridlock, much
higher volumes of traffic can be handled. These optimizations can either be hardware or software but
generally only require tuning of the software algorithms which makes them an inexpensive way to gain
significant performance.

Part II. MPEG-2 Analysis

First Look: Soft MPEG-2 Playback
The exact requirements to do MPEG-2 software playback are not yet well understood since MPEG-2 soft
CODECs aren’t available in the market today; work is underway but it won’t be until later in 1996 that
products appear. OEMs, however, are having to design their 1997 systems now; most have MPEG-2 on
their list of requirements. The decision of whether to include dedicated hardware or be able to count on
quality software-only playback is critical to how systems get partitioned. In the absence of having soft
MPEG-2 to analyze, we studied soft MPEG-1 running on existing platforms and extrapolated to derive
our conclusions.

Interest in MPEG-1 playback on PCs grew over most of 1995. At the time it was generally accepted that
hardware acceleration was needed to achieve the maximum frame rate (30 frames per second for NTSC
source material). The common belief still is that good software MPEG-1 playback is not feasible on
anything less than a 133 MHz Pentium processor. We performed a study on a well designed system and
were able to show that quality soft MPEG-1 playback at 30 fps was indeed possible using a Pentium
processor 100 MHz. For more detail see our whitepaper “Designing a Low Cost, High Performance
Platform for MPEG-1 Video Playback” on Intel’s website (www.intel.com).

14

Our Analysis
We used a number of analysis tools to examine bus-level system performance for software MPEG-1
players. With these tools we have estimated the number of CPU core clocks and amount of CPU bus traffic
required to run MPEG-2 in software. The variations with player and chipset are relatively small and do
not detract from the central findings. The data presented here is for an Intel 82430VX-based system with
16MB SDRAM and 256KB pipelined burst L2 cache. The frame size for the data is 352x240 at 30 frames
per second (fps).

Two different MPEG-1 decoders are represented in the data. A scalar version was run on a Pentium
processor 166 Mhz platform (PP-166). An early version of a decoder using MMX technology was run on
a prototype P55C processor running at 166 MHz. Whether or not the processor is stalled or executing is
measured by using the Pentium processor performance monitoring registers. By measuring the
unrestricted1 frame rate of a particular decoder, the core clocks/frame is easily calculated.

In order to predict MPEG-2 performance based on MPEG-1 profile data, a method of scaling from
MPEG-1 to MPEG-2 is necessary. The simplest, most obvious way to do this is to translate the increased
resolution and data rate of MPEG-2 into an MPEG-1 frame rate. Since the algorithms and data structures
remain similar while the frame resolution is increased by a factor of 4x, a rough approximation of
MPEG-2 performance can be calculated by predicting the MPEG-1 performance at 120 fps (30 fps x 4).

MPEG-1 Playback
CPU Performance Profile (units) PP-166 MHz

P55C-166
MHz

Core Speed MHz 166 166
Core Stalls % time 53 62
Core Executing % time 47 39
Unrestricted Frame Rate fps 61.7 83.5
Core Clocks per Frame MHz/frame 1.26 0.77
Core Clocks at 120 fps MHz 152 92

Table 2. Processor Utilization Profile for MPEG-1 Playback

Table 2 summarizes the frame rate and core utilization for unrestricted MPEG-1 playback without audio.
Using core clocks/frame as a scale factor to MPEG-2 frame sizes, it is estimated that 92 Mhz of a P55C-
166 are required to play MPEG-2 video. For the processor, then, the projection is that MPEG-2 video
decoding on the host processor consumes ~1/2 of a Pentium processor 200 MHz with MMX technology.

The next area to examine is the host bus of the system. The host bus controls all data movement
throughout the system, whether it be directly to L2/DRAM memory, the PCI bus for high-speed functions,
or the ISA bus for peripheral add-in cards. Since the processor is involved, at one level or another, in all
data transactions, the question to look at now is whether or not a Pentium processor 200 Mhz with MMX
technology, which is projected to be 50% consumed with computational decoding activity, is capable of
performing all the data movement tasks with the other 50%. Note: this assumes that the processor halts
anytime there is an outstanding bus cycle. This is in fact untrue; in some situations, the processor can
continue executing out of register memory and L1 cache, even while waiting for a bus cycle to return other
data. Analysis of the workload in this manner thus becomes a “worst-case” scenario.

1 unrestricted frame rate means the decoder is allowed to run “flat out;” decoding and displaying frames as
fast as the system will allow. Audio playback and synchronization is disabled.

15

For the bus utilization analysis, several assumptions are made concerning scaling from MPEG-1 to
MPEG-2. First, that all bus traffic will scale by a factor of four. This will be true for the volume of the
frame buffer traffic. To map from volume of traffic to time on the bus requires that the access
characteristic of the frame buffer remain constant. In fact, they may deteriorate with the volume of data,
but this is clearly an area that must be improved. The volume of read and write data are likely to scale by
the same factor, and will scale as a measure of bus utilization if the memory/L2 characteristics remain
constant. This requires that the L2 hit rate remain constant. The code read volume is small, and has been
assumed to scale from MPEG-1 to MPEG-2.

To examine the bus, a scaling factor is measured similar to the one above in Table 2. For the bus,
however, the important factor is total bus utilization. This is measured against frame rate to produce a
“Bus Utilization per Frame” for a given platform.

MPEG-1 Playback
Bus Utilization Profile units PP-166

PP-166 w/ MMX
Technology

Code Reads % time 8.4 3.4
Data Reads % time 25.3 29.0
Data Writes % time 14.6 9.3
Frame Buffer Writes % time 15.5 19.7
Total Bus Util % time 63.8 61.4
Unrestriced Frame Rate fps 61.7 83.5
Bus Utilization per Frame % time 1.03 0.74
Bus Utilization at 120 fps % time 124 88

Table 3. Bus Utilization for MPEG-1 Playback

As shown in Table 3, the bus utilization per frame is 0.74% for MPEG-1. For MPEG-2, (MPEG-1 at 120
fps), the bus utilization is predicted at 88%, clearly indicating a saturated condition. In order to
implement software-based MPEG-2 playback on today’s volume PC platforms, then, work must clearly be
done to lower the bus utilization required for MPEG-2 decoding. This can be done by increasing the
transfer rate performance of the various memory subsystems, and optimizing decoders for fast accesses.
Identifying and investigating methods for such improvements will be the focus of the remainder of this
document.

A Closer Look: Identifying the System Bottlenecks
A closer look at the system activity will help identify areas for increasing efficiency or other
optimizations. First lets take a look at what the MPEG-2 decoder activity consists of. The chart below
shows a breakdown of the different types of host bus cycles that occur in the decoding of MPEG-2 video.

16

Video-Only MPEG-2 @ 30 Frames Per Second

0

20

40

60

80

100

120

140

Pentium Processor Pentium Processor
with MMX technology

H
o

st
 B

u
s

U
ti

liz
at

io
n

Frame Buffer Writes Data Read DRAM Data Read L2

Code Read DRAM Code Read L2 Data Write DRAM/L2

Figure 11. MPEG-2 Decoder Activity at the Bus Level

As you can see, two bus cycle types stand out as consuming the largest portion of bus cycle time. Writes
into frame buffer memory consume the most, taking up nearly 30% of the host bus cycles, while reads into
main memory take up another 30%. Of the remaining activities, none consumes more than ~10% alone.
Appropriately, then, these two bus activities will become the focus for the remainder of this paper. We
will discuss at length possible optimizations, in both hardware and software, as well as point out future
technologies and architectural enhancements which will address the needs of applications incorporating
MPEG-2 video.

Part III. System Bottleneck Identification and Analysis
A first look at software-based MPEG-2 decoding concluded with two major system bottlenecks: memory
read performance (or memory read bus utilization) and frame buffer write performance (or frame buffer
write bus utilization). These activities have been shown to take up a very large proportion of the overall
bus traffic; they will thus become the first target area for improvement. The remainder of this paper will
focus on some of our initial efforts at reducing the amount of bus utilization required for each of these
activies. Further research is continuing, and in Q2’96, Intel will publish the conclusions in the form of a
DVD/MPEG-2 Platform Design Guide.

Memory Read Performance
To understand the memory read activity, it is important to first understand the MPEG decoding process in
general. With MPEG-1, data is read in from the CD-ROM at a rate of about 300 KB/sec (most MPEG-1
video clips are compressed to a range between 1.5 Mbps - 1.8Mbps). If one second of data carries 30
video frames, then each frame consists, on average, of roughly 10 KB.

From this one frame of data, the processor will decode the pixel data. MPEG-1 and MPEG-2 video uses
the planar YUV12 format, so the processor will build three planes of pixel data; one Y plane (the
luminance plane), and a U and V plane (the chrominance planes). For planar YUV12 (or YUV4:2:0), the
chrominance planes are sub-sampled 2:1 in both the horizontal and vertical directions; the luminance

Frame
Buffer
Writes

DRAM
Reads

17

plane is not sub-sampled. The U and V planes, then, are each ¼ the size of the Y plane. Once the three
planes, or buffers, are constructed, the data is written to an offscreen surface in frame buffer memory.
There, the pixels are combined to form a single frame of video data.

To calculate the size of the array used to store a single plane of data, we can work backwards from the size
of the decompressed final image. A single frame of MPEG-1 video contains 352 x 240 = 84,480 pixels.
At 12 bpp, a single frame requires 126,720 Bytes, or 127 KB. At a ratio of 4:1:1 for the Y, U, and V
planes, the buffers are roughly 85 KB, 21 KB, and 21 KB respectively.

For MPEG-2 the two changes are in the input buffer from CD-ROM and the increased resolution. For
DVD/Video MPEG-2, the data rate will average ~4.7Mbps. This is roughly 600 KB/s from the DVD-
ROM; divided into frames, this yields an input buffer of about 20 KB. The larger CCIR601 resolution of
704 x 480 also increases the working set size, giving the following working set size approximations:

Buffer Size for Decoding
a Single Frame MPEG-1 (KB) MPEG-2 (KB)
Input Buffer 10 20
Y Plane 85 340
U Plane 21 84
V Plane 21 84
Total 137 528

Table 4: MPEG-1 and MPEG-2 Working Set Size Comparison

As you can see, constructing an MPEG-1 frame requires (at the barest minimum) about 137 KB of
memory. This size, or portions thereof, would fit fairly comfortably within a 256 KB L2 cache. This is
ideal, because access times for a 256 KB PBSRAM L2 Cache memory are twice as fast as EDO DRAM
Memory at 66 MHz (see Table 6).

Notice that the problem becomes much more acute when decoding MPEG-2. The buffer size estimates
above are nearly 300% larger for MPEG-2 than MPEG-1.

The above exercise really only applies to index frames, or I-frames, where all the data required to decode a
particular frame is within the compressed frame. MPEG compression also utilizes predicted frames (P-
frames), and bi-directional frames (B-frames). For P-frames, some of the information required to decode
the frame has been compressed in the bit stream in a previous I-frame. This would require storing that
previous I-frame until the P-frame can be completed. For B-frames, two other frames—an I-frame and a
P-frame—must be accessed to complete the frame. If we modify the above table for frame type, then, we
see the following:

Buffer Sizes for
Different Frame Types MPEG-1 (KB) MPEG-2 (KB)

% of Total
Frames*

I frame 137 528 10
P frame 274 1056 30
B frame 411 1584 60
* Percent of total frames calculated using a “typical” series: I-B-B-P-B-B-P-B-B-P

Table 5: MPEG-1 and MPEG-2 Working Set Size Comparison

In reality, MPEG video decoders operate on much smaller data types, called macroblocks, but the
calculations above serve to illustrate the decoding complexity and read-intensive nature of an MPEG
decoder. Operating on macroblocks will be more closely examined later in this paper. The above exercise
serves to illustrate the critical need for an L2 cache for platforms capable of performing MPEG-2

18

decoding. The Pentium Pro Processor and processors in the P6 family will have improved L1 and L2
cache bandwidth, which will benefit MPEG-2 performance considerably. See the table below comparing a
platform based on the Pentium Processor with MMX technology to a P6 Family processor with MMX
technology:

Read Bandwidth (MB/s)

Pentium Processor with
MMX Technology 200

MHz Platform

P6 Family Processor
with MMX Technology

233 MHz2 Platform % Increase
L1 Cache (Internal) 1150 1370 19
L2 Cache (PB SRAM) 460 760 65
DRAM Memory (EDO) 235 235 --

Table 6. Read Bandwidth Improvements on Future Platforms

Our MPEG-1 application profile data showed an L2 cache hit rate of only ~45% on memory reads,
projected to a Pentium Processor with MMX technology at 200 MHz. Hence, in addition to requiring a
fast L2 cache, MPEG-2 decoders need to optimize for fast data reads—from L2 cache and DRAM. One
way to optimize for fast data reads is to do a working set analysis like we did previously (using the
appropriate variables and data sizes) and optimize for high hit rates in the L2 cache. Another is to
include a “prefetch” mechanism in appropriate sections of code to maximize DRAM performance. The
latter will be looked at here in more detail.

Optimizing for DRAM Read Performance
A critical factor for DRAM memory read performance is the ability to pipeline DRAM accesses. For
example, for a 16 MB EDO DRAM array and an Intel 430FX PCIset, DRAM read performance is limited
to 160 MB/s when back-to-back accesses cannot be pipelined. This happens during row-miss accesses,
and the DRAM read pattern is limited to 10-2-2-2-10-2-2-2-10-2-2-2. With EDO page-hit timings,
successive reads can be pipelined and a 10-2-2-2-3-2-2-2-3-2-2-2 pattern can be achieved. In this case,
the read bandwidth increases from 160 MB/s to 235 MB/s (see Table 6).

Bandwidth
PP-200 w/ MMX

Technology L1 (MB/s)
256 KB PB

SRAM L2 (MB/s)
EDO DRAM @66

MHz (MB/s)
Read 1150 460 235*

160**
Write (QWORD) 595 175 175

* pipelined page hit timings
** row miss timings

Table 7: Relative Bandwidth of L1, L2, and DRAM Memory

Page-hit accesses can only be maintained if the processor can initiate a new read cycle before the DRAM
interface has completed the previous read. For small code loops that perform successive reads, a prefetch
mechanism can be employed that will ensure that successive reads can be pipelined for maximum
performance. The prefetch algorithm is designed to insure that nearly all memory reads for tightly coded
loops will result in L2 cache hits. Although such a mechanism increases the total number of instructions
executed, the improved average memory read speed can result in overall code speedup. The result, for
EDO DRAM, is a potential increase in read bandwidth from 160 MB/s to 235 MB/s, an improvement of
nearly 50%.

2performance estimates of future products are subject to change

19

To see how such a prefetch mechanism might be implemented, look at the sample code segment in
Figure 12. The following algorithm interleaves the values from two byte streams into a single bytes
stream.

Setup mov esi, Source1 ;pointer to first input array
mov ebx, Source2 ;pointer to second input array
mov ecx, SrcBufferSize ;length of the output array
shr ecx, 3 ;number of quadwords in SrcBufferSize

MainLoop movq mm0, [esi] ;load first operand into mm0 (8 bytes)
movq mm1, [ebx] ;load second value into mm1 (8 bytes)
movq mm2, mm1 ;duplicate mm1 into mm2
punpklbw mm1, mm0 ;interleave low bytes into mm1
add esi, 8 ;increment first array pointer by 8 bytes
punpkhbw mm2, mm0 ;interleave high bytes into mm2
add ebx, 8 ;increment second array pointer by 8 bytes
movq [edi], mm1 ;store mm1 into SrcBuffer
movq [edi+8], mm2 ;store mm2 into SrcBuffer
add edi, 16 ;increment edi by 16 bytes for next result(s)
dec ecx ;decrement loop counter
jnz MainLoop ;repeat MainLoop until complete

Figure 12. An example code loop

This code loop serves as an example of one which might be optimized for fast memory accesses by
implementing a prefetch mechanism in software. The cache line size in the Pentium Processor
architecture is 32 Bytes. A packed register in the MMX architecture consists of 8 bytes, so a cache line
can hold 4 packed registers. The prefetch algorithm above, will walk down the length of the operand
arrays, one at a time, and read each cache line into L2 cache. No operations will be performed; instead,
the first value in each cache line will simply be “touched” to insure that that particular cache line is pulled
into L2 memory. See below how we’ve added the two prefetch loops:

Setup1 mov esi, Source1 ;pointer to first input array
mov ebx, Source2 ;pointer to second input array
mov ecx, SrcBufferSize ;length of the array
shr ecx, 5 ;number of cache lines (32 bytes) in SrcBuffer

FetchSrc1 mov eax, [esi] ;”touch” first value in Source1
add esi, 0x20 ;inc Source1 pointer 32 Bytes (1 cache line)
dec ecx ;decrement loop counter
jnz FetchSrc1 ;continue until Source1 is “prefetched”

Reset mov ecx, SrcBufferSize ;Reset the length of the array for Source2
shr ecx, 5 ; number of cache lines (32 bytes) in SrcBuffer

FetchSrc2 mov edx, [ebx] ;”touch” first value in Source2
add ebx, 0x20 ;inc Source2 pointer 32 Bytes (1 cache line)
dec ecx ;decrement loop counter
jnz FetchSrc2 ;continue until Source2 is “prefetched”

Setup2 mov esi, Source1 ;pointer reset to first input array
mov ebx, Source2 ;pointer to second input array
mov ecx, SrcBufferSize ;length of the output array
shr ecx, 3 ;number of quadwords in SrcBufferSize

20

MainLoop movq mm0, [esi] ;load first operand into mm0 (8 bytes)
movq mm1, [ebx] ;load second value into mm1 (8 bytes)
movq mm2, mm1 ;duplicate mm1 into mm2
punpklbw mm1, mm0 ;interleave low bytes into mm1
add esi, 8 ;increment first array pointer by 8 bytes
punpkhbw mm2, mm0 ;interleave high bytes into mm2
add ebx, 8 ;increment second array pointer by 8 bytes
movq [edi], mm1 ;store mm1 into SrcBuffer
movq [edi+8], mm2 ;store mm2 into SrcBuffer
add edi, 16 ;increment edi by 16 bytes for next result(s)
dec ecx ;decrement loop counter
jnz MainLoop ;repeat MainLoop until complete

Figure 13. Same Code as Figure 12, with an Initial Prefetch Stage

Adding the prefetch algorithms increases the number of instructions executed by 17%; however the
overall number of core clocks required to complete the loop is decreased as a result of the improved
average memory access times. With all the input values read into L2 cache, the main algorithm achieves
page hit accesses on nearly all memory reads. The results are shown in Table 7 below.

Instructions
Executed

Core
Clocks*

Relative
Performance

Normal Code 6004 23503 1.0
with Prefetch 7010 19647 1.16
* Input Array Size = 4000

Table 8. Performance Improvement with Prefetch Stage Added

Thus we can see that, although adding to the total number of instructions that must be executed, a prefetch
algorithm implemented to fill the L2 cache, can yield significant gains in overall code throughput.
Knowing when to use a prefetch mechanism like the one above involves knowing whether or not the data
exists in L2 or main memory; if there is a high probability the data is already in L2, then adding a
prefetch mechanism will yield little or no improvement. Profiling the decoder with an emphasis on data
location is necessary to succesfully apply techniques like the one above. These types of enhancements will
continue to yield performance improvements with better algorithm development, compiler technology, and
faster memory technologies.

With the coming of new memory technologies like Synchronous DRAM (SDRAM), pipelined page hit
accesses can achieve 2-1-1-1 timings over today’s EDO page-hit 3-2-2-2 accesses. This could provide up
to a 2x performance improvement for code loops containing successive reads that are pipelined in the
fashion illustrated above. Further MPEG-2 data analysis will provide a better estimate of how much this
mechanism will improve overall MPEG-2 playback performance.

Future Processor/PCIset Architecture Enhancements
In the future, architectural enhancements to the Intel Architecture Platform will further enhance the
ability to decode digital video of all types, including MPEG-2. Future processor and platform
architectural enhancements will continue to improve the available bandwidth and efficiency of memory
transfers.

21

Concurrent PCI, for example, a feature found in Intel’s 430VX and 430HX PCIsets, improves PCI bus
utilization significantly. The addition of features such as the Multi Transaction Timer (MTT) for “short
burst” applications, Passive Release for interleaving PCI/ISA transfers, and improved write performance,
all will help benefit MPEG-2 video decoding.

Dynamic Execution is a new processor architecture technology found in P6 family processors. Dynamic
Execution is the combination of several advanced processing techniques: multiple branch prediction, data
flow analysis, and speculative execution. These technologies allow P6 family processors to more
intelligently process instruction. Multiple branch prediction allows the processor to “look ahead” down
multiple execution paths. Data flow analysis allows the processor to identify and react to data
dependencies in the execution path. Speculative execution allows the processor to execute instructions
prior to the actual execution path being determined. The combination of these techniques makes P6
family processors particularly well suited to run multimedia applications, where highly repetitive
operations are performed on large data sets (like a video stream).

Frame Buffer Write Analysis
Writes to the frame buffer consume 30% of the processor time it takes to do MPEG-2 movie playback and
constitute the second major bottleneck that will be examined in this paper. This section looks closely at
issues associated with frame buffer writes and outlines some of the possible areas for optimization and
enhancement.

To display MPEG-2 video, a minimum bandwidth of ~15 MB/s on the PCI bus to the graphics controller
is required. This figure comes from a simple calculation of the MPEG-2 format, using full CCIR601
resolution, YUV4:2:0 format, and full 30 frames per second display:

704 480 12 1

8

30 15 400
15 2

× × × × = ≅pixels

frame

bits

pixel

byte

bits

frames

second

bytes

second
MB sec

,206,
. /

Equation 1. MPEG-2 (YUV12) Display Transfer Rate

Many graphics controllers today support video pixel formats in frame buffer memory. Windows 95 with
DirectDraw allows video data to be decoded into its native format and written directly into a dedicated
block of frame buffer memory, called an offscreen surface. The graphics controller, while reading the
frame buffer for screen displays, is able to read and properly mix the data between the primary surface,
containing RGB pixels, and offscreen surfaces that may contain YUV pixels (or other video formats or
RGB). The result is a seamless video display within a windowed graphics environment.

22

Many different video formats exist. MPEG-2 Main Profile Main Level (MP@ML) uses the Planar
YUV12 format, or YUV4:2:0. The diagram below illustrates the YUV4:2:0 macroblock format for a
MPEG-2 block of 16 pixels:

16 8 8

U Plane

8

V Plane

8

Y Plane

16

each = 8 x 8 pixel block

Figure 14. YUV 4:2:0 Macroblock Structure

In this format, the U and V planes (chrominance, or color) are subsampled 2:1 both horizontally and
vertically. The Y plane (luminance, or lightness) is not subsampled. Hence, 384 Bytes are required for
each 256 pixels. The result is a 12 bit per pixel (bpp) format.

YUV4:2:0 is called a planar format because the data is stored separately for each of the three planes Y, U,
and V. The optimal MPEG-2 decoding architecture requires that the graphics controller and decoding
software use the planar YUV12 format, to insure that no additional bus traffic or processor MIPS are
wasted converting the data between different video formats. For example, many video-enabled graphics
controllers today support byte-ordered (“packed”) video formats like YUY2. Byte ordering is an efficient
way to store video data in the frame buffer, because the planar data is interleaved, as shown in the
following diagram. The DAC can easily read byte-ordered pixel data and perform the pixel reconstruction
by storing the U and V values temporarily in a buffer.

BYTE3 BYTE2 BYTE1 BYTE0
Y1 U1 Y2 V1
Y3 U2 Y4 V2

Pixel 1 = Y1 + U1 + V1
Pixel 2 = Y2 + U1 + V1
Pixel 3 = Y3 + U2 + V2
Pixel 4 = Y4 + U2 + V2

Figure 15. YUY2 Byte-Ordered Format

23

Note from the diagram above, however, that YUY2 requires 4 Bytes for every 2 pixels, or 16 bpp. To
decode MPEG-2 into Planar YUV12 format and then convert to YUY2 format does not require much in
the way of MIPS to do the actual conversion. Much of it can be done “on the fly,” when writing the data
to the frame buffer. However, by converting from a 12 bpp format to a 16 bpp format, the amount of data
transmitted over the PCI bus to the graphics controller is increased by 33%. The minimum frame buffer
display transfer rate now becomes:

704 480 16 1

8

30 20
20 3

× × × × = ≅pixels

frame

bits

pixel

byte

bits

frames

second

bytes

second
MB sec

,275,200
. /

Equation 2. YUY2 (16bpp) Display Transfer Rate

Storing the MPEG-2 data in a 16 bpp format offers no increase in quality, since the compressed video
contains only YUV12 data. The “extra” pixels required for converting to 16 bpp are simply replicated
from the YUV12 data. At a penalty of 33% additional data, with no increase in video quality, the value of
supporting planar YUV12 in frame buffer memory is clear.

Graphics Controller Write Buffer Depth
Another enhancement possible for graphics controllers suitable for MPEG-2 can be made by providing
deeper write posting buffers on the PCI interface. Typical graphics controllers with video support today
provide write posting buffers capable of storing 4 DWORDS (16 Bytes). In the planar YUV12 format, 16
Bytes represents less than 11 pixels (ignoring the fact that the data is planar, and not interleaved).

Optimizing for MPEG-2 by increasing the depth of write posting buffers helps decrease the overall system
bus utilization and avoid processor stalls. The question is, what is the desirable buffer depth? Dedicated
registers are expensive in terms of silicon; adding buffers can directly impact the cost of the device.

As we discussed before, writes to the frame buffer are first posted in the core logic chip set and then
written over the PCI bus. Hence, the depth of the chip sets write posting buffers will also have an impact
on the efficiency of frame buffer writes.

Optimizing for Frame Buffer Writes
MPEG-2 decoders must optimize for frame buffer writes, or added buffer depth will not help reduce bus
utilization. An analysis of the bus activity profiles showed that most software MPEG-1 decoders function
in a highly serial fashion. That is, the software tends to decode a frame, write the data to the frame buffer,
and repeat the process. In this scenario, the write posting buffers of both the graphics controller and the
PCI bus quickly overflow. The resulting bus stalls then cause the processor to stall, and decode work is
interrupted.

To avoid the problem of overflowing write buffers during frame buffer writes, it is desirable for the
decoder to be architected in such a way that this activity is highly parallel. Specifically, the decoder
should attempt to optimize for low bus utilization for frame buffer writes. If the frame buffer writes are
periodic and of manageable size, the overall bus utilization required for the frame buffer write traffic is
minimized. To illustrate this, the following data was collected by varying the size of frame buffer writes
and the interval between writes and measuring the instantaneous transfer rate at the PCI interface for a
given graphics controller.

24

Frame Buffer Bandwidth

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100
Bus Delay in Clocks Between ADS Cycles (66 MHZ

Clocks)

T
ra

n
sf

er
 R

at
e

(M
B

/S
)

Block Size = 8 bytes

Block Size = 16 bytes

Block Size = 24 bytes

Block Size = 32 bytes

Block Size = 64 bytes

Figure 15. Frame Buffer Write Transfer Rate

Each of the curves above represent the write transfer rate at the host for a given block size. As the delay
time between frame buffer writes increases, the write transfer rate increases. This is directly related to the
ability of the graphics controller to accept writes from its write posting buffers and write them out to the
frame buffer. Eventually, the curves flatten, regardless of the spacing between writes. The “knee” where
the transfer rate flattens indicates where the write posting buffers in the PCI chip set overflow, causing a
bottleneck higher up the data pipe. At this point, write performance is dictated by the depth of the write
posting buffers in the chip set.

The different curves were then obtained by varying the block size of the writes. As seen above, smaller
block sizes achieve higher instantaneous transfer rate (i.e., more efficient bandwidth transfer). This result
is not exactly intuitive, but the optimal frame buffer write traffic for MPEG decoding is achieved by
maintaining a constant, steady stream of writes with the block size optimized so as not to overflow the
write posting buffers in the graphics controller. By optimizing in this manner, our calculations for an
MPEG-2 data rate show that for a 15 MB/s display bandwidth requirement, the bus utilization can be
reduced from 30% of the bus activity to 15% or lower.

Other Graphics Controller Enhancements
In addition to the hardware and software optimizations illustrated above, there are many other potential
areas for improving the graphics controller for MPEG-2 playback. The PCI interface of many graphics
controllers today is in the range of 50 MB/s. For MPEG-2, 100 MB/s is ideal, when targeting 15% bus
utilization for 15 MB/s display bandwidth. The use of faster memory technologies for frame buffer
memory will further improve bus transfer rates and overall MPEG-2 performance. Like EDO DRAM,
SDRAM offers significant performance improvements at little or no price premium. Memory
technologies specifically targeted for video and graphics, such as SGRAM, may offer even faster
performance gains.

25

Another potential enhancement to the graphics controller for video acceleration is PCI bus mastering.
PCI Bus mastering graphics controllers may further improve bus utilization on frame buffer writes by
maximizing efficiency on transfers between main memory and frame buffer memory.

Faster bus interfaces for the graphics device could also result in a significant performance boost. For
more information on the recently announced Accelerated Graphics Port standard see the following web
site:

www.teleport.com/~agfxport

In the coming MPEG-2 System Design Guide, we will publish data which will further qualify and
quantify the performance benefits of these and other enhancements for decoding MPEG-2 video.

MMX Technology Accelerates MPEG-2
As mentioned before, the SIMD instruction set added to Intel Architecture processors with MMX
technology is well suited to assist in the acceleration of MPEG-2 video decoding.

If we take a closer look at the activities involved in decoding MPEG video, we notice that from an
algorithm standpoint, the process consists of three major functions:

Variable Length Decoder
and

Inverse Quantizer
Lossless macroblock decoding

IDCT
Frequency Domain to

Spatial Domain

Motion
Compensation

Required?

Motion Compensation
Sum Current Macroblock with
Reference Frame Macroblock

Yes

No

Output Current
Macroblock to
Current Frame

Buffer

Figure 17. Functional Block Diagram of an MPEG Decoder

26

The following table shows the relative computational load for each of the above tasks for a software-based
decoder using an MPEG-1 video stream at 1.15 Mbps:

Decoder Function* Load
Bit Stream Header Parsing --
VLC Decoding and Inverse Quantization 24%
Inverse DCT 28%
Motion Compensation 48%
* Note that Color Space Conversion in Hardware is assumed

Table 9. Computational Load of a Software-Based MPEG Decoder[1]

Bit Stream parsing consumes less than 1% and is therefore ignored. If we next look at what is required to
accelerate the above algorithms, we notice that all are good candidates for optimization with MMX
technology. More specifically, we can profile each of the algorithms into its basic operation(s) and
speculate how the MMX Instruction set might be applied.

The raw image decompression algorithm(s), Huffman Decoding and Inverse Quantization, are primarily a
parsing exercise. Fast compares can accelerate this stage, as can byte unpacking operations. The Inverse
Discrete Cosine Transform, or IDCT, is the heart of the MPEG video decoder. It translates the frequency
domain data of a particular macroblock back into the spatial (YUV format) domain. Since the IDCT is
performed by a series of matrix multiplications (summations), the Multiply-Accumulate operations
capable with MMX instructions may speed up an IDCT as much as 3.5x [2] over a similar decoder not
utilizing MMX instructions.

Next, we look at the motion compensation portion of MPEG video decoding, Motion compensation is the
process of decoding a macroblock based on motion vectors pointing to past or future reference
macroblocks. The reference macroblock(s) are used to reconstruct the current macroblock by summing
their pixel values. Maximum compression is achieved in this way since only the error, or difference
vector, between the current macroblock and the reference macroblock(s) is coded. If the motion
estimation in the encoder is good, then the difference vector produces all zeros for the macroblock DCT
coefficients and the resulting average frame compression increases.

Recall here our earlier discussion, in the section on DRAM read performance optimization, on the
working set size for MPEG-2 decoding. If we now look at the macroblock as a set size, we have a greater
appreciation for the MPEG-2 data requirements. An MPEG-2 macroblock consists of 384 Bytes
representing 256 pixels. At a per frame resolution of 720 x 480 pixels, a single frame contains 345,600
pixels, or 1,350 macroblocks. For raw data alone, this consumes ~518 KB of pixel data, twice as large as
the standard 256 KB L2 cache. Because P- and B- macroblocks make reference to one or two I- or P-
macroblocks, we can see that the memory requirements required to assemble a frame can be quite
complex, especially for P- or B- frames.

Fortunately, MMX instructions lend themselves particularly well to motion compensation, which, like an
IDCT, is a “Multiply-Accumulate” type of algorithm. When averaging or summing pixels, the packed
registers used in MMX technology can be used to accelerate these functions[3] [4] .

27

Conclusions
In summary, from the exploration of system bottlenecks above and the discussion of MMX technology
acceleration, our platform architecture recommendations for MPEG-2 video playback are:

Software Enhancements
Accelerate MPEG-2 Decode with MMX Technology
Interleave Decoding and Frame Buffer Write activities

Goal is an even, optimized frame buffer write stream
Don’t overflow write posting buffers

Optimize for Fast Data Reads
Improve L2 Hit Rates
Prefetch for Sequential Access (improve average DRAM read performance)

Hardware Enhancements
CPU/PCIset

Platform MUST have an L2 Cache
Future chip sets should support deeper write buffers
SDRAM may help—performance vs. EDO being investigated
Future Technologies:

PCI Concurrency
Dynamic Execution in P6 Family processors

Graphics Controller/Frame Buffer
Frame Buffer Support for Planar YUV12
Deep Write Posting Buffers (2 Cache Lines or better)
Target 100+ MB/s frame buffer Bandwidth @ PCI Interface

SDRAM, SGRAM may be necessary
Future Technologies:

PCI Bus Mastering
Accelerated Graphics Port

Balanced System Model Verification
As a final system cost/performance check, if we map the system requirements against the “balanced
system model”, as described earlier in the paper, we get the following:

Figure 18. Balanced System for MPEG-2 Video Playback

28

If the model is correct in its assumptions, the suggested performance elements required to implement
MPEG-2 movie playback, by adding appropriately to each quadrant, should also result in overall system
performance improvement. Whether these features are the best and final recommendations that we make
remains to be seen. More lab work is necessary before we get to the final results but it is likely that much
of what we have learned thus far will directly apply to an eventual solution. Intel will publish this as a
DVD/MPEG-2 Design Guide on the web, http://www.intel.com/.

Other References
A good, short MPEG backgrounder is available on the World Wide Web at:

http://www.optivision.com/compress/textonly/compress/technica/wpaps3.html

A more comprehensive MPEG FAQ is available on the World Wide Web at:

http://www.cs.tu~berlin.de/~phade/mpegfaq/mpe8912.html

For more information about MPEG, contact the OpenMPEG Consortium WWW page at:

http://www.openmpeg.org/

[1] “Image and Video Compression Standards: Algorithms and Architectures.” Bhaskaran, Vasudev, and
Konstantinides, Konstantinos. Kluwer Academic Publishers, London. 1995. Pp.181
[2] AP-528, “Using MMX Instructions in a Fast IDCT Algorithm for MPEG Decoding.” Intel Corp.,
March 1996.
[3] AP-529, “Using MMX Instructions to Implement Optimized Motion Compensation for MPEG1 Video
Playback.” Intel Corp., March 1996.
[4] AP-527, “Using MMX Instructions to Get Bits from a Data Stream.” Intel Corp., March 1996.

	Choosing a Platform Architecture for Cost Effective MPEG-2 Video Playback
	Disclaimer
	Introduction
	Accelerating DVD
	Audio Playback

	Part I. Platform Partitioning for DVD/MPEG-2: A Balanced System Approach
	System Cost/Performance
	Support For Real-time Processing
	MPEG-2 Playback System Operation
	Understanding System Stalls

	Part II. MPEG-2 Analysis
	First Look: Soft MPEG-2 Playback
	Our Analysis
	A Closer Look: Identifying the System Bottlenecks

	Part III. System Bottleneck Identification and Analysis
	Memory Read Performance
	Optimizing for DRAM Read Performance
	Future Processor/PCIset Architecture Enhancements
	Frame Buffer Write Analysis
	Graphics Controller Write Buffer Depth
	Optimizing for Frame Buffer Writes
	Other Graphics Controller Enhancements
	MMX Technology Accelerates MPEG-2
	Conclusions
	Balanced System Model Verification
	Other References

