ECR# 19

Title: Arbitration Deadlock
Release Date: Feb. 17, 1997
Impact: Change

Spec Version: A.G.P.1.0

Summar y:The current definition of arbitration can cause a deadlock to occur. The arbiter needs the right to
removeGNT# at anytime to resolve the deadlock condition. A deadlock can occur when the arbiter has asserted
GNT#to the A.G.P. compliant master when the Processor makes an access to the A.G.P. compliant master (using
PCI protocol) and disables the master by clearing either its PCI or A.G.P. compliant master enable bits. The
current specification is written such that the arbiter is not allowed to remove&NT# until either FRAM E#or Pl PE#
is sampled asserted. In this case, the arbiter is not allowed to remove&NT#, but the master never asserts
FRAME#or PIPE#

Background:

In the 1.0 interface specification the arbitration rules are not consistent with the current PCI specification and are
different for A.G.P. transactions. This blending of rules (A.G.P. and PCI) has caused confusion and potential
incompatibilities.

Change Current Specification as follows:
A.G.P. Compliant M aster

A.G.P. Compliant M aster initiating an A.G.P. request.

When the A.G.P. compliant master hasREQ# asserted to request permission to use thé\ D bus to make an A.G.P.
request, it must assertPIPE# within 2 clocks of samplingGNT# asserted and ST[2::0] = 111 and the busisin a
state in which the master can start. Figure 8-1 illustrates the earliest in whiclPIPE# can be sampled asserted by
the arbiter. Figure 8-2 illustrates the latest it can be sampled asserted.

1 2 3 4 5 6 7 8

/\/\/\

ST12::0] o0 X 131) oo) o)Y oo)Y oo o Yo o

81 -

1 2 3 4 5 6 7 8

aunuan

L
\{—I

GNT# M

ST[ZZZO]%XX >< 1;11 >< xxx >< xxx >< xxx >< xxx >< xxx >< xxx ><xx

82 :

A.G.P. Compliant M aster initiating a PCI transaction

When the A.G.P. compliant master haREQ# asserted to request permission to use the\D bus to
make an PCI transaction, it must follow the PCI Bus specification in initiating a transaction by
assertingFRAME# This requires the master to asserFRAME#from the clock in whictGNT#is
sampled asserted andsT[2::0]= 111 and the busisin a condition in which the master can start a
transaction. The master does not get the option of taking one or two clocks to start. If the
master delays starting a transaction it runs the risk of havir@NT# removed and losing its turn to
use the bus. The A.G.P. compliant master must follow the PCI 2.1 specification and not the
A.G.P. rulesfor this type of transaction. This means that the master is only allowed to initiate a
PCI transaction whenGNT# is asserted (ST[2::0] = 111) and the busisin the Idle condition.
Figure 8-74 illustrates a PCI transaction . SinceNT# is asserted on clock 2 the A.G.P.
compliant master is required to asserERAME#S0 the arbiter samplesit asserted on clock 3
otherwise the master may lose its opportunity to initiate the transaction. SincBNT#is
deasserted on clock 3, the master is not allowed to asserRAME#(for the address phase) on
clock 4. IfGNT#is deasserted on clock 3 and iFRAME#is not asserted on clock 3 the master is
not allowed to start a PCl transaction. The arbiter is not required to keepNT# asserted for the
master to initiate a PCI transaction but is allowed.

1 2 3 4 _5 _6
FRAME# ~~ 7777 TN\ s
AD e (X EE Y e
C/BE#é_ _______ ————<CI\/iD XBézs }gz —————— ——
R R
TROs g

DEVSEL# 7 T T\ e
REQ# é é / é 5 i 5
O NI e e e
sT[2::0] o X 11 X o X ox X oo X o X

8-74

L If the arbiter keeps GNT# asserted then the master is allowed to assefERAME#|ater, but it must always be
asserted the next clock after GNT# was asserted. If GNT# is only active for a single clock and the PCI master
requires 2 clocksto get going (i.e., address stepping), the master may never gain access to the bus.

A.G.P. Compliant Arbiter

The arbiter is allowed to deassert (removesNT# at anytime. This allows the arbiter to prevent
deadlocks from occurring.

When the arbiter removes &NT# (deasserts it), the arbiter must not assert a newsNT# (to grant
permission to initiate a request) until the original master has been allowed to initiate its
transaction. For a PCI transaction thisis one clock, while for A.G.P. the master is allowed 2
clocksto start. Infigure A-1, the arbiter grants the bus by assertirgNT# with ST[2::0]= 111 on
clock 2. In this example no master initiates a request by assertirgPE# on clocks 3 or 4, or
FRAME#o0n clock 3. InthisexampleGNT# is deasserted on clock 3. The earliest the arbiter can
assert anew GNT# with ST[2::0]= 111 isclock 5 sincerIPE# could be asserted on clock 3 or 4
and FRAME#could be asserted on clock 3.

1 2 3 4 5 6 7 8

CLK5/\/\/\/\/\/\/\/\

ST[Z O] XX >< 111 >< XXX >< XXX >< 111 >< XXX >< XXX >< XXX ><xx

Figure A-2 illustrates the arbiter keepingNT# asserted on clock 3 instead of deasserting it, asin
figure A-1. Inthis case, the arbiter is required to delay the assertion of a n@&wT# until clock 6.
In this figure the master is allowed to asse®IPE# on clocks 3, 4 and 5 orFRAME#0n clocks 3
and 4. The assertion ofGNT# on clock 3 allowsFRAME#to be asserted on clock 4 andPIPE# to
be asserted on clocks 4 and 5.

1 2 3 4 5 6 7 8

CLK5/\/\/\/\/\/\/\/\

ST[Z O] XX >< 111 >< 111 >< XXX >< XXX >< 111 >< XXX >< XXX ><xx

PipeliningGNT#s

The arbiter is allowed to pipeline grants when other bus transactions are in progress. This
pipelining can be grouped into 4 difference conditions:

1. A Request transaction followed by a Request transaction.
An A.G.P. Request followed by a PCI Read Transaction.
An A.G.P. Request followed by a PCI Write Transaction.
A PCI Transaction followed by a PCI Transaction.
A PCIl Read Transaction followed by an A.G.P. RequesP(PE#).
A PCIl Write Transaction followed by an A.G.P. RequesP(PE#).

(Note: An A.G.P. Request can not be followed by an A.G.P. Request sineeEQ#is required
to be deasserted indicating the last request is being enqueued during the current transaction.
The arbiter does not know a subsequent transaction is needed until the next clock.)

2. A Request transaction followed by a data transfer.
An A.G.P. Request followed by an A.G.P. Read transaction.
An A.G.P. Request followed by an A.G.P. Write transaction.
A PCIl Read Transaction followed by an A.G.P. Read Transaction.

A PCIl Write Transaction followed by an A.G.P. Read Transaction.
A PCIl Read Transaction followed by an A.G.P. Write transaction.
A PCI Write Transaction followed by an A.G.P. Write transaction.

3. A Datatransfer followed by a Request.
An A.G.P. Read transaction followed by an A.G.P. Request.
An A.G.P. Write transaction followed by an A.G.P. Request.
An A.G.P. Read Transaction followed by a PCI Read Transaction.
An A.G.P. Read Transaction followed by a PCI Write Transaction.
An A.G.P. Write transaction followed by a PCl Read Transaction.
An A.G.P. Write transaction followed by a PCl Write Transaction.

4. A datatransfer followed by a data transfer.
An A.G.P. Read transaction followed by an A.G.P. Read transaction.
An A.G.P. Read transaction followed by an A.G.P. Write transaction.
An A.G.P. Write transaction followed by an A.G.P. Read transaction.
An A.G.P. Write transaction followed by an A.G.P. Write transaction.

A Request transaction followed by a Request transaction.

The arbiter is allowed to asseriGNT# for a subsequent Request (PCI or A.G.P.) wheieNT# has
been deasserted for at least 2 clocks ANDFRAME#0r PIPE# is not asserted during those two
clocks. Figure A-2 illustrates this condition. The arbiter is allowed to assert a n@&mT# when
FRAME#is asserted. The arbiter is not allowed to pipeline a second request whilea A.G.P.
request is currently active. REQ# must be deasserted before it indicates that a “new” request is
pending.)

An A.G.P. Request followed by a PCI Read Transaction. (A4)

An A.G.P. Request followed by a PCI Write Transaction. (A5)

A PCI Transaction followed by a PCI Transaction. (A6, BtoB A7)

A PCI Read Transaction followed by an A.G.P. RequesP(PE#). (A8)
A PCI Write Transaction followed by an A.G.P. RequesP(PE#). (A9)

1 2 3 4 5 6 7 8 9

CLK/—\/—\/—\/—\/—\/—\/—\/—\/—\

ST[Z O] _>< 111 >< xxx >< xxx >< 111 >< xxx >< xxx >< xxx >< xxx ><X

a4

Single phase PIPE# followed by an AGP Master generated PCI Cycle
Governed by REQ# deassertion, no AD turnaround required

Figure A-4 illustrates the arbiter granting permission to start of request following an A.G.P.
transaction. In this case, the arbiter does not know the master desires to use the bus until clock 4
when untilPIPE# is deasserted andREQ# is asserted. For the arbiter to assertGNT# on clock 5 it
must use real time versions oPIPE# and REQ#. |If latched versions are used thereNT# would be
delayed until clock 6. The limiting condition for getting a subsequeiti T# asserted in this
exampleis the assertion oREQ# REQ#is used to indicate when the last request is present on the

AD bus.

1 2 3 4 5 6 7 8 9

CLK/—\/—\/—\/—\/—\/—\/—\/—\/—\

ST[Z O] _>< 111 >< xxx >< xxx >< xxx >< 111 >< XXX >< XXX >< XXX ><X

ab

Double phase PIPE# followed by an AGP Master generated PCI Cycle
Governed by REQ# deassertion, no AD turnaround required
Figure A-5 isthe same as A-4 except that multiple requests are enqueued. Ag&BQ#isthe
gating condition to getGNT# asserted. In this case REQ#is not reasserted until clock 5 thus
delayingGNT# until clock 6. If latched versions are used then theNT# would be delayed until

clock 7.

CLK/\/\/\/\/\/\/\/\/\:
FRAME#""\ . /—8\ : : /—8

ST[Z::O] £>< xxx >< 111>< 111 >< 111 >< xxx >< xxx >< xxx >< xxx W

a6

PCI Cycle followed by PCI Cycle
FRAME# asserted from Idle Bus

Figure A-6 illustrates that the arbiter can asser&NT# immediately following the assertion of
FRAME#to grant permission to the “next” agent to use theD busto initiate arequest. The next
agent may be the current agent or the other A.G.P. compliant agent. The arbiter could have
allowedGNT# to remain asserted on clock 2 when the first and second transactions are by the
same master. In this case, the master will not initiate the next transaction until clock 6 because a
turn-around cycleis required between the read data and the Address of the next transaction.

CLK/\/\/\/\/\/\/\/\/\

FRAME# \ /—\ /7“ """"
AD) (B Y (T)

GNT#

ST[2::0] £>< 1511 X 111>< 1?11 X 1511 X xxx X xxx X xxx X xxx XK

a7

Fast back-to-back PCI Cycles

Figure A-7 isillustrates the same operation as A-6 except the first transaction isaWrite and a
turn-around between the first data and the second address phase is not required. In this case, the
arbiter does not removeGNT# on clock 2 asit did in A-6, but keeps it asserted indicating that the
current master is allowed to do multiple transactions. The master samplesiT# asserted on

clock 4 which allows it to start the next transaction of clock 5 aslong as the first transaction was
awrite. Otherwise aturn-around cycle would be required on clock 5. If the first transaction was
terminated with Retry, the arbiter does not have sufficient time to remoaa T# before the master
could initiate the second transaction. If the corelogic (target machine) indicated to the arbiter that
it will assertSTOP# 0on clock 4, it could cause the arbiter to removeNT# for clock 4. Otherwise
the master will initiate the second transaction (which may be arepeat of the current transaction)
and most likely will complete the same as the first transaction. At a minimum the arbiter must
removeGNT# on the subsequent (3) transaction. The master is required to deasseREQ# on

clock 5 (when the bus would have gone Idle) and one clock after in this case. Thiswould all the
arbiter to grant the bus to a different resource.

-10-

CLK / \ / \ / \ / \ / \ / \ / \ / \ / \

pPPEY T e
FRAME#’"\ 5 | [_f_"“am """ I ;'""? """" é

AD -"*Iﬂﬂlhf’"4iﬁﬂi"f’"*llllf“*""-é ------- §"'""

IRDY# ™~~~ TTTC N\ ? “““““““““““““““
TRDY# ~~— T ?"_i_f‘?“"? “““““““““““““““
GNT# ? 5 | | -/

REQ#? E 5 5 5 [

ST[2::0] _>< 111 X 111>< 111 >< 111 >< 111 >< xxx X xxx X xxx W

a8

PCI Cycle followed by PIPE#
PIPE# asserted from Idle Bus

Figure A-8 illustrate a PCI read transaction followed byraPE# transaction. In this case theaD

bus requires a turn-around cycle between the PCI address phase and the Read data phase. A
second one is then required between the read data and the first request of the A.G.P. transaction.
The arbiter does not deassertGNT# between the transactions and thereby allows the A.G.P.
compliant master to initiate the request as soon as possible. (The arbiter does not need to know if
the current transaction isaread or write.) In this case, the A.G.P. compliant master is not
allowed to start the transaction until clock 6 even though theNT# was asserted on clock 3. If

the A.G.P. compliant master always uses two clock to get the transaction started and knows
samples that the PCI transaction completed on clock 4 it uses the turn-around cycle to pipeline its
request, thereby saving itself one dead clock on the bus.

-11-

CLK / \ / \ / \ / \ / \ / \ / \ / \ / \
ST D DU
FRAME#E"'\? ﬁ 8 """ e
B

IRDY# ~~" " j"_i_f‘f_‘ SAMNA At St
TRDY# ~~— T ?"_i_f‘?“"? “““““““““““““““
GNT# ? 5 | | -/

REQ#? E 5 5 5 [

ST[2::0] _>< 111 X 111>< 111 >< 111 >< 111 >< xxx X xxx X xxx W

a9

PCI Cycle followed by PIPE#
PIPE# asserted from Idle Bus

Figure A-9 isthe same as A8 except that the PCI transaction is awrite instead of aread. In this
case aturn-around is not required between the data phase of the PCI transaction and the A.G.P.
request, but a dead clock is required between any PCI transaction and A.G.P. transaction. The
master of the A.G.P. transaction (in this example) is required to delay the assertionroPE# until
after the dead clock. Again the fact thaGNT# is asserted until clock 5 is acceptable, since the
GNT# is to the same master and it knows when the current transaction completes and when the
subsequent is allowed to start.

A Request transaction followed by a data transfer.

The arbiter is allowed to assertGNT# to pipeline data transfers as soon as the Request has been
started. Note that the starting of the transaction may use latched signals and thereby causing the
GNT#with ST[2::0]= 111 to remain after the Request has started. Since the A.G.P. compliant
master ignoresGNT# asserted whensT[2::0]1= 111 except on the clock in which it desires to start
and transaction and is allowed to do so. In all other cases, this condition on the interface is
meaningless.

An A.G.P. Request followed by an A.G.P. Read transaction. (A10)

An A.G.P. Request followed by an A.G.P. Write transaction. (A11, A12)

A PCI Read Transaction followed by an A.G.P. Read Transaction. (A13 - dead cycle
does not require a turn around)

-12-

A PCI Write Transaction followed by an A.G.P. Read Transaction. (A13 - only difference
isthe dead clock is aturn-around cycle)

A PCI Read Transaction followed by an A.G.P. Write transaction. (A14) Dead clock isa
turn-around

A PCI Write Transaction followed by an A.G.P. Write transaction. (A14) Dead clock is
not a turn-around

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\

ST[2 0] XX >< 111 >< XXX >< OOx >< XXX >< XXX >< XXX >< XXX >< XXX >< XX:

Single phase PIPE# followed by Read Data
Governed by read GNT#, AD turnaround required

Figure A-10 is an example of an A.G.P. Request followed by an A.G.P. read data transfer. Inthis
example the arbiter deassert&NT# for clock 3 and when it samplegIPE# asserted on clock 3, it
assertsGNT# indicating that previously requested read data will be returned when the current
transaction completes. The earliest the arbiter can assedNT# with ST[2::0]= 00x is clock 4.

The turn-around cycle is required on clock 4 since ownership of th® busis changing.

-13-

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\

ST[2 O] XX >< 111 >< XXX >< 01x >< XXX >< XXX >< XXX >< XXX >< XXX >< XX:

Single phase PIPE# followed by Write Data
Governed by write GNT#

Figure A-11 isan A.G.P. request followed by an A.G.P. Write transaction. In this example no
turn-around is required between the request and the write data transfer. The dead clock on clock
4 is caused because the arbiter is not allowed to enqueue a data transaction urmiPE# is sampled
asserted. Figure A-12 shows the case whereIPE# is asserted long enough for the nexGNT# to
be asserted thereby allowing no dead clock between the two transactions. The arbiter is not
allowed to enqueue an A.G.P. datatransfer untibIPE# or FRAME#is asserted or untilGNT# with
ST[2::0] = 111 has been deasserted for 2 clocks. In this example)PE# was sampled asserted on
clock 3 and therefore the arbiter is allowed to assexsNT# with ST[2::0] = 01x indicating that
when the current transaction completes the write data is to be transferred across the busNT#
could have remained asserted on clock 3 withT[2::0]= 111. If GNT# remained asserted on clock
4 with ST[2::0] = 111 then the write data transfer would have been delayed. This condition can
occur when the arbiter uses a latched version afIPE#.

-14-

1 2 3 4 5 6 7 8 9

CLK/\/

PIPE#

ST[Z::O] xx >< 1;11 >< xxx >< 0§1x >< xxx >< xxx >< xxx >< xxx >< xxx >< XX

al2 -

Double phase PIPE# followed by Write Data
No AD turnaround required

Figure A-12 isawrite datafollowing an A.G.P. Request. In this case, there is no turn-around
cycle required since the same agent continues to own theD bus for both transactions. The
arbiter assertsGNT# indicating the A.G.P. compliant master isto provide write data after the
current transaction completes once it detects that the current transaction has been initiated. The
arbiter in thisfigure removed th&NT# on clock 3 since the A.G.P. compliant master is required
to assert PIPE# on either clock 3 or 4. However, the arbiter could have lefinT# asserted with

ST =111 on clock 3 or longer. If the latter then the write data transaction would have been
delayed and bus bandwidth would have been wasted.

-15-

CLK/\/\/\/\/\/\/\/\/\/
FRAMEF T\ [

GNT# § § § /

ST[Z::O] £>< 111 >< 00x>< xxx >< xxx >< xxx >< xxx >< xxx >< xxx ><xx

AGP Master generated PCI Cycle followed by Read Data a13
No TRDY# turnaround required, TRDY# asserted from Idle Bus

Figure A-13 isa PCI transaction that is initiated by an A.G.P. compliant master followed by
A.G.P. read data being returned to the master. A turn-around cycle is required between the PCI
transaction and the A.G.P. transaction even though ownership of ti bus does not change. In
this case, the arbiter samplesRAME#asserted on clock 2 and assert a newGNT# to the master
indicating that previously requested read data is being returned to the master. In this case, the
arbiter uses the state of RBF# to determine if the assertion @NT# is allowed for clock 3. If
RBF# is asserted then arbiter is not allowed to return the read dataif it islow priority. Since the
PCI transaction isin process the return of the read datais not allowed to start until the PCI
transaction completes. In this example, the ownership of th&DY# signal does not change hands
and therefore a turn-around is not required. Although a dead cycleisrequired between PCI and
A.G.P. transactions.

-16-

CLK/\/\/\/\/\/\/\/\/\/
FRAMEF T\ [

GNT# § § § /

ala

AGP Master generated PCI Cycle followed by Read Data
No TRDY# turnaround required, TRDY# asserted from Idle Bus

Figure A-14 is basically the same as A-13 except that write data is being provided by the master.
In this case a turn-around cycle is required since ownership of th® busis changing. Inthis

case, the dead clock is required because of a PCI to A.G.P. transition. The arbiter in this example
asserts theGNT# for the data movement at the earliest possible time. The A.G.P. compliant
master is required to monitor the bus until the current transaction completes and then must
provide the write data. In this case, the arbiter could have waited until clock 4 to assalT# and

ST = 01x without causing additional delays. When the A.G.P. compliant master does not require
an additional clock to start the write data transfer, the assertion @NT# on clock 5 would not

cause adelay. However, if the A.G.P. compliant master uses two clocks to initiate the transfer, a
dead clock would appear on the bus. Therefore it is recommended that the arbiter enqueue the
next GNT# at the earliest time possible to give the agent providing the data as much notification as
possible to minimize the dead clocks on the interface.

A Datatransfer followed by a Request.

During an A.G.P. Read transaction the arbiter is not allowed to enqueue the next transaction until
the read data transaction enters the last data phase.
An A.G.P. Read transaction followed by an A.G.P. Request. (A15, A16)
An A.G.P. Write transaction followed by an A.G.P. Request. (A17, A18)
An A.G.P. Read Transaction followed by a PCI (Read or Write) Transaction. (A19, A20)
An A.G.P. Write transaction followed by a PCI (Read or Write) Transaction. (A21, A22)

-17 -

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\

ST[2 O] XX >< 00x >< 111 >< 111 >< 111 >< xxx >< xxx >< xxx >< xxx >< xx

Read Data foIIowed by PIPE#
AD turnaround required

Figure A-15isan A.G.P. Read transaction followed by an A.G.P. Request. Ownership of @
bus changes therefore a turn-around cycle isrequired. In this case the arbiter indicated to the
master that read data is being returned by assertingNT# on clock 2 withsT = 00x. Since grants
for A.G.P. datatransfers are latched and remembered by the A.G.P. compliant master they only
last asingle clock. The following clock the arbiter is allowed to pipeline anotkenT# since the
read transaction has entered the last data phase.

-18-

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\

= N A R

ST[2 0] XX >< OOx >< xxx >< xxx >< xxx >< xxx >< 111 >< 111 >< 111 >< xx

Read Data foIIowed by PIPE#
AD turnaround required
Figure A-16 is the same as A-15 except that the data transfer last longer and therefore thaiT#
to start a Request is delayed until the read data transfer enters the last data phase which occurs on
clock 7. The arbiter is not allowed to asserGNT# on clocks 3-6. The arbiter could delay the
assertion of GNT# beyond clock 7 but bus bandwidth would be wasted.

-19-

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\

ST[2 O] XX >< 01x >< 111 >< 111 >< xxx >< xxx >< xxx >< xxx >< xxx >< xx

erte Data foIIowed by PIPE#
No AD turnaround required

Figure A-17 isan A.G.P. write transaction followed by an A.G.P. Request. Thisfigureissimilar
to figure A-15 except the data transfer is awrite instead of aread. In this example, aturn around
cycleis not required between the data transfer and the Request since ownership of tie bus

does not change. The data transfer isindicated on clock 2. The arbiter is allowed to enqueue the
next transaction immediately on awrite transaction up to a maximum of 4 transactions
outstanding. In this case, thereis only one outstanding since the subsequent one was not a write.

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\
=7 R U S A W i

ST[2: 0] XX >< 0ix >< 11 >< 11 >< 11 >< 11 >< 11 >< 11 >< XXX >< XX

Write Data foIIowed by PIPE#
No AD turnaround required

-20-

Figure A-18 is the same as A-17 except the write transaction is longer and illustrates how the
GNT# to start the Request is pending for a number of clocks. Since the arbiter is allowed to
remove a grant at anytime the master can not assume that it can start at the end of the write
transaction untilGNT# is sampled asserted (withsT = 111) on clock 6 or 7. IfGNT# was asserted
on clocks 3-5 and deasserted on clock 6, the master would not be allowed to start the Request.
The A.G.P. compliant Master is not allowed to “remember” that it had been granted access to the
bus but must only checkcNT# (ST = 111) when it is allowed to actually start the transaction.

1 2 3 4 5 6 7 8 9

CLK / \ / \ / \ / \ / \ / \ / \ / \ / \
FRAME# """" § """" f """" 7\ N z %

GNT#'_\ ? 5 ?' ? /
ST[2 O] XX >< OOX >< 111 >< 111 >< 111 >< xxx >< xxx >< xxx >< xxx >< xx

Read Data followed by an AGP generated PCI Cycle
TRDY# turnaround required

Figure A-19isan A.G.P. read transaction followed by a PCl Request. In this caRDY#is
required to have aturn-around cycle. Therefore a dead clock is required between the A.G.P. and
PCI transactions. In this example the arbiter is allowed to pipelinesaiT# on clock 4 since the
Read transaction isin the last data phase. If the arbiter causesNT# to be deasserted on clock 4,
the PCI master would not be allowed to start the request. The PCI master isonly allowed to
initiate a request whenGNT#is asserted (ST = 111 for an A.G.P. compliant master initiating a PCI
transaction) andFRAME#and IRDY# are deasserted. This condition occurs on clock 4 and the
master assertsFRAME#and the address phase completes on clock 5.

-21-

1 2 3 4 5 6 7 8 9

CLK/—\/—\/—\/—\/—\/—\/—\/—\/—\

——— Z ————Q—

GNT#__/ -

ST[Z O]_>< OOx >< X);(X >< xxx >< xxx >< xxx >< 111 >< 111 >< 111 >< xx

Read Data followed by an AGP generated PCI Cycle
No AD turnaround required

Figure A-20 is an example of an A.G.P. read followed by a PCI transaction. In this case the PCI
master is allowed to start the request without a turn-around transaction because there is no
contention onIRDY#or TRDY# and ownership of theaD bus does not change. This sequence can
only occur when the PCI master is the corelogic. Otherwise aturn-around cycle would be
required between the data transfer and the PCI request. The PCI master is allowed to initiate the
transaction on clock 8 since an internabNT# is asserted on clock 7 (which isindicated in figure
A-20 with a dotted line) andFRAME#and IRDY# are deasserted on clock 7. Notice on clock 9
that GNT#is still asserted. In this case the master could do a fast back to back transaction. The
arbiter can cause this not to occur by deassertingNT# whenFRAME#is sampled asserted. Note:
if the arbiter uses a latched version ofFRAME#it may lose its ability to prevent a Fast Back to
back transaction from occurring when the first transaction is terminated with Retry or Disconnect.
The arbiter is required to remember that a previous transaction was terminated with the assertion
of STOP# and the bus must be given to a different agent otherwise alivelock condition can occur.

-22.

1 2 3 4 5 6 7 8 9

CLK/\/\/\/\/\/\/\/\/\;
FRAME# | - - _/7“ """" T o

ST[2 O] XX >< xxx >< 01x >< 111 >< 111 >< xxx >< xxx >< xxx >< xxx >< xx

Write Data followed by an AGP Master generated PCI Cycle
No AD, IRDY# turnaround required

Figure A-21 is an example where a turn-around cycle is not required between an A.G.P. and PCI
transaction. In this case, ownership of thaD bus does not change. In this case, the A.G.P.
compliant master isinitiating a PCl transaction after providing datato the corelogic. In this case,
the arbiter is allowed to enqueue a NevGNT# as soon asGNT# is asserted for the Write

transaction. However, the PCI master is not allowed to start the transaction until the A.G.P. data
transfer completes. A dead clock can be inserted by the master on clock 5 if the master desires.
However, if the arbiter removesNT# on clock 5, then the master has lost it turn using the bus.
The fact that GNT# was asserted for several clocks before is meaningles&NT# only has meaning
whensT = 111 and the master is allowed to start. This condition iswhen the master is ready to
start, the busisin the correct state andsNT# is asserted (ST = 111 for an A.G.P. compliant

master doing a PCI transaction).

-23-

1 2 3 4 5 6 7 8 9

CLK ,f_\ f_\ f_\ f_\ /_\ /_\ /_\ /_\ /_\

FRAME#;

AD

IRDY#;

TRDY#

(ST IS N S S U
GNT# | / é é § \ 5 5 / 5 é
ST[Z O]_>< le >< x>;<x >< xxx >< xxx >< xxx >< 111 >< 111 >< xxx >< .

a22

erte Data followed by an AGP Master generated PCI Cycle
No AD turnaround required

Figure A-22 is the same as A-21 except that the write data transfer islonger. In thisfigure the
arbiter delays the assertion ofeNT# (ST = 111) until clock 7. The arbiter could asserGNT#
earlier but no improvement in performance occurs. 8NT# was asserted earlier the master is not
allowed to start the transaction even thouglfFRAME#and IRDY# are both deasserted. In this case
the agent initiating the PCI request is the same agent that is providing the write data. Therefore
the PCI master interface knows when the busis free to start the PCI transaction.

A datatransfer followed by a data transfer.
An A.G.P. Read transaction followed by an A.G.P. Read transaction.
An A.G.P. Read transaction followed by an A.G.P. Write transaction.
An A.G.P. Write transaction followed by an A.G.P. Read transaction.
An A.G.P. Write transaction followed by an A.G.P. Write transaction.

Editorial Note: The above transactions are already covered in the specification and do not change.
A summary of the rules needs to include the follow ideas.

1. The A.G.P. compliant master that has it&NT# asserted withsT[2::0]= 111, must not
remember thatGNT# was asserted. But must use the current version o6NT# to decide if it
can initiate a transaction or not.

2. The A.G.P. compliant master when initiating a PCI transaction must follow the PCI 2.1
specification. This requires the master to asseRAME#from the same clock in whiClENT#
is sampled asserted andsT[2:0] = 111. The A.G.P. compliant master initiating a PCI

-24-

transaction is not allowed to start 1 or 2 clocks later as an A.G.P. compliant master is allowed
making an A.G.P. request.

. The A.G.P. compliant master is required to deasseREQ# when it initiates the last
transaction. (The assertion ofREQ# indicates a true need to gain access to thaD bus.) The
A.G.P. compliant master is required to deasseREQ# for 2 clocks when the transaction is
terminated withSTOP# asserted. An exception is granted wheisTOP# isfirst asserted during
the last data phase.

. The A.G.P. compliant master when initiating an A.G.P. request is required to initiate the
request within 2 clocks of wherGNT# is asserted andsT[2::0]is 111. (Thisisthe sameas 1.0
and is not a change.)

-25.

