
- 1 -

ECR #: 19
Title: Arbitration Deadlock
Release Date: Feb. 17, 1997
Impact: Change
Spec Version: A.G.P. 1.0

Summary: The current definition of arbitration can cause a deadlock to occur. The arbiter needs the right to
remove GNT# at anytime to resolve the deadlock condition. A deadlock can occur when the arbiter has asserted
GNT# to the A.G.P. compliant master when the Processor makes an access to the A.G.P. compliant master (using
PCI protocol) and disables the master by clearing either its PCI or A.G.P. compliant master enable bits. The
current specification is written such that the arbiter is not allowed to remove GNT# until either FRAME# or PIPE#
is sampled asserted. In this case, the arbiter is not allowed to remove GNT#, but the master never asserts
FRAME# or PIPE#.

Background:
In the 1.0 interface specification the arbitration rules are not consistent with the current PCI specification and are
different for A.G.P. transactions. This blending of rules (A.G.P. and PCI) has caused confusion and potential
incompatibilities.

Change Current Specification as follows:

A.G.P. Compliant Master

A.G.P. Compliant Master initiating an A.G.P. request.

When the A.G.P. compliant master has REQ# asserted to request permission to use the AD bus to make an A.G.P.
request, it must assert PIPE# within 2 clocks of sampling GNT# asserted and ST[2::0] = 111 and the bus is in a
state in which the master can start. Figure 8-1 illustrates the earliest in which PIPE# can be sampled asserted by
the arbiter. Figure 8-2 illustrates the latest it can be sampled asserted.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# C1

REQ#

GNT#

A1

ST[2::0] 111 xxx xxx xxx xxx xxx xxx xxxx

8-1

- 2 -

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE# C1

REQ#

GNT#

A1

ST[2::0] 111 xxx xxx xxx xxx xxx xxxx xxx

8-2

- 3 -

A.G.P. Compliant Master initiating a PCI transaction

When the A.G.P. compliant master has REQ# asserted to request permission to use the AD bus to
make an PCI transaction, it must follow the PCI Bus specification in initiating a transaction by
asserting FRAME#. This requires the master to assert FRAME# from the clock in which GNT# is
sampled asserted and ST[2::0] = 111 and the bus is in a condition in which the master can start a
transaction. The master does not get the option of taking one or two clocks to start. If the
master delays starting a transaction it runs the risk of having GNT# removed and losing its turn to
use the bus. The A.G.P. compliant master must follow the PCI 2.1 specification and not the
A.G.P. rules for this type of transaction. This means that the master is only allowed to initiate a
PCI transaction when GNT# is asserted (ST[2::0] = 111) and the bus is in the Idle condition.
Figure 8-74 illustrates a PCI transaction . Since GNT# is asserted on clock 2 the A.G.P.
compliant master is required to assert FRAME# so the arbiter samples it asserted on clock 3
otherwise the master may1 lose its opportunity to initiate the transaction. Since GNT# is
deasserted on clock 3, the master is not allowed to assert FRAME# (for the address phase) on
clock 4. If GNT# is deasserted on clock 3 and if FRAME# is not asserted on clock 3 the master is
not allowed to start a PCI transaction. The arbiter is not required to keep GNT# asserted for the
master to initiate a PCI transaction but is allowed.

DEVSEL#

CLK

1 2 3 4 5 6

FRAME#

A D

C /BE#

IRDY#

TRDY#

Add

CMD

D PCI

BEs

GNT#

REQ#

111 xxx xxx xxxxST[2::0] xxxxxx

8-74

1 If the arbiter keeps GNT# asserted then the master is allowed to assert FRAME# later, but it must always be
asserted the next clock after GNT# was asserted. If GNT# is only active for a single clock and the PCI master
requires 2 clocks to get going (i.e., address stepping), the master may never gain access to the bus.

- 4 -

A.G.P. Compliant Arbiter

The arbiter is allowed to deassert (remove) GNT# at anytime. This allows the arbiter to prevent
deadlocks from occurring.

When the arbiter removes a GNT# (deasserts it), the arbiter must not assert a new GNT# (to grant
permission to initiate a request) until the original master has been allowed to initiate its
transaction. For a PCI transaction this is one clock, while for A.G.P. the master is allowed 2
clocks to start. In figure A-1, the arbiter grants the bus by asserting GNT# with ST[2::0] = 111 on
clock 2. In this example no master initiates a request by asserting PIPE# on clocks 3 or 4, or
FRAME# on clock 3. In this example, GNT# is deasserted on clock 3. The earliest the arbiter can
assert a new GNT# with ST[2::0] = 111 is clock 5 since PIPE# could be asserted on clock 3 or 4
and FRAME# could be asserted on clock 3.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE#

REQ#

GNT#

ST[2::0] 111 xxx xxx 111 xxx xxx xxx xxxx

a-1

FRAME#

- 5 -

Figure A-2 illustrates the arbiter keeping GNT# asserted on clock 3 instead of deasserting it, as in
figure A-1. In this case, the arbiter is required to delay the assertion of a new GNT# until clock 6.
In this figure the master is allowed to assert PIPE# on clocks 3, 4 and 5 or FRAME# on clocks 3
and 4. The assertion of GNT# on clock 3 allows FRAME# to be asserted on clock 4 and PIPE# to
be asserted on clocks 4 and 5.

CLK

1 2 3 4 5 6 7 8

PIPE#

AD

C/BE#

REQ#

GNT#

ST[2::0] 111 111 xxx xxx 111 xxx xxx xxxx

a-2

FRAME#

Pipelining GNT#s

The arbiter is allowed to pipeline grants when other bus transactions are in progress. This
pipelining can be grouped into 4 difference conditions:

1. A Request transaction followed by a Request transaction.
 An A.G.P. Request followed by a PCI Read Transaction.
 An A.G.P. Request followed by a PCI Write Transaction.
 A PCI Transaction followed by a PCI Transaction.
 A PCI Read Transaction followed by an A.G.P. Request (PIPE#).
 A PCI Write Transaction followed by an A.G.P. Request (PIPE#).

 (Note: An A.G.P. Request can not be followed by an A.G.P. Request since REQ# is required
to be deasserted indicating the last request is being enqueued during the current transaction.
The arbiter does not know a subsequent transaction is needed until the next clock.)

2. A Request transaction followed by a data transfer.

 An A.G.P. Request followed by an A.G.P. Read transaction.
 An A.G.P. Request followed by an A.G.P. Write transaction.
 A PCI Read Transaction followed by an A.G.P. Read Transaction.

- 6 -

 A PCI Write Transaction followed by an A.G.P. Read Transaction.
 A PCI Read Transaction followed by an A.G.P. Write transaction.
 A PCI Write Transaction followed by an A.G.P. Write transaction.

3. A Data transfer followed by a Request.
 An A.G.P. Read transaction followed by an A.G.P. Request.
 An A.G.P. Write transaction followed by an A.G.P. Request.
 An A.G.P. Read Transaction followed by a PCI Read Transaction.
 An A.G.P. Read Transaction followed by a PCI Write Transaction.
 An A.G.P. Write transaction followed by a PCI Read Transaction.
 An A.G.P. Write transaction followed by a PCI Write Transaction.

4. A data transfer followed by a data transfer.
 An A.G.P. Read transaction followed by an A.G.P. Read transaction.
 An A.G.P. Read transaction followed by an A.G.P. Write transaction.
 An A.G.P. Write transaction followed by an A.G.P. Read transaction.
 An A.G.P. Write transaction followed by an A.G.P. Write transaction.

A Request transaction followed by a Request transaction.

The arbiter is allowed to assert GNT# for a subsequent Request (PCI or A.G.P.) when GNT# has
been deasserted for at least 2 clocks AND FRAME# or PIPE# is not asserted during those two
clocks. Figure A-2 illustrates this condition. The arbiter is allowed to assert a new GNT# when
FRAME# is asserted. The arbiter is not allowed to pipeline a second request while a A.G.P.
request is currently active. (REQ# must be deasserted before it indicates that a “new” request is
pending.)

 An A.G.P. Request followed by a PCI Read Transaction. (A4)
 An A.G.P. Request followed by a PCI Write Transaction. (A5)
 A PCI Transaction followed by a PCI Transaction. (A6, BtoB A7)
 A PCI Read Transaction followed by an A.G.P. Request (PIPE#). (A8)
 A PCI Write Transaction followed by an A.G.P. Request (PIPE#). (A9)

- 7 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

TRDY#

REQ#

GNT#

111 xxx xxxxxx xxx xxxxST[2::0] xxx111xxx

AD Add

FRAME#

DataA6

Single phase PIPE# followed by an AGP Master generated PCI Cycle
Governed by REQ# deassertion, no AD turnaround required

a-4

Figure A-4 illustrates the arbiter granting permission to start of request following an A.G.P.
transaction. In this case, the arbiter does not know the master desires to use the bus until clock 4
when until PIPE# is deasserted and REQ# is asserted. For the arbiter to assert GNT# on clock 5 it
must use real time versions of PIPE# and REQ#. If latched versions are used then GNT# would be
delayed until clock 6. The limiting condition for getting a subsequent GNT# asserted in this
example is the assertion of REQ#. REQ# is used to indicate when the last request is present on the
AD bus.

- 8 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

TRDY#

REQ#

GNT#

111 xxx xxxxxx xxx xxxxST[2::0] 111xxxxxx

AD Add

FRAME#

DataA6 A7

Double phase PIPE# followed by an AGP Master generated PCI Cycle
Governed by REQ# deassertion, no AD turnaround required

a-5

Figure A-5 is the same as A-4 except that multiple requests are enqueued. Again REQ# is the
gating condition to get GNT# asserted. In this case, REQ# is not reasserted until clock 5 thus
delaying GNT# until clock 6. If latched versions are used then the GNT# would be delayed until
clock 7.

- 9 -

CLK

1 2 3 4 5 6 7 8 9

AD

IRDY#

TRDY#

Add

GNT#

REQ#

FRAME#

Data

xxx11 111 xxxxxx xxx xx111ST[2::0] xxx111

PCI Cycle followed by PCI Cycle
FRAME# asserted from Idle Bus

Add Data

a-6

Figure A-6 illustrates that the arbiter can assert GNT# immediately following the assertion of
FRAME# to grant permission to the “next” agent to use the AD bus to initiate a request. The next
agent may be the current agent or the other A.G.P. compliant agent. The arbiter could have
allowed GNT# to remain asserted on clock 2 when the first and second transactions are by the
same master. In this case, the master will not initiate the next transaction until clock 6 because a
turn-around cycle is required between the read data and the Address of the next transaction.

- 10 -

CLK

1 2 3 4 5 6 7 8 9

AD

IRDY#

TRDY#

Add

GNT#

REQ#

FRAME#

Data

11111 111 xxxxxx xxx xx111ST[2::0] xxx111

Fast back-to-back PCI Cycles

Add Data

a-7

Figure A-7 is illustrates the same operation as A-6 except the first transaction is a Write and a
turn-around between the first data and the second address phase is not required. In this case, the
arbiter does not remove GNT# on clock 2 as it did in A-6, but keeps it asserted indicating that the
current master is allowed to do multiple transactions. The master samples GNT# asserted on
clock 4 which allows it to start the next transaction of clock 5 as long as the first transaction was
a write. Otherwise a turn-around cycle would be required on clock 5. If the first transaction was
terminated with Retry, the arbiter does not have sufficient time to remove GNT# before the master
could initiate the second transaction. If the corelogic (target machine) indicated to the arbiter that
it will assert STOP# on clock 4, it could cause the arbiter to remove GNT# for clock 4. Otherwise
the master will initiate the second transaction (which may be a repeat of the current transaction)
and most likely will complete the same as the first transaction. At a minimum the arbiter must
remove GNT# on the subsequent (3) transaction. The master is required to deassert REQ# on
clock 5 (when the bus would have gone Idle) and one clock after in this case. This would all the
arbiter to grant the bus to a different resource.

- 11 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

AD

IRDY#

TRDY#

Add

GNT#

REQ#

FRAME#

R_Data A6

11111 111 xxxxxx xxx xx111ST[2::0] 111111

PCI Cycle followed by PIPE#
PIPE# asserted from Idle Bus

a-8

Figure A-8 illustrate a PCI read transaction followed by a PIPE# transaction. In this case the AD
bus requires a turn-around cycle between the PCI address phase and the Read data phase. A
second one is then required between the read data and the first request of the A.G.P. transaction.
The arbiter does not deassert GNT# between the transactions and thereby allows the A.G.P.
compliant master to initiate the request as soon as possible. (The arbiter does not need to know if
the current transaction is a read or write.) In this case, the A.G.P. compliant master is not
allowed to start the transaction until clock 6 even though the GNT# was asserted on clock 3. If
the A.G.P. compliant master always uses two clock to get the transaction started and knows
samples that the PCI transaction completed on clock 4 it uses the turn-around cycle to pipeline its
request, thereby saving itself one dead clock on the bus.

- 12 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

AD

IRDY#

TRDY#

Add

GNT#

REQ#

FRAME#

W_Data A6

11111 111 xxxxxx xxx xx111ST[2::0] 111111

PCI Cycle followed by PIPE#
PIPE# asserted from Idle Bus

a-9

Figure A-9 is the same as A8 except that the PCI transaction is a write instead of a read. In this
case a turn-around is not required between the data phase of the PCI transaction and the A.G.P.
request, but a dead clock is required between any PCI transaction and A.G.P. transaction. The
master of the A.G.P. transaction (in this example) is required to delay the assertion of PIPE# until
after the dead clock. Again the fact that GNT# is asserted until clock 5 is acceptable, since the
GNT# is to the same master and it knows when the current transaction completes and when the
subsequent is allowed to start.

A Request transaction followed by a data transfer.

The arbiter is allowed to assert GNT# to pipeline data transfers as soon as the Request has been
started. Note that the starting of the transaction may use latched signals and thereby causing the
GNT# with ST[2::0] = 111 to remain after the Request has started. Since the A.G.P. compliant
master ignores GNT# asserted when ST[2::0] = 111 except on the clock in which it desires to start
and transaction and is allowed to do so. In all other cases, this condition on the interface is
meaningless.

 An A.G.P. Request followed by an A.G.P. Read transaction. (A10)
 An A.G.P. Request followed by an A.G.P. Write transaction. (A11, A12)
 A PCI Read Transaction followed by an A.G.P. Read Transaction. (A13 - dead cycle

does not require a turn around)

- 13 -

 A PCI Write Transaction followed by an A.G.P. Read Transaction. (A13 - only difference
is the dead clock is a turn-around cycle)

 A PCI Read Transaction followed by an A.G.P. Write transaction. (A14) Dead clock is a
turn-around

 A PCI Write Transaction followed by an A.G.P. Write transaction. (A14) Dead clock is
not a turn-around

CLK

1 2 3 4 5 6 7 8 9

PIPE#

TRDY#

REQ#

GNT#

111 xxx xxxxxx xxx xxxxST[2::0] xxxxxx00x

AD RD3 +1A1

Single phase PIPE# followed by Read Data
Governed by read GNT#, AD turnaround required

a-10

Figure A-10 is an example of an A.G.P. Request followed by an A.G.P. read data transfer. In this
example the arbiter deasserts GNT# for clock 3 and when it samples PIPE# asserted on clock 3, it
asserts GNT# indicating that previously requested read data will be returned when the current
transaction completes. The earliest the arbiter can assert GNT# with ST[2::0] = 00x is clock 4.
The turn-around cycle is required on clock 4 since ownership of the AD bus is changing.

- 14 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

111 xxx xxxxxx xxx xxxxST[2::0] xxxxxx01x

Single phase PIPE# followed by Write Data
Governed by write GNT#

AD WD3 +1A1

a-11

Figure A-11 is an A.G.P. request followed by an A.G.P. Write transaction. In this example no
turn-around is required between the request and the write data transfer. The dead clock on clock
4 is caused because the arbiter is not allowed to enqueue a data transaction until PIPE# is sampled
asserted. Figure A-12 shows the case where PIPE# is asserted long enough for the next GNT# to
be asserted thereby allowing no dead clock between the two transactions. The arbiter is not
allowed to enqueue an A.G.P. data transfer until PIPE# or FRAME# is asserted or until GNT# with
ST[2::0] = 111 has been deasserted for 2 clocks. In this example, PIPE# was sampled asserted on
clock 3 and therefore the arbiter is allowed to assert GNT# with ST[2::0] = 01x indicating that
when the current transaction completes the write data is to be transferred across the bus. GNT#
could have remained asserted on clock 3 with ST[2::0] = 111. If GNT# remained asserted on clock
4 with ST[2::0] = 111 then the write data transfer would have been delayed. This condition can
occur when the arbiter uses a latched version of PIPE#.

- 15 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

111 xxx xxxxxx xxx xxxxST[2::0] xxxxxx01x

Double phase PIPE# followed by Write Data
No AD turnaround required

AD WD3 +1A1 A2

a-12

Figure A-12 is a write data following an A.G.P. Request. In this case, there is no turn-around
cycle required since the same agent continues to own the AD bus for both transactions. The
arbiter asserts GNT# indicating the A.G.P. compliant master is to provide write data after the
current transaction completes once it detects that the current transaction has been initiated. The
arbiter in this figure removed the GNT# on clock 3 since the A.G.P. compliant master is required
to assert PIPE# on either clock 3 or 4. However, the arbiter could have left GNT# asserted with
ST = 111 on clock 3 or longer. If the latter then the write data transaction would have been
delayed and bus bandwidth would have been wasted.

- 16 -

CLK

1 2 3 4 5 6 7 8 9

AD

IRDY#

TRDY#

Add

GNT#

FRAME#

Data

11111 xxx xxxxxx xxx xx00xST[2::0] xxxxxx

+1RD1

AGP Master generated PCI Cycle followed by Read Data
No TRDY# turnaround required, TRDY# asserted from Idle Bus

a-13

Figure A-13 is a PCI transaction that is initiated by an A.G.P. compliant master followed by
A.G.P. read data being returned to the master. A turn-around cycle is required between the PCI
transaction and the A.G.P. transaction even though ownership of the AD bus does not change. In
this case, the arbiter samples FRAME# asserted on clock 2 and assert a new GNT# to the master
indicating that previously requested read data is being returned to the master. In this case, the
arbiter uses the state of RBF# to determine if the assertion of GNT# is allowed for clock 3. If
RBF# is asserted then arbiter is not allowed to return the read data if it is low priority. Since the
PCI transaction is in process the return of the read data is not allowed to start until the PCI
transaction completes. In this example, the ownership of the TRDY# signal does not change hands
and therefore a turn-around is not required. Although a dead cycle is required between PCI and
A.G.P. transactions.

- 17 -

CLK

1 2 3 4 5 6 7 8 9

AD

IRDY#

TRDY#

Add

GNT#

FRAME#

Data

11111 xxx xxxxxx xxx xx00xST[2::0] xxxxxx

+1RD1

AGP Master generated PCI Cycle followed by Read Data
No TRDY# turnaround required, TRDY# asserted from Idle Bus

a-14

Figure A-14 is basically the same as A-13 except that write data is being provided by the master.
In this case a turn-around cycle is required since ownership of the AD bus is changing. In this
case, the dead clock is required because of a PCI to A.G.P. transition. The arbiter in this example
asserts the GNT# for the data movement at the earliest possible time. The A.G.P. compliant
master is required to monitor the bus until the current transaction completes and then must
provide the write data. In this case, the arbiter could have waited until clock 4 to assert GNT# and
ST = 01x without causing additional delays. When the A.G.P. compliant master does not require
an additional clock to start the write data transfer, the assertion of GNT# on clock 5 would not
cause a delay. However, if the A.G.P. compliant master uses two clocks to initiate the transfer, a
dead clock would appear on the bus. Therefore it is recommended that the arbiter enqueue the
next GNT# at the earliest time possible to give the agent providing the data as much notification as
possible to minimize the dead clocks on the interface.

A Data transfer followed by a Request.

During an A.G.P. Read transaction the arbiter is not allowed to enqueue the next transaction until
the read data transaction enters the last data phase.

 An A.G.P. Read transaction followed by an A.G.P. Request. (A15, A16)
 An A.G.P. Write transaction followed by an A.G.P. Request. (A17, A18)
 An A.G.P. Read Transaction followed by a PCI (Read or Write) Transaction. (A19, A20)
 An A.G.P. Write transaction followed by a PCI (Read or Write) Transaction. (A21, A22)

- 18 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

TRDY#

REQ#

GNT#

00x 111 xxxxxx xxx xxxxST[2::0] xxx111111

AD RD3 +1 A1

Read Data followed by PIPE#
AD turnaround required

a-15

Figure A-15 is an A.G.P. Read transaction followed by an A.G.P. Request. Ownership of the AD
bus changes therefore a turn-around cycle is required. In this case the arbiter indicated to the
master that read data is being returned by asserting GNT# on clock 2 with ST = 00x. Since grants
for A.G.P. data transfers are latched and remembered by the A.G.P. compliant master they only
last a single clock. The following clock the arbiter is allowed to pipeline another GNT# since the
read transaction has entered the last data phase.

- 19 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

00x xxx 111111 111 xxxxST[2::0] xxxxxxxxx

AD A1 +3+2RD3 +1 +4 +5 +6 +7 +8 +9

TRDY#

Read Data followed by PIPE#
AD turnaround required

a-16

Figure A-16 is the same as A-15 except that the data transfer last longer and therefore the GNT#
to start a Request is delayed until the read data transfer enters the last data phase which occurs on
clock 7. The arbiter is not allowed to assert GNT# on clocks 3-6. The arbiter could delay the
assertion of GNT# beyond clock 7 but bus bandwidth would be wasted.

- 20 -

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

01x 111 xxxxxx xxx xxxxST[2::0] xxxxxx111

AD WD3 +1 A1

Write Data followed by PIPE#
No AD turnaround required

a-17

Figure A-17 is an A.G.P. write transaction followed by an A.G.P. Request. This figure is similar
to figure A-15 except the data transfer is a write instead of a read. In this example, a turn around
cycle is not required between the data transfer and the Request since ownership of the AD bus
does not change. The data transfer is indicated on clock 2. The arbiter is allowed to enqueue the
next transaction immediately on a write transaction up to a maximum of 4 transactions
outstanding. In this case, there is only one outstanding since the subsequent one was not a write.

CLK

1 2 3 4 5 6 7 8 9

PIPE#

IRDY#

REQ#

GNT#

01x 111 xxx111 111 xxxxST[2::0] 111111111

AD A1 +3+2WD3 +1 +4 +5 +6 +7 +8 +9

Write Data followed by PIPE#
No AD turnaround required

a-18

- 21 -

Figure A-18 is the same as A-17 except the write transaction is longer and illustrates how the
GNT# to start the Request is pending for a number of clocks. Since the arbiter is allowed to
remove a grant at anytime the master can not assume that it can start at the end of the write
transaction until GNT# is sampled asserted (with ST = 111) on clock 6 or 7. If GNT# was asserted
on clocks 3-5 and deasserted on clock 6, the master would not be allowed to start the Request.
The A.G.P. compliant Master is not allowed to “remember” that it had been granted access to the
bus but must only check GNT# (ST = 111) when it is allowed to actually start the transaction.

CLK

1 2 3 4 5 6 7 8 9

FRAME#

TRDY#

GNT#

00x 111 xxxxxx xxx xxxxST[2::0] xxx111111

AD RD3 +1 Add

IRDY#

Data

Read Data followed by an AGP generated PCI Cycle
TRDY# turnaround required

a-19

Figure A-19 is an A.G.P. read transaction followed by a PCI Request. In this case TRDY# is
required to have a turn-around cycle. Therefore a dead clock is required between the A.G.P. and
PCI transactions. In this example the arbiter is allowed to pipeline a GNT# on clock 4 since the
Read transaction is in the last data phase. If the arbiter caused GNT# to be deasserted on clock 4,
the PCI master would not be allowed to start the request. The PCI master is only allowed to
initiate a request when GNT# is asserted (ST = 111 for an A.G.P. compliant master initiating a PCI
transaction) and FRAME# and IRDY# are deasserted. This condition occurs on clock 4 and the
master asserts FRAME# and the address phase completes on clock 5.

- 22 -

CLK

1 2 3 4 5 6 7 8 9

FRAME#

IRDY#

GNT#

00x xxx 111111 111 xxxxST[2::0] xxxxxxxxx

AD Add +3+2RD3 +1 +4 +5 +6 +7 +8 +9

TRDY#

Data

Read Data followed by an AGP generated PCI Cycle
No AD turnaround required

a-20

Figure A-20 is an example of an A.G.P. read followed by a PCI transaction. In this case the PCI
master is allowed to start the request without a turn-around transaction because there is no
contention on IRDY# or TRDY# and ownership of the AD bus does not change. This sequence can
only occur when the PCI master is the corelogic. Otherwise a turn-around cycle would be
required between the data transfer and the PCI request. The PCI master is allowed to initiate the
transaction on clock 8 since an internal GNT# is asserted on clock 7 (which is indicated in figure
A-20 with a dotted line) and FRAME# and IRDY# are deasserted on clock 7. Notice on clock 9
that GNT# is still asserted. In this case the master could do a fast back to back transaction. The
arbiter can cause this not to occur by deasserting GNT# when FRAME# is sampled asserted. Note:
if the arbiter uses a latched version of FRAME# it may lose its ability to prevent a Fast Back to
back transaction from occurring when the first transaction is terminated with Retry or Disconnect.
The arbiter is required to remember that a previous transaction was terminated with the assertion
of STOP# and the bus must be given to a different agent otherwise a livelock condition can occur.

- 23 -

CLK

1 2 3 4 5 6 7 8 9

FRAME#

TRDY#

REQ#

GNT#

xxx 01x xxxxxx xxx xxxxST[2::0] xxx111111

AD WD3 +1 Add

IRDY#

Data

Write Data followed by an AGP Master generated PCI Cycle
No AD, IRDY# turnaround required

a-21

Figure A-21 is an example where a turn-around cycle is not required between an A.G.P. and PCI
transaction. In this case, ownership of the AD bus does not change. In this case, the A.G.P.
compliant master is initiating a PCI transaction after providing data to the corelogic. In this case,
the arbiter is allowed to enqueue a new GNT# as soon as GNT# is asserted for the Write
transaction. However, the PCI master is not allowed to start the transaction until the A.G.P. data
transfer completes. A dead clock can be inserted by the master on clock 5 if the master desires.
However, if the arbiter removes GNT# on clock 5, then the master has lost it turn using the bus.
The fact that GNT# was asserted for several clocks before is meaningless. GNT# only has meaning
when ST = 111 and the master is allowed to start. This condition is when the master is ready to
start, the bus is in the correct state and GNT# is asserted (ST = 111 for an A.G.P. compliant
master doing a PCI transaction).

- 24 -

CLK

1 2 3 4 5 6 7 8 9

FRAME#

IRDY#

REQ#

GNT#

01x xxx xxx111 111 xxxxST[2::0] xxxxxxxxx

AD Add +3+2WD3 +1 +4 +5 +6 +7 +8 +9

TRDY#

Data

Write Data followed by an AGP Master generated PCI Cycle
No AD turnaround required

a-22

Figure A-22 is the same as A-21 except that the write data transfer is longer. In this figure the
arbiter delays the assertion of GNT# (ST = 111) until clock 7. The arbiter could assert GNT#
earlier but no improvement in performance occurs. If GNT# was asserted earlier the master is not
allowed to start the transaction even though FRAME# and IRDY# are both deasserted. In this case
the agent initiating the PCI request is the same agent that is providing the write data. Therefore
the PCI master interface knows when the bus is free to start the PCI transaction.

A data transfer followed by a data transfer.
 An A.G.P. Read transaction followed by an A.G.P. Read transaction.
 An A.G.P. Read transaction followed by an A.G.P. Write transaction.
 An A.G.P. Write transaction followed by an A.G.P. Read transaction.
 An A.G.P. Write transaction followed by an A.G.P. Write transaction.

Editorial Note: The above transactions are already covered in the specification and do not change.
A summary of the rules needs to include the follow ideas.

1. The A.G.P. compliant master that has its GNT# asserted with ST[2::0] = 111, must not
remember that GNT# was asserted. But must use the current version of GNT# to decide if it
can initiate a transaction or not.

2. The A.G.P. compliant master when initiating a PCI transaction must follow the PCI 2.1
specification. This requires the master to assert FRAME# from the same clock in which GNT#
is sampled asserted and ST[2:0] = 111. The A.G.P. compliant master initiating a PCI

- 25 -

transaction is not allowed to start 1 or 2 clocks later as an A.G.P. compliant master is allowed
making an A.G.P. request.

3. The A.G.P. compliant master is required to deassert REQ# when it initiates the last
transaction. (The assertion of REQ# indicates a true need to gain access to the AD bus.) The
A.G.P. compliant master is required to deassert REQ# for 2 clocks when the transaction is
terminated with STOP# asserted. An exception is granted when STOP# is first asserted during
the last data phase.

4. The A.G.P. compliant master when initiating an A.G.P. request is required to initiate the
request within 2 clocks of when GNT# is asserted and ST[2::0] is 111. (This is the same as 1.0
and is not a change.)

