
Implementing Legacy Audio
on the PCI Bus

Revision 1.2

Written by

Gary Solomon
Sr. Staff Engineer

Platform Architecture Lab
gary_solomon@ccm.jf.intel.com

Intel Corporation

Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except
as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel
products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright, or other intellectual property right. Intel products are not intended
for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications
and product descriptions at any time, without notice.

* Other brands and names are the property of their respective owners.

Copyright (c) Intel Corporation 1996

2

1. Introduction / Scope

This paper is targeted at IHVs and OEMs who have detailed working knowledge of the current PC audio
architecture. It is also recommended that the reader be familiar with the Audio Codec ‘97 Component
(“AC ‘97”) Specification available on the Intel Web server at http://www.intel.com/pc-
supp/platform/ac97/.

Companion white papers address two related subjects:

• “Digital audio” and the 1997 desktop PC
• Hardware Acceleration Models and Re-direction of Audio Streams

The scope of this document is not intended to fully detail each mechanism described herein. It is also not
the intent of this paper to debate or judge whether or not it makes sense to migrate legacy compatible
audio to the PCI bus. This paper is intended to provide guidance for those audio vendors who have
chosen to do so. The reader will first be introduced to the technical issues that need to be resolved. Key
design and support considerations for each possible solution will then be explored. In its conclusion this
paper will provide a series of recommendations on how to implement legacy compatible PCI-based audio
for 1997.

System audio is migrating to the PCI bus in the volume PC platform market segment. Lower BOM (Bill-
of-Materials) cost due to higher levels of feature integration, coupled with the ability to make more
efficient use of new found headroom provided by the PCI bus are two good reasons why. The Audio
Codec ’97 audio architecture was designed to comprehend and embrace this migration.

However, the issue of backwards compatibility with the multitude of DOS games presents a significant
design challenge for PCI bus based AC’97 audio controllers in 1997. In a fully backwards compatible
system, a software title that communicates directly with “legacy” I/O peripherals such as the 8237 DMAC
registers, Sound Blaster* registers, and FM Synthesis registers need be able to find these registers, and
their underlying functionality intact without requiring any additional software besides the legacy software
itself.

PCI agents on the primary PCI bus segment always get first right of refusal in claiming cycles that emerge
on the PCI bus before they are bridged to the ISA bus1. Therefore a PCI audio agent can easily be
designed to claim the legacy Sound Blaster compatible I/O references. Issues relating to the combination
of “Plug and Play” and Sound Blaster compatibility do however exist. These issues will be explored in a
later section of this document.

Legacy (8237) DMA controller I/O references, along with the underlying functionality, present significant
issues as well. Through no accident, the PCI bus specification does not provide for 8237 DMA
functionality, but rather supports generic PCI bus mastering with robust plug and play capabilities.

1 Assuming a fully subtractive decoding ISA bridge.

3

1.1. Related Documents

For more detailed descriptions of the hardware mechanisms introduced within this document, the reader is
referred to the following supporting documents:

1. PCI Local Bus Specification Revision 2.1 (available from the PCI SIG)
2. PC/PCI DMA Arbitration and Protocols (available at ftp://ftp.intel.com/pub/IAL/PCI/dma22.doc)
3. Distributed DMA Support for PCI Systems
4. Serialized IRQ Support for PCI Systems

2. Legacy DMA Support for the PCI Bus

In response to the OEM market requirements feedback for 1997, which continues to show a demand for
legacy compatibility, two system specific solutions for extending 8237 compatible DMA functionality out
onto the PCI bus have been devised. These are the mechanisms defined, implemented, and validated by
Intel Corp. known as “PC/PCI”, and a second, newly defined mechanism known as Distributed DMA*, or
“DDMA*”.

For practical reasons, which will be described later in this document, it is strongly recommended that both
of these techniques limit their implementations to motherboard integrated PCI agents (no PCI add-in
cards).

2.1. PC/PCI

PC/PCI is a mechanism that was defined and developed by Intel’s Mobile/Handheld Products Group
(MHPG) as a mobile docking solution which allows ISA slots to exist in docking stations connected to the
notebook’s PCI bus. This scheme is now being applied to the desktop PC as well.

By providing a new arbitration construct, consisting of a serialization protocol for encoding and decoding
DMA requests/grants, a request/grant pair, distinct from the PCI bus pair, is used to bundle requests for
any combination of 8237 supported DMA channel(s) for each device needing DMA support. This encoded
mapping on the PC/PCI agent’s request/grant pair provides the pathway that enables a PCI resident agent
to deliver 8237 style DMA requests to the system without requiring separate and distinct DREQ/DACK#
pins for each DMA channel that is used by the PC/PCI agent.

Some future Intel products are currently expected to support PC/PCI functionality2.

There are a couple of reasons why PC/PCI legacy agents be deployed as motherboard devices. One reason
is that the PC/PCI DMA request serialization decoder is not a function of the standard PCI bus arbiter,
and therefore there is no guaranteed connection between the PCI expansion slots and the serialization
logic. Also AT* compatible interrupt requests (IRQs) are still provided directly to an 8259 compatible
interrupt controller via sideband connection from the PCI device. These sideband signals are not
supported in the PCI slot definition.

2 Please address product specific inquiries to an Intel Sales Office near you directly.

4

PC/PCI features include:

1. Software transparent; no TSRs, VXDs, etc..
2. Does not require the PCI agent which implements it to be a PCI master, thus lowering the cost and

complexity of an implementation on the part of peripheral vendors.
3. Technical support can be provided by a single source.

2.2. Distributed DMA (DDMA)

DDMA is an alternative legacy DMA solution. This technique effectively “distributes” the 8237 DMA
controller into physically separate PCI resident components on a per DMA channel basis.

A “master DMA agent” central resource is located somewhere in the system which orchestrates the legacy
I/O traffic to and from the distributed DMA elements of the system. The DMA master intercepts all 8237
I/O register references and redirects, via a software configured lookup table, these accesses to distributed
agents throughout the system. Since the 8237 DMAC programming model, for control/status registers,
combines data for all of its DMA channels within single I/O registers, the DMA master typically scatters
and gathers several bus transactions to complete a single legacy I/O register read or write.

DDMA, as for PC/PCI, is also suggested to be a motherboard device solution. While the bus mastership
interface could well be handled by a standard PCI slot, there is no guaranteed means for connection via
the standard PCI slot of the legacy interrupt request signal lines. DDMA devices most likely will appear
with a new serialized interrupt request scheme which calls for serially encoding IRQ information onto PCI
bus standard PIRQ(A:D) signal lines (similar to encoding for PC/PCI DMA requests). However, PCI slot
add-in DDMA agents could exhibit interoperability issues, since the connection of its PCI slot interrupt
request signal to a serialization protocol capable receiver on the motherboard is not guaranteed.

Additionally, when considering DDMA PCI slot add-ins and their associated drivers, the determination
and management of DMA channels that have been assigned to specific DDMA agents vs. standard ISA
DMA assignments vs. unassigned DMA channels becomes more complex3.

DDMA features include:

1. “Flyby” DMA transfers
2. Extended, non-legacy DMA support

3. Sound Blaster Compatibility on the Primary PCI Bus

As mentioned briefly in the introductory section of this paper, PCI agents on the primary PCI bus segment
get first right of refusal on all PCI bus cycles before they are forwarded to the ISA bus, provided that the
PCI to ISA bridge is a fully subtractive decoder. This is a key enabler for PCI devices that wish to
integrate legacy audio.

While it is technically feasible to incorporate full Sound Blaster compatible legacy I/O mapping and the
underlying functionality, the issue of Plug and Play needs to be addressed.

Additionally, the issues of I/O address aliasing, and the prevention of audio driver replacement need to be
addressed.

3 Complexity associated with the coordination of multiple pieces of software each of which is coming from

a different source, i.e., BIOS, ISA Plug and Play, DDMA device drivers.

5

It is important to note that while the primary PCI bus segment has the necessary “flow through” quality
which allows for cycles destined for the ISA bus to be intercepted along the way, other PCI segments or
PCI-like segments such as AGP (Accelerated Graphics Port) do not have this quality. This limits the
implementation of PCI based legacy audio to the primary bus segment of the system.

3.1. PCI bus Legacy Compatibility and ISA Plug and Play

Transplanting Sound Blaster compatible audio to the PCI bus means moving Sound Blaster’s associated
ISA bus resources along with it4. These ISA resources are currently managed by ISA Plug and Play
algorithms.

The issue at hand is deciding what to do with respect to the ISA Plug and Play paradigm as these ISA
resources move into a gray area situated somewhere between the ISA bus and the PCI bus.

The ISA Plug and Play objectives do not align in any way with the objective of maintaining legacy
compatibility. In fact, they are diametrically opposed objectives. On the one hand there is ISA Plug and
Play which requires the relocatibility of I/O resources. Yet on the other hand there are legacy functions
that will not work correctly if their system resources are not located exactly where the legacy software title
expects to find them.

Therefore, since hardware legacy compatibility is a requirement for those companies who have chosen to
implement it, and Plug and Play relocatibility compromises these legacy features, the optimum solution
should both maintain legacy compatibility while minimizing the design complexity and overhead
otherwise needed to support the problematic reconfiguration of these features.

3.2. Legacy I/O address Aliasing

Another aspect of legacy compatibility relates to the issue of I/O address aliasing. The original IBM PC
and IBM PC AT designs defined ISA add-in I/O space to be limited to 10 bits of addressing. This has
become the de facto industry standard for legacy software compatibility.

Since ISA bus components used to incorporate the bus interface with 10 bits of address decode for I/O
references, any alias of an incorporated base 10-bit address would also be claimed by this same
component.

Recently there has been an industry initiative to eliminate this aliasing by requiring I/O decode of the full
16-bits of address on the ISA bus. While this would meet the initiative’s objective of freeing these aliased
addresses for subsequent I/O resource assignment to other non-legacy functions, it creates some degree of
software compatibility exposure for the device. I/O cycles that used to get through as 10-bit aliases would
now be filtered out by the full 16-bit decode. The difference in the cost of implementing full 16-bit vs. 10-
bit decode is very small and the recommendation is that the component be capable of running in either
mode of operation.

4 ISA DMA channels, Interrupt requests and I/O space for example.

6

3.3. Audio Driver Replacement

If the audio vendor has included performance enhancements or other functions in the driver that are not
supported by the set of 32-bit Protected Mode drivers that come with Windows* 95, then the system may
wish to prevent the O/S from swapping out that driver.

Microsoft has implemented a mechanism that allows the system to identify which Real Mode drivers are
safe to replace. This “Safe Drivers List” is found in the file, IOS.INI, which is located in the Windows 95
root directory. If any installed Real Mode driver is listed by name in IOS.INI then Windows 95 assumes
that it is safe to replace the currently installed Real Mode driver with its corresponding 32-bit Protected
Mode counterpart.

Therefore if the audio driver’s filename matches the name of a driver currently listed in IOS.INI, deleting
it from IOS.INI will prevent Windows 95 from replacing it.

4. Conclusion / Recommendations

Sound Blaster hardware compatible audio lives on through 1997 as an OEM requirement for the volume
“games compatible” desktop PC market segment.

However there is clearly a transition in progress that is moving the base audio subsystem off of the ISA
bus and onto the PCI bus. The challenge of the day is to manage this transition so that it occurs cleanly
from an architectural point of view, while at the same time ensuring that current customer functional
requirements are met and support costs are kept to a minimum. Providing relocatibility for legacy
resources may add additional cost to the implementation of the legacy features, and may very well
generate a net increase in support calls.

4.1. Recommended DMA on PCI Scheme

Regardless of whether the audio vendor implements PC/PCI or DDMA, the legacy PCI solution is
believed to be practically feasible as a motherboard integrated device.

Because of its centralized5 nature and software transparency, PC/PCI is the recommended DMA solution.
While it would be inappropriate to speak on behalf of other companies, what can be said is that some
future Intel products are currently expected to support PC/PCI functionality. PC/PCI has been validated
today within the context of a PCI-ISA docking station for ISA add-in cards, Cardbus host controllers and
PCMCIA cards.6

4.2. Recommended Handling of 10-bit Address Aliases

The filtering out of 10-bit aliases introduces legacy software compatibility exposure. The level of this
exposure is unknown.

It is recommended that the PCI legacy agent provide a means for either 10-bit decode or 16-bit decode
with the boot up default being 10-bit decode. If the Plug and Play O/S asks the BIOS to configure 16-bit
decode for audio and a legacy software title fails to operate correctly due to the aliasing compatibility

5 As opposed to being distributed.
6 Please address product specific inquiries to an Intel Sales Office near you directly.

7

issue, it would still be possible to get the software running correctly by rebooting DOS alone and re-
launching the software. The reboot to DOS would have reset the I/O decode to 10-bit.

4.3. Recommended “Bi-Modal” Audio Controller Implementation

It is recommended that PCI bus resident legacy agents utilize the legacy compatible ISA I/O resources. In
order to preclude any irreconcilable resource conflicts, it is also recommended that each of the legacy
subfunctions have a disable bit that is visible to the BIOS in the agent’s PCI configuration space register
file (see Section A.2. of Appendix A) . It is also recommended that some relocatability be supported for
ISA DMA and Interrupt resources. This will ensure compatibility with older ISA add-in adapters that
may have “hardwired” resource conflicts with either DMA or IRQ resources. It is further recommended
that the legacy audio subsystem upon activation by the BIOS, default to the legacy compatible I/O, DMA
and IRQ settings.

However, in the interest of facilitating the cleanest migration of audio to the PCI bus, a “Native PCI
Mode” audio interface also should be implemented. In this way the same audio controller could be used to
preserve the end user’s software investment (Legacy Mode), while at the same time be forward looking
with a PCI 2.1 compliant solution (Native PCI Mode).

Native PCI Mode audio delivers enhanced performance and robust Plug and Play capabilities. New
applications written for the Windows 95 operating environment should take advantage of Native PCI
Mode.

Native PCI Mode audio should be compliant with PCI Spec. Revision 2.1, and should not use any ISA
resources or legacy constructs such as PC/PCI DMA. All system resources should be assigned via
industry standard PCI bus Plug and Play software, and generic PCI mastering should be used for audio
sample transport.

An example register template for the recommended PCI Audio Function is provided in Appendix A. This
example encompasses both Native PCI and Legacy audio modes.

8

Appendix A. Bi-Modal PCI Audio Controller

A.1. Legacy Mode Audio Controller

Given a motherboard integrated solution, the system BIOS should enumerate the legacy audio as a series
of device nodes with no I/O address relocatibility. However any of the legacy audio’s subfunctions could
be independently disabled7 if they need to be. In addition some flexibility in the selection of DMA and
IRQ resources is recommended.

Since the PCI legacy audio agent is assumed to be a motherboard device and can be assigned legacy audio
compatible I/O space first at boot time, I/O conflicts with other legacy audio add-in cards enumerated at a
later time in the boot process shouldn’t occur. New add-in peripherals, whether ISA-based, PCI-based, or
USB-based are assumed to be Plug and Play compliant such that they can be mapped so as not to interfere
with the legacy audio’s I/O resource allocations. Even older ISA add-in adapters typically have a series of
jumper blocks to allow for multiple selections for each of the supported subfunctions’ I/O address ranges.

To avoid irreconcilable conflicts with older ISA add-in cards8 that may be hardwired to a given IRQ or
DMA resource, some amount of flexibility is recommended for these ISA resources.

In order to maintain the audio controller’s legacy compatibility at low cost9, it is recommended that the
following legacy resources be supported with no I/O address relocatibility. Sample transport is
recommended to be configurable between the three listed DMA channel options, and four choices for
Sound Blaster and MIDI interrupts are suggested.

Legacy Audio Resource Resource Assignment
(base for I/O addresses)

Sound Blaster 220h
FM Synthesis 388h

Gameport (joystick) 200h
MPU-401 (MIDI UART) 330h

DMA CH0, CH1, or CH3 (3 options)
IRQ (SB) IRQ5, IRQ7, IRQ9, or IRQ11

IRQ (MIDI UART) IRQ5, IRQ7, IRQ9, or IRQ11

DMA request/grant signaling is wired directly between the agent’s PC/PCI request/grant pair and the
PC/PCI arbiter, and the legacy IRQs are wired either directly to an 8259 compatible interrupt controller as
separate IRQ signals or as a serialized stream over a single signal10.

The audio subsystem should default to Legacy Mode, in an inactive state upon power up. Once the BIOS
enables Legacy audio via a legacy audio control register, a hardware compatible legacy audio subsystem
becomes activated.

7 Plug and Play or CMOS Setup feature
8 ISA add-ins that may be unrelated to audio
9 Audio controller’s related support cost as well as product cost
10 Please address product specific inquiries to an Intel Sales Office near you directly

9

A.2. Native PCI Mode Audio Controller

The following PCI Configuration register map outlines the recommended programming model for the
implementation of a dual mode PCI Audio Function .

Native PCI Mode for audio provides the avenue by which a broad spectrum of differentiation has been
enabled with the advent of AC ’97’s architectural partitioning. This appendix is meant to set the direction
for AC’97 Native PCI Mode audio implementations, and not to arbitrarily impose limits of any kind on
the potential for future innovation and differentiation.

Configuration
Offset

Register Register
Access

00h-01h Vendor Identification (VID) RO
02h-03h Device Identification (DID) RO
04h-05h Command (COM) R/W
06h-07h Device Status (DS) R/WC
08h Revision Identification (RID) RO
09h Programming Interface (PI) RO
0Ah Sub Class Code (SCC) RO
0Bh Base Class Code (BCC) RO
0Ch reserved -
0Dh Master Latency Timer (MLT) R/W
0Eh Header Type (HEDT) RO
0Fh reserved -
10h-13h Native Mode Audio Base Address R/W
14h-2Bh reserved -
2Ch-2Dh Subsystem Vendor ID(SVID) RO
2Eh-2Fh Subsystem ID(SID) RO
24h-3Fh reserved -
40h-41h Legacy Audio Control R/W
42h-FFh reserved -

A.2.1. VID— Vendor Identification Register
Address Offset: 01h-00h
Default Value: Vendor Specific VID
Attribute: Read Only
Size: 16 Bits

A.2.2. DID— Device Identification Register
Address Offset: 03h-02h
Default Value: Vendor Specific DID
Attribute: Read Only
Size: 16 Bits

10

A.2.3. COM— Command Register
Address Offset: 05h-04h
Default Value: 0000h
Attribute: Read/Write
Size: 16 bits

COM is a 16-bit control register. Refer to the PCI 2.1 specification for complete detail on each bit.

Bit Description
15:10 Reserved. Read 0.
9 FBE (Fast Back to Back Enable)
8 SEN (SERR# Enable)
7 WCC (Wait Cycle Control)
6 PER (Parity Error Response)
5 VPS (VGA Palette Snoop).
4 MWI (Memory Write and Invalidate Enable)
3 SCE (Special Cycle Enable)
2 BME (Bus Master Enable) Read/Write

Bit(2) = “1” enables standard PCI bus mastering capabilities.
1 MS (Memory Space)
0 IOS (I/O Space): This bit controls access to the I/O space registers. If this bit is set to “1”,

access to the Native Mode Audio I/O interface is enabled. The Native PCI Mode Base
Address register should be programmed prior to setting this bit.

11

A.2.4. DS— Device Status Register
Address Offset: 07h-06h
Default Value: Vendor specific
Attribute: Read/Write Clear
Size: 16 bits

DSR is a 16-bit status register. Refer to the PCI 2.1 specification for complete detail on each bit.

Bit Description
15 DPE (Detected Parity Error)
14 SERRS (SERR# Status)
13 MAS (Master-Abort Status)
12 RTA (Received Target-Abort Status)
11 STA (Signaled Target-Abort Status
10:9 DEVT (DEVSEL# Timing Status): This 2-bit field defines the timing for DEVSEL#

assertion. These read only bits indicate the audio controller’s DEVSEL# timing when
performing a positive decode.

8 DPD (Data Parity Detected)
7 FBC (Fast Back to back Capable)
6 UDF Supported
5 66 MHz Capable
4:0 Reserved. Read as 0's.

A.2.5. RID— Revision Identification Register
Address Offset: 08h
Default Value: Component Specific RID
Attribute: Read Only
Size: 8 Bits

A.2.6. PI— Programming Interface Register
Address Offset: 09h
Default Value: 00h
Attribute: Read Only
Size: 8 bits

A.2.7. SCC— Sub Class Code Register
Address Offset: 0Ah
Default Value: 01h
Attribute: Read Only
Size: 8 bits

This register indicates that the device is an audio device, in the context of a multimedia device (Base
Class Code = 04h).

12

A.2.8. BCC— Base Class Code Register
Address Offset: 0Bh
Default Value: 04h
Attribute: Read Only
Size: 8 bits

This register indicates that the function implements a multimedia device.

A.2.9. MLT— Master Latency Timer Register
Address Offset: 0Dh
Default Value: 00h
Attribute: Read/Write
Size: 8 bits

MLT is an 8-bit register that controls the amount of time the audio controller, as a bus master, can burst
data on the PCI Bus. Programmed MLT count is timed in PCI clocks.

Bit Description
7:4 Master Latency Timer Count Value: The MLT limits the duration of the PCI burst cycle

to the number of PCI Bus clocks specified by this field. The MLT is used when the audio
controller is operating in Native PCI Mode.

3:0 Reserved. Read as 0’s

A.2.10. HEDT— Header Type Register
Address Offset: 0Eh
Default Value: 00h
Attribute: Read Only
Size: 8 bits

This register is always read as zero.

13

A.2.11. NMABAR— Native Mode Audio Base Address Register
Address Offset: 13h-10h
Default Value: 00000001h
Attribute: Read / Write
Size: 32 bits

The Native PCI Mode Audio function uses PCI Base Address register #1 to request a contiguous block of
I/O space that is to be used for the Native Mode Audio software interface. Note that there are 6 total PCI
base address registers that are available to a given PCI function. Only the first base address register is
arbitrarily defined for this example. If the audio function requires more than 256 bytes of I/O space, or
wishes to implement memory space as well, then some number of the remaining five available PCI base
address registers could be implemented.

Bit Description
31:8 Read/Write, base address. These bits are used in the I/O space decode of the Native Mode Audio

interface registers. The number of upper bits that a device actually implements depends on how much
of the address space the device will respond to. In this example the upper 24 bits are programmable
which yields the maximum I/O block size of 256 bytes for this base address.

7:2 Hardwired to 0’s
1 Reserved. Read 0.
0 RTE (Resource Type Indicator): This bit is set to one, indicating a request for I/O space.

A.2.12. SVID— Subsystem Vendor ID
Address Offset: 2Dh-2Ch
Default Value: Vendor Specific SVID
Attribute: Read Only
Size: 16 bits

This register should be implemented for any function that could be instantiated more than once in a given
system, for example, a system with 2 audio subsystems, one down on the motherboard and the other
plugged into a PCI expansion slot, should have the SVID register implemented. The SVID register, in
combination with the Subsystem ID register, enable the operating environment to distinguish one audio
subsystem from the other(s).

A.2.13. SID— Subsystem ID
Address Offset: 2Fh-2Eh
Default Value: Vendor Specific SID
Attribute: Read Only
Size: 16 bits

This register should be implemented for any function that could be instantiated more than once in a given
system, for example, a system with 2 audio subsystems, one down on the motherboard and the other
plugged into a PCI expansion slot. The SID register, in combination with the Subsystem Vendor ID
register make it possible for the operating environment to distinguish one audio subsystem from the
other(s).

14

A.2.14. LACR— Legacy Audio Control Register
Address Offset: 41h-40h
Default Value: 887Fh
Attribute: Read/Write
Size: 16 bits

This register provides control for independent enable/disable for each of the legacy audio subfunctions.
Additionally, bit 15 defines a single soft switch for global legacy audio disable. A separate MIDI interrupt
request enable/disable bit is provided so that the MIDI subsystem could be configured for either polled or
interrupt driven MIDI I/O operation.

The audio controller powers up configured for legacy compatibility (Legacy Mode), however the global
disable bit is set to fully disable the interface. To activate the legacy audio subsystem, the BIOS needs to
flip the state of bit(15) to “0”.

15

Legacy Audio Control Register: Default = 887Fh
Bit Description
15 Legacy Audio Disable: A “1” in this bit position acts as a global disable for legacy audio. When this

bit is a “0”, I/O transactions targeting any of the individually enabled legacy audio register blocks (see
bits below) are positively decoded on the PCI bus.

14:12 Reserved. Read as 0.
11:0 MIDI I/O IRQ Select: This encoded field selects the ISA interrupt request to be used for the MIDI

UART if configured for interrupt driven operation via bit(4) of this register.
bit(9) bit(8)
 0 0 - IRQ5
 0 1 - IRQ7
 1 0 - IRQ9 (Default)
 1 1 - IRQ11

9:8 SB IRQ Select: This encoded field selects the ISA interrupt request to be used for the Sound Blaster
legacy subsystem.

bit(9) bit(8)
 0 0 - IRQ5 (Default)
 0 1 - IRQ7
 1 0 - IRQ9
 1 1 - IRQ11

7:6 SB DMA Channel Select: This encoded field selects the ISA DMA channel to be used for Sound
Blaster audio sample transport.

bit(7) bit(6)
 0 0 - DMA CH0
 0 1 - DMA CH1 (Default)
 1 0 - Reserved
 1 1 - DMA CH3

5 I/O Address Aliasing Control:
A “1” in this bit position selects 10-bit I/O address decode which enables capture of aliases legacy I/O
references.
A “0” in this bit position selects 16-bit I/O address decode which eliminates all legacy I/O address
aliasing.
In either configuration the upper address bits, AD(31:16), should be sampled low before any legacy
subfunctions will claim a PCI cycle

4 MPU-401 IRQ Enable: A “1” in this bit position activates the IRQ# specified in bits(11:10) for
MPU-401 UART interrupt service requests. This bit enables either polled, or interrupt driven MIDI
I/O support. This bit will be superseded by bit(15)=1

3 MPU-401 I/O Enable: A “1” in this bit position enables positive decode for all MPU-401 UART
(MIDI) I/O references. This bit will be superseded by bit(15)=1.

2 Game Port Enable: A “1” in this bit position enables positive decode for all Game Port (joystick)
register I/O references. This bit will be superseded by bit(15)=1.

1 FM Synthesis Enable: A “1” in this bit position enables positive decode for all FM Synthesis register
I/O references. This bit will be superseded by bit(15)=1.

0 Sound Blaster Enable: A “1” in this bit position enables positive decode for all Sound Blaster register
I/O references. If Sound Blaster decode is enabled via this bit, and the legacy subsystem is enabled via
bit(15) = “0”, then the DMA channel specified by bits(7:6) is activated for playback sample transport,
and the IRQ# specified by bits(9:8) is activated for SB interrupt service requests.

