Release Notes

Intel Common Security Services Manager�with Intel Add-ins

Release 1.0

� TOC \o "1-3" �INTEL COMMON DATA SECURITY ARCHITECTURE	� GOTOBUTTON _Toc374321428 � PAGEREF _Toc374321428 �
2
��

INTEL CERTIFICATE LIBRARY MODULE	� GOTOBUTTON _Toc374321429 � PAGEREF _Toc374321429 �
3
��

General Notes	� GOTOBUTTON _Toc374321430 � PAGEREF _Toc374321430 �
3
��

Intel CLM Functions	� GOTOBUTTON _Toc374321431 � PAGEREF _Toc374321431 �
3
��

INTEL CRYPTOGRAPHIC SERVICES MODULE	� GOTOBUTTON _Toc374321432 � PAGEREF _Toc374321432 �
12
��

Supported Algorithms	� GOTOBUTTON _Toc374321433 � PAGEREF _Toc374321433 �
12
��

General Notes	� GOTOBUTTON _Toc374321434 � PAGEREF _Toc374321434 �
12
��

Intel CSM Functions	� GOTOBUTTON _Toc374321435 � PAGEREF _Toc374321435 �
14
��

INTEL DATA STORAGE LIBRARY MODULE	� GOTOBUTTON _Toc374321436 � PAGEREF _Toc374321436 �
23
��

General Notes	� GOTOBUTTON _Toc374321437 � PAGEREF _Toc374321437 �
23
��

Intel DLM Functions	� GOTOBUTTON _Toc374321438 � PAGEREF _Toc374321438 �
23
��

INTEL TRUST POLICY MODULE	� GOTOBUTTON _Toc374321439 � PAGEREF _Toc374321439 �
30
��

General Notes	� GOTOBUTTON _Toc374321440 � PAGEREF _Toc374321440 �
30
��

Intel TPM Functions	� GOTOBUTTON _Toc374321441 � PAGEREF _Toc374321441 �
30
��

KNOWN BUGS	� GOTOBUTTON _Toc374321442 � PAGEREF _Toc374321442 �
34
��

Intel CLM	� GOTOBUTTON _Toc374321443 � PAGEREF _Toc374321443 �
34
��

Intel CSM	� GOTOBUTTON _Toc374321444 � PAGEREF _Toc374321444 �
34
��

Intel DSM	� GOTOBUTTON _Toc374321445 � PAGEREF _Toc374321445 �
34
��

Intel TPM	� GOTOBUTTON _Toc374321446 � PAGEREF _Toc374321446 �
35
��

Install/Uninstall	� GOTOBUTTON _Toc374321447 � PAGEREF _Toc374321447 �
35
��

TROUBLESHOOTING	� GOTOBUTTON _Toc374321448 � PAGEREF _Toc374321448 �
36
��

LICENSE AND EXPORT INFORMATION	� GOTOBUTTON _Toc374321449 � PAGEREF _Toc374321449 �
37
��

Software License	� GOTOBUTTON _Toc374321450 � PAGEREF _Toc374321450 �
37
��

Export Control Information	� GOTOBUTTON _Toc374321451 � PAGEREF _Toc374321451 �
38
��

�

Intel Common Data SEcurity Architecture

One goal of the Common Data Security Architecture is to address security problem inherent to Internet and Intranet applications. This release facilitates applications developers and security toolkit developers to achieve this goal by providing a reference implementation of

The Common Security Services Manager (CSSM), an infrastructure for managing security services

Intel add-in security modules for Trust Policy, Certificate Management, Certificate Storage, and Cryptographic Services.

Most of the features specified in the CSSM API and the service provider interfaces for the add-in modules are implemented in this release. All omissions are noted in detail below.

Future releases of the reference implementation will include

Additional cryptographic service providers, supporting other key formats and additional cryptographic algorithms

A certificate management add-in security module providing full support for BER/DER encoded X.509 v3 certificates.

Intel Certificate Library Module

The Intel Certificate Library Module(CLM) is an add-in security module which attaches to the Intel Common Security Services Manager (CSSM). The CLM manipulates memory-resident certificates and certificate revocation lists (CRLs). It is designed to run in the Windows* 95 or Windows NT* operating system.

General Notes

For all library functions, the following input parameters have the specified meaning:

CLHandle – the CSSM handle returned when attaching the Intel certificate library

CCHandle – the CSSM handle for a security context

The Intel CLM has explicit knowledge of the certificate and CRL formats and uses that knowledge when manipulating a data structure on the behalf of the caller.

The file certoids.h contains the definitions of the OIDs used by the Intel CLM.

The file clerr.h contains the definitions of the private error codes used by the Intel CLM.

Intel CLM Functions

The specific behavior of the Intel CLM functions are described briefly below.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertSign (CSSM_CL_HANDLE CLHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCert,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR SignScope,�uint32 ScopeSize)

SignScope and ScopeSize are not supported. They must be set to NULL and zero, respectively.

The SubjectCert and SignerCert must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertUnsign (CSSM_CL_HANDLE CLHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCert,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR SignScope,�uint32 ScopeSize)

SignScope and ScopeSize are not supported. They must be set to NULL and zero, respectively.

The CCHandle is not used at this time. It is ignored.

The SubjectCert and SignerCert must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

CSSM_BOOL CSSMAPI CSSM_CL_CertVerify (CSSM_CL_HANDLE CLHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCert,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR VerifyScope,�uint32 ScopeSize)

VerifyScope and ScopeSize are not supported. They must be set to NULL and zero, respectively.

The SubjectCert and SignerCert must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

Currently, only the signature of the SignerCert on the SubjectCert is verified. In a future release, the validity of the SubjectCert will also be verified.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertCreate �(CSSM_CL_HANDLE CLHandle,� const CSSM_FIELD_PTR CertTemplate,� uint32 NumberOfFields)

CertTemplate and NumberOfFields cannot be NULL or zero.

The CertTemplate must contain CSSM_FIELD structures. If a CertTemplate FieldValue is NULL, the corresponding field in the certificate will be set to NULL.

If a certificate field is covered by more than one OID in the CertTemplate, the certificate field is assigned the value specified with the last applicable OID in the CertTemplate array.

A new certificate extension is created by specifying the OID for the Extension structure or the OID for the Extension ID.

When specifying OIDs for the Extension Critical field, the Extension Description field and the Extension field, the associated FieldValues are used to set values in the currently last extension of the certificate.

FieldValues that will be stored as strings in the certificate do not need to end with a NULL character.

The FieldValue specified for the certificate Validity fields must be in UTC form and is assumed to represent Greenwich Mean Time.

The FieldValue for the CSSMOID_PublicKeyAlgorithm must be a uint32 corresponding to the enum CSSM_ALGORITHMS defined in the header file cssm.h.

The FieldValues corresponding to the OIDs for subject name and issuer name must contain strings obtained by calling the function cl_ConcatenateDistinguishedName. Conformance with the format of distinguished names is not checked during this operation.

Signature fields, the NumberOfExtensions and the NumberOfSignatures are assigned automatically by this function during certificate creation.

The pSignatures and NumSignatures fields of the certificate are always set to NULL or zero.

The certificate flags field is always set to 0.

CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertView (CSSM_CL_HANDLE CLHandle,�const CSSM_DATA_PTR Cert,�uint32 *NumberOfFields)

The Cert parameter must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

The returned FieldValues will contain NULL terminated strings, except for extensions, which will contain the extension data, as it was created.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertGetFirstFieldValue�(CSSM_CL_HANDLE CLHandle,� const CSSM_DATA_PTR Cert,� const CSSM_OID_PTR CertField,� CSSM_HANDLE_PTR ResultsHandle,� uint32 *NumberOfMatchedFields)

The Cert parameter must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

The CertField OID must be a valid Intel OID, as defined in the certoids.h header file.

If the OID being requested is part of the signature or extension structures, the return value in NumberOfMatchedFields is the number of signatures or extensions. The function return value is the field value from the first signature or extension structure.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertGetNextFieldValue�(CSSM_CL_HANDLE CLHandle,� CSSM_HANDLE ResultsHandle)

CSSM_RETURN CSSMAPI CSSM_CL_CertAbortQuery (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

CSSM_KEY_PTR CSSMAPI CSSM_CL_CertGetKeyInfo (CSSM_CL_HANDLE CLHandle,�const CSSM_DATA_PTR Cert)

The Cert parameter must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

All of the CSSM_KEY data is stored in the Cert, so the value returned corresponds to the information stored in the Cert on creation.

CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertGetAllFields (CSSM_CL_HANDLE CLHandle,�const CSSM_DATA_PTR Cert,�uint32 *NumberOfFields)

The Cert parameter must contain certificates that were generated either by a CLM function which returns a certificate, such as CSSM_CL_CertCreate, CSSM_CL_CertSign, or CSSM_CL_CertUnsign, or by the cl_PackCertificate utility function.

If there are multiple instances of an OID in the certificate (for example, more than one extension), each one is returned as a separate array entry with the same OID, but different field values.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertImport (CSSM_CL_HANDLE CLHandle,�CSSM_CERT_TYPE ForeignCertType,�const CSSM_DATA_PTR ForeignCert)

This function, which is used to convert a certificate from a foreign format to a certificate in the native library format, is not supported by the current Intel CLM.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertExport (CSSM_CL_HANDLE CLHandle,�CSSM_CERT_TYPE TargetCertType,�const CSSM_DATA_PTR NativeCert)

This function, which is used to convert a certificate from the native library format to a certificate in a foreign format, is not supported by the current Intel CLM.

CSSM_OID_PTR CSSMAPI CSSM_CL_CertDescribeFormat (CSSM_CL_HANDLE CLHandle,�uint32 *NumberOfFields)

The list of OIDs returned by this function is defined in the header file certoids.h.

CSSM_DATA_PTR CSSMAPI CSSM_CL_PassThrough �(CSSM_CL_HANDLE CLHandle,� CSSM_CC_HANDLE CCHandle,� uint32 PassThroughId,� const CSSM_DATA_PTR InputParams)

The CCHandle is not used in any of the currently-defined passthrough operations. It is ignored.

The following passthrough Ids correspond to functions supported by the Intel CLM utility library. The Ids are defined in the header file certdefs.h:

CL_CUSTOMID_PACK_CERTIFICATE		= 0,�CL_CUSTOMID_PACK_EXTENSION 		= 1,�CL_CUSTOMID_PACK_ALL_EXTENSIONS		= 2,�CL_CUSTOMID_PACK_SIGNATURE 		= 3,�CL_CUSTOMID_PACK_ALL_SIGNATURES		= 4,�CL_CUSTOMID_PACK_CERT509 		= 5,�CL_CUSTOMID_PACK_KEYINFO 		= 6,�CL_CUSTOMID_PACK_ALGORITHM 		= 7,�CL_CUSTOMID_PACK_TABLEPRIMARYKEY		= 8,�CL_CUSTOMID_PACK_SIGNATURESTRUCT		= 9,��CL_CUSTOMID_UNPACK_CERTIFICATE		= 10,�CL_CUSTOMID_UNPACK_EXTENSION 		= 11,�CL_CUSTOMID_UNPACK_ALL_EXTENSIONS		= 12,�CL_CUSTOMID_UNPACK_SIGNATURE 		= 13,�CL_CUSTOMID_UNPACK_ALL_SIGNATURES		= 14,�CL_CUSTOMID_UNPACK_CERT509 		= 15,�CL_CUSTOMID_UNPACK_KEYINFO 		= 16,�CL_CUSTOMID_UNPACK_ALGORITHM 		= 17,�CL_CUSTOMID_UNPACK_TABLEPRIMARYKEY	= 18,�CL_CUSTOMID_UNPACK_SIGNATURESTRUCT	= 19,��CL_CUSTOMID_FREE_CERTIFICATE 		= 20,�CL_CUSTOMID_FREE_EXTENSIONS 		= 21,�CL_CUSTOMID_FREE_SIGNATURES 		= 22,��CL_CUSTOMID_CONCAT_DISTNAME 		= 23,�CL_CUSTOMID_PARSE_PACKED_DISTNAME		= 24,

CL_CUSTOMID_PACK_REVOKEDCERTS 		= 25,

CL_CUSTOMID_PACK_CRL 		= 26,

CL_CUSTOMID_PACK_CRL_FOR_SIGN 		= 27,

CL_CUSTOMID_PACK_REVOKEDCERT_FOR_SIGN 	= 28,

CL_CUSTOMID_UNPACK_CRL 		= 29,

CL_CUSTOMID_UNPACK_REVOKED_CERT 		= 30,

CL_CUSTOMID_FREE_CRL_FIELDS 		= 31,

CL_CUSTOMID_FREE_REVOKED_CERT_FIELDS 	= 32

The InputParams are assumed to be an array of CSSM_DATA types.

It is assumed that InputParams[i].Data can be cast to a complex structure, if necessary. For example, for the passthrough ID CL_CUSTOMID_PACK_CERTIFICATE, it is assumed that InputParams[0].Data can be cast to (CSSM_CERTIFICATE_PTR).

The passthrough functions assume the following inputs for InputParams:

CL_CUSTOMID_PACK_CERTIFICATE: Assumes InputParams[0].Data can be cast to CSSM_CERTIFICATE_PTR

CL_CUSTOMID_PACK_EXTENSION: Assumes InputParams[0].Data can be cast to CSSM_EXTENSION_PTR

CL_CUSTOMID_PACK_ALL_EXTENSIONS: Assumes InputParams[0].Data can be cast to CSSM_EXTENSION_PTR and InputParams[1].Data can be cast to a uint32 pointer

CL_CUSTOMID_PACK_SIGNATURE: Assumes InputParams[0].Data can be cast to CSSM_SIGNATURE_PTR

CL_CUSTOMID_PACK_ALL_SIGNATURES: Assumes InputParams[0].Data can be cast to CSSM_SIGNATURE_PTR and InputParams[1].Data can be cast to a uint32 pointer

CL_CUSTOMID_PACK_CERT509: Assumes InputParams[0].Data can be cast to CSSM_CERT509_PTR

CL_CUSTOMID_PACK_KEYINFO: Assumes InputParams[0].Data can be cast to CSSM_SUBJECT_KEY_INFO_PTR

CL_CUSTOMID_PACK_ALGORITHM: Assumes InputParams[0].Data can be cast to CSSM_ALGORITHM_IDENTIFIER_PTR

CL_CUSTOMID_PACK_TABLEPRIMARYKEY: Assumes InputParams[0].Data can be cast to CSSM_TABLE_PRIMARY_KEY_PTR

CL_CUSTOMID_PACK_SIGNATURESTRUCT: Assumes InputParams[0].Data can be cast to CSSM_SIGNATURE_STRUCT_PTR

Each of the pack functions return a CSSM_DATA_PTR referencing the CSSM_DATA structure that contains the packed data resulting from the operation.

CL_CUSTOMID_UNPACK_CERTIFICATE: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_EXTENSION: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_ALL_EXTENSIONS: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_SIGNATURE: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_ALL_SIGNATURES: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_CERT509: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_KEYINFO: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_ALGORITHM: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_TABLEPRIMARYKEY: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

CL_CUSTOMID_UNPACK_SIGNATURESTRUCT: Assumes InputParams[0].Data can be cast to a CSSM_DATA pointer

The UNPACK functions are the logical inverses of the Pack functions. Each returns a pointer to a CSSM_DATA array whose data pointers can be cast to the appropriate structure type.

The length field returned in the CSSM_DATA structure should be ignored.

CL_CUSTOMID_FREE_CERTIFICATE: Assumes InputParams[0].Data can be cast to CSSM_CERTIFICATE_PTR

CL_CUSTOMID_FREE_EXTENSIONS: Assumes InputParams[0].Data can be cast to CSSM_EXTENSION_PTR and InputParams[1].Data can be cast to a uint32 pointer

CL_CUSTOMID_FREE_SIGNATURES: Assumes InputParams[0].Data can be cast to CSSM_SIGNATURE_PTR and InputParams[1].Data can be cast to a uint32 pointer

CL_CUSTOMID_CONCAT_DISTNAME: Assumes InputParams[0].Data can be cast to a CSSM_DISTINGUISHED_NAME_PTR. For the return value, the Data pointer can be cast to a char*.

CL_CUSTOMID_PARSE_PACKED_DISTNAME: Assumes InputParams[0].Data can be cast to char *. For the return value, the Data pointer can be cast to CSSM_DISTINGUISHED_NAME_PTR.

The length field returned in the CSSM_DATA structure should be ignored.

CSSM_RETURN CSSMAPI CSSM_CL_Initialize (uint32 VerMajor,�uint32 VerMinor)

This function checks the input version numbers for compatibility with the installed Intel CLM version.

CSSM_RETURN CSSMAPI CSSM_CL_Uninitialize (void)

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlCreate (CSSM_CL_HANDLE CLHandle)

A valid CLHandle for this library is a required input value.

This function creates an empty memory-resident CRL. The CSSM_DATA_PTR records a length of zero and a NULL data pointer.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlAddCert�(CSSM_CL_HANDLE CLHandle,� CSSM_CC_HANDLE CCHandle,� const CSSM_DATA_PTR Cert,� const CSSM_DATA_PTR RevokerCert,� CSSM_REVOKE_REASON RevokeReason,� const CSSM_DATA_PTR OldCrl)

All input parameter values are required.

The CCHandle must reference a cryptographic context for digital signaturing.

The specified Cert is revoked by adding it to the Crl. The RevokerCert is used to sign the new revocation entry in the CRL.

The revokeReason is stored in the new revocation entry in the CRL.

This functions returns a new CRL. The caller must free the oldCRL after the newCrl is created and returned by this function.

A CCHandle for a signaturing context can be generated by calling CSSM_GenerateKey and CSSM_CreateSignatureContext.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlRemoveCert (CSSM_CL_HANDLE CLHandle,�const CSSM_DATA_PTR Cert,�const CSSM_DATA_PTR OldCrl)

All input parameter values are required.

This function removes a certificate revocation entry corresponding to the certificate from the OldCrl.

This function returns a new CRL. If no CRL entry corresponds to the specified certificate, an error condition is returned and a new CRL is not created.

When a new CRL is created, the caller must free the OldCrl.

The certificate is not modified by this function.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlSign (CSSM_CL_HANDLE CLHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR UnsignedCrl,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR SignScope,�uint32 ScopeSize)

A valid CLHandle, CCHandle, CRL, and signer’s Certificate are required input values.

The SignScope and ScopeSize must be NULL and zero, respectively.

The CCHandle for a cryptographic signaturing context can be generated by CSSM_CreateSignatureContext with a valid CSSM_KEY.

This function uses the signer’s certificate to sign the entire CRL. The Intel CLM signs the X509 specified fields of the CRL, so the signing scope must not be specified. Specifying a signing scope returns the NOT_SUPPORTED error.

Information from the Signercert is used to initialize all the SignerCert’s information to the Crl.

This function returns a new CRL. The caller must free the UnsignedCrl after the signed CRL is returned.

CSSM_BOOL CSSMAPI CSSM_CL_CrlVerify (CSSM_CL_HANDLE CLHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCrl,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR VerifyScope,�uint32 ScopeSize)

A valid CLHandle, CCHandle, SubjectCRL, and signer’s Certificate are required input values.

The VerifyScope and ScopeSize must be NULL and zero, respectively.

The CCHandle for a cryptographic signaturing context can be generated by CSSM_CreateSignatureContext with a valid CSSM_KEY.

This function determines whether or not the signer’s certificate was used to sign the CRL. The Intel CLM verifies a signature over the X509 specified fields of the CRL, so the verification scope must not be specified. Specifying a verification scope returns the CRL_VERIFYSCOPE_NOT_SUPPORTED error.

If the Signercert information is different from the SignerCert information in the CRL, then the error CRL_NOT_SIGNED_BY_SIGNER is returned.

The CRL and the signer’s certificate are not modified by this function.

CSSM_BOOL CSSMAPI CSSM_CL_IsCertInCrl (CSSM_CL_HANDLE CLHandle,�const CSSM_DATA_PTR Cert,�const CSSM_DATA_PTR Crl)

All parameters are required input values.

This function searches the CRL for a certificate revocation entry corresponding to the specified certificate. It returns TRUE or FALSE, based on the results of this search.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlGetFirstFieldValue�(CSSM_CL_HANDLE CLHandle,� const CSSM_DATA_PTR Crl,� const CSSM_OID_PTR CrlField,� CSSM_HANDLE_PTR ResultsHandle,� uint32 *NumberOfMatchedFields)

A valid CLHandle, CRL, and CRL OID are required input values. The OID uniquely identifies which field value of a CRL entry to retrieve. X.509 defines OIDs for most of the CRL fields supported by the Intel CLM.

The Intel CLM supports four additional OIDS, which are defined in the file Crloids.h. When the caller asks for a field corresponding an OID, the field value for that OID is returned.

The Intel X.509-based CRL structure does not have duplicate fields, so the NumberOfMatchedfields is always 1.

The Intel CLM does not support concurrent queries, so ResultsHandle is always 1.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlGetNextFieldValue�(CSSM_CL_HANDLE CLHandle,� CSSM_HANDLE ResultsHandle)

The X.509-based CRL structure used by the Intel CLM does not have duplicate fields, so there are no duplicate fields in a CRL entry.

This function always returns NULL.

CSSM_RETURN CSSMAPI CSSM_CL_CrlAbortQuery (CSSM_CL_HANDLE CLHandle,�CSSM_HANDLE ResultsHandle)

The X.509-based CRL structure used by the Intel CLM does not have duplicate fields, so there is no query table maintaining the state of a CRL query.

This function always returns CSSM_OK.

CSSM_OID_PTR CSSMAPI CSSM_CL_CrlDescribeFormat�(CSSM_CL_HANDLE CLHandle,� uint32 *NumberOfFields)

A valid CLHandle for this library is a required input value.

This function returns an array of CSSM_OIDs, one for each field type contained in the X.509-based CRL.. The following OIDs correspond to the CRL fields: CrlSignature, CrlIsssuerCert’sIssuer, Subject, and CrlLastUpdate.

Intel Cryptographic Services Module

The Intel Cryptographic Services Module (CSM) is an add-in security module, which attaches to the Intel Common Security Services Manager (CSSM). The Intel CSM performs cryptographic operations, including encryption/decryption, digital signaturing/verification, key pair generation, random number generation, and message digest. It is designed to run in the Windows 95 or WindowsNT operating system.

Supported Algorithms

The following algorithms are supported by the Intel CSM:

Symmetric Key Generation (CSSM_ALGID_DESRandom).

Asymmetric Key Pair Generation (CSSM_ALGID_DSA).

Symmetric Encryption/Decryption (CSSM_ALGID_DES). Supported encryption mode is (CSSM_ALGMODE_CBCPadIV8). The Intel CSM implementation of the DES algorithm takes a 64 bit key and dumbs it down to 40 bits by holding the 3 most significant bits (MSb, MSb-1, MSb-2) in each key byte to a value of ‘0’.

Signature/Verification (CSSM_ALGID_DSA).

Message Digest (CSSM_ALGID_MD5 and CSSM_ALGID_SHA1).

Random Number Generation (CSSM_ALGID_DESRandom).

General Notes

For all Intel CSM functions, the following input parameters have the specified meaning:

CSPHandle – the CSSM handle returned when attaching the Intel CSM.

CCHandle – the CSSM handle for a security context which is required by all the cryptographic API calls. Depending upon the cryptographic operation to be performed (encryption, signature, etc.), the caller needs to create the appropriate cryptographic context.

For all supported functions, the caller can either choose to allocate memory for ouput parameters of type CSSM_DATA and CSSM_KEY or have the Intel CSM perform the memory allocation.

If the caller wishes to allocate memory for a CSSM_DATA type, it is recommended that the CSSM_QuerySize function be used to figure out the allocation requirement. The appropriate cryptographic context handle and size of input data should be passed into CSSM_QuerySize, and the function will return the estimated output size. The CSSM_DATA type has two fields, a Length attribute and a Data pointer and these should be set up based on the return value from CSSM_QuerySize.

If the caller wishes to allocate memory for a CSSM_KEY type, a KeyBlobLength attribute and a KeyBlob pointer will have to be set up. The KeyBlob is a fixed size data structure and is defined in the file titled cssm.h.

If the caller chooses to perform the memory allocation and does not allocate the required size, the Intel CSM will generate an error (CSSM_CSP_ERR_OUTBUF_LENGTH).

If the caller wishes to have the Intel CSM allocate memory for a CSSM_DATA type, the following conditions apply:

The caller should have registered memory allocation routines with the CSSM. Otherwise, the Intel CSM will generate an error (CSSM_MALLOC_FAILED).

The caller should initialize a CSSM_DATA type with the Length attribute set to 0 and the Data pointer set to NULL. If the Length attribute is non-zero or if the Data pointer is non-NULL, the Intel CSM will generate an error (CSSM_CSP_INVALID_DATA_POINTER).

If the caller wishes to have the Intel CSM allocate memory for a CSSM_KEY type, the following conditions apply:

The caller should have registered memory allocation routines with the CSSM. Otherwise, the Intel CSM will generate an error (CSSM_MALLOC_FAILED).

The caller should initialize a CSSM_KEY type with the KeyBlobLength attribute set to 0 and the KeyBlob pointer set to NULL. If the KeyBlobLength attribute is non-zero or if the KeyBlob pointer is non-NULL, the CSM will generate an error (CSSM_CSP_INVALID_DATA_POINTER).

Some of the cryptographic API calls allow for supplying the input data as a vector of buffers and in some cases (e.g., encryption/decryption) allow for the output data to be a vector of buffers. However, the default Intel CSM can handle only one buffer per call for all cryptographic operations, except message digests. Thus, if the BufCount parameter in these calls is not 1, an error (CSSM_CSP_VECTOROFBUFS_UNSUPPORTED) will be issued by the Intel CSM.

The Intel CSM has explicit knowledge of key and data formats, and uses that knowledge when manipulating data structures on behalf of the caller.

Storage Files

Please periodically make backup copies of the certificate database files used by Data Storage Library Module (DLM), and the private key storage files used by Cryptographic Services Module (CSM) to facilitate recovery from hardware failure or unexpected system failure.

The database file used by the Intel Digital Certificate Manager application is listed as the ODBC Data Source named 'Intel Example Certificates'. The file name and path can be found by clicking on the Setup button from the 32 Bit ODBC Manager in the Control Panel.

The private key storage file used by the Intel CSM can be identified by reading the CSSM-managed registry entry. Usually it is in the same directory as the CSM DLL and has the same name as the DLL with ".pri" extension (IntelCSM.pri). The private key file path can also be obtained from the CSM pass through function called ID CSP_CUSTOMID_GET_PRIKEY_FILEPATH. The following is an example registry setting for the Intel CSM:

[HKEY_LOCAL_MACHINE\SOFTWARE\Intel\CSSM\CSP\{b4582326-1be0-11d0-a59e-0 0aa00307bc8}]

"Location"="file:///C|/WIN95/SYSTEM/intelcsm.dll"

"Name"="Intel Cryptographic Services Module"

"Vendor"="Intel Corporation"

"Description"="Intel Exportable Cryptographic Services Module"

"Export"=hex:01,00,00,00

"Version"="1.0"

"Private Key File"="file:///c|/win95/system/intelcsm.pri"

Intel CSM Functions

The specific behavior of the Intel CSM functions are described below.

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSignatureContext�(CSSM_CSP_HANDLE CSPHandle,� uint32 AlgorithmID,� const CSSM_CRYPTO_DATA_PTR PassPhrase,� const CSSM _KEY_PTR Key)

The Intel CSM currently supports only the value CSSM_ALGID_DSA for the AlgorithmID.

The application can provide a pointer to a callback function for the PassPhrase parameter. In which case, the Intel CSM will invoke the callback to obtain the passphrase. The passphrase is needed only for signature operations, not verify operations. Only the first 32 bytes of the supplied passphrase are used.

The caller needs to pass in a pointer to a CSSM_KEY structure containing the DSA public key for the signing operations. The CSSM_KEY structure should be the value returned by the CSSM_GenerateKey API call (asymmetric key pair generation).

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSymmetricContext�(CSSM_CSP_HANDLE CSPHandle,� uint32 AlgorithmID,� uint32 Mode,� const CSSM_KEY_PTR Key,� const CSSM_DATA_PTR InitVector,� const CSSM_DATA_PTR Padding,� uint32 Rounds)

The Intel CSM currently supports only the value CSSM_ALGID_DSA for the AlgorithmID.

The Intel CSM currently supports only the value CSSM_ALGMODE_CBCPadIV8 for the Mode.

The caller passes in a pointer to a CSSM_KEY structure containing the DES key in the parameter key. The CSSM_KEY structure should be the value returned by the CSSM_GenerateKey API call (symmetric key generation).

The initial vector for symmetric encryption/decryption can be passed in to the Intel CSM via the InitVector parameter. The vector should be 8 bytes long. The Intel CSM will use a default value if one is not provided.

The parameter Padding is not currently used by the Intel CSM. The Intel CSM has a fixed padding scheme for the DES algorithm.

The parameter Rounds is also not used by the current Intel CSM, since the DES algorithm has a fixed number of rounds.

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDigestContext�(CSSM_CSP_HANDLE CSPHandle,� uint32 AlgorithmID)

The Intel CSM supports the values CSSM_ALGID_MD5 and CSSM_ALGID_SHA1 for AlgorithmID, in this context.

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateRandomGenContext�(CSSM_CSP_HANDLE CSPHandle,� uint32 AlgorithmID,� const CSSM_CRYPTO_DATA_PTR Seed,� uint32 Length)

The Intel CLM currently supports only the value CSSM_ALGID_DESRandom for AlgorithmID, in this context.

The caller can pass in a seed value. Optionally, the caller can provide a pointer to a callback function. In which case, the CSP will invoke the callback to obtain the passphrase. If NULL is passed in for the Seed parameter, the Intel CSM will use its default seed generation mechanism.

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateKeyGenContext�(CSSM_CSP_HANDLE CSPHandle,� uint32 AlgorithmID,� const CSSM_CRYPTO_DATA_PTR PassPhrase,� uint32 ModulusSize,� uint32 KeySizeInBits,� const CSSM_CRYPTO_DATA_PTR Seed,� const CSSM_DATA_PTR Salt)

The Intel CSM currently supports the value CSSM_ALGID_DESRandom for symmetric key generation and CSSM_ALGID_DSA for asymmetric key pair generation.

The application can provide a pointer to a callback function in place of the PassPhrase parameter. In which case, the Intel CSM will invoke the callback to obtain the passphrase. Only the first 32 bytes of the supplied passphrase are used. This parameter is not used for symmetric key generation and can be set to NULL.

The Intel CSM currently supports DSA modulus sizes of 512 and 768. This parameter is not used for symmetric key generation.

The parameter KeySizeInBits should be set to 64 for the DES algorithm. This parameter is not used for asymmetric key pair generation.

The caller can provide a pointer to a callback function for the PassPhrase parameter. In which case, the Intel CSM will invoke the callback to obtain the passphrase. If NULL is passed in for this parameter, the Intel CSM will use its default seed generation mechanism.

The Salt parameter is not currently used by the Intel CSM and can be set to NULL.

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreatePassThroughContext�(CSSM_CSP_HANDLE CSPHandle,� const CSSM_KEY_PTR Key,� const CSSM_DATA_PTR ParamBufs,� uint32 ParamBufCount)

The CSSM_DATA parameters for ParamBufs are specific to each pass-through function supported by the Intel CSM. The current version of the Intel CSM supports nine pass-through functions. The function IDs for these pass-through functions are defined as enum type CSP_CUSTOM_FUNCTION_ID in cspdefs.h.

There is a context associated with each pass-through function, and the ParamBufs and ParamBufCount parameters used to create these contexts are different. The following tables explain these parameters for the pass-through functions supported by the Intel CSM.

Value	Meaning					

CSP_CUSTOMID_CHANGE_PASSWORD	Change the passphrase that is used to wrap

	the DSA private key in the CSM.

CSP_CUSTOMID_IMPORT_PRIKEY	Import a DSA private key into the CSM.

CSP_CUSTOMID_EXPORT_PRIKEY	Export a DSA private key from the CSM.

CSP_CUSTOMID_DELETE_PRIKEY	Delete the DSA private key from the CSM.

CSP_CUSTOMID_VIEW_PRIKEY	View the DSA private key information in

	the CSM (in more detail).

CSP_CUSTOMID_GET_PRIKEY_FILEPATH	Get the private key file path for the CSM.

CSP_CUSTOMID_SET_PRIKEY_FILEPATH	Set the private key file path for the CSM.

CSP_CUSTOMID_GET_PUBKEY_ID	Get the DSA public key ID.

CSP_CUSTOMID_GET_PRIKEY_COUNT	Retrieve count of the number of DSA private 	keys stored in the CSM.

Value	ParamBufCount	ParamBufs			

CSP_CUSTOMID_CHANGE_PASSWORD	2	The first data buffer is the old 			passphrase, and the second is the 			new passphrase.

CSP_CUSTOMID_IMPORT_PRIKEY	1	The passphrase for the private key.

CSP_CUSTOMID_EXPORT_PRIKEY	1	The passphrase for the private key.

CSP_CUSTOMID_DELETE_PRIKEY	1	The passphrase for the private key.

CSP_CUSTOMID_VIEW_PRIKEY	0	NULL

CSP_CUSTOMID_GET_PRIKEY_FILEPATH	0	NULL

CSP_CUSTOMID_SET_PRIKEY_FILEPATH	0	NULL

CSP_CUSTOMID_GET_PUBKEY_ID	0	NULL

CSP_CUSTOMID_GET_PRIKEY_COUNT	0	NULL

CSSM_RETURN CSSMAPI CSSM_QuerySize (CSSM_CC_HANDLE CCHandle,�uint32 SizeOfInput,�uint32 * ReqSizeOutBlock)

The SizeOfInput parameter applies only to the symmetric encrypt/decrypt context type. If this parameter is 0, the function returns the encryption/decryption algorithm block size. Otherwise, the estimated size of the output data is returned.

This function queries for the size of the output data for Signature and Message Digest context types and queries for the algorithm block size or the size of the output data for symmetric encryption/decryption context types.

For encryption, the total size of all output buffers must always be a multiple of the block size.

This function can also be used to query the output size requirements for the intermediate steps of a staged cryptographic operation (for example, CSSM_EncryptDataUpdate and CSSM_DecryptDataUpdate).

CSSM_RETURN CSSMAPI CSSM_SignData (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�CSSM_DATA_PTR Signature)

This value should be 1 (see discussion in the General Notes section above).

If the caller wishes to allocate memory for Signature, it is recommended that the CSSM_QuerySize function be used to figure out the allocation requirement. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_SignDataInit (CSSM_CC_HANDLE CCHandle)

This version of the Intel CSM does not support staging for signatures so the caller will get an error code (CSSM_CSP_STAGED_OPERATION_UNSUPPORTED).

CSSM_RETURN CSSMAPI CSSM_SignDataUpdate (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

This version of the Intel CSM does not support staging for signatures so the caller will get an error code (CSSM_CSP_STAGED_OPERATION_UNSUPPORTED).

CSSM_RETURN CSSMAPI CSSM_SignDataFinal (CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR Signature)

This version of the Intel CSM does not support staging for signatures so the caller will get an error code (CSSM_CSP_STAGED_OPERATION_UNSUPPORTED).

CSSM_BOOL CSSMAPI CSSM_VerifyData (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�const CSSM_DATA_PTR Signature)

The value passed for DataBufCount should be 1 (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_VerifyDataInit (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR Signature)

This version of the Intel CSM does not support staging for signature verification so the caller will get an error code (CSSM_CSP_STAGED_OPERATION_UNSUPPORTED).

CSSM_RETURN CSSMAPI CSSM_VerifyDataUpdate (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

This version of the Intel CSM does not support staging for signature verification so the caller will get an error code (CSSM_CSP_STAGED_OPERATION_UNSUPPORTED).

CSSM_BOOL CSSMAPI CSSM_VerifyDataFinal (CSSM_CC_HANDLE CCHandle)

This version of the Intel CSM does not support staging for signature verification so the caller will get an error code (CSSM_CSP_STAGED_OPERATION_UNSUPPORTED).

CSSM_RETURN CSSMAPI CSSM_DigestData (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�CSSM_DATA_PTR Digest)

If the caller wishes to allocate memory for Digest, it is recommended that the CSSM_QuerySize function be used to figure out the allocation requirement. Alternatively, the caller can have the CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_DigestDataInit (CSSM_CC_HANDLE CCHandle)

CSSM_RETURN CSSMAPI CSSM_DigestDataUpdate (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

CSSM_CC_HANDLE CSSMAPI CSSM_DigestDataClone (CSSM_CC_HANDLE CCHandle)

CSSM_RETURN CSSMAPI CSSM_DigestDataFinal (CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR Digest)

If the caller wishes to allocate memory for Digest, it is recommended that the CSSM_QuerySize function be used to figure out the allocation requirement. Alternatively, the caller can have the CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_EncryptData (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�uint32 *bytesEncrypted,�CSSM_DATA_PTR RemData)

The value passed for ClearBufCount should be 1 (see discussion in the General Notes section above).

If the caller wishes to allocate memory for CipherBufs, it is recommended that the CSSM_QuerySize function be used to figure out the allocation requirement. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

If in-place encryption is desired, the caller can specify ClearBufs for this parameter - the RemData parameter will then contain the last encrypted block of padded data (8 bytes long for CSSM_ALGID_DES).

The value passed for CipherBufCount should be 1 (see discussion in the General Notes section above).

The parameter RemData is a pointer to a CSSM_DATA structure for the last encrypted block containing padded data (8 bytes long for CSSM_ALGID_DES). This parameter can be NULL if the size of CipherBufs meets the allocation requirement indicated by CSSM_QuerySize.

CSSM_RETURN CSSMAPI CSSM_EncryptDataInit (CSSM_CC_HANDLE CCHandle)

CSSM_RETURN CSSMAPI CSSM_EncryptDataUpdate (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�uint32 *bytesEncrypted)

The value passed for ClearBufCount should be 1 (see discussion in the General Notes section above).

If the caller wishes to allocate memory for CipherBufs, it is recommended that the CSSM_QuerySize function be used to figure out allocation requirement for each CSSM_EncryptUpdate call. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_EncryptDataFinal (CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR RemData)

The parameter RemData is pointer to a CSSM_DATA structure for the last encrypted block containing padded data (8 bytes long for CSSM_ALGID_DES). The caller can have the CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_DecryptData (CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�uint32 *bytesDecrypted,�CSSM_DATA_PTR RemData)

The value passed for CipherBufCount should be 1 (see discussion in the General Notes section above).

The parameter ClearBufs is a pointer to a single CSSM_DATA structure that will contain the decrypted output - the pad will automatically be stripped upon decryption. If the caller wishes to allocate memory for ClearBufs, it is recommended that the CSSM_QuerySize function be used to figure out the allocation requirement. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above). If in-place decryption is desired, the caller can specify ClearBufs for this parameter.

The value passed for ClearBufCount should be 1 (see discussion in the General Notes section above).

The parameter RemData is a pointer to a CSSM_DATA structure for the last decrypted block (could be as much as 16 bytes long for CSSM_ALGID_DES). This parameter can be NULL if the size of ClearBufs meets the allocation requirement indicated by CSSM_QuerySize.

CSSM_RETURN CSSMAPI CSSM_CSSM_DecryptDataInit (CSSM_CC_HANDLE CCHandle)

CSSM_RETURN CSSMAPI CSSM_DecryptDataUpdate �(CSSM_CC_HANDLE CCHandle,� const CSSM_DATA_PTR CipherBufs,� uint32 CipherBufCount,� CSSM_DATA_PTR ClearBufs,� uint32 ClearBufCount,� uint32 *bytesDecrypted)

The value passed in for CipherBufCount should be 1 (see discussion in the General Notes section above).

The parameter ClearBufs is a pointer to a single CSSM_DATA structure that will contain the decrypted output. If the caller wishes to allocate memory for ClearBufs, it is recommended that the CSSM_QuerySize function be used to figure out allocation requirement for each CSSM_DecryptUpdate call. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

The value passed in for ClearBufCount should be 1 (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_DecryptDataFinal (CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR RemData)

The parameter RemData is a pointer to a CSSM_DATA structure for the last decrypted block (could be as much as 16 bytes long for CSSM_ALGID_DES). The caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_GenerateKey (CSSM_CC_HANDLE CCHandle,�CSSM_KEY_PTR Key)

The parameter Key is a pointer to a CSSM_KEY structure that is allocated by the caller. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

This function generates a DES symmetric key or a DSA asymmetric key pair. In the case of symmetric key generation, this function returns the DES symmetric key. In the case of asymmetric key pair generation, this function returns the DSA public key (the key format conforms to the PKCS#1 specification for public keys) and saves the wrapped private key in the Intel CSM.

CSSM_RETURN CSSMAPI CSSM_GenerateRandom (CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR RandomNumber)

The parameter RandomNumber is a pointer to a CSSM_DATA structure that is allocated by the caller. Alternatively, the caller can have the Intel CSM allocate the required memory (see discussion in the General Notes section above).

CSSM_RETURN CSSMAPI CSSM_CSP_PassThrough�(CSSM_CC_HANDLE CCHandle,�uint32 PassThroughId,�const CSSM_DATA_PTR InData,�CSSM_DATA_PTR OutData)

The parameter PassThroughId is an identifier specifying the custom function to be performed. The current version of the Intel CSM supports nine pass-through functions. The function IDs for these pass-through functions are defined as enum type CSP_CUSTOM_FUNCTION_ID in cspdefs.h. This parameter must be one of the following values:

Value	Meaning					

CSP_CUSTOMID_CHANGE_PASSWORD	Change the passphrase that is used to wrap

	the DSA private key in the CSM.

CSP_CUSTOMID_IMPORT_PRIKEY	Import a DSA private key into the CSM.

CSP_CUSTOMID_EXPORT_PRIKEY	Export a DSA private key from the CSM.

CSP_CUSTOMID_DELETE_PRIKEY	Delete the DSA private key from the CSM.

CSP_CUSTOMID_VIEW_PRIKEY	View the DSA private key information in

	the CSM (in more detail).

CSP_CUSTOMID_GET_PRIKEY_FILEPATH	Get the private key file path for the CSM.

CSP_CUSTOMID_SET_PRIKEY_FILEPATH	Set the private key file path for the CSM.

CSP_CUSTOMID_GET_PUBKEY_ID	Get the DSA public key ID.

CSP_CUSTOMID_GET_PRIKEY_COUNT	Retrieve count of the number of DSA private 	keys stored in the CSM.

Value	InData	OutData		

CSP_CUSTOMID_CHANGE_PASSWORD	None	None

CSP_CUSTOMID_IMPORT_PRIKEY	DSA private key	None

CSP_CUSTOMID_EXPORT_PRIKEY	None	DSA private key

CSP_CUSTOMID_DELETE_PRIKEY	None	None

CSP_CUSTOMID_VIEW_PRIKEY	None	Data Buffer for obtaining 			the DSA private key info.

CSP_CUSTOMID_GET_PRIKEY_FILEPATH	None	Data Buffer for obtaining 			the private key file path

CSP_CUSTOMID_SET_PRIKEY_FILEPATH	New private key	None

	file path

CSP_CUSTOMID_GET_PUBKEY_ID	None	Fingerprint of the DSA 			public key

CSP_CUSTOMID_GET_PRIKEY_COUNT	None	Data Buffer for obtaining 			the DSA private key count

Intel Data Storage Library Module

The Intel data storage library module implements persistent storage for certificates and certificate revocation lists (CRLs) using ODBC driver for Access in Windows* 95 or Windows NT*.

General Notes

For all library functions, the following input parameters have the specified meaning:

DLHandle – the CSSM handle returned by attaching the Intel data storage library

DbName – the logical name of an ODBC data source

DBHandle – the handle for an open ODBC data base

The Intel DLM uses knowledge of the certificate and CRL format supported by the Intel Certificate Library Module (CLM). The Intel DLM makes direct use of this knowledge. When an Intel DLM function requires a certificate library handle as an input parameter, that handle must be a handle the caller acquired by attaching the Intel CLM.

Storage Files

Please periodically make backup copies of the certificate database files used by Data Storage Library Module (DLM), and the private key storage files used by Cryptographic Services Module (CSM) to facilitate recovery from hardware failure or unexpected system failure.

The database file used by the Intel Digital Certificate Manager application is listed as the ODBC Data Source named 'Intel Example Certificates'. The file name and path can be found by clicking on the Setup button from the 32 Bit ODBC Manager in the Control Panel.

The private key storage file used by the Intel CSM can be identified by reading the CSSM-managed registry entry. Usually it is in the same directory as the CSM DLL and has the same name as the DLL with ".pri" extension (IntelCSM.pri). The private key file path can also be obtained from the CSM pass through function called ID CSP_CUSTOMID_GET_PRIKEY_FILEPATH. The following is an example registry setting for the Intel CSM:

[HKEY_LOCAL_MACHINE\SOFTWARE\Intel\CSSM\CSP\{b4582326-1be0-11d0-a59e-0 0aa00307bc8}]

"Location"="file:///C|/WIN95/SYSTEM/intelcsm.dll"

"Name"="Intel Cryptographic Services Module"

"Vendor"="Intel Corporation"

"Description"="Intel Exportable Cryptographic Services Module"

"Export"=hex:01,00,00,00

"Version"="1.0"

"Private Key File"="file:///c|/win95/system/intelcsm.pri"

Intel DLM Functions

The specific behavior of the Intel DLM functions are described briefly below.

CSSM_DB_HANDLE CSSMAPI CSSM_DL_DbOpen (CSSM_DL_HANDLE DLHandle,�const char *DbName);

The DLHandle and a datasource logical name are required input values. If the Datasource specified by DbName exists, this function opens the data store and returns a DBHandle. If there is a Datasource and no physical database files associated with it, or the physical database file is missing, then ODBC presents a dialog box displaying the message Could not logon to file. When the user clicks OK, the user can select a file to associate with the datasource.

CSSM_RETURN CSSMAPI CSSM_DL_DbClose (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle);

A valid DLHandl;e and an opened Database handle are required input values.

CSSM_DB_HANDLE CSSMAPI CSSM_DL_DbCreate�(CSSM_DL_HANDLE DLHandle,� CSSM_CL_HANDLE CLHandle,� const char *DbName)

A valid DLHandle and Datasource logicalname are required input values.

The CLhandle parameter is not used by this library.

The Intel data storage library knows the Intel certificate internal formats.

If the datasource does not exist, this function creates the datasource comprised of a file and associated database schema for Certificates and CRLs. It opens the data base and returns a DBHandle to the user.

If the datasource already exists, it opens the existing database and returns a Dbhandle.

CSSM_RETURN CSSMAPI CSSM_DL_DbDelete (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle)

A valid DLHandle and DBHandle are required input values.

This function deletes all the records in the datasource. The database schema remains valid. This is equivalent to purging the database.

CSSM_RETURN CSSMAPI CSSM_DL_CertInsert (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�const CSSM_DATA_PTR Cert)

A DLHandle, a DBHandle, and a valid CSSM_DATA_PTR to a certificate are required input values.

Prior to invoking this function, the input certificate must be created using the CertCreate function in the Intel CLM.

If the Certificate’s SubjectName and IssuerName values match a certificate in the database, the matching certificate will be updated. Otherwise, a new certificate is added to the database.

CSSM_RETURN CSSMAPI CSSM_DL_CertDelete (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�const CSSM_DATA_PTR Cert);

A valid DLHandle, DBHandle, and pointer to the certificate to be deleted are required input values.

If the specified certificate is contained in the database, it is deleted from the database

CSSM_RETURN CSSMAPI CSSM_DL_CertRevoke�(CSSM_DL_HANDLE DLHandle,� CSSM_DB_HANDLE DBHandle,� const CSSM_DATA_PTR CertToBeRevoked)

A valid DLHandle, DBHandle and pointer to a certificate to be revoked are required input values.

If the specified certificate is contained in the database, it is marked as revoked.

CSSM_DATA_PTR CSSMAPI CSSM_DL_CertGetFirst�(CSSM_DL_HANDLE DLHandle,� CSSM_DB_HANDLE DBHandle,� CSSM_SELECTION_PREDICATE_PTR SelectionPredicate,� uint32 SizeSelectionPredicate,� CSSM_DB_CONJUNCTIVE Conjunctive,� CSSM_HANDLE_PTR ResultsHandle,� uint32 *NumberOfMatchedCerts)

This function returns the first certificate in the database matching the selection predicates. The Intel DSM does not support multiple concurrent queries. The sequence of functions required to complete a query are:

CSSM_DbOpen

CSSM_DbCertGetFirst

CSSM_DbCertGetNex

CSSM_AbortQuery

CSSM_Dbclose

Currently, the only selection predicates supported are for the string fields SubjectName and IssuerName. The selectionPredicates parameter must specify the OID and value for CSSMOID_CommonName and/or CSSMOID_IssuerName. The results handle can be used to get subsequent matches to the query.

The user must call CertAbortQuery to abort the query initiated by the CertGetFirst function.

CSSM_DATA_PTR CSSMAPI CSSM_DL_CertGetNext (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_HANDLE ResultsHandle)

A valid DLHandle, DBHandle, and the results handle from a CertGetFirst call are required input values.

This function returns the next matching certificate, based on the query initiated by the GetFirstCert function.

CSSM_RETURN CSSMAPI CSSM_DL_CertAbortQuery (CSSM_DL_HANDLE DLHandle, CSSM_DB_HANDLE DBHandle,�CSSM_HANDLE ResultsHandle)

This function expects a valid DLHandle, DbHandle, and the results handle from the CertGetFirst call.

His function aborts the query initiated by the certGetFirst function.

After this call, the user can initiate another query.

CSSM_RETURN CSSMAPI CSSM_DL_CrlInsert (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�const CSSM_DATA_PTR Crl)

A DLHandle, a DBHandle and a valid CSSM_DATA_PTR to a CRL are required input values. Prior to calling this function, the CRL must be created, by invoking the following Intel CLM functions in sequence:

CrlCreate

CrlAddcert

CrlSign

The CRL schema is created by calling DbCreate. The CRL must be signed before it can be stored.

The CRL is stored as a Blob indexed by the IssuerName, SubjectName, and CRLLastUpate fields, which are updated only when the CRL is signed.

CSSM_RETURN CSSMAPI CSSM_DL_CrlDelete (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�const CSSM_DATA_PTR Crl)

A valid DLHandle, DBHandle, and pointer to a signed CRL are required input values.

If the specifeid CRL is contained in the data base, it is deleted from the data base.

CSSM_DATA_PTR CSSMAPI CSSM_DL_CrlGetFirst�(CSSM_DL_HANDLE DLHandle,� CSSM_DB_HANDLE DBHandle,� CSSM_SELECTION_PREDICATE_PTR SelectionPredicate,� uint32 SizeSelectionPredicate,� CSSM_DB_CONJUNCTIVE Conjunctive,� CSSM_HANDLE_PTR ResultsHandle,� uint32 *NumberOfMatchedCrls)

This function returns the first CRL in the data base matching the selection predicate. The Intel DSM does not support multiple concurrent queries. The sequence of functions to complete a query are:

CSSM_DbOpen

CSSM_DbCrlGetFirst

CSSM_DbCrlGetNext

CSSM_AbortQuery

CSSM_Dbclose

Currently, the only selection predicates supported are for the string fields SubjectName, IssuerName, and CrlLastUpdate.

The selectionPredicate parameter must provide the value and OID for CSSMOID_CrlIssuer_IssuerName and/or CSSMOID_CrlIssuer_SubjectName , and CSSMOID_Crl_LastUpdate. The results handle can be used to retrieve subsequent matches. The user must call CrlAbortQuery to abort the query initiated by the CrlGetFirst call.

CSSM_DATA_PTR CSSMAPI CSSM_DL_CrlGetNext (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_HANDLE ResultsHandle)

A valid DLHAndle, DBHandle, and results handle from the CrlGetFirst call are required input values.

This function returns the next CRL matching the query initiated by the CrlGetFirst function.

CSSM_RETURN CSSMAPI CSSM_DL_CrlAbortQuery (CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_HANDLE ResultsHandle)

A valid DLHandle , DBHandle, and results handle from the CrlGetFirst call are required input values.

This function aborts the query initiated by the CrlGetFirst function. After this call, the user can initiate another query.

CSSM_RETURN CSSMAPI CSSM_DL_DbImport (CSSM_DL_HANDLE DLHandle,�const char *DbDestLogicalName,�const char *DbSrcFileName)

A datasource logical name for the destination ODBC database and a valid database filename for the source are required input parameters.

Prior to the import operation, the source file must be created using the DbExport function executed on a local or remote system.

If the destination database file does not exist, ODBC will put up a dialog box displaying the message Could not login to file. The user must select a file to open for writing. This function snapshots the source data file into the destination ODBC database.

To find out the physical database filename corresponding to the datasource name, the user must open the Database administrator, select the datasource, and click the Setup button.

CSSM_RETURN CSSMAPI CSSM_DL_DbExport (CSSM_DL_HANDLE DLHandle,�const char *DbSrcLogicalName,�const char *DbDestFileName)

A datasource logical name for the source and a valid database filename for the destination are required input parameters. If the source database file does not exist, ODBC presents a dialog box displaying the message Could not login to file. The user must select an ODBC database file to open as the data source. This function snapshots the source database into the destination data file. The file created may be imported on the local system or a remote system using the DbImport function.

CSSM_DATA_PTR CSSMAPI CSSM_DL_PassThrough�(CSSM_DL_HANDLE DLHandle,� CSSM_DB_HANDLE DBHandle,� uint32 PassThroughId,� const CSSM_DATA_PTR InputParams)

A valid DLHandle, DBHandle, and a pass-through ID are required inputs. Each passthrough ID corresponds to an additional operation supported by this library. The additional operations supported by the Intel DLM are defined as follows:

CSSM_GET_FIRSTBASECERT 	= 1,

CSSM_GET_NEXTBASECERT 		= 2,

CSSM_GET_PREVBASECERT 		= 3,

These three operations allow applications to retrieve only the base portion (excluding extensions) of a certificate. When extensions are large, these functions provide a significant performance enhancement to applications that require only data from the base portion of the certificate. The entire certificate (including extensions) can be retrieved using the CertGetFirst function.

For the CSSM_GET_FIRSTBASECERT operation, the InputParams must be a CSSM_DATA_PTR typecast from the CSSM_DL_BASECERT_QUERY structure (defined below). All the fields must be initialized. The length of the input parameter is sizeof(CSSM_DL_BASECERT_QUERY).

typedef struct cssm_dl_basecert_query

{

	CSSM_SELECTION_PREDICATE_PTR SelectionPredicate;

	uint32 SizeSelectionPredicate;

	CSSM_DB_CONJUNCTIVE Conjunctive;

	CSSM_HANDLE_PTR ResultsHandle;

	uint32 *NumberOfMatchedCerts;

} CSSM_DL_BASECERT_QUERY,*CSSM_DL_BASECERT_QUERY_PTR;

For the CSSM_GET_NEXTBASECERT and CSSM_GET_PREVBASECERT operations, the CSSM_DATA_PTR InputParams must reference the ResultsHandlePtr returned by the CSSM_GET_FIRSTBASECERT operation. The length of the input parameter is sizeof(CSSM_HANDLE_PTR).

Intel Trust Policy Module

The Intel Trust Policy (TPM) Module is an add-in security module, which attaches to the Intel Common Security Services Manager (CSSM). The TPM implements a purely syntax-based trust policy. It is designed to run in the Windows 95 or Windows NT operating system.

General Notes

For all library functions, the following input parameters have the specified meaning:

TPHandle – the CSSM handle returned when attaching the Intel Trust Policy Module

CLHandle – the CSSM handle returned when attaching a certificate library module

DLHandle – the CSSM handle returned when attaching a data storage library module

DBHandle – the CSSM handle to an open ODBC database

CCHandle – the CSSM handle for a security context

The TPM does not check the validity of any input parameters. It passes most of the parameters to a related certificate library function. All returned errors originate from that certificate library. The caller specifies the certificate library in the CLHandle parameter.

The Intel TPM does not assume any default certificate library module (CLM), data storage library module (DLM), or cryptographic services module (CSM).

The DLHandle and DBHandle are used only in the function to apply a CRL to a database.

All Intel TPM functions invoke one or more CLM functions. The caller must specify the CLM handle for each TPM call or the TPM function will fails.

Intel TPM Functions

The specific behavior of the Intel TPM functions are described briefly below.

CSSM_BOOL CSSMAPI CSSM_TP_CertVerify (CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCert,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR VerifyScope,�uint32 ScopeSize)

The TPM invokes the CSSM_CL_CertVerify routine (which is implemented by the certificate library specified by the CLHandle). All returned errors originate from the CSSM_CL_CertVerify call.

The Intel TPM does not create a signature context from the data found in the SignerCert. The caller must provide a cryptographic context for signing in the CCHandle. That context must be compatible with the SignerCert.

The SubjectCert and SignerCert must be provided and of a format recognized by the selected certificate library.

VerifyScope and ScopeSize are passed directly to the module specified by CLHandle and must be set to values accepted by that module.

CSSM_DATA_PTR CSSMAPI CSSM_TP_CertSign (CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCert,�const CSSM_DATA_PTR SignerCert,�CSSM_FIELD_PTR SignScope,�uint32 ScopeSize)

The Intel TPM invokes the CSSM_CL_CertSign routine (which is implemented by the certificate library specified by the CLHandle). All returned errors originate from the CSSM_CL_CertSign call.

The Intel TPM does not create a signature context from the data found in the SignerCert. The caller must provide a cryptographic context for signing in the CCHandle. That context must be compatible with the SignerCert.

The SubjectCert and SignerCert must be provided and of a format recognized by the selected certificate library.

SignScope and ScopeSize are passed directly to the module specified by CLHandle and must be set to values accepted by that module.

CSSM_DATA_PTR CSSMAPI CSSM_TP_CertRevoke�(CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR OldCrl,�const CSSM_DATA_PTR SubjectCert,�const CSSM_DATA_PTR RevokerCert,�CSSM_REVOKE_REASON Reason)

The Intel TPM invokes the CSSM_CL_CrlAddCert routine (which is implemented by the certificate library specified by the CLHandle). All returned errors originate from the CSSM_CL_CrlAddCert call.

The Intel TPM does not create a signature context from the data found in the RevokerCert. The caller must provide a cryptographic context for signing in the CCHandle. That context must be compatible with the RevokerCert.

The SubjectCert, SignerCert, and OldCrl must be provided and of a format recognized by the selected certificate library.

The Reason parameter is passed directly to the module specified by CLHandle and must be set to a value accepted by that module.

CSSM_BOOL CSSMAPI CSSM_TP_CrlVerify (CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCrl,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR VerifyScope,�uint32 ScopeSize)

The Intel TPM invokes the CSSM_CL_CrlVerify routine (which is implemented by the certificate library specified by the CLHandle). All returned errors originate from the CSSM_CL_CrlVerify call.

The Intel TPM does not create a signature context from the data found in the SignerCert. The caller must provide a cryptographic context for signing in the CCHandle. That context must be compatible with the SignerCert.

The SubjectCert and SignerCert must be provided and of a format recognized by the selected certificate library.

VerifyScope and ScopeSize are passed directly to the module specified by CLHandle and must be set to values accepted by that module.

CSSM_DATA_PTR CSSMAPI CSSM_TP_CrlSign (CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR SubjectCrl,�const CSSM_DATA_PTR SignerCert,�const CSSM_FIELD_PTR SignScope,�uint32 ScopeSize);

The Intel TPM invokes the CSSM_CL_CrlSign routine (which is implemented by the certificate library specified by the CLHandle). All returned errors originate from the CSSM_CL_CrlSign call.

The Intel TPM does not create a signature context from the data found in the SignerCert. The caller must provide a cryptographic context for signing in the CCHandle. That context must be compatible with the SignerCert.

The SubjectCert and SignerCert must be provided and of a format recognized by the selected certificate library.

SignScope and ScopeSize are passed directly to the module specified by CLHandle and must be set to values accepted by that module.

CSSM_RETURN CSSMAPI CSSM_TP_ApplyCrlToDb (CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�const CSSM_DATA_PTR Crl)

User has to supply TPHandle, CLHandle, DLHandle and DBHandle. The Intel TPM does not look for a default certificate library when the CLHandle is not defined.

The user has to also supply a signed CRL for this function.

For this function, the module does no sanity checking on the inputs.

The Intel TPM makes use of these calls, CSSM_DL_CertGetFirst, CSSM_DL_CertGetNext, CSSM_DL_CertAbortQuery, CSSM_CL_IsCertInCrl and CSSM_DL_CertRevoke.

The TP module retrieves all the certificates in the database and checks to see if the certificate is in the CRL. If certificate is found in the CRL, that certificate is revoked in the database. All returned errors originate from the CSSM API calls listed above.

The Intel TPM invokes the CSSM_DL_CertGetFirst, CSSM_DL_CertGetNext, CSSM_DL_CertAbortQuery, CSSM_CL_IsCertInCrl and CSSM_DL_CertRevoke functions (which are implemented by the certificate library specified by the CLHandle). All returned errors originate from these function calls.

The CRL must be provided and of a format recognized by the selected CLM and DLM.

The TPM invokes the specified DLM to scan the certificate database specified by the DBHandle. The CRL is searched for each retrieved certificate. If the certificate is found in the CRL, that certificate is marked as revoked in the certificate database.

CSSM_RETURN CSSMAPI CSSM_TP_VerifyAction (CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�CSSM_TP_ACTION Action,�const CSSM_DATA_PTR Data,�const CSSM_DATA_PTR Cert)

This function, which is used to verify authorization to perform a specified action, is not supported by the current Intel TPM.

CSSM_DATA_PTR CSSMAPI CSSM_TP_PassThrough�(CSSM_TP_HANDLE TPHandle,�CSSM_CL_HANDLE CLHandle,�CSSM_DL_HANDLE DLHandle,�CSSM_DB_HANDLE DBHandle,�CSSM_CC_HANDLE CCHandle,�uint32 PassThroughId,�const CSSM_DATA_PTR InputParams)

This function, which provides access to policy-specific utility functions, is not supported by the Intel TPM.

Known Bugs

The following is a list of known bugs in this software at the time of release. To get technical support and/or report bugs, call 1-800-628-8686, or send email to IAL_Support@intel.com.

Intel CLM

CertVerify does not verify validity dates

Affected function(s):

CSSM_CL_CertVerify

Description:

CertVerify only verifies the signature on the cert, not the validity dates.

Purposed workaround (if applicable):

N/A

Memory leaks in CertGetAll and CertView

Affected function(s):

CSSM_CL_CertGetAll, CSSM_CL_CertView

Description:

CertGetAll and CertView have known memory leaks.

Purposed workaround (if applicable):

N/A

CertGetNext returns zero length pointer

Affected function(s):

CSSM_CL_CertGetNext

Description:

On CertGetNext, if the returning field is empty, a 0 length buffer is returned. It would be cleaner to return a NULL pointer. This will be fixed in the next release.

Purposed workaround (if applicable):

N/A

Intel CSM

No known bugs.

Intel DSM

No known bugs.

Intel TPM

No known bugs.

Install/Uninstall

Uninstall for Intel CSSM with Intel Add-ins and Intel CSM does not remove all shortcuts.

Affected function(s):

N/A

Description:

Readme icons and Intel CDSA 1.0 program group will not be removed on uninstall of components.

Purposed workaround (if applicable):

Delete icons and program group manually.

Uninstall for Intel CSM does not remove all created folders.

Affected function(s):

N/A

Description:

When the Intel CSM is uninstalled after uninstalling Intel CSSM with Intel Add-ins, the folders created by the CSSM install will not be removed.

Purposed workaround (if applicable):

Do not uninstall Intel CSSM with Intel Add-ins until Intel CSM is uninstalled or remove the empty folders left behind manually.

�Troubleshooting

To get technical support and/or report bugs, call 1-800-628-8686, or send email to IAL_Support@intel.com.

License and Export Information

Software License

NOTE: This is "beta" software which is in preliminary release form and may not be fully functional. This software will expire on
April 30
, 1997, and will thereafter become inoperable.

LICENSE: Intel grants you a non-exclusive, non-transferable, royalty-free, copyright license subject to the terms of this Agreement. You may copy the software and materials associated with this agreement ("Materials") onto a single computer for your personal noncommercial use. You may not make other copies or sell or transfer any part of the Materials to any other party. You will not reverse engineer, decompile, modify, or disassemble the Materials. Your license expires upon the software expiration date of
April 30
, 1997.

OWNERSHIP AND COPYRIGHT OF MATERIALS: Title to the Materials and all copies thereof remains with Intel or its suppliers. The Materials are copyrighted and are protected by United States laws and international treaty provisions. You will not remove the copyright notice from the Materials. You agree to prevent any unauthorized copying of the Materials. Except as expressly provided herein, Intel does not grant any express or implied right to you under Intel patents, copyrights, trademarks, or trade secret information.

LIMITATION OF LIABILITY: THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL INTEL OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE MATERIALS, EVEN IF INTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Materials and documentation are provided with "RESTRICTED RIGHTS." Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor. Use of the Materials by the Government constitutes acknowledgment of Intel's proprietary rights in them.

TERMINATION OF THIS LICENSE: Intel may terminate this license at any time if you are in breach of the terms of this Agreement. Upon termination, you will immediately destroy the Materials.

ENTIRE AGREEMENT: This Agreement constitutes the entire agreement between the parties and supersedes any prior or contemporaneous oral or written agreements.

APPLICABLE LAWS: Any claim arising under or relating to this Agreement shall be governed by the laws of the State of Delaware, without regard to conflict of laws principles. You may not export the Materials in violation of applicable export laws and regulations.

Export Control Information

The software and any underlying technology may not be exported outside the United States or to any foreign entity or "foreign person" as defined by U.S. government regulations, including without limitation, anyone who is not a citizen, national, or lawful permanent resident of the United States. By downloading or using the software, you are agreeing to the foregoing and you are warranting that you are not a "foreign person" or under the control of a foreign person.

Warning: Export Restricted

This product is licensed for use in the United States and Canada only. It is export restricted by the Office of Defense Trade Controls, United States Department of State and cannot be downloaded or otherwise exported or re-exported

into (or to a national or resident of) Cuba, Iraq, Libya, Yugoslavia, North Korea, Iran, Syria or any other country to which the US has embargoed goods;

-or-

to anyone on the US Treasury Departments list of Specially Designated Nationals or the US Commerce Departments Table of Denial Orders.

By downloading or using this product, you are agreeing to the foregoing and you are representing and warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list.

