Common Security
Services Manager

Trust Policy Interface (TPI) Specification

Draft for Release 1.2
March 1997

Subject to Change Without Notice

Specification Disclaimer and Limited Use License

This specification is for release version 1.2, March 1997.

You are licensed under Intel's copyrights in the CDSA Specifications to download the
specifications and to develop, distribute and/or use a conferment software implementation of the
specifications. A software implementation of the CDSA Specifications can be tested for
conformance via use of the CDSA Conformance Test Suite that accompanies the specifications,
and you are licensed to use the conformance test suite for that purpose.

ALL INFORMATION AND OTHER MATERIALS TO BE PROVIDED BY INTEL HEREUNDER
ARE PROVIDED "AS IS," AND INTEL MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AND EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, AND FITNESS FOR A
PARTICULAR PURPOSE.

Intel grants no other license under any of it’s intellectual property other than as expressly granted
above. If you desire any broader rights under Intel intellectual property, please contact Intel
directly.

Copyright© 1996, 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

Table of Contents

L. INTRODUGCTION .. oottt e e ettt e e e e e et e e e e e e e e e s ssabraeeeeeeeassbasaeeaesaeesaassraeeeeeeennnsrraneeens 1
L1 CDSA OVERVIEW. ... ittt ettt e aaaaaaaaaaaaaaeeeaeaeaeaaaaaaaaaaaaaaaaaaanann 1
1.2 TRUST POLICY OVERVIEWuuiiiieiieii e e e e e e s e e s e e e aannnnnnnnnsnnnssnnnnnnnnnnnnnnnnnnnn 3
1.2.1 APPLICAtiON INEEIACTION.ciiiiieiie ettt et et e st e e be e e be e e beeeaseeesbeeeaaeeas 3
1.3 CSSM TRUST POLICY INTERFACE SPECIFICATION. .. .uuuuiiiunuunnnnnnnnns e nnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnn 4
1.3.1 INEENAEA AUGIENCE.....eeeii ettt e e e e e e e e e e e e saabaeeeeeeeessssseseeeeaeeeassareeeeas 4
1.3.2 DOCUMENE OFGANIZALIOML.ueeeeeeeeieee ettt ettt e st e et esbe e e sabeeabeeebeeeseeasaeaaseeeenbeeeaneeas 4
I = N =R 4
2. TRUST POLICY INTERFACKE ...ttt ettt e e et e e e e e e e saarae e e e e e e e e ennnnes 5
2L OVERVIEW. ..., 5
2.1.1 Trust Policy Registration and Management.............ccoeeeeeariereneeenie e see e 6
2.1.2 Trust POlICY SEIVICES APttt ettt sttt e b e e e be e ebe e e sbeeenees 7
2.1 .3 TTUSE OPEI ALIONSeeeeeeieteee ittt et ettt e sebe e e bt eeteeabeeesbeeeabeeabeeabeeeseeeaneeeaaseeeaneeeaneeesaseesnnes 7
2.1.4 EXXENSIDIITY FUNCLIONS.......coiiiieeie ettt r e b e et e s abeeenees 8
2.1.5 Module Management FUNCHIONS.oiiiiiiieiee ettt ae e e e e eneas 8
2.2 DATA STRUCTURES.o i i 9
A R O S 1Y 7 A [OSSRt 9
A A O S |V, ©] 1 5 SRRSOt 9
2.2.3 CSOM _FIELD.... ..ttt ettt e et e e e e st e e e st e e e e at e e e e easaeeessnbeeeeantaeeeannaeeeannns 9
2.2.4 CSAV_REVOKE _REASON......uutiiiiiiiee e eiiie e eetee e s stree e s satee e sssaeeaessseeessstaesssnsseeesnssasessseneasanns 9
2.3 TRUSTPOLICY OPERATIONS i e 11
e T I e = g A L= 1 Y U UURTUPROPR 11
e I e O 1 T o FO P UUTOPROPR 13
2.3.3 TP _CEITREVOKE.cce ettt et e e e e st e e e e st ee e e e st e e e e eae e e e esseeeeasntaeeesnstneeeanrenaean 15
A I e O A<) Y PP UUTOPRPR 17
e T I O 1S o o PP UUTOPROPR 19
2.3.6 TP _APPIYCIITODD. ..ttt ettt et e bt e e ae e e be e e s ae e e e rbeeesaeeennneenns 21
2.4 EXTENSIBILITY FUNCTIONS ..., 22
A Y= 41 7Yk o o WSRO RTOPRPR 22
2.4.2 TP _PaSSTIFOUQGN.ciieii ittt ettt et e bt e e ae e e be e e s ae e e e rbeeesbeeeannaeans 24
2.5 MODULEMANAGEMENTFUNCTIONS......cciiiiiieee e 26
DA T R I e 1 = 1= RS 26
A I e U o TT oL (T 1 = RS 27
3. TRUST POLICY STRUCTURE AND MANAGEMENT.......coiiiitteeee ettt 28
B L INTRODUCTION .. e e e e e e e e e e e e e e e e e e e 28
3.2 TRUST POLICY MODULE COMPOSITIONccciiiieeeeeeeeee e e e e e e e e e 28
3.3 TRUSTPOLICY MODULEINSTALLATION ...cciiieeeecee e 28
3.3.1 Global Unique 1dentifierS (GUIDS).ciuuiaiieiieeieie ittt st eie et e b e s saeesnnee e 28
3.3.2 MOAUIE CRAr ACLEIISHICS. ..eeiieeeeiiieieee ettt e e et e e e e e e e e e e e e e eabbeeeeeeeessnssreeeeesaeesannees 29
3.4 ATTACHING ATRUST POLICY MODULEccce i, 29
3.4.1 The TP module fUNCLION tADIE........ccoiiiiiiieeeee e e e eeetrrr e e e e e e aanees 29
3.4.2 Memory management UPCAIIS.cou ittt b e s ae e e ae e 29
3.5 TRUSTPOLICY BASICSERVICES. ... o, 29
3.5.1 FUNCLION IMPIEMENTALION. ... ittt e e e e e s beesnee e saeeeas 29
oI =l o] gl o=V Lo [T o R PTUUROPROPR 30
3.6 ATTACH/DETACH EXAMPLEtvtiiii e e ittt e e eeeetttee et e e e e et e e e e e e e eeeaabbbeeeeaeesssassaaeeeaeseaasssseseeeeeeeeannnes 31

G S B B 111V - U o PP U PP R PRTPRTPRPRRPRN 31

Release 1.2 Common Security Services M anager Pageiv
Trust Policy Interface Specification

3.7 TRUST POLICY OPERATIONSEXAMPLE.......cc i i 32
7.1 APPIYCTITODN. ...ttt e st e e bt e e ae e e be e e s beeebeeerbeeenneaenns 32
4. APPENDIX A, RELEVANT CSSM API FUNCTIONS. ...ttt eerrneee e 34
2.1 OVERVIEW.....ceetiiieeeeeeeeeeeeeeeeeeeeesasssseasseesses s e e e e s s s e e e e s e e s sassesssssssassessseeesaeeeesessaasssssasassssssnssssseeseesesessnnnnnnns 34
4.2 DATA STRUCTURES....ccetttittittitttieeeeeeeteeesteeeeeeesseeeeeeeeeeeeeeeeeeeessssssssssssssssssssssssessesesssssssssssssssssssssssseeerne 34
R R 1S | A I SR 34
B 01 | I €10 1 1 SR 34
e N 1S | N I 1 N O USSR 34
424 CSSM_SPI MEMORY _FUNC.... ..ottt ettt e et e e e e e e sate e e e snae e e enneeesenneeas 35
425 CSSM_SPI TP _FUNGCS.... ..ttt e e e e e e st e e e e at e e e e eaae e e e enneeeeeennres 35
4.3 FUNCTION DEFINITIONS....etttttttteeteeeeeeeeeeeeeeeessessessseeessseeeseeesesseseesssnnnes 37
e R A0 N I 1 T =SSR 37
4.3.2 CSSM _TP_UNINSEAIL.....oviiiieie et e e e et e e e e e e eare e e e e snraeeeenreas 38
4.3.3 CSOM_TP_REQISIEN SENVICES. .. .tee ettt eiee ettt ettt et e b e bt e e s be e e be e e sbeeesaeeesaseesnneesnneeas 39
4.3.4 CSSM_TP_Der OISt SEIVICESc.ueeeiueeeitieeteeetieerte e s tee e bt e e sbeeeraeeesaeessabeeasaeeesaeeesaseesnneeanneess 40
4.3.5 CSSM TP _ALACK.cc i e et e e et e e e e e e e e eanre e e e s nraeeeeneeas 41
4.3.6 CSSM TP _DELACK. ... tiii ettt e e e et e e e et e e e s e na e e e eanbe e e e snreeeeenreas 42
R A 010 | 1= SRS 43
4.3.8 CSSM_GEetAPIMEMOr YFUNCHIONS.eiiiieeiie ettt ettt sn e sn e e s 44
e R el @A Y R T 1 =l o) PP URRPN 45
e B (O O | S = = o] P ERP S PUTPN 46
R R OSSO = T = o SRS a7

List of Figures
Figure 1. The Common Data Security Architecture for all platforms...........cocooeiiriieiiieniie e 2

Release 1.2 Common Security Services M anager Pagel
Trust Policy Interface Specification

1. Introduction

1.1 CDSA Overview

The Common Data Security Architecture (CDSA) defines the infrastructure for a comprehensive set of
security services. CDSA is an extensible architecture that provides mechanisms to manage add-in security
modules. These modules use cryptography as a computational base to build security protocols and security
systems. Figure 1 shows the four basic layers of the Common Data Security Architecture: Applications,
System Security Services, the Common Security Services Manager, and Security Add-in Modules. The
Common Security Services Manager (CSSM) is the core of CDSA. It provides away for applications to
access security services directly through the CSSM security API, or to access security services indirectly
vialayered security services and tools implemented over the CSSM API. CSSM manages the add-in
security modules and directs application calls through the CSSM API to the selected add-in module
servicing the request. Add-in modules perform various methods of security services, including:

» Cryptographic Services

* Trust Policy Services

* Certificate Library Services

» Datastorage Library Services

Cryptographic Service Providers (CSPs) are add-in modules that perform cryptographic operations
including encryption, decryption, digital signaturing, key pair generation, random number generation, and
key exchange. Trust Policy (TP) modules implement policies defined by authorities and institutions, such
as VeriSign* (as a certificate authority) or MasterCard* (as an institution). Each Trust Policy module
embodies the semantics of atrust model based on using digital certificates as credentials. Applications
may use a digital certificate as an identity credential and/or an authorization credential. Certificate

Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital
certificates and certificate revocation lists. Data Storage Library (DL) modules provide persistent storage
for certificates and certificate revocation lists.

Release 1.2 Common Security Services M anager Page2
Trust Policy Interface Specification

Sl Applications >

¥tem -~~~ T
Security Layered Services, Middleware,

Services L anguage I nterface-adapter, and Tools

Common CSSM Security API

Security 2§ CsP TP Module | CL Module | DL Module =8 §
Services g § M anager M anager Ve Manager Q3 Qé
Manager S J[_TPr J[_Cor J[C_Dor_]

&;j(aur I ty Data-store
Add-in

Modules

Figure 1. The Common Data Security Architecturefor all platforms.

Applications directly or indirectly select the modules used to provide security services to the application.
Independent software and hardware vendors provide these add-in modules. The functionality of the add-in
module may be extended beyond the services defined by the CSSM API, by exporting additional services
to applications viathe CSSM PassThrough mechanism.

The API calls defined for add-in modules are categorized as service operations, module management
operations, and module-specific operations. Service operations include functions that perform a security
operation such as encrypting data, inserting a certificate revocation list into a data source, or verifying that
acertificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through pass-through functions whose behavior and use is
defined by the add-in module devel oper.

CSSM also provides integrity services and security context management. CSSM applies the integrity
check facility to itself to ensure that the currently-executing instance of CSSM code has not been tampered
with.

Security context management provides secured runtime caching of user-specific state information and
secrets. The manager focuses on caching state information and parameters for performing cryptographic
operations. Examples of secrets that must be cached during application execution include the application’s
private key and its digital certificate.

Release 1.2 Common Security Services M anager Page 3
Trust Policy Interface Specification

In summary, the CSSM provides these services through its API calls:
» certificate-based services and operations

» comprehensive, extensible SPIs for cryptographic service provider modules, Trust Policy
modules, certificate library modules, and data storage modules

» registration and management of available cryptographic service provider modules, Trust Policy
modules, certificate library modules, and data storage modules

» caching of keys and secrets required as part of the runtime context of a user application
» call-back functions for disk, screen, and keyboard 1/0 supported by the operating system
» test-and-check function to ensure CSSM integrity

* management of concurrent security operations

1.2 Trust Policy Overview

Trust Policy modules implement policies defined by authorities and institutions. Policies define the level
of trust required before certain actions can be performed. Three basic action categories exist for all
certificate-based trust domains:

e actions on certificates
e actions on certificate revocation lists

» domain-specific actions (such asissuing a check or writing to afile)

The CSSM Trust Policy API defines the generic operations that each TP module supports. Each module
may choose to implement the required subset of these operations for the policy it serves.

The CSSM API defines a pass-through function, which allows each module to provide additional
functions, along with those defined by the CSSM Trust Policy API. When a TP function determines the
trustworthiness of performing an action, it may invoke Certificate Library functions and Data storage
Library functionsto carry out the mechanics of the approved action. TP modules must be installed and
registered with the CSSM Trust Policy Services Manager. Applications may query the Services Manager
to retrieve properties of the TP module, as defined during installation.

1.2.1 Application Interaction

An application determines the availability of a Trust Policy module by querying the CSSM Registry.
When anew TP isinstalled on a system, it must be registered with CSSM. When a client requests that
CSSM attach to a TP, CSSM returns a TP handle to the application which uniquely identifies the pairing
of the application thread to the TP module instance. The application uses this handle to identify the TP in
future function calls.

CSSM uses the TP’ s function table to pass function calls from an application to a Trust Policy module.
The function table consists of pointers to the subset of trust functions from the CSSM API, which are
supported by the TP. When an application causes CSSM to attach the TP, the Trust Policy registersits
function table with CSSM usingCSSM_TP_Register Services During future function calls from the
application, CSSM uses these function pointers to direct the call appropriately.

The calling application is the responsible for the allocation and de-allocation of all memory that it passes
into or out of the Trust Policy module. The application must register memory allocation and de-allocation
upcalls with CSSM when it requests a TP attach. These upcalls and the handle identifying the

Release 1.2 Common Security Services M anager Page4
Trust Policy Interface Specification

application/TP pairing are passed to the TP when CSSM calls it3P_lInitializefunction. These functions
must be used whenever a Trust Policy allocates or de-allocates memory that belongs to or will belong to
the application.

1.3 CSSM Trust Policy Interface Specification

1.3.1 Intended Audience

This document should be used by Independent Software Vendors (ISVs) or certificate authorities (CAS)
who want to develop their own Trust Policy module. These developers should be highly experienced
software architects, advanced programmers, or sophisticated users, who are experts in the security and
authorization policies of their application area. They also should be familiar with high-end cryptography
and digital certificates. We assume that this audience is familiar with the basic capabilities and features of
the protocols they are considering.

1.3.2 Document Organization

This document is divided into the following sections:
Section 2, Trust Policy Interfacedescribes the functions that a Trust Policy module makes available to
applications viathe CSSM.

Section 3, Trust Policy Structure and M anagementdescribes important considerations in developing a
Trust Policy module. It also gives examples of how several trust policy functions might be implemented.

1.4 References

PKCS* The Public-Key Cryptography StandardsRSA Laboratories, Redwood City, CA:
RSA Data Security, Inc.
X.509 CCITT. Recommendation X.509: The Directory — Authentication Framewor988.

CCITT stands for Comite Consultatif Internationale Telegraphique et Telphonique
(International Telegraph and Telephone Consultative Committee)

SPKI Smple Public Key Infrastructure
SDSI SDS - A Smple Distributed Security InfrastructureR. Rivest and B. Lampson, 1996
CDSA Common Data Security Architecture Specification|ntel Architecture Labs, 1996
CSSM AP CSSM Application Programming Interfacelntel Architecture Labs, 1996
CSSM SPI CSSM Cryptographic Service Provider Interfacé&pecification,
Intel Architecture Labs, 1996
CSSM CLI CSSM Certificate Library Interface Specification,
Intel Architecture Labs, 1996
CSSM DLI CSSM Data storage Library Interface Specification,

Intel Architecture Labs, 1996

CSSM Java* CSSM Java Application Programming Interface Specification,
Intel Architecture Labs, 1996

Release 1.2 Common Security Services M anager Page5
Trust Policy Interface Specification

2. Trust Policy Interface

2.1 Overview

A digital certificate is the binding of some identification to a public key in a particular domain. When a
certificate is issued (created and signed) by the owner and authority of a domain, the binding between key
and identity is validated by the digital signature on the certificate. The issuing authority also associates a
level of trust with the certificate. The actions of the user, whose identity is bound to the certificate, are
constrained by the trust policy governing the certificate’ s usage domain. A digital certificate is intended to
be an unforgeable credential in cyberspace.

The use of digital certificates is the foundation on which the CDSA is designed. The CDSA assumes the
concept of digital certificates in its broadest sense. Applications use the credential for:

e identification
e authentication

e authorization

The applications interpret and manipulate the contents of certificates to achieve these ends, based on the
real-world trust model they chose as their model for trust and security. The primary purpose of a Trust
Policy (TP) module isto answer the question, “Is this certificate trusted for this action?” The CSSM Trust
Policy API determines the generic operations that should be defined for certificate-based trust in every
application domain. The specific semantics of each operation is defined by the :

e application domain

* trust model

* policy statement for a domain
» certificate type

» real-world operation the user is trying to perform within the application domain

The trust model is expressed as an executable policy that is used by all applications that ascribe to that
policy and the trust model it represents. As an infrastructure, CSSM is policy-neutral; it does not
incorporate any single policy. For example, the verification procedure for a credit card certificate should
be defined and implemented by the credit company issuing the certificate. Employee access to alab
housing a critical project should be defined by the company whose intellectual property is at risk. Rather
than defining policies, CSSM provides the infrastructure for installing and managing policy-specific
modules. This ensures complete extensibility of certificate-based trust on every platform hosting CSSM.

Different trust policies define different actions that an application may request. Some of these actions are
common to every trust policy, and are operations on objects all trust models use. The objects common to
all trust models are certificates and certificate revocation lists. The basic operations on these objects are
sign, verify, and revoke.

Based on this analysis, CSSM defines two categories of API calls that should be implemented by TP
modules. The first category allows the TP module to define and expose actions specific to the trust domain
(such as requesting authorization to make a $200 charge on a credit card certificate, and requesting access
to the locked project lab). The second category specifies basic operations (for example, sign, verify, and
revoke) on certificates and certificate revocation lists.

Release 1.2 Common Security Services M anager Page 6
Trust Policy Interface Specification

Application developers and trust domain authorities benefit from the ability to define and implement
policy-based modules. Application developers are freed from the burden of implementing a policy
description and certifying that their implementation conforms. Instead, the application needs only to build
in alist of the authorities and certificate issuersit uses.

Domain authorities also benefit from an infrastructure that supports add-in Trust Policy modules.
Authorities are ensured that applications using their module(s) adhere to the policies of the domain. Also,
dynamic download of trust modules (possibly from remote systems) ensures timely and accurate
propagation of policy changes. Individual functions within the module may combine local and remote
processing. This flexibility allows the module developer to implement policies based on the ability to
communicate with a remote authority system. This also allows the policy implementation to be
decomposed in any convenient distributed manner.

Implementing a Trust Policy module may or may not be tightly coupled with one or more Certificate
Library modules or one or more Data Storage Library modules. The trust policy embodies the semantics of
the domain. The certificate library and the data storage library embody the syntax of a certificate format
and operations on that format. A trust policy can be completely independent of certificate format, or it
may be defined to operate with one or a small number of certificate formats. A trust policy implementation
may invoke a certificate library module and/or a data storage library module to manipulate certificates.

The Trust Policy API defines two categories of operation:
* module installation and management

e trust-based services

2.1.1 Trust Policy Registration and Management

The Trust Policy Module Manager defines API calls for installing and registering TP modules. CSSM
manages a trust policy registry that records each trust policy’s logical hame and the information required
to locate and dynamically initiate the module. An application uses aattach operation to load and initiate
amodule. The module executable may be local or remote.

When a policy module isloaded, it must register its services with the CSSM before an application can use
it. A TP module registers a set of callback functions with the CSSM. There is one callback function for
each CSSM-defined trust policy API call. The module may or may not implement all trust policy calls
defined by CSSM. Non-implemented functions are registered as NULL.

The Trust Policy module may implement additional functions outside of the CSSM-defined API calls.
This set of extended functions is available through a single callback function, which the module registers
with the CSSM trust policy services manager. Applications access these functions through the CSSM
pass-throughfunction. The Trust Policy module must document the features and services these functions
provided. CSSM does not require or enforce the availability of run-time query support for extended
functions.

The Trust Policy Module Manager API allows an application to query the registry of installed Trust Policy
modules to determine their availability. Trust Policy modules may be detached but the application should
not invoke this operation unless all requests to the target module have been completed. Trust Policy
modules may also be de-installed. This operation removes the trust policy’s logical name and its
associated attributes from the CSSM’ s registry. De-install must be performed before a new version of a
Trust Policy moduleisinstalled in the CSSM registry.

Release 1.2 Common Security Services M anager Page7
Trust Policy Interface Specification

2.1.2 Trust Policy Services API

CSSM defines nine API calls that all trust policies should at a minimum, implement. Six functions define
operations on the fundamental CSSM object types of certificate and certificate revocation lists. Two
functions are used by the TP module to extend the semantics of its policy to the application. The
remaining function is used for version checking.

Signing Certificates and Certificate Revocation ListsEvery system should be capable of being a
Certificate Authority (CA), if so authorized. CAs are applications that issue and validate certificates and
certificate revocation lists (CRLS). Issuing certificates and CRLs include initializing their attributes and
digitally signing the result using the private key of the issuing authority. The private key used for signing
is associated with the signer’s certificate. The Trust Policy module must evaluate the trustworthiness of
the signer’ s certificate before performing this operation. Some policies may require that multiple
authorities sign a newly-issued certificate. If the TP trusts the signer’ s certificate, then the TP module may
perform the cryptographic signaturing algorithm by invoking the signing function in a Certificate library
module, or by directly invoking the data signing function in a CSP module. The certificate library
functions that can be used to carry out some of the TP operations are documented @SSV Certificate
Library Interface Specification

Verifying Certificates and Certificate Revocation ListsThe TP module determines the general
trustworthiness of a certificate. Thisisageneral verification of trust in a certificate. The TP modules

must also determine the trustworthiness of a certificate revocation list received from aremote system. The
test focuses on the trustworthiness of the agent who signed the CRL. The TP module may need to perform
operations on the certificate or CRL to determine trustworthiness. If these operations depend on the data
format of the certificate or CRL, the TP module uses the services of a certificate library module to perform
these checks.

Revoking Certificates When revoking a certificate, the identity of the revoking agent is presented in the
form of another certificate. The TP module must determine trustworthiness of the revoking agent’s
certificate to perform revocation. If the requesting agent’s certificate is trustworthy, the TP module carries
out the operation directly by invoking a certificate library module to add a new revocation record to a
CRL, marking the certificate as revoked. The CSSM API also defines areason parameter that is passed to
the TP module. The TP may use this parameter as part of its trust evaluation.

Verify Action. The TP module must determine if the certificate presented is trusted to perform the
domain-specific action defined by the TP module. An action for a TP module might be an employee’s
access to alab housing a critical project. The question of whether to allow the employee into the lab is
asked through this function.

Pass-through Function For operations not defined in the TPI, the pass-through function allows the TP
module to provide support for these services to clients. These private services are identified by operation
identifiers. TP module developers must provide documentation of these services.

Version Checking As part of the attach process, version information is supplied by the client. The TP
must determine if it is compatible to the version the client had requested. If the TP decidesthat it is
incompatible, the CSSM will not complete the attaching of the TP module to the client.

2.1.3 Trust Operations
CSSM_BOOL CSSMTPI TP_CertVerify (} Determines whether the certificate is trustworthy.

Release 1.2 Common Security Services M anager Page8
Trust Policy Interface Specification

CSSM_DATA_PTR CSSMTPI TP_CertSign (} Determines whether the signer’s certificate is
authorized to perform the signing operation. If so, The TP module
carries out the operation. Thescope of a signature may be used to
identify which certificate field should be signed. An example isthe
case of multiple signatures on a certificate. Should signatures be
applied to just the certificate, or to the certificate and all currently-
existing signatures, as a notary public would do.

CSSM_DATA_PTR CSSMTPI TP_CertRevoke () Determines whether the revoker’s certificate is
trusted to perform/sign the revocation. If so, the TP module carries out
the operation by adding a nhew revocation record to the CRL.

CSSM_BOOL CSSMTPI TP_CrlIVerify (} Determines whether the CRL is trusted. This test may
include verifying the correctness of the signature associated with the
CRL, determining whether the CRL has been tampered with, and
determining if the agent who signed the CRL was trusted to do so.

CSSM_DATA_PTR CSSMTPI TP_CrlSign () Determines whether the certificate is trusted to sign
the CRL. If so, the TP module carries out the operation.

CSSM_RETURN CSSMTPI TP_ApplyCrIToDb () Determines whether the memory-resident CRL is
trusted and should be applied to a persistent database, which could
result in designating certificates as revoked.

2.1.4 Extensibility Functions

CSSM_BOOL CSSMTPI TP_VerifyAction (} Determines whether or not the certificate is trusted to
perform a domain-specific action. Certificates can be used to request
authorizations in an application domain.

CSSM_RETURN CSSMTPI TP_PassT hrough (9 Executes TP module custom operations. This
function accepts as input an operation ID and an arbitrary set of input
parameters. The operation ID may specify any type of operation the TP
wishes to export. Such operations may include queries or services
specific to the domain represented by the TP module.

2.1.5 Module Management Functions

CSSM_RETURN CSSMTPI TP_lInitialize (} This function checks whether the version of the
attached TP module is compatible with the input version number and
performs TP module setup activities. It iscalled by the CSSM Core as
part of theCSSM_TP_Attachroutine. It is called immediately after
the TP modul€e’ s function table is registered with CSSM. If the
versions are incompatible, the TP module is detached, a
CSSM_INCOMPATIBLE_VERSION error is set, and aNULL handle
is returned to the calling application.

CSSM_RETURN CSSMTPI TP_Uninitialize (} Thisfunction checks performs TP module cleanup
activities. Itiscalled by the CSSM Core as part of the
CSSM_TP_Detachroutine. It is called immediately prior to the detach
of the TP module.

Release 1.2 Common Security Services M anager Page9
Trust Policy Interface Specification

2.2 Data Structures

t ypedef ui nt32 CSSM TP_HANDLE /* Trust Policy Handl e */
t ypedef uint32 CSSM TP_ACTI CN
tydef ef CSSMAPI CSSMIPI

2.2.1 CSSM_DATA

The CSSM_DATA structure associates a length, in bytes, with an arbitrary block of contiguous memory.
This memory must be allocated and freed using the memory management routines provided by the calling
application via CSSM.

typedef struct cssmdata {
ui nt 32 Lengt h;
ui nt 8* Dat a;
} CSSM DATA, *CSSM DATA PTR
Definition:
Length- The length, in bytes, of the memory block pointed to bpata.

Data - A pointer to a contiguous block of memory.

2.2.2 CSSM_OID
This structure stores object identifier for describing the data.

typedef CSSM DATA CSSM A D, *CSSM A D PTR

2.2.3 CSSM_FIELD
This structure contains the tag/data pair for asingle field of a certificate or CRL.

typedef struct cssmfield {
CSSM A D Fi el dQ d;
CSSM DATA Fi el dVal ue;
} CSSM FI ELD, *CSSM FI ELD PTR
Definition:
FieldOid- The object identifier which uniquely identifies this certificate or CRL field.

Fieldvalue- The data contained in this certificate or CRL field.

2.2.4 CSSM_REVOKE_REASON
This structure represents the reason a certificate is being revoked.

Release 1.2 Common Security Services M anager Page 10
Trust Policy Interface Specification

t ypedef enum cssmrevoke reason {
CSSM _REVCKE_QUSTQM
CSSM REVOKE_UNSPEC! FI G,
CSSM REVCKE_KEYOCOMPRCM SE,
CSSM REVCKE._CACOVPROM SE,
CSSM REVCKE_AFFI LI ATI ONCHANGED,
CSSM REVOKE. SUPERCEDED,
CSSM REVCKE_CESSATI ONOFCPERATI ON,
CSSM REVOKE_CERTI FI CATEHCLD,
CSSM REVOKE_CERTI FI CATEHCOLDREL EASE,
CSSM REVOKE_REMOVEFROVERL

} CSSM REVCKE REASON

Release 1.2 Common Security Services M anager Page 11
Trust Policy Interface Specification

2.3 Trust Policy Operations

2.3.1 TP_CertVerify

CSSM_BOOL CSSMTPI TP_CertVerify (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function determines whether the certificate is trusted.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the subject certificate.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be verified.
A null input verifies a default set of fields in the certificate.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the certificate can be trusted. When CSSM_FALSE
is returned, either the certificate cannot be trusted or an error has occurred. Use CSSM_ GetError
to obtain the error code.

Release 1.2 Common Security Services M anager Page 12
Trust Policy Interface Specification

Error Codes
Vaue Description
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_NOT_SIGNER Signer certificate is not signer of subject
CSSM_TP_NOT_TRUSTED Signature can’t be trusted
CSSM_TP_CERT _VERIFY_FAIL Unable to verify certificate
CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also

CSSM_TP_CertSign, CSSM_CL_CertVerify

Release 1.2 Common Security Services M anager Page 13
Trust Policy Interface Specification

2.3.2 TP_CertSign

CSSM_DATA _PTR CSSMTPI TP_CertSign (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

The TP module decides first whether the signer certificate is trusted to sign the subject certificate.
Once the trust is established, the TP signs the certificate when given the signer’s certificate and
the scope of the signing process.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the subject certificate.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to use to sign the subject
certificate.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be signed. A NULL
input signs a default set of fields in the certificate.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Release 1.2

Common Security Services M anager
Trust Policy Interface Specification

Page 14

Error Codes
Vaue Description
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_CERTIFICATE_CANT_OPERATE Signer certificate can’t sign subject
CSSM_TP_MEMORY_ERROR Error in allocating memory
CSSM_TP_CERT_SIGN_FAIL Unable to sign certificate
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC _HANDLE Invalid handle

CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also

CSSM_TP_CertVerify, CSSM_CL_CertSign

Release 1.2 Common Security Services M anager Page 15
Trust Policy Interface Specification

2.3.3 TP_CertRevoke

CSSM_DATA _PTR CSSMTPI TP_CertRevoke (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR OIldCrl,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR RevokerCert,
CSSM_REVOKE_REASON Reason)

The TP module determines whether the revoking certificate can revoke the subject certificate.
Oncethe trust is established, the TP revokes the subject certificate by adding it to the certificate
revocation list.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

OIdCrI (input)
A pointer to the CSSM_DATA structure containing an existing certificate revocation list. If this
input isNULL, anew list is created.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the subject certificate.

Revoker Cert (input)
A pointer to the CSSM_DATA structure containing the certificate under whose authority the
subject certificate is revoked.

Reason (input)
The reason for revoking the subject certificate.

Return Value
A pointer to the CSSM_DATA structure containing the updated certificate revocation list. If the
pointer isNULL, an error has occurred. Use CSSM_ GetError to obtain the error code.

Release 1.2

Common Security Services M anager

Trust Policy Interface Specification

Error Codes

Value

Description

CSSM_TP_INVALID_CRL
CSSM_TP_INVALID_CERTIFICATE

CSSM_TP_CERTIFICATE_CANT_OPERATE

CSSM_TP_MEMORY_ERROR
CSSM_TP_CERT_REVOKE_FAIL
CSSM_TP_INVALID_TP_HANDLE
CSSM_TP_INVALID_CL_HANDLE
CSSM_TP_INVALID_DL_HANDLE
CSSM_TP_INVALID_DB_HANDLE
CSSM_TP_INVALID_CC_HANDLE

CSSM_FUNCTION_NOT_IMPLEMENTED
See Also

CSSM_CL_CrlAddCert

Invalid CRL

Invalid certificate

Revoker certificate can’t revoke subject
Error in allocating memory
Unable to revoke certificate
Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Function not implemented

Page 16

Release 1.2 Common Security Services M anager Page 17
Trust Policy Interface Specification

2.3.4 TP_CrlVerify

CSSM_BOOL CSSMTPI TP_CrlIVerify (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

The TP modul e determines whether the certificate revocation list is trusted.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the certificate revocation list.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the certificate
revocation list.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be verified. A null input
verifies adefault set of fieldsin the certificate revocation list.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
A CSSM_TRUE return value means the certificate revocation list can be trusted. If
CSSM_FALSE isreturned, an error has occurred. Use CSSM _GetError to obtain the error code.

Release 1.2 Common Security Services M anager Page 18
Trust Policy Interface Specification

Error Codes
Vaue Description
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_NOT_SIGNER Signer certificate is not signer of CRL
CSSM_TP_NOT_TRUSTED Certificate revocation list can’t be trusted
CSSM_TP_CRL_VERIFY_FAIL Unable to verify certificate
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC _HANDLE Invalid handle

CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also
CSSM_CL_CrlVerify

Release 1.2 Common Security Services M anager Page 19
Trust Policy Interface Specification

2.3.5 TP_CrlSign

CSSM_DATA_PTR CSSMTPI TP_CrlSign (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

The TP module first decides whether the signer certificate is trusted to sign the subject certificate
revocation list. Once the trust is established, the TP signs the certificate revocation list.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the certificate revocation list.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to use to sign the certificate
revocation list.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be signed. A NULL
input signs a default set of fields in the certificate revocation list.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate revocation list. If the
pointer isNULL, an error has occurred. Use CSSM_ GetError to obtain the error code.

Release 1.2 Common Security Services M anager Page 20
Trust Policy Interface Specification

Error Codes
Value

Description

CSSM_TP_INVALID_CERTIFICATE
CSSM_TP_CERTIFICATE_CANT _OPERATE
CSSM_TP_MEMORY_ERROR
CSSM_TP_CRL_SIGN_FAIL
CSSM_TP_INVALID_TP_HANDLE
CSSM_TP_INVALID_CL_HANDLE
CSSM_TP_INVALID_DL_HANDLE
CSSM_TP_INVALID_DB_HANDLE
CSSM_TP_INVALID_CC_HANDLE
CSSM_FUNCTION_NOT_IMPLEMENTED

See Also
CSSM_CL_CrlSign

Invalid certificate

Signer certificate can’t sign certificate revocation list
Error in allocating memory

Unable to sign certificate revocation list

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Function not implemented

Release 1.2 Common Security Services M anager Page21
Trust Policy Interface Specification

2.3.6 TP_ApplyCrlToDb

CSSM_RETURN CSSMTPI TP_ApplyCriToDb (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR Crl)

The TP module first determines whether the memory-resident CRL is trusted, and if it should be
applied to a persistent database. Once the trust is established, the TP updates the persistent
storage to reflect entries in the certificate revocation list. This results in designating persistent
certificates as revoked.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

Crl (input)
A pointer to the CSSM_DATA structure containing the certificate revocation list.

Return Value
A CSSM_TRUE return value means the certificate revocation list has been used to update the
revocation status of certificates in the specified database. If CSSM_FAL SE is returned, an error
has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_TP_INVALID_CRL Invalid certificate revocation list
CSSM_TP_NOT_TRUSTED Certificate revocation list can’t be trusted
CSSM_TP_APPLY CRL_TO DB _FAIL Unable to apply certificate revocation list on database
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also

CSSM_CL_CrlGetFirstltem, CSSM_CL_CrlGetNextltem, CSSM_DL_CertRevoke

Release 1.2 Common Security Services M anager Page 22
Trust Policy Interface Specification

2.4 Extensibility Functions

2.4.1 TP_VerifyAction

CSSM_BOOL CSSMTPI TP_VerifyAction (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_TP_ACTION Action,
const CSSM_DATA_PTR Data,
const CSSM_DATA_PTR Cert)

The TP module determines whether the given certificate is trusted to perform the module-specific
action.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

Action (input)
An action to be performed under the authority of the input certificate.

Data (input)
A pointer to the CSSM_DATA structure containing the module-specific data required to
authorize or to perform the requested action.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate.

Return Value
A CSSM_TRUE return value means the certificate can be trusted. If CSSM_FALSE is returned,
an error has occurred. Use CSSM_ GetError to obtain the error code.

Release 1.2

Common Security Services M anager Page 23
Trust Policy Interface Specification

Error Codes
Vaue Description
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_INVALID_ACTION Invalid action
CSSM_TP_NOT_TRUSTED Certificate not trusted for action
CSSM_TP_VERIFY_ACTION_FAIL Unable to determine trust for action

CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

Release 1.2 Common Security Services M anager Page 24
Trust Policy Interface Specification

2.42 TP_PassThrough

CSSM_DATA_PTR CSSMTPI TP_PassThrough (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughld,
const CSSM_DATA_PTR InputParams)

The TP module allows clients to call Trust Policy module-specific operations that have been
exported. Such operations may include queries or services specific to the domain represented by
the TP module.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

PassThroughld (input)
Anidentifier assigned by the TP module to indicate the exported function to perform.

InputParams (input)
A pointer to the CSSM_DATA structure containing parameters to be interpreted in a function-
specific manner by the TP module.

Return Value
A pointer to the CSSM_DATA structure containing the output from the pass-through function.
The output data must be interpreted by the calling application based on externally-available
information. If the pointer is NULL, an error has occurred.

Release 1.2 Common Security Services M anager
Trust Policy Interface Specification

Page 25

Error Codes
Vaue Description
CSSM_TP_INVALID_TP HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle

CSSM_TP_INVALID_DATA_POINTER
CSSM_TP_INVALID_ID
CSSM_TP_MEMORY_ERROR
CSSM_TP_PASS THROUGH_FAIL
CSSM_FUNCTION_NOT_IMPLEMENTED

Invalid pointer for input data
Invalid pass through 1D

Error in allocating memory
Unable to perform pass-through
Function not implemented

Release 1.2 Common Security Services M anager Page 26
Trust Policy Interface Specification

2.5 Module Management Functions

2.5.1 TP_lInitialize

CSSM_RETURN CSSMTPI TP_Initialize (uint32
VerMajor,
uint32 VerMinor)

This function checks whether the current version of the TP module is compatible with the input
version and performs any module-specific setup activities. Memory management upcalls are also
passed to the TP through this call.

Parameters
VerMajor (input)
The major version number of the TP module expected by the calling application.

VerMinor (input)
The minor version number of the TP module expected by the calling application.

Return Value
A CSSM_OK return value signifies that the current version of the TP module is compatible with
the input version numbers and all setup operations were successfully performed. When
CSSM_FAIL isreturned, either the current TP module is incompatible with the requested TP
module version or an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Vaue Description

CSSM_TP_INITIALIZE _FAIL Unable to perform module initialization
See Also

TP_Uninitialize

Release 1.2 Common Security Services M anager Page 27
Trust Policy Interface Specification

2.5.2 TP_Uninitialize

CSSM_RETURN CSSMTPI TP_Uninitialize (void)
This function performs any module-specific cleanup activities.

Parameters
None

Return Value
A CSSM_OK return value signifies that all cleanup operations were successfully performed.
When CSSM_FAIL isreturned, an error has occurred. Use CSSM _GetError to obtain the error

code.
Error Codes
Vaue Description
CSSM_TP_UNINITIALIZE_FAIL Unable to perform module cleanup
See Also

TP _Initialize

Release 1.2 Common Security Services M anager Page 28
Trust Policy Interface Specification

3. Trust Policy Structure and Management

3.1 Introduction

This section clarifies key aspects of the structure and management of Trust Policy modules. It describes
the composition of a TP module, installation of a TP module, the expected behavior of a TP on attach, and
basic services expected of TP functions. This section also includes example code fragments for TP
functions.

3.2 Trust Policy Module Composition

A Trust Policy module is a dynamically-linkable library, composed of functions that implement some or
all of the CSSM TPI described in Section 2. When the TP module is loaded, it is responsible for
registering a function table with CSSM, accepting the memory management upcalls, and performing any
modul e-specific setup. During TP unload, it is responsible for any cleanup the module requires. The
remaining functions consist of some subset of the TPI determined by the TP devel oper.

The Trust Policy module composition can be broadly classified into the following categories:
- Registration with CSSM
Memory Management
Trust/Policy on certificates
Trust/Policy on CRL
Trust/Policy on actions
PassT hrough Operation Support

3.3 Trust Policy Module Installation

Before an application can use a Trust Policy module , the module’ s name, location, and module
characteristics must be registered with CSSM by an installation application. The name of a Trust Policy
module is both alogical name and a globally-unique identifier (GUID). The logical nameis areadable
string chosen by the Trust Policy developer to describe the TP module. The GUID is a structure used to
differentiate between library modulesin the CSSM registry. GUIDs are discussed in more detail below.
The location of the TP module is required on installation so that CSSM can locate the module when an
application requests an attach. The module characteristics are registered with CSSM at install time so
that an application can query for TP module availability and features.

3.3.1 Global Unique Identifiers (GUIDs)

Each Trust Policy module must have a globally-unique identifier (GUID) which is used by CSSM,
applications, and layered services to uniquely identify a TP. The TP GUID is used by the CSSM registry
to expose add-in modules to applications. The TP module uses its GUID to identify itself when it sets an
error.

A GUID is defined as:
typedef struct cssmaguid {
ui nt 32 Dat al;
ui nt 16 Dat a2;
ui nt 16 Dat a3;
ui nt 8 Data4[8] ;
} CSSM GU D, *CSSM QU D PTR,

Release 1.2 Common Security Services M anager Page 29
Trust Policy Interface Specification

GUID generators are publicly available for Windows* 95, Windows NT*, and on many UNIX* platforms.

3.3.2 Module characteristics

Version information must be supplied to the CSSM during the installation of the TP module.
Applications use the information to determine the compatibility of the installed TP with its required TP.
If the compatible versions are unknown to the application, it can pass the version number that it
understands to the TP at attach time. At that time, the TP checks for compatibility and either attaches or
fails accordingly.

3.4 Attaching a Trust Policy Module

Before an application can use the functions of a specific TP, it must attach the TP to CSSM using
CSSM_TP_Attach On attach, the Trust Policy module use<CSSM_TP_Register Servicesprovided by the
CSSM to register its function table. CSSM uses the TP modul €' s function table to direct calls from the
application to the correct function in the TP module. During the attach process, the TP"8P_Initialize
function is called. At thistime version compatibility is confirmed and a table of memory function upcalls
is passed to the TP. The TP module uses the memory management upcalls to allocate any memory which
will be returned to the calling application, and to free any memory which it received from the calling
application.

When CSSM attaches to or detaches from a Trust Policy module, it initiates a function in the TP that
performs the necessary setup and cleanup operations. The attach and detach functions vary depending on
the target operating system for the Trust Policy module. For example, DIIMain would be used to
implement these functions in a TP targeted to Windows NT; _init and _fini areused in a TP targeted to
SunOS*.

3.4.1 The TP module function table

The function table for a Trust Policy module contains pointers to the TP modul€’ s implementation of the
functions specified in the Trust Policy Interface. This structure is specified as part of the CSSM header
file, cssm.h, and contains all the prototypes of al the functions supported by the Trust Policy Interface. If
a TP does not support some function in the TPI, the pointer to that function is set to NULL. See Section
4.2.5 for adefinition of the structure.

3.4.2 Memory management upcalls

The calling application is responsible for all memory allocation and de-allocation for data passed between
the application and the TP module via CSSM. The application provides memory management upcalls,
which the TP module uses to return data to the application.

Memory management upcalls are pointers to the memory management functions used by the calling
application. They are provided to the TP module via CSSM as a structure of function pointers. The
functions are the calling application’s equivalent of malloc, calloc, free and re-alloc and behave the same
as those functions. The function parameters consist of the function’s normal parameters. The function
return values are interpreted in the standard manner. The TP module is responsible for making the
memory management functions available to its internal functions.

3.5 Trust Policy Basic Services

Release 1.2 Common Security Services M anager Page 30
Trust Policy Interface Specification

3.5.1 Function implementation

A Trust Policy developer can implement some or all of the functions specified in the TPI. Section 2
describes the behavior of each function.

A Trust Policy developer can leverage the services of another TP, CL or DL module to implement certain
functions. To do this, the TP attaches to another module using the appropriat€SSM_Attachcalls.
Subsequent function calls to the first TP call the corresponding function in the other add-ins for some or
all of itsimplementation.

3.5.2 Error handling

If an error occurred, the function in the TP module callSCSSM_SetError. This function takes the
modul€e’ s GUID and an error number as inputs. The module’'s GUID is used to identify the error’s
location. The error number is used to describe the error.

The error number set by the TP module fallsinto one of two ranges. The first range of numbersis pre-
defined by CSSM. These are errors common to all TP modulesimplementing a given function. They are
described in this document as part of the function definitions in Sections 2.3t0 2.5. They are defined in
the header file cssmerr.h, which is distributed as part of CSSM. The second range of error numbers
defines module-specific error codes. These module-specific error codes are in the range of
CSSM_TP_PRIVATE_ERROR to CSSM_TP_END_ERROR. CSSM_TP_PRIVATE_ERROR and
CSSM_TP_END_ERROR are also defined in the header file cssmerr.h. The TP module developer is
responsible for making the definitions and interpretation of their modul e-specific error codes available to
applications.

If no error occurs, but the appropriate return value from afunction is CSSM_FAL SE, the function calls
CSSM_ClearErrorbefore returning. The application is responsible for checking whether an error has
occurred by callingCSSM_GetError. If the function in the TP module callSCSSM_ClearError, the
calling application receives CSSM_OK response fron€SSM_GetError, indicating no error has occurred.

Release 1.2 Common Security Services M anager Page 31
Trust Policy Interface Specification

3.6 Attach/Detach Example

The Trust Policy module performs certain operations when CSSM attaches to or detaches from it. TP
modul es that have been developed for Windows-based systems use the DIIMain routine to perform those
operations, as shown in the following example.

3.6.1 DlIMain

#i ncl ude “cssmh”

CSSM@JDtp_guid =

{ O0x83bafc39, Oxfacl, Ox1lcf, { O0x81, 0x72, 0x0, Oxaa, Ox0, Oxbl, 0x99, Oxdd }
b

BOOL WNAPI D | Mai n (HANDLE hl nst ance, DWORD dwReason, LPVA D | pReserved)

{
swi t ch (dwReason)

{
case DLL_PROCESS ATTACH

{
CSSM SPI _TP_FUNCS_PTR Functi onTabl €;

/* Allocate TP menory for pointers */
Functi onTabl e = (CSSM SPI _TP_FUNCS PTR) nal | oc (si zeof
(CSSM SPI_TP_FUNCS)) ;

/* Initialize TP call back functions */
Functi onTabl e->CertVerify = CertVerify;
Functi onTabl e->Cert Sign = CertSign;

Funct i onTabl e->Cert Revoke = Cert Revoke;
FunctionTabl e->Cr | Verify = Ol Verify;
FunctionTabl e->C1Sign = Ol Sign;

Funct i onTabl e- >Appl y& | ToDb = Appl yO | ToDb;
Functi onTabl e->Veri fyActi on = VerifyAction;
Funct i onTabl e- >PassThrough = NULL;

FunctionTable->Initialize = TP_Initialize;
FunctionTabl e->Uninitialize = TP_Uninitialize;
/* Call CSSM TP_RegisterServices to register the FunctionTabl e */
/* with CSSMand to receive the application’s nenory upcall table */
if (CSSM TP_RegisterServices (& p_guid, FunctionTabl e,
&Upcal | MenfFunction) ! = CSSM (K)
return FALSE;

br eak;
}
case DLL_THREAD ATTACH
br eak;

case DLL_THREAD DETACH
br eak;

case DLL_PROCESS DETACH
if (CSSM TP_DeregisterServices (& p_guid) != CSSM (K)
return FALSE;
br eak;

return TRUE
}

Release 1.2

Common Security Services M anager
Trust Policy Interface Specification

Page 32

3.7 Trust Policy Operations Example
This section contains an example of an implementation of afunction in the Trust Policy Module.

3.7.1 ApplyCriToDb

E I I S S I R I S S T T

Nare: Appl yOr |l ToDb

Descri pti on:
This function applies a CRL to the persistent certificate storage.

Par anet er s:

TPHandl e (input) - Handle to the TP add-i n.
CLHandl e (input) - Handle to the CL add-in.
DLHandl e (input) - Handle to the DL add-in.
DBHandl e (input) - Handle to the database.
Ol (input) - Pointer to the CR..

Return val ue:
CSSM FAIL - Unabl e to update permanent store.
CSSM (K - Permanent store has been updated to indicate revoked entries.

CSSM RETURN CSSMIPI Appl yQr | ToDb (CSSM TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,
CSSM DL_HANDLE DLHand! e,
CSSM DB HANDLE DBHandl e,
const CSSM DATA PTR O'l)

CSSM DATA PTR Cert = NULL;

CSSM HANDLE Resul t sHandl €;

ui nt 32 Nunber O Mat chedCert s;

CSSM DB_CONJUNCTI VE Conj uncti ve = CSSM NONE;

/* CGet the first certificate in the database */
if ((Cert = CSSMDL_CertGetFirst (DLHandl e, DBHandl e, NULL, O,

Conj unctive, &ResultsHandl e, &N\unber C Mat chedCerts)) !'= NULL) {

/* Check to see if this certificate is present in the CRL */
if (CSSM O _IsCertInOGl (CHandle, Cert, O1l) == CSSM TRUE)

/* Revoke certificate when present in the CRL */

if (CSSM DL_Cert Revoke (DLHandl e, DBHandl e, Cert) != CSSM K) {
CSSM DL_Cert Abort Query (DLHandl e, DBHandl e, Resul t sHandl e);
return (CSSM FAIL);

}

/* Cycle through all the certificates in the database */
while ((Cert = CSSM DL_Cert Get Next (DLHandl e, DBHandl e,

Resul tsHandl e)) !'= NULL) {

/* For each entry check to see if it is present in the CRL */
if (CSSM O _IsCertInCl (CHandle, Cert, Ol) == CSSM TRUE)
/* Revoke certificate when present in the CRL */
if (CSSM DL_Cert Revoke (DLHandl e, DBHandl e, Cert) != CSSM (K)

CSSM DL_Cert Abort Query (DLHandl e, DBHandl e,
Resul t sHandl e) ;
return (CSSM FAIL);

Release 1.2 Common Security Services M anager Page 33
Trust Policy Interface Specification

/* Abort query when there are no nore entries */
CSSM DL_Cert Abort Query (DLHandl e, DBHandl e, Resul t sHandl e) ;
return (CSSM X);
} else
return (CSSM FAIL);

Release 1.2 Common Security Services M anager Page 34
Trust Policy Interface Specification

4. Appendix A, Relevant CSSM API functions

4.1 Overview

There are several API functions particularly relevant to Trust Policy developers, because they are used by
either the application to access the TP module or by the TP module to access CSSM services, such as the
CSSM registry or the error-handling routines. They are included in this appendix for quick reference.
For additional information, see theCSSM Application Programming Interface

4.2 Data Structures

4.2.1 CSSM_DATA

The CSSM_DATA structure associates a length, in bytes, with an arbitrary block of contiguous memory.
This memory must be allocated and freed using the memory management routines provided by the calling
application, via CSSM.

typedef struct cssmdata {
ui nt 32 Lengt h;
ui nt 8* Dat a;

} CSSM DATA, *CSSM DATA PTR

Definition:
Length- The length, in bytes, of the memory block pointed to bpata.

Data - A pointer to a contiguous block of memory.

422 CSSM_GUID
A GUID is aglobally-unique identifier used to uniquely identify a TP.

typedef struct cssmaguid {
ui nt 32 Dat al;
ui nt 16 Dat a2;
ui nt 16 Dat a3;
ui nt 8 Data4[8] ;
} CSSM GU D, *CSSM QU D PTR,

4.2.3 CSSM_TPINFO
Trust Policies have certain common characteristics, which are made available to applications. These

characteristics are given by the CSSM_TPINFO structure, which is registered with CSSM during
installation for an application’s query.

typedef struct cssmtpi nfo{
ui nt 32 Ver Myj or;
ui nt 32 Ver M nor;
}CSSM TPI NFQ, * CSSM TPI NFO_PTR

Definition:
VerMajor - The major version number of the add-in module.

VerMinor - The minor version number of the add-in module.

Release 1.2 Common Security Services M anager Page 35
Trust Policy Interface Specification

4.2.4 CSSM_SPI_MEMORY_FUNC

This data structure contains function pointers to the calling application’s memory management routines.
The TP module uses these routines to allocate and free any memory returned to the client.

typedef struct cssmspi_nenory_func {

void *(*nal | oc_func) (CSSM HANDLE Addl nHandl e, uint 32 size);

void (*free_func) (CSSM HANDLE Addl nHandl e, voi d *nenbl ock) ;

void *(*realloc_func) (CSSM HANDLE Addl nHandl e, voi d *nenbl ock, uint32
si ze);

void *(*cal l oc_func) (CSSM HANDLE Addl nHandl e, uint32 num uint32 size);
}CSSM SPI_ MEMORY_FUNC, * CSSM SPI_ MEMCRY_FUNC_PTR,

Definition:
malloc_func- pointer to function that returns a void pointer to the allocated memory block of at least
size bytes.

free_func- pointer to function that deallocates a previously-allocated memory blocknémblock).

realloc_func- pointer to function that returns a void pointer to the reallocated memory
block(memblock) of at least size bytes.

calloc_func- pointer to afunction that returns avoid pointer to an array ohum elements of length
sizeinitialized to zero.

4.2.5 CSSM_SPI_TP_FUNCS

This data structure contains function pointers to the routines that a TP module can support. The function
prototypes are provided for compiler checking when assigning function pointers to the structure. This
structure is used during the registration of the TP’ s services. For a description of each function, refer to
section 2.3, Trust Policy Operations.

typedef struct cssmspi_tp_funcs {
CSSM BOOL (CSSMAPI *Cert Verify) (CSSM TP_HANDLE TPHand! e,
CSSM CL_HANDLE CLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB_HANDLE DBHandl e,
CSSM CC_HANDLE CCHandl e,
const CSSM DATA PTR Subj ect Cert,
const CSSM DATA PTR Si gner Cert,
const CSSM FI ELD PTR Veri f yScope,
ui nt 32 ScopeSi ze);
CSSM DATA PTR (CSSMAPI *Cert Sign) (CSSM TP_HANDLE TPHandl e,
CSSM CL_HANDLE CLHand! e,
CSSM DL_HANDLE DLHandl e,
CSSM DB_HANDLE DBHand! e,
CSSM OC_HANDLE CCHandl e,
const CSSM DATA PTR Subj ect Cert,
const CSSM DATA PTR Signer Cert,
CSSM FI ELD PTR Si gnScope,
ui nt 32 ScopeSi ze) ;
CSSM DATA PTR (CSSMAPI *Cert Revoke) (CSSM TP_HANDLE TPHandl e,
CSSM CL_HANDLE CLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB_HANDLE DBHandl e,
CSSM CC_HANDLE CCHandl e,
const CSSM DATA PTR A dOr I,

Release 1.2 Common Security Services M anager Page 36
Trust Policy Interface Specification

const CSSM DATA PTR Subj ect Cert,
const CSSM DATA PTR Revoker Cert,
CSSM REVCKE._REASON Reason) ;
CSSM BOOL (CSSMAPI *Crl Verify) (CSSM TP_HANDLE TPHandl e,
CSSM OL_HANDLE QLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB HANDLE DBHandl e,
CSSM CC HANDLE CCHandl e,
const CSSM DATA PTR Subj ectrl,
const CSSM DATA PTR Si gner Cert,
const CSSM FI ELD PTR Ver i fyScope
ui nt 32 ScopeSi ze);
CSSM DATA PTR (CSSVAPI *Orl Sign) (CSSM TP_HANDLE TPHandl e,
CSSM CL_HANDLE COLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB_HANDLE DBHandl e,
CSSM CC HANDLE OCHandl e,
const CSSM DATA PTR SubjectCrl,
const CSSM DATA PTR Si gner Cert,
const CSSM FI ELD PTR Si gnScope,
ui nt 32 ScopeSi ze);
CSSM RETURN (CSSVAPI * Appl yOrl ToDb) (CSSM TP_HANDLE TPHandl e,
CSSM CL_HANDLE CLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB_HANDLE DBHandl e,
const CSSM DATA PTR O'l);
CSSM RETURN (CSSMAPI *Veri f yAction) (CSSM TP_HANDLE TPHand! e,
CSSM OL_HANDLE QLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB HANDLE DBHandl e,
CSSM CC HANDLE CCHandl e,
CSSM TP_ACTI ON Acti on,
const CSSM DATA PTR Dat a,
const (BSM DATA PTR Cert);
CSSM DATA PTR (CSSMAPI *PassThrough) (CSSM TP_HANDLE TPHandl e,
CSSM OL_HANDLE QLHandl e,
CSSM DL_HANDLE DLHandl e,
CSSM DB_HANDLE DBHandl e,
CSSM CC HANDLE CCHandl e,
ui nt 32 PassThroughl d,
const CSSM DATA PTR | nput Par ans) ;

CSSM RETURN (CSSVAPI *Initialize) (uint32 Ver Myj or,
ui nt 32
Ver M nor) ;
CSSM RETURN (CSSVAPI *Uninitialize) (void);
} CSSM SPI_TP_FUNCS, *CSSM SPI_TP_FUNCS PTR

Release 1.2 Common Security Services M anager Page 37
Trust Policy Interface Specification

4.3 Function Definitions

This section describes the API provided by the CSSM for TP devel opers to communicate with the CSSM
and other add-in modules. For a complete description of the CSSM API refer to tHeSSM Application
Programming Interface

4.3.1 CSSM_TP_Install

CSSM_RETURN CSSMAPI CSSM_TP_Install (const char * TPName,
const char * TPFileName,
const char * TPPathName,
const CSSM_GUID_PTR GUID,
const CSSM_TPINFO_PTR TPInfo,
const void * Reserved],
const CSSM_DATA_PTR Reserved?)

This function updates the CSSM -persistent internal information about the TP module.

Parameters
TPName (input)
The name of the Trust Policy module.

TPFileName (input)
The name of the file that implements the Trust Policy.

TPPathName (input)
The path to the file that implements the Trust Policy.

GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

TPInfo (input)
A pointer to the CSSM_TPINFO structure containing information about the TP module.

Reservedl (input)
Reserve data for the function.

Reserved?2 (input)
Reserve data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in the registry
See Also

CSSM_TP_Uninstall

Release 1.2 Common Security Services M anager Page 38
Trust Policy Interface Specification

4.3.2 CSSM_TP_Uninstall

CSSM_BOOL CSSMAPI CSSM_TP_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the persistent CSSM internal information about the TP module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

Return Value
A CSSM_OK return value signifies that information has been deleted. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_INVALID _GUID Certificate library was not installed
CSSM_REGISTRY_ERROR Unable to delete information

See Also

CSSM_TP_Ingtall

Release 1.2 Common Security Services M anager Page 39
Trust Policy Interface Specification

4.3.3 CSSM_TP_RegisterServices

CSSM_RETURN CSSMAPI CSSM_TP_Register Services

(const CSSM_GUID_PTR GUID,
const CSSM_SPI_ TP_FUNCS _PTR FunctionTable,
CSSM_SPI_MEMORY_FUNCS _PTR UpcallTable,
void * Reserved)

A Trust Policy module uses this function to register its function table with CSSM and to receive a

memory management upcall table from CSSM.

Parameters
GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the TP

module.

FunctionTable (input)

A structure containing pointers to the Trust Policy Interface functions implemented by the TP

module.

UpcallTable (output)

A structure containing pointers to the memory routines used by the TP module to allocate and
free memory returning to the calling application.

Reserved (input)
A reserved input.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use

CSSM _GetError to obtain the error code.

Error Codes
Value

Description

CSSM_INVALID_POINTER
CSSM_INVALID_FUNCTION_TABLE
CSSM_MEMORY _ERROR
CSSM_REGISTRY_ERROR

See Also
CSSM_TP_DeregisterServices

Invalid pointer

Invalid function table
Memory error

Unable to register services

Release 1.2 Common Security Services M anager Page 40
Trust Policy Interface Specification

4.3.4 CSSM_TP_DeregisterServices

CSSM_RETURN CSSMAPI CSSM_TP_Deregister Services (const CSSM_GUID_PTR GUID)

A Trust Policy module uses this function to deregister its services from the CSSM.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer GUID
CSSM_MEMORY_ERROR Unable to deregister services
See Also

CSSM_TP_RegisterServices

Release 1.2 Common Security Services M anager Page 41
Trust Policy Interface Specification

435 CSSM_TP_Attach

CSSM_TP_HANDLE CSSMAPI CSSM_TP_Attach (const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const void * Reserved)

This function attaches the TP module and verifies that the version of the module expected by the
application is compatible with the version on the system.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

CheckCompatibleVer Major(input)
The major version number of the TP module that the application is compatible with.

CheckCompatibleVer Minor(input)
The minor version number of the TP module that the application is compatible with.

Reserved (input)
A reserved input.

Return Value
A handleisreturned for the TP module. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_EXPIRE Add-in has expired
CSSM_ATTACH_FAIL Unable to load TP module

See Also

CSSM_TP_Detach

Release 1.2 Common Security Services M anager Page 42
Trust Policy Interface Specification

4.3.6 CSSM_TP_Detach

CSSM_RETURN CSSMAPI CSSM_TP_Detach (CSSM_TP_HANDLE TPHandl€)
This function detaches the application from the TP module.

Parameters
TPHandle (input)
The handle that describes the TP module.

Return Value
A CSSM_TRUE return value means the application has been detached from the TP module. If
CSSM_FALSE isreturned, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID ADDIN_HANDLE Invalid TP handle
See Also

CSSM_TP_Attach

Release 1.2 Common Security Services M anager
Trust Policy Interface Specification

Page43

4.3.7 CSSM_Free

void CSSMAPI CSSM_Free (void *MemPtr, CSSM_HANDLE AddinHandle)
This function frees the memory allocated by add-in.

Parameters
MemPtr (input)
A pointer to the memory to be freed.

AddInHandle (input)
The handle to add-in module that needs to free memory

Return Value
None

Error Codes
None

Release 1.2 Common Security Services M anager Page 44
Trust Policy Interface Specification

4.3.8 CSSM_GetAPIMemoryFunctions

CSSM_API_MEMORY_FUNCS_PTR CSSMAPI CSSM_GetAPIMemoryFunctions
(CSSM_HANDLE AddinHandle)

This function retrieves the application’s memory function table associated with the add-in
module.

Parameters
AddInHandle (input)
The handle to add-in module that is associated to memory function table.

Return Value
Non NULL if the function was successful. NULL if an error condition occurred. Use
CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_ADDIN_HANDLE Invalid add-in handle

CSSM_MEMORY_ERROR Internal memory error

Release 1.2 Common Security Services M anager Page 45
Trust Policy Interface Specification

4.3.9 CSSM_GetError

CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

This function returns the current error information.

Parameters
None

Return Value
Returns the current error information. If thereis currently no valid error, the error number is
CSSM_OK. A NULL pointer indicates the CSSM _InitError was not called by the CSSM Core or
that CSSM Core made a call to CSSM_DestroyError. No error information is available.

See Also
CSSM_ClearError, CSSM _SetError

Release 1.2 Common Security Services M anager Page 46
Trust Policy Interface Specification

4.3.10 CSSM_SetError

CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR guid,
uint32 error_number)

This function sets the current error information toerror_numberand guid.

Parameters
guid (input)
Pointer to the GUID (global unique ID) of the add-in module.

error_number (input)
An error number. It falls within one of the valid CSSM, CL, TP, DL, or CSP error ranges.

Return Value
CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates the error
number passed is not within avalid range, the GUID passed is invalid, CSSM_InitError was not
called by the CSSM Caore, or the CSSM core called CSSM_DestroyError. No error information
isavailable.

See Also
CSSM_ClearError, CSSM_ GetError

Release 1.2 Common Security Services M anager Page47
Trust Policy Interface Specification

4.3.11 CSSM_ClearError

void CSSMAPI CSSM_ClearError (void)

This function sets the current error value to CSSM_OK. Thisiscalled if the current error value
has been handled and therefore is no longer avalid error.

Parameters
None

See Also
CSSM _SetError, CSSM _GetError

