Common Security
Services Manager

Certificate Library Interface (CLI) Specification

Draft for Release 1.2
March 1997

Subject to Change Without Notice

Specification Disclaimer and Limited Use License

This specification is for release version 1.2, March 1997.

You are licensed under Intel's copyrights in the CDSA Specifications to download the
specifications and to develop, distribute and/or use a conformant software implementation of the
specifications. A software implementation of the CDSA Specifications can be tested for
conformance via use of the CDSA Conformance Test Suite that accompanies the specifications,
and you are licensed to use the conformance test suite for that purpose.

ALL INFORMATION AND OTHER MATERIALS TO BE PROVIDED BY INTEL HEREUNDER
ARE PROVIDED "AS IS," AND INTEL MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AND EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, AND FITNESS FOR A
PARTICULAR PURPOSE.

Intel grants no other license under any of its intellectual property other than as expressly granted
above. If you desire any broader rights under Intel intellectual property, please contact Intel
directly.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

Table of Contents

L INTRODUGCTION ...ttt ettt et e e ae e e ae e e be e e abe e e abeeesaeeeaseeeaanee s sabeesmbeesnteesnbessnneesnnnas 1
1.1 CDSA OVERVIEW. .. uutteieeitieeaateeeeaitee e e e aatee e e aseeeeaaeeeesasaeee a2 asbe e e e aaseeeeamneeeeanseee e smbeeeeanbeaeanneeeaannneaeann 1
1.2 CERTIFICATELIBRARY OVERVIEWttiiiiiuteeeaatteaeaaiteeeaaataeaaaasseaasasseeeaasseaesaansseasasseesaasseessannnesssansseeess 3
1.2.1 APPLICALiON INEEIACTION.ciitiieiie ettt et b et e st e e be e e beeebeeeeseeesbeeenneeas 3
1.2.2 CL SIFUCHUI@ @NA USSR\ttt ettt ettt et e s te et e e et e s be e e neeeae e e nbeeabeeanee s 3
1.3 CSSM CERTIFICATELIBRARY INTERFACE SPECIFICATION. et etuttteeeuteeeeasseeesaunreeasssseseassssessasnseesssssseeess 4
G A T 1 (= 1o (<o [N o 1= o (o TP 4
1.3.2 DOCUMENE OFGANIZALIOML.eeeeeeeeiee et e ettt ettt ettt e st e e et esbe e e sabeeabeeabeeeneeeaeeeaneeeanbeeeaneeas 4
L4 REFERENCES. ... uttteeuttte e ettt e e ettt e e e sttt e e e s see e e e aaae e e e e see e e e e aabee e e e asbee a2 abe e a2 amseeee e e ambeeeeanbeeeeenbeeeaannneeeennnneaans 4
2. CERTIFICATE LIBRARY INTERFACEottt 6
2.1 OVERVIEW. ...ttt ettt ettt ettt e e ettt e e ettt e e e aae e a2 e aas e e a2 kbt e a2 e ab e e a2 2o Re e e a2 amse £ e e eanbb e e e e e mbee e e aaneeeeannneeeannnbeeesanreas 6
2.1.1 CertifiCate OPEI@liONS.eeeiueeerteeeieeetieesteeatee et e e rae e e sseeasaeee e sbeeasaeeesaseasaeeeaaseesseesanbeesareeanses 7
2.1.2 Certificate Group OPEIAliONS........cceiuereeeeereeeateearteeasieeesteasseeaseeaaseessabeasseesaseeesseesasesesseeesses 9
2.1.3 Certificate Revocation LiSt OPErationS.ccocueeeueriiieraieeaeieeesieeasieeeseeeseeesee e saeeesneeeseeesnees 9
2.1.4 EXXENSIDIITY FUNCLIONS.eiieieiiie ettt ettt e se e et e e s e e e snnee e snneeas 10
2.1.5 Module Management FUNCHIONS.ooiiiiieee ettt ee e e ae e aee e 11
2.2 DATA STRUCTURES.......utttieitttaeaitteeaateeeaaaasseaaaassseaaasseaeaassseesaaasseeeaaasseeaaasseeeaassseasaansseeesanseessansseeesnne 12
2.2. 1 CSSM_CL_HANDLE......o ettt et e bt e e sae e e aee e s aneesnbeeesaeeenaneanns 12
2.2.2 CSOM_CERT _TYPE.... oottt ettt ettt et b bt e et e e ae e e abee e aeeesaneesnsaeeaaeeeannaann 12
2.2.3 COOM DA A ettt ettt ettt et e et e e e a b et e ehbe e e abe e e ab e e e abe e e beeeanbeeebeeabeeeaaeeeaneaena 12
A 0SS |V O 1 1 5 PP TUUTOPROPR 13
2.2.5 CSOM_FIELD.....e ittt ettt et e st e e bt e e be e ebe e e enbe e e beeeabeeenneaenns 13
2.2.6 CSAVI_KEYHEADER...... .ottt ettt e sae e e e e ae e e s e e e e saeeesnneans 13
2.2.7 CSSM_KEYBLOB......c.tii ettt et ettt e e st e bt e e be e e beeesae e e e sbeeeaaeeenneeanns 14
AR R O |V, = PP UUTOPRPR 14
2.2.9 CSSM_DB _LONGHANDLE.......c. ittt st saee et e s be e s beesneeeneaaans 14
2.2.10 CSOM_DB_LIST... ittt ettt e et e bt e st e e be e e ae e e aeeesaeeeeabeeesaeeennneanns 14
2.2.11 CSSM_CERTGROUPL.... ..ottt ettt ettt e s b e sbe e saee e s aee e s aseesaneesnneeennneans 15
2.2.12 CSSM_REVOKE_REASDN.......cetiitiiaiitaie et e steearieeesieeesieeeseeeseea e saeeesaseesasesssessnseesnseesans 15
2.3 CERTIFICATE OPERATIONS.tttatutttaeatteeeaauuetasaasseaaaauseeaaaasseaaaasseaesaaaseeaaaasseeeaasseesaasseessansensesanseeesanns 16
e T I O I = 5 T o TP TTUPROPR 16
AR I O I O 18 11 Lo [S PPTUUTOPRPR 18
AR R N O I O 4 A/ g 1 Y AU UUTTOPRPR 19
R O I O = (O = 11T PR UP PP UPPRRN 20
e RN O I O g = PO TUPRPR 21
2.3.6 CL_CertGetFirStFIeldValUE.........coooiiiie ettt ee et e e et e e e e e e nrae e 22
2.3.7 CL_CertGetNEXtFIelAVAlUE...........ccoiuiee ettt e e e e et e e e ne e e e enrenee s 23
2.3.8 CL_Cr tADOIMTQUET Y. .. ettt ettt ettt e st e e bt e e bt e e st e e s abeeebeeeseeeseeesaneesnseeeaneeesnnaanns 24
2.3.9 CL_CertGEIKEYINTO. ... ittt ettt e st e bt e e saee e aeeesaneesnbeeesaeeesnneanns 25
2.3.10 CL_CrtGEIAITFTEIAS. ...ttt ettt st rbe e e sae e e ae e e s aneesnsee s saeeesnneaas 26
A N O I O 1 1 ¢ oo P PP PO UUPTTOTR 27
2.3.12 CL_COITEXPOIT ...ttt ettt ettt e sttt e e e ee e e e e be e e e e asbe e e e aaseeeeanneeeeannbeeeeanbeeeeannneeean 28
2.3.13 CL_CertDeSCriDEFOIMAL...........vieeiiiiie e e et sre et e e e et e e et e e e snee e e e saae e e e araeeeennreeeas 29
2.4 CERTIFICATE GROUP OPERATIONSuutttteutteaeaureeeaaussseaeaasseesaasseasaasssesaasssesssasssessanssessassseessassseeasanns 30
2.4.1 CL_CertGrOUPCONSITUCL.......cceiieieeeieieeeieee e e eiee e st e et e e e ete e e e e s sabe e e s sseeeeanseeessnneeeessnnneans 30
2.4.2 CL_CltGrOUPPIUNE.cciteii ettt ettt e ettt e s e e e e et e e e s aabee e e asbe e e e aaneeeeanneeeannbeeeeanenaean 31

2.4.3 CL_Cr G OUPVEI I Y. ettt ettt et ettt e et e e bt e e sae e e aeeesaseesaseeesaeeeanneanns 32

Release 1.2 Common Security Services M anager Pageiv
Certificate Library Interface Specification

2.5 CRL OPERATIONS. ..., 34
A T N O I O g [= | (= RS 34
A YA O I O g Yo (o [@< ST 35
2.5.3 CL_CrIREMOVECEIL......eeieeeieeeeitie ettt e et e e st e e e st e e e et e e e e sata e e e anteeeesssaeeeanaeeessanbeeesanseneens 36
YA Y O I O g 1 o[o PP UUTUPRPR 37
AR N O I O < g Y PP UUTTOPROPRN 38
AT SN O I £ = 1 1 o RS 39
2.5.7 CL_CrIGetFirStFIeldValUE..........ooei ittt et e et aae e e nraee s 40
2.5.8 CL_CrIGEtNEXtFIElAVAIUE..........eeee et e e s e et e e e ra e e e enraeee s 41
2.5.9 CL_CrIADOITQUETY. ...ttt ettt ettt ettt s bt e et e e bt e e s bt e s beeabeeeaaeeaseeessseeaabeeeaneeeanneanns 42
2.5.10 CL_CrIDeSCriDEFOIMAL.........cccuvieeiiiiieeeiiee e e ctee e e scree e et e e e e tre e e e s sttee e e sree e e enareeessareeeessraneens 43
2.6 EXTENSIBILITY FUNCTIONSo, 44
2.6.1 CL_PASSTRIOUGN......coitiiiiie ettt ettt e ettt e st e e bt e e be e e beeesaeeeebeeeaneeennneenns 44
2.7 MODULEMANAGEMENTFUNCTIONS.....ccii i 45
A 0 N I U o 1= S 45
A A O I U L o1 1= 1 = DS 46
3. CERTIFICATE LIBRARY STRUCTURE AND MANAGEMENT......ccccoiiiieeeeeeereeeeeee e 47
B LINTRODUCTION ... e e e e e e e 47
3.2 CERTIFICATE LIBRARY COMPOSITION.....ccciiiieeeeeeee et 47
3.3 CERTIFICATE LIBRARY INSTALLATION.....cciiiiie e e e 47
3.3.1 Global Unique 1dentifierS (GUIDS). . ..couuiaieeiieeeeie ettt st et e b e e saeeennee e 438
3.3.2 Certificate CharaCtEriStiCS......ccvveeeeee ettt e e e e e e et e e e e e e e aaraeeee e e e e sennees 48
3.3.3 0D ECt 1AENTITIErS (OIDS). . .eeieieeiiieeiee ettt ettt e sbe e saee e saeeesaneeseeesaneeesnneens 438
3.4 ATTACHING A CERTIFICATELIBRARY ... 49
3.4.1 The CL module fUNCLION taDI@........cooooiieeeee e e e e aaaees 49
3.4.2 Memory management UPCAIIS.coo ittt ee e e ne e e ne e 49
3.5 CERTIFICATELIBRARY BASICSERVICES......ccc i, 49
3.5.1 FUNCLION IMPIEMENTALTON. ... ittt ettt rbe e e ae e e s e e e s abeeeaneeesnneeas 49
oI = o] gl 0=V Lo [T o R UUTTOPRPR 50
3.6 CERTIFICATEUTILITY LIBRARIES.......cc i e, 50
3.7 ATTACH/DETACH EXAMPLE .. .tvtiiiiiiiiiiteeee e eeectttee e e e e e e ettt e e e e e e e e atab b e e e e aeeessassaaeeeeeeeansssseseeeseseeannnnes 51
T B 11 11 = 11 o RSP URRRRRRRRN 51
3.8 CERTIFICATE OPERATIONSEXAMPLES ..., 53
R A O I O = (O = 11T PP UP PP UPPRRN 53
3.9 CRL OPERATIONSEXAMPLES......cccciie e 55
1T It R O I O g 172X (o (= RS 55
3.10 EXTENSIBILITY FUNCTIONSEXAMPLEScce i 58
3.10.1 CL_PASSTRIOUGN. ...ttt ettt et e et e s bt e e be e e be e e seeesaneesabeeesaeeeanneanns 58
4. APPENDIX A. RELEVANT CSSM API FUNCTIONS. ...ttt ee e 60
2.1 OVERVIEW.....ceettieeieeeeeeeeeeeeeeeeeeeaaseseeessessas s s e s e e e s s e s e e s e e s sessssesseasassaesseeeseeseessssasssessssasssssssssssesessssesessnnnnnnns 60
4.2 DATA STRUCTURES.....cetttttiitiitteeeeeeeeeteeestseeesteseeeseeeeeeeeeeseeeeeessssssssssssesssssssssssessessessssssssssssssssssssesseeenne 60
B N 1SS |/ O =1 = B I =SS 60
R O | Y A I SR 60
e A O | © 1 SR 60
R N 1S | €11 1 SR 61
4.2.5 CSSM _CLINFQL......tiii ettt et e e et e e e e e e e s et e e e e atae e e eateeesensaeeeesnnreeeeanreeeeanneeas 61
4.2.6 CSSM_SPl FUNGC TBL..ciiiiiiiie ettt et e e stee e s s tae e s as e e e e satae e e s nateeeesnneeeeenneeeeesnnnes 62
4.3 FUNCTION DEFINITIONS....ettttttteeeeteeeeeeeeeeeeeeessesseeseseesseeeeseeesesaeeeesssnnnes 63
R R 040 | I O I 1 > SRS 63

£.3.2 CSSM_CL_UNINSEAIL...oveeeeeeeeeeeeeeeeeee s eeeeeseesseees e eeseeseeesseeesesesesseeesssees s eessesees s eeesen 64

Release 1.2

Common Security Services M anager Pagev
Certificate Library Interface Specification

VI G @85S |V I O I i 7= To o SRR 65
4.3.4 CSOM_CL_DEBLACK......eiiieiiieeiie ettt ettt ettt sae e et e e st e e st esate e sbe e e sabeesbeeanee s 66
4.3.5 CSOM_CL_REQISIEN SEIVICES. ...t ee et eiiieeeieie ettt ettt et e bt e s e e e be e s sbe e e saeeesaseesnneesnneeas 67
4.3.6 CSSM_CL_DEl Qi Ster SEIVICES.veieueeeieeeeeeeetee e aiteesiteasteasbessseeeseessbeesbeeaaseeaaseeesneeasnneans 68
o B A O30 Y I T = o) PP ERP PSRN 69
e R Sl A |V IS < | = o PP ERP SRR 70
G N O Y I O 1= T =l o] SR 71

List of Figures
Figure 1. The Common Data Security Architecture for all platforms...........cocooeiiiiie i 2

Release 1.2

Common Security Services M anager
Certificate Library Interface Specification

Pagevi

Release 1.2 Common Security Services M anager Pagel
Certificate Library Interface Specification

1. Introduction

1.1 CDSA Overview

The Common Data Security Architecture (CDSA) defines the infrastructure for a complete set of security
services. CDSA is an extensible architecture that provides mechanisms to manage add-in security modules
that use cryptography as a computational base to build security protocols and security systems. Figure 1
shows the four basic layers of the Common Data Security Architecture: Applications, System Security
Services, the Common Security Services Manager, and Security Add-in Modules. The Common Security
Services Manager (CSSM) isthe core of CDSA. It provides a means for applications to directly access
security services through the CSSM Security API, or to indirectly access security services vialayered
security services and tools implemented over the CSSM API. CSSM manages the add-in security modules
and directs application calls through the CSSM API to the selected add-in module that will service the
request. Add-in modules perform various aspects of security services, including:

» Cryptographic Services

* Trust Policy Services

* Certificate Library Services

» Data-Storage Library Services

Cryptographic Service Providers (CSPs) are add-in modules that perform cryptographic operations
including encryption, decryption, digital signaturing, key pair generation, random number generation, and
key exchange. Trust Policy (TP) modules implement policies defined by authorities and institutions, such
as VeriSign* (as a certificate authority) or MasterCard* (as an institution). Each trust policy module
embodies the semantics of atrust model based on using digital certificates as credentials. Applications
may use a digital certificate as an identity credential and/or an authorization credential. Certificate

Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital
certificates, groups of certificates, and certificate revocation lists. Data-Storage Library (DL) modules
provide persistent storage for certificates and certificate revocation lists.

Release 1.2 Common Security Services M anager Page2
Certificate Library Interface Specification

Sl Applications >

¥tem -~~~ T
Security Layered Services, Middleware,

Services L anguage I nterface-adapter, and Tools

Common CSSM Security API

Security 2§ CsP TP Module | CL Module | DL Module =8 §
Services g § M anager M anager Ve Manager Q3 Qé
Manager S J[_TPr J[_Cor J[C_Dor_]

&;j(aur I ty Data-store
Add-in

Modules

Figurel. The Common Data Security Architecturefor all platforms.

Applications directly or indirectly select the modules used to provide security services to the application.
These add-in modules will be provided by independent software and hardware vendors. The functionality
of the add-in module may be extended beyond the services defined by the CSSM API, by exporting
additional services to applications viathe CSSM PassThrough mechanism.

The API calls defined for add-in modules are categorized as service operations, module management
operations, and module-specific operations. Service operations include functions that perform a security
operation, such as encrypting data, inserting a certificate revocation list into a data-source, or verifying
that a certificate is trusted. Module management functions support installation of modules, registration of
modul e features and attributes, and queries to retrieve information on module availability and features.

M odule-specific operations are enabled in the API through pass-through functions whose behavior and use
is defined by the add-in module devel oper.

CSSM also provides integrity services and security context management. CSSM applies the integrity
check facility to itself to ensure that the currently executing instance of CSSM code has not been altered.

Security context management provides secured runtime caching of user-specific state information and
secrets. The manager focuses on caching state information and parameters for performing cryptographic
operations. Examples of secrets that must be cached during application execution include the application’s
private key and the application’ s digital certificate.

Release 1.2 Common Security Services M anager Page 3
Certificate Library Interface Specification

In summary, the CSSM provides these services through its API calls:
* Certificate-based services and operations

» Comprehensive, extensible SPIs for cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

* Registration and management of available cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

» Caching of keys and secrets required as part of the runtime context of a user application
e Call-back functions for disk, screen, and keyboard /O supported by the operating system
* A test-and-check function to ensure CSSM integrity

* Management of concurrent security operations

1.2 Certificate Library Overview

A certificate library (CL) module performs syntactic manipulations on certificates, groups of certificates,
and certificate revocation lists (CRLS). The certificate library encapsulates the format-specific knowledge
into alibrary, which an application can access via CSSM. These libraries allow applications and add-in
modules to interact with certificates and CRLs for services such as signing, verification, creation and
revocation without requiring knowledge of the certificate and CRL formats.

1.2.1 Application Interaction

An application determines the availability and basic capabilities of a certificate library by querying the
CSSM Registry. When anew CL isinstalled on a system, the certificate types and certificate fields that it
supports must be registered with CSSM. An application uses that information to find an appropriate CL
and to request that CSSM attach to the CL. When CSSM attaches to the CL, it will return a CL handle to
the application that uniquely identifies the pairing of the application thread to the CL module instance.
This handle will be used by the application to identify the CL in future function calls.

CSSM passes function calls from an application to a certificate library by making use of the CL’s function
table. The function table consists of pointers to the subset of certificate functions from the CSSM API that
are supported by the CL. When an application attaches the CL to CSSM, the certificate library registers
its function table with CSSM usingCSSM_CL_Register Services During future function calls from the
application, CSSM will use these function pointers to appropriately direct the call.

The allocation and de-allocation of all memory that is passed into or out of the certificate library module is
the responsibility of the calling application. The application must register memory allocation and de-
allocation upcalls with CSSM when it requests a CL attach. These upcalls and the handle identifying the
application/CL pairing are passed to the CL when it call<CSSM_CL_Register Services Whenever a
certificate library allocates or de-allocates memory that belongs to or will belong to the application, these
functions must be used. The CL handle will be used as the mechanism to associate the application with
the instance of the certificate library module.

1.2.2 CL Structure and Use

A certificate library is composed of functions that are invoked when the CL is attached and detached and
of functions that mirror the CSSM API for certificate functions. When the CL is attached, it registers its
function table with the CSSM registry and CSSM provides the CL with a set of upcalls for memory

management. When the CL is detached, any necessary cleanup actions are performed. The remainder of

Release 1.2 Common Security Services M anager Page4
Certificate Library Interface Specification

the certificate library functions perform basic syntactic operations on certificates, groups of certificates,
and certificate revocation lists (CRLS). These operations include creating and querying certificates,
certificate groups and CRLs, signing and verifying, and performing module-specific syntactic operations.
M odule-specific operations are supported by the CL_PassThrough function. This function will passaCL
modul e-defined operation identifier and parameters to the CL.

Certificate Libraries may make use of other CSSM add-in modules to implement their functionality. For
example, a certificate library may use the capabilities of a CSP add-in module to perform the
cryptographic operations of sign and verify. In that case, the certificate library module could package the
certificate or CRL fields to be signed or verified, attach to the appropriate CSP add-in module, and call
CSSM_SignDataor CSSM_ VerifyDatato perform the operation. More information about CSP modules
can be found in theCommon Data Security Architecture Specificatiorand in the CSSM Cryptographic
Service Provider InterfaceSpecification.

Similarly, Certificate Libraries may be used by other CSSM add-in modules to implement their
functionality. Trust Policy modules may choose to perform the syntactic verification of trust by calling a
certificate library. Data-Storage Library modules may use a certificate library to obtain the individual
fields of a certificate or CRL to be stored. More information about these modules can be found in the
Common Data Security Architecture Specificationthe CSSM Trust Policy | nterfaceSpecification, and

the CSSM Data-Storage Library Interface Specification

1.3 CSSM Certificate Library Interface Specification

1.3.1 Intended Audience

This document is intended for use by Independent Software Vendors (ISV's) who will develop their own
Certificate Libraries to support a certificate and/or CRL format. These ISVswill be highly experienced
software and security architects, advanced programmers, and sophisticated users. They are familiar with
network operating systems, high-end cryptography, and digital certificates. It is assumed that this
audience is familiar with the basic capabilities and features of the protocols they are considering.

1.3.2 Document Organization

This document is divided into the following sections:
Section 2, Certificate Library Interface describes the functions that a certificate library makes available
to applications via the CSSM.

Section 3, Certificate Library Structure & M anagementdescribes important considerationsin
developing a certificate library. It also gives examples of how several certificate library functions might
be implemented.

1.4 References

PKCS* The Public-Key Cryptography StandardsRSA L aboratories, Redwood City, CA:
RSA Data Security, Inc.
X.509 CCITT. Recommendation X.509: The Directory — Authentication Framewor988.

CCITT stands for Comite Consultatif Internationale Telegraphique et Telphonique
(International Telegraph and Telephone Consultative Committee)

SPKI Smple Public Key Certificate, Internet Draft, Carl M. Ellison, Bill Frantz, Brian M.
Thomas, 1996
SDSI SDS - A Smple Distributed Security InfrastructureR. Rivest and B. Lampson,

1996

Release 1.2 Common Security Services M anager Page5
Certificate Library Interface Specification

CDSA Common Data Security Architecture Specification|ntel Architecture Labs, 1996
CSSM AP CSSM Application Programming Interfacelntel Architecture Labs, 1996
CSSM SPI CSSM Cryptographic Service Provider Interfacé&pecification,
Intel Architecture Labs, 1996
CSSM TP CSSM Trust Policy InterfaceSpecification, Intel Architecture Labs, 1996
CSSM CLI CSSM Certificate Library Interface Specification,
Intel Architecture Labs, 1996
CSSM DLI CSSM Data-Storage Library Interface Specification,

Intel Architecture Labs, 1996

CSSM Java CSSM Java Application Programming Interface Specification,
Intel Architecture Labs, 1996

Release 1.2 Common Security Services M anager Page 6
Certificate Library Interface Specification

2. Certificate Library Interface

2.1 Overview

The Certificate Library Interface (CLI) specifies the functions that a certificate library may make available
to applications via CSSM in order to support a certificate and a certificate revocation list (CRL) format.
These functions mirror the CSSM API for certificates, groups of certificates and certificate revocation
lists. They include the basic areas of functionality expected of a certificate library: certificate operations,
certificate group operations, certificate revocation list operations, extensibility functions, and module
management functions. The certificate library developer may choose to implement some or all of these
CLI functions. The available functions will be made known to CSSM at attach time when it receives the
certificate library’ s function table. In the function table, any unsupported function will have aNULL
function pointer. It isthe responsibility of the certificate library module developer to make its certificate
format and general functionality known to application developers.

Certificate operations fall into three general areas:

* Cryptographic operations These operations include signing a certificate and verifying the
signature on a certificate. It is expected that the certificate library will determine the certificate
fields to be signed or verified and will manage the interaction with a cryptographic service
provider to perform the signing or verification.

» Certificate field management- Fields are added to a certificate when it is created. After the
certificate is signed, the fields cannot be modified in any way. However, they can be queried for
their values using the CSSM certificate interface.

» Certificate format translation- In the heterogeneous world of multiple certificate formats, CL
modules may want to provide the service of translating between certificate formats. This
translation would involve mapping the fields from one certificate format into another certificate
format, while maintaining the original format for integrity verification purposes. For example,
an X509V 1 certificate may be exported to a SDSI format or imported into an X509V 3 certificate,
but the original data and signature must somehow be maintained. The supported import and
export types are registered with CSSM as part of CL installation.

To support new certificate types and new uses of certificates, the sign and verify operations in the
Certificate Library Interface support a scope parameter. The scope parameter enables an application to
sign a portion of the certificate, namely the fields identified by the scope. This enables future certificate
models, which are expected to allow field signing. CL modules that support existing certificate formats,
such as X.509 Version 1, which sign and verify a pre-defined portion of the certificate, will ignore this
parameter.

The CL modul€'s certificate format is exposed viaitsfields. These fields will consist of tag/value pairs,
where the tag is an object identifier (OID). These OIDs reference specific data types or data structures
within the certificate or CRL. OIDs are defined by the certificate library developer at a granularity
appropriate for the expected usage of the CL.

Under current certificate models, such as X.509, SDSI, SPKI, etc., asingle certificate represents the
identity of some entity and possibly some authorizations assigned to that entity. When verifying trust in a
certificate, the certificate is rarely considered as a stand-alone credential. Typically it is considered as part
of agroup, such as an X.509 chain, where the whole group must be verified in order to establish trust. In
order to facilitate this verification, the CL1 defines three operations on certificate groups:

Release 1.2 Common Security Services M anager Page7
Certificate Library Interface Specification

e add certificates to a group
* remove certificates from a group
» verify the signatures of a group of certificates

Operations on certificate revocation lists are comprised of cryptographic operations and field management
operations on the CRL as awhole, and on individual revocation records. The entire CRL can be signed or
verified. Thiswill ensure the integrity of the CRL’s contents asit is passed between systems. Individual
revocation records are signed when they are revoked and verified when they are queried. Certificates may
be revoked and unrevoked by adding or removing them from the CRL at any time prior to its being
signed. The contents of the CRL can be queried for all of its revocation records, specific certificates, or
individual CRL fields.

A pass-through function isincluded in the Certificate Library Interface to allow certificate libraries to
expose additional services beyond what is currently defined in the CSSM API. These services should be
syntactic in nature, meaning that they should be dependent on the data format of the certificates and CRLs
manipulated by the library. CSSM will pass an operation identifier and input parameters from the
application to the appropriate certificate library. Within the CL_PassThrough function in the certificate
library, the input parameters will be interpreted and the appropriate operation performed. The certificate
library developer is responsible for making known to the application the identity and parameters of the
supported pass-through operations.

A certificate library module must provide support for the CL_Initialize and CL_Uninitialize operations.
The CL_Initialize operation is used by CSSM to verify that the CL module version that is attached is
compatible with the CL module version requested by the calling application. It is called as part of
CSSM_CL_Attach immediately following the certificate library’ s registration of its function table. If the
versions are incompatible, CSSM will detach the CL and th€SSM_CL_ Attachoperation will fail.
CL_Uninitializeis called by CSSM as part of th&€€SSM_CL_Detachoperation, immediately prior to
detaching the CL module. CL_Uninitialize should be used by the CL module to cleanup any residual state
information.

2.1.1 Certificate Operations

This section provides a more detailed look at the functions that compose the certificate operations in the
CLI. It gives ahigh-level overview of each function’s expected operation, its parameter definitions where
necessary, and potential differences between CL module implementations.

CL_CertSign ()- Thisfunction will create adigital signature for the subject certificate using the
signer’s certificate. The cryptographic context handle indicates the algorithm
and parameters to be used for signing. Which field or fields should be signed
will depend on the implementation of the CL module. A CL module that
supports X.509 Version 1 certificates will sign all of the certificate fields,
ignoring the SignScope parameter. A CL module that supports field signing
would sign the subset of fields specified by the SignScope parameter.

CL_CertUnsign ()- Thisfunction will remove the signer certificate’ s signature from the subject
certificate. If the certificate library supports multiple signatures on the same
certificate, the SignScope may be used to uniquely identify the signature to be
removed.

CL_CertVerify ()- Thisfunction will verify the signer certificate’ s signature on the subject
certificate. The cryptographic context handle indicates the algorithm and

Release 1.2

Common Security Services M anager Page8
Certificate Library Interface Specification

parameters to be used for verification. If the certificate library module supports
field signing, the VerifyScope parameter may be used to identify the fields that
were signed.

CL_CertCreate () - Thisfunction creates a certificate in the CL modul€’s native certificate

format from the OID/value pairs provided by the application. The CL module
makes its supported OIDs available to the application via the CertTemplate
registered with CSSM and viathe CL_CertDescribeFormat function. The CL
Module is responsible for indicating which fields are required to create a
certificate. The returned certificate will not be avalid certificate until it has
been signed.

CL_CertView ()- Thisfunction returns an array of all of the viewable fields in the certificate.

Thefields are identified by OID/value pairs. Thefield valuesarein a
displayable format.

CL_CertGetFirstFieldValue ()- Thisfunction returns the first field in the certificate that

matches the input OID. If the certificate contains more than one instance of the
requested OID, the CL module will return a handle to be used to obtain the
additional instances and a count of the total number of instances of thisOID in
the certificate. The application obtains the additional matching instances by
repeated callsto CL_CertGetNextFieldValue.

CL_CertGetNextFieldValue ()- Thisfunction returns the next field that matched the OID

given in the CL_CertGetFirstFieldValue function. It will only be supported by
certificate library modules that allow multiple instances of an OID in asingle
certificate.

CL_CertAbortQuery ()- Thisfunction releases the handle that was assigned by the

CL_CertGetFirstFieldValue function to identify the results of a certificate
query. It will only be supported by certificate library modules that allow
multiple instances of an OID in asingle certificate.

CL_CertGetKeylnfo ()- Thisfunction retrieves the public key information stored in the

certificate. In most certificate formats this includes multiple fields, but it may
not include all of the fields defined by the CSSM_KEY data structure. Each CL
module is responsible for making known which portions of the CSSM_KEY
data structure will be returned.

CL_CertGetAllFields ()- Thisfunction returns alist of all the fields in the input certificate, as

described by their OID/value pairs.

CL_Certlmport ()- Thisfunction translates a certificate from aforeign certificate type to the

native certificate type manipulated by the CL module.

CL_CertExport ()- Thisfunction translates a certificate from the native certificate type

manipulated by the CL module into a foreign certificate type.

CL_CertDescribeFormat ()- This function returns alist of object identifiers corresponding to

the data objects composing the CL modul€’ s native certificate format.

Release 1.2 Common Security Services M anager Page9
Certificate Library Interface Specification

2.1.2 Certificate Group Operations

This section provides a more detailed look at the functions that compose the certificate group operationsin
the CLI. This section gives a high-level overview of each function’s expected operation, its parameter
definitions where necessary, and potential differences between CL module implementations.

CL_CertGroupConstruct () -accepts as input a certificate group containing one or more
certificates and alist of certificate databases that may contain certificates
related to those in the partial group. In response, the CL module constructs a
certificate group consisting of all the certificates in the original group plus
certificates selected from the certificate databases. Selection for inclusion is
based upon the certificate model implemented by the CL. For example, under
the X.509 model of certificates, the input certificate group can contain a leaf
certificate only. The result of this operation is the chain of certificates formed
by the signing process from the leaf input certificate to a self-signed root
certificate.

CL_CertGroupPrune ()- accepts as input a group of certificates from which certificates should
be removed, and a group of certificates that should be removed from the first
group if they are present in that group. This operation can be the inverse of the
ConstructCertGroup function. Certificates and certificate groups are often
exchanged among systems. It may be necessary to remove certificates that have
only local significance before sending a certificate group to another system.

CL_CertGroupVerify ()- accepts as input a certificate group, thescope of the signing that was
performed on every certificate in the group, and a group of trusted certificates
(root or pseudo-root certificates). In response, the CL module performs the data
format-specific operation of checking the signature(s) on each certificate in the
group. It is assumed that all certificates in the group were signed using the
same signing scope and that all of the certificates required to verify signatures
on other certificates are included in the input group of certificates or in the
group of trusted certificates. For example, if a group to be verified contains an
X.509 certificate chain of depth three (certR->certM->certL), then cert M was
used to sign certL, cert R was used to sign certM, and certR is in the group of
trusted certificates. The function result is true if the required signatures are
verified and false otherwise. The CL and the certificate model it implements
defines the verification process among the certificates in the group.

2.1.3 Certificate Revocation List Operations

This section provides a more detailed look at the functions that compose the certificate revocation list
operationsin the CLI. This section gives a high-level overview of each function’s expected operation, its
parameter definitions where necessary, and potential differences between CL module implementations.

CL_CrlCreate ()- Thisfunction creates an empty CRL in the native format of the CL module.
CRL queries may be performed on both signed and unsigned CRLs.

CL_CrlAddCert ()- Thisfunction revokes the input certificate by adding a record representing
the certificate to the CRL. It then uses the revoker’s certificate to sign the new
record. The updated CRL isreturned to the calling application.

Release 1.2

Common Security Services M anager Page 10
Certificate Library Interface Specification

CL_CrlRemoveCert ()- Thisfunction unrevokes the input certificate by removing the record

representing the certificate from the CRL. The updated CRL is returned to the
calling application.

CL_CirlSign ()- Thisfunction will create a digital signature for the entire CRL using the

signer’s certificate. The cryptographic context handle indicates the algorithm
and parameters to be used for signing. Thefield or fields of the CRL that
should be signed will depend on the implementation of the CL module. A CL
module may choose to ignore the SignScope parameter if the fields to be signed
are pre-defined. A CL module that supports field signing would sign the subset
of fields specified by the SignScope parameter. Typically, this function will be
used to sign the entire CRL prior to distributing it to other systems. The
signature will be used to quickly detect tampering of the CRL. CRL queries
may be performed on both signed and unsigned CRLs.

CL_CrlVerify ()- Thisfunction will check the signer certificate’ s signature on the subject CRL

to determine whether any record in the CRL has been tampered with and
whether the signer’s certificate was actually used to sign the CRL. The
cryptographic context handle indicates the algorithm and parameters to be used
for verification. If the certificate library supports field signing on a CRL, the
VerifyScope may be used to identify the fields that were signed.

CL_IsCertInCrl ()- Thisfunction searches the CRL for arecord corresponding to the input

certificate.

CL_CrlGetFirstFieldValue ()- Thisfunction returns the first field in the CRL that matches the

input OID. Itislikely that the CRL will support multiple instances of an OID
that represents a revoked certificate record. If an application requests an OID
that has multiple instances within the CRL, aresults handle and a count of the
number of matching instances will be returned along with the first instance of
the OID. The application uses the results handle to obtain the additional
matching instances by repeated callsto CL_CrlGetNextFieldValue. For
example, given the OID for “revocation record”, this function would return the
first revocation record in the CRL. The remaining revocation records could be
obtained by successive callsto CL_CrlGetNextFieldValue.

CL_CrlGetNextFieldValue ()- Thisfunction returns the next field that matches the OID given

in the CL_CrlGetFirstFieldValue function.

CL_CrlAbortQuery ()- This function releases a handle that was assigned by the

CL_CrlGetFirstFieldValue function to identify the results of a CRL query.

CL_CrlDescribeFormat ()- Thisfunctionreturns alist of the object identifiers that represent

the fields in the certificate revocation list format manipulated by the CL
module.

2.1.4 Extensibility Functions
CL_PassThrough ()- This performs the CL module-specific function indicated by the operation

ID. The operation ID specifies an operation that the CL has exported for use by
an application or module. Such operations should be specific to the data format
of the certificates and CRLs manipulated by the CL module.

Release 1.2 Common Security Services M anager Page 11
Certificate Library Interface Specification

2.1.5 Module Management Functions

CL_Initialize () - This function checks whether the version of the attached CL moduleis
compatible with the input version number and performs CL module setup
activities. Itiscalled by the CSSM Core as part of th€SSM_CL_ Attach
routine. It iscalled immediately after the CL modul€’ s function table is
registered with CSSM. If the versions are incompatible, the CL moduleis
detached, a CSSM_INCOMPATIBLE_VERSION error is set, and aNULL
handle is returned to the calling application.

CL_Uninitialize () - Thisfunction checks performs CL module cleanup activities. Itis called by
the CSSM Core as part of theCSSM_CL_Detachroutine. It iscalled
immediately prior to the detach of the CL module.

Release 1.2 Common Security Services M anager Page 12
Certificate Library Interface Specification

2.2 Data Structures

This section describes the data structures that may be passed to or returned from a certificate library
function. They will be used by applications to prepare data to be passed as input parameters into CSSM
API function calls which will be passed without modification to the appropriate CL. The CL isthen
responsible for interpreting them and returning the appropriate data structure to the calling application via
CSSM. These data structures are defined in the header file cssmtype.h, distributed with CSSM.

2.21 CSSM_CL_HANDLE

The CSSM_CL_HANDLE is used to identify the association between an application thread and an
instance of a CL module. It isassigned when an application causes CSSM to attach to a certificate
library. It isfreed when an application causes CSSM to detach from a certificate library. The application
uses the CSSM_CL_HANDLE with every CL function call to identify the targeted CL. The CL module
uses the CSSM_CL_HANDLE to identify the appropriate application’s memory management routines
when allocating memory on the application’s behalf.

t ypedef uint32 CSSM CL_HANDLE

2.2.2 CSSM_CERT_TYPE

This variable specifies the type of certificate format supported by a certificate library and the types of
certificates understood for import and export. They are expected to define such well-known certificate
formats as X.509 Version 3 and SDSI as well as custom certificate formats.

t ypedef enum cssmcert_type {
CSSM CERT_UNKNOME 000,

CSSM CERT_X 509v1 = 0x01,
CSSM CERT_X 509v2 = 0x02,
CSSM CERT_X 509v3 = 0x03,

CSSM CERT_Fortezza = 0x07,

CSSM CERT_PGP = 0x04,
CSSM CERT_SPKI = 0x05,
CSSM CERT_SDSIvl = 0x06,
CSSM CERT Intel = 0x08,
CSSM CERT_ATTRI BUTE_BER = 0x09, /* ber encoded X 509 attribute cert */
CSSM CERT_LAST = OxFF

} CSSM CERT TYPE, *CSSM CERT TYPE PTR

2.2.3 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssmdata {
ui nt 32 Lengt h;
ui nt 8* Dat a;

} CSSM DATA, *CSSM DATA PTR

Definition:
Length- The length, in bytes, of the memory block pointed to bpata.

Data - A pointer to a contiguous block of memory.

Release 1.2 Common Security Services M anager Page 13
Certificate Library Interface Specification

2.24 CSSM_OID

The object identifier (OID) is used to identify the data types and data structures that comprise the fields of
acertificate or CRL.

t ypedef CSSM DATA CSSM A D

2.25 CSSM_FIELD
This structure contains the OID/value pair for a certificate or CRL field.

typedef struct cssmfield {
CSSM A D Fi el dQ d;
CSSM DATA Fi el dVval ue;
}CSSM FI ELD, *CSSM FI ELD PTR

Definition:
FieldOid - The abject identifier that identifies the certificate or CRL datatype or data structure.

FieldvValue- A CSSM_DATA type that contains the value of the specified OID in a contiguous block
of memory.

2.2.6 CSSM_KEYHEADER
typedef struct CSSM KeyHeader {

ui nt 32 Header For mat Ver si on; /* Version of the current header fornat
*/

CSSM @J D Gspl d; /* QU D of CSP that generated the key
*/

ui nt 32 Bl obDescri pti on; /* Mask describing the key data format
*/

ui nt 32 Dat aFor mat \er si on; /* Version of the key data format */

uint32 Al gorithnid; /* ALA D of the creation algorithm?*/

ui nt 32 KeyUsage; /* Mask of authorized key usages */

uint32 SizelnBits; /* key size in bits */

ui nt 32 W apMet hod; /* ALA D of the nmechanismused to wap a key
*/

ui nt 32 Reserved; /* Reserved for future use */

} CSSM KEYHEADER * CSSM KEYHEADER PTR ;

Definition:
Header FormatVersion -V ersion number of this data structure. Current value is Ox01.

Cspld- Globally unique ID of the CSP that generated the key (if appropriate).

BlobDescription- A mask of bits that describes how to parse the key data blob. Additional
information can be found in theCSSM Application Programming Interface.

DataFormatVersion- Version number of the key data format.
Algorithmld- Algorithm identifier for the key contained by the key blob.

KeyUsage - A mask of bits which define what types of operations the key is authorized to perform.
Additional information can be found in theCSSM Application Programming Interface.

Release 1.2 Common Security Services M anager Page 14
Certificate Library Interface Specification

SzelnBits- Size of the key in bits.

WrapMethod- Key wrapping scheme. The key wrapping methods currently-defined are
CSSM_KEYWRAP_NONE, CSSM_KEYWRAP_MD5WithDES,
CSSM_KEYWRAP_MD5WithIDEA, CSSM_KEYWRAP_SHAWIthDES, and
CSSM_KEYWRAP_SHAWIthIDEA.

Reserved - Reserved for future use.

2.277 CSSM_KEYBLOB

Thisis the data structure which contains both information about the key and the key dataitself. This
structure allows the passage of keys as one contiguous unit of data.

typedef struct cssm keybl ob{
CSSM _KEYHEADER KeyHeader ;
ui nt 8 KeyDat a] MAX_KEYBLCB_LEN] ;
} CSSM KEYBLOB, ~* CSSM KEYBLCB PTR
Definition:
KeyHeader - Key header for the key.

KeyData - Data representation of the key.

2.2.8 CSSM_KEY
typedef struct cssm key{
uint32 KeyBl obLengt h;
uint8 * KeyBl ob;
} CSSM KEY, *CSSM KEY_PTR
Definition:
KeyBlobLength- Length of the key blob.

KeyBlab - Pointer to a CSSM_KEY BLOB structure which holds the key and its associated data.

2.29 CSSM_DB_LONGHANDLE
This structure contains a pairing of a Data-Storage Library with a DataBase in that library.

typedef struct cssmdb_| onghandl e {

CSSM DL_HANDLE DLHandl e;

CSSM DB_HANDLE DBHandl e;
} CSSM DB _LONGHANDLE, *CSSM DB _LONGHANDLE PTR
Definition:

DLHandle- a handle to a Data-Storage Library.

DBHandle - a handle to a DataBase within a Data-Storage Library.

2.2.10 CSSM_DB_LIST
This structure contains a list of handles to Data-Storage Library/DataBase pairs.

Release 1.2 Common Security Services M anager Page 15

Certificate Library Interface Specification

typedef struct cssmdb |ist {

ui nt 32 NuntHandl es;

CSSM DB _LONGHANDLE _PTR DBLongHandl e[1] ;
} CSSM DB LI'ST, *CSSM DB LI ST PTR

Definition:
NumHandles- number of handlesin the list.

DBLongHandle - List of handles to Data-Storage Library/DataBase pairs.

2.2.11 CSSM_CERTGROUP

This structure contains a set of certificates. It is assumed that the certificates are related based on co-
signaturing. The certificate group is a syntatic representation of a trust model.

typedef struct cssmcertgroup {
ui nt 32 NunCerts; /* nunber of elenments in CertList array */
CSSM DATA PTR CertLi st; /* List of opaque certificates */
voi d *reserved;

} CSSM CERTGROP, * CSSM CERTGROP_PTR

Definition:
NumCerts- number of certificates in the group.

CertList- List of certificates.

reserved - Reserved for future use.

2.2.12 CSSM_REVOKE_REASON
This list defines the possible reasons why a certificate may be revoked.

t ypedef enum cssmrevoke reason {
CSSM _REVCKE_QUSTQM
CSSM REVOKE_UNSPEC! FI G,
CSSM REVCKE_KEYCOMPRCM SE,
CSSM _REVCKE._CACOVPROM SE,
CSSM REVCKE_AFFI LI ATI ONCHANGED,
CSSM REVOKE. SUPERCEDED,
CSSM REVCKE_CESSATI ONOFCPERATI ON,
CSSM REVOKE_CERTI FI CATEHCLD,
CSSM REVOKE_CERTI FI CATEHCOLDREL EASE,
CSSM REVOKE_REMOVEFROVERL

} CSSM REVCKE REASON

Release 1.2 Common Security Services M anager Page 16
Certificate Library Interface Specification

2.3 Certificate Operations

This section describes the function prototypes and error codes expected for the functionsin the CLI. The
functions will be exposed to CSSM via a function table, so the function names may vary at the discretion
of the certificate library developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications. The error codes given in this section
constitute the generic error codes that are defined by CSSM for use by all certificate libraries in describing
common error conditions. A certificate library developer may also define their own module-specific error
codes, as described in Section 3.5.2.

2.3.1 CL_CertSign

CSSM_DATA PTR CSSMCLI CL_CertSign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs the fields of the input certificate as indicated by th&gnScopearray.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be signed.

SignerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be used to sign the subject
certificate.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be signed. A
null input signs all the fields in the certificate.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle

CSSM_CL_INVALID_DATA_POINTER Invalid pointer input

Release 1.2 Common Security Services M anager Page 17
Certificate Library Interface Specification

CSSM_CL_INVALID_CONTEXT Invalid context for the requested operation
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_INVALID_SIGNER_CERTIFICATE Revoked or expired signer certificate
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_CERT_SIGN_FAIL Unable to sign certificate

See Also

CL_CertUnsign, CL_CertVerify

Release 1.2 Common Security Services M anager Page 18
Certificate Library Interface Specification

2.3.2 CL_CertUnsign

CSSM_DATA _PTR CSSMCLI CL_CertUnsign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function removes a signature from a signed, memory-resident certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the certificate from which to remove a
signature.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the signer’s certificate. This certificate will
be used to identify the signature to be removed.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields that were signed.
A null input indicates that all the fields in the certificate were signed.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the newly-unsigned certificate. If the pointer
isNULL, an error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_CERT_UNSIGN_FAIL Unable to unsign certificate

See Also

CL_CertSign

Release 1.2 Common Security Services M anager Page 19
Certificate Library Interface Specification

2.3.3 CL_CertVerify

CSSM_BOOL CSSMCLI CL_CertVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies that the signed certificate has not been altered since it was signed by the
designated signer. It does this by verifying the digital signature on the VerifyScope fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the signed certificate.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified. A
null input verifies all the fields in the certificate.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
CSSM_TRUE if the certificate verified. CSSM_FAL SE if the certificate did not verify or an error
condition occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_CONTEXT Invalid context for the requested operation
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_CERT_VERIFY_FAIL Unable to verify certificate

See Also

CL_CertSign

Release 1.2 Common Security Services M anager Page 20
Certificate Library Interface Specification

2.3.4 CL_CertCreate

CSSM_DATA PTR CSSMCLI CL_CertCreate (CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PTR CertTemplate,
uint32 NumberOfFields)

This function allocates and initializes memory for a certificate based on the input Ol D/value
pairs. The memory is allocated using the calling application’s memory management routines.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CertTemplate (input)
A pointer to an array of OlD/value pairs that identify the field values of the new certificate.

Number OfFields (input)
The number of certificate fields being input. This number should indicate the length of the
CertTemplatearray.

Return Value
A pointer to the CSSM_DATA structure containing the new certificate. If the return pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_FIELD_POINTER Invalid pointer input
CSSM_CL_INVALID_TEMPLATE Invalid template for this certificate type
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_CERT_CREATE_FAIL Unable to create certificate

See Also

CL_CertSign, CL_CertGetFirstFieldVaue

Release 1.2 Common Security Services M anager Page21
Certificate Library Interface Specification

2.3.5 CL_CertView

CSSM_FIELD_PTR CSSMCLI CL_CertVieW(CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
uint32 * NumberOfFields)

This function returns the displayable fields of the input certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate whose displayable fields will
be returned.

Number OfFields (output)
The number of certificate fields being output. This number indicates the length of the output

array.

Return Value
A pointer to an array of CSSM_FIELD structures (tag/value pairs) that identify the displayable
field values of theCert. If the return pointer is NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid Certificate Library Handle

CSSM_CL_INVALID_FIELD_POINTER Invalid pointer input
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input

CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_CERT_VIEW_FAIL Unable to view certificate

See Also

CL_CertGetFirstFieldValue, CL_CertGetAllFields

Release 1.2 Common Security Services M anager Page 22
Certificate Library Interface Specification

2.3.6 CL_CertGetFirstFieldValue

CSSM_DATA_PTR CSSMCLI CL_CertGetFirstFieldvValue(CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_OID_PTR CertField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOfM atchedFiel ds)

This function returns the value of the designated certificate field. If more than one field matches
the CertField OID, the first matching field will be returned. The number of matching fieldsis an
output parameter, asis the ResultsHandle to be used to retrieve the remaining matching fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate.

CertField (input)
A pointer to an object identifier that identifies the field value to be extracted from thgert.

ResultsHandl e (output)
A pointer to the CSSM_HANDLE that should be used to obtain any additional matching fields.

Number OfMatchedFields (output)
The number of fields that match theCertField OID.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the pointer
isNULL, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_UNKNOWN_TAG Unknown field tag
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_NO _FIELD _VALUES No field values for this results handle

CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Unableto get field value

See Also
CL_CertGetNextFieldValue, CL_CertAbortQuery, CL_CertGetAllFields,
CL_CertDescribeFormat

Release 1.2 Common Security Services M anager Page 23
Certificate Library Interface Specification

2.3.7 CL_CertGetNextFieldValue

CSSM_DATA_PTR CSSMCLI CL_CertGetNextFieldValue (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate field that matched the OID in acall to
CL_CertGetFirstFieldValue.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle that identifies the results of a certificate query.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the pointer
isNULL, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_RESULTS HANDLE Invalid results handle
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_NO _FIELD _VALUES No field values for this results handle

CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Unableto get field value

See Also
CL_CertGetFirstFieldValue, CL_CertAbortQuery

Release 1.2 Common Security Services M anager Page 24
Certificate Library Interface Specification

2.3.8 CL_CertAbortQuery

CSSM_RETURN CSSMCLI CL_CertAbortQuery (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CL_CertGetFirstFieldVaue and allows the CL to
release all intermediate state information associated with the query.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle that identifies the results of a certificate query.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid Certificate Library Handle

CSSM_CL_INVALID_RESULTS HANDLE Invalid results handle
CSSM_CL_CERT_ABORT_QUERY_FAIL Unable to abort query

See Also
CL_CertGetFirstFieldValue, CL_CertGetNextFieldValue

Release 1.2 Common Security Services M anager Page 25
Certificate Library Interface Specification

2.3.9 CL_CertGetKeylInfo

CSSM_KEY_PTR CSSMCLI CL_CertGetKeylnfo (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert)

This function obtains information about the certificate’s public key. Ideally, this information
comprises the key fields the application needs to create a cryptographic context that uses this
certificate’ s key.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate from which to extract the
public key information.

Return Value
A pointer to the CSSM_KEY structure containing the public key and possibly other key
information. If the pointer isNULL, an error has occurred. Use CSSM_GetError to obtain the

error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_UNKNOWN_TAG Unknown field tag
CSSM_CL_MEMORY_ERROR Not enough memory

CSSM_CL_CERT_GET_KEY_INFO_FAIL Unableto get key information

See Also
CL_CertGetFirstFieldvValue

Release 1.2 Common Security Services M anager Page 26
Certificate Library Interface Specification

2.3.10 CL_CertGetAllFields

CSSM_FIELD_PTR CSSMCLI CL_CertGetAllField€SSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Cert,
uint32 * NumberOfFields)

This function returns alist of the fields in the input certificate, as described by their OID/value

pairs.

Parameters
CLHandle (input)

The handle that describes the add-in certificate library module used to perform this function.

Cert (input)

A pointer to the CSSM_DATA structure containing the certificate whose fields will be returned.

Number OfFields (output)
The length of the output CSSM_FIEL Darray.

Return Value

A pointer to an array of CSSM_FIELD structures that describe the contents of the certificate
using OID/value pairs. If the return pointer isNULL, an error has occurred. Use

CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid handle

CSSM_CL_INVALID_POINTER
CSSM_CL_MEMORY_ERROR
CSSM_CL_CERT_GET_ALL_FIELDS_FAIL

See Also
CL_CertGetFirstFieldvValue, CL_CertView

Invalid pointer
Error allocating memory
Unable to return the list of fields

Release 1.2 Common Security Services M anager Page 27
Certificate Library Interface Specification

2.3.11 CL_Certimport

CSSM_DATA_PTR CSSMCLI CL_Certimport (CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TYPE ForeignCertType,
const CSSM_DATA_PTR ForeignCert)

This function imports a certificate from the input format into the native format of the specified
certificate library.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ForeignCertType (input)
A unique value that identifies the type of the certificate being imported.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be imported into the native
type.

Return Value
A pointer to the CSSM_DATA structure containing the native-type certificate imported from the
foreign certificate. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_CERT_IMPORT_FAIL Unable to import certificate

See Also

CL_CertExport

Release 1.2 Common Security Services M anager Page 28
Certificate Library Interface Specification

2.3.12 CL_CertExport

CSSM_DATA_PTR CSSMCLI CL_CertExport (CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TY PE TargetCertType,
const CSSM_DATA_PTR NativeCert)

This function exports a certificate from the native format of the specified certificate library into
the specified target certificate format.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

TargetCertType (input)
A unique value that identifies the target type of the certificate being exported.

NativeCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be exported.

Return Value
A pointer to the CSSM_DATA structure containing the target-type certificate exported from the
native certificate. If the pointer isNULL, an error has occurred. Use CSSM_GetError to obtain
the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL _MEMORY_ERROR Not enough memory
CSSM_CL_CERT_EXPORT_FAIL Unable to export certificate

See Also

CL_Certlmport

Release 1.2 Common Security Services M anager Page 29
Certificate Library Interface Specification

2.3.13 CL_CertDescribeFormat

CSSM_OID_PTR CSSMCLI CL_CertDescribeFormat (CSSM_CL_HANDLE CLHandle,
uint32 * NumberOfFields)

This function returns alist of the object identifiers used to describe the certificate format
supported by the specified CL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Number OfFields (output)
The length of the output OlDarray.

Return Value
A pointer to the array of CSSM_OID structures which are supported for certificate operationsin
the specified CL module. If the return pointer is NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid handle
CSSM_CL_INVALID_POINTER Invalid pointer
CSSM_CL_MEMORY_ERROR Error allocating memory

CSSM_CL_CERT_DESCRIBE_FORMAT _FAIL Unableto return the list of OIDs

See Also
CL_CertGetFirstFieldvValue

Release 1.2

Common Security Services M anager Page 30
Certificate Library Interface Specification

2.4 Certificate Group Operations

This section describes the function prototypes and error codes supported by Certificate Library modules
that manage certificate groups. The error codes given in this section constitute the generic error codes
which are defined by CSSM for use by all certificate libraries in describing common error conditions. A
certificate library may also return module-specific error codes.

241 CL_CertGroupConstruct

CSSM_CERTGROUP_PTR CSSMCLI CL_CertGroupConstruct

(CSSM_CL_HANDLE CLHandle,
CSSM_CERTGROUP_PTR CertGroupFrag,
CSSM_DB_LIST_PTR DBList)

This function constructs an ordered certificate group from the CertGroupFrag certificate group
and the contents of the databases passed in DBList. Thereis no implied ordering for the
certificates in CertGroupFrag except that the first certificate in the certificate group is assumed to
be the starting point for constructing the certificate group. An ordering relationship may be
defined and recorded in the certificates themselves or assumed by the certificate library model.
For example, if the certificate model is a hierarchical model of certificate chains, the |eaf
certificate in the chain is the CertGroupFrag and the complete certificate chain including the self-
signed root certificate is the anticipated result of the construction operation.

Parameters

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this function.

CertGroupFrag (input)

A group of certificatesto be used to build an ordered certificate group. Thefirst certificate in the
group should be the certificate for which the ordered certificate group is being constructed. No
particular ordering of the rest of this group is expected or implied.

DBList (input)

A list of certificate databases containing certificates that may be used to construct the ordered

certificate group.

Return Value

A pointer to agroup of certificates, ordered in the context of the certificate type and trust model.
If the return pointer isNULL, an error has occurred. Use CSSM_GetError to obtain the error

code.
Error Codes
Vaue Description
CSSM_ INVALID CL_HANDLE Invalid certificate library handle
CSSM_CL_INVALID_CERT_GROUP Invalid certificate group
CSSM_INVALID_DB_HANDLE Bad database handle
CSSM_ MEMORY_ERROR Not enough memory to allocate
See Also

CL_PruneCertGroup

Release 1.2

Common Security Services M anager
Certificate Library Interface Specification

Page 31

2.4.2 CL_CertGroupPrune

CSSM_CERTGROUP_PTR CSSMCLI CL_CertGroupPrune

(CSSM_CL_HANDLE CLHandle,
CSSM_CERTGROUP_PTR CertGroup,
CSSM_DB_LIST_PTR DBList)

This function prunes all certificates from CertGroup which are not verifiable by an external host.
This function determines which root certificates were generated locally by checking the passed
DBList for certificates which exist in both an OWNED and a ROOT database. These certificates
will be removed from the CertGroup, as well as any certificate signed by them. In addition this
function will remove any self-signed certificates from the CertGroup.

Parameters

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CertGroup (input)

The certificate group to be pruned. Most likely, this parameter would be filled with the return
value of acall to CSSM_CL_CertGroupConstruct().

DBList (input)
The list of databases to be used to determine which certificates are local roots (certificates signed
by alocally held private key).

Return Value

Returns an exportable certificate group which can be completed and verified by external hosts. If
thelist returned isNULL, an error has ocurred. Errors can be retrieved by calling
CSSM__GetL astError().

Error Codes
Value

Description

CSSM_INVALID_CL_HANDLE
CSSM_CL_INVALID_CERT_GROUP

CSSM_MEMORY_ERROR Internal memory error

See Also
CL_CertGroupConstruct

Invalid certificate library handle
Invalid certificate group

Release 1.2

Common Security Services M anager Page 32
Certificate Library Interface Specification

2.4.3 CL_CertGroupVerify

CSSM_BOOL CSSMCLI CL_CertGroupVerify(CSSM_CL_HANDLE CLHandle,

CSSM_CSP_HANDLE CSPHandle,
CSSM_CERTGROUP_PTR OrderedCertGroup ,
const CSSM_FIELD_PTR VerifyScope,

uint32 ScopeSize,

CSSM_DB_LIST_PTR DBList,
CSSM_CERTGROUP_PTR RootCerts)

This function verifies the OrderedCertGroup. This function accepts a list of opaque certificates
and verifies the signatures on each certificate according to conventions defined by the CLM
developer. For example, if the X509 certificate model is being used then a signature chain is
verified. The OrderedCertGroup is expected to be the output of acall to
CSSM_CL_CertGroupConstruct(). The verification will fail if arevoked certificate isfound in
the certificate group, improper ordering of the certificate group is found, a certificate in the group
failsto verify, or a self-signed root certificate cannot be found in RootCerts or in the ROOT
databases in the DBList. If RootCertsis non-NULL, the ROOT databases in the DBList will not
be checked to verify the existence of aroot certificate.

Parameters

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CSPHandle (input)
The handle that describes the add-in cryptographic services module used to perform all
verifications on this certificate group.

OrderedCertGroup (input)
The set of related certificates presented for verification.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified. A
null input verifies all the fields in the certificate.

ScopeSize (input)
The number of entriesin the verify scope list.

RootCerts (input)

The set of trusted root certificates that may have been used to sign one or more of the certificates
in the CertGroup. These certificates are recognized as trusted signers and represent the
termination of one verification path among the certificates in the CertGroup. If this value is non-
NULL then checking for trusted root certificates will done exclusively in the RootCerts list, and
not in any of the ROOT databases included in the DBL.ist.

Return Value

CSSM_TRUE if the certificate verified. CSSM_FAL SE if the certificate did not verify or an
error condition occurred. Use CSSM_GetError() to obtain the error code.

Error Codes

Vaue Description

Release 1.2 Common Security Services M anager Page 33
Certificate Library Interface Specification

CSSM_INVALID _CL_HANDLE Invalid certificate library handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_CONTEXT Invalid context for the requested operation
CSSM_CL_INVALID_CERT_GROUP Invalid certificate group
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_VERIFY_FAIL Unable to verify certificate
CSSM_MEMORY_ERROR Internal memory error

See Also

CL_CertGroupConstruct, CL_CertGroupPrune

Release 1.2 Common Security Services M anager Page 34
Certificate Library Interface Specification

2.5 CRL Operations

This section describes the function prototypes and error codes expected for the functionsin the CLI. The
functions will be exposed to CSSM via a function table, so the function names may vary at the discretion
of the certificate library developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications. The error codes given in this section
constitute the generic error codes that are defined by CSSM for use by all certificate libraries in describing
common error conditions. A certificate library developer may also define their own module-specific error
codes, as described in Section 3.5.2.

2.5.1 CL_CrlCreate

CSSM_DATA_PTR CSSMCLI CL_CriCreate (CSSM_CL_HANDLE CLHandle)
This function creates an empty, memory-resident CRL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Return Value
A pointer to the CSSM_DATA structure containing the new CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_MEMORY_ERROR Not enough memory to allocate for the CRL

CSSM_CL_CRL_CREATE_FAIL Unable to create CRL

Release 1.2 Common Security Services M anager Page 35
Certificate Library Interface Specification

2.5.2 CL_CrlAddCert

CSSM_DATA_PTR CSSMCLI CL_CrlAddCert (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR RevokerCert,
CSSM_REVOKE_REASON RevokeReason,
const CSSM_DATA_PTR OIdCrl)

This function revokes the input certificate by adding a record representing the certificate to the
CRL. It uses the revoker’s certificate to sign the new record in the CRL. The reason for revoking
the certificate may also be stored in the revocation record.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be revoked.

Revoker Cert (input)
A pointer to the CSSM_DATA structure containing the revoker’s certificate.

RevokeReason (input)
The reason for revoking the certificate.

OIdCrI (input)
A pointer to the CSSM_DATA structure containing the CRL to which the newly revoked
certificate will be added.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CC_HANDLE Invalid Context Handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL Invalid CRL
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_ADD_CERT_FAIL Unable to add certificate to CRL

See Also

CL_CrlRemoveCert

Release 1.2 Common Security Services M anager Page 36
Certificate Library Interface Specification

2.5.3 CL_CrIRemoveCert

CSSM_DATA_PTR CSSMCLI CL_CrIRemoveCert (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR OIdCrl)

This function unrevokes a certificate by removing it from the input CRL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be unrevoked.

OIdCrI (input)
A pointer to the CSSM_DATA structure containing the CRL from which the certificate is to be
removed.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL Invalid CRL
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL

CSSM_CL_CRL_REMOVE_CERT_FAIL Unable to remove certificate from CRL

See Also
CL_CrlAddCert

Release 1.2

Common Security Services M anager Page 37
Certificate Library Interface Specification

2.5.4 CL_CrlSign

CSSM_DATA_PTR CSSMCLI CL_CrlSign (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DATA_PTR UnsignedCirl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs, in accordance with the specified cryptographic context, the fields of the CRL
indicated in the SgnScopeparameter.

Parameters

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)

The handle that describes the context of this cryptographic operation.

UnsignedCrl (input)

A pointer to the CSSM_DATA structure containing the CRL to be sighed.

SgnerCert (input)

A pointer to the CSSM_DATA structure containing the certificate to be used to sign the CRL.

SignScope (input)

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be signed. A
null input signs all the fieldsin the CRL.

ScopeSize (input)

The number of entriesin the sign scope list.

Return Value

A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CC_HANDLE Invalid Context Handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer
CSSM_CL_INVALID_SCOPE_PTR SignScope pointer isinvalid
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_SIGN_FAIL Unableto sign CRL

See Also

CL_CrlVerify

Release 1.2 Common Security Services M anager Page 38
Certificate Library Interface Specification

2.5.5 CL_CrlVerify

CSSM_BOOL CSSMCLI CL_CrlVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies that the signed CRL has not been altered since it was signed by the
designated signer. It does this by verifying the digital signature on the VerifyScope fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the CRL to be verified.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the CRL.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified. A
null input verifies all the fieldsin the CRL.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the certificate revocation list verifies successfully.
When CSSM_FAL SE isreturned, either the CRL verified unsuccessfully or an error has
occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CC_HANDLE Invalid Context Handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer
CSSM_CL_INVALID_SCOPE_PTR VerifyScope pointer isinvalid
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_VERIFY_FAIL Unable to verify CRL

See Also

CL_CrlSign

Release 1.2 Common Security Services M anager Page 39
Certificate Library Interface Specification

256 CL_IsCertInCrl

CSSM_BOOL CSSMCLI CL_IsCertInCrl (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR Crl)

This function searches the CRL for arecord corresponding to the certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be located.

Crl (input)
A pointer to the CSSM_DATA structure containing the CRL to be searched.

Return Value
A CSSM_TRUE return value signifies that the certificate isin the CRL. When CSSM_FALSE is
returned, either the certificate is not in the CRL or an error has occurred. Use CSSM _ GetError to
obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid CL handle

CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer

Release 1.2 Common Security Services M anager Page 40
Certificate Library Interface Specification

2.5.7 CL_CrlGetFirstFieldVvalue

CSSM_DATA_PTR CSSMCLI CL_CrlGetFirstFieldvValue (CSSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Crl,

const CSSM_OID_PTR CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOfM atchedCrls)

This function returns the value of the designated CRL field. If more than one field matches the
CrlField OID, the first matching field will be returned. The number of matching fieldsis an
output parameter, as is the ResultsHandle to be used to retrieve the remaining matching fields.

Parameters
CLHandle (input)

The handle that describes the add-in certificate library module used to perform this function.

Crl (input)

A pointer to the CSSM_DATA structure that contains the CRL from which the first revocation

record isto be retrieved.

CrlField (input)

A pointer to an object identifier that identifies the field value to be extracted from th@rl.

ResultsHandl e (output)

A pointer to the CSSM_HANDLE, which should be used to obtain any additional matching

fields.

Number OfMatchedFields (output)

The number of fields that match theCrlField OID.

Return Value

Returns a pointer to a CSSM_DATA structure containing the first field that matched the
CrlField If the pointer isNULL, an error has occurred. Use CSSM_GetError to abtain the error

code.

Error Codes
Value

Description

CSSM_CL_INVALID_CL_HANDLE
CSSM_CL_INVALID_DATA_POINTER
CSSM_CL_UNKNOWN_FORMAT
CSSM_CL_UNKNOWN_TAG
CSSM_CL_MEMORY_ERROR
CSSM_CL_NO_FIELD_VALUES
CSSM_CL_CRL_GET_FIELD_VALUE_FAIL

See Also
CL_CrlGetNextFieldValue, CL_CrlAbortQuery

Invalid Certificate Library Handle
Invalid pointer input

Unrecognized CRL format

Unknown field tag

Not enough memory

No field values for this results handle
Unable to get field value

Release 1.2 Common Security Services M anager Page 41
Certificate Library Interface Specification

2.5.8 CL_CrlGetNextFieldValue

CSSM_DATA_PTR CSSMCLI CL_CrlGetNextFieldvValue (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next CRL field that matched the OID in acall to
CL_CirlGetFirstFieldValue.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle that identifies the results of a CRL query.

Return Value
Returns a pointer to a CSSM_DATA structure containing the next field in the CRL, which
matched the CrlField specified in the CL_CrlGetFirstFieldVaue function. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_RESULTS HANDLE Invalid results handle
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_NO _FIELD _VALUES No field values for this results handle
CSSM_CL_CRL_GET_FIELD _VALUE_FAIL Unableto get field value

See Also

CL_CrlGetFirstFieldvalue, CL_CrlAbortQuery

Release 1.2 Common Security Services M anager Page 42
Certificate Library Interface Specification

2.5.9 CL_CrlAbortQuery

CSSM_RETURN CSSMCLI CL_CrlAbortQuery (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CL_CrlGetFirstFieldVaue and alows the CL to
release all intermediate state information associated with the query.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle that identifies the results of a CRL query.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID RESULTS HANDLE Invalid results handle
CSSM_CL_CRL_ABORT_QUERY_FAIL Unable to abort query

See Also

CL_CirlGetFirtsFieldVaue, CL_CrlGetNextFieldvVaue

Release 1.2 Common Security Services M anager Page 43
Certificate Library Interface Specification

2.5.10 CL_CrIDescribeFormat

CSSM_OID_PTR CSSMCLI CL_CrlIDescribeFormat (CSSM_CL_HANDLE CLHandle,
uint32 * NumberOfFields)

This function returns alist of the object identifiers used to describe the CRL format supported by
the specified CL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Number OfFields (output)
The length of the outputarray.

Return Value
A pointer to the array of CSSM_OID structures which are supported for CRL operationsin the
specified CL module. If the return pointer is NULL, an error has occurred. Use CSSM_GetError
to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid handle
CSSM_CL_INVALID_POINTER Invalid pointer
CSSM_CL_MEMORY_ERROR Error allocating memory

CSSM_CL_CRL_DESCRIBE_FORMAT_FAIL Unableto return the list of fields

Release 1.2 Common Security Services M anager Page 44
Certificate Library Interface Specification

2.6 Extensibility Functions

The CL_PassThrough function is provided to allow CL developers to extend the certificate and CRL
format-specific functionality of the CSSM API. Becauseit isonly exposed to CSSM as a function pointer,
its name internal to the certificate library can be assigned at the discretion of the CL module devel oper.
However, its parameter list and return value must match what is shown below. The error codes givenin
this section constitute the generic error codes, which may be used by all certificate libraries to describe
common error conditions. Certificate library developers may also define their own modul e-specific error
codes, as described in Section 3.5.2.

2.6.1 CL_PassThrough

CSSM_DATA_PTR CSSMCLI CL_PassThrough (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughld,
const CSSM_DATA_PTR InputParams)

This function allows applications to call certificate library module-specific operations.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

PassThroughld (input)
Anidentifier assigned by the CL module to indicate the function to perform.

InputParams (input)
A pointer to an array of CSSM_DATA structures containing parameters to be interpreted in a
function-specific manner by the requested CL module.

Return Value
A pointer to the CSSM_DATA structure containing the output from the pass-through function.
The output data must be interpreted by the calling application based on externally available
information. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the

error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle

CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_PASS THROUGH_FAIL Unable to perform pass through

Release 1.2 Common Security Services M anager Page 45
Certificate Library Interface Specification

2.7 Module Management Functions

The CL_Initialize function is used by the CSSM Core to determine whether the CL module version being
attached is compatible with the CL module version being requested and to perform any module-specific
setup activities. The CL_Uninitialize function is used to perform any module-specific cleanup activities
prior to module detach. Because these functions are only exposed to CSSM as function pointers, their
names internal to the certificate library can be assigned at the discretion of the CL module devel oper.
However, their parameter lists and return values must match what is shown below. The error codes given
in this section constitute the generic error codes, which may be used by all certificate libraries to describe
common error conditions. Certificate library developers may also define their own modul e-specific error
codes, as described in Section 3.5.2.

2.7.1 CL_lInitialize

CSSM_RETURN CSSMCLI CL_lInitialize (uint32 VerMajor,
uint32 VerMinor)

This function checks whether the current version of the CL module is compatible with the input
version and performs any module-specific setup activities.

Parameters
VerMajor (input)
The major version number of the CL module expected by the calling application.

VerMinor (input)
The minor version number of the CL module expected by the calling application.

Return Value
A CSSM_OK return value signifies that the current version of the CL module is compatible with
the input version numbers and all setup operations were successfully performed. When
CSSM_FAIL isreturned, either the current CL module isincompatible with the requested CL
module version or an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INITIALIZE_FAIL Unable to initialize the CL module
See Also

CL_Uninitialize

Release 1.2 Common Security Services M anager Page 46
Certificate Library Interface Specification

2.7.2 CL_Uninitialize

CSSM_RETURN CSSMCLI CL_Uninitialize (void)
This function performs any module-specific cleanup activities.

Parameters
None

Return Value
A CSSM_OK return value signifies that all cleanup operations were successfully performed.
When CSSM_FAIL isreturned, an error has occurred. Use CSSM _GetError to obtain the error
code.

See Also
CL_Initialize

Release 1.2 Common Security Services M anager Page47
Certificate Library Interface Specification

3. Certificate Library Structure and Management

3.1 Introduction

A certificate library is an add-in module, which can be used by applications via CSSM to perform
syntactic operations on certificates and certificate revocation lists (CRLS). Because all certificate and CRL
format-specific information is encapsulated in the certificate library, the application can focus on
interesting uses of certificates and CRLSs, rather than their format and management. The availability of
certificate libraries al'so allows a CL developer to easily customize and extend their certificate and CRL
formats to meet changing market requirements.

This section is provided to clarify key aspects of the structure and management of Certificate Libraries. It
covers the composition of a certificate library, CL installation, the expected behavior of a CL on attach,
and some basic services expected of CL functions. This section also includes examples of the code
structure for several CL functions.

3.2 Certificate Library Composition

A certificate library is a dynamically-linkable library, which is composed of functions that implement
some or al of the CSSM CLI described in Section 2. The CL must also contain a function or functions
that are called when the CL is attached and detached. Within the certificate library, the attach function
will be responsible for registering a function table with CSSM, accepting the memory management
upcalls, and performing any module-specific setup. The detach function will be responsible for any
cleanup required by the module. The remaining functions consist of some subset of the CLI| determined
by the CL developer.

The certificate library composition can be broadly classified into the following categories:
- Registration with CSSM
Memory Management
Certificate Cryptographic Operations
Certificate Field Management
Certificate Type Translation
Certificate Group Operations
CRL Cryptographic Operations
CRL Field Management
PassT hrough Operation Support

3.3 Certificate Library Installation

Before a certificate library can be used by an application, its name, location, and certificate characteristics
must be registered with CSSM by an installation application. The name of a certificate library moduleis
given by both alogical name and a globally-unique identifier (GUID). The logical nameisastring
chosen by the certificate library developer to describe the CL module. The GUID is a structure used to
differentiate between library modulesin the CSSM registry. GUIDs are discussed in more detail below.
The location of the CL module is required on installation so that CSSM can locate the module when an
application requests an attach. The certificate characteristics are registered with CSSM at install time so
that an application can query for CL module availability and features.

Release 1.2 Common Security Services M anager Page 48
Certificate Library Interface Specification

3.3.1 Global Unique Identifiers (GUIDs)

Each certificate library must have a globally-unique identifier (GUID) which will be used by CSSM,
applications, and CL modules to uniquely identify aCL. The CL GUID will be used by the CSSM
registry to expose add-in module availability to applications. The application will use the CL GUID to
identify atargeted certificate library in all CL function calls. The CL module will use its GUID to identify
itself when it sets an error.

A GUID is defined as:
typedef struct cssmaguid {
ui nt 32 Dat al;
ui nt 16 Dat a2;
ui nt 16 Dat a3;
ui nt 8 Dat a4[8] ;
} CSSM GU D, *CSSM QU D PTR,

GUID generators are publicly available for Windows* 95, Windows NT*, and on many UNIX* platforms.

3.3.2 Certificate characteristics

Certificate Libraries have certain common characteristics, which should be exposed to applications.
These characteristics are registered with CSSM during installation so that they may be queried by
applications. The characteristics that should be registered with CSSM include the version of the
certificate library, the type of certificate that it recognizes, atemplate of OIDs to describe its certificate
format, and alisting of the certificate types that can be translated into its native format.

The version of acertificate library can be used by applications to determine the compatibility of the
installed CL with itsrequired CL. If the compatible versions are unknown to the application, the
application can pass the version number that it understands to the CL at attach time. At that time, the CL
should check for compatibility and either attach or fail accordingly.

The type of certificate recognized by a certificate library module is identified by its CSSM_CERT_TY PE
as defined in cssmtype.h. These types are expected to include such well-known certificate formats as
X.509 Version 1, X.509 version 3 and SDSI aswell as custom certificate types. These same certificate
types are used to identify the certificates that can be imported into and exported from the CL module’s
native certificate format.

Advanced applications may require knowledge of the fields of the certificate. These fields are accessible
to applications via object identifiers (OIDs). These object identifiers can then be used by applications to
create and perform queries on certificates and CRLs.

3.3.3 Object Identifiers (OIDs)

A certificate library makes its fields known to applications via object identifiers (OIDs). These OIDs are
used to reference specific data types or data structures within a given certificate or CRL format. OlDs are
defined by the certificate library developer at a granularity appropriate for the expected usage of the CL.

If acertificate format potentially contains more than one instance of agiven OID,
CL_CertGetFirstFieldValue and CL_CertGetNextFieldValue have been included in the CLI to aid the
application in obtaining all instances of the requested OID. For example, the Intel CLM certificate format
allows for multiple signers on a single certificate. The application can obtain all of the signatures by a
call to CL_CertGetFirstFieldValue followed by multiple callsto CL_CertGetNextFieldValue.

Release 1.2 Common Security Services M anager Page 49
Certificate Library Interface Specification

3.4 Attaching a Certificate Library

Before an application can use the functions of a specific CL, it must attach the CL to CSSM using the
CSSM_CL_Attachfunction. On attach, the certificate library uses thaCSSM_CL_ Register Services
function to register its function table with CSSM and to obtain the application’s memory management
upcalls from CSSM. CSSM will use the CL module’s function table to direct calls from the application to
the correct function in the certificate library module. The CL module uses the memory management
upcallsto allocate any memory that will be returned to the calling application and to free any memory that
it received from the calling application.

When CSSM attaches to or detaches from a certificate library module, it initiates a function in the CL that
performs the necessary setup and cleanup operations. The attach and detach functions will vary
depending on the target operating system for the certificate library module. For example, DIIMain would
be used to implement these functions in a CL targeted to Windows NT*. _init and _fini would be used to
implement these functionsin a CL targeted to SunOS*.

3.4.1 The CL module function table

The function table for a certificate library module is a structure that contains pointers to the CL modul€e’s
implementation of the functions specified in the Certificate Library Interface. This structureis specified
as a part of the CSSM header file, cssmcli.h. If a CL does not support some function in the CL1, the
pointer to that function should be set to NULL.

3.4.2 Memory management upcalls

All memory allocation and de-allocation for data passed between the application and the CL module via
CSSM is ultimately the responsibility of the calling application. Since the CL module will need to
allocate memory in order to return data to the application, the application must provide the CL module a
means of allocating memory, which the application has the ability to free. 1t does this by providing the
CL module with memory management upcalls.

Memory management upcalls are simply pointers to the memory management functions used by the
calling application. They are provided to the CL module via CSSM as a structure of function pointers.
The functions will be the calling application’s equivalent of malloc, free, re-alloc and calloc and will be
expected to have the same behavior as those functions. The function parameters will consist of a CL
handle followed by the normal parameters for that function. The CL handle is used by CSSM to direct the
memory operation to the target application. The function return values should be interpreted in the
standard manner. The CL module is responsible for making the memory management functions available
to all of itsinternal functions.

3.5 Certificate Library Basic Services

3.5.1 Function Implementation

A certificate library developer may choose to implement some or all of the functions specified in the CLI.
The expected behavior of each function is detailed in Section 2 of this document.

A certificate library developer may choose to leverage the capabilities of another CL module to implement
certain functions. To do this, the CL would attach to another CL usin€@SSM_CL_Attach Subsequent
function calls to the first CL would call the corresponding function in the second CL for some or all of its
implementation.

Release 1.2 Common Security Services M anager Page 50
Certificate Library Interface Specification

3.5.2 Error handling

When an error occurs, the function in the CL module should call th€SSM_SetErrorfunction. The
CSSM_SetErrorfunction takes the module’ s GUID and an error number as inputs. The module’ s GUID
will be used to identify where the error occurred. The error number will be used to describe the error.

The error number set by the CL module should fall into one of two ranges. The first range of error
numbers is pre-defined by CSSM. These are errors, which are expected to be common to all CL modules
implementing a given function. They are described in this document as part of the function definitionsin
Sections 2.3, 2.4, and 2.5. They are defined in the header file cssmerr.h, which is distributed as part of
CSSM. The second range of error numbers is used to define module-specific error codes. These module-
specific error codes should be in the range of CSSM_CL_PRIVATE_ERROR to
CSSM_CL_END_ERROR. CSSM_CL_PRIVATE_ERROR and CSSM_CL_END_ERROR are also
defined in the header file cssmerr.h. The CL module developer is responsible for making the definition
and interpretation of their module-specific error codes available to applications.

When no error has occurred, but the appropriate return value from a function is CSSM_FAL SE, that
function should call CSSM_ClearErrorbefore returning. When the application receives a CSSM_FALSE
return value, it is responsible for checking whether an error has occurred by callinGSSM_GetError. |If
the function in the CL module has calledCSSM_ClearError, the calling application will receive
CSSM_OK response from theaCSSM_GetErrorfunction, indicating that no error has occurred.

3.6 Certificate Utility Libraries

Certificate utility libraries are software components that may be provided by a certificate library developer
for use by other certificate library developers. They are expected to contain functions that may be useful to
several certificate library modules, such as BER and DER encoding and decoding. The certificate utility
library developer is responsible for making the definition, interpretation, and usage of their library
available to other CL module developers.

Release 1.2 Common Security Services M anager
Certificate Library Interface Specification

Page51

3.7 Attach/Detach Example

The certificate library module is responsible for performing certain operations when CSSM attaches to
and detaches from it. CL modules that have been developed for Windows-based systems will use the
DIIMain routine to perform those operations, as shown in the example below.

3.7.1 DlIMain
CssM@JDintel _clmguid =

{ O0x83bafc39, Oxfacl, Ox1lcf, { O0x81, 0x72, 0x0, Oxaa, Ox0, Oxbl, 0x99, Oxdd }

s

BOOL WNAPI DI Main (HANDLE hl nst ance, DWORD dwReason,

{
swi t ch (dwReason)

{
case DLL_PROCESS ATTACH

{
CSSM SPI_CL_FUNCS Functi onTabl €;
CSSM SPI _FUNC TBL_PTR Upcal | Tabl e;

/* Fill in FunctionTable with function
Functi onTabl e. Cert Si gn

Functi onTabl e. Cert Unsi gn

FunctionTabl e. Cert Verify

FunctionTabl e. Cert O eat e

Functi onTabl e. Cert Vi ew

FunctionTabl e. Cert Get Fi r st Fi el dVal ue
Functi onTabl e. Cert Get Next Fi el dVval ue
Functi onTabl e. Cert Abort Query

Functi onTabl e. Cert Get Keyl nfo
FunctionTabl e. Cert Get Al | Fi el ds

Functi onTabl e. Cert | nport

Functi onTabl e. Cert Export

Functi onTabl e. Cert Descri beFor mat

Funct i onTabl e. Cert @ oupConst r uct
Functi onTabl e. Cert @ oupVerify
Functi onTabl e. Cert G oupPr une

FunctionTable. Ol Oeate
FunctionTabl e. O | AddCert

Functi onTabl e. O | RenoveCert
FunctionTabl e. Ol Sign

FunctionTabl e. O | Verify

FunctionTabl e. I sCert| nCrl
FunctionTabl e. O | Get Fi r st Fi el dval ue
Functi onTabl e. O | Get Next Fi el dVval ue
Functi onTabl e. O | Abort Query

Functi onTabl e. O | Descri beFor mat

Funct i onTabl e. PassThr ough
FunctionTable.Initialize
FunctionTable. Uninitialize

LPVA D | pReser ved)

poi nters */

= CL_CertSign;

= CL_

PR PPPPPPPPPP PRE PEEPPPPPPPP

a_

Cer t Unsi gn;
_Cert\Verify;
_CertCreate;

_Cert Vi ew

_Cert Get FirstFi el dval ue;
_Cert Get Next Fi el dval ue;
_Cert Abort Query;

_Cert Get Keyl nf o;
_CertGet Al l Fi el ds;

t Descri beFor mat ;

rt @ oupConstruct;
rt @ oupVerify;
rt @ oupPr une;

| Rem)veOert

L;
L;
_Cer
_Ce
Oe
_Ce
O
_ O | AddCert;
O
O
Orl Ver i fy,

sCertInOl;
Orl GetFirst F| el dval ue;
_ Ol Get Next Fi el dval ue;
_ Ol Abort Query;
_ Q| Descri beFor nat ;
_PassThr ough;
_Initialize;
Uninitialize;

/* Call CSSM CL_RegisterServices to register the FunctionTabl e */

/* with CSSMand to receive the application’s nenory upcal |

table */

Release 1.2 Common Security Services M anager
Certificate Library Interface Specification

Page 52

if (CSSM COL_RegisterServices (& ntel _clmguid, FunctionTabl e,
&Jpcal | Tabl e) ! = CSSM K)
return FALSE;

/* Make the upcall table available to all functions in this library
*/

br eak;

}
case DLL_THREAD ATTACH
br eak;
case DLL_THREAD DETACH
br eak;
case DLL_PROCESS DETACH
if (CSSM COL_DeregisterServices (& ntel _clmguid) !'= CSSM X)
return FALSE;
br eak;

return TRUE
}

Release 1.2 Common Security Services M anager
Certificate Library Interface Specification

Page 53

3.8 Certificate Operations Examples
This section contains sample implementations of certificate functions in the certificate library.

3.8.1 CL_CertCreate

Nane: CL_CertCreate

Descri pti on:

This function allocates and initializes nemory for a certificate
based on the input tag/val ues pairs. The returned certificate
must be signed using the CSSM CL_Cert Si gn functi on.

Par anet er s:
Cert Tenpl ate (i nput) : Apointer to an array of tag/value pairs

which identify the fields of the new certificate
Nunmber O Fields (input) : The length of the CertTenpl ate array

Ret urn val ue:
The new certificate

Error Codes:

CSSM CL_| NVALI D_CL_HANDLE

CSSM CL_| NVALI D_FI ELD_PQ NTER

CSSM CL_| NVALI D TEMPLATE

CSSM CL_ MEMORY_ERRCR

CSSM _CL_UNSUPPCORTED CPERATI ON

CSSM CL_CERT_CREATE_FAl L

CSSM DATA PTR CSSMOLI CL_CertCreate (CSSM CL_HANDLE CLHandl e,

const CSSM FI ELD PTR Cert Tenpl at e,
ui nt 32 Nunber O Fi el ds)

/* Initializations */

CSSM CERTI FI CATE_PTR cert_ptr = NULL;
CSSM DATA PTR packed_cert_ptr = NULL;
CSSM ERRCR PTR err_ptr = NULL;

uint32 i =0;

/* Check inputs */
/* Check that this is a valid CLHandl e */
if (CLHandl e == 0)

{
CSSM SetError (& ntel _clmguid, CSSM CL_I NVALID O._HANDLE) ;
return NULL;
}
/* Check that the NunberCfFields is greater than O
and that the CertTenplate pointer is not NULL */
if ('NunberCFields || !CertTenplate)
{

CSSM SetError (& ntel _cl mguid, CSSM CL_I NVALI D TEMPLATE) ;
return NULL;

/* Check that CertTenplate is a valid pointer */
if (cssmlsBadReadPtr (CertTenpl ate, Nunber O Fi el ds*si zeof (CSSM FI ELD)) ||
cssm | sBadReadPt r (Cert Tenpl at e[Nunber O Fi el ds- 1] . Fi el dVal ue. Dat a,
Cer t Tenpl at e[Nunber O Fi el ds- 1] . Fi el dVal ue. Length) ||

Release 1.2 Common Security Services M anager Page54
Certificate Library Interface Specification

cssm | sBadReadPt r (Cert Tenpl at e[Nunber O Fi el ds- 1] . Fi el dQ d. Dat a,
Cer t Tenpl at e[Nunber O Fi el ds- 1] . Fi el dG d. Length))

CSSM SetError (& ntel _cl mguid, CSSM CL_I NVALI D TEMPLATE) ;
return NULL;
}

/* Allocate a new certificate structure */
cert_ptr = Upcal | Tabl e. mal | oc_func(CLHandl e, si zeof (CSSM CERTI FI CATE)) ;
if (cert_ptr == NULL)

CSSM SetError (& ntel _cl _guid, CSSM O._MEMORY_ERRCR) ;
return NULL;

}
nmenset (cert_ptr, 0, sizeof (CSSM CERTI FI CATE));

/* Loop through the CertTenpl ate array */
for(i=0; i < NunberCFields; i++)

{
/* Check that this field contains a valid data pointer */
if ('cl_lsBadReadPtr (CertTenplate[i].Fi el dval ue. Dat a,
Cert Tenpl ate[i] . Fi el dval ue. Lengt h))
{
/* 1f so, copy the data into the certificate structure */
/* Add QL nodul e-specific code here */
}
el se
CSSM SetError (& ntel _cl_guid, CSSM C__I NVALI D Fl ELD PO NTER);
/* Free the certificate structure */
return NULL;
}
}

/* Add internal, CL.-generated certificate information */
/* Add CL nodul e-specific code here */

/* If there are signatures on this cert, delete them?*/
/* Anewy created cert is assuned to be unsigned */
/* Add CL nodul e-specific code here */

/* Pack the new certificate */

/* The pack routine will allocate menory for the new cert using the
application’s nenory allocation routines */

packed_cert_ptr = cl _PackCertificate(cert_ptr);

/* deanup */
/* Free the certificate structure */

/* Return the packed certificate */
return packed_cert_ptr;

Release 1.2 Common Security Services M anager Page 55

Certificate Library Interface Specification

3.9 CRL Operations Examples

This section contains sample implementations of certificate revocation list functions in the certificate
library.

3.9.1 CL_CrlAddCert

* Name: COL_O| AddCert

*

* Description:

* This function revokes the input certificate by adding a record representing

* the certificate to the CRL. It uses the revoker’'s certificate to sign the
new

* record in the CRL. The reason for revoking the certificate may al so be
stored

* in the revocation record.

*

* Paraneters:

* Cert (input) : Apointer to the CSSM DATA structure containi ng
t he

* certificate to be revoked

* Revoker Cert (input) : Apointer to the CSSM DATA structure containi ng
t he

*

revoker’s certificate
* RevokeReason (i nput) : The reason for revoking the certificate
adal (input) : Apointer to the CSSM DATA structure containi ng

t he

CRL to which the newly revoked certificate will be
added

*

h

*

*

*

* Return val ue:

* The updated CRL
*

* BError Codes:

* CSSM CL_| NVALI D CL_HANDLE

* CSSM CL_| NVALI D_OC_HANDLE

* CSSM CL_| NVALI D_CERTI FI CATE_PTR
* CSSM CL_I NVALI D CRL

* CSSM CL_MEMORY_ERRCR

* CSSM CL_CRL_ADD CERT FAl L

CSSM DATA PTR CSSMOLI OL_Or | AddCer t (CSSM CL_HANDLE CLHandl e,
CSSM CC HANDLE OCHandl e,
const CSSM DATA PTR Cert,
const CSSM DATA PTR Revoker Cert,
CSSM REVCKE_REASON RevokeReason,
const CSSM DATA PTR A dOl)

CSSM _REVOCATI ON LI ST_PTR new crl _ptr = NULL;

CSSM DATA PTR new crl _data_ptr = NULL;

CSSM DATA PTR sign_data ptr = NULL;

CSSM REVCKED _CERT_PTR new _revoked_cert _ptr = NULL;
CSSM REVCKED _CERT_PTR tenp_revoked_cert _ptr NULL;
CSSM REVCKED _CERT_PTR prev_revoked_cert _ptr NULL;

CSSM CERTI FI CATE_PTR revoker _cert_ptr = NULL;
CSSM CERTI FI CATE_PTR cert_ptr = NUL;

Release 1.2 Common Security Services M anager Page 56
Certificate Library Interface Specification

ui nt 32 si gnat ure_si ze;

CSSM DATA PTR signature_data ptr = NULL;
CSSM CONTEXT_PTR cont ext _ptr = NULL;
CSSM RETURN ret;

/* Check inputs */

i f(CLHandl e == 0)

{
CSSM Set Error (& ntel _cl mguid, CSSM CL_I NVALI D CL_HANDLE) ;
return NULL;

}

i f(CCHandl e == 0)

{
CSSM Set Error (& ntel _cl mguid, CSSM CL_I NVALI D_CC HANDLE) ;
return NULL;

}

i f(Cert == NULL)

{
CSSM Set Error (& ntel _cl mguid, CSSM C__I NVALI D_CERT_PA NTER) ;
return NULL;

}
if(Cert '= NULL & cssm | sBadReadPtr(Cert, sizeof (CSSM DATA)))

{
CSSM SetError (& ntel _clmguid, CSSM CL_I NVALI D DATA PO NTER) ;

return NULL;

}
if(Cert->Length =0 & c ssmlsBadReadPtr(Cert->Data, Cert->Length))

{
CSSM SetError (& ntel _clmguid, CSSM CL_I NVALI D CERT_PA NTER) ;
return NULL;

}

i f (RevokerCert == NULL)

{

CSSM Set Error (& ntel _cl mguid, CSSM CL_I| NVALI D REVOKER _CERT_PTR) ;
return NULL;

}
i f (RevokerCert->Length != 0 &% cssm | sBadReadPt r (Revoker Cert - >Dat a, Revoker Cert -
>Lengt h))

{
CSSM SetError (& ntel _cl mguid, CSSM CL_I NVALI D REVCKER CERT_PTR);
return NULL;

}

if(Adol == NUL)

{

CSSM SetError (& ntel _clmguid, CSSM CL_INVALID CRL_PTR);
return NULL;

}

i f(cssmlsBadReadPtr (A dOl, sizeof (CSSM DATA)))

{
CSSM SetError (& ntel _clmguid, CSSM CL_INVALID CRL_PTR);
return NULL;

}
if(Adal->Length '= 0 & !cssmlsBadReadPtr (A dC | ->Data, AdO -
>Lengt h))
{
/* Unpack the CRL */
new crl_ptr = cl_UWdPackOr | (CLHandl e, &venor yFuncti ons, A dO'l);
if(newcrl_ptr == NUL)

Release 1.2 Common Security Services M anager Page57
Certificate Library Interface Specification

CSSM SetError (& ntel _cl mguid, CSSM CL_MEMORY_ERRCR) ;
return NULL;
}

/* renove the crl signature, if necessary */
/* unpack the revoker’'s certificate */
revoker_c ert_ptr =

cl _UnpackCertifi cat e(CLHandl e, &nor yFunct i ons, Revoker Cert) ;
i f(revoker_cert_ptr == NULL)

{
/* deanup */
CSSM SetError (& ntel _cl mguid, CSSM CL_MEMORY_ERRCR) ;
return NULL;

}

/* unpack the certificate to be revoked */
cert_ptr = cl_UnpackCertifi cat e(CLHandl e, &&nor yFuncti ons, Cert);;
if(cert_ptr == NULL)

/* deanup */
CSSM SetError (& ntel _cl mguid, CSSM CL_MEMORY_ERRCR) ;

return NULL;

}

/* Oreate the revoked certificate structure to be placed in the CRL
*/

/* Add any revoca tion record-specific infornmation,

such as the time of revocation and the revocation reason */

/* Sign the revoked certificate structure using the revoker’s certificate */

}

/* Add the new revocation record to the CRL */

/* Pack the new CRL */
new crl _data ptr = cl_PackCO| (CLHandl e, &&noryFuncti ons, new crl _ptr);

/* deanup & Return */
return new crl _data_ptr;

Release 1.2 Common Security Services M anager Page 58
Certificate Library Interface Specification

3.10 Extensibility Functions Examples
This section contains a sample implementation of the pass-through function in the certificate library.

3.10.1 CL_PassThrough

In this example, the pack and unpack routines that are used internally to the CL module are exposed for
use by applications via the pass-through mechanism.

typedef enumcl _customfunction_id {
CL_QUSTOM D_PACK_CERTI FI CATE = 0,
CL_QUSTOM D_UNPACK_CERTI FI CATE =1,
} CL_QUSTOM FUNCTI ON I Dy

* Nanme: CL_PassThrough

*

* Description:

* This function allows applications to call CSSM CL nodul e-specific
oper ati ons.

* The CSSM CL nodul e- speci fi ¢ operations i ncl ude:

* cl _PackCertificate

cl _UnpackCertificate

Par anet er s:

CCHandl e (i nput) : Handl e identifying a O yptographic Context which
may be used by the pass-through function

PassThroughld (input) : An identifier assigned by the CSSM CL nodul e
to indicate the exported function to perform

I nput Parans (i nput) : Parameters to be interpreted in a
function-specific manner by the CSSM CL nodul e.

*

*

*

*

*

*

*

*

*

*

* Return val ue:

* Qutput fromthe pass-through function.
* The output data nmust be interpreted by the calling application
* based on externally available information.

*
*
*
*
*
*
*
*
/

Error Codes:

CSSM CL_| NVALI D_CL_HANDLE
CSSM CL_| NVALI D_OC HANDLE
CSSM CL_| NVALI D_DATA PO NTER
CSSM CL_UNSUPPCRTED CPERATI ON
CSSM CL_PASS THROUGH FAI L

CSSM DATA PTR CSSMCLI CL_PassThrough (CSSM CL_HANDLE CLHandl e,
CSSM OC_HANDLE CCHandl e,
ui nt 32 PassThroughl d,
const CSSM DATA PTR | nput Par ans)

/* Initializations */
/* Check inputs */
/* Check that this is a recogni zed PassThroughld */

/* Call the requested function */
switch (PassThroughld) {
case CL_QUSTOM D_PACK_CERTI FI CATE

Release 1.2 Common Security Services M anager Page 59
Certificate Library Interface Specification

return cl _PackCertificate(|nputParans);
case CL_QUSTCM D_UNPACK_CERTI FI CATE:
return cl _UnpackGCertificate(|nputParans);
defaul t:
CSSM Set Error (& ntel _cl _guid, CSSM CL_UNSUPPCORTED CPERATI ON) ;
return NULL;

Release 1.2 Common Security Services M anager Page 60
Certificate Library Interface Specification

4. Appendix A. Relevant CSSM API functions

4.1 Overview

There are several API functions that will be particularly relevant to certificate library developers, either
because they are used by the application to access the CL module or because they are used by the CL
modul e to access CSSM services, such asthe CSSM registry or the error-handling routines. They have
been included in this appendix for quick-reference by CL module developers. For additional information,
the CL module developer is encouraged to reference th€SSM Application Programming Interface

4.2 Data Structures

421 CSSM_CERT_TYPE

This variable specifies the type of certificate supported by a certificate library and the types of certificate
types understood for import and export. They are expected to define such well-known certificate formats
as X.509 Version 3 and SDSI as well as custom certificate formats.

t ypedef enum cssmcert_type {
CSSM CERT_UNKNOME 000,

CSSM CERT_X 509v1 = 0x01,
CSSM CERT_X 509v2 = 0x02,
CSSM CERT_X 509v3 = 0x03,

CSSM CERT_Fortezza = 0x07,

CSSM CERT_PGP = 0x04,
CSSM CERT_SPKI = 0x05,
CSSM CERT_SDSIvl = 0x06,
CSSM CERT Intel = 0x08,
CSSM CERT_ATTRI BUTE_BER = 0x09, /* ber encoded X 509 attribute cert */
CSSM CERT_LAST = OxFF

} CSSM CERT TYPE, *CSSM CERT TYPE PTR

4.2.2 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssmdata {
ui nt 32 Lengt h;
ui nt 8* Dat a;

} CSSM DATA, *CSSM DATA PTR

Definition:
Length - The length, in bytes, of the memory block pointed to bpata.

Data - A pointer to a contiguous block of memory.

4.2.3 CSSM_OID
The object identifier (OID) is used to identify the data types and data structures of a certificate or CRL.

t ypedef CSSM DATA CSSM A D

Release 1.2 Common Security Services M anager Page 61
Certificate Library Interface Specification

424 CSSM_GUID
A GUID is aglobally-unique identifier, which is used to uniquely identify a CL.

typedef struct cssmaguid {
ui nt 32 Dat al;
ui nt 16 Dat a2;
ui nt 16 Dat a3;
ui nt 8 Dat a4[8] ;
} CSSM GU D, *CSSM QU D PTR,

425 CSSM_CLINFO

Certificate Libraries have certain common characteristics, which should be exposed to applications.
These characteristics are given by the CSSM_CLINFO structure, which is registered with CSSM during
installation so that they may be queried by applications.

typedef struct cssmclinfo {
CSSM CERT_TYPE Cert Type;

ui nt 32 Nunber O Fi el ds;
CSSM A D PTR CertTenpl at e;

ui nt 32 Ver Myj or ;

ui nt 32 Ver M nor ;

CSSM BOOL Mul ti TaskEnabl ed;
ui nt 32 Nurber O Types;

CSSM CERT_TYPE_PTR Cert Transl ati onType;
} CSSM CLINFQ *CSSM CLI NFO PTR

Definition:
CertType- An identifier for the type of certificate format supported by the CL.

Number OfFields- The number of certificate object identifiers. This number also indicates the length
of the CertTemplatearray.

CertTemplate- A pointer to an array of object identifiers (OIDs) which identify the tags of the
supported certificate format.

VerMajor - The major version number of the add-in module.
VerMinor - The minor version number of the add-in module.
MultiTaskEnabled -A Boolean variable indicating whether or not this library supports multi-tasking.

Number OfTypes- The number of certificate types that this certificate library add-in module can
import and export. This number also indicates the length of th€ertTranslationTypearray.

CertTranslationType- A pointer to an array of certificate types. This array indicates the certificate
types that can be imported into and exported from this certificate library modul€’s native certificate

type.

Release 1.2 Common Security Services M anager Page 62
Certificate Library Interface Specification

4.2.6 CSSM_SPI_FUNC_TBL

This data structure contains function pointers to the calling application’s memory management routines.
These routines will be used by the CL module to allocate and free any memory that belongs to or will
belong to the application.

typedef struct cssmspi_func_thl {

void *(*nal l oc_func) (CSSM HANDLE, uint32);

void (*free_func) (CSSM HANDLE, void *);

void *(*realloc_func) (CSSM HANDLE, void *, uint32);

void *(*calloc_func) (CSSM HANDLE, uint32 num uint32 size);
} CSSM SPI_MEMORY_FUNCS, *CSSM SPI_ MEMORY_FUNCS PTR

Release 1.2 Common Security Services M anager Page 63
Certificate Library Interface Specification

4.3 Function Definitions

4.3.1 CSSM_CL_lInstall

CSSM_BOOL CSSMAPI CSSM_CL _Install (const char *CLName,
const char * CLFileName,
const char * CL PathName,
const CSSM_GUID_PTR GUID,
const CSSM_CLINFO_PTR CLInfo,
const void * Reserved],
const CSSM_DATA_PTR Reserved?)

This function updates the CSSM persistent internal information about the CL module.

Parameters
CLName (input)
The name of the certificate library module.

CLFileName (input)
The name of file that implements the certificate library.

CLPathName (input)
The path to the file that implements the certificate library.

GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

CLInfo (input)
A pointer to the CSSM _CLINFO structure containing information about the CL module.

Reservedl (input)
Reserve data for the function.

Reserved?2 (input)
Reserve data for the function.

Return Value
A CSSM_TRUE return value signifies that information has been updated. When CSSM_FAL SE
is returned, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_DATA_POINTER Invalid pointer
CSSM_INVALID_CLINFO_POINTER Invalid pointer
CSSM_INVALID_POINTER Invalid pointer
CSSM_INSTALL_FAIL Unable to update internal information
See Also

CSSM_CL_Uninstall

Release 1.2 Common Security Services M anager Page 64
Certificate Library Interface Specification

4.3.2 CSSM_CL_Uninstall

CSSM_BOOL CSSMAPI CSSM_CL_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the persistent CSSM internal information about the CL module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

Return Value
A CSSM_TRUE return value signifies that information has been deleted. When CSSM_FALSE
is returned, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_DATA_POINTER Invalid pointer
CSSM_INVALID _GUID Certificate Library was not installed
CSSM_UNINSTALL_FAIL Unable to delete information

See Also

CSSM_CL_Install

Release 1.2 Common Security Services M anager Page 65
Certificate Library Interface Specification

4.3.3 CSSM_CL_Attach

CSSM_CL_HANDLE CSSMAPI CSSM_CL_Attach (const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const CSSM_API_FUNC_TBL_PTR
MemoryFuncs,
const void * Reserved)

This function attaches the application with the CL module. The CL module tests for
compatibility with the version specified.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

CheckCompatibleVer Major(input)
The major version number of the CL module that the application is compatible with.

CheckCompatibleVer Minor(input)
The minor version number of the CL module that the application is compatible with.

MemoryFuncs (input)
A pointer to the structure containing the application’s memory management function pointers.

Reserved (input)
A reserved input.

Return Value
A handleisreturned for the CL module. If the handleisNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_DATA_POINTER Invalid pointer
CSSM_INVALID_GUID Invalid CL GUID
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_ATTACH_FAIL Unable to attach to CL module
See Also

CSSM_CL_Detach

Release 1.2 Common Security Services M anager Page 66
Certificate Library Interface Specification

4.3.4 CSSM_CL_Detach

CSSM_BOOL CSSMAPI CSSM_CL_Detach (CSSM_CL_HANDLE CLHandle)
This function detaches the application from the CL module.

Parameters
CLHandle (input)
The handle that describes the CL module.

Return Value
A CSSM_TRUE return value signifies that the application has been detached from the CL
module. When CSSM_FAL SE isreturned, an error has occurred. Use CSSM_GetError to obtain
the error code.

Error Codes
Vaue Description
CSSM_INVALID_CL_HANDLE Invalid handle
CSSM_DETACH_FAIL Unable to detach from CL module
See Also

CSSM_CL_Attach

Release 1.2 Common Security Services M anager Page 67
Certificate Library Interface Specification

4.3.5 CSSM_CL_RegisterServices

CSSM_RETURN CSSMAPI CSSM_CL _Register Servicefconst CSSM_GUID_PTR GUID,
CSSM_SPI_CL_FUNCS_PTR FunctionTable,
CSSM_SPI_MEMORY_FUNCS_PTR *UpcallTable,
void * Reserved)

This function is used by a certificate library module to register its function table with CSSM and
to receive a memory management upcall table from CSSM.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

FunctionTable (input)

A structure containing pointers to the Certificate Library Interface functions implemented by the
CL module.

UpcallTable (output)

A structure containing pointers to the memory routines to be used by the CL module to allocate
and free memory owned by the calling application.

Reserved (input)
A reserved input.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_GUID Invalid GUID
CSSM_INVALID_FUNCTION_TABLE Invalid function table
CSSM_REGISTER_SERVICES FAIL Unable to register services
See Also

CSSM_CL_DeregisterServices

Release 1.2 Common Security Services M anager Page 68
Certificate Library Interface Specification

4.3.6 CSSM_CL_DeregisterServices

CSSM_RETURN CSSMAPI CSSM_TP_Der egister Servicefconst CSSM_GUID_PTR GUID)

This function is used by a certificate library module to deregister from the CSSM registry.

Parameters
GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_GUID Invalid GUID

CSSM_DEREGISTER_SERVICES FAIL Unable to deregister services

See Also
CSSM_CL_RegisterServices

Release 1.2 Common Security Services M anager Page 69
Certificate Library Interface Specification

4.3.7 CSSM_GetError

CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

This function returns the current error information.

Parameters
None

Return Value
Returns the current error information. If thereis currently no valid error, the error number will
be CSSM_OK. A NULL pointer indicates that the CSSM_InitError was not called by the CSSM
Core or that acall to CSSM_DestroyError has been made by the CSSM Core. No error
information is available.

See Also
CSSM_ClearError, CSSM _SetError

Release 1.2 Common Security Services M anager Page 70
Certificate Library Interface Specification

4.3.8 CSSM_SetError

CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR guid,
uint32 error_number)

This function sets the current error information toerror_numberand guid.

Parameters
guid (input)
Pointer to the GUID (global unique ID) of the add-in module.

error_number (input)
An error number. It should fall within one of the valid CSSM, CL, TP, DL, or CSP error ranges.

Return Value
CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates that the error
number passed is not within avalid range, the GUID passed is invalid, CSSM_InitError was not
called by the CSSM Core, or CSSM_DestroyError has been called by the CSSM Core. No error
information is available.

See Also
CSSM_ClearError, CSSM_ GetError

Release 1.2

Common Security Services M anager
Certificate Library Interface Specification

Page71

4.3.9 CSSM_ClearError

void CSSMAPI CSSM_ClearError (void)

This function sets the current error value to CSSM_OK. This can be called if the current error
value has been handled and therefore is no longer avalid error.

Parameters
None

See Also

CSSM _SetError, CSSM _GetError

