Common Security
Services Manager

Application Programming Interface (API)

Draft for Release 1.2
March 1997

Subject to Change Without Notice

Specification Disclaimer and Limited Use License

This specification is for release version 1.2, February 1997, updated March 1997.

You are licensed under Intel's copyrights in the CDSA Specifications to download the
specifications and to develop, distribute and/or use a conformant software implementation of the
specifications. A software implementation of the CDSA Specifications can be tested for
conformance via use of the CDSA Conformance Test Suite that accompanies the specifications,
and you are licensed to use the conformance test suite for that purpose.

ALL INFORMATION AND OTHER MATERIALS TO BE PROVIDED BY INTEL HEREUNDER
ARE PROVIDED "AS IS," AND INTEL MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AND EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, AND FITNESS FOR A
PARTICULAR PURPOSE.

Intel grants no other license under any of its intellectual property other than as expressly granted
above. If you desire any broader rights under Intel intellectual property, please contact Intel
directly.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

Table of Contents

L INTRODUGCTION ...ttt ettt ettt b et n e e e an e s ae e she e s heeeabeearesaneaanesnnesnnennne e 1
1.1 COMMONDATA SECURITY ARCHITECTUREuuttiiaitteeeaitteeaasseeasssseaasssssessanseaeaanseeeassnseessaanseessssseesas 1
1.2 CSSM APl DOCUMENT.....tttteettteeaaiteeeeattee e e aaateeesateeeeaaaseeeaassseaeeaseeeeaaaseeeaanneeeeanseee e sabeeaeaanseeesannneeaan 3
A R L1 (= 1o (<o [T o 1= o (o U 3
1.2.2 DOCUMENE OFGANIZALIOML.ccueeeeeeeeieee ettt ettt e e st e e be e sbe e e sabeeabeeabeeeseeaaeeaaneeeanbeeeaneeas 3
1.3 CDSA DOCUMENTATION ...tttieiuteeeeauteeeaauseeeaaasseeasasseaaaasssesaassseasassseeasaaseeesaasseesaanssessassseessanseeesannsnesnn 4
L4 REFERENCES. ... ettt eauttteeattee e ettt e e e sttt e e e aaee e e e aase e e e e se e e e e e aabee a2 e sbee e e Rbee a2 aaseeee e aambeeeeanbeeeeenseeeeannneeeennnrneans 5
2. CORE SERVICES APL. ..ttt b bt r e b e bt s sne e b e e nbeenneenneas 6
2.1 OVERVIEW. ...ttt ettt ettt ettt e oottt e e e st e e ettt a2 e ae e a2 2 kb e e e 24 ab e e a2 2 Re e e a2 mne e e e ean R be e e e ambee e e aanneeeanneeesannnreeeenreas 6
2.1.1 CSSM Management FUNCHIONS........oouui ittt ae e e e 6
2.1.2 CSSM Memory Management FUNCLIONS..........oouiiiuir it seeeenes 7
2.2 DATA STRUCTURES. ... utttitutteaaauttaaaaseteaaaauseaaaaaseeaaaasssaeaasseeeaaasseasaasseeeaanseeaaasseeesaanseeseasseeeaanseeseasneas 8
2.2 1 CSOM_INFO. ..ttt ettt b bt b e h s b e s h e e e bt e e b e e b e e s bt e s be e en s e eanennnennneeneennnennes 8
2.2.2 CSOIM_BOOL. ...ttt b et s he e a et he e bbb b e an e e e e 8
2.2.3 CSOM_RETURN. ...ttt sttt b et st ae e he e sb e s b e s st e s beea b e e saneeanesanensnennnenees 8
2.2.4 CSOM _D AT A et h bbbt b e h e h e h e R R e R e R e R a R an e e nnn e e e naes 9
2.2.5 CSOM _GUID .ottt he e s ae e bt e s b e e b e e e bt e b et a e e nn e e e nnne s 9
2.2.6 CSOM _LIST_ITEM...tiiitiiteeieesieeteet ettt st sbe e nae e san e s e 9
2.2.7 CSOM LIS ettt ettt a e b e e bt e bt b e e st e et e an e e a b e e e R e e nre e re e neeneeneea 10
2.2.8 CSSM_API_MEMORY_FUNCS.......c.oi ottt ene e 10
2.3 CORE FUNCTIONS. ...t ttteeeatteaeaieeeeaauateeaeauseeeaasseeeaaasseeeassbee e e e sbe e e e nseeeeansseeeasneeeeeansseeeeanneeeeanseneannns 11
2.3, L CSOM_INIT ettt b e b e bt et e n e et an e nre R e e nre e re e neeneeneea 11
2.3.2 CSOM _GELINTO. ...ttt ettt ettt b e r e bt bt e n e e n e e nesan e e sreenreenneenneeneen 12
A R J O VI == (o RS 13
2.3.4 CSSM_VerifyCOMPONENTSeeiiiieiiieeieeetie et e et e e rte e sae e e saeeesseee s sbeeesaeeesabeesaneesnseesneeeanreasns 14
2.4 COMMON FUNCTIONS.ceititteeeeitteeaateeeasaauseeasassseeaaasseasaasssea s e sbeeeaaaseeeaaasseeeaansseasannseeeasanseeeeaanseeasnns 15
2.4.1 CSOIM _FTEELISE ...ttt ettt r et r e n e e sre e s r e reenneeneen 15
2.84.2 CSOM TRttt ettt ettt s bt e b e e bt bt e n e et n e e n e e R e e b e reereeneeneea 16
2.4.3 CSSM_GEtAPIMEMOIYFUNCLIONS.eiitiieiieeieeeetee ettt et e st eeseeeeae e sabe e sbeesneesnaeeenneeenes 17
3. CRYPTOGRAPHIC SERVICES APl e 18
.1 OVERVIEW. ...ttt ettt ettt e oottt e ettt e ettt e+ 2kt e e a2 sa ke e e e e R b e a2 2 mb e e a2 aaRe e e e 2 nnbeeeeamnbeeeaanbeeeeannneeeannreeanann 18
3.1.1 Cryptographic Context OPEratiONS.eoiuieiieeieie ettt e steeseeesseeeessee e e e s beeasbeeesseeesneeenns 19
3.1.2 Cryptographic SESSIONS QN0 LOGON......c..eiiiiieiiieaeieetieesiie e st e seeeeeeeesseeeseessbeessseessaeeeaneeenns 19
3.1.3 CryptographiC OPEIratiONS........cocueeiieeeieeeeeeateeeateeesieeesieeeseeaseeessaeeessseesseeesaseessesssessnneeesns 20
3.1.4 Module Management FUNCHIONS.ooiiiiieiee ettt ee e e aee e 21
3.1.5 EXXENSIDIITY FUNCLIONS.eiiieeiie ettt ettt e e e st e e snnee e saneens 22
3.2 DATA STRUCTURES.......utttititteaeauseeaaateeeaeaasseaaaassseaaasseaaaassseeaeaasseeeaaaseeeaasseeeaansseaseasseeeaanseessannseeennnns 23
32,1 CSOIM D AT A ettt r ettt e bt bt Rt bRt r e n e an e e aRe e re e re e neeneeneen 23
3.2.2 CSSM_KEYHEADER........e ettt r e r e an e sneenneenneens 23
3.2.3 CSSM_KEYBLOB.......ccttettitieie ettt ettt ettt st sr e sr e e be bt n e e n e e s e saneesbeenneenneeneens 25
.24 CSOM_KEY. .ttt ettt ettt b e bbbt Rt et n e e e R r e re e reeneeneea 25
3.2.5 CSOM_CALLBACK. ...ttt ettt ettt sr e bbbt e n e e n e e neen e e sneenneenneens 25
3.2.6 CSOM _CRYPTO _ D AT A ettt ettt ettt r e r e b e b e b e neearesaneeareenreens 25
32,7 CSOM_CSP_TYPE.....o ettt ettt r et r e r e s n e s n e e s reenneenneenneens 26
3.2.8 CSIM_CSP_SESSION _TYPE......tt ittt ettt sre e r e nesneene e 26
3.2.9 CSSM_NOTIFY_CALLBACK.....ccittettetteie ettt ettt sre e sn e sneenesnesnesnne e 26
3.2.10 CSSM_HANDLEINFO......ccttiitiitieieeie ettt ettt r e r e r e n e e s snesaneesneenneens 27

3.2.11 CSOM_CSPPININFO.....cutiiiiieitieetie et srae e sare e 27

Pageiv Common Security Services M anager Release 1.2
Application Programming I nterface

3.2.12 CSSM_CSPMEMINFQL.....coiiiiiie ittt ettt ettt ae e e sbee e saeeesseeesaneesaseesnneeesnneans 27
3.2.13 CSIM_CSPSEST ONINFQ.....cctieiteieieeeiie et eeestee e stee e siee e see e saeeeseeaesaeeesasessseesseesneesnseaans 28
3.2. 14 CSOM_CSPINF Q... ettt ettt ettt et et e et e e bt e e s abe e s beeebeeabeeaseeesseeesabeeesaeeennneanns 28
3.2.15 CSIMICONLEXLALLI TIULES. ...ttt ettt ree e sae et e e ae e e s abeeeane e e snbeens 29
3.2.16 CSOIMICONEEXL.....cteeeuteeeteeetee ettt e e rteeesteeesaeeesaeeesabeeaaseeaaaseesabeasaseeanseeaseeanseessnbeeabeeeaseeeaneaenns 31
3.3 CRYPTOGRAPHICCONTEXT OPERATIONStttetutteeeatreeeaauseeeeaaasseeesanssessaassessaasssesssaassessssnssessassessannes 35
3.3.1 CSSM_CSP_CreateKeyEXCNCONIEXL........ccieeeieeiiie ittt saee e snee e 35
3.3.2 CSSM_CSP_CreateSgnatur @CONTEXLueeireeireeeeeeeiteesreesreeeseeeessesesseeessbeeesseeesseeesseeans 36
3.3.3CSSM_CSP_CreateSymMELriCCONTEXLceiueeireeeieeetteesteesieeeseeeesaeeesseeeseeessseeesaeeesneeen 37
3.3. 4 CSSM_CSP_CreateDigeStCONIEXL.ceiueeeeeeerieeeetieetie ettt e steeseeeeeeeesaeeesbe e s beeesbeeesaeeenneeenns 39
3.3.5 CSSM_CSP_CreateMaCCONTEXL.........coiirieiiee e eesieiiree s e e e ssrrae e e s e s e ssrrreaee s s e e ssssrraeeaeseessnnnes 40
3.3.6 CSSM_CSP_CreateRandomMGENCONLEXL.........ccuveieiiriieeeiieeeeesteeeesirreeeesree e e enreeeessareeeesreeeeas 41
3.3.7 CSSM_CSP_CreateUni QUEIACONTEXL.ccueeeeeeieieeiieesiie et e steeereeeesaeeesae e be e s sbeessaeeesneeenes 42
3.3.8 CSSM_CSP_CreateASymMMELriCCONIEXLeeiiieeiieetieeiee e teesiee e reee e e seeeseee s sbeeesaeeesaeeens 43
3.3.9 CSSM_CSP_CreateDeriVEKEYCONIEXLoeiieeiiieeiie et siee s tee et e saeeesaee e eeeseeeesaeeesneeeas 45
3.3.10 CSSM_CSP_CreateKeyGENCONIEXL.ueeeeireeeaaeeee e ateeeeesireeeeseeeeessseeeeesbeeaesssseeessneeeeas 47
3.3.11 CSSM_CSP_CreatePassThrOUgNCONTEXL.cocueiaieieieeeieee et siee e 49
3.3.12 CSOM_GEECONIEXL.......eeeeeeeeieeeeiteeeiee ettt s e et esbeeeteeebe e e sbeesabeeabeeeaseeeseeesneeeanseeeaneeeanneanns 50
B TR e N 60 S AV = O] 1> AP PPRPRN 51
3.3. 14 CSOM_SEECONTEXL. ...ttt eeeeeieeeeiteeetee e ettt r e e st e e st eeeseeeaee s aabeeaabeeabeeeaseeaseeessseeaabeeeaseeeannaanns 52
3.3.15 CSAM_ DEEECONIEXL........vveieeiiieeecieeeeeee e eetee e e st e e et e e e et ae e e s sabe e e e sanaeeeeaseeesnnreeeeeaseneeas 53
3.3.16 CSAM_GEtCONEXTALLIIDULES......coiiiiie et aree e 54
3.3.17 CSSM_UpdateCoNntexXtALLIIDULES........oc.ee et 55
3.3.18 CSSM_DeleteCONtEXLALIIIDULES.........eei et e e e reee e 56
3.4 CRYPTOGRAPHICSESSIONS ANDLOGONtiiieiiieie ettt ettt e e e e s b e e e s snne e e s enneeeennes 57
I 010 Y O3) o |1 SR TOUROPRPR 57
3.4.2 CSOM_CSP_LOQOUL.....eeiieeeeiieesiteeatee ettt rte e st e e st eeeseeeae e s nbeesabeeaseeeaseeaaseeassseeanbeeeaneeeanneanns 58
3.4.3 CSSM_CSP_ChangeLoginPassWOr.............coiiiiiiiaiiie e siee et naee e 59
3.5 CRYPTOGRAPHICOPERATIONS.......teiiittteeaatetaaaueeeaasauseeaaaasseaaaasseesaasseasaaassseesaasseesaassessansseesssansenessns 60
3.5.1 CSIM_QUEIYSIZE ...ttt ettt ettt ettt e st e et e e e bt e e s abe e e abeeebeeabeeaseeeaseeeaabeeeaneeeaneeanns 60
3.5.2 CSOM_SIGNDALA. eeiteeetie ettt ettt e et e et e et e e st e e e be e e be e e be e e nbeeeabeeeaneeeaneeenn 61
3.5.3 CSIM_SIgNDALAINIT.eeiieeieiieeiiie ettt e et e ae e bt e st e e e sbeeesaeeesseeesseeesnsaeeaneeeanseanns 63
3.5.4 CSSM_SIgNDAtAUPUALE.ccueieiteeeiie ettt ettt et e e ae e e bt e e saeeesseeessneesnseesnneeesnreanns 64
3.5.5 CSIM_SIgNDAtAFINAL........eeiiiieiieeie ettt e e r e saee e naeeea 65
3.5.6 CSIM VI TTYDALA....ceetei ettt ettt ettt e et e et e e s be e e ae e e beeeseeesaneesabeeesaeeeanneanns 66
3.5.7 CSSM_VErifyD@talNit......cueeieiieiie ettt ettt et e e rbe e e sae e e s e e e saeeesnseeesaeeesneeanns 67
3.5.8 CSIM_VerifyDataUPUALE.coiieeiiieeiie ettt s ree e saee e ae e e s e e e sneesnee e sneeaas 68
3.5.9 CSSM_VerifyDataFiNal........c..ooiiieiiie ettt e e e e nnee e 69
3.5.10 CSOAV_DiIQESIDALA.eeeeeeeiiieeieeeeiee ettt e st e et ee bt e e bt e e be e s beeesbeeeaaeeeaseeessseeanbeeesaeeeanreanns 70
3.5.11 CSOM_DigeStDAIAINIT......eeeiueeeieieetieeiee et et e et ettt e e e e sab e e bt e e saeeesseeessneesaseesnneeesnneans 71
3.5.12 CSOM_DigestDataUPOALe...........eeiieeeiieeiieeiieeeiee ettt et e st e e ee e saee e sabeesaneesbeesneesneeeans 72
3.5.13 CSAM_DigeStDAtaCIONE........cciueeeiieeiee ettt ettt et e bt e saee s abe e s aee e s beesneeeneeaans 73
3.5.14 CSOM_DigeStDataFiNalcoiiieiiieeiie ettt et b e s e e s ne e e anreaa 74
3.5.15 CSOM_ GENEIALEMAC. .. eiiiieeiiiiiteiee e e eeiitttree e e e e e ssare e e e e s e e s aaeeaeeeaeesssasaaeeaeseasssnreeeaeaaeeesnnsses 75
3.5.16 CSAM_GENErateMaACINIL........cccuiieeeiiiie e e e e e e ee e e st ae e e e saa e e e e saraeeeeraneeas 76
3.5.17 CSAM_GenerateMaCUPAALE.......cceveieiie ettt ettt e st e e e saee e abe e s beesbeesneeeneaeans 77
3.5.18 CSAM_GenerateMaCFiNal...........ccoociiiiiiiiie e e e e e e sare e e e re e e e enreeee s 78
3.5.19 CSOM_ENCIYPID@LAceeeeeiieeieie ettt ettt e e e e e e e e e e e eanbe e e e enneeean 79
3.5.20 CSSM_ENCIrYPtDALAINIT......c..eiiiieeiie ettt ree e sae e e se e e s e e e s e e e saneaesnneaas 81
3.5.21 CSSM_ENCryptDataUPUALE.ceiteeeiieeiee ettt ettt st ee e saee e abe e st esbeesaeeeneaeans 82
3.5.22 CSSM_ENCryptDataFiNaL.......ccoueeiiieeiie ettt ne e e 84

3.5.23 CSOVI_DECTYPEDALAceuveeieeieieeeitieeeeateee e et e e s tee e e e iee e e s aasbe e e e aseeeesasneeeeanneaeannbeeeeannneean 85

Release 1.2 Common Security Services M anager Pagev
Application Programming I nterface

3.5.24 CSOM_DECIYPIDALAINIT.cceeiieieetie ettt ettt sbe e sae e e ae e e s aeeesaseesnneaesnneaas 87
3.5.25 CSSM_DeCryptDataUPAALE.eeeieeeieeeiee ettt ettt ee st e st esbeeeaeesaeaeans 88
3.5.26 CSSM_DeCryptDataFiNal............oeiiieieiieeie ettt e b e e s neeeneeea 90
3.5.27 CSOM_GENEIALEKEY....cei ettt ettt et e e et e e e s b b e e e e anee e e e nneeeennbeeeeanreeean 91
3.5.28 CSOM_GENErateEYPAIN.eiieeetie ettt ettt sae e e ab e e sab e e sneesneeeneeaas 92
3.5.29 CSAM_GENEratERANUOML......ccuiieeeiiiie e et e st e e e e e et e e et bee e e sree e e eateeeesanaeeeennreeeas 93
3.5.30 CSOM_GeNerateUNIQUEId...........eiiieeeiie ettt ettt st e e s b e s b e e s neeenneeans 94
3.5.3L CSOM W APKEY. ..ttt ettt ettt e e bt e e e et be e e e aabe e e e aase e e e e nneeeaanneeeeesanbeeeeannneeaan 95
3.5.32 CSOM_UNWIAPKEY. ...ttt ettt ettt ettt e sttt e et e e e e asbe e e e s see e e e snneeeeanseee s nbeeeeannnnaenn 96
3.5.33 C ST DI TVEKEYttt ettt ettt ettt s b e et e e bt e e e abe e s be e e beeabeeebeeeasneeaabeeeaneeennneanns 98
3.5.34 CSAM_KEYEXCNGENPAI GIML........ ittt e e e e s neeeneaen 99
3.5.35 CSAM_KEYEXCHPRASEL.........eiiiieiie ettt ettt sae e e sae e an e e eaee s 100
3.5.36 CSIM_KEYEXCNPRASEZ....... .ottt et ae e e sae s 101
3.6 MODULEMANAGEMENTFUNGCTIONS.ceieitteeeeitteaaaiteeessatteaasssseeeeasseasssneeesannseeesaasseessansseesannseessnnes 102
3.6.1 CSIM_CSP_INSAIL ..ttt ettt e et e e ae e bt e e b e e e beeenee s 102
3.6.2 CSSM_CSP_UNINSAIL....coeee ettt b e ae e e e e sae e e sbe e e nnee s 103
3.6.3 CSIM_CSP_AACK. ...ttt ettt ettt sttt be et e e st e e e be e e aeeeaeeesnbeeebeeeaneeas 104
3.6.4 CSIM_CSP_DEACK ... ettt ettt ettt et e et e e be e e be e e beeeaneeeebeeenneeas 106
3.6.5 CSSM_CSP_LISIMOUUIES.eeeeieiieeiee ettt ettt sbe e e sae e e e ae e e snn e e e snee s 107
3.6.6 CSIM_CSP_GEINTO. ...ttt ettt ettt sttt be et e e st e e e beeebeeeaeeesnneeebeeenneeas 108
3.6.7 CSSM_CSP_FreEllINfQ. . .ceieeieeie ettt ettt ra e bt ae e sae e e e be e e naee s 109
3.6.8 CSIM_GEtHANAIEINTQ......ccviii e e et e s e e e e e e e enere e e e enreas 110
3.7 EXTENSIBILITY FUNCTIONS ...t tttteeete et ee ettt e e sttt et e e e s et e e e sse e e e e aanbe e e e amseeeaansneeeenneeaesanneaananns 111
3.7.1 CSSM_CSP_PaSSTRIOUQGN........eoiiiiiiieeiie ettt esanee s 111
4. TRUST POLICY SERVICES APttt ettt sbe e sae e nneas 112
4.1 OVERVIEW. ...ttt eettee e ettt ettt e e e sttt e e e aat e e e e e st e e e 2 see e a2 e aabee e 2 e Rb e e a2 abe e a2 aase e e e e ambeeeeanneeeeenseeeeanneeeeannnreaans 112
4. 1.1 TruSt POIICY OPEratiONS.......ciitiiatieetie e eteeertee e siee et eese e e ssee s saee e ssseesbeesseeeseeeseesabeeennes 112
4.1.2 EXtensiDility FUNCHIONS.ottt e 113
4.1.3 CSSM TP Management FUNCHIONS.........oouiiiiiiiie et 113
4.2 DATA STRUCTURES......uutttteautteeaatetaaausteaaaauseeaaaasseaaaassseeaasseeeaeaasseeeaasseeesasseeeaasseeeaeanbseeesanbeaesanneeaaan 114
4.2.1 CSOM_TPINF Q... et et e et e e be e ebe e e s aee e e ae e e ansee e eaeeesabeesaneeanees 114
4.2.2 CSSM_REVOKE_REASDNottt atte sttt ettt s e e s teesaee e e s beesseeaseeanaeeesaneesnnes 114
4.3 TRUST POLICY OPERATIONSeeiittteeauteeeaaueeeeaaauseaaaausseeaaasseaasassseasassseessasssessaassessassssessanssssessnsseeens 115
4.3.1 CSOM_TP_ClITVEI Y.ttt ettt ettt et st e e e e ne e e s abeeenees 115
e B A i S Y I I e = o 5 T o O RPN 117
4.3.3 CSIM_TP_CErtREVOKE.eeeeiii ettt e s b 119
4.3.4 CSOM_TP_CrIVEI Y.ttt sttt et e st e e a e e e nbe e abeeenees 121
e RN O S Y N I = O g 1 T o TR URRT 123
4.3.6 CSSM_TP_APPIYCHITODD. ... e e 125
4.4 EXTENSIBILITY FUNCTIONScetiiittieeeiteeeeeitee e s sttt e e s ssee e e s st e e s sseeeeaasbseeesasseeeeanseeesanseeeannnbeeesannneeann 126
4.4 1 CSSM_TP_VEIITYACHON......eiiiiii ettt ettt st te et e e sbeeeaeeeaeeenbeeenees 126
4.4.2 CSSM_TP_PasSTRIOUGI......cciiiiiiie ettt st st e ae e e ae e e nbeeenees 128
4.5 CSSM TP MANAGEMENTFUNCTIONSctiiiititeeiitieeaitie e s ettt e e s tte e e s sise e e s ssseeaesnseeassnseeeesnneeeannneeean 130
A.5.1 CSOM_TP_INSEALL. ..ttt et e e e e eanee e s abe e s aneaenes 130
4.5.2 CSOM_TP_UNINSLAIL.....eeieieeie ettt e e s ne e nes 131
4.5.3 CSOM_TP_LISEMOAUIES.......ceiiiiieiii ettt sttt e e b ees 132
A.5.4 CSOM_TP_ALEACKN.ei ittt eae e e s abe e ane e enns 133
455 CSOM_TP_DELACK......coeieee et be e b aes 134
4.5.6 CSOM_TP_GELINTQ.....eiieeiieeetie ettt ettt e b e e st e eane e e sabe e saneeenees 135
A.5.7 CSOM_TP_FTEEINTO....ccuiiiiieiiie ettt ettt ettt e e b e e st e e eane e e sabe e saneeenees 136

5. CERTIFICATE LIBRARY SERVICESAPL ... 137

Pagevi Common Security Services M anager Release 1.2
Application Programming I nterface

5.1 OVERVIEW. ...ttt ettt ettt ettt ettt e e ettt e+ e st e e e st et e 2ok e e a2 2 sb e e a2 anbe e e e aasnbe e e e ambeeeeannneeeennneesannneeeeanns 137
5.1.1 Application and Certificate Library Interaction............cccooieiiiiiii e 137
5.1.2 Operations 0N CertifiCatES.......uo ittt se e san e sanee s 138
5.1.3 Operations 0N CertifiCate GrOUPS.oouuiareraieereee ettt ettt st sbeesneeeeee s 140
5.1.4 Operations on Certificate REVOCAION LiSES........coiuiiiiiiiiiii e 141
5.1.5 Module Management FUNCHIONS.cooiiiiiie ettt sttt e e e 142
5.1.6 EXXENSIDIITY FUNCLIONS.......ciiiiieiie ettt ettt e rae e e e e e nnee s 143

5.2 DATA STRUCTURES.cttiiittteeaatteaaauseaaeaasteeaaaseeaaaasseeaaaseeaasaaseeaaaasseaeaasnseesasseasaaasbeeasasseeeaasseassnnes 144
B5.2.1 CSSM_CL_HANDLE...... ettt ettt e b e b e bt e e sae e e e be e e nnea s 144
5.2.2 CSOM_CERT _TYPE ... oottt ettt sttt et et e e et e e be e e be e e aeeesneeeebeeenneaas 144
R E 010 1V O 1 5 TS U R URRUP 144
B.2.4 CSM_FIELD.....eiiieie ettt sttt et et e st e st e e e abe e e sabe e snbeeabeeeneaan 144
5.2.5 CSIAVI_CERTGROURP.......ceiieie ettt ettt et e st e e be e e be e e aeeesneeeabeeenaee s 146
5.2.6 CSSM_CLINFQ ... ittt ettt ettt ettt e sae e e sate e st e e st e e sabeeeabeeaanbeesnbeesneeeneaan 146
5.2.7 CSSM_API_MEMORY_FUNGCS...... .ottt ettt st sae e sneesnee s 148

5.3 CERTIFICATE OPERATIONS.....ctttutttaeauteeeaateeaassseeeasasseeaaasseasaasseaeaasnseeesasseeaaasseeesansseessannseessanssessanns 149
5.3.1 CSOM_CL_ Gl TGN, e et iteeetee et eiee ettt ettt et et e et e e bt e et be e s abeeeabeeabeeebeeebeeeanneeabeeenneaas 149
5.3.2 CSIM_CL_ClItUNSI Gttt eiee ettt ettt et e et e s be e beeebe e s sbeeeaaeeenaeeesneeesnbeeesnneas 151
5.3.3 CSOM _CL_ GtV Y ettt ettt ettt ettt et e b e e rae e e ae e e sae e e s sbeeesnee s 152
R O | I O I O (O = 1T PR UPRPR 153
5.3.5 CSOM_CL_ClITVIB ...ttt ettt ettt et e e be e e bt e e s be e st e e e beeeaeeeaeeeanneeanbeeenneeas 154
5.3.6 CSSM_CL_CertGetFirstFieldValue..........c.uoee et 155
5.3.7 CSSM_CL_CertGetNextFieldValUe...........c..eeceiriie et e 156
5.3.8 CSSM_CL_CertADOITQUEI Y. .eeuteietieeteeetieetieeetee e et e rtee e sseeesseeesaseeasbaeesseeessseesnseesnneesnneeas 157
5.3.9 CSSM_CL_CertGetKeYINfQ.......cceieiiieeeie ettt e e e e s 158
5.3.10 CSSM_CL_CertGetAHFTEIAS.oeiiiiieeeeie e 159
5.3.11 CSOVI_CL_CllItlMPOIL... . eeeeeeiieeeeeie ettt ettt e et e e e e e s sbe e e e e ab e e e s snse e e e anneeeesanreas 160
5.3.12 CSAV_CL_CITEXPOIT ... eieiueeeiieeeetieeiee ettt e ste e s beeateeeeee e sbeeeseeesbeessbeeeaaeeessseesnseesnseeesneeas 161
5.3.13 CSSM_CL_CertDesCribDEFOIMaL...........cccuieeiiiieecciiiee et e e e e e e e rre e e e sne e e e eneeas 162

5.4 CERTIFICATE GROUPOPERATIONSuttteeatteeeaauseeeaaseeeasaasseaasauseessaasseasaasssesssansssesassseessanssessassseessanns 163
5.4.1 CSSM_CL_CertGrOUPCONSIIUCL.veeeeeeieeeitiee e steee e st e e e ssee e e sase e e e sssbe e e s snseeesssneeeeeneeas 163
5.4.2 CSSM_CL_ClrtGrOUPPIUNE.eeiieiiiieeeiieee ettt e e et e e st e e e e rse e e e ssere e e sssreeeaanseesaanneeesannees 164
5.4.3 CSSM_CL_CertGrOUPVEITYce ittt sb et sne e sanee s 165

5.5 CERTIFICATEREVOCATION LIST OPERATIONS ... cutieiutieeaatteaeaireeaesasseeassssesasssseessasseesssnsseesssnssessanes 167
5.5.1 CSIM_CL_CrICIEALE. .. cceueeeiieeiteeeeee ettt ettt ettt e et e e be e e be e s beeebeeeaeeesseeeaabeeenaeeas 167
5.5.2 CSIM_CL_CrIAUACEIL.ottt ettt et et e et e e sbe e e sae e e nae e e saeeesnbeeesaneas 168
5.5.3 CSSM _CL_CrIREMOVECETL.....ccctiieeeiiie e eeieee e cttee e sitee e e stee e e e sare e e s sbee e e s snteeeesanaeeeenseeeennnrees 169
5.5.4 CSOM _CL_ CrISIgN. ettt ettt ettt st e e be e e bt e e bt e e beeabeeeanea s 170
5.5.5 CSOM_CL G VB I Y ettt ettt b e e bt e e ae e e nae e e e be e e nnee s 171
5.5.6 CSIM_CL_ISCOITINCI L.ttt sb e e sae e eae e e sae e e snbe e e snee s 172
5.5.7 CSSM_CL_CrlIGetFirstFieldValUB..........cooiiiiieieeeie ettt 173
5.5.8 CSSM_CL_CrIGetNextFieldValUe..........cooiiiiieeeiee ettt 174
5.5.9 CSSM_CL_CrlADOMQUENY......eeeieeeaiieetieatie et e s teeeteeeseeesseeasseeesabeeasseeesseeessseesnseesnseesnneeas 175
5.5.10 CSSM_CL_CrIDeSCIDEFOIMaL..........ceiiiiiiieceiiieeectiee e ectee et e e esre e e snre e e nae e e e snne e e e eneeas 176

5.6 MODULEMANAGEMENTFUNCTIONS.ceiiittieeeitteaaaieeeesaatteaesausseasasseaesasseesaannseeasaasseessanseessansseasannes 177
5.6.1 CSIM_CL_INSAIL....eeiitii ettt ettt sttt e et e et e bt e e e nbe e e neeenee s 177
5.6.2 CSSM_CL_UNINSEAIL.....ciiiieeie ettt ettt e a e e b e bt sae e e e be e e nnee s 178
5.6.3 CSSM_CL_LISIMOUUIES.....coiiieeieeeiee ettt ettt ettt e b e e sae e e rae e e sneeesnneeesneeas 179
5.6.4 CSSM_CL_LiStMOAUIESFOr CaITTYPE. ... ettt 180
5.6.5 CSIM_CL_AHACK.....ci ittt ettt ettt e e st e e bt e e be e ebe e e enbeeeneeenee s 181
5.6.6 CSIM_CL_DEIACK. ...ttt ettt ettt et st e bt e e be e e bt e e enbeeabeeenee s 183

5.6.7 CSOM_CL_GEINTQ. ... ceteetietietieieeiee sttt sare e 184

Release 1.2 Common Security Services M anager Pagevii
Application Programming I nterface

5.6.8 CSIM_CL_FreEelNfQ.....cci ettt ettt be e nae s 185
5.7 EXTENSIBILITY FUNCTIONS ...t ettteeeittee et ee e ettt e e sttt e e te e e e s see e e e ste e e e e asneeeaeanseeesannneesennneeaesanneeananns 186
5.7.1 CSSM_CL_PaSSTRIOUQGN. ...ttt eae s 186
6. DATA STORAGE LIBRARY SERVICES APttt 187
6.1 OVERVIEW. ...ttt ettt et tee ettt e e ettt e e sttt e e ettt e e e ate e e e st e e a2 e b b e a2 e sbe e a2 ambe e e e aasnbeeeeambeeesannneeeennnaesannneaaeanns 187
6.1.1 Data SOUICE OPEI ALIONS......eeuiieieeeateeateeaiteesteesbeeaeeeaseeesseeaasbeesabeeaaseeeaseeaaseeeanseesnseeesaeess 187
6.1.2 Generic Data SOrage OPerationsS.........c.cooierareearieeaitee et e e e seeesnbe e sbeesreesseeeeee s 188
6.1.3 Certificate Storage Operations - included for backward compatibility with CSSM 1.0....... 189
6.1.4 CRL Storage Operations - included for backward-compatibility with CSSM 1.0................ 190
6.1.5 Module Management FUNCHIONS.cooiiiiiiie et 191
6.1.6 EXTENSIDIITY FUNCLIONS.......eiiiiiiiie ettt ettt sie e e e naee s 192
6.2 DATA STORAGEDATA STRUCTURES......ceiiittiiatitteaaatteaesaatteeesaseeasaasseaesasneesassseeesasssessssnsseesassseesannes 193
6.2.1 CSSM_DB _LONGHANDLE........ctiiiii ettt sb et sae e saneesanee s 193
B.2.2 CSIIM DB LIS .ttt sttt e sh e et e e st e e e abeeenbeeenbbeesnbeeabeeeneaan 193
B.2.3 CSIM_DB TYPE ... ettt ettt e et e e st e e be e e bt e e be e e abeeebeeeanee s 193
6.2.4 CSSM_DATA RECORD _TYPEottt ettt ettt st sbe e saee e sabe e ssbeesneeannee s 194
6.2.5 CSSM_DB_ATTRIBUTE _USAGE......cco ittt sttt ne s 194
6.2.6 CSSM_ATTRIBUTE_ID_FORMAT.....cotii ittt sttt ne e e nee s 194
6.2.7 CSAM_ATTRIBUTE _NAME ...ttt ettt ra et ss e e saneesanea s 194
6.2.8 CSSM_DB_ATTRIBUTE _INFO.....coitiiiiiiiieie ettt sttt sneeeeee s 195
6.2.9 CSIM_DB RECORD_INFQL....cctiiiiiiiiie ittt sbe e sae e sae e e snseesnneesnnee s 195
5.2.10 CSOM_DBINFO......ciitiiiiie ettt ettt e et e bt e sabe e s be e s beeabeeabeeebeeeanbeeaseeenseean 195
6.2.11 CSSM_DB_CONJIUNCTIVE..... ettt ettt ettt sie e be e sbe e s saeessneeesneeesneeeas 196
6.2.12 CSSM_DB_OPERATOR..... ..ottt ettt ettt st e sbe e e sae e e st e e saseesaneessaeeas 196
6.2.13 CSIM_ QUERY _TAG ... et eiteieiieeeiie ettt ettt st e et e s bt e e be e s be e s abeeeabeeanaeeesneeesnbeeesnneas 196
6.2.14 CSSM_SELECTION _PREDICATE.......eei ittt ettt st sbessne e e s 196
6.2.15 CSSM_QUERY _PREDICATE......ciiiiiitie ettt ettt st sae e ne e sseeesneesanee s 197
6.2.16 CSIM_QUERY. ...ttt ettt ettt et e e st e e st e e e be e eabbeesnbeeabeeenee s 197
6.2.17 CSSM_INDEX_RECORD........eiitiiiiieaiieaiieaiee e tee et e e e e st e sbeeesaeeesaeeesnseesnseesaneeas 197
6.2.18 CSSM_DL_MODULE_TYPEottt sbe e sae e saeeesaeeesnneen 199
6.2.19 CSIM_DL_ACCESS TYPE...... ittt s rae e sae e s ae e reesanee s 199
6.2.20 CSAM_DL_INF Q... ettt ettt st e st e e sabe e st e e st e e sbeeeseeebeeesnbeeabeeenneean 199
6.3 DATA STORAGEDATA STRUCTURES......ceiiittitatitieaaateeaeaaatseaasauseeasaasseaesasssesasaseeesasssessssnsseesassseesannes 201
5.3.1 CSSM_DL_DBDOPEML. .. ettt ettt sttt ettt e et e e be e st e e et e e e beeeaeeeaeeeanbeeanbeeeaneeas 201
5.3.2 CSSIM_DL_DBCIOSE. ... ittt ettt ettt et ettt e e et e s be e e be e e beeenneeeenbeeeaneeas 202
B5.3.3 CSIV_DL_DBDCIEALE.cceeeeiee ettt ettt et et e e et e s be e e beeeneeesneeeaabeeaaaeeas 203
6.3.4 CSSV_DL_DDBDEIELE......coeeeeee ettt rb e bt ae e e sae e e e be e aea s 204
5.3.5 CSIV_DL_DBIMPOIT. ...ttt ettt et b e e be e st e s be e e beeeneeesneeeanbeeenaneas 205
5.3.6 CSSIV_DL_DDEXPOIT....ciieiieiieeieee sttt ettt e st e et e s be e e sbe e e beeabeeebeeeneeasseeeaabeeenaneas 206
6.3.7 CSSM_DL_DDBSEEINTO. ...ttt ettt e e sae e e e be e eaee s 207
6.3.8 CSSM_DL_DBGEIINTQ. ...cieeeeiieeiee ettt ettt e et e b e ae e e e e e s nbeeesnee s 208
6.3.9 CSSM_DL_FreeDDhINfQ.coiiieieeeie ettt sae e saee s 209
6.3.10 CSSM_DL_GetDbHaNAIETONAME.........ccciieeeiiiee e e et e e e rre e e e e e e neeas 210
6.4 GENERIC SECURITY OBJECT STORAGE OPERATIONS.....cceitiutteaeaureeeaaseeassasreeasasseessassessssnseessasseeasanes 211
6.4.1 CSOM_DL_DatalNSEIT....ceiiiiiiiiiiiiiee e ettt ee e e e et e e e e e e ssaa e e e e e e e s sastaeeeeeesesssnanreeeaaeennn 211
6.4.2 CSSM DL _DataDEIELE.........oeeeeieee ettt et e e e e e e e e e e na e e e e e anres 213
6.4.3 CSSM_DL_DataGEIFITSL.....ccueieiiieeiie ettt ettt sbe e e sae e e rae e e e e e snnee e saeeas 215
6.4.4 CSSM_DL_DataGEINEXL.eeeiieiiiieeiie it e et ee et et ettt e et e e sbee e sae e e saeeesaeeesaseeesaeeas 217
6.4.5 CSSM_DL_DataADOr TQUEIY.......eeeiieeeiieetie et eeeieeetee e rtee e siee e e e sie e e e sbee e saeeesaeeesnseesnneesaneeas 218
6.5 CERTIFICATE STORAGE OPERATIONS.....ceieitteeeauteeaaaseeeasaasseeasausseasaasseassasssessanseesssassesssanssessassseesannes 219

6.5.1 CSOM_DL_CoITINSEI.....eiiiiiiieetee ettt re e nnee s 219

Pageviii Common Security Services M anager Release 1.2
Application Programming I nterface

6.5.2 CSIM DL _ClIrtDEIBLO......cetiee ettt et e e e et e e e e ar e e e e are e e e ennreeeeanres 220
6.5.3 CSIM DL _CEertREVOKE.......eeeieiitiee et e ettt e e sttt e e e sree e st e e e e rareee e s sbe e e e saeeeessaraeeeesnneeesanrens 221
6.5.4 CSIM DL _CertGaIFITSL......uviieiiiiee ettt et e e e e e s st e e e e sae e e e e arae e e enaeeeeeanres 222
6.5.5 CSIM _DL_CertGEINEXL........eeeeiiieeeeiiie ettt e e cttee e rtee e st e e e e e e e s s te e e e e saeeeeesraeeeesaeeeeeanres 224
6.5.6 CSSM_DL_CertADOIMQUEIY.....ceueeiitieeteeetie ettt et et e et e sie e e e e st e e e sbeeesaeeesaeeesnseesaneesnneeas 225
6.6 CRL STORAGE OPERATIONS......cceiieieeeee e e e e e e e e 226
6.6.1 CSIM DL _CIIINSEIL....eeii ittt e e et e e e st e e e st e e e e e ae e e e e nreeeeennreeeeeanreas 226
65.6.2 CSIM DL _CrIDEIELE.....ccc ettt e e et e e e e e et e e e e ara e e e eanrre e e ennreas 227
65.6.3 CSIM DL CrlIGEIFITSE..ccciiieeeciiee et ce e e et e e e e e ee e e st e e e e at e e e e nraee e enaeeeesanres 228
6.6.4 CSIM DL _CrIGEINEXL.........oeeeeiiiee ettt e e e st e e e e e e e sbe e e e eate e e e saraeeeeneeeeesanres 230
6.6.5 CSSM_DL_CrIADOIMQUETY.......eiiieiiiie ettt ettt sbe e e sae e e sas e e saseesnneesaneeas 231
6.7 MODULEMANAGEMENTFUNCTIONS......ccciiiiiic e 232
B.7.1 CSIM DL _INStAlL....ccneriiiiieie e e e e eae e e e e e e e e eare e e e e snreeeeenreas 232
6.7.2 CSSM DL _UNINSEAIL.....coiiiiiie et e st e e st e e e e e e e nra e e e ennrre e e e nreas 233
6.7.3 CSSM _DL_LISLMOUUIES.......oeeeiiiee ettt e e e et e e e e aee e e e arae e e enaee e e e enres 234
O OSSR N = o o R 235
B.7.5 CSIM DL _DELACK.......eeii ittt e s e e e st e e e e ene e e e eare e e e e snteeeeenreas 237
6.7.6 CSIM _DL_GELINO......ueeii i s e et e e e e e e e e are e e e e snreeeeenreas 238
A eSS Y 5 T I == o] (o PR 239
6.7.8 CSIM _DL_GEIDDNAIMESciiiiiiie ettt cte e e et e e st e e e e e e e s ste e e e s sareeeesareeeeenaeeessanrens 240
6.7.9 CSSM DL _FreeNamMELISL.....ccciiiiei et e et e e e e e e ar e e e e enreas 241
6.8 EXTENSIBILITY FUNCTIONSo, 242
6.8.1 CSSM_DL_PaSSTRIOUGN.........eiiiiiiiie ittt ettt e rb e e sae e sae e e e e e saeee e saee s 242
7. APPENDIX A. CSSM ERROR-HANDLING.....oueiiiiiiiiiiiee ettt earre e 243
T L INTRODUCTION ...t e aaaaaaaans 243
T.2 DATA STRUCTURES.o ei e 244
T.3ERRORCODES......cccc e 244
T.3.1 CSSM EITOr COUES......uttiiiieeeeiittieiee e e ettt e e e e e ettt e e e e e e e s e eabbaeeeeeeeeesaasaeeeeeseenssrbreeeeeeannn 244
T.3.2 COP EITOr COUES.......uvviiieeeeeeectteeee et e ettt e e e e e ettt r e e e e e e e e s e eaabaeeeeeeeessaasseeeeeeeeesasssbaeeeaeeanns 244
T. 3.3 TP EITOr COUES.....cco ittt ettt e e e e et e e e e e e e e et e e e e e e e e e e asaeeeeeeaeesanstsbeeeeaeeans 248
R N O I o] gl O o [RO 249
T.3.5 DL EITOr COUES......ccccuttteeee ettt e ettt e e e e e et e e e e s e e e e e e eabb e e e e e e eeessasseeeeeeasesansssraeeaaeeanns 250
7.4 ERRORHANDLINGFUNCTIONS. ... oo i, 253
A O S | CT= § =l o o P EPUTTR RPN 253
A A S S | S = | = o] OSSR 254
P R T OSSO T o o RS 255
A N S | I T TN o PSR 256
.45 CSIM _DESITOYETTO......eiiieeee ettt ettt et e e s bt e e e e s abe e e e asb e e e enneeeeannnreeeeanneas 257
T.4.6 CSIM ISCSIMEITOF.....eeiieiieie ettt e e e e s tee e et e e e s e e e e s nb e e e s sabeeeeeaeeeeesreeeeanseeeesanres 258
A S |V = O I o RS 259
T. 4.8 CSOM _ISD LEIT O ... itiiiiee ettt e e e e e e st e e e e e e s b e e e eaeeeeessnnrraeeaaeeennn 260
N O S | FS] I o =l o SRR 261
A L O S Y I Fs O o o P 262
7.4.11 CSIM_COMPArEGUITSeeeueieiteeeiieetee ettt e sbe e beesteeebee e sbeeesbeesbeeasbeeaaseeasseeessseesnneeesseens 263
8. APPENDIX B. APPLICATION MEMORY FUNCTIONS......coooitieeee ettt 264
SR [N 270 01T 1] TR 264
8.1.1 CSSM_API_MEMORY_FUNCSData SITUCIULE........veee et 264
8.1.2 Initialization Of MeMOrY SITUCLUN@......ccvei ettt ne e e e s 264

9. APPENDIX C. ACRONYMS ... it 266

Release 1.2 Common Security Services M anager Pageix
Application Programming I nterface

List of Tables

I o L I N £ o101 (= £ o= USRI 30
TaDIE 2. CONLEXE LYPES.....eeeeeeitie et etee ettt et et et e et e sttt e et e e e sbe e e aaee e aaeeeaabeesaeeesabeeeembeeaabeesnseesnseesnneean 31
Table 3. Algorithms fOr & SESSION CONEEXL........oouiiiiie ettt st se e s ae e seeeennee s 31
Table 4. Modes Of @lgOrTNMIS.........oo ettt ettt e b e e beeenee s 33

List of Figures

Figure 1. The Common Data Security Architecture for al platforms..........ocooeiiiiiiiiiiiiee e 2

Release 1.2 Common Security Services M anager Pagel
Application Programming I nterface

1. Introduction

This section provides:
* Anoverview of the Common Data Security Architecture

* Anoverview of the Common Security Services Manager Application Programming Interface
document

* Anoverview of the Common Data Security Architecture documentation

* References

1.1 Common Data Security Architecture

The Common Data Security Architecture (CDSA) defines the infrastructure for a complete set of security
services. CDSA is an extensible architecture that provides mechanisms to manage add-in security
modules, which use cryptography as a computational base to build security protocols and security systems.
Figure 1 shows the four basic layers of the Common Data Security Architecture: Applications, System
Security Services, the Common Security Services Manager, and Security Add-in Modules. The Common
Security Services Manager (CSSM) is the core of CDSA.. It provides a means for applications to directly
access security services through the CSSM security API, or to indirectly access security services via
layered security services and tools implemented over the CSSM API. CSSM manages the add-in security
modules and directs application calls through the CSSM API to the selected add-in module that will
service the request. Add-in modules perform various aspects of security services, including:

» Cryptographic Services

» Trust Policy Services

* Certificate Library Services

» Data Storage Library Services

Cryptographic Service Providers (CSPs) are add-in modules, which perform cryptographic operations
including encryption, decryption, digital signaturing, key pair generation, random number generation, and
key exchange. Trust Policy (TP) modulesimplement policies defined by authorities and institutions, such
as VeriSign* (as a certificate authority) or MasterCard* (as an institution). Each trust policy module
embodies the semantics of atrust model based on using digital certificates as credentials. Applications
may use a digital certificate as an identity credential and/or an authorization credential. Certificate
Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital
certificates and certificate revocation lists. Data Storage Library (DL) modules provide persistent storage
for certificates and certificate revocation lists.

Page2 Common Security Services M anager Release 1.2
Application Programming I nterface

Sl Applications >

¥tem -~~~ T
Security Layered Services, Middleware,

Services L anguage I nterface-adapter, and Tools

Common CSSM Security API

Security 2§ CsP TP Module | CL Module | DL Module =8 §
Services g § M anager M anager Ve Manager Q3 Qé
Manager S J[_TPr J[_Cor J[C_Dor_]

&;j(aur I ty Data-store
Add-in

Modules

Figure 1. The Common Data Security Architecturefor all platforms.

Applications directly or indirectly select the modules used to provide security services to the application.
These add-in modules will be provided by independent software and hardware vendors. The functionality
of the add-in module may be extended beyond the services defined by the CSSM API, by exporting
additional services to applications viathe CSSM PassThrough mechanism.

The API calls defined for add-in modules are categorized as service operations, module management
operations, and module-specific operations. Service operations include functions that perform a security
operation such as encrypting data, inserting a certificate revocation list into a data source, or verifying that
acertificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through pass-through functions whose behavior and use is
defined by the add-in module devel oper.

CSSM also provides integrity services and security context management. CSSM applies the integrity
check facility to itself to ensure that the currently-executing instance of CSSM code has not been altered.

Security context management provides secured runtime caching of user-specific state information and
secrets. The manager focuses on caching state information and parameters for performing cryptographic
operations. Examples of secrets that must be cached during application execution include the
application’s private key and the application’s digital certificate.

Release 1.2 Common Security Services M anager Page 3
Application Programming I nterface

In summary, the CSSM provides these services through its API calls:
* Certificate-based services and operations

» Comprehensive, extensible SPIs for cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

* Registration and management of available cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

» Caching of keys and secrets required as part of the runtime context of a user application
e Call-back functions for disk, screen, and keyboard /O supported by the operating system
* A test-and-check function to ensure CSSM integrity

* Management of concurrent security operations

1.2 CSSM API Document

1.2.1 Intended Audience

This document is intended for use by Independent Software Vendors (ISV's) who will develop their own
application code to interact with CSSM services. These ISVswill be highly experienced software and
security architects, advanced programmers, and sophisticated users. They are familiar with network
operating systems and high-end cryptography. We assume that this audience is familiar with the basic
capabilities and features of the protocols they are considering.

1.2.2 Document Organization

This document is divided into the following sections:

Section 2, Cor e Services AP| describes functions that relate to the CSSM core. It also describes data
structures and functions that are common to all types of add-in modules.

Section 3, Cryptographic Services AP] describes functions that perform encryption, digital signature
digests, signature generation and validation. These functions access the cryptographic
service providers (tokens) within the context of a cryptographic session. This section
also describes functions that are used to manage CSP modules and which provide access
to module-specific functionality.

Section 4, Trust Policy Services APl describes functions that can be used for determining alevel of trust
before performing a syntactic operation on a certificate. For example, the trust policy
may determine whether or not a given certificate is authorized to sign other certificates.
This section also describes functions which are used to manage TP modules and which
provide access to module-specific functionality, such as verification of a certificate’s
authority to perform module-specific operations.

Section 5, Certificate Library Services AP] describes functions that perform syntactic, format-specific
operations on certificates and certificate revocation lists (CRLs). The certificate library
modul e performs data format-specific operations, such as creating a new certificate from
alist of tag-value pairs. This section also describes functions which are used to manage
CL modules, and which provide access to module-specific functionality.

Page4 Common Security Services M anager Release 1.2
Application Programming I nterface

Section 6, Data Storage Library Services AP] describes functions that allow access to databases within
data storage modules which are used for the persistent storage of certificates and
certificate revocation lists. The mechanism used for persistence is assumed to be
transparent to the calling application. This section also describes functions which are
used to manage DL modules and which provide access to modul e-specific functionality.

Appendix A, Error-Handling describes the error handling functions and the error return codes used by
CSSM.

Appendix B, Application M emory Functionglescribes memory management in CSSM as it relates to
applications.

Appendix C, Acronymsallist of acronyms and their definitions. For a more complete glossary, see the
CDSA Specification

Sections 2 through 6 are each organized into the following sub-sections:

1. A section overview which describes important implementation details and
which highlights each API call.

2. A description of the C data structures used by the functionsin that section.

3. A description of each function’s purpose, input parameters, output parameters, return value, and
applicable error codes.

1.3 CDSA Documentation

A set of documents describing CDSA and CSSM are envisioned. The CDSA Specification and CSSM
API Specification are completed and available to the industry for feedback. The other documents are
under development. The list of envisioned documents includes:

» Common Data Security Architecture Specificatior{or CDSA Specificatior). This presents the overall
CDSA architecture, including CSSM.

» CSSM Application Programming Interfacéthis document, theCSSM API). This defines the
interface that applications developers use to access CSSM and add-in module services.

* CSSM Cryptographic Service Provider Interfacé&pecification (or CSSM SPI). This defines the
interface that cryptographic service providers must conform to in order to be accessible via CSSM.
Individuals interested in making cryptographic services available under the CSSM interface will need
to be familiar with the CSSMSPI. This document also provides key information regarding the
expected behavior of a cryptographic service provider as well as detailed implementation examples,
which may be of use to the cryptographic service provider developer.

e CSSM Trust Policy InterfaceSpecification (or CSSM TPI). This defines the interface that trust policy
modules must conform to in order to be accessible via CSSM. Individuals interested in making trust
policy features available under the CSSM interface will need to be familiar with the CSSNIPI. This
document also provides key information regarding the expected behavior of atrust policy module as
well as detailed implementation examples which may be of use to the trust policy module devel oper.

* CSSM Certificate Library Interface Specificatioor CSSM CLI). This defines the interface that
certificate libraries must conform to in order to be accessible via CSSM. Individualsinterested in
making certificate library features available under the CSSM interface will need to be familiar with
the CSSM CLI. Thisdocument also provides key information regarding the expected behavior of a
certificate library module, as well as detailed implementation examples which may be of use to the
certificate library module developer.

Release 1.2

Common Security Services M anager Page5
Application Programming I nterface

» CSSM Data Storage Library Interface Specificatiorfor CSSM DLI). This defines the interface that a
data storage library must conform to in order to be accessible via CSSM. Individualsinterested in
making data storage library features available under the CSSM interface will need to be familiar with
the CSSM DLI. This document also provides key information regarding the expected behavior of a
data storage library module, as well as, detailed implementation examples which may be of use to the
data storage library module developer.

e CSSM-Java* Application Programming Interfaceqr CSSM-Java). This defines a Java package of
classes and methods that Java applets and Java applications must use to access CSSM managed
Ssecurity services.

1.4 References

BSAFE*
PKCS*

X.509

CDSA
Specification
CSSM SPI

CSSM TP
CSSM CLI
CSSM DLI
CSSM-Java

BSAFE Cryptographic Toolkif RSA Data Security, Inc., Redwood City, CA: RSA
Laboratories

The Public-Key Cryptography StandardsRSA L aboratories, Redwood City, CA:
RSA Data Security, Inc.

CCITT. Recommendation X.509: The Directory — Authentication Framework1988
CCITT stands for Comite Consultatif Internationale Telegraphique et Telphonique
(International Telegraph and Telephone Consultative Committee)

Common Data Security Architecture Specification|ntel Architecture Labs, 1996

CSSM Cryptographic Service Provider Interfac&pecification, Intel Architecture
Labs, 1996

CSSM Trust Policy InterfaceSpecification, Intel Architecture Labs, 1996
CSSM Certificate Library Interface Specification]ntel Architecture Labs, 1996
CSSM Data Storage Library Interface Specificationintel Architecture Labs, 1996

CSSM-Java Application Programming Interface Specificationntel Architecture
Labs, 1996

Page 6 Common Security Services M anager Release 1.2
Application Programming I nterface

2. Core Services API

2.1 Overview

The CSSM provides a set of core services for version management, component verification and memory
management. These services are supplied by the CSSM and are not handled by add-in modules.

The CSSM management functions allow applications to query for information about the CSSM and to
verify components associated with CSSM. A query of CSSM will return information about the version of
the CSSM that isrunning. A function is also provided to verify whether the application’s expected CSSM
version is compatible with the currently-running CSSM version.

The components verification function allows applications to check the integrity of the system components
listed in the signed bill-of-materials file. All applications should call this routine once, at start-up.
Applications can (and should) use this to verify system integrity before performing a vital operation; a
failure return code indicates that system integrity may have been compromised.

To protect against assaults on CSSM and its components, any system binary or datafile can be
authenticated. There are two levels of inclusion when securing CSSM and its components. The first level
consists of signing CSSM itself. During the creation of CSSM, a digital signature and a public key are
embedded into the binaries of CSSM. CSSM provides the CSSM_V erifyComponents function to
authenticate this signature.

The second level consists of CSSM signing additional components, such as add-in modules. For example,
as part of installation, the user generates keys which are used to sign the default encryption module and its
adaptation layer.

The CSSM memory management functions are a class of routines for reclaiming memory allocated for the
base CSSM objects. The CSSM and the add-in modules are responsible for allocating and freeing these
memory objects. However, because add-in modules cannot determine when memory space can be
reclaimed, these API calls have been provided for the application to indicate when the memory objects are
no longer needed.

2.1.1 CSSM Management Functions

CSSM_RETURN CSSMAPI CSSM _Init accepts as input the CSSM’ s major and minor
version numbers required for compatibility with the calling
application.

CSSM_INFO_PTR CSSMAPI CSSM_GetInfo €SSM returns its major and minor version
numbers.

CSSM_RETURN CSSMAPI CSSM _Freel nfo accepts as input the pointer to the data
structure returned in the CSSM_ GetInfo function. The
memory allocated by the CSSM is reclaimed by the operating
system.

CSSM_RETURN CSSMAPI CSSM_VerifyComponentsno input is needed for this function.
CSSM verifies the componentsit has signed. Changesin
those components will be detected by the verification process.

Release 1.2 Common Security Services M anager Page7
Application Programming I nterface

2.1.2 CSSM Memory Management Functions

CSSM_RETURN CSSMAPI CSSM_FreeL ist accepts as input a pointer to a CSSM_LIST
memory object allocated by the CSSM. This function
reclaims memory by the operating system.

void CSSM API CSSM _Free acceptsas input a pointer to generic memory allocated by the
add-in. Thisfunction reclaims memory by the operating
system.

CSSM_API_MEMORY_FUNCS PTR CSSMAPI CSSM_GETAPIMemoryFunction3his
function returns the pointer to the memory function table
associated with the add-in handle.

Page8 Common Security Services M anager
Application Programming I nterface

Release 1.2

2.2 Data Structures

2.2.1 CSSM_INFO

This data structure represents the information associated with an installation of CSSM.

typedef struct cssm.i nfof
ui nt 32 Ver Myj or;
ui nt 32 Ver M nor;
}CSSM I NFQ *CSSM | NFO PTR

Definition:
VerMajor - major version number

VerMinor - minor version number

2.2.2 CSSM_BOOL

This data type is used to indicate conditional responses to a function.
t ypedef enum cssm bool {

CSSM TRUE = 1,

CSSM FALSE = 0
} CSSM BOOL

Definition:
CSSM_TRUE- indicates operation was successful

CSSM_FALSE- indicates operation was unsuccessful

2.2.3 CSSM_RETURN

This data type is used to indicate whether a function was successful.
typedef enumcssmreturn {

CSSM K = 0,

CSSMFAIL = -1
} CSSM RETURN

Definition:
CSSM_OK - indicates operation was successful

CSSM_FAIL - indicates operation was unsuccessful

Release 1.2 Common Security Services M anager Page9
Application Programming I nterface

2.24 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssm dataf
uint32 Length; /* in bytes */
uint8 *Dat a;

} CSSM DATA, *CSSM DATA PTR

Definition:
Length - length of the data buffer in bytes

Data - points to the start of an arbitrary length data buffer

2.25 CSSM_GUID

This structure designates a global unique identifier (GUID) that distinguishes one add-in module from
another. All GUID values should be computer-generated to guarantee uniqueness (the GUID generator in
Microsoft Developer Studio* and the RPC UUIDGEN/uuid_gen program on a number of UNIX*
platforms can be used).

typedef struct cssm gui df
ui nt 32 Dat al;
ui nt 16 Dat a2;
ui nt 16 Dat a3;
uint8 Data4[8];
} CSSM GU D, *CSSM QU D PTR

Definition:
Datal - Specifies the first eight hexadecimal digits of the GUID.

Data2 - Specifies the first group of four hexadecimal digits of the GUID.
Data3 - Specifies the second group of four hexadecimal digits of the GUID.

Data4 - Specifies an array of eight elements that contains the third and final group of eight
hexadecimal digits of the GUID in elements 0 and 1, and the final 12 hexadecimal digits
of the GUID in elements 2 through 7.

2.2.6 CSSM_LIST_ITEM

This structure is used to encapsulate the name and GUID of an add-in module.
typedef struct cssmlist_iten

CSSM GU D QU D,

char *Nane;
} CSSMLIST ITEM *CSSM LI ST | TEM PTR

Definition:
GUID - the global unique identifier of the module

Name - the name of the module

Page 10 Common Security Services M anager Release 1.2
Application Programming I nterface

2.277 CSSM_LIST

This structure is used to encapsulate an array of CSSM_LIST_ITEMs, where the array length is given by
the Length variable.

typedef struct cssmlist{
ui nt 32 Nunber |t ens;
CSSM LI ST_| TEM PTR | t ens;
} CSSM LI ST, *CSSM LI ST_PTR

Definition:
Data - an array of name and GUID pairs

Length - the number of entriesin theData array

2.2.8 CSSM_API_MEMORY_FUNCS

This structure is used by applications to supply memory functions for the CSSM and the add-in modules.
The functions are used when memory needs to be allocated by the CSSM or add-ins for returning data
structures to the applications.

typedef struct cssm_api_memory_funcs {
void * (*malloc_func) (uint32 size, void * allocRef);
void (*free_func) (void *memblock, void * allocRef);
void * (*realloc_func) (void *memblock, uint32 size, void * allocRef);
void * (*calloc_func) (uint32 num, uint32 size, void * allocRef);
} CSSM_API_MEMORY_FUNCS, *CSSM_API_MEMORY_FUNCS_PTR

Definition:
malloc_func- pointer to function that returns a void pointer to the allocated memory block of at least
size bytes from heap allocRef

free_func- pointer to function that deallocates a previously-allocated memory blockneémblock) from
heap allocRef

realloc_func- pointer to function that returns a void pointer to the reallocated memory block
(memblock) of at least size bytes from heap allocRef

calloc_func- pointer to function that returns a void pointer to an array ohumelements of lengthsize
initialized to zero from heap allocRef

See Appendix B for details about the application memory functions.

Release 1.2 Common Security Services M anager Page 11
Application Programming I nterface

2.3 Core Functions

2.3.1 CSSM_lInit

CSSM_RETURN CSSMAPI CSSM _Init (
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
const void * Reserved)

This function initializes CSSM and verifies that the version of CSSM expected by the application
is compatible with the version of CSSM on the system. This function should be called once by
each application.

Parameters
CheckCompatibleVer Major(input)
The major version number of the CSSM release the application is compatible with.

CheckCompatibleVer Minor(input)
The minor version number of the CSSM release the application is compatible with.

MemoryFuncs (input)
Memory functions for the CSSM when allocating data structures for the application.

Reserved (input)
A reserved input.

Return Value
A CSSM_OK return value signifies the initialization operation was successful. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer

CSSM_INCOMPATIBLE_VERSION Incompatible version

Page 12 Common Security Services M anager Release 1.2
Application Programming I nterface

2.3.2 CSSM_GetInfo

CSSM_INFO_PTR CSSMAPI CSSM_GetInfo (void)
This function returns the version information of the CSSM Core.

Parameters
None

Return Value
A pointer to the CSSM_INFO structure. If the pointer is NULL, an error occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_MEMORY_ERROR Error in allocating memory
CSSM_NOT_INITIALIZE CSSM has not been initialized
See Also

CSSM_ Freelnfo

Release 1.2 Common Security Services M anager Page 13
Application Programming I nterface

2.3.3 CSSM_Freelnfo

CSSM_RETURN CSSMAPI CSSM_Freelnfo (CSSM_INFO_PTR Cssminfo)

This function frees the memory allocated for the CSSM_INFO structure in the CSSM _Getlnfo
function.

Parameters
Cssminfo (input/output)
A pointer to the CSSM_INFO structure to be freed.

Return Value
A CSSM_OK return value signifies the memory has been freed. When CSSM_FAIL isreturned,
an error occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_NOT _INITIALIZE CSSM has not been initialized
See Also

CSSM_ Getlnfo

Page 14 Common Security Services M anager Release 1.2
Application Programming I nterface

2.3.4 CSSM_VerifyComponents

CSSM_RETURN CSSMAPI CSSM_VerifyComponents (void)

This function performs an integrity check on all the components of CSSM to insure no tampering
has occurred since installation.

Parameters
None

Return Value
A CSSM_TRUE return value signifies that all components verified successfully. When
CSSM_FAL SE isreturned, either the verification failed or an error occurred. Use
CSSM _GetError to obtain the error code.

Error Codes

Vaue Description
CSSM_VERIFY_COMPONENTS _FAILED Unable to verify components
CSSM_INTEGRITY_COMPROMISED Integrity check failed

Release 1.2 Common Security Services M anager Page 15
Application Programming I nterface

2.4 Common Functions

2.4.1 CSSM_FreeList

CSSM_RETURN CSSMAPI CSSM_FreeList (CSSM_LIST_PTR CSSMList)
This function frees the memory allocated to hold alist of strings.

Parameters
CSSMList (input)
A pointer to the CSSM_LIST structure containing the GUID, name pair of add-ins.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes

Vaue Description
CSSM_INVALID_POINTER Invalid pointer input

Page 16 Common Security Services M anager
Application Programming I nterface

Release 1.2

242 CSSM_Free

void CSSMAPI CSSM_Free (void *MemPtr, CSSM_HANDLE AddinHandle)
This function frees the memory allocated by add-in.

Parameters
MemPtr (input)
A pointer to the memory to be freed.

AddInHandle (input)
The handle to add-in module that needs to free memory

Return Value
None

Error Codes
None

Release 1.2 Common Security Services M anager Page 17
Application Programming I nterface

2.43 CSSM_GetAPIMemoryFunctions

CSSM_API_MEMORY_FUNCS PTR CSSMAPI CSSM _GetAPIMemoryFunctiong
CSSM_HANDLE AddinHandle)

This function retrieves the memory function table associated with the add-in module.

Parameters
AddInHandle (input)
The handle to add-in module that is associated to memory function table.

Return Value
Non NULL if the function was successful. NULL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID ADDIN_HANDLE Invalid add-in handle

CSSM_MEMORY_ERROR Internal memory error

Page 18 Common Security Services M anager Release 1.2
Application Programming I nterface

3. Cryptographic Services API

3.1 Overview

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations
including encryption, decryption, digital signaturing, key and key pair generation, random number
generation, message digest, key wrapping, key unwrapping, and key exchange. Cryptographic services can
be implemented by a hardware-software combination or by software only. Besides the traditional
cryptographic functions, CSPs may provide other vendor-specific services. The set of services provided
can be dynamic even after the CSP has been attached for service by a caller. This means the capabilities
registered when the CSP was installed can change during execution based on changes internal or external
to the system.

The CSP is always responsible for the secure storage of private keys. Optionally the CSP may assume
responsibility for the secure storage of other object types, such as symmetric keys and certificates. The
implementation of secured persistent storage for keys can use the services of a Data Storage Library
modul e within the CSSM framework or some approach internal to the CSP. Accessing persistent objects
managed by the CSP, other than keys, is performed using CSSM’ s Data Storage Library APIs.

CSPs optionally support a password-based login sequence. When login is supported, the caller is allowed
to change passwords as deemed necessary. Thisis part of a standard user-initiated maintenance procedure.
Some CSPs support operations for privileged, CSP administrators. The model for CSP administration
varies widely among CSP implementations. For this reason, CSSM does not define APIs for vendor-
specific CSP administration operations. CSP vendors can makes these services available to CSP
administration tools using the CSSM _ Passthrough function.

The range and types of cryptographic services a CSP supportsis at the discretion of the vendor. A registry
and query mechanism is available through the CSSM for CSPs to disclose the services and detail s about
the services. Asan example, a CSP may register with the CSSM: Encryption is supported, the algorithms
present are DES with cipher block chaining for key sizes 40 and 56 bits, triple DES with 3 keys for key
size 168 hits.

All cryptographic services requested by applications will be channeled to one of the CSPs viathe CSSM.
CSP vendors only need target their modules to CSSM for all security-conscious applications to have
access to their product.

Calls made to a Cryptographic Service Provider (CSP) to perform cryptographic operations occur within a
framework called asession, which is established and terminated by the application. Thaession context
(simply referred to as thecontext) is created prior to starting CSP operations and is deleted as soon as
possible upon completion of the operation. Context information is not persistent; it is not saved
permanently in afile or database.

Before an application calls a CSP to perform a cryptographic operation, the application uses the query
services function to determine what CSPs are installed, and what services they provide. Based on this
information, the application then can determine which CSP to use for subsequent operations; the
application creates a session with this CSP and performs the operation.

Depending on the class of cryptographic operations, individualized attributes are available for the
cryptographic context. Besides specifying an algorithm when creating the context, the application may
also initialize a session key, pass an initialization vector and/or pass padding information to complete the

Release 1.2 Common Security Services M anager Page 19
Application Programming I nterface

description of the session. A successful return value from the create function indicates the desired CSP is
available. Functions are also provided to manage the created context.

When a context is no longer required, the application calls CSSM DeleteContext. Resources that were
allocated for that context can be reclaimed by the operating system.

Cryptographic operations come in two types — a single call to perform an operation and a staged method
of performing the operation. For the single call method, only one call is needed to obtain the result. For
the staged method, there is an initialization call followed by one or more update calls, and ending with a
completion (final) call. The result is available after the final function completes its execution for most
crypto operations — staged encryption/decryption are an exception in that each update call generates a
portion of the result.

3.1.1 Cryptographic Context Operations

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateK eyExchContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSignatureContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSymmetricContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDigestContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateM acContext
CSSM_CC _HANDLE CSSMAPI CSSM_CSP_CreateRandomGenContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateUniquel dContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateAsymmetricContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDeriveK eyContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateK eyGenContext
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreatePassT hr oughContexiaccepts as input
a handle to the CSP that provides the cryptographic services
and the necessary data to complete description of the
cryptographic context. When the context is successfully
created, a handle to a cryptographic context is returned to the
calling application.
CSSM_CONTEXT_PTR CSSMAPI CSSM_CSP_GetContextaccepts as input the handle of
a cryptographic context. The function returns a pointer to the
context data structure that describes the handle.

3.1.2 Cryptographic Sessions and Logon

CSSM_RETURN CSSMAPI CSSM_CSP_L ogin accepts as input alogin password and a flag
indicating the persistent or non-persistent status of keys and
other objects created during the login session. CSPs are not
required to support alogin model. If alogin model is
supported, the CSP may request additional passwords at any
time during the period of service.

CSSM_RETURN CSSMAPI CSSM_CSP_L ogoutthe caller is logged out of the current login
session with the designated CSP.

CSSM_RETURN CSSMAPI CSSM _CSP_Changel oginPasswor-daccepts as input a handle
to a CSP, the caller’s old login password for that CSP, and
the caller’ s new login password. The old password is replaced
with the new password. The caller’s current login is
terminated and another login session is created using the new
password.

Page 20

Common Security Services M anager Release 1.2
Application Programming I nterface

3.1.3 Cryptographic Operations

CSSM_RETURN CSSMAPI CSSM _QuerySize accepts as input a handle to a cryptographic
context describing the sign, digest, message authentication
code, encryption, or decryption operation. This function
returns pointers to variables indicating the block size
(encryption and decryption only) and output size for the
specified algorithm.

CSSM_RETURN CSSMAPI CSSM_SignData

CSSM_RETURN CSSMAPI CSSM _SignDatal nit

CSSM_RETURN CSSMAPI CSSM _SignDataUpdate

CSSM_RETURN CSSMAPI CSSM _SignDataFinal accepts as input a handle to a
cryptographic context describing the sign operation and the
datato operate on. The result of the completed sign operation
isreturned inaCSSM_DATA structure.

CSSM_BOOL CSSMAPI CSSM_VerifyData

CSSM_RETURN CSSMAPI CSSM_VerifyDatal nit

CSSM_RETURN CSSMAPI CSSM_VerifyDataUpdate

CSSM_BOOL CSSMAPI CSSM_VerifyDataFinat accepts asinput a handleto a
cryptographic context describing the verify operation and the
datato operate on. The result of the completed verify
operationisaCSSM_TRUE or CSSM_FALSE.

CSSM_RETURN CSSMAPI CSSM_DigestData

CSSM_RETURN CSSMAPI CSSM _DigestDatal nit

CSSM_RETURN CSSMAPI CSSM_DigestDataUpdate

CSSM_RETURN CSSMAPI CSSM _DigestDataFinalaccepts as input a handle to a
cryptographic context describing the digest operation and the
datato operate on. The result of the completed digest
operation isreturned in a CSSM_DATA structure.

CSSM_CC_HANDLE CSSMAPI CSSM _DigestDataCloneaccepts as input a handle to a
cryptographic context describing the digest operation. A new
handle to another cryptographic context is created with
similar information and intermediate result as described by
the first context.

CSSM_RETURN CSSMAPI CSSM_GenerateM ac

CSSM_RETURN CSSMAPI CSSM _GenerateM acl nit

CSSM_RETURN CSSMAPI CSSM _GenerateM acUpdate

CSSM_RETURN CSSMAPI CSSM _Gener ateM acFinalaccepts as input a handle to a
cryptographic context describing the MAC operation and the
datato operate on. The result of the completed MAC
operation isreturned in a CSSM_DATA structure.

CSSM_RETURN CSSMAPI CSSM_EncryptData

CSSM_RETURN CSSMAPI CSSM _EncryptDatal nit

CSSM_RETURN CSSMAPI CSSM_EncryptDataUpdate

CSSM_RETURN CSSMAPI CSSM _EncryptDataFinal accepts asinput a handle to a
cryptographic context describing the encryption operation and
the data to operate on. The encrypted datais returned in
CSSM_DATA structures.

Release 1.2

Common Security Services M anager
Application Programming I nterface

Page?21

CSSM_RETURN CSSMAPI
CSSM_RETURN CSSMAPI
CSSM_RETURN CSSMAPI
CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI
CSSM_RETURN CSSMAPI
CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_RETURN CSSMAPI

CSSM_DecryptData

CSSM _DecryptDatal nit

CSSM _DecryptDataUpdate

CSSM _DecryptDataFinalaccepts as input ahandle to a
cryptographic context describing the decryption operation and
the data to operate on. The decrypted datais returned in
CSSM_DATA structures.

CSSM _GenerateK ey accepts asinput ahandleto a
cryptographic context describing the generate key operation.
The key isreturned inaCSSM_KEY structure.

CSSM _GenerateK eyPair accepts asinput ahandleto a
cryptographic context describing the generate key operation.
The keys are returned in CSSM_KEY structures.

CSSM _GenerateRandom accepts asinput a handle to a
cryptographic context describing the generate random
operation. The random dataisreturnedin aCSSM_DATA
structure.

CSSM _Gener ateUniquel-daccepts as input a handle to a
cryptographic context describing the generate unique
identifier operation. The unique identifier isreturned in a
CSSM_DATA structure.

CSSM_WrapK ey accepts asinput a handle to a
symmetric/asymmetric cryptographic context describing the
wrap key operation and the wrapping key to be used in the
operation, the key to be wrapped, and a passphrase (if
required by the CSP) that permits access to the private key to
be wrapped.

CSSM _UnwrapK ey accepts as input ahandle to a
cryptographic context describing the key unwrap operation,
the wrapped key to be unwrapped, and a passphrase (if
required by the CSP), that will be used to control access to the
private key that will be unwrapped.

CSSM _DeriveK ey accepts as input a handle to a cryptographic
context describing the derive key operation and the base key
that will be used to derive new keys.

CSSM _KeyExchGenParam

CSSM _KeyExchPhasel

CSSM _KeyExchPhase? accepts as input a handle to a
cryptographic context describing the key exchange operation.
The intermediate results are returned in a CSSM_DATA
structure. For the exchange to be successful, it has to
complete phase 2 of the sequence.

3.1.4 Module Management Functions

CSSM _CSP_Install () accepts as input the GUID of the CSP
module, selected attributes describing the module, and
information required by CSSM to dynamically load the
module if its use is requested by some application. CSSM
adds the CSP module name and attributes to the registry of
CSP modules.

CSSM_CSP_Uninstall () CSSM removes a specified CSP
module from the CSP modul e registry.

Page 22

Common Security Services M anager Release 1.2
Application Programming I nterface

CSSM_LIST_PTR CSSMAPI CSSM_CSP_L istModules (-)CSSM returns a list of all

currently-registered CSP modules.

CSSM_CSP_HANDLECSSMAPI CSSM_CSP_Attach ()} accepts as input the GUID of a

CSP module, amajor and minor version of the caller, a
physical slot identifier (if appropriate for the selected CSP), a
bitmask of session flags defining preferences using the CSP,
and an optional notification callback function to be used by a
CSP supporting detached operation. The application is
requesting a dynamic load of the specified CSP module, if the
available version of the CSP module is compatible with the
version level specified by the caller.

CSSM_RETURN CSSMAPI CSSM_CSP_Detach () the application is requesting the

dynamic unload of a specified CSP module.

CSSM_CSPINFO_PTR CSSMAPI CSSM_CSP_GetlInfo () CSSM returns one or more

information structures describing the capabilities of a
specified CSP module as it is recorded in the CSP module
registry. One information structure is returned for each
logical or physical slot managed by the CSP. The caller can
select to receive all cpahility structures or only those
containing a complete and current description of the CSP's
dynamic capabilities.

CSSM_RETURN CSSMAPI CSSM_CSP_Freel nfo () acceptsas input the pointer to the

CSP information structures allocated by the CSSM. This
function reclaims memory for use by the operating system.

CSSM_HANDLEINFO_PTR CSSMAPI CSSM_GetHandlel nfo ()acceptsas input the

handle to a CSP. CSSM returns the basic meta-information
describing the identity and state of the CSP. This function
does not return the capability descriptions for this CSP.

3.1.5 Extensibility Functions
CSSM_RETURN CSSMAPI CSSM_CSP_PassT hr oughaccepts as input an operation ID and

a set of arbitrary input parameters. The operation ID may
specify any type of operation the CSP wishes to export for use
by an application. Such operations may include queries or
services that are specific to the CSP.

Release 1.2 Common Security Services M anager Page 23
Application Programming I nterface

3.2 Data Structures

t ypedef ui nt32 CSSM CC HANDLE /* Oryptographi c Context Handl e */
typedef uint32 CSSM CSP_ HANDLE /* O yptographi ¢ Service Provider Handl e */
t ypedef CSSM CONTEXT CSSM CONTEXTI NFO

3.2.1 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssm dataf
uint32 Length; /* in bytes */
uint8 *Dat a;

} CSSM DATA, *CSSM DATA PTR

Definition:
Length - length of the data buffer in bytes

Data - points to the start of an arbitrary length data buffer

3.2.2 CSSM_KEYHEADER

typedef struct CSSM KeyHeader {
ui nt 32 Header For mat Ver si on;
CSSM @J D Gspl d;
ui nt 32 Bl obDescri pti on;
ui nt 32 Dat aFor mat \er si on;
uint32 Al gorithnid;
ui nt 32 KeyUsage;
uint32 SizelnBits; /* in bits */
ui nt 32 W apMet hod;
ui nt 32 Reserved;
} CSSM KEYHEADER * CSSM KEYHEADER PTR

Definition:
Header FormatVersion Version number of the KeyHeader format. Current valueis
CSSM_KEYHEADER_VERSION (0x01).
Cspld- Globally-unique ID of the CSP that generated the key (if appropriate).

BlobDescription- KeyBlob Description Mask. When creating a BlobDescription Mask, use one from
each of the following groups::

Page 24 Common Security Services M anager Release 1.2

Application Programming I nterface

/* Wap state */

#def i ne CSSM BLOBDESC WRAP_MASK
*/

#def i ne CSSM BLOBDESC_UNRAPPED
be

(0x80000000) /* Wse to mask wap flag
(0x00000000) /* Key is cleartext, can
parsed */

(0x80000000) /* Key is encrypted, nght
not be parseable */

#def i ne CSSM BLOBDESC WWRAPPED

/* Transient State */

#def i ne CSSM BLCBDESC TRANS_NMASK (0x40000000) /* Use to mask transient
flag */

(0x00000000) /* Data constant across
attaches */

(0x40000000) /* Data not constant

#def i ne CSSM BLOBDESC_PERVANENT

#def i ne CSSM BLOBDESC TRANSI ENT
acr oss

attaches */

/* Data Type */

#def i ne CSSM BLOBDESC TYPE_MASK
#def i ne CSSM BLOBDESC DATA
#def i ne CSSM BLOBDESC LABEL

*/

#def i ne CSSM BLOBDESC HANDLE

(0x30000000) /* UWse to mask type */
(0x00000000) /* Actual k ey data */
(0x10000000) /* Label ref to key

(0x20000000) /* Handle ref to key */

/* Contents */

#def i ne CSSM BLCBDESC OONTENTS_NMASK (0x0F000000) /* Mask contents val ue */

#def i ne CSSM BLOBDESC PUBLI C_KEY (0x00000000)
#def i ne CSSM BLOBDESC PR VATE_KEY (0x01000000)
#def i ne CSSM BLOBDESC_SESS| CN_KEY (0x02000000)

#def i ne CSSM BLOBDESC SECRET_PART
secret */

(0x03000000) /* Part of shared

/*

Dat a Format */

#def i ne CSSM BLOBDESC FORMVAT _NASK
val ue */

#def i ne CSSM BLCBDESC RAW

no encodi ng */

#def i ne CSSM BLCBDESC BER

#def i ne CSSM BLCBDESC PKCS1

RSA*/

#def i ne CSSM BLCBDESC PKCS3
Dffie-

#def i ne CSSM BLOBDESC MSCAPI
#def i ne CSSM BLCBDESC PGP
#def i ne CSSM BLOBDESC FI PS186

(Ox0OFFFF00) /* Mask fornat
(0x00000000) /* Single part key data,

(0x00000100)
(0x00000200) /* RSA Inc PKCS#L -

(0x00000300) /* RSA Inc PKCS#3 -

Hel man */
(0x00000400) /* Mcrosoft CAPl */
(0x00000500)
(0x00000600) /* FIPS Pub 186 - DSS */

DataFormatVersion- Version number of the KeyDataformat. Current valueis
CSSM_DATAFORMAT_VERSION (0x01).

Algorithmld - Algorithm identifier for the key contained by the key blob. Valid identifier values are
indicated in Table 3 below.

KeyUsage - Mask describing authorized key usage modes. The identified list of key usage masksis
shown below:

Release 1.2 Common Security Services M anager Page 25
Application Programming I nterface

/* Key usage nasks */

#def i ne CSSM KEYUSE _ENCRYPT 0x0001
#def i ne CSSM KEYUSE DECRYPT 0x0002
#defi ne CSSM KEYUSE _SI G\ 0x0004
#def i ne CSSM KEYUSE VER FY 0x0008
#def i ne CSSM _KEYUSE _WRAP 0x0010
#def i ne CSSM _KEYUSE_UNWRAP 0x0020
#def i ne CSSM KEYUSE_DERI VE 0x0040

SzelnBits- Size of the key in bits. Thisisthe logical length of the key in bits, which translates to be
the actual length of akey for symmetric algorithms or the length of the modulus for asymmetric
algorithms.

WrapMethod- Key wrapping scheme. The key wrapping methods currently defined are the
symmetric and asymmetric encryption algorithms listed in Table 3 below.

Reserved - Reserved for future use.

3.2.3 CSSM_KEYBLOB

This is the data structure which contains both information about the key and the key dataitself. This
structure allows the passage of keys as one contiguous unit of data.

typedef struct cssm keybl ob{

CSSM _KEYHEADER KeyHeader ;

ui nt 8 KeyDat a]| MAX_KEYBLCB_LEN] ;
} CSSM KEYBLOB, ~* CSSM KEYBLCB PTR

Definition:
KeyHeader - Key header for the key.

KeyData - Data representation of the key.

3.24 CSSM_KEY

typedef CSSM DATA CSSM KEY, *CSSM KEY PTR
typedef CSSM KEY CSSM WRAP_KEY, *CSSM WRAP_KEY PTR

3.25 CSSM_CALLBACK
t ypedef CSSM DATA PTR (CALLBACK *CSSM CALLBACK) (void *allocRef, uint32 ID);

Definition:
allocRef - Memory heap reference specifying which heap to use for memory allocation.

ID - Input data to identify the callback.

3.2.6 CSSM_CRYPTO_DATA

typedef struct cssmcrypto_data {
CSSM DATA PTR Par am
CSSM CALLBACK Cal | back;
uint32 1D
} CSSM CRYPTO DATA, *CSSM CRYPTO DATA PTR

Definition:

Page 26 Common Security Services M anager Release 1.2
Application Programming I nterface

Param- A pointer to the parameter data and its size in bytes.
Callback- An optional callback routine for the add-in modules to obtain the parameter.

ID - A tag that identifies the callback.

3.27 CSSM_CSP_TYPE

typedef enum cssm csp_type {
CSSM CSPTYPE_HW
CSSM CSPTYPE_SW
CSSM CSPTYPE_HYBR! D
} CSSM CSP_TYPE;

CSSM CSPTYPE_HWHL,
CSSM CSPTYPE_HW2

3.2.8 CSSM_CSP_SESSION_TYPE

#def i ne CSSM CSP_SESSI ON_EXCLUSI VE 0x0001
#def i ne CSSM CSP_SESSI ON_READWR TE 0x0002
#def i ne CSSM CSP_SESSI ON_SER! AL 0x0004

3.29 CSSM_NOTIFY_CALLBACK

t ypedef CSSM RETURN (* CSSM NOTI FY_CALLBACK) (CSSM CSP_HANDLE hCSP,
ui nt 32 Applicati on,
ui nt 32 Reason,
ui nt 32 Par am

Definition:

hCSP - Handle of the add-in to which the notification applies.

Application- Application specific context indicator. This value is specified when an add-in module is
attached.

Reason - One of the values specified below.

#def i ne CSSM NOTI FY_SURRENDER 0
#def i ne CSSM NOTI FY_COVPLETE 1
#def i ne CSSM NOTI FY_DEVI CE_REMOVED 2
#def i ne CSSM NOTI FY_DEVI CE_| NSERTED 3

Param- Used by the add-in that triggers the notification to pass relevant information about the
notification to the application. This parameter will contain the cryptographic context handle for the
CSSM_NOTIFY_SURRENDER/COMPLETE types and zero for the
CSSM_NOTIFY_DEVICE_REMOVED/INSERTED types.

Release 1.2 Common Security Services M anager
Application Programming I nterface

Page 27

3.2.10 CSSM_HANDLEINFO

typedef struct cssm handl einfo {
uint32 SlotlD
ui nt 32 Sessi onFl ags;
CSSM NOTI FY_CALLBACK Cal | back;
ui nt 32 Appl i cati onCont ext ;
} CSSM HANDLEI NFQ * CSSM HANDLEI NFO PTR

3.2.11 CSSM_CSPPININFO

typedef struct cssmcsppininfo {
ui nt 32 MaxLengt h;
ui nt 32 M nLengt h;
} CSSM CSPPI NLNFQ *CSSM CSPPI N NFO PTR

3.2.12 CSSM_CSPMEMINFO

typedef struct cssmcsprmenm nfo {
ui nt 32 Publ i cMem
ui nt 32 FreePubl i cMem
ui nt 32 Privat eMem
ui nt 32 FreePrivat eMem
} CSSM CSPMEM NFQ * CSSM CSPMEM NFO PTR

Page 28 Common Security Services M anager Release 1.2
Application Programming I nterface

3.2.13 CSSM_CSPSESSIONINFO

typedef struct cssmcspsessioninfo {
ui nt 32 MaxSessi ons;
ui nt 32 (penedSessi ons;
ui nt 32 MaxRWBessi ons;
ui nt 32 penedR\Bessi ons;
} CSSM CSPSESSI ONLNFQ CSSM CSPSESSI ONNFO _PTR,

3.2.14 CSSM_CSPINFO

typedef struct cssmcspinfo {

ui nt 32 Ver Myj or;

ui nt 32 Ver M nor;

CSSM BOOL Export Fl ag;

CSSM BOOL Ml ti Taski ng;

CSSM BOOL Serial Requ ired;

CSSM CSP_TYPE CSPType;

CSSM BOOL Logi nRequi r ed;

uint32 SlotlD

char *9 ot Description;

char *9 ot Vendor ;

CSSM BOOL Sl ot | sHar dwar e;

CSSM DATA Excl usi veCSPCerti fi cat e;

char *Vendor ;

char *Description;

char *Label ;

CSSM DATA Seri al Nunber ;

CSSM BOOL Renovabl e;

CSSM BOOL Capabilitieslnitialized;

ui nt 32 Nunber O Capabi l i ti es;

CSSM OONTEXT_PTR Capabi li ti es;

CSSM _CSPPI N NFO Pi nl nf o; /* CSP Pin information */

CSSM_CSPVEM NFO Meni nf o; /* CSP nenory infornmation */

CSSM CSPSESSI ONINFO Sessionlnf o; /* CSP multitasking information */
} CSSM CSPI NFO, * CSSM CSPI NFO PTR,

Definition:
VerMajor - Major version number.

VerMinor - Minor version number.
ExportFlag- Exportable flag.
MultiTasking- Flag to indicate if CSP handles multitasking.

SerialRequired- Flag to indicate if CSP is only capable of executing operationsin serial mode. If this
flag is set, the CSSM_CSP_SESSION_SERIAL flag should be used during attach.

CSPType- Enumerated value indicating CSP type.
LoginRequired- True or false, indicating whether the CSP requires caller login and logout.
SotID - Identifier for aslot in a hardware token/CSP.

SotDescription- Description of the token slot (whether physical or virtual).

Release 1.2 Common Security Services M anager Page 29
Application Programming I nterface

SotVendor - Manufacturer of the slot device.
SotlsHardware- True or False, indicating whether the CSP is hardware or software.

ExclusiveCSPCertificate- The certificate used to sign certificates issued to exclusive users of this
CSP.

Vendor - CSP Vendor name.

Description- Detailed description field for the CSP.

Label - CSP Label.

SerialNumber - Serial number of the CSP.

Removable- True or false, indicating whether the CSP can be removed from the slot.

Capabilitieslnitialized- True or false, indicating whether complete capabilities are currently specified
in this CSPinfo structure.

Number OfCapabilities- Number of contexts.

Capabilities- Pointer to a CSSM_CONTEXT structure describing CSP capabilities and attributes.

Pinlnfo- Optional information on the minimum and maximum PIN lengths allowed by the
CSSM_CSP_L ogin/Logout APIs.

Meminfo - Optional information on the amount of free memory (both public and private) available in
the CSP for storing keys and other security objects.

Sessionlnfo- Optional information on the maximum number and the current number of cryptographic
sessions with this CSP.

3.2.15 CSSMContextAttributes
typedef struct cssmcontext_attri butef

uint32 Attribut eType; /* attribute type */
uint32 AttributeLength; /* length of attribute */
uni on {

ui nt 8 *Descri pti on;
ui nt 32 *Lengt h;
voi d *Poi nter;
CSSM _CRYPTO DATA PTR SeedPassPhr ase;
CSSM KEY_PTR Key;
CSSM DATA PTR Dat a;
YALtribute; /* data that describes attribute */
} CSSM CONTEXT_ATTR! BUTE, * CSSM OONTEXT _ATTR BUTE_PTR

Definition:
AttributeType- An identifier describing the type of attribute.

Page 30 Common Security Services M anager Release 1.2
Application Programming I nterface
Tablel. Attributetypes
Vaue Description
CSSM_ATTRIBUTE_NONE No attribute
CSSM_ATTRIBUTE_CUSTOM Custom data
CSSM_ATTRIBUTE_DESCRIPTION Description of attribute
CSSM_ATTRIBUTE_KEY Key Data
CSSM_ATTRIBUTE_INIT_VECTOR Initialization vector
CSSM_ATTRIBUTE_SALT Salt
CSSM_ATTRIBUTE_PADDING Padding information
CSSM_ATTRIBUTE_RANDOM Random data
CSSM_ATTRIBUTE_SEED Seed
CSSM_ATTRIBUTE_PASSPHRASE Pass phrase

CSSM_ATTRIBUTE_KEY_LENGTH
CSSM_ATTRIBUTE_MODULUS_LEN
CSSM_ATTRIBUTE_INPUT_SIZE
CSSM_ATTRIBUTE_OUTPUT_SIZE
CSSM_ATTRIBUTE_ROUNDS

AttributeLength- Length of the attribute data.

Key length (specified in bits)
Modulus length (specified in bits)
Input size

Output size

Number of runs (or rounds)

Attribute - Attribute data. Depending on theAttributeType the attribute data represents different

information.

Release 1.2 Common Security Services M anager
Application Programming I nterface

Page 31

3.2.16 CSSMContext

t ypedef ui nt32 CSSM CC HANDLE /* Oryptographi c Context Handl e */
t ypedef CSSM CONTEXT CSSM CONTEXTI NFO

typedef struct cssmcontext {

ui nt 32 Cont ext Type; /* context type */

ui nt 32 Al gori t hnType; /* algorithmtype of context */

ui nt 32 Mode; /* for encryption only */

ui nt 32 Reserve; /* reserved for future use */

uint32 NunberfAttributes; /* nunber of attributes associated wi th context
*/

CSSM OONTEXT_ATTR BUTE_PTR Cont ext At tri but es; /* pointer to attributes
*/

} CSSM CONTEXT, *CSSM CONTEXT PTR

Definitions:
ContextType- An identifier describing the type of services for this context.

Table2. Context types

Vaue Description

CSSM_ALGCLASS NONE Null Context type

CSSM_ALGCLASS CUSTOM Custom Algorithms
CSSM_ALGCLASS KEYXCH Key Exchange Algorithms
CSSM_ALGCLASS SIGNATURE Signature Algorithms
CSSM_ALGCLASS_SYMMETRIC Symmetric Encryption Algorithms
CSSM_ALGCLASS DIGEST Message Digest Algorithms
CSSM_ALGCLASS_RANDOMGEN Random Number Generation Algorithms
CSSM_ALGCLASS UNIQUEGEN Unique ID Generation Algorithms
CSSM_ALGCLASS MAC Message Authentication Code Algorithms
CSSM_ALGCLASS_ASYMMETRIC Asymmetric Encryption Algorithms
CSSM_ALGCLASS KEYGEN Key Generation Algorithms
CSSM_ALGCLASS DERIVEKEY Key Derivation Algorithms

AlgorithmType- An ID number describing the algorithm to be used.

Table3. Algorithmsfor a session context.

Vaue Description

CSSM_ALGID_NONE Null algorithm
CSSM_ALGID_CUSTOM Custom algorithm

CSSM_ALGID_DH Diffie Hellman key exchange algorithm
CSSM_ALGID_PH Pohlig Hellman key exchange algorithm
CSSM_ALGID_KEA Key Exchange Algorithm
CSSM_ALGID_MD2 MD2 hash algorithm
CSSM_ALGID_MD4 MD4 hash algorithm
CSSM_ALGID_MD5 MD5 hash algorithm
CSSM_ALGID_SHA1 Secure Hash Algorithm

CSSM_ALGID_NHASH N-Hash algorithm

Page 32

Common Security Services M anager
Application Programming I nterface

Release 1.2

CSSM_ALGID_HAVAL
CSSM_ALGID_RIPEMD

CSSM_ALGID_IBCHASH
CSSM_ALGID_RIPEMAC
CSSM_ALGID_DES
CSSM_ALGID_DESX
CSSM_ALGID_RDES
CSSM_ALGID_3DES 3KEY
CSSM_ALGID_3DES 2KEY
CSSM_ALGID_3DES _1KEY
CSSM_ALGID_IDEA
CSSM_ALGID_RC2
CSSM_ALGID_RC5
CSSM_ALGID_RC4
CSSM_ALGID_SEAL
CSSM_ALGID_CAST
CSSM_ALGID_BLOWFISH
CSSM_ALGID_SKIPJACK
CSSM_ALGID_LUCIFER
CSSM_ALGID_MADRYGA
CSSM_ALGID_FEAL
CSSM_ALGID_REDOC
CSSM_ALGID_REDOC3
CSSM_ALGID_LOKI
CSSM_ALGID_KHUFU
CSSM_ALGID_KHAFRE
CSSM_ALGID_MMB
CSSM_ALGID_GOST
CSSM_ALGID_SAFER
CSSM_ALGID_CRAB
CSSM_ALGID_RSA
CSSM_ALGID_DSA

CSSM_ ALGID_MD5WithRSA
CSSM_ALGID_MD2WithRSA
CSSM_ALGID_ElIGamal
CSSM_ALGID_MD2Random
CSSM_ALGID_MD5Random
CSSM_ALGID_SHARandom
CSSM_ALGID_DESRandom
CSSM_ALGID_SHA1WIithRSA
CSSM_ALGID_RSA_PKCS
CSSM_ALGID_RSA_1S09796
CSSM_ALGID_RSA_RAW
CSSM_ALGID_CDMF
CSSM_ALGID_CAST3
CSSM_ALGID_CASTS
CSSM_ALGID_GenericSecret

HAVAL hash algorithm (MD5 variant)
RIPE-MD hash algorithm (M D4 variant - developed for
the European Community’ s RIPE project)
IBC-Hash (keyed hash algorithm or MAC)
RIPE-MAC

Data Encryption Standard block cipher
DESX block cipher (DES variant from RSA)
RDES block cipher (DES variant)
Triple-DES block cipher (with 3 keys)
Triple-DES block cipher (with 2 keys)
Triple-DES block cipher (with 1 key)
IDEA block cipher

RC2 block cipher

RC5 block cipher

RC4 stream cipher

SEAL stream cipher

CAST block cipher

BLOWEFISH block cipher

Skipjack block cipher

Lucifer block cipher

Madryga block cipher

FEAL block cipher

REDOC 2 block cipher

REDOC 3 block cipher

LOKI block cipher

KHUFU block cipher

KHAFRE block cipher

MMB block cipher (IDEA variant)
GOST block cipher

SAFER K-64 block cipher

CRAB block cipher

RSA public key cipher

Digital Signature Algorithm

MD5/RSA signature algorithm
MD2/RSA signature algorithm
ElGamal signature algorithm
MD2-based random numbers
MD5-based random numbers
SHA-based random numbers
DES-based random numbers
SHA-1/RSA signature algorithm

RSA as specified in PKCS #1

RSA as specified in 1SO 9796

Raw RSA as assumed in X.509

CDMF block cipher

Entrust's CAST3 block cipher

Entrust's CAST5 block cipher

Generic secret operations

CSSM_ALGID_ConcatBaseAndK ey
CSSM_ALGID_ConcatKeyAndBase
CSSM_ALGID_ConcatBaseAndData
CSSM_ALGID_ConcatDataAndBase

Concatenate two keys, base key first
Concatenate two keys, base key last
Concatenate base key and random data, key first
Concatenate base key and data, data first

Release 1.2 Common Security Services M anager Page 33
Application Programming I nterface

CSSM_ALGID_XORBaseAndData
CSSM_ALGID_ExtractFromKey

CSSM_ALGID_SSL 3PreMasterGen
CSSM_ALGID_SSL3MasterDerive
CSSM_ALGID_SSL3KeyAndMacDerive

CSSM_ALGID_SSL3MD5_MAC
CSSM_ALGID_SSL3SHA1_MAC
CSSM_ALGID_MD5Derive
CSSM_ALGID_MD2Derive
CSSM_ALGID_SHA1Derive
CSSM_ALGID_WrapLynks
CSSM_ALGID_WrapSET_OAEP
CSSM_ALGID_BATON
CSSM_ALGID_ECDSA
CSSM_ALGID_MAYFLY
CSSM_ALGID_JUNIPER
CSSM_ALGID_FASTHASH

XOR abyte string with the base key

Extract a key from base key, starting at arbitrary bit
position

Generate a 48 byte SSL 3 pre-master key

Derive an SSL 3 key from a pre-master key

Derive the keys and MACing keys for the SSL cipher
suite

Performs SSL 3 MD5 MACing

Performs SSL 3 SHA-1 MACing

Generate key by MD5 hashing a base key

Generate key by MD2 hashing a base key

Generate key by SHA-1 hashing a base key

Spyrus LY NKS DES based wrapping scheme w/checksum
SET key wrapping

FortezzaBATON cipher

Elliptic Curve DSA

FortezzaMAYFLY cipher

Fortezza JUNIPER cipher

Fortezza FASTHASH

Mode - An algorithm mode — values identified in table below apply only to symmetric algorithms.

Table4. Modes of algorithms.

Value

Description

CSSM_ALGMODE_NONE
CSSM_ALGMODE_CUSTOM
CSSM_ALGMODE_ECB
CSSM_ALGMODE_ECBPad
CSSM_ALGMODE_CBC
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBCPadIV8

CSSM_ALGMODE_CFB
CSSM_ALGMODE_CFB_IV8
CSSM_ALGMODE_OFB
CSSM_ALGMODE_OFB_IV8
CSSM_ALGMODE_COUNTER
CSSM_ALGMODE_BC
CSSM_ALGMODE_PCBC
CSSM_ALGMODE_CBCC
CSSM_ALGMODE_OFBNLF
CSSM_ALGMODE_PBC
CSSM_ALGMODE_PFB
CSSM_ALGMODE_CBCPD
CSSM_ALGMODE_PUBLIC_KEY
CSSM_ALGMODE_PRIVATE_KEY
CSSM_ALGMODE_SHUFFLE

Null Algorithm mode

Custom mode

Electronic Code Book

ECB with padding

Cipher Block Chaining

CBC with Initialization Vector of 8 bytes
CBC with padding and Initialization Vector of 8
bytes

Cipher FeedBack

CFB with Initialization Vector of 8 bytes
Output FeedBack

OFB with Initialization Vector of 8 bytes
Counter

Block Chaining

Propagating CBC

CBC with Checksum

OFB with NonLinear Function

Plaintext Block Chaining

Plaintext FeedBack

CBC of Plaintext Difference

Use the public key

Use the private key

Fortezza shuffle mode

Number OfAttributes- Number of attributes associated with this service.

Page 34 Common Security Services M anager

Application Programming I nterface

Release 1.2

ContextAttributes- Pointer to data that describes the attributes. To retrieve the next attribute,

advance the attribute pointer.

Release 1.2 Common Security Services M anager Page 35
Application Programming I nterface

3.3 Cryptographic Context Operations

3.3.1 CSSM_CSP_CreateKeyExchContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateK eyExchContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD)

This function creates a key exchange context given a handle of a CSP, an algorithm
identification number, a key, and the length of the key in bits. The cryptographic context handle
isreturned. The cryptographic context handle can be used to call key exchange functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for the algorithm used to do the key exchange.

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_KeyExchPhasel, CSSM_KeyExchPhase2, CSSM_K eyExchGenParam,
CSSM_GetContext, CSSM _SetContext, CSSM_DeleteContext, CSSM _ GetContextAttribute,
CSSM_UpdateContextAttributes

Page 36 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.2 CSSM_CSP_CreateSignatureContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSignatureContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
const CSSM _KEY_PTR Key)

This function creates a signature cryptographic context for sign and verify given a handle of a
CSP, an agorithm identification number, akey, and the length of the key in bits. The
cryptographic context handleis returned. The cryptographic context handle can be used to call
sign and verify cryptographic functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for a signature/verification algorithm.

PassPhrase (input)

The passphrase used to unlock the private key. Optionally, the application can provide a pointer
to a callback function. In which case, the CSP will invoke the callback to obtain the passphrase.
The passphrase is needed only for signature operations, not verify operations.

Key (input)
The key used to sign. The caller passesin a pointer to a CSSM_KEY structure containing the
key.

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataUpdate, CSSM _SignDataFinal,
CSSM_VerifyData, CSSM_VerifyDatalnit, CSSM_VerifyDataUpdate, CSSM_VerifyDataFinal,
CSSM_GetContext, CSSM _SetContext, CSSM_DeleteContext, CSSM _ GetContextAttribute,
CSSM_UpdateContextAttributes

Release 1.2 Common Security Services M anager Page 37
Application Programming I nterface

3.3.3 CSSM_CSP_CreateSymmetricContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSymmetricContext
(CSSM_CSP_HANDLE CSPHandle,

uint32 AlgorithmiD,
uint32 Mode,
const CSSM _KEY_PTR Key,
const CSSM_DATA_PTR InitVector,
uint32 Padding,
uint32 Rounds)

This function creates a symmetric encryption cryptographic context given a handle of a CSP, an

algorithm identification number, a key, an initial vector, padding, and the number of encryption

rounds. The cryptographic context handle is returned. The cryptographic context handle can be
used to call symmetric encryption functions and the cryptographic wrap/unwrap functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for symmetric encryption.

Mode (input)
The mode of the specified algorithm ID.

Key (input)
The key used for symmetric encryption. The caller passesin a pointer to a CSSM_KEY structure
containing the key.

InitVector (input/optional)
The initial vector for symmetric encryption; typically specified for block ciphers.

Padding (input/optional)
The method for padding; typically specified for ciphers that pad.

Rounds (input/optional)
Specifies the number of rounds of encryption; used for ciphers with variable number of rounds.

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Page 38 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_EncryptData, CSSM _QuerySize, CSSM _EncryptDatal nit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_DecryptData, CSSM_DecryptDatal nit,
CSSM_DecryptDataUpdate, CSSM_DecryptDataFinal, CSSM_GetContext, CSSM_ SetContext,
CSSM_DeleteContext, CSSM _GetContextAttribute, CSSM_UpdateContextAttributes

Release 1.2 Common Security Services M anager Page 39
Application Programming I nterface

3.3.4 CSSM_CSP_CreateDigestContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDigestContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD)

This function creates a digest cryptographic context, given a handle of a CSP and an algorithm
identification number. The cryptographic context handle is returned. The cryptographic context
handle can be used to call digest cryptographic functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for message digests.

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_HANDLE Invalid crypto services provider handle
CSSM_MEMORY_ERROR Internal memory error

See Also

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM _DigestDataFinal,
CSSM_GetContext, CSSM _SetContext, CSSM_DeleteContext, CSSM _ GetContextAttribute,
CSSM_UpdateContextAttributes

Page 40 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.5 CSSM_CSP_CreateMacContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateM acContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
const CSSM _KEY_PTR Key)

This function creates a message authentication code cryptographic context, given a handle of a
CSP, algorithm identification number, key, and the length of the key in bits. The cryptographic
context handle is returned. The cryptographic context handle can be used to call message
authentication code functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for the MAC algorithm.

Key (input)
The key used to generate a message authentication code. Caller passesin a pointer to a
CSSM_KEY structure containing the key.

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_HANDLE Invalid crypto services provider handle
CSSM_MEMORY_ERROR Internal memory error

See Also

CSSM_GenerateMac, CSSM_GenerateM aclnit, CSSM_ GenerateM acU pdate,
CSSM_GenerateM acFinal, CSSM _GetContext, CSSM_ SetContext, CSSM _DeleteContext,
CSSM_GetContextAttribute, CSSM _UpdateContextAttributes

Release 1.2 Common Security Services M anager Page 41
Application Programming I nterface

3.3.6 CSSM_CSP_CreateRandomGenContext

CSSM_CC _HANDLE CSSMAPI CSSM_CSP_CreateRandomGenContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
const CSSM_CRYPTO_DATA_PTR Seed,
uint32 Length)

This function creates a random number generation cryptographic context, given ahandle of a
CSP, an agorithm identification number, a seed, and the length of the random number in bytes.
The cryptographic context handle is returned, and can be used for the random number generation
function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for random number generation.

Seed (input/optional)

A seed used to generate random number. The caller can either pass a seed and seed length in
bytes or passin a callback function. If NULL is passed, the cryptographic service provider will
use its default seed handling mechanism.

Length (input)
The length of the random number to be generated.

Return Value
Returns a cryptographic context handle. If the handleisNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_GenerateRandom, CSSM _ GetContext, CSSM_ SetContext, CSSM _ DeleteContext,
CSSM_GetContextAttribute, CSSM _UpdateContextAttributes

Page 42 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.7 CSSM_CSP_CreateUniqueldContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateUniquel dContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
const CSSM_CRYPTO_DATA_PTR Seed,
uint32 Length)

This function creates a unique identification number generation cryptographic context, given a
handle of a CSP, an algorithm identification number, a seed, and the length of the unique ID in
bytes. The cryptographic context handle is returned. The cryptographic context handle can be
used to call unique ID generation function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for unique identification generation.

Seed (input/optional)

A seed used to generate unique ID. The caller can either pass a seed and seed length in bytes or
passin acallback function. If NULL is passed, the cryptographic service provider will useits
default seed handling mechanism.

Length (input)
The length of the unique ID to be generated.

Return Value
Returns a cryptographic context handle. If the handleisNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_GenerateUniqueld, CSSM _GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM _UpdateContextAttributes

Release 1.2 Common Security Services M anager Page 43
Application Programming I nterface

3.3.8 CSSM_CSP_CreateAsymmetricContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateAsymmetricContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
const CSSM_CRY PTO_DATA_PTR PassPhrase,
const CSSM _KEY_PTR Key,
uint32 Padding,
uint32 Mode)

This function creates an asymmetric encryption cryptographic context , given a handle of a CSP,
an algorithm identification number, akey, padding, and the key mode
(CSSM_ALGMODE_PRIVATE_KEY or CSSM_ ALGMODE_PUBLIC_KEY). The
cryptographic context handleis returned. The cryptographic context handle can be used to call
asymmetric encryption functions and cryptographic wrap/unwrap functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for the algorithm used for asymmetric encryption

PassPhrase (input)

The passphrase used to unlock the private key. Optionally, the application can provide a pointer
to a callback function. In which case, the CSP will invoke the callback to obtain the passphrase.
The passphrase is needed only for private key operations, not public key operations.

Key (input)
The key used for asymmetric encryption. The caller passes a pointer to aCSSM_KEY structure
containing the key.

Padding (input/optional)
The method for padding. Typically specified for ciphers that pad.

Mode (input)
The mode indicates whether to use the private or public key
(CSSM_ALGMODE_PRIVATE_KEY or CSSM_ALGMODE_PUBLIC_KEY).

Return Value
Returns a cryptographic context handle. If the handleisNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle

CSSM_MEMORY_ERROR Internal memory error

Page 44 Common Security Services M anager Release 1.2
Application Programming I nterface

See Also
CSSM_EncryptData, CSSM _QuerySize, CSSM _EncryptDatal nit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_DecryptData, CSSM _DecryptDatal nit,
CSSM_DecryptDataUpdate, CSSM_DecryptDataFinal, CSSM_GetContext, CSSM_ SetContext,
CSSM_DeleteContext, CSSM _GetContextAttribute, CSSM_UpdateContextAttributes

Release 1.2 Common Security Services M anager Page 45
Application Programming I nterface

3.3.9 CSSM_CSP_CreateDeriveKeyContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDeriveK eyContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
CSSM_KEY_TYPE DeriveKeyType,
uint32 DeriveK eyl ength,
uint32 IterationCount,
const CSSM_CRYPTO_DATA_PTR Seed,
const CSSM_CRYPTO_DATA_PTR PassPhrase)

This function creates a cryptographic context to derive a symmetric key given a handle of a CSP,
an algorithm, the type of symmetric key to derive, the length of the derived key, and an optional
seed or an optional passphrase from which to derive anew key. The cryptographic context
handle isreturned. The cryptographic context handle can be used for calling the cryptographic
derive key function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns an error.

AlgorithmID (input)
The algorithm identification number for a derived key algorithm.

DeriveKeyType (input)
The type of symmetric key to derive.

DeriveKeyLength (input)
The length of key to derive.

InterationCount (input/optional)
The number of iterations to be performed during the derivation process. Used heavily by
password based derivation methods.

Seed (input/optional)

A seed used to generate a random number. The caller can either pass a seed and seed length in
bytes or passin a callback function. If NULL is passed, the cryptographic service provider will
use its default seed handling mechanism.

PassPhrase (input/optional)
The passphrase or a callback function to be used to obtain the passphrase to be used in deriving a

key.

Return Value
Returns a cryptographic context handle. If the handleisNULL, an error has occurred. Use
CSSM _ GetError to obtain the error code.

Page 46 Common Security Services M anager
Application Programming I nterface

Release 1.2

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_DeriveKey

Release 1.2 Common Security Services M anager Page47
Application Programming I nterface

3.3.10 CSSM_CSP_CreateKeyGenContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateK eyGenContext
(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmiD,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
uint32 KeySizelnBits,
const CSSM_CRYPTO_DATA_PTR Seed,
const CSSM_DATA_PTR Salt,
const CSSM_DATA_PTR KeyL abel)

This function creates a key generation cryptographic context, given a handle of a CSP, an
algorithm identification number, a pass phrase, a modulus size (for public/private keypair
generation), akey size (for symmetric key generation), a seed, salt, and alabel. The
cryptographic context handleis returned. The cryptographic context handle can be used to call
key/keypair generation functions.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number of the algorithm used for key generation.

PassPhrase (input)

The passphrase is used to wrap the private key upon generating a key pair or as a hickname
persistently associated with the private key or the symmetric key that will be generated by the
GenerateK ey function. Optionally, the application can provide a pointer to a callback function,
in which case, the CSP will invoke the callback to obtain the passphrase. Once the new key is
created, the passphrase or nickname must be provided in all future references to access the
private or symmetric key.

KeySzelnBits (input)
The logical size of the key (specified in bits). Thisrefersto either the actual key size (for
symmetric key generation) or the modulus size (for asymmetric key pair generation).

Seed (input/optional)

A seed used to generate the key. The caller can either pass a seed and seed length in bytes or
passin acallback function. If NULL is passed, the cryptographic service provider will useits
default seed handling mechanism.

Salt (input/optional)
A Salt used to generate the key.

KeyLabel (input/optional)
A label that can be used to reference the key or key pair being generated.

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Page 48 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_GenerateKey, CSSM_GetContext, CSSM _SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM _UpdateContextAttributes

Release 1.2 Common Security Services M anager Page 49
Application Programming I nterface

3.3.11 CSSM_CSP_CreatePassThroughContext

CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreatePassT hroughContext
(CSSM_CSP_HANDLE CSPHandle,
const CSSM_KEY_PTR Key,
const CSSM_DATA_PTR ParamBufs,
uint32 ParamBufCount)

This function creates a custom cryptographic context, given a handle of a CSP and pointer to a
custom input data structure. The cryptographic context handle is returned. The cryptographic
context handle can be used to call the CSSM pass-through function for the CSP.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform this
function. If aNULL handleis specified, CSSM returns error.

Key (input)
The key to be used for the context. The caller passesin a pointer to a CSSM_KEY structure
containing the key.

ParamBufs (input)
Array of input buffers to the pass-through call.

ParamBufCount (input)
The number of input buffers pointed to byraramBufs

Return Value
Returns a cryptographic context handle. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_CSP_ HANDLE Invalid provider handle
CSSM_MEMORY_ERROR Internal memory error
Comments

A CSP can create its own set of custom functions. The context information can be passed
through its own data structure. The CSSM_CSP_PassThrough function should be used along
with the function ID to call the desired custom function.

See Also
CSSM_CSP_PassThrough, CSSM_ GetContext, CSSM _SetContext, CSSM _DeleteContext,
CSSM_GetContextAttribute, CSSM _UpdateContextAttributes

Page 50 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.12 CSSM_GetContext

CSSM_CONTEXT_PTR CSSMAPI CSSM_GetContext (CSSM_CC_HANDLE CCHandle)
This function retrieves the context information when provided with a context handle.

Parameters
CCHandle (input)
The handle to the context information.

Return Value
The pointer to the CSSM_CONTEXT structure that describes the context associated with the
handle CCHandle. If the pointer isNULL, an error has occurred. Use CSSM_GetError to obtain
the error code. Call the CSSM_DeleteContext to free the memory allocated by the CSSM.

Error Codes
Vaue Description
CSSM_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_MEMORY_ERROR Unable to allocate memory
See Also

CSSM_SetContext, CSSM _ DeleteContext, CSSM _FreeContext

Release 1.2 Common Security Services M anager Page51
Application Programming I nterface

3.3.13 CSSM_FreeContext

CSSM_RETURN CSSMAPI CSSM_FreeContext(CSSM_CONTEXT_PTR Context)
This function frees the memory associated with the context structure.

Parameters
Context (input)
The pointer to the memory that describes the context structure.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes

Vaue Description
CSSM_INVALID_CONTEXT_POINTER Invalid context pointer

See Also
CSSM _GetContext

Page52 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.14 CSSM_SetContext

CSSM_RETURN CSSMAPI CSSM_SetContext (CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function replaces the context information associated with an existing context handle with
the new context information supplied inContext. Before replacing the context, this function
gueries the provider associated with the context, to make sure the services requested from it are
available in the provider.

Parameters
CCHandle (input)
The handle to the context.

Context (input)
The context data describing the service to replace the current service associated with context
handle CCHandle

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes

Vaue Description
CSSM_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_INVALID_CONTEXT_POINTER Invalid context pointer

See Also
CSSM GetContext

Release 1.2 Common Security Services M anager Page53
Application Programming I nterface

3.3.15 CSSM_DeleteContext

CSSM_RETURN CSSMAPI CSSM_DeleteContext (CSSM_CC_HANDLE CCHandle)
This function frees the context structure allocated by the CSSM_GetContext.

Parameters
CCHandle (input)
The handle that describes a context to be del eted.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes

Vaue Description
CSSM_INVALID_CONTEXT_HANDLE Invalid context handle

See Also
CSSM _GetContext

Page54 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.16 CSSM_GetContextAttributes

CSSM_CONTEXT_ATTRIBUTE_PTR CSSMAPI CSSM_GetContextAttributes
(CSSM_CC_HANDLE CCHandle,
uint32 AttributeType)

This function retrieves the context attributes information for the given context handle and
attribute type.

Parameters
CCHandle (input)
The handle to the context.

AttributeType (input)
The attribute type of the given CCHandle.

Return Value
The pointer to the CSSM_ATTRIBUTE structure that describes the context attributes associated
with the handle CCHandle and the attribute type. If the pointer isNULL, an error has occurred.
Use CSSM_ GetError to obtain the error code. Call the CSSM _DeleteContextAttributes to free
memory allocated by the CSSM.

Error Codes

Vaue Description
CSSM_INVALID_CONTEXT_HANDLE Invalid context handle

See Also
CSSM _ DeleteContextAttributes, CSSM GetContext

Release 1.2 Common Security Services M anager Page 55
Application Programming I nterface

3.3.17 CSSM_UpdateContextAttributes

CSSM_RETURN CSSMAPI CSSM_UpdateContextAttributes
(CSSM_CC_HANDLE CCHandle,
uint32 NumberAttributes,
const CSSM_CONTEXT_ATTRIBUTE_PTR ContextAttributes)

This function updates the security context. When an attribute is already present in the context,
this update operation replaces the previously-defined attribute with the current attribute.

Parameters
CCHandle (input)
The handle to the context.

Number Attributes (input)
The number of CSSM_CONTEXT_ATTRIBUTE structures to allocate.

ContextAttributes (input)
Pointer to data that describes the attributes to be associated with this context.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_INVALID _POINTER Invalid pointer to attributes
See Also

CSSM_ GetContextAttribute, CSSM_DeleteContextAttributes

Page 56 Common Security Services M anager Release 1.2
Application Programming I nterface

3.3.18 CSSM_DeleteContextAttributes

CSSM_RETURN CSSMAPI CSSM_DeleteContextAttributes
(CSSM_CC_HANDLE CCHandle,
CSSM_CONTEXT_ATTRIBUTE_PTR ContextAttributes)

This function deletes internal data associated with given attribute type of the context handle.

Parameters
hContext (input)
The handle that describes a context that is to be deleted.

AttributeType (input)
The attribute to be deleted from the context.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_INVALID _POINTER Invalid pointer to attributes
See Also

CSSM_GetContextAttributes, CSSM_UpdateContextAttributes

Release 1.2 Common Security Services M anager Page57
Application Programming I nterface

3.4 Cryptographic Sessions and Logon

3.4.1 CSSM_CSP_Login

CSSM_RETURN CSSMAPI CSSM_CSP_L ogin (CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR Password,
const CSSM_DATA_PTR pReserved)

Logs the user into the CSP, allowing for multiple login types and parallel operation notification.

Parameters
CSPHandle (input)
Handle of the CSP to log into.

Password (input)
Password used to log into the token.

PReserved(input)
Thisfield isreserved for future use. The value NULL should always be given. (May be used for
multiple user support in the future.)

Return Value

CSSM_OK if login is successful, CSSM_FAIL islogin fails. Use CSSM_GetError to determine
the exact error.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid CSP handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_INVALID_PASSWORD Invalid password
CSSM_CSP_ALREADY _LOGGED_IN User attempted to log in more than once
See Also

CSSM_CSP_Changel oginPassword, CSSM_CSP_L ogout

Page 58 Common Security Services M anager Release 1.2
Application Programming I nterface

3.4.2 CSSM_CSP_Logout

CSSM_RETURN CSSMAPI CSSM_CSP_L ogou{CSSM_CSP_HANDLE CSPHandle)
Terminates the login session associated with the specified CSP Handle.
Parameters
CSPHandle (input)
Handle for the target CSP.

Return Value
CSSM_OK if successful, CSSM_FAIL if an error occured. Use CSSM _ GetError to determine the

exact error.
Error Codes
Vaue Description
CSSM_CSP_INVALID_CsP Invalid CSP handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_NOT_LOGGED _IN No login session existed
See Also

CSSM_CSP_Login, CSSM_CSP_Changel oginPassword

Release 1.2 Common Security Services M anager Page 59
Application Programming I nterface

3.4.3 CSSM_CSP_ChangeLoginPassword

CSSM_RETURN CSSMAPI CSSM_CSP_Changel oginPasswor d
(CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR OldPassword,
const CSSM_CRYPTO_DATA_PTR NewPassword)

Changes the login password of the current login session from the old password to the new
password. The requesting user must have alogin session in process.

Parameters
CSPHandle (input)
Handle of the CSP supporting the current login session.

OldPassword (input)
Current password used to log into the token.

NewPasswor d(input)
New password to be used for future logins by this user to this token.

Return Value
CSSM_OK if login is successful, CSSM_FAIL islogin fails. Use CSSM_GetError to determine
the exact error.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid CSP handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_INVALID_PASSWORD Old password isinvalid

See Also

CSSM_CSP_Login, CSSM_CSP_L ogout

Page 60 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5 Cryptographic Operations

3.5.1 CSSM_QuerySize

CSSM_RETURN CSSMAPI CSSM_QuerySize (CSSM_CC_HANDLE CCHandle,
uint32 SizeOflnput,
uint32 * ReqSizeOutBlock)

This function queries for the size of the output data for Signature, Message Digest, and M essage
Authentication Code context types and queries for the algorithm block size or the size of the
output data for encryption and decryption context types. This function can also be used to query
the output size requirements for the intermediate steps of a staged cryptographic operation (for
example, CSSM _EncryptDataUpdateand CSSM _DecryptDataUpdaté. There may be

algorithm-specific and token-specific rules restricting the lengths of data following data update
cals

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

SzeOflnput (input)
This parameter currently applies only to encrypt and decrypt context types. If this parameter is 0,
the function returns the algorithm block size. Otherwise, the size of the output data is returned.

ReqS zeOutBlock (output)
Pointer to a uint32 variable where the function returns the size of the output in bytes.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_NO_METHOD Service not provided
CSSM_CSP_QUERY_SIZE_FAILED Unable to query size
See Also

CSSM_EncryptData, CSSM _EncryptDataUpdate, CSSM _DecryptData,
CSSM_DecryptDataUpdate, CSSM_SignData, CSSM_V erifyData, CSSM _DigestData,
CSSM _GenerateMac

Release 1.2 Common Security Services M anager Page 61
Application Programming I nterface

3.5.2 CSSM_SignData

CSSM_RETURN CSSMAPI CSSM_SignData (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Signature)

This function signs data using the private key associated with the public key specified in the
context.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufsto be signed.

Signature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_SIGN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_SIGN_NO_METHOD Service not provided
CSSM_CSP_SIGN_FAILED Sign failed
CSSM_CSP_PRIKEY_NOT_FOUND Cannot find the corresponding private key
CSSM_CSP_PASSWORD_INCORRECT Password incorrect
CSSM_CSP_UNWRAP_FAILED Unwrapped the private key failed
CSSM_CSP_NOT_ENOUGH_BUFFER The output buffer is not big enough
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_VECTOROFBUFS UNSUPPORTED Supports only a single buffer of input

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_VerifyData, CSSM_SignDatalnit, CSSM _SignDataUpdate, CSSM_SignDataFinal

Page 62

Common Security Services M anager
Application Programming I nterface

Release 1.2

Release 1.2 Common Security Services M anager Page 63
Application Programming I nterface

3.5.3 CSSM_SignDatalnit

CSSM_RETURN CSSMAPI CSSM _SignDatalnit (CSSM_CC_HANDLE CCHandle)

This function initializes the staged sign data function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_SIGN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_SIGN_NO_METHOD Service not provided
CSSM_CSP_SIGN_INIT_FAILED Staged sign initialize function failed
CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also

CSSM_SignData, CSSM_SignDataUpdate, CSSM _SignDataFinal

Page 64 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.4 CSSM_SignDataUpdate

CSSM_RETURN CSSMAPI CSSM_SignDataUpdate (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the data for the staged sign data function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufsto be signed.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_SIGN_UPDATE_FAILED Staged sign update function failed
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataFinal

Release 1.2 Common Security Services M anager Page 65
Application Programming I nterface

3.5.5 CSSM_SignDataFinal

CSSM_RETURN CSSMAPI CSSM_SignDataFinal (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Signature)

This function completes the final stage of the sign data function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Signature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_SIGN_FINAL_FAILED Staged sign final function failed
CSSM_NOT_ENOUGH_BUFFER The output buffer is not big enough
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataUpdate

Page 66 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.6 CSSM_VerifyData

CSSM_BOOL CSSMAPI CSSM_VerifyData (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
const CSSM_DATA_PTR Signature)

This function verifies the input data against the provided signature.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufsto be verified.

Sgnature (input)
A pointer to aCSSM_DATA structure which contains the signature and the size of the signature.

Return Value
A CSSM_TRUE return value signifies the signature was successfully verified. When
CSSM_FALSE isreturned, either the signature was not successfully verified or an error has
occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_VERIFY_NO_METHOD Service not provided
CSSM_CSP_VERIFY_FAILED Unable to perform verification on data
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_VECTOROFBUFS UNSUPPORTED Supports only a single buffer of input

See Also
CSSM_SignData, CSSM_VerifyDatalnit, CSSM_VerifyDataUpdate, CSSM_V erifyDataFinal

Release 1.2 Common Security Services M anager Page 67
Application Programming I nterface

3.5.7 CSSM_VerifyDatalnit

CSSM_RETURN CSSMAPI CSSM_VerifyDatalnit (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Signature)

This function initializes the staged verify data function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Sgnature (input)
A pointer to aCSSM_DATA structure which contains the starting address for the signature to
verify against and the length of the signature in bytes.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_VERIFY_NO METHOD Service not provided
CSSM_CSP_VERIFY_INIT_FAILED Staged verify initialize function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_VerifyDataUpdate, CSSM_VerifyDataFinal, CSSM_VerifyData

Page 68 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.8 CSSM_VerifyDataUpdate

CSSM_RETURN CSSMAPI CSSM_VerifyDataUpdate (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the data to the staged verify data function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufsto be verified.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_VERIFY_UPDATE_FAILED Staged verify update function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_VerifyData, CSSM_VerifyDatalnit, CSSM_V erifyDataFinal

Release 1.2 Common Security Services M anager Page 69
Application Programming I nterface

3.5.9 CSSM_VerifyDataFinal

CSSM_BOOL CSSMAPI CSSM_VerifyDataFinal (CSSM_CC_HANDLE CCHandle)

This function finalizes the staged verify data function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Return Value
A CSSM_TRUE return value signifies the signature successfully verified. When CSSM_FALSE
is returned, either the signature was not successfully verified or an error has occurred; use
CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_VERIFY_FINAL_FAILED Staged verify final function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_VerifyData, CSSM_VerifyDatalnit, CSSM_V erifyDataUpdate

Page 70 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.10 CSSM_DigestData

CSSM_RETURN CSSMAPI CSSM_DigestData (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Digest)

This function computes a message digest for the supplied data.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-

managed information.

DataBufs (input)

A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs

Digest (output)

A pointer to the CSSM_DATA structure for the message digest.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code

if an error has occurred.

Error Codes
Value

Description

CSSM_CSP_INVALID_CONTEXT_HANDLE
CSSM_CSP_INVALID_DATA_POINTER
CSSM_CSP_INVALID_DATA_COUNT
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM
CSSM_CSP_DIGEST_NO_METHOD
CSSM_CSP_DIGEST_FAILED
CSSM_CSP_VECTOROFBUFS_UNSUPPORTED

Comments

Invalid context handle

Invalid pointer

Invalid data count

Not enough memory to allocate
Unknown algorithm

Service not provided

Unable to perform digest on data
Supports only a single buffer of input

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer thisisNULL, an error code CSSM_CSP_INVALID_DATA_POINTER

is returned.

See Also

CSSM_DigestDatalnit, CSSM _DigestDataUpdate, CSSM _DigestDataFinal

Release 1.2 Common Security Services M anager Page71
Application Programming I nterface

3.5.11 CSSM_DigestDatalnit

CSSM_RETURN CSSMAPI CSSM_DigestDatal nit (CSSM_CC_HANDLE CCHandle)
This function initializes the staged message digest function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_DIGEST_NO_METHOD Service not provided
CSSM_CSP_DIGEST _INIT_FAILED Unable to perform digest initialization

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_DigestData, CSSM_DigestDataUpdate, CSSM_DigestDataClone,
CSSM_DigestDataFinal

Page 72 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.12 CSSM_DigestDataUpdate

CSSM_RETURN CSSMAPI CSSM_DigestDataUpdate (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the staged message digest function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_DIGEST _UPDATE_FAILED Unable to perform digest on data

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataClone, CSSM_DigestDataFinal

Release 1.2 Common Security Services M anager Page 73
Application Programming I nterface

3.5.13 CSSM_DigestDataClone

CSSM_CC_HANDLE CSSMAPI CSSM_DigestDataClone (CSSM_CC_HANDLE CCHandle)

This function clones a given staged message digest context with its cryptographic attributes and
intermediate result.

Parameters
CCHandle (input)
The handle that describes the context of a staged message digest operation.

Return Value
The pointer to a user-allocated CSSM_CC_HANDLE for holding the cloned context handle
return from CSSM. If the pointer isNULL, an error has occured; use CSSM_GetError to obtain
the error code.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP _DIGEST_CLONE_FAILED Unable to clone the digest context
Comments

When a digest context is cloned, a new context is created with data associated with the parent
context. Changes made to the parent context after calling this function will not be reflected in
the cloned context. The cloned context could be used with the CSSM_DigestDataUpdate and
CSSM_DigestDataFinal functions.

See Also
CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal

Page74 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.14 CSSM_DigestDataFinal

CSSM_RETURN CSSMAPI CSSM_DigestDataFinal (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Digest)

This function finalizes the staged message digest function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP _DIGEST_FINAL_FAILED Staged digest final failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataClone

Release 1.2 Common Security Services M anager Page 75
Application Programming I nterface

3.5.15 CSSM_GenerateMac

CSSM_RETURN CSSMAPI CSSM_GenerateMac (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

This function generates a message authentication code for the supplied data.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-

managed information.

DataBufs (input)

A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs

Mac (output)

A pointer to the CSSM_DATA structure for the message authentication code.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code

if an error has occurred.

Error Codes
Value

Description

CSSM_CSP_INVALID_CONTEXT_HANDLE
CSSM_CSP_INVALID_DATA_POINTER
CSSM_CSP_INVALID_DATA_COUNT
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_MAC_UNKNOWN_ALGORITHM
CSSM_CSP_MAC_NO_METHOD
CSSM_CSP_MAC_FAILED
CSSM_CSP_VECTOROFBUFS_UNSUPPORTED

Comments

Invalid context handle

Invalid pointer

Invalid data count

Not enough memory to allocate
Unknown algorithm

Service not provided

Unable to perform mac on data
Supports only a single buffer of input

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is

returned.

See Also

CSSM_GenerateMaclnit, CSSM_GenerateM acUpdate, CSSM_GenerateM acFinal

Page 76 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.16 CSSM_GenerateMaclnit

CSSM_RETURN CSSMAPI CSSM_GenerateMaclnit (CSSM_CC_HANDLE CCHandle)
This function initializes the staged message authentication code function.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_MAC_NO_METHOD Service not provided
CSSM_CSP_MAC _INIT_FAILED Unable to perform staged mac init

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_GenerateMac, CSSM_GenerateM acUpdate, CSSM_ GenerateM acFinal

Release 1.2 Common Security Services M anager Page 77
Application Programming I nterface

3.5.17 CSSM_GenerateMacUpdate

CSSM_RETURN CSSMAPI CSSM_GenerateMacUpdate (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the staged message authentication code function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC _UPDATE_FAILED Unable to perform staged mac update

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_GenerateMac, CSSM _GenerateM aclnit, CSSM _ GenerateM acFinal

Page 78 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.18 CSSM_GenerateMacFinal

CSSM_RETURN CSSMAPI CSSM_GenerateM acFinal (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid CSP handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC _FINAL_FAILED Unable to perform staged mac final

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_GenerateMac, CSSM_GenerateM aclnit, CSSM_ GenerateM acU pdate

Release 1.2 Common Security Services M anager Page 79
Application Programming I nterface

3.5.19 CSSM_EncryptData

CSSM_RETURN CSSMAPI CSSM_EncryptData (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 * bytesEncrypted,
CSSM_DATA_PTR RemData)

This function encrypts the supplied data using information in the context. The
CSSM _QuerySizefunction can be used to estimate the output buffer size required.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

ClearBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

ClearBufCount (input)
The number of ClearBufs

CipherBufs (output)
A pointer to avector of CSSM_DATA structures that contain the results of the operation on the
data.

CipherBufCount (input)
The number of CipherBufs

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted data in bytes.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_ENC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_ENC_NO_METHOD Service not provided
CSSM_CSP_ENC _FAILED Unable to encrypt data
CSSM_CSP_ENC BAD IV _LENGTH Length of 1V unsupported

CSSM_CSP_ENC BAD _KEY_LENGTH Length of key unsupported

Page 80 Common Security Services M anager Release 1.2
Application Programming I nterface

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place encryption can be done by supplying the same input and output buffers.

See Also
CSSM_QuerySize, CSSM_DecryptData, CSSM_EncryptDatal nit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal

Release 1.2 Common Security Services M anager Page 81
Application Programming I nterface

3.5.20 CSSM_EncryptDatalnit

CSSM_RETURN CSSMAPI CSSM_EncryptDatalnit (CSSM_CC_HANDLE CCHandle)

This function initializes the staged encrypt function. There may be algorithm-specific and token-
specific rules restricting the lengths of data following data update calls making use of these
parameters

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_ENC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_ENC_NO_METHOD Service not provided
CSSM_CSP_ENC _INIT_FAILED Unable to perform encrypt initialization
CSSM_CSP_ENC BAD IV _LENGTH Length of 1V unsupported
CSSM_CSP_ENC BAD _KEY_LENGTH Length of key unsupported

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSSM_EncryptData, CSSM _EncryptDataUpdate, CSSM _EncryptDataFinal

Page 82 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.21 CSSM_EncryptDataUpdate

CSSM_RETURN CSSMAPI CSSM_EncryptDataUpdate
(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 * bytesEncrypted)

This function updates the staged encrypt function. Th€ SSM _QuerySizefunction can be used
to estimate the output buffer size required for each update call. There may be algorithm-specific
and token-specific rules restricting the lengths of data irCSSM _EncryptUpdatecalls.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

ClearBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

ClearBufCount (input)
The number of ClearBufs

CipherBufs (output)
A pointer to avector of CSSM_DATA structures that contain the encrypted data resulting from
the encryption operation.

CipherBufCount (input)
The number of CipherBufs

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted data in bytes.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_ENC _FAILED Unable to encrypt data
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Release 1.2 Common Security Services M anager Page 83
Application Programming I nterface

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place encryption can be done by supplying the same input and output buffer.

See Also
CSSM_EncryptData, CSSM _EncryptDatal nit, CSSM__EncryptDataFinal, CSSM_QuerySize

Page 84 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.22 CSSM_EncryptDataFinal

CSSM_RETURN CSSMAPI CSSM_EncryptDataFinal (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged encrypt function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_ENC_FINAL_FAILED Unable to encrypt data

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place encryption can be done by supplying the same input and output buffers.

See Also
CSSM_EncryptData, CSSM _EncryptDatal nit, CSSM_EncryptDataUpdate

Release 1.2 Common Security Services M anager Page 85
Application Programming I nterface

3.5.23 CSSM_DecryptData

CSSM_RETURN CSSMAPI CSSM_DecryptData (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 * bytesDecrypted,
CSSM_DATA_PTR RemData)

This function decrypts the supplied encrypted data. Th€SSM _QuerySizefunction can be used
to estimate the output buffer size required.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

CipherBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

CipherBufCount (input)
The number of CipherBufs

ClearBufs (output)
A pointer to avector of CSSM_DATA structures that contain the decrypted data resulting from
the decryption operation.

ClearBufCount (input)
The number of ClearBufs

BytesDecrypted (output)
A pointer to uint32 for the size of the decrypted data in bytes.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_DEC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_DEC_NO_METHOD Service not provided
CSSM_CSP_DEC FAILED Unable to encrypt data
CSSM_CSP_DEC _BAD _IV_LENGTH Length of 1V unsupported

CSSM_CSP_DEC BAD_KEY_LENGTH Length of key unsupported

Page 86 Common Security Services M anager Release 1.2
Application Programming I nterface

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place decryption can be done by supplying the same input and output buffer.

See Also
CSSM_QuerySize, CSSM_EncryptData, CSSM _DecryptDatal nit, CSSM _DecryptDataUpdate,
CSSM_DecryptDataFinal

Release 1.2 Common Security Services M anager Page 87
Application Programming I nterface

3.5.24 CSSM_DecryptDatalnit

CSSM_RETURN CSSMAPI CSSM_CSSM _DecryptDatal nit (CSSM_CC_HANDLE CCHandle)

This function initializes the staged decrypt function.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-

managed information.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code

if an error has occurred.

Error Codes
Value

Description

CSSM_CSP_INVALID_CONTEXT_HANDLE
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_DEC_UNKNOWN_ALGORITHM
CSSM_CSP_DEC_NO_METHOD
CSSM_CSP_DEC_INIT_FAILED
CSSM_CSP_DEC_BAD_IV_LENGTH
CSSM_CSP_DEC_BAD_KEY_LENGTH

Invalid context handle

Not enough memory to allocate
Unknown algorithm

Service not provided

Unable to perform decrypt initialization
Length of 1V unsupported

Length of key unsupported

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also

CSSM_DecryptData, CSSM_DecryptDataUpdate, CSSM _DecryptDataFinal

Page 88 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.25 CSSM_DecryptDataUpdate

CSSM_RETURN CSSMAPI CSSM_DecryptDataUpdate
(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 * bytesDecrypted)

This function updates the staged decrypt function. Th€ SSM _Quer ySizefunction can be used
to estimate the output buffer size required for each update call. There may be algorithm-specific
and token-specific rules restricting the lengths of datairCSSM _DecryptUpdatecalls.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

CipherBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

CipherBufCount (input)
The number of CipherBufs

ClearBufs (output)
A pointer to avector of CSSM_DATA structures that contain the decrypted data resulting from
the decryption operation.

ClearBufCount (input)
The number of ClearBufs

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted data in bytes.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_DEC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_DEC_NO_METHOD Service not provided
CSSM_CSP_DEC _UPDATE_FAILED Staged encryption update failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Release 1.2 Common Security Services M anager Page 89
Application Programming I nterface

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place decryption can be done by supplying the same input and output buffers.

See Also
CSSM_DecryptData, CSSM_DecryptDatal nit, CSSM_DecryptDataFinal, CSSM _QuerySize

Page 90 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.26 CSSM_DecryptDataFinal

CSSM_RETURN CSSMAPI CSSM_DecryptDataFinal (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged decrypt function.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_DEC_FINAL_FAILED Stages encrypt final failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place decryption can be done by supplying the same input and output buffers.

See Also
CSSM_DecryptData, CSSM_DecryptDatal nit, CSSM_DecryptDataU pdate

Release 1.2 Common Security Services M anager Page 91
Application Programming I nterface

3.5.27 CSSM_GenerateKey

CSSM_RETURN CSSMAPI CSSM_GenerateKey (CSSM_CC_HANDLE CCHandle,
CSSM_BOOL StoreKey,
CSSM_KEY_PTR Key)
This function generates a symmetric key.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

StoreKey (input)
Boolean flag that indicates whether the symmetric key should be stored in the CSP — thisis
possible if the CSP allows storage of symmetric keys.

Key (output)
Pointer to CSSM__ KEY structure used to obtain the key.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_KEYGEN_NO_METHOD Service not provided
CSSM_CSP_KEYGEN_FAILED Unable to generate key pair

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_GenerateRandom, CSSM _GenerateK eyPair

Page 92 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.28 CSSM_GenerateKeyPair

CSSM_RETURN CSSMAPI CSSM_GenerateKeyPair (CSSM_CC_HANDLE CCHandle,
CSSM_BOOL StorePublicKey,
CSSM_KEY_PTR PublicKey,
CSSM_KEY_PTR PrivateKey)

This function generates an asymmetric key pair.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

StorePublicKey (input)

Boolean flag that indicates whether the public key should be stored in the CSP — thisis possible
if the CSP allows storage of public keys. It is recommended that CSPs always have the facility
for storage of private keys.

PublicKey (output)
Pointer to CSSM_ KEY structure used to obtain the public key.

PrivateKey (output)
Pointer to CSSM__ KEY structure used to obtain the private key.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_KEYGEN_NO_METHOD Service not provided
CSSM_CSP_KEYGEN_FAILED Unable to generate key pair

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_ GenerateRandom

Release 1.2 Common Security Services M anager Page 93
Application Programming I nterface

3.5.29 CSSM_GenerateRandom

CSSM_RETURN CSSMAPI CSSM_GenerateRandom (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RandomNumber)

This function generates random data.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RandomNumber (output)

Pointer to CSSM_DATA structure used to obtain the random number and the size of the random
number in bytes.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_RNG_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_RNG_NO_METHOD Service not provided
CSSM_CSP_RNG_FAILED Unable to generate keys

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

Page 94 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.30 CSSM_GenerateUniqueld

CSSM_RETURN CSSMAPI CSSM_GenerateUniqueld (CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Uniquel D)

This function generates unique identification code.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Uniqueld (output)
Pointer to CSSM_DATA structure used to obtain the unique ID and the size of the unique ID in
bytes.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_UIDG_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_UIDG_NO_METHOD Service not provided
CSSM_CSP_UIDG_FAILED Unable to generate unique 1D

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

Release 1.2 Common Security Services M anager Page 95
Application Programming I nterface

3.5.31 CSSM_WrapKey

CSSM_RETURN CSSMAPI CSSM_WrapK ey
(CSSM_CC_HANDLE CCHandle,

const CSSM_CRYPTO_DATA_PTR PassPhrase,
CSSM_KEY_PTR Key,
CSSM_WRAP_KEY_PTR WrappedK ey)

This function wraps the supplied key using the context. The key may be a symmetric key or the
public key of a public/private key pair. If a symmetric key is specified it is wrapped. If apublic
key is specified, the passphrase is used to unlock the corresponding private key, which is then

wrapped.

Parameters
CCHandle (input)

The handle to the context that describes this cryptographic operation.

PassPhrase (input)

The passphrase or a callback function to be used to obtain the passphrase that can be used by the

CSP to unlock the private key before it is wrapped.

symmetric, secret key.

Key (input)

Thisinput isignored when wrapping a

A pointer to the target key to be wrapped. If a private key is to be wrapped, the target key isthe
public key associated with the private key. If a symmetric key is to be wrapped, the target key is

that symmetric key.

WrappedKey (output)

A pointer to aCSSM_KEY structure that returns the wrapped key.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code

if an error has occurred.

Error Codes
Vaue

Description

CSSM_CSP_INVALID_CONTEXT_HANDLE
CSSM_INVALID_KEY
CSSM_CSP_PRIKEY_NOT_FOUND
CSSM_CSP_PASSWORD_INCORRECT
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_ENC_UNKNOWN_ALGORITHM
CSSM_CSP_ENC_NO_METHOD
CSSM_INVALID_SUBJECT_KEY
CSSM_CSP_ENC _FAILED

See Also
CSSM_CSP_CreateWrapContext, CSSM_UnwrapKey

Invalid context handle

Invalid wrapping key

Cannot find the corresponding private key
Password incorrect

Not enough memory to allocate
Unknown algorithm

Service not provided

Invalid key to be wrapped

Unable to encrypt data

Page 96

Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.32 CSSM_UnwrapKey
CSSM_RETURN CSSMAPI CSSM_UnwrapKey
(CSSM_CC_HANDLE CCHandle,
const CSSM_CRY PTO_DATA_PTR NewPassPhrase,
const CSSM_WRAP_KEY_PTR WrappedK ey,
CSSM_BOOL StoreKey,
CSSM_KEY_PTR UnwrappedK ey)
This function unwraps the data using the context. Depending on th@er sistentObject mode of
the CSP and the StoreKey parameter, the unwrapped key can be securely stored by the CSP and
locked by the new passphrase.
Parameters

CCHandle (input)
The handle that describes the context of this cryptographic operation.

PassPhrase (input)

The passphrase or a callback function to be used to obtain the passphrase. If the unwrapped key is
aprivate key and the persistent object mode is true, then the private key is unwrapped and
securely stored by the CSP. ThdPassPhraseis used to secure the private key after it is

unwrapped. It is assumed that a known public key is associated with the private key.

WrappedKey (input)

A pointer to the wrapped key. The wrapped key may be a symmetric key or the private key of a
public/private keypair. The unwrapping method is specified as meta data within the wrapped key
and is not specified outside of the wrapped key.

StoreKey (input)
Boolean flag that indicates whether the unwrapped key should be stored in the CSP — thisis
possible if the CSP allows storage of the particular key type.

UnwrappedKey (output)
A pointer to aCSSM_KEY structure that returns the unwrapped key.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Release 1.2 Common Security Services M anager Page 97
Application Programming I nterface

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_INVALID_KEY Invalid unwrapping key
CSSM_INVALID_PASSPHRASE Invalid passphrase for the unwrapping
key or invalid passphrase for securing
the unwrapped key in persistent storage
CSSM_INVALID_WRAPPED_KEY Invalid wrapped key
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_ENC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_ENC_NO_METHOD Service not provided
CSSM_CSP_ENC _FAILED Unable to encrypt data
See Also

CSSM_CSP_CreateUnwrapContext, CSSM_WrapKey

Page 98 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.33 CSSM_DeriveKey

CSSM_RETURN CSSMAPI CSSM_DeriveKey (CSSM_CC_HANDLE CCHandle,
const CSSM_KEY_PTR BaseKey,
CSSM_DATA_PTR Param,
CSSM_BOOL StoreKey,
CSSM_KEY_PTR DerivedKey)

This function derives a new symmetric key using the context and information from the base key.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation.

BaseKey (input)
The base key used to derive the new key. The base key may be a public key, a private key, or a
symmetric key.

Param (input/output)

This parameter varies depending on the derivation mechanism. Password based derivation
algorithms use this parameter to return a cipher block chaining initilazation vector.
Concatenation algorithms will use this parameter to get the second item to concatenate.

StoreKey (input)
Boolean flag that indicates whether the unwrapped key should be stored in the CSP - thisis
possible if the CSP allows storage of the particular key type.

DerivedKey (output)
A pointer to aCSSM_KEY structure that returns the derived key.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_NO_METHOD Service not provided
CSSM_INVALID_KEY Invalid base key
CSSM_CSP_DERIVE _FAILED Unable to derive key

See Also

CSSM_CSP_CreateDeriveK eyContext

Release 1.2 Common Security Services M anager Page 99
Application Programming I nterface

3.5.34 CSSM_KeyExchGenParam

CSSM_RETURN CSSMAPI CSSM_K eyExchGenParam
(CSSM_CC_HANDLE CCHandle,
uint32 ParamBits,
CSSM_DATA_PTR Param)

This function generates key exchange parameter data for CSSM_KeyExchPhasel.

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

ParamBits (input)
Used to generate parameters for the key exchange algorithm (for example, Diffie-Hellman).

Param (output)

Pointer to CSSM_DATA structure used to obtain the key exchange parameter and the size of the
key exchange parameter in bytes.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_KEYEXCH_GENPARAM_FAILED Unable to generate exchange param data

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If

the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_KeyExchPhasel, CSSM_KeyExchPhase?

Page 100 Common Security Services M anager Release 1.2
Application Programming I nterface

3.5.35 CSSM_KeyExchPhasel

CSSM_RETURN CSSMAPI CSSM_KeyExchPhasel (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Param,
CSSM_DATA_PTR Paraml)

Phase 1 of the key exchange operation — generates datafor CSSM_KeyExchPhase2.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Param (input)
Param is the return value from the CSSM _K eyExchGenParam function.

Paraml (output)
Pointer to CSSM_DATA structure used to obtain the Phase 1 output.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_KEYEXCH_PHASE1 FAILED Unable to generate to stage key exchange
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_KeyExchGenParam, CSSM _K eyExchPhase?

Release 1.2 Common Security Services M anager Page 101
Application Programming I nterface

3.5.36 CSSM_KeyExchPhase?2

CSSM_RETURN CSSMAPI CSSM_KeyExchPhase?2 (CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Parami,
CSSM_KEY_PTR ExchangedK ey)

Phase 2 of the key exchange operation.

Parameters
CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Paraml (input)
Param is the return value from the CSSM_KeyExchPhasel function.

ExchangedKey (output)
Pointer to CSSM_KEY structure used to obtain the exchanged key blab.

Return Value

A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_KEYEXCH_PHASE2 FAILED Unable to stage key exchange
Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space; application has to free the memory in this case. If
the output buffer pointer isNULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSSM_KeyExchPhasel, CSSM_KeyExchGenParam

Page 102 Common Security Services M anager Release 1.2
Application Programming I nterface

3.6 Module Management Functions

3.6.1 CSSM_CSP_lInstall

CSSM_RETURN CSSMAPI CSSM_CSP_Install (const char * CSPName,
const char * CSPFileName,
const char * CSPPathName,
const CSSM_GUID_PTR GUID,
const CSSM_CSPINFO_PTR CSPInfo,
const void * Reserved],
const CSSM_DATA_PTR Reserved?)

This function updates the CSSM -persistent internal information about the CSP module.

Parameters
CSPName (input)
The name of the CSP module.

CSPFileName (input)
The name of the file that implements the CSP.

CSPPathName (input)
The path to the file that implements the CSP.

GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

CSPInfo (input)
A pointer to the CSSM _CSPINFO structure containing information about the CSP module.

Reservedl (input)
Reserve data for the function.

Reserved?2 (input)
Reserve data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in the registry
See Also

CSSM_CSP_Uninstall

Release 1.2 Common Security Services M anager Page 103
Application Programming I nterface

3.6.2 CSSM_CSP_Uninstall

CSSM_RETURN CSSMAPI CSSM_CSP_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the persistent CSSM internal information about the CSP module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

Return Value
A CSSM_OK return value means the CSP has been successfully uninstalled. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_INVALID _GUID CSP module was not installed
CSSM_REGISTRY_ERROR Unable to delete information
See Also

CSSM_CSP_Install

Page 104 Common Security Services M anager Release 1.2
Application Programming I nterface

3.6.3 CSSM_CSP_Attach

CSSM_CSP_HANDLE CSSMAPI CSSM_CSP_Attach
(const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
uint32 SlotlD,
uint32 SessionFlags,
uint32 Application,
const CSSM_NOTIFY_CALLBACK Noaotification,
const void * Reserved)

This function attaches the CSP module and verifies that the version of the module expected by
the application is compatible with the version on the system.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

CheckCompatibleVerMajor(input)
The major version number of the CSP module that the application is compatible with.

CheckCompatibleVer Minor(input)
The minor version number of the CSP module that the application is compatible with.

MemoryFuncs (input)
A structure containing pointers to the memory routines.

SotlD (input)

Slot ID number of the target hardware token. This value should always be taken from the
CSSM_CSPINFO structure to insure that a compatible slot is used. (Software-only
implementations can always use zero.)

SessionFlags(input)
Bitmask of default “session” modes. Legal values are defined in the table below.

Application(input/optional)
Nonce passed to the application when its callback isinvoked allowing the application to
determine the proper context of operation.

Notification (input/optional)

Callback provided by the application that is called by the CSP when one of three things takes
place: a parallel operation completes, atoken running in serial mode surrenders control to the
application or the token is removed (hardware specific).

Reserved (input)
A reserved input.

Release 1.2 Common Security Services M anager Page 105
Application Programming I nterface

Valid SessionFlagsValues

Vaue Description
CSSM_CSP_SESSION_SERIAL Sessions created should be in serial mode
CSSM_CSP_SESSION_EXCLUSIVE Sessions created should be exclusive
CSSM_CSP_SESSION_READWRITE Sessions created should be read/write

Return Value

A handleisreturned for the CSP module. If the handleisNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_EXPIRE Add-in has expired
CSSM_INVALID_ARGS Invalid argument pointer
CSSM_ATTACH_FAIL Unable to load CSP module

See Also

CSSM_CSP_Detach

Page 106 Common Security Services M anager Release 1.2
Application Programming I nterface

3.6.4 CSSM_CSP_Detach

CSSM_RETURN CSSMAPI CSSM_CSP_Detach (CSSM_CSP_HANDLE CSPHandle)
This function detaches the application from the CSP module.

Parameters
CSPHandle (input)
The handle that describes the CSP module.

Return Value
A CSSM_OK return value signifies that the application has been detached from the CSP module.
If CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID ADDIN_HANDLE Invalid CSP handle
See Also

CSSM_CSP_Attach

Release 1.2 Common Security Services M anager Page 107
Application Programming I nterface

3.6.5 CSSM_CSP_ListModules

CSSM_LIST_PTR CSSMAPI CSSM_CSP_ListModules (void)

This function returns alist containing the GUID/name pair for each of the currently-installed
CSP modules.

Parameters
None

Return Value
A pointer to the CSSM_LIST structure containing the GUID/name pair for each of the CSP
modules. If the pointer isNULL, an error has occurred; use CSSM_GetError to obtain the error

code.
Error Codes
Vaue Description
CSSM_NO_ADDIN No add-ins found
CSSM_MEMORY_ERROR Error in memory allocation
See Also

CSSM_CSP_GetInfo, CSSM_FreeList

Page 108 Common Security Services M anager Release 1.2
Application Programming I nterface

3.6.6 CSSM_CSP_GetInfo

CSSM_CSPINFO_PTR CSSMAPI CSSM_CSP_Getlnfo
(const CSSM_GUID_PTR GUID,
CSSM_BOOL CompleteCapabilitiesOnly,
uint32 * NumberOfinfos)

This function returns the information about the CSP module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

CompleteCapabilitiesOnly (input)

Boolean value indicating which capabilities should be returned. If set to TRUE only completely
sepcified capabilities should be returned. If set to false, all capability structures registered for the
specified CSP should be returned whether or not those capabilities are completely specified.

Number OfI nfos (output)
The number of CSPinfo structures returned by this execution of this function.

Return Value
A CSSM_CSPINFO_PTR to an array of one or more CSP info structures. There is one structure
per logical slot managed by the CSP. Hardware tokens may have multiple physical slots. The
CSPinfo structure provides information on the current state of each occupied slot. A software
CSP may define an analogous logical slot concept and provide realtime descriptions of each
logical slot. If the specified CSP does not support the slot concept, then a single CSP info
structure will be returned and the number of structures reported will be one.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INVALID_GUID Unknown GUID

See Also

CSSM_CSP_Freelnfo

Release 1.2 Common Security Services M anager Page 109
Application Programming I nterface

3.6.7 CSSM_CSP_Freelnfo

CSSM_RETURN CSSMAPI CSSM_CSP_Freelnfo (CSSM_CSPINFO_PTR CSPInfos,
uint32 NumberOfinfos)

This function frees the memory allocated to hold all of the CSP info structures returned by
CSSM_CSP_GetlInfo.

Parameters
CSPInfso (input)
A pointer to the array of CSSM_CSPINFO structures to be freed.

number OfInfos (input)
The number of CSP Info structures to be freed.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes

Vaue Description
CSSM_INVALID_CSPINFO_POINTER Invalid pointer

See Also
CSSM_CSP_GetlInfo

Page 110

Common Security Services M anager Release 1.2
Application Programming I nterface

3.6.8 CSSM_GetHandlelnfo

CSSM_HANDLEINFO_PTR CSSMAPI CSSM_GetHandlel nfdCSSM_HANDLE hModule)

Requests meta-information associated with the specified add-in module. Returned information

includes slot 1D, event notification pointer, and the application-defined identifier for the calling
context used during an event callback.

Parameters
hModule (input)
Handle of the module for which information should be returned.

Return Value

A CSSM_HANDLEINFO_PTR to an info structure containing information about the module
referenced by the handle.

Error Codes
Vaue Description
CSSM_CSP_INVALID_HANDLE Invalid add-in handle
CSSM_INVALID _POINTER Invalid pointer to a handle info structure
See Also

CSSM_NOTIFY_CALLBACK

Release 1.2 Common Security Services M anager Page 111
Application Programming I nterface

3.7 Extensibility Functions

The CSSM_CSP_PassThrough function is provided to allow CSP developers to extend the crypto
functionality of the CSSM API. Becauseit isonly exposed to CSSM as a function pointer, its name
internal to the CSP can be assigned at the discretion of the CSP module developer. However, its
parameter list and return value must match what is shown below. The error codes given in this section
constitute the generic error codes which may be used by all CSPs to describe common error conditions.

3.7.1 CSSM_CSP_PassThrough

CSSM_RETURN CSSMAPI CSSM_CSP_PassThrough (CSSM_CC_HANDLE CCHandle,
uint32 PassThroughld,
const CSSM_DATA_PTR InData,
CSSM_DATA_PTR OutData)

Parameters
CCHandle (input)
The handle that describes the context of this cryptographic operation.

PassThroughld (input)
Anidentifier specifying the custom function to be performed.

InData (input)
A pointer to CSSM_DATA structure containing the input data.

OutData (output)
A pointer to CSSM_DATA structure for the output data.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful, and returns an error code
if an error has occurred.

Error Codes
Vaue Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid CSP handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID _DATA _POINTER Invalid pointer for input data
CSSM_CSP_ MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_UNSUPPORTED_OPERATION Add-in does not support this function

CSSM_CSP_PASS THROUGH_FAIL Unable to perform custom function

Page 112 Common Security Services M anager Release 1.2
Application Programming I nterface

4. Trust Policy Services API

4.1 Overview

The primary purpose of a Trust Policy (TP) module is to answer the questiots this certificate authorized
for this action? Different trust policies define different actions that may be requested by an application.
There are also afew basic actions that should be common to every trust policy. These actions are
operations on the basic objects used by all trust models. The basic objects common to all trust models are
certificates and certificate revocation lists. The basic operations on these objects are sign, verify, and
revoke.

A registry and query mechanism is available through the CSSM for TP module descriptions. This
information is captured during install and load time. Applications can query against thisinformation to
find out more about the add-in trust policy module.

CSSM provides two ways for trust policy module developers to extend CSSM’ s trust policy API. The first
way isfor the trust policy module to enforce the use of CSSM_TP_CertVerifyForAction, rather than
CSSM_TP_CertVerify. Thisallows the trust policy module to define a modul e-specific set of actions that
certificates can be authorized to perform. A trust policy module may also choose to implement additional
API calls. Applications gain access to those functions using the provided CSSM_TP_PassThrough
function.

4.1.1 Trust Policy Operations

CSSM_BOOL CSSMAPI CSSM_TP_CertVerify (} accepts asinput a certificate. The TP
module must determine whether the certificate is trusted.

CSSM_DATA_PTR CSSMAPI CSSM_TP_CertSign () accepts as input asigner’s
certificate, a second certificate to be signed, and thecope of
the signing process. Thescope of a signature may be used to
identify which field of the certificate should be signed. A
simple example is the case of multiple signature on a
certificate. Should signatures be applied to just the
certificate, meaning they are signing at the same level, or to
the certificate and all currently-existing signatures, as a
notary public would do, the TP module is responsible for
determining whether the signer’s certificate is authorized to
perform the signing operation and, if so, to carry out the
signing operation.

CSSM_DATA_PTR CSSMAPI CSSM_TP_CertRevoke (J accepts as input arevoker’s
certificate, a certificate revocation list (CRL), and an optional
reason for revoking the certificate. The TP module must
determine whether the revoker’s certificate is trusted to
perform/sign the revocation and if so, to carry out the
operation by adding a new revocation record to the CRL.

CSSM_BOOL CSSMAPI CSSM_TP_CrlVerify (} accepts as input a certificate revocation
list. The TP module determines whether the CRL is trusted.
Thistest may include verifying the correctness of the
signature associated with the CRL, determining that the CRL

Release 1.2 Common Security Services M anager Page 113
Application Programming I nterface

has not been tampered with, and determining that the agent
who signed the CRL was trusted to do so.

CSSM_DATA_PTR CSSMAPI CSSM_TP_CrlSign (j acceptsasinput aCRL and a
signer’s certificate. The TP module must determine whether
the certificate is trusted to sign the CRL. If so, the TP
modul e should carry out the operation.

CSSM_RETURN CSSMAPI CSSM_TP_ApplyCrIToDb (-)accepts asinput aCRL and a
data storage handle. The TP module must determine whether
the memory-resident CRL is trusted and should be applied to
a persistent database, which could result in designating
certificates as revoked.

4.1.2 Extensibility Functions

CSSM_BOOL CSSMAPI CSSM_TP_CertVerifyForAction (3 accepts as input a certificate
and a domain-specific action. The TP module must
determine whether or not the certificate is trusted to perform
the domain-specific action.

CSSM_RETURN CSSMAPI CSSM_TP_PassT hrough (-)accepts as input an operation 1D
and an arbitrary set of input parameters. The operation ID
may specify any type of operation the TP wishes to export.
Such operations may include queries or services specific to
the domain represented by the TP module.

4.1.3 CSSM TP Management Functions

CSSM_RETURN CSSMAPI CSSM_TP_lInstall () accepts as input the name and GUID of
the TP module, selected attributes describing the module, and
information required by CSSM to dynamically load the
module, if its use is requested by an application. CSSM adds
the TP module name and attributes to the registry of TP
modules.

CSSM_RETURN CSSMAPI CSSM_TP_Uninstall () CSSM removes a specified TP module
from the TP module registry.

CSSM_LIST_PTR CSSMAPI CSSM_TP_ListModules ()CSSM returns alist of all
currently-registered TP modules.

CSSM_TP_HANDLECSSMAPI CSSM_TP_Attach ()} accepts asinput the GUID of aTP
module and a major and minor version of the caller. The
application is requesting a dynamic load of the specified TP
module, or of a TP module compatible with the version
specified by the caller.

CSSM_RETURN CSSMAPI CSSM_TP_Detach () the application is requesting the dynamic
unload of a specified TP module.

CSSM_TPINFO_PTR CSSMAPI CSSM_TP_GetInfo () CSSM returns the major and minor
version number of a specified TP module asit is recorded in
the TP module registry.

CSSM_RETURN CSSMAPI CSSM_TP_Freelnfo (J acceptsas input the pointer to the TP
information structure allocated by the CSSM. This function
reclaims the memory for use by the operating system.

Page 114 Common Security Services M anager
Application Programming I nterface

Release 1.2

4.2 Data Structures

t ypedef ui nt32 CSSM TP_HANDLE /* Trust Policy Handl e */
t ypedef uint32 CSSM TP_ACTI CN

4.2.1 CSSM_TPINFO

This data structure represents the information associated with a TP module.

typedef struct cssmtpi nfo{
ui nt 32 Ver Myj or;
ui nt 32 Ver M nor;
}CSSM TPI NFQ, * CSSM TPI NFO PTR

Definition:
VerMajor - Major version number.

VerMinor - Minor version number.

4.2.2 CSSM_REVOKE_REASON
This data structure represents the reason a certificate is being revoked.

t ypedef enum cssmrevoke reason {
CSSM _REVCKE_QUSTQM
CSSM REVOKE_UNSPEC! FI G,
CSSM REVCKE_KEYOCOMPRCM SE,
CSSM _REVCKE._CACOVPROM SE,
CSSM REVCKE_AFFI LI ATI ONCHANGED,
CSSM REVOKE. SUPERCEDED,
CSSM REVCKE_CESSATI ONOFCPERATI ON,
CSSM REVOKE_CERTI FI CATEHCLD,
CSSM REVOKE_CERTI FI CATEHCOLDREL EASE,
CSSM REVOKE_REMOVEFROVERL

} CSSM REVCKE REASON

Release 1.2 Common Security Services M anager Page 115
Application Programming I nterface

4.3 Trust Policy Operations

4.3.1 CSSM_TP_CertVerify

CSSM_BOOL CSSMAPI CSSM_TP_CertVerify (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This functions calls in to the TP module to determine whether certificate is trusted.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the subject certificate.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to signed the subject
certificate.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be verified.
A null input verifies al the fields in the certificate.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the certificate can be trusted. When CSSM_FALSE
is returned, either the certificate cannot be trusted or an error has occurred. Use CSSM_ GetError
to obtain the error code.

Page 116 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_NOT_SIGNER Signer certificate is not signer of subject
CSSM_TP_NOT_TRUSTED Signature can’t be trusted
CSSM_TP_CERT _VERIFY_FAIL Unable to verify certificate
CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also

CSSM_TP_CertSign

Release 1.2 Common Security Services M anager Page 117
Application Programming I nterface

4.3.2 CSSM_TP_CertSign

CSSM_DATA_PTR CSSMAPI CSSM_TP_CertSign (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs a certificate when given a signer’s certificate and thecope of the signing
process. The TP module must decide whether the signer certificate is trusted to sign the subject
certificate.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the subject certificate.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fieldsto be signed. A null input
signs all the fields in the certificate.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Page 118 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_CERTIFICATE_CANT_OPERATE Signer certificate can’t sign subject
CSSM_TP_MEMORY_ERROR Error in allocating memory
CSSM_TP_CERT_SIGN_FAIL Unable to sign certificate
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle
CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also

CSSM_TP_CertVerify

Release 1.2 Common Security Services M anager Page 119
Application Programming I nterface

4.3.3 CSSM_TP_CertRevoke

CSSM_DATA_PTR CSSMAPI CSSM_TP_CertRevoke (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR OIldCrl,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR RevokerCert,
CSSM_REVOKE_REASON Reason)

This function updates a certificate revocation list. The TP module determines whether the
revoking certificate can revoke the subject certificate.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

OIdCrI (input)
A pointer to the CSSM_DATA structure containing an existing certificate revocation list. If this
input isNULL, anew list is created.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the subject certificate.

Revoker Cert (input)
A pointer to the CSSM_DATA structure containing the certificate used to revoke the subject
certificate.

Reason (input)
The reason for revoking the subject certificate.

Return Value
A pointer to the CSSM_DATA structure containing the updated certificate revocation list. If the
pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Page 120 Common Security Services M anager
Application Programming I nterface

Release 1.2

Error Codes
Vaue Description
CSSM_TP_INVALID_CRL Invalid CRL

CSSM_TP_INVALID_CERTIFICATE

CSSM_TP_CERTIFICATE_CANT_OPERATE

CSSM_TP_MEMORY_ERROR
CSSM_TP_CERT_REVOKE_FAIL
CSSM_TP_INVALID_TP_HANDLE
CSSM_TP_INVALID_CL_HANDLE
CSSM_TP_INVALID_DL_HANDLE
CSSM_TP_INVALID_DB_HANDLE
CSSM_TP_INVALID_CC_HANDLE

CSSM_FUNCTION_NOT_IMPLEMENTED

Invalid certificate

Revoker certificate can’t revoke subject
Error in allocating memory

Unable to revoke certificate

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Function not implemented

Release 1.2 Common Security Services M anager Page 121
Application Programming I nterface

4.3.4 CSSM_TP_CrlVerify

CSSM_BOOL CSSMAPI CSSM_TP_CrlVerify (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This functions calls into the TP module to determine whether the certificate revocation list is
trusted.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the certificate revocation list.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the certificate
revocation list.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be verified. A null input
verifies all the fields in the certificate revocation list.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the certificate revocation list can be trusted. When
CSSM_FALSE isreturned, an error has occurred. Use CSSM _GetError to obtain the error code.

Page 122 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_NOT_SIGNER Signer certificate is not signer of CRL
CSSM_TP_NOT_TRUSTED Certificate revocation list can’t be trusted
CSSM_TP_CRL_VERIFY_FAIL Unable to verify certificate
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC _HANDLE Invalid handle

CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

Release 1.2 Common Security Services M anager Page 123
Application Programming I nterface

4.3.5 CSSM_TP_CrlISign

CSSM_DATA_PTR CSSMAPI CSSM_TP_CrlSign (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs a certificate revocation list. The TP module must decide whether the signer
certificate is trusted to sign the subject certificate revocation list.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the certificate revocation list.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the certificate
revocation list.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fieldsto be signed. A null input
signs all the fields in the certificate revocation list.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate revocation list. If the
pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Page 124 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Value

Description

CSSM_TP_INVALID_CERTIFICATE
CSSM_TP_CERTIFICATE_CANT _OPERATE
CSSM_TP_MEMORY_ERROR
CSSM_TP_CRL_SIGN_FAIL
CSSM_TP_INVALID_TP_HANDLE
CSSM_TP_INVALID_CL_HANDLE
CSSM_TP_INVALID_DL_HANDLE
CSSM_TP_INVALID_DB_HANDLE
CSSM_TP_INVALID_CC_HANDLE
CSSM_FUNCTION_NOT_IMPLEMENTED

Invalid certificate

Signer certificate can’t sign certificate revocation list
Error in allocating memory

Unable to sign certificate revocation list

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Function not implemented

Release 1.2 Common Security Services M anager Page 125
Application Programming I nterface

4.3.6 CSSM_TP_ApplyCriToDb

CSSM_RETURN CSSMAPI CSSM_TP_ApplyCriToDb (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR Crl)

This function updates persistent storage to reflect entries in the certificate revocation list. The TP
modul e determines whether the memory-resident CRL is trusted, and if it should be applied to a
persistent database. This resultsin designating persistent certificates as revoked.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

Crl (input)
A pointer to the CSSM_DATA structure containing the certificate revocation list.

Return Value
A CSSM_TRUE return value signifies that the certificate revocation list has been used to update
the revocation status of certificates in the specified database. When CSSM_FAL SE is returned,
an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_TP_INVALID_CRL Invalid certificate revocation list
CSSM_TP_NOT_TRUSTED certificate revocation list can’t be trusted
CSSM_TP_APPLY CRL_TO DB _FAIL Unable to apply certificate revocation list on database
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

See Also

CSSM_CL_CrlGetFirstltem, CSSM_CL_CrlGetNextltem, CSSM_DL_CertRevoke

Page 126 Common Security Services M anager
Application Programming I nterface

Release 1.2

4.4 Extensibility Functions

4.41 CSSM_TP_VerifyAction

CSSM_BOOL CSSMAPI CSSM_TP_VerifyAction (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_TP_ACTION Action,
const CSSM_DATA_PTR Data,
const CSSM_DATA_PTR Cert)

This function queries the TP module to determine whether the input certificate is trusted to

perform the modul e-specific action.

Parameters
TPHandle (input)

The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)

The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

Action (input)
An action to be performed using the input certificate.

Data (input)

A pointer to the CSSM_DATA structure containing the module-specific data to perform the

requested action.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate.

Return Value

A CSSM_TRUE return value signifies that certificate can be trusted. When CSSM_FALSE is

returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Release 1.2

Common Security Services M anager Page 127
Application Programming I nterface

Error Codes
Vaue Description
CSSM_TP_INVALID_TP_HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle
CSSM_TP_INVALID_CERTIFICATE Invalid certificate
CSSM_TP_INVALID_ACTION Invalid action
CSSM_TP_NOT_TRUSTED Certificate not trusted for action
CSSM_TP_VERIFY_ACTION_FAIL Unable to determine trust for action

CSSM_FUNCTION_NOT_IMPLEMENTED Function not implemented

Page 128 Common Security Services M anager Release 1.2
Application Programming I nterface

4.4.2 CSSM_TP_PassThrough

CSSM_DATA_PTR CSSMAPI CSSM_TP_PassThrough (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughld,
const CSSM_DATA_PTR InputParams)

This function allows applications to call trust policy module-specific operations that have been
exported. Such operations may include queries or services specific to the domain represented by
the TP module.

Parameters
TPHandle (input)
The handle that describes the add-in trust policy module used to perform this function.

CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

DLHandle (input)
The handle that describes the add-in database library module used to perform this function.

DBHandle (input)
The handle that describes the database used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

PassThroughld (input)
Anidentifier assigned by the TP module to indicate the exported function to perform.

InputParams (input)

A pointer to the CSSM_DATA structure containing parameters to be interpreted in a function-
specific manner by the requested TP module. This parameter can be used as a pointer to an array
of CSSM_DATA_PTRs.

Return Value
A pointer to the CSSM_DATA structure containing the output from the pass-through function.
The output data must be interpreted by the calling application based on externally available
information. If the pointer is NULL, an error has occurred.

Release 1.2 Common Security Services M anager
Application Programming I nterface

Page 129

Error Codes
Vaue Description
CSSM_TP_INVALID_TP HANDLE Invalid handle
CSSM_TP_INVALID_CL_HANDLE Invalid handle
CSSM_TP_INVALID_DL_HANDLE Invalid handle
CSSM_TP_INVALID_DB_HANDLE Invalid handle
CSSM_TP_INVALID_CC HANDLE Invalid handle

CSSM_TP_INVALID_DATA_POINTER
CSSM_TP_INVALID_ID
CSSM_TP_MEMORY_ERROR
CSSM_TP_PASS THROUGH_FAIL
CSSM_FUNCTION_NOT_IMPLEMENTED

Invalid pointer for input data
Invalid pass through 1D

Error in allocating memory
Unable to perform pass through
Function not implemented

Page 130 Common Security Services M anager Release 1.2
Application Programming I nterface

4.5 CSSM TP Management Functions

4.5.1 CSSM_TP_Install

CSSM_RETURN CSSMAPI CSSM_TP_Install (const char * TPName,
const char * TPFileName,
const char * TPPathName,
const CSSM_GUID_PTR GUID,
const CSSM_TPINFO_PTR TPInfo,
const void * Reserved],
const CSSM_DATA_PTR Reserved?)

This function updates the CSSM persistent internal information about the TP module.

Parameters
TPName (input)
The name of the trust policy module.

TPFileName (input)
The name of file that implements the trust policy.

TPPathName (input)
The path to the file that implements the trust policy.

GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

TPInfo (input)
A pointer to the CSSM_TPINFO structure containing information about the TP module.

Reservedl (input)
Reserve data for the function.

Reserved?2 (input)
Reserve data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_TP_INVALID_POINTER Invalid pointer
CSSM_TP_REGISTRY_ERROR Error in writing registry
See Also

CSSM_TP_Uninstall

Release 1.2 Common Security Services M anager Page 131
Application Programming I nterface

45,2 CSSM_TP_Uninstall

CSSM_RETURN CSSMAPI CSSM_TP_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the CSSM persistent internal information about the TP module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

Return Value
A CSSM_OK return value signifies that information has been deleted. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in writing registry
See Also

CSSM_TP_Ingtall

Page 132 Common Security Services M anager Release 1.2
Application Programming I nterface

4.5.3 CSSM_TP_ListModules

CSSM_LIST_PTR CSSMAPI CSSM_TP_ListModules (void)

This function returns alist containing the GUID/name pair for each of the currently-installed CL
modules.

Parameters
None

Return Value
A pointer to the CSSM_LIST structure containing a GUID/name pair for each of the currently-
installed TP modules. If the pointer isNULL, an error has occurred. Use CSSM_GetError to
obtain the error code.

Error Codes
Vaue Description
CSSM_NO_ADDIN No add-ins found

CSSM_MEMORY_ERROR Error in memory allocation

Release 1.2 Common Security Services M anager Page 133
Application Programming I nterface

4.5.4 CSSM_TP_Attach

CSSM_TP_HANDLE CSSMAPI CSSM_TP_Attach
(const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
uint32 Application,
const CSSM_NOTIFY_CALLBACK Notification,
const void * Reserved)

This function attaches the application to the TP module, and verifies that the version of the TP
modul e expected by the application is compatible with the version on the system.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

CheckCompatibleVerMajor(input)
The major version number of the TP module that the application is compatible with.

CheckCompatibleVer Minor(input)
The minor version number of the TP module that the application is compatible with.

Application(input/optional)
Nonce passed to the application when its callback isinvoked allowing the application to
determine the proper context of operation.

Notification (input/optional)

Callback provided by the application that is called by the TP when one of two things takes place:
a parallel operation completes or atoken running in serial mode surrenders control to the
application.

Reserved (input)
A reserved input.

Return Value
A handleisreturned for the TP module. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_EXPIRE Add-in has expired
CSSM_ATTACH_FAIL Unable to load TP module

See Also

CSSM_TP_Detach

Page 134 Common Security Services M anager Release 1.2
Application Programming I nterface

455 CSSM_TP_Detach

CSSM_RETURN CSSMAPI CSSM_TP_Detach (CSSM_TP_HANDLE TPHandl€)
This function detaches the application from the TP module.

Parameters
TPHandle (input)
The handle that describes the TP module.

Return Value
A CSSM_TRUE return value signifies that application has been detached from the TP module.
When CSSM_FAL SE isreturned, an error has occurred. Use CSSM_ GetError to obtain the

error code.
Error Codes
Vaue Description
CSSM_INVALID ADDIN_HANDLE Invalid TP handle
See Also

CSSM_TP_Attach

Release 1.2 Common Security Services M anager Page 135
Application Programming I nterface

4.5.6 CSSM_TP_Getinfo

CSSM_TPINFO_PTR CSSMAPI CSSM_TP_GetInfo (const CSSM_GUID_PTR GUID)
This function returns the CSSM registry information about the TP module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the TP
module.

Return Value
A pointer to the CSSM_TPINFO structure containing information about the TP module.
If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INVALID_GUID Unknown GUID

See Also

CSSM_TP_Freelnfo

Page 136 Common Security Services M anager Release 1.2
Application Programming I nterface

457 CSSM_TP_Freelnfo

CSSM_RETURN CSSMAPI CSSM_TP_Freelnfo (CSSM_TPINFO_PTR TPInfo)
Frees the memory allocated by the TP module for the CSSM_TP_INFO structure.

Parameters
TPInfo (input/output)
A pointer to the CSSM_TPINFO structure to be freed.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Call
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID TPINFO_POINTER Invalid pointer
See Also

CSSM_TP_Getlnfo

Release 1.2 Common Security Services M anager Page 137
Application Programming I nterface

5. Certificate Library Services API

5.1 Overview

The primary purpose of a Certificate Library (CL) module isto perform syntactic manipulations on a
specific certificate format, and its associated certificate revocation list (CRL) format. The data format of
CRLs used to track revoked certificates will be influenced, if not determined, by the data format of the
certificates. For this reason, these objects should be manipulated by a single, cohesive library.

Certificate libraries manipulate memory-based objects only. The persistence of certificates and CRLsis an
independent property of these objects. It isthe responsibility of the application and/or the trust policy
module to use data storage add-in modules to make these objects persistent (if appropriate). The
particular storage mechanism used by a selected data storage module can often be selected, independent of
the trust policy and the application.

The Certificate Library encapsulates format-specific knowledge into a library which an application can
accessviaCSSM. These libraries allow applications and add-in modules to interact with certificates and
CRLsfor services such as signing, verification, creation and revocation without requiring knowledge of
the certificate and CRL formats.

Under current certificate models, such as X.509, SDSI, SPKI, etc., asingle certificate represents the
identity of some entity and possibly some authorizations assigned to that entity. When verifying trust in a
certificate, the certificate is rarely considered as a stand-alone credential. Certificates are signed using one
or more certificates. Root certificates are self-signed, but most certificates are signed using other
certificates. The syntactic process of signing corresponds to atrust relationship between the entities
identified by the certificates. Hence it is often necessary to manipulate groups of certificates. The CLM
API define three operations on certificate groups:

e add certificates to a group
* remove certificates from a group
» verify the signatures of a group of certificates

Ten functions are defined to perform syntactic manipulation of individual certificates, and nine functions
are defined to perform syntactic manipulation of CRLs. Additional operations are defined for certificate
library module management and for certificate library API extensibility.

5.1.1 Application and Certificate Library Interaction

An application determines the availability and basic capabilities of a Certificate Library by querying the
CSSM Registry. When anew CL isinstalled on a system, the certificate types and certificate fields that it
supports are registered with CSSM. An application uses registry information to find an appropriate CL
and to request that CSSM attach to the CL. When CSSM attaches to the CL, it returns a CL handle to the
application which uniquely identifies the pairing of the application thread to the CL module instance.
This handle is used by the application to identify the CL in future function calls.

CSSM passes CL function calls from an application to the application-selected Certificate Library.
The application is responsible for the allocation and de-allocation of all memory which is passed into or

out of the Certificate Library module. The application must register memory allocation and de-allocation
upcalls with CSSM when it requests a CL attach. These upcalls and the handle identifying the

Page 138 Common Security Services M anager Release 1.2
Application Programming I nterface

application/CL pairing are passed to the CL at that time. The Certificate Library Module uses these
functions to allocate and de-allocate memory which belongs to or will belong to the application.

5.1.2 Operations on Certificates

CSSM defines the general security API that all certificate libraries should provide to manipulate
certificates and certificate revocation lists. The basic areas of functionality include:

* Certificate operations
» Certificate revocation list operations
» Extensibility functions

e Module management functions

Each certificate library may implement some or all of these functions. The available functions are
registered with CSSM at attach time. Each certificate library should be accompanied with documentation
specifying supported functions, non-supported functions, and module-specific passthrough functions. Itis
the responsibility of the application developer to obtain and use this information when devel oping
applications using a selected certificate library.

The CSSM-defined API and the general semantics of those functions for al certificate librariesis
described below.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertSign (J accepts asinput asigner’s
certificate, a memory-resident certificate to be signed, and the
scope of the signing process. Thescope of a signature may
be used to identify which fields of the certificate should be
signed. Inresponse, the CL module should perform the data
format-specific process of generating a digital signature for
the certificate, according to the scoping request. This
function may be used to generate multiple signatures over a
certificate. The newly-signed certificate and the associated
signature are returned as memory-resident objects. If the
certificate also resided in persistent storage prior to invoking
this function, the newly-generated signature is not
transparently written back to the data store.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertUnsign () removes a signature from a
signed, memory-resident certificate. The newly-unsigned
certificate is returned to the calling application. If a
persistent copy of the certificate also exists in some data store,
the removal of a signature is not written back to the data store
by this function.

CSSM_BOOL CSSMAPI CSSM_CL_CertVerify (} accepts asinput asigner’s certificate, a
memory-resident, signed certificate, and thescope of the
signing that was performed using the signer’s certificate. In
response, the CL module performs the data format-specific
operation of checking the signature over the certificate. This
determines whether or not the certificate has been altered,

Release 1.2 Common Security Services M anager Page 139
Application Programming I nterface

and whether the signer’s certificate was actually used to sign
the certificate, according to the specified signing scope.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertCreate () accepts as input a set of name-
value pairs and a count of the number of fields presented. In
response the CL should create and return a memory-resident
certificate containing the values specified by the field-value
pairs. The new certificateis not an official certificate, asit is
not signed as a result of using this operation. The function
CL_CertSign should be used to sign a memory-resident
certificate.

CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertView () accepts as input a memory-resident
certificate. In response, the CL module returns a set of name-
value pairs, and the count of the number of pairs returned.
The values are in a displayable format.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertGetFirstFieldValue (-)accepts asinput a
certificate and the object identifier of afield in that certificate.
In response, the CL module returns the value of a selected
certificate field, a count of the number of fields matching the
object identifier, and aresults handle. Theresults handleis
used to get subsequent field values having the same object
identifier.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertGetNextFieldValue (-)accepts as input a
results handle returned by the function
CSSM_CL_CertGetFirstFieldvValue. In response, the CL
module returns the next field value selected by the
CSSM_CL_CertGetFirstFieldValue call that returned the
results handle.

CSSM_RETURN CSSMAPI CSSM_CL _CertAbortQuery (9 accepts as input aresults
handle returned by the function
CSSM_CL_CertGetFirstFieldvValue. In response, the CL
modul e terminates the context of the get operation.

CSSM_KEY_PTR CSSMAPI CSSM_CL _CertGetKeylnfo (9 accepts as input a certificate.
In response, the CL module returns all of the data from the
certificate that comprises the Key stored in that certificate. In
most certificate formats these are multiple fields. This result
could be achieved by multiple calls to the function named
CL_CertGetFieldValue, by passing the appropriate field
identifiers to extract the values that comprise the Key.

CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertGetAllFields (9 accepts asinput a
certificate. In response, the CL module returns a set of name-
value pairsfor all of the datafields contained in the
certificate. Thisfunctions differsfrom CSSM_CL_CertView.
This function can return values that cannot be displayed.

CSSM_DATA_PTR CSSMAPI CSSM_CL_Certlmport (Jeach CL module manipulates a
specificnative certificate data format. In a heterogeneous
world of multiple certificate formats, CL modules may wish
to provide a service for converting non-native certificate
formats into native formats. The import function accepts as
input a certificate in non-native format and the name of that
non-native format. The CL module creates and returns a
corresponding memory-resident version of the input
certificate in the data format native to the CL module.

Page 140

Common Security Services M anager Release 1.2
Application Programming I nterface

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertExport () each CL module manipulates a

specificnative certificate data format. In a heterogeneous
world of multiple certificate formats, CL modules may wish
to provide a service for converting their native certificate
formats into non-native formats that could be used with other
CL modules. The export function accepts as input a memory-
resident certificate in native format, and the name of the
target, non-native format. The CL module creates and
returns a corresponding memory-resident version of the input
certificate in the requested non-native format.

CSSM_OID_PTR CSSMAPI CSSM_CL _CertDescribeFor mat (-)accepts as input the

handle of a CL module. In response, CSSM returns alist of
object identifiers representing the certificate field types
manipulated by the CL module. These unique identifiers are
used asinput to CSSM_CL_ CertGetFirstFieldValue (), and
isoutput by the functions CSSM_CL_CertGetAllFields ()
and CSSM_CL_CertView ().

5.1.3 Operations on Certificate Groups

CSSM_CERTGROUP_PTR CSSMAPI CSSM_CL_CertGroupConstruct (-)accepts as

input a certificate group containing one or more certificates
and alist of certificate databases that may contain certificates
related to those in the input group. In response, the CL
modul e constructs a certificate group consisting of all the
certificates in the original group plus certificates selected
from the certificate databases. Selection for inclusion is based
upon the certificate model implemented by the CL. For
example, under the X.509 model of certificates, the input
certificate group can contain aleaf certificate only. The result
of this operation is the chain of certificates formed by the
signing process from the leaf input certificate to a self-signed
root certificate.

CSSM_CERTGROUP_PTR CSSMAPI CSSM_CL_CertGroupPrune (-)accepts as input a

group of certificates from which certificates should be
removed, and a group of certificates that should be removed
from the first group if they are present in that group. This
operation serve as an inverse of the ConstructCertGroup
function by removing any certificates which have only local
relevance. Certificates and certificate groups are often
exchanged among systems. It may be necessary to remove
certificates that have only local significance before sending a
certificate group to another system.

CSSM_BOOL CSSMAPI CSSM_CL_CertGroupVerify (J accepts as input a certificate

group, thescope of the signing that was performed on every
certificate in the group, and a group of trusted certificates
(root or pseudo-root certificates). In response, the CL module
performs the data format-specific operation of checking the
signature(s) on each certificate in the group. It is assumed
that all certificates in the group were signed using the same
signing scope and that al of the certificates required to verify

Release 1.2

Common Security Services M anager Page 141
Application Programming I nterface

signatures on other certificates are included in the input
group of certificates or in the group of trusted certificates. For
example, if agroup to be verified contains an X.509
certificate chain of depth three (certR->certM->certL), then
cert M was used to sign certL, cert R was used to sign certM,
and certR isin the group of trusted certificates. The function
result istrue if the required signatures are verified and false
otherwise. The CL and the certificate model it implements
defines the verification process among the certificates in the

group.

5.1.4 Operations on Certificate Revocation Lists
CSSM_DATA_PTR CSSMAPI CSSM_CL _CrlCreate () creates and returns an empty,

memory-resident CRL.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CrlAddCert (9 accepts as input a memory-

resident certificate, a memory-resident CRL, the certificate of
the revoking agent, and the reason for revocation. In
response, the CL module adds to the CRL arecord
representing the certificate. It then uses the keys associated
with the revoker’s certificate to sign the newly-added CRL
record. The updated CRL isreturned to the calling
application.

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrIRemoveCert (-)accepts as input a memory-

resident certificate and a memory-resident CRL. In response,
the CL module removes from the CRL the record which
corresponds to the specified certificate. It then returns the
updated CRL.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CrlSign (J accepts as input a signer’s certificate,

amemory-resident CRL to be signed, and thecope of the
signing process. In response, the CL module performs the
data format-specific process of generating a digital signature
for the CRL according to the scoping request. This function
may be used to generate multiple signatures over aCRL. The
newly-signed CRL and the associated signature are returned
as memory-resident objects. If the CRL also resided in
persistent storage prior to invoking this function, the newly-
generated signature is not transparently written back to the
data store.

CSSM_BOOL CSSMAPI CSSM_CL_CrlVerify (} accepts asinput asigner’s certificate, a

memory-resident, signed CRL, and the allegedscope of the
signing performed using the signer’s certificate. 1n response,
the CL module performs the data format-specific operation of
checking the signature over the CRL. This determines
whether the CRL has been tampered with and whether the
signer’s certificate was actually used to sign the CRL,
according to the specified signing scope.

CSSM_BOOL CSSMAPI CSSM_CL _IsCertInCrl () accepts as input a memory-resident

CRL and a memory-resident certificate. 1n response, the CL
modul e searches the CRL for arecord corresponding to the
certificate. If such asrecord isfound the function will return
true; otherwise the function will return false.

Page 142 Common Security Services M anager Release 1.2
Application Programming I nterface

CSSM_DATA_PTR CSSMAPI CSSM_CL _CrlGetFirstFieldValue (-)accepts asinput a
memory-resident CRL. In response, the CL module returns
the value of a selected CRL field, a count of the number of
fields matching the object identifier, and a results handle.
The results handle is used to get subsequent field values
having the same object identifier.

CSSM_DATA_PTR CSSMAPI CSSM_CL _CrlGetNextFieldValue (-)accepts asinput a
results handle returned by the function
CSSM_CL_CrlGetFirstFieldValue. In response, the CL
module returns the next field value selected by the
CSSM_CL_CrlGetFirstFieldValue call that returned the
results handle.

CSSM_RETURN CSSMAPI CSSM_CL_CrlAbortQuery (9 accepts as input a results handle
returned by the function CSSM_CL_ CrlGetFirstFieldValue.
In response, the CL module terminates the context of the get
operation.

CSSM_OID_PTR CSSMAPI CSSM_CL _CrlDescribeFor mat (-)accepts as input the handle
of aCL module. In response, CSSM returns a list of object
identifiers representing the CRL field types manipulated by
the CL module. These unique identifiers are used as input to
CSSM_CL_CrlGetFirstFieldvalue ().

5.1.5 Module Management Functions

CSSM_RETURN CSSMAPI CSSM_CL _Install () accepts as input the name and GUID of
the CL module, selected attributes describing the module, and
information required by CSSM to dynamically load the
module if its use is requested by an application. CSSM adds
the CL module name, and attributes to the registry of CL
modules.

CSSM_RETURN CSSMAPI CSSM_CL _Uninstall () CSSM removes the specified CL
module from the CL module registry.

CSSM_LIST_PTR CSSMAPI CSSM_CL_ListModules ()CSSM returns alist of all the
currently-registered CL modules.

CSSM_LIST_PTR CSSMAPI CSSM_CL _ListModulesFor CertType (-)accepts as input the
name of a certificate type. In response, CSSM returns alist
of all the currently-registered CL modules whose associated
attribute value for certificate type matches the input certificate
type.

CSSM_CL_HANDLECSSMAPI CSSM_CL _Attach ()} accepts asinput the GUID of aCL
modul e, the module’s major and minor versions required for
compatibility with the calling application, and the
application’s memory management upcalls. The caller is
requesting a dynamic load of the specified CL module if the
available version of the CL module is compatible with the
version level specified by the caller. After the moduleis
attached, a handle identifying the module is returned to the
caller. The caller may be an application, a TP module, aDL
module, or another CL module.

Release 1.2 Common Security Services M anager Page 143
Application Programming I nterface

CSSM_RETURN CSSMAPI CSSM_CL _Detach () accepts as input a handle to a currently-
attached CL module. The caller is requesting the dynamic
unload of the specified CL module.

CSSM_CL_INFO_PTR CSSMAPI CSSM_CL _Getlnfo () accepts as input the GUID of the
CL module whose information is being requested. CSSM
returns the information recorded in the CL module registry
during module installation. This information includes the
major and minor version numbers of the module, the
certificate type supported by this CL module, the object
identifiers (OIDs) which describe the certificate format, and
the non-native certificate types available for certificate
translations.

CSSM_RETURN CSSMAPI CSSM_CL_Freelnfo ()

5.1.6 Extensibility Functions

The certificate library API defines one extensible operation, which allows the certificate library to make

additional services available to applications and other modules. These services should be syntactic in

nature (they should be dependent on the data format of the certificates and CRLs manipulated by the

library).

CSSM_DATA_PTR CSSMAPI CSSM_CL _PassT hrough (-)accepts as input an operation D

and an array of arbitrary input parameters. The operation ID
may specify any type of operation the CL wishes to export for
use by an application or module. Such operations may
include queries or services that are specific to the data format
of the certificates and CRLs manipulated by the CL module.

Page 144 Common Security Services M anager Release 1.2
Application Programming I nterface

5.2 Data Structures

This section describes the data structures which may be passed to or returned from a Certificate Library
function. They will be used by applications to prepare data to be passed as input parameters into CSSM
API function calls which will be passed without modification to the appropriate CL. The CL isthen
responsible for interpreting them and returning the appropriate data structure to the calling application via
CSSM. These data structures are defined in the header file cssmtype.h, distributed with CSSM.

5.2.1 CSSM_CL_HANDLE

The CSSM_CL_HANDLE is used to identify the association between an application thread and an
instance of a CL module. It is assigned when an application causes CSSM to attach to a Certificate
Library. Itisfreed when an application causes CSSM to detach from a Certificate Library. The
application uses the CSSM_CL_HANDLE with every CL function call to identify the targeted CL. The
CL module usesthe CSSM_CL_HANDLE to identify the appropriate application’s memory management
routines when allocating memory on the application’s behalf.

t ypedef uint32 CSSM CL_HANDLE

5.2.2 CSSM_CERT_TYPE

This variable specifies the type of certificate format supported by a Certificate Library and the types of
certificates understood for import and export. They are expected to define such well-known certificate
formats as X.509 Version 3 and SDSI, as well as custom certificate formats.

t ypedef enum cssmcert_type {
CSSM CERT_UNKNOME 000,

CSSM CERT_X 509v1 = 0x01,
CSSM CERT_X 509v2 = 0x02,
CSSM CERT_X 509v3 = 0x03,

CSSM CERT_Fortezza = 0x07,

CSSM CERT_PGP = 0x04,
CSSM CERT_SPKI = 0x05,
CSSM CERT_SDSIvl = 0x06,
CSSM CERT Intel = 0x08,
CSSM CERT_ATTRI BUTE_BER = 0x09, /* ber encoded X 509 attribute cert */
CSSM CERT_LAST = OxFF

} CSSM CERT TYPE, *CSSM CERT TYPE PTR

5.2.3 CSSM_OID

The object identifier (OID) is used to identify the data types and data structures which comprise the fields
of acertificate or CRL.

typedef CSSM DATA CSSM A D, *CSSM A D PTR

5.2.4 CSSM_FIELD
This structure contains the OID/value pair for a certificate or CRL field.

Release 1.2 Common Security Services M anager Page 145
Application Programming I nterface

typedef struct cssmfield {
CSSM A D Fi el dG d;
CSSM DATA Fi el dVal ue;
}CSSM FI ELD, *CSSM FI ELD PTR

Definition:
FieldOid- The object identifier which identifies the certificate or CRL data type or data structure.

FieldvValue- A CSSM_DATA type which contains the value of the specified OID in a contiguous
block of memory.

Page 146 Common Security Services M anager Release 1.2
Application Programming I nterface

5.25 CSSM_CERTGROUP

This structure contains a set of certificates. It is assumed that the certificates are related based on co-
signaturing. The certificate group is a syntatic representation of a trust model.

typedef struct {
ui nt 32 NunCerts; /* nunber of elements in CertList array */
CSSM DATA PTR CertLi st; /* List of opaque certificates */
voi d *reserved;

} CSSM CERTGROUP, * CSSM CERTGROUP_PTR,

Definition:
NumCerts- number of certificates in the group.

CertList- List of certificates.

reserved - Reserved for future use.

5.2.6 CSSM_CLINFO

This structure contains all of the static data associated with a certificate library add-in module. This
information is added to the CL registry at install time. It can be queried using the command
CSSM_CL_Getlnfo ()

typedef struct cssmclinfo {
CSSM CERT_TYPE Cert Type;

ui nt 32 Nunber O Fi el ds;
CSSM A D PTR CertTenpl at e;

ui nt 32 Ver Myj or ;

ui nt 32 Ver M nor ;

CSSM BOOL Mul ti TaskEnabl ed;
ui nt 32 Nurber O Types;

CSSM CERT_TYPE_PTR Cert Transl ati onType;
} CSSM CLINFQ *CSSM CLI NFO PTR

Definition:
CertType- An identifier for the type of certificate. This parameter is also used to determine the
certificate data format.

Number OfFields- The number of certificate fields. This number also indicates the length of the
CertTemplatearray.

CertTemplate- A pointer to an array of tag/value pairs which identify the field values of a certificate.
VerMajor - The major version number of the add-in module.
VerMinor - The minor version number of the add-in module.
MultiTaskEnabled -A Boolean variable indicating whether or not this library supports multi-tasking.

Number OfTypes- The number of certificate types that this certificate library add-in module can
import and export. This number also indicates the length of th€ertTranslationTypearray.

Release 1.2

Common Security Services M anager
Application Programming I nterface

Page 147

CertTranslationType- A pointer to an array of certificate types. This array indicates the certificate
types that can be imported into and exported from this certificate library modul€’s native certificate

type.

Page 148 Common Security Services M anager Release 1.2
Application Programming I nterface

5.2.7 CSSM_API_MEMORY_FUNCS

This structure is used by applications to supply memory functions for the CSSM and the add-in modules.
The functions are used when memory needs to be allocated by the CSSM or add-ins for returning data
structures to the applications.

typedef struct cssm_api_memory_funcs {
void * (*malloc_func) (uint32 size, void * allocRef);
void (*free_func) (void *memblock, void * allocRef);
void * (*realloc_func) (void *memblock, uint32 size, void * allocRef);
void * (*calloc_func) (uint32 num, uint32 size, void * allocRef);
} CSSM_API_MEMORY_FUNCS, *CSSM_API_MEMORY_FUNCS_PTR

Definition:
malloc_func- pointer to function that returns a void pointer to the allocated memory block of at least
size bytes from heap allocRef

free_func- pointer to function that deallocates a previously-allocated memory blockneémblock) from
heap allocRef

realloc_func- pointer to function that returns a void pointer to the reallocated memory block
(memblock) of at least size bytes from heap allocRef

calloc_func- pointer to function that returns a void pointer to an array ohumelements of lengthsize
initialized to zero from heap allocRef

See Appendix B for details about the application memory functions

Release 1.2 Common Security Services M anager Page 149
Application Programming I nterface

5.3 Certificate Operations

This section describes the function prototypes and error codes which will be supported by various
Certificate Library modules. The error codes given in this section constitute the generic error codes which
are defined by CSSM for use by all certificate libraries in describing common error conditions. A
certificate library may also return module-specific error codes.

5.3.1 CSSM_CL_CertSign

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertSign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs the fields of the input certificate indicated in th& gnScopearray.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be signed.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be used to sign the subject
certificate.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be signed. A
null input signs all the fields in the certificate.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Page 150 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_CONTEXT Invalid context for the requested operation
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_INVALID_SIGNER_CERTIFICATE Revoked or expired signer certificate
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_SIGN_FAIL Unable to sign certificate

See Also

CSSM_CL_CertUnsign, CSSM_CL_CertVerify

Release 1.2 Common Security Services M anager Page 151
Application Programming I nterface

5.3.2 CSSM_CL_CertUnsign

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertUnsign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function removes a signature from a signed, memory-resident certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the certificate from which to remove a
signature.

SignerCert (input)
A pointer to the CSSM_DATA structure containing the signer’s certificate. This certificate will
be used to identify the signature to be removed.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields which were
signed. A null input indicates that all the fields in the certificate were signed.

ScopeSize (input)
The number of entriesin the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the newly-unsigned certificate. If the pointer
isNULL, an error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_UNSIGN_FAIL Unable to unsign certificate

See Also

CSSM_CL_CertSign

Page 152 Common Security Services M anager Release 1.2
Application Programming I nterface

5.3.3 CSSM_CL_CertVerify

CSSM_BOOL CSSMAPI CSSM_CL_CertVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies that the signed certificate has not been altered since it was signed by the
designated signer. It does this by verifying the digital signature on the VerifyScope fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the signed certificate.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified. A
null input verifies all the fields in the certificate.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
CSSM_TRUE if the certificate verified. CSSM_FAL SE if the certificate did not verify or an
error condition occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_CONTEXT Invalid context for the requested operation
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_VERIFY_FAIL Unable to verify certificate

See Also

CSSM_CL_CertSign

Release 1.2 Common Security Services M anager Page 153
Application Programming I nterface

5.3.4 CSSM_CL_CertCreate

CSSM_DATA _PTR CSSMAPI CSSM_CL_CertCreate (CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PTR CertTemplate,
uint32 NumberOfFields)

This function allocates and initializes memory for a certificate based on the input Ol D/value
pairs. The memory is allocated from the calling application’s memory management routines.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CertTemplate (input)
A pointer to an array of OlD/value pairs which identify the field values of the new certificate.

Number OfFields (input)
The number of certificate fields being input. This number should indicate the length of the
CertTemplatearray.

Return Value
A pointer to the CSSM_DATA structure containing the new certificate. If the return pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_FIELD_POINTER Invalid pointer input
CSSM_CL_INVALID_TEMPLATE Invalid template for this certificate type
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_CREATE_FAIL Unable to create certificate

See Also

CSSM_CL_CertSign, CSSM_CL _CertGetFirstFieldValue

Page 154 Common Security Services M anager Release 1.2
Application Programming I nterface

5.3.5 CSSM_CL_CertView

CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertView (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
uint32 * NumberOfFields)

This function returns the displayable fields of the input certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate whose displayable fields will
be returned.

Number OfFields (output)
The number of certificate fields being output. This number indicates the length of the
CertTemplatearray.

Return Value
A pointer to an array of CSSM_FIELD structures which contain the viewable fields of the input
certificate. If the return pointer isNULL, an error has occurred. Use CSSM _GetError to obtain
the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid Certificate Library Handle

CSSM_CL_INVALID_FIELD_POINTER Invalid pointer input
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input

CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_VIEW_FAIL Unable to view certificate

See Also

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertGetAllFields

Release 1.2 Common Security Services M anager Page 155
Application Programming I nterface

5.3.6 CSSM_CL_CertGetFirstFieldValue

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertGetFirstFieldvValue (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
CSSM_OID_PTR CertField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOfM atchedFiel ds)

This function returns the value of the designated certificate field. If more than one field matches
the CertField OID, the first matching field will be returned. The number of matching fieldsis an
output parameter, asis the ResultsHandle to be used to retrieve the remaining matching fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate.

CertField (input)
A pointer to an object identifier which identifies the field value to be extracted from th@ert.

ResultsHandl e (output)
A pointer to the CSSM_HANDLE which should be used to obtain any additional matching fields.

Number OfMatchedFields (output)
The number of fields which match theCertField OID.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the
pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_TAG Unknown field tag in OID
CSSM_CL_MEMORY_ERROR Not enough memory

CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Unableto get field value

See Also
CSSM_CL_CertGetNextFieldVaue, CSSM_CL_CertAbortQuery, CSSM_CL_CertGetAllFields

Page 156 Common Security Services M anager Release 1.2
Application Programming I nterface

5.3.7 CSSM_CL_CertGetNextFieldValue

CSSM_DATA_PTR CSSMAPI CSSM_CL _CertGetNextFieldvValue (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate field which matched the OID and selection predicate in
acall to CL_CertGetFirstFieldValue.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle which identifies the results of a certificate query.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the
pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_RESULTS HANDLE Invalid Results Handle
CSSM_CL_NO _FIELD _VALUES No more field values for the input handle
CSSM_CL_MEMORY_ERROR Not enough memory

CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Unableto get field value

See Also
CSSM_CL_CertGetFirstFieldVaue, CSSM_CL _CertAbortQuery

Release 1.2 Common Security Services M anager Page 157
Application Programming I nterface

5.3.8 CSSM_CL_CertAbortQuery

CSSM_RETURN CSSMAPI CSSM_CL_CertAbortQuery (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CSSM_CL _CertGetFirstFieldValue and allows
the CL to release all intermediate state information associated with the query.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
A pointer to the handle which identifies the results of a certificate query.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid Certificate Library Handle

CSSM_CL_INVALID_RESULTS HANDLE Invalid Results Handle
CSSM_CL_CERT_ABORT_QUERY_FAIL Unable to abort the certificate query

See Also
CSSM_CL_CertGetFirstFieldvValue, CSSM_CL_CertGetNextFieldValue

Page 158 Common Security Services M anager Release 1.2
Application Programming I nterface

5.3.9 CSSM_CL_CertGetKeylInfo

CSSM_KEY_PTR CSSMAPI CSSM_CL_CertGetKeylnfo (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert)

This function obtains information about the certificate’s public key. Ideally, thisinformation
comprises the key fields required to create a cryptographic context.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate from which to extract the
public key information.

Return Value
A pointer to the CSSM_KEY structure containing the public key and possibly other key
information. If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the

error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_UNKNOWN_TAG Unknown field tag in OID
CSSM_CL_MEMORY_ERROR Not enough memory

CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_GET_KEY_INFO_FAIL Unableto get key information

See Also
CSSM_CL_CertGetFirstFieldvValue

Release 1.2 Common Security Services M anager Page 159
Application Programming I nterface

5.3.10 CSSM_CL_CertGetAllFields

CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertGetAllFields (CSSM_CL_HANDLE CLHandle,
CSSM_DATA_PTR Cert,
uint32 * NumberOfFields)

This function returns alist of the fields in the input certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate whose fields will be returned.

Number OfFields (output)
The length of the returnedarray of fields.

Return Value
A pointer to an array of CSSM_FIELD structures which contain the values of all of the fields of
the input certificate. If the pointer isNULL, an error has occurred. Use CSSM_GetError to
obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid handle
CSSM_CL_INVALID_DATA_POINTER Invalid DATA pointer
CSSM_CL_MEMORY_ERROR Error allocating memory

CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Unableto return the list of fields

See Also
CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertDescribeFormat, CSSM_CL_CertView

Page 160 Common Security Services M anager Release 1.2
Application Programming I nterface

5.3.11 CSSM_CL_Certimport

CSSM_DATA_PTR CSSMAPI CSSM_CL_Certlmport (CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TYPE ForeignCertType,
const CSSM_DATA_PTR ForeignCert)

This function imports a certificate from the input format into the native format of the specified
certificate library.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ForeignCertType (input)
A unique value which identifies the type of the certificate being imported.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be imported into the native
type.

Return Value
A pointer to the CSSM_DATA structure containing the native-type certificate imported from the
foreign certificate. If the pointer isNULL, an error has occurred. Use CSSM_GetError to obtain
the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_MEMORY_ERROR Not enough memory
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_IMPORT_FAIL Unable to import certificate

See Also

CSSM_CL_CertExport

Release 1.2 Common Security Services M anager Page 161
Application Programming I nterface

5.3.12 CSSM_CL_CertExport

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertExport (CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TY PE TargetCertType,
const CSSM_DATA_PTR NativeCert)

This function exports a certificate from the native format of the specified certificate library into
the specified target certificate format.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

TargetCertType (input)
A unique value which identifies the target type of the certificate being exported.

NativeCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be exported.

Return Value
A pointer to the CSSM_DATA structure containing the target-type certificate exported from the
native certificate. If the pointer isNULL, an error has occurred. Use CSSM_GetError to obtain
the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL _MEMORY_ERROR Not enough memory
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_EXPORT_FAIL Unable to export certificate

See Also

CSSM_CL_Certlmport

Page 162 Common Security Services M anager Release 1.2
Application Programming I nterface

5.3.13 CSSM_CL_CertDescribeFormat

CSSM_OID_PTR CSSMAPI CSSM_CL_CertDescribeFormat (CSSM_CL_HANDLE CLHandle,
uint32 * NumberOfFields)

This function returns alist of the object identifiers used to describe the certificate format
supported by the specified CL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Number OfFields (output)
The length of the returnedarray of OIDs.

Return Value
A pointer to the array of CSSM _OIDs which represent the supported certificate format. If the
pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid handle
CSSM_CL_MEMORY_ERROR Error allocating memory

CSSM_CL_CERT_DESCRIBE_FORMAT_FAIL Unableto return the list of fields

See Also
CSSM_CL_CertGetAllFields

Release 1.2 Common Security Services M anager Page 163
Application Programming I nterface

5.4 Certificate Group Operations

This section describes the function prototypes and error codes supported by Certificate Library modules
that manage certificate groups. The error codes given in this section constitute the generic error codes
which are defined by CSSM for use by all certificate libraries in describing common error conditions. A
certificate library may also return module-specific error codes.

541 CSSM_CL_CertGroupConstruct

CSSM_CERTGROUP_PTR
CSSM_CL_CertGroupConstruct

(CSSM_CL_HANDLE CLHandle,
CSSM_CERTGROUP_PTR CertGroupFrag,
CSSM_DB_LIST_PTR DBList)

This function constructs an ordered certificate group from the CertGroupFrag certificate group
and the contents of the databases passed in DBList. Thereis no implied ordering for the
certificates in CertGroupFrag except that the first certificate in the certificate group is assumed to
be the starting point for constructing the certificate group. An ordering relationship may be
defined and recorded in the certificates themselves or assumed by the certificate library model.
For example, if the certificate model is a hierarchical model of certificate chains, the |eaf
certificate in the chain is the CertGroupFrag and the complete certificate chain including the self-
signed root certificate is the anticipated result of the construction operation.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CertGroupFrag (input)

A group of certificatesto be used to build an ordered certificate group. Thefirst certificate in the
group should be the certificate for which the ordered certificate group is being constructed. No
particular ordering of the rest of this group is expected or implied.

DBList (input)
A list of certificate databases containing certificates that may be used to construct the ordered
certificate group.

Return Value
A pointer to agroup of certificates, ordered in the context of the certificate type and trust model.

Error Codes
Vaue Description
CSSM_ INVALID CL_HANDLE Invalid certificate library handle
CSSM_CL_INVALID_CERT_GROUP Invalid certificate group
CSSM_INVALID_DB_HANDLE Bad database handle
CSSM_ MEMORY_ERROR Not enough memory to allocate
See Also

CSSM_CL_PruneCertGroup

Page 164 Common Security Services M anager Release 1.2
Application Programming I nterface

5.4.2 CSSM_CL_CertGroupPrune

CSSM_CERTGROUP_PTR CSSM_CL_CertGroupPrune (CSSM_CL_HANDLE CLHandle,
CSSM_CERTGROUP_PTR CertGroup,
CSSM_DB_LIST_PTR DBList);

This function prunes all certificates from CertGroup which are not verifiable by an external host.
This function determines which root certificates were generated locally by checking the passed
DBList for certificates which exist in both an OWNED and a ROOT database. These certificates
will be removed from the CertGroup, as well as any certificate signed by them. In addition this
function will remove any self-signed certificates from the CertGroup.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CertGroup (input)

The certificate group to be pruned. Most likely, this parameter would be filled with the return
value of acall to CSSM_CL_CertGroupConstruct().

DBList (input)
The list of databases to be used to determine which certificates are local roots (certificates signed
by alocally-held private key).

Return Value
Returns an exportable certificate group which can be completed and verified by external hosts. If
thelist returned isNULL, an error has ocurred. Errors can be retrieved by calling
CSSM__GetL astError().

Error Codes
Vaue Description
CSSM_INVALID _CL_HANDLE Invalid certificate library handle
CSSM_CL_INVALID_CERT_GROUP Invalid certificate group
CSSM_MEMORY_ERROR Internal memory error

See Also

CSSM_CL_CertGroupConstruct

Release 1.2 Common Security Services M anager Page 165
Application Programming I nterface

5.4.3 CSSM_CL_CertGroupVerify

CSSM_BOOL CSSM_CL_CertGroupVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
CSSM_CERTGROUP_PTR OrderedCertGroup,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize,
CSSM_DB_LIST_PTR DBList,
CSSM_CERTGROUP_PTR RootCerts)

This function verifies the OrderedCertGroup. This function accepts a list of opaque certificates
and verifies the signatures on each certificate according to conventions defined by the CLM
developer. For example, if the X509 certificate model is being used then a signature chain is
verified. The OrderedCertGroup is expected to be the output of acall to
CSSM_CL_CertGroupConstruct(). The verification will fail if arevoked certificate isfound in
the certificate group, improper ordering of the certificate group is found, a certificate in the group
failsto verify, or a self-signed root certificate cannot be found in RootCerts or in the ROOT
databases in the DBList. If RootCertsis non-NULL, the ROOT databases in the DBList will not
be checked to verify the existance of aroot certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CSPHandle (input)
The handle that describes the add-in cryptographic library module used to perform the verify
operation for each certificate in the group to be verified.

OrderedCertGroup (input)
The set of related certificates presented for verification.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified. A
null input verifies all the fields in the certificate.

ScopeSize (input)
The number of entriesin the verify scope list.

DBList (input)
The list of databases to be used to determine which certificates are valid roots (trusted self-signed
certificates)

RootCerts (input)

The set of trusted root certificates that may have been used to sign one or more of the certificates
in the CertGroup. These certificates are recognized as trusted signers and represent the
termination of one verification path among the certificates in the CertGroup. If this value is non-
NULL then checking for trusted root certificates will done exclusively in the RootCerts list, and
not in any of the ROOT databases included in the DBL.ist.

Return Value
CSSM_TRUE if the certificate verified. CSSM_FAL SE if the certificate did not verify or an
error condition occurred. Use CSSM_GetError() to obtain the error code.

Page 166 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_INVALID _CL_HANDLE Invalid certificate library handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle
CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_INVALID_CONTEXT Invalid context for the requested operation
CSSM_CL_INVALID_CERT_GROUP Invalid certificate group
CSSM_CL_UNKNOWN_FORMAT Unrecognized certificate format
CSSM_CL_INVALID_SCOPE Invalid scope
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_CERT_VERIFY_FAIL Unable to verify certificate
CSSM_MEMORY_ERROR Internal memory error

See Also

CSSM_CL_CertGroupConstruct, CSSM_CL_CertGroupPrune

Release 1.2 Common Security Services M anager Page 167
Application Programming I nterface

5.5 Certificate Revocation List Operations

This section describes the function prototypes and error codes which will be supported by various
Certificate Library modules. The error codes given in this section constitute the generic error codes which
are defined by CSSM for use by all certificate libraries in describing common error conditions. A
certificate library may also return module-specific error codes.

5.5.1 CSSM_CL_CrlCreate

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlICreate (CSSM_CL_HANDLE CLHandle)
This function creates an empty, memory-resident CRL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Return Value
A pointer to the CSSM_DATA structure containing the new CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_MEMORY_ERROR Not enough memory to allocate for the CRL

CSSM_CL_CRL_CREATE_FAIL Unable to create CRL

Page 168 Common Security Services M anager Release 1.2
Application Programming I nterface

5.5.2 CSSM_CL_CrlAddCert

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlAddCert (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR RevokerCert,
CSSM_REVOKE_REASON RevokeReason,
const CSSM_DATA_PTR OIdCrl)

This function revokes the input certificate by adding a record representing the certificate to the
CRL. It usesthe revoker’s certificate to sign the new record in the CRL. The reason for
revoking the certificate may also be stored in the revocation record.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be revoked.

Revoker Cert (input)
A pointer to the CSSM_DATA structure containing the revoker’s certificate.

RevokeReason (input)
The reason for revoking the certificate.

OIdCrI (input)
A pointer to the CSSM_DATA structure containing the CRL to which the newly-revoked
certificate will be added.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CC_HANDLE Invalid Context Handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL Invalid CRL
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_ADD_CERT_FAIL Unable to add certificate to CRL

See Also

CSSM_CL_CrIRemoveCert

Release 1.2 Common Security Services M anager Page 169
Application Programming I nterface

5.5.3 CSSM_CL_CrlRemoveCert

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrIRemoveCert (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR OIdCrl)

This function unrevokes a certificate by removing it from the input CRL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be unrevoked.

OIdCrI (input)
A pointer to the CSSM_DATA structure containing the CRL from which the certificate is to be
removed.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer isNULL, an
error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid CL handle

CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_CERT_NOT_FOUND_IN_CRL Certificate not referenced by the CRL
CSSM_CL_INVALID_CRL Invalid CRL
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_REMOVE_CERT_FAIL Unable to remove certificate from CRL

See Also
CSSM_CL_CrlAddCert

Page 170 Common Security Services M anager Release 1.2
Application Programming I nterface

5.5.4 CSSM_CL_CrlSign

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlSign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR UnsignedCirl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs, in accordance with the specified cryptographic context, the fields of the CRL
indicated in the SgnScopeparameter.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

UnsignedCrl (input)
A pointer to the CSSM_DATA structure containing the CRL to be sighed.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be used to sign the CRL.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be signed. A
null input signs all the fieldsin the CRL.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer isNULL, an
error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CC_HANDLE Invalid Context Handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer
CSSM_CL_INVALID_SCOPE Signing scopeisinvalid
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_SIGN_FAIL Unableto sign CRL

See Also

CSSM_CL_CrlVerify

Release 1.2 Common Security Services M anager Page171
Application Programming I nterface

5.5.5 CSSM_CL_CrlVerify

CSSM_BOOL CSSMAPI CSSM_CL_CrlIVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies that the signed CRL has not been altered since it was signed by the
designated signer. It does this by verifying the digital signature on the VerifyScope fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the CRL to be verified.

SgnerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the CRL.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified. A
null input verifies all the fieldsin the CRL.

ScopeSize (input)
The number of entriesin the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the certificate revocation list verifies successfully.
When CSSM_FAL SE isreturned, either the CRL verified unsuccessfully or an error has
occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_INVALID_CC_HANDLE Invalid Context Handle
CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer
CSSM_CL_INVALID_SCOPE Verify scopeisinvalid
CSSM_CL_MEMORY_ERROR Not enough memory to allocate the CRL
CSSM_CL_CRL_VERIFY_FAIL Unable to verify CRL

See Also

CSSM_CL_CrlSign

Page 172 Common Security Services M anager Release 1.2
Application Programming I nterface

5.5.6 CSSM_CL_IsCertInCrl

CSSM_BOOL CSSMAPI CSSM_CL _IsCertInCrl (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR Crl)

This function searches the CRL for arecord corresponding to the certificate.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be located.

Crl (input)
A pointer to the CSSM_DATA structure containing the CRL to be searched.

Return Value
A CSSM_TRUE return value signifies that the certificate isin the CRL. When CSSM_FALSE is
returned, either the certificate is not in the CRL or an error has occurred. Use CSSM_ GetError
to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid CL handle

CSSM_CL_INVALID_CERTIFICATE_PTR Invalid Certificate
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer

Release 1.2 Common Security Services M anager Page 173
Application Programming I nterface

5.5.7 CSSM_CL_CrlGetFirstFieldValue

CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlGetFirstFieldValue (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Crl,
CSSM_OID_PTR CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOfM atchedCrls)

This function returns the value of the designated CRL field. If more than one field matches the
CrlField OID, the first matching field will be returned. The number of matching fieldsis an
output parameter, as is the ResultsHandle to be used to retrieve the remaining matching fields.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Crl (input)
A pointer to the CSSM_DATA structure which contains the CRL from which the first revocation
record isto be retrieved.

CrlField (input)
An object identifier which identifies the field value to be extracted from therl.

ResultsHandl e (output)
A pointer to the CSSM_HANDLE which should be used to obtain any additional matching fields.

Number OfMatchedFields (output)
The number of fields which match theCrlField OID.

Return Value
Returns a pointer to aCSSM_DATA structure containing the first field which matched the
CrlField If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error

code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_UNKNOWN_TAG Unrecognized field tag in OID
CSSM_CL_NO_FIELD_VALUES No fields match the specified OID
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer
CSSM_CL_CRL_GET_FIELD_VALUE_FAIL Unableto get first field value

See Also

CSSM_CL_CrIGetNextFieldValue, CSSM_CL_CrlAbortQuery

Page 174 Common Security Services M anager Release 1.2
Application Programming I nterface

5.5.8 CSSM_CL_CrlGetNextFieldValue

CSSM_DATA_PTR CSSMAPI CSSM_CL _CrlGetNextFieldvValue (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next CRL field which matched the OID in acall to
CL_CirlGetFirstFieldValue.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle which identifies the results of a CRL query.

Return Value
Returns a pointer to a CSSM_DATA structure containing the next field in the CRL which
matched the CrlField specified in the CL_CrlGetFirstFieldValue function. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid CL handle
CSSM_CL_NO _FIELD VALUES No more matches in the CRL
CSSM_CL_INVALID_CRL_PTR Invalid CRL pointer

CSSM_CL_CRL_GET_FIELD_VALUE_FAIL Unable to get next value

See Also
CSSM_CL_CrlGetFirstFieldvVaue, CSSM_CL_CrlAbortQuery

Release 1.2 Common Security Services M anager Page 175
Application Programming I nterface

5,59 CSSM_CL_CrlAbortQuery

CSSM_RETURN CSSMAPI CSSM_CL_CrlAbortQuery (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CL_CrlGetFirstFieldVaue and alows the CL to
release all intermediate state information associated with the query.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

ResultsHandl e (input)
The handle which identifies the results of a CRL query.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID CL_HANDLE Invalid CL handle

CSSM_CL_INVALID_RESULTS HANDLE Invalid query handle
CSSM_CL_CRL_ABORT_QUERY_FAIL Unableto get next item

See Also
CSSM_CL_CrlGetFirstFieldValue, CSSM_CL_CrlGetNextFieldVaue

Page 176 Common Security Services M anager Release 1.2
Application Programming I nterface

5.5.10 CSSM_CL_CrlDescribeFormat

CSSM_OID_PTR CSSMAPI CSSM_CL_CrlDescribeFormat (CSSM_CL_HANDLE CLHandle,
uint32 * NumberOfFields)

This function returns alist of the object identifiers used to describe the CRL format supported by
the specified CL.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

Number OfFields (output)
The length of the returnedarray of OIDs.

Return Value

A pointer to the array of CSSM _OIDs which represent the supported CRL format. If the pointer
isNULL, an error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid handle
CSSM_CL_MEMORY_ERROR Error allocating memory

CSSM_CL_CRL_DESCRIBE_FORMAT_FAIL Unableto return the list of fields

Release 1.2 Common Security Services M anager Page 177
Application Programming I nterface

5.6 Module Management Functions

5.6.1 CSSM_CL_lInstall

CSSM_RETURN CSSMAPI CSSM_CL _Install (const char *CLName,
const char * CLFileName,
const char * CL PathName,
const CSSM_GUID_PTR GUID,
const CSSM_CLINFO_PTR CLInfo,
const void * Reserved],
const CSSM_DATA_PTR Reserved?)

This function updates the persistent CSSM internal information about the CL module.

Parameters
CLName (input)
The name of the certificate library module.

CLFileName (input)
The name of file that implements the certificate library.

CLPathName (input)
The path to the file that implements the certificate library.

GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

CLInfo (input)
A pointer to the CSSM _CLINFO structure containing information about the CL module.

Reservedl (input)
Reserve data for the function.

Reserved?2 (input)
Reserve data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in writing registry
See Also

CSSM_CL_Uninstall

Page 178 Common Security Services M anager Release 1.2
Application Programming I nterface

5.6.2 CSSM_CL_Uninstall

CSSM_RETURN CSSMAPI CSSM_CL_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the persistent CSSM internal information about the CL module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

Return Value
A CSSM_OK return value signifies that information has been deleted. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in writing registry
See Also

CSSM_CL_Install

Release 1.2 Common Security Services M anager Page 179
Application Programming I nterface

5.6.3 CSSM_CL_ListModules

CSSM_LIST_PTR CSSMAPI CSSM_CL_ListModules (void)

This function returns alist containing the GUID/name pair of each of the currently-installed CL
modules.

Parameters
None

Return Value
A pointer to the CSSM_LIST structure containing a GUID/name pair for each of the CL
modules. If the pointer isNULL, an error has occurred. Use CSSM_GetError to obtain the error

code.
Error Codes
Vaue Description
CSSM_MEMORY_ERROR Error in memory allocation
See Also

CSSM_CL_ListModulesForCertType

Page 180 Common Security Services M anager Release 1.2
Application Programming I nterface

5.6.4 CSSM_CL_ListModulesForCertType

CSSM_LIST_PTR CSSMAPI CSSM_CL _ListM odulesFor CertType
(CSSM_CERT_TY PE CertType)

This function returns alist containing the GUID/name pair of each of the currently-installed CL
modul es which support the specified certificate type.

Parameters
CertType (input)
The certificate type to be compared against in the search for all compatible CLs.

Return Value
A pointer to the CSSM_LIST structure containing the names of CL modules. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_MEMORY_ERROR Error in memory allocation
See Also

CSSM_CL_ListModules

Release 1.2 Common Security Services M anager Page 181
Application Programming I nterface

5.6.5 CSSM_CL_Attach

CSSM_CL_HANDLE CSSMAPI CSSM_CL _Attach
(const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
uint32 Application,
const CSSM_NOTIFY_CALLBACK Notification,
const void * Reserved)

This function attaches the CL module to CSSM. The CL module will test for compatibility with
the version specified. If it is not compatible, it will not successfully attach. The application must
use the MemoryFuncsparameter to specify the pointer to its memory allocation and de-allocation
routines.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CL
module.

CheckCompatibleVer Major(input)
The major version number of the CL module that the application is compatible with.

CheckCompatibleVer Minor(input)
The minor version number of the CL module that the application is compatible with.

MemoryFuncs (input)
A pointer to atable containing pointers to the application’s memory allocation and de-allocation
routines.

Application(input/optional)
Nonce passed to the application when its callback isinvoked allowing the application to
determine the proper context of operation.

Notification (input/optional)

Callback provided by the application that is called by the CL when one of two things takes place:
a parallel operation completes or atoken running in serial mode surrenders control to the
application.

Reserved (input)
A reserved input.

Return Value
A handleisreturned for the CL module. If the handleisNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Page 182 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_ATTACH_FAIL Unable to attach to CL module
See Also

CSSM_CL_Detach

Release 1.2 Common Security Services M anager Page 183
Application Programming I nterface

5.6.6 CSSM_CL_Detach

CSSM_RETURN CSSMAPI CSSM_CL _Detach (CSSM_CL_HANDLE CLHandle)
This function detaches the CL module from CSSM.

Parameters
CLHandle (input)
The handle that describes the CL module.

Return Value
A CSSM_OK return value signifies that the application has been detached from the CL module.
When CSSM_FAIL isreturned, an error has occurred. Use CSSM _GetError to obtain the error

code.
Error Codes
Vaue Description
CSSM_INVALID ADDIN_HANDLE Invalid CL handle
See Also

CSSM_CL_Attach

Page 184 Common Security Services M anager Release 1.2
Application Programming I nterface

5.6.7 CSSM_CL_GetInfo

CSSM_CLINFO_PTR CSSMAPI CSSM_CL _GetInfo (const CSSM_GUID_PTR GUID)
This function returns the information associated with the CL module.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for the CL
module.

Return Value
A pointer to the CSSM _CLINFO structure containing information about the CL module.
If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INVALID_GUID No known CL module with specified GUID
See Also

CSSM_CL_Freelnfo

Release 1.2 Common Security Services M anager Page 185
Application Programming I nterface

5.6.8 CSSM_CL_Freelnfo

CSSM_RETURN CSSMAPI CSSM_CL_Freelnfo (CSSM_CLINFO_PTR CLInfo)

This function frees the memory allocated by CSSM to hold the CSSM _CLINFO structure
returned by the CSSM_CL _Getlnfo function.

Parameters
CLInfo (input)
A pointer to the CSSM_CL Info structure to be freed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_ INVALID _POINTER Invalid pointer
See Also

CSSM_CL_Getlnfo

Page 186 Common Security Services M anager Release 1.2
Application Programming I nterface

5.7 Extensibility Functions

5.7.1 CSSM_CL_PassThrough

CSSM_DATA_PTR CSSMAPI CSSM_CL_CertPassThrough
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughld,
const CSSM_DATA_PTR InputParams)

This function allows applications to call certificate library module-specific operations. Such
operations may include queries or services that are specific to the domain represented by the CL
module.

Parameters
CLHandle (input)
The handle that describes the add-in certificate library module used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

PassThroughld (input)
Anidentifier assigned by the CL module to indicate the exported function to perform.

InputParams (input)

A pointer to the CSSM_DATA structures containing parameters to be interpreted in a function-
specific manner by the requested CL module. This parameter can be used as a pointer to an array
of CSSM_DATA structures.

Return Value
A pointer to the CSSM_DATA structure containing the output from the pass-through function.
The output data must be interpreted by the calling application based on externally available
information. If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the

error code.

Error Codes
Vaue Description
CSSM_CL_INVALID_CL_HANDLE Invalid Certificate Library Handle
CSSM_CL_INVALID_CC HANDLE Invalid Cryptographic Context Handle

CSSM_CL_INVALID_DATA_POINTER Invalid pointer input
CSSM_CL_UNSUPPORTED_OPERATION Add-in does not support this function
CSSM_CL_PASS THROUGH_FAIL Unable to perform pass through

Release 1.2 Common Security Services M anager Page 187
Application Programming I nterface

6. Data Storage Library Services API

6.1 Overview

The primary purpose of a data storage library (DL) module is to provide persistent storage of security-
related objects including certificates, certificate revocation lists (CRLS), keys, and policy objects. A DL
module is responsible for the creation and accessibility of one or more data stores. A single DL module
can be tightly tied to a CL and/or TP module, or can be independent of all other module types. A single
data store can contain a single object type in one format, a single object type in multiple formats, or
multiple object types. The persistent repository can be local or remote (For example, a DL provides client
access to a remote directory/storage service). CSSM stores and manages meta-information about aDL in
the CSSM registry. Thisinformation describes the storage and retrieval capabilities of aDL. Applications
can query the CSSM registry to obtain information about the available DLs and attach to a DL that
provides the needed services. Each DL should store meta-information about each of the data stores it
manages.

The DL APIs define a data storage model that can be implemented using a custom storage device, a
traditional local or remote file system service, a database management system package, or a complete
information management system. The abstract data model defined by the DL APIs partitions all attributes
stored in adatarecord into two general categories: immutable attributes and mutable attributes.

The DL APIs aso support the notion that a DL may not be able to parse/interpret all attributes of a data
object. For example, aDL that stores certificates may not be able to examine fields within those
certificates when performing retrieval operations. In such cases, the APIs allow the caller to specify the
handle of a certificate library module to be invoked to parse field values from the certificate.

The DL APIsdefined in CSSM Release 1.0 included operations that were specific to certificates and
CRLs. These functions are made obsolete by new CSSM Release 1.2 APIsto store and retrieve an
extensible set of security-related data objects. However the obsolete APIs have been retained for backward
compatibility. Developers are encouraged to use the new data object APIs defined in this specification
exclusively.

6.1.1 Data source Operations

CSSM_DB_HANDLE CSSMAPI CSSM_DL _DbOpen () epens a data store with the
specified logical name. Returns a handle to the data store.

CSSM_RETURN CSSMAPI CSSM_DL_DbClose () closes a data store.

CSSM_DB_HANDLE CSSMAPI CSSM_DL_DbCreate () creates a new, empty data store
with the specified logical name, and the specified attribute
schema.

CSSM_RETURN CSSMAPI CSSM_DL _DbDelete () deletes all records from the specified
data store and removes current state information associated
with that data store.

CSSM_RETURN CSSMAPI CSSM_DL _DbImport (9 accepts asinput a filename and a
logical name for a data store. Thefileis an exported copy of
an existing data store. The data records contained in the file
must be in the native format of aDL module. A DL module
imports all security objects in the file (such as certificates and
CRLY5s), creating a new data record for each. The specified
logical nhame is assigned to the new data store. Note: This
mechanism can be used to copy data stores among systems or

Page 188

Common Security Services M anager Release 1.2
Application Programming I nterface

to restore a persistent data store from a backup copy. It could
also be used to import data stores that were created and
managed by other DLs, but thisis not the typical
implementation and use of this interface.

CSSM_RETURN CSSMAPI CSSM_DL _DbExport (9 accepts as input the logical name of a

data store and the name of atarget output file. The specified
data store contains persistent data records. A representation
of the schema for the data store being exported is written to
the file along with a copy of each datarecord in the data
store. Note: This mechanism can be used to copy data stores
among systems or to create a backup of persistent data stores.

CSSM_DBINFO_PTR CSSMAPI CSSM_DL _DbGetInfo () CSSM returns a

CSSM_DBINFO structure describing the Datasource meta
datalike DbType, Dbrecord type etc.

CSSM_RETURN CSSMAPI DL_ CSSM_DbSetInfo (J stores the Data source-specific meta

data information.

CSSM_RETURN CSSMAPI CSSM_DL _FreeDblnfo (J frees the memory structure returned

by the CSSM_DL_DbGetInfo function.

CSSM_NAME_LIST_PTR CSSMAPI CSSM_DL_GetDbHandleT oName(yetrieves the

data source corresponding to an opened database handle. A
DL module is responsible for allocating the memory required
for the list.

6.1.2 Generic Data Storage Operations
CSSM_RETURN CSSMAPI CSSM_DL _Datalnsert () accepts as input a data object, the

record type of the object, a handle to a data store, and an
optional handle to a module that can parse un-crackable
attribute fields of .object using GetFirstField operations. The
data object is made persistent in the specified data store. This
may or may not include the creation of index entries, etc.

The mechanisms used to store and retrieve persistent
certificates is private to the implementation of the Data
Storage Library.

CSSM_RETURN CSSMAPI CSSM_DL _DataDelete () accepts as input a data object, the

record type of the object, and a handle to a data store. The
object is removed from the data store. If the object is not
found in the specified data store, the operation fails.

CSSM_DATA_PTR CSSMAPI CSSM_DL _DataGetFirst (9 accepts as input a selection

predicate, the type of data record to be retrieved, and a handle
to adata store. The specified data store is searched for data
objects of the specified type that match the selection criteria.
Selection predicates are represented in one or two forms: a
predicate string (For example, a string that is appropriate as a
whereclausein an SQL statement), or as a set of (name,
value, relational operator) triples that are connected by a
conjunctive operator. The conjunctive operators are Boolean-
and and Boolean-or. The relational operators include greater-
than, less-than, equal-to, and not-equal-to. This function
returns a count of the total number of data objects matching
the selection criteria, the first data object matching the
criteria, and a selection handle that may be used to retrieve

Release 1.2

Common Security Services M anager Page 189
Application Programming I nterface

the subsequent objects matched in the search. A data storage
library may limit the number of concurrently managed
selection handles to exactly one. The library developer must
document all such restrictions and application developers
should proceed accordingly.

CSSM_DATA_PTR CSSMAPI CSSM_DL _DataGetNext (9 accepts as input the type of the

record to be returned and a selection results handle that was
returned by an invocation of the function
CSSM_DL_DataGetFirst (). Inresponse, a DL module
returns the next data record from the set specified by the
selection results handle. If all data records have already been
returned from the set specified by the selection handle, then
the function returnsa NULL datarecord. A data storage
library may limit the number of concurrently-managed
selection result handles to exactly one. The library developer
must document such restrictions, and application developers
should proceed accordingly.

CSSM_RETURN CSSMAPI CSSM_DL _DataAbortQuery () ecancels the query initiated

by CSSM_DL_DataGetFirst function and resets the selection
results handle.

6.1.3 Certificate Storage Operations - included for backward compatibility with CSSM 1.0
CSSM_RETURN CSSMAPI CSSM_DL _CertRevoke () accepts as input a certificate to be

revoked and a handle to a data store. The knowledge that the
certificate has been revoked is made persistent. The
representation of this information and the mechanism for
creating and managing therepresentation of revocationis
private to the implementation of the Data Storage Library.

CSSM_RETURN CSSMAPI CSSM_DL _Certlnsert () accepts as input a certificate, and

optional handle to a certificate library module (which may be
used to parse the certificate), and a handle to a data store.

The certificate is made persistent in the specified data store.
This may or may not include the creation of index entries, etc.
The mechanisms used to store and retrieve persistent
certificates is private to the implementation of the Data
Storage Library.

CSSM_RETURN CSSMAPI CSSM_DL _CertDelete () accepts asinput a certificate and a

handle to a data store. The certificate is removed from the
data store. If the certificate is not found in the specified data
store, the operation fails.

CSSM_DATA_PTR CSSMAPI CSSM_DL _CertGetFirst (9 accepts as input a set of

relational expressions, a single conjunctive operator, and a
handle to a data store. The specified data store is searched for
certificates that match the selection criteria. The selection
criteriais the expression formed by connecting all of the
relational expressions using the one conjunctive operator.
The conjunctive operators are Boolean-and and Boolean-or.
The relational operators include greater-than, less-than,
equal-to, and not-equal-to. This function returns a count of
the total number of certificates matching the selection

criteria, the first certificate matching the criteria, and a

Page 190

Common Security Services M anager Release 1.2
Application Programming I nterface

selection handle that may be used to retrieve the subsequent
certificates matching the selection criteria. A data storage
library may limit the number of concurrently-managed
selection handles to exactly one. The library developer must
document such restrictions and application developers should
be aware of such restrictions.

CSSM_DATA_PTR CSSMAPI CSSM_DL _CertGetNext (9 accepts as input a selection

handle that was returned by an invocation of the function
CSSM_DL_CertGetFirst (). Inresponse, aDL module
returns the next certificate from the set specified by the
selection handle. If all certificates have already been returned
from the set specified by selection handle, then the function
returnsa NULL certificate. A data storage library may limit
the number of concurrently-managed selection handles to
exactly one. The library developer must document such
restrictions, and application developers should be aware of
such restrictions.

CSSM_RETURN CSSMAPI CSSM_DL _CertAbortQuery () eancels the query initiated

by CSSM_DL_CertGetFirst function and resets the selection
handle.

6.1.4 CRL Storage Operations - included for backward-compatibility with CSSM 1.0
CSSM_RETURN CSSMAPI CSSM_DL _Crlinsert () accepts asinput a CRL record and the

handle of a data store of CRL records. The new record is
made persistent in the data store of CRL records. This may
or may not include the creation of index entries, etc. The
mechanisms used to store and retrieve persistent CRL records
is private to the implementation of the data storage library.

CSSM_RETURN CSSMAPI CSSM_DL_CrlIDelete () accepts as input a CRL record and the

handle of a data store of CRL records. The single record is
removed from the data store. If the record is not found in the
specified data store, the operation fails.

CSSM_DATA_PTR CSSMAPI CSSM_DL _CrlGetFirst (J accepts as input a set of

relational expressions, a single conjunctive operator, and a
handle to a data store. The specified data store is searched for
CRL records that match the selection criteria. The selection
criteriais the expression formed by connecting all of the
relational expressions using the one conjunctive operator.
The conjunctive operators are Boolean-and and Boolean-or.
The relational operators include greater-than, less-than,
equal-to, and not-equal-to. This function returns a count of
the total number of CRL records matching the selection
criteria, the first CRL record matching the criteria, and a
selection handle that may be used to retrieve the subsequent
CRL records matching the selection criteria. A data storage
library may limit the number of concurrently-managed
selection handles to exactly one. The library developer must
document such restrictions and application developers should
be aware of such restrictions.

CSSM_DATA_PTR CSSMAPI CSSM_DL _CrlGetNext () accepts as input a selection

handle that was returned by an invocation of the function
CSSM_DL_CrlGetFirst (). Inresponse, a DL module returns

Release 1.2

Common Security Services M anager Page 191
Application Programming I nterface

the next CRL record from the set specified by the selection
handle. If all CRL records have aready been returned from
the set specified by selection handle, then the function returns
aNULL CRL pointer. A datastorage library may limit the
number of concurrently-managed selection handles to exactly
one. Thelibrary developer must document such restrictions
and application developers should be aware of such
restrictions.

CSSM_RETURN CSSMAPI CSSM_DL _CrlAbortQuery () eancels the query initiated by

the DL_CrlGetFirst function and resets the selection handle.

6.1.5 Module Management Functions
CSSM_RETURN CSSMAPI CSSM_DL _Install () accepts as input the name and GUID of a

DL module, selected attributes describing the module, and
information required by CSSM to dynamically load the
module if its use is requested by some application. The
storage capabilities of some storage devices and
implementations can not be fully determined until execution
time. DLs using such devices must register all known, static
capability information at install time. Incremental capability
information can be added to the registry when a caller
attaches to the module or at any time during the use of the
module at install time. CSSM adds a DL module name and
attributes to the registry of DL modules.

CSSM_RETURN CSSMAPI CSSM_DL _Uninstall () CSSM removes a specified DL module

from the registry.

CSSM_DLINFO_PTR CSSMAPI CSSM_DL_GetInfo () CSSM returns a structure

describing the identity and storage capabilities of aDL, asit

is currently recorded in a CSSM registry. Multiple capability
structures are returned if the DL manages multiple storage
mediums (such as two custom hardware storage devices). The
storage capabilities of certain types of devices are not known
at install time. The caller can specify if such incomplete
capahility descriptions should or should not be included in the
returned information.

CSSM_RETURN CSSMAPI CSSM_DL _Freelnfo () frees the memory structure CSSM

allocated to hold the module-descriptive information returned
by the CSSM_DL _GetlInfo function. Multiple structures can
be freed if multiple structures were returned by the
DL_Getlnfo function.

CSSM_LIST_PTR CSSMAPI CSSM_DL_ListModules () CSSM returns alist of al

currently-registered DL modules.

CSSM_DL_HANDLE CSSMAPI CSSM_DL _Attach (j accepts asinput the GUID of aDL

modul e, the major and minor version number desired by the
caller, and an optional devicelD and device access flags for
special storage devices. The caller is requesting a dynamic
load of the specified DL module, if the available version of a
DL module is compatible with the version level specified by
the caller. The caller may be an application, a TP module, a
CL module, or another DL module.

Page 192 Common Security Services M anager Release 1.2
Application Programming I nterface

CSSM_RETURN CSSMAPI CSSM_DL _Detach () the caller is requesting the dynamic
unload of a specified DL module.

CSSM_NAME_LIST_PTR CSSMAPI CSSM_DL _GetDbNames (-)the specified DL module
returns a memory-resident list of the logical data store names
that this module can access and a count of the number of
logical namesin that list. A DL moduleis responsible for
allocating the memory required for the list.

CSSM_RETURN CSSMAPI CSSM_DL _FreeNameL ist (Jfreesthe list returned by
DL_GetDbNames function.

6.1.6 Extensibility Functions

CSSM_DATA_PTR CSSMAPI CSSM_DL _PassT hrough (-)accepts as input an operation D
and a set of arbitrary input parameters. The operation ID
may specify any type of operation a DL wishes to export for
use by an application or by another module. Such operations
may include queries or services that are specific to certain
types of certificates, or to the relationships between the
certificates and CRLs manipulated by a DL module.

Release 1.2 Common Security Services M anager Page 193
Application Programming I nterface

6.2 Data storage Data Structures

t ypedef uint32 CSSM DL_HANDLE /* data storage library Handl e */

t ypedef ui nt32 CSSM DB _HANDLE /* Data storage Handl e */

t ypedef uint32 CSSM MODULE HANDLE, *CSSM MCDULE HANDLE PTR /* Servi ce provi der
Handl e*/

6.2.1 CSSM_DB_LONGHANDLE

A pair consisting of data library nodul e handl e and dat abase handl e.

typedef struct {
CSSM DL_HANDLE DLHandl e;
CSSM DB HANDLE DBHandl e;
} CSSM DB _LONGHANDLE, *CSSM DB LONGHANDLE PTR,

6.2.2 CSSM_DB_LIST

Thislist pairs a data store with a data storage library Module that can be used to manage that data store.
Thelist is often used to provide other modules with the set of handles required to search an application-
selected data store.

typedef struct {

ui nt 32 NuntHandl es;

CSSM DB _LONGHANDLE _PTR DBLongHandl €;
} CSSM DB LI'ST, *CSSM DB LI ST PTR

Definition:
NumHandles- Number of database sources in the list.

DBLongHandl e - List of data library modul e/database pairs.

6.2.3 CSSM_DB_TYPE

Thisistheinitial enumeration of semantic, user-defined data store types. Each data store can have an
associated, semantic type defined by the user/creator of the data store. New types should be added as
required to describe key databases and policy object databases, anong others.

t ypedef enum {
CSSM DB _TAG NONE=OL,
CSSM DB_TAG_ROOTS, /* contains self-signed root certs */
CSSM DB_TAG _TRUSTED, /* re-issued locally (DL nmust protect?) */
CSSM DB_TAG_SYSTEM /* contains CSSM systemcerts */
CSSM DB_TAG_ OMER /* certs owned by users (ie private key in CSP) */
CSSM DB TAG REVMCKED /* contains revocation info - used with CRL APIs */
/* others? */

} CSSM DB TYPE;

Page 194 Common Security Services M anager Release 1.2
Application Programming I nterface

6.2.4 CSSM_DATA_RECORD_TYPE

These are data record types that may be stored and managed by data storage library modules. New types
can be added to this list. Storage modules may store and manage multiple typesin a single data store or in
separate data stores.

typedef enum cssmdata record_type {

CSSM DATA RECCRD_ANY, /* lib can store and manage any obj ects*/
CSSM DATA RECCRD _CERTS, /* lib can store & manage certs */

CSSM DATA RECCRD CRLS, /* lib can store & manage CRLS */

CSSM DATA RECCRD _KEYS, /* lib can store & manage keys */

CSSM DATA RECCRD PQLI A ES, /* lib can store & manage policies */
CSSM DATA RECCRD GENERI C /* lib can store & manage generic data */

} CSSM DATA RECORD TYPE, *CSSM DATA RECCRD TYPE PTR

6.2.5 CSSM_DB_ATTRIBUTE_USAGE

These are the ways in which an attribute of a data store record can be treated by the data storage library
module. The current options include indexed attributes and non-indexed attributes. Indexes may be one-
to-many (which is aregular index), or one-to-one (which is a unique index). Any given DL may or may
not support all attribute usages.

typedef enum cssm_db_attribute usage {
CSSM DB_| NDEX,
CSSM DB_UN QUE_| NDEX,
CSSM DB_NON_| NDEX
} CSSM DB ATTR BUTE_USAGE, *CSSM DB_ATTRI BUTE_USAGE PTR

6.2.6 CSSM_ATTRIBUTE_ID_FORMAT

These are the distinct representations for an attribute identifier. An attribute field of a data record may be
identified by an OID value or an attribute name.

typedef enumcssmattribute_id_format {
CSSM O D_NAME_FCRVAT,
CSSM STRI NG NAMVE_FORVAT
} CSSM ATTRI BUTE_| D FORMAT, *CSSM ATTR BUTE_| D_FCRVAT_PTR

6.2.7 CSSM_ATTRIBUTE_NAME

This structure defines an attribute name that can be used to reference an attribute field of a data store
record when selecting records from the data store or when creating a new data store.

typedef struct cssmattribute_nanme {
CSSM ATTR BUTE | D FORVAT Attri but el dFor nat ;
CSSM DATA Attri butel d;

} CSSM ATTR BUTE_NAME, *CSSM ATTRI BUTE_NAME_PTR

Definition:
AttributeldFormat- Indicates the format of the attribute identifier in theAttributel d.

Attributeld - An identifier that uniquely identifies an attribute field contained in data store records.
The format of the identifier is specified by théttributel dFor mat

Release 1.2 Common Security Services M anager Page 195
Application Programming I nterface

6.2.8 CSSM_DB_ATTRIBUTE_INFO
These are the semantic types of data stores that can be managed by a data storage library module.

typedef struct {
CSSM DB_ATTRI BUTE_NAME At tri but eNane;
CSSM DB_ATTRI BUTE_USAGE Attri but eUsage;
} CSSM DB ATTR BUTE | NFO, CSSM ATTR BUTE | NFO PTR

Definition:
AttributeName- Name of an attribute field of a data store record.

AttributeUsage- Indicates how this attribute can or should be managed by the data storage library
module.

6.2.9 CSSM_DB_RECORD_INFO

This structure defines the meta-information about an individual record type in asingle data store. This
information is maintained by the data storage library module for each data store it manages.

typedef struct {

CSSM _DATA RECCRD TYPE Dat aRecor dType;

ui nt 32 Nunber X Attri but es;

CSSM DB_ATTRI BUTE_| NFO PTR At tri but el nf o;
} CSSM DB REQORD | NFO, *CSSM DB_RECCRD | NFO PTR,

Definition:
DataRecordType- A type of datarecord stored in this data store.

Number OfAttributes- The number of directly or indirectly named attributes for this record type.

Attributelnfo- A pointer to an array of structures describing each attribute for this record type. Each
structure provides a name for the attribute, and a usage mode for the attribute. Usage modes include
indexed attributes and non-indexed attributes. An index may be one-to-many or one-to-one with the
data store records. The array containsNumber OfAttributesentries.

6.2.10 CSSM_DBINFO

This structure defines all meta-information about an individual data store. Thisinformation is
maintained by the data storage library module for each data store it manages.

typedef struct {
CSSM DB _TYPE DbType;
ui nt 32 Nunber O Recor dTypes;
CSSM DB_RECORD | NFO_PTR Recor dl nf o;
voi d *reserved;
} CSSM DBINFO, *CSSM DBI NFO PTR

Page 196 Common Security Services M anager Release 1.2
Application Programming I nterface

Definition:
DbType- Indicates the user-defined semantic type of the records stored in this data store. Typically
this indicates how applications should use the records in this data store.

Number OfRecordTypes-The number of distinct record type (formats) stored in this data store.

Recordinfo- A pointer to an array of structures describing the attribute format of each record type
stored in this data store. The array containdNumber OfRecordTypesentries.

Reservedl - Reserved for future use.

6.2.11 CSSM_DB_CONJUNCTIVE
These are the conjunctive operations which can be used when specifying a selection criterion.

t ypedef enum cssm db_conj uncti ve{
CSSM_NONE
CSSM AND,
CSSM CR

} CSSM DB_CONJUNCTI VE

6.2.12 CSSM_DB_OPERATOR
These are the logical operators which can be used when specifying a selection predicate.

t ypedef enum cssm db_operator {
CSSM EQUAL,
CSSM NOT_EQUAL,
CSSM LESS THAN,
CSSM GREATER THAN
} CSSM DB _CPERATCR

6.2.13 CSSM_ QUERY_TAG

This tag decides whether the data object retrieval is based on query string or selection predicates.
typedef enum cssmtag_query {

CSSM QUERY_NONE,

CSSM QUERY_STR NG

CSSM QUERY_PREDI CATES
} CSSM QUERY_TAG

6.2.14 CSSM_SELECTION_PREDICATE
This structure defines the selection predicate to be used for database queries.

typedef struct cssmsel ection_predicate {
CSSM DB_CPERATCR dbQper at or
CSSM ATTR BUTE_NAME Attri but eNane;
CSSM DATA At tri but eval ue;
} CSSM SELECTI ON_PREDI CATE, *CSSM SELECTI ON_PREDI CATE_PTR

Definition:
dbOperator - The relational operator to be used when comparing the value contained in
AttributeValueto values contained in the data store.

Release 1.2 Common Security Services M anager Page 197
Application Programming I nterface

AttributeName- The name of an attribute in a data store record. This attribute is a target for
comparison when selecting records from the data store.

AttributeValue- The value used in comparisons with values stored in théttributeNamefield of data
store records. If noAttributeNameis specified, then theAttributeValuecan be a selection predicate of
any format supported by the data storage library module.

6.2.15 CSSM_QUERY_PREDICATE
This structure defines the Query predicate to be used for database queries.

typedef struct cssmquery_predicate {

CSSM DB_CONJUNCTI VE Conj uncti ve;

ui nt 32 NunBel ecti onPr edi cat es;

CSSM _SELECTI ON_PREDI CATE_PTR Sel ect i onPr edi cat e;
} CSSM QUERY_PREDI CATE, *CSSM QUERY_PREDI CATE PTR

Definition:
Conjunctive- Indicates the conjunctive to be used to join the predicates.

NumSel ectionPredicates- Number of election predicates in the query.

SelectionPredicate- Pointer to the array of selection predicates.

6.2.16 CSSM_QUERY

Thisunion contains the array of selection predicates and a CSSM_DATA_PTR.
Depending on the CSSM_QUERY _TAG, one of these has to be selected..

typedef union cssmquery {

CSSM DATA QueryString;

CSSM QUERY_P REDI CATE_PTR Quer yPr edi cat €;
} CSSM QUERY, *CSSM QUERY_PTR

Definition:
QueryString- Pointer to query string.

QueryPredicate- Query predicate pointer which points to an array of selection predicates.

6.2.17 CSSM_INDEX_ RECORD
This structure defines the index values to be inserted or deleted.

typedef struct cssm.index_record {
CSSM ATTR BUTE_NAME | ndexNarre;
CSSM DATA | ndexVal ue;
} CSSM | NDEX_RECCRD, *CSSM | NDEX_RECCRD PTR

Page 198 Common Security Services M anager Release 1.2
Application Programming I nterface

Definition:
IndexName- The name of an attribute in a data store record. This attribute is a target for comparison

when selecting records from the data store.

IndexValue- The value used in comparisons with values stored in théndexNamefield of data store
records. If nolndexNameis specified, then thelndexValuecan be any format supported by the data
storage library module.

Release 1.2

Common Security Services M anager

Application Programming I nterface

6.2.18 CSSM_DL_MODULE_TYPE

These are the module implementation types for data storage library modules.

typedef uint32 CSSM_DL_MODULE_TY PE

#def i ne CSSM STORE_LOCAL_MEMORY 0x00000001
#def i ne CSSM STORE LOCAL_FILE 0x00000002
#def i ne CSSM STORE LOCAL_DBMS 0x00000004

#def i ne CSSM STORE_REMOTE DBMB 0x00000008

#def i ne CSSM STORE REMOTE DR~ 0x00000010
#def i ne CSSM STORE_TCKEN 0x00000020
#def i ne CSSM STORE_ REMOVEABLE ~ 0x00000040

renovabl e

#def i ne CSSM STCRE_UNSPECI FI ED 0x00000080

6.2.19 CSSM_DL_ACCESS_TYPE

#def i ne CSSM DL_STCRE_ACCESS_SER AL
#def i ne CSSM DL_STCRE_ACCESS_EXCLUSI VE

6.2.20 CSSM_DL_INFO

/* inplenentation uses a | ocal
nenory cache */

/* inplenent. uses a file system
service */

/* inplenentation uses a | ocal
DBVB */

/* inplenentation uses a renote
DBMVB */

/* inplenentation uses a renote
directory service */

/* inplenentation uses a

har dwar e t oken */

/* inplenentati on uses a

store device */
/* inplenentation is unspecified
*/

CSSM CSP_SESSI ON_SER! AL
CSSM CSP_SESSI ON_EXCLUSI VE

This structure contains all of the static data associated with a data storage library add-in module. This
information is added to the CSSM registry at install time. It can be queried using the command

CSSM_DL_GetInfo ()

typedef struct cssmdlinfo{
ui nt 32 Ver Myj or;
ui nt 32 Ver M nor;
CSSM DL_MDULE TYPE DLModul eType;
ui nt 32 Devi cel D
CSSM BOOL Capabilitieslnitialized;
ui nt 32 Devi ceAccessFl ags;
CSSM DATA Excl usi veDLMCer ti fi cat e;
CSSM BOOL Logi nRequi r ed;
ui nt 32 Nunber O Recor dTypes;

CSSM DATA RECCRD TYPE_PTR Dat aRecor dTypes;

ui nt 32 Nunber O At t ri but eUsageTypes;

CSSM DB_ATTRI BUTE_USACGE PTR At tri but eUsageTypes;

ui nt 32 Nunber & At tri but el dFor mat s;

CSSM ATTR BUTE_| D FORVAT_PTR Attri but el dFor nat s;

ui nt 32 Nunber O Rel Qper at or Types;
CSSM DB_CPERATCR _PTR Rel Qper at or Types;
ui nt 32 Nunber O Gonj Qper at or Types;

CSSM DB_CONJUNCTI VE_PTR Conj Qper at or Types;

CSSM DATA PTR Reser ved1;
}CSSM DLI NFQ, *CSSM DLI NFO PTR

Definition:

Page 199

Page 200 Common Security Services M anager Release 1.2
Application Programming I nterface

VerMajor - The major version number of the add-in module.

VerMinor - The minor version number of the add-in module.

DLModuleType- Indicates the underlying implementation approach for this library module.
DevicelD - The ID of a hardware storage device managed by this data storage library module.

Capabilitieslnitialized- True or false, indicating whether complete capabilities are currently specified
in this DLinfo structure.

DeviceAccessFlags- A bitmask of the device access modes supported by this library module.

ExclusiveDLMCertificate- The certificate used to sign certificates issued to exclusive users of this
data storage library module.

LoginRequired- True or false, indicating whether a DL requires caller login and logout.

Number OfRecordTypes- The number of distinct data record types that can be stored and managed by
this library module in one or more data stores.

DataRecordTypes- An array listing the data record types that can be stored and managed by this
library module in one or more data stores. The array containdlumber OfRecordTypesentries.

Number OfAttributeUsageTypes The number of distinct attribute usages supported by a DL.

AttributeUsageTypes- An array listing the attribute usages supported by the data storage library when
defining the schema for a new data store. Currently-defined usages include: indexed attribute, unique-
index attribute, and non-indexed attribute. The array containdNumber OfAttributeUsageTypesentries.

Number OfAttributeldFormats The number of distinct attribute identification formats that are
supported by this data storage library module.

AttributeldFormats- An array listing the formats accepted by the data storage library to identify
record fields in a selection query. Currently-defined usages include: OlD-name format and string-
name format. The array containsNumber OfAttributel dFor matsentries.

Number OfRel Operator Types The number of distinct binary relational operators supported by this
library module.

RelOperator Types- An array listing the relational operators supported by this library module for
defining selection predicates for retrieving stored data objects. The array contains
Number OfRel Oper ator Typesentries.

Number OfConjOperator Types The number of distinct conjunctive operators supported by this
library module.

ConjOperator Types- An array listing the conjunctive operators supported by this library module for
defining selection predicates for retrieving stored data objects. The array contains
Number OfConjOper ator Typesentries.

Reservedl - Reserved for future use.

Release 1.2 Common Security Services M anager Page 201
Application Programming I nterface

6.3 Data storage Data Structures

6.3.1 CSSM_DL_DbOpen

CSSM_DB_HANDLE CSSMAPI CSSM_DL_DbOpen (CSSM_DL_HANDLE DLHandle,
const char * DbName)

This function opens the data store with the specified logical name.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbName (input)
A pointer to the string containing the logical name of the data store.

Return Value
Returns the CSSM_DB_HANDLE of the opened data store. If the handleis NULL, an error has
occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_DATASTORE_NOT_EXISTS The data store with the logical name does not exist
CSSM_DL_DB_OPEN_FAIL Open caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_DbClose.

Page 202 Common Security Services M anager Release 1.2
Application Programming I nterface

6.3.2 CSSM_DL_DbClose

CSSM_RETURN CSSMAPI CSSM_DL_DbClose (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle)

This function closes an open data store.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_DB_CLOSE FAIL Close caused an exception
See Also

CSSM_DL_DbOpen.

Release 1.2 Common Security Services M anager Page 203
Application Programming I nterface

6.3.3 CSSM_DL_DbCreate

CSSM_DB HANDLE CSSMAPI CSSM_DL_DbCreate
(CSSM_DL_HANDLE DLHandle,
CSSM_TP_HANDLE TPHandle,
const char * DbName,
CSSM_MODULE_HANDLE_PTR ModuleHandles,
CSSM_DBINFO_PTR DataStoreSchema)

This function creates and opens a new data store. The name of the new data store is specified by
the input parameter DbName. The record schema for the data store is specified in the DBINFO
structure.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

TPHandle (input)
The handle that describes the module to be used to determine the semantic, user-defined type to
be associated with the new data store.

DbName (input)
The general, external name for the new data store.

ModuleHandles (input)

An array of handles, one per record type to be stored in this data store. Each handle describes a
service provider module that can be invoked to indirectly access values contained in records that
will be stored in this new data store. The array must contain
DataStoreSchema.Number OfRecor dTypegntries. Handles corresponding to attributes named by
user-defined strings rather than by library-processed OIDs are ignored.

DataStoreSchema (input)
A pointer to a structure describing the format/schema of each record type that will be stored in
the new data store.

Return Value
A handle to the newly created, open data store. When NULL is returned, an error has occurred.
Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CSP_HANDLE Invalid Cryptographic Service Provider handle
CSSM_DL_INVALID_TP_HANDLE Invalid Trust Policy Module handle
CSSM_DL_INVALID_MODULE_HANDLE Invalid Module handle for accessing the data record
CSSM_DL_INVALID_DATA_PTR Invalid data pointer
CSSM_DL_DB_CREATE_FAIL Create caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_DbOpen, CSSM_DL_DbClose, CSSM_DL_DbDelete.

Page 204 Common Security Services M anager Release 1.2
Application Programming I nterface

6.3.4 CSSM_DL_DbDelete

CSSM_RETURN CSSMAPI CSSM_DL_DbDelete (CSSM_DL_HANDLE DLHandle,
const char * DbName)

This function deletes all records from the specified data store and removes all state information
associated with that data store.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbName (input)
A pointer to the string containing the logical name of the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_DB _DELETE_FAIL Delete caused an exception
See Also

CSSM_DL_DbCreate, CSSM_DL_DhbOpen, CSSM_DL_DbClose.

Release 1.2 Common Security Services M anager Page 205
Application Programming I nterface

6.3.5 CSSM_DL_Dblimport

CSSM_RETURN CSSMAPI CSSM_DL_Dblmport (CSSM_DL_HANDLE DLHandle,
const char * DbDestL ogicalName,
const char * DbSrcFileName)

This function imports data store records from afile into a new data store.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbDestLogicalName (input)
The name of the destination data store in which to insert the records.

DbSrcFileName(input)
The name of the source file from which to obtain the records that are added to the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_PTR NULL source or destination file names
CSSM_DL_DB_IMPORT_FAIL DB exception doing import function
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_DbExport.

Page 206 Common Security Services M anager Release 1.2
Application Programming I nterface

6.3.6 CSSM_DL_DbExport

CSSM_RETURN CSSMAPI CSSM_DL_DbExport (CSSM_DL_HANDLE DLHandle,
const char * DbSrcL ogicalName,
const char * DbDestFileName)

This function exports a copy of the data store records from the source data store to afile.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbSrcLogical Name (input)
The name of the data store from which the records are to be exported.

DbDestFileName(input)
The name of the destination file which will contain a copy of the source data store’ s records.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_PTR NULL source or destination file names
CSSM_DL_DB_EXPORT_FAIL DB exception doing export function
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_DbImport.

Release 1.2 Common Security Services M anager Page 207
Application Programming I nterface

6.3.7 CSSM_DL_DbSetInfo

CSSM_RETURN CSSMAPI CSSM_DL_DbSetInfo (CSSM_DL_HANDLE DLHandle,
const char* DbName,
CSSM_DBINFO_PTR Dbinfo)

This function sets information describing the datasource.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DbName(input)
A pointer to the string containing the data source name.

Dblnfo
A pointer to CSSM_DBINFO structure.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Unable to write to registry
CSSM_ INVALID_BINFO_POINTER Invalid CSSM_DBINFO pointer
See Also

CSSM_DL_Getinfo, CSSM_DL_FreeDblnfo.

Page 208 Common Security Services M anager Release 1.2
Application Programming I nterface

6.3.8 CSSM_DL_DbGetInfo

CSSM_DBINFO_PTR CSSMAPI CSSM_DL_DbGetInfo (CSSM_DL_HANDLE DLHandle,
const char* DbName)

This function returns information describing a DL module and its capabilities.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DbName(input)
A pointer to the string containing the data source name.

Return Value
A pointer to an array of one or more CSSM_DLINFO structures containing information about a
DL module. Thereis one Dlinfo structure for each distinct hardware storage device managed by
thisDL. Most DLs manage only one device. If the pointer isNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
See Also

CSSM_DL_DbSetinfo, CSSM_DL_DbFreeDblnfo.

Release 1.2 Common Security Services M anager Page 209
Application Programming I nterface

6.3.9 CSSM DL _FreeDblinfo

CSSM_RETURN CSSMAPI CSSM_DL_FreeDblnfo (CSSM_DBNFO_PTR Dbinfo,
uint32 NumberOfDblnfos)

This function frees the memory allocated by a DL module for the CSSM_DLINFO structure
returned by the CSSM_DL_ GetlInfo function.

Parameters
DLInfo (input)
A pointer to CSSM_DL _Info structure.

number OfInfos (input)
The number of DL Info structures to be freed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Vaue Description

CSSM__INVALID DLINFO_POINTER Invalid CSSM_DLINFO pointer
See Also

CSSM_DL_DbGetInfo.

Page 210 Common Security Services M anager Release 1.2
Application Programming I nterface

6.3.10 CSSM_DL_GetDbHandleToName

CSSM_NAME_LIST_PTR CSSMAPI CSSM_DL_GetDbHandleToName
(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DbHandle)

This functionretrieves the data source name corresponding to an opened database handle. A DL
module is responsible for allocating the memory required for the list.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbHandle (input)
The handle to an opened database.

Return Value
Returns a pointer to aCSSM_NAME_LIST structure which contains alist of data store names.
If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_MEMORY_ERROR Error allocating memory
CSSM_DL_INVALID_DB_HANDLE Invalid DB Handle
CSSM_DL_INVALID_DL_HANDLE Invalid DL Handle

See Also

CSSM_DL_FreeNameList.

Release 1.2 Common Security Services M anager Page211
Application Programming I nterface

6.4 Generic Security Object Storage Operations

6.4.1 CSSM_DL_Datalnsert

CSSM_RETURN CSSMAPI CSSM_DL _Datalnsert
(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_MODULE_HANDLE_PTR ModuleHandles,
CSSM_DATA_RECORD_TY PE DataRecordType,
CSSM_INDEX_RECORD_PTR IndexRecord,
const CSSM_DATA_PTR DataRecord)

This function makes the DataRecord persistent by inserting it into the specified data store. The
DataRecord contains two logically distinct sets of data values: immutable values and update-able
values. The ModuleHandle specifies the library a DL should use to access sub-fields of the data
record as required during the add process.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

ModuleHandles (input/optional)

An array of handles, one per record type to be stored in this data store. Each handle describes a
service provider module that can be invoked to indirectly access values contained in records that
will be stored in this new data store. The array must contain
DataStoreSchema.Number OfRecor dTypegntries. Handles corresponding to attributes named by
user-defined strings rather than by library-processed OIDs are ignored.

DataRecordType (input)
Indicates the type of datarecord being added to the data store. The value cannot be
CSSM_DATA_RECORD_ANY.

IndexRecord (input/Optional)
Indicates the values for the meta data for the record if module handle is NULL

DataRecord (input)
A pointer to the CSSM_DATA structure which contains the data to be added to the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID DL _HANDLE Invalid data storage library handle
CSSM_DL_INVALID_DB_HANDLE Invalid Data Store handle

CSSM_DL_INVALID_MODULE_HANDLE Invalid Module handle for accessing the data record

Page 212 Common Security Services M anager Release 1.2
Application Programming I nterface

CSSM_DL_INVALID_DATA_PTR Invalid data pointer
CSSM_DL_DATA_INSERT _FAIL Add caused an exception

See Also
CSSM_DL_DataDelete.

Release 1.2 Common Security Services M anager Page 213
Application Programming I nterface

6.4.2 CSSM_DL_DataDelete

CSSM_RETURN CSSMAPI CSSM_DL _DataDelete
(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_MODULE_HANDLE_PTR ModuleHandles,
CSSM_DATA_RECORD_TY PE DataRecordType,
CSSM_INDEX_RECORD_PTR IndexRecord,
const CSSM_DATA_PTR DataRecord)

This function removes the DataRecord of the specified DataRecordType from the specified data
store.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

ModuleHandles (input/Optional)

An array of handles, one per record type to be stored in this data store. Each handle describes a
service provider module that can be invoked to indirectly access values contained in records that
will be stored in this new data store. The array must contain
DataStoreSchema.Number OfRecor dTypegntries. Handles corresponding to attributes named by
user-defined strings rather than by library-processed OIDs are ignored.

DataRecordType (input)
Indicates the type of datarecord being deleted from the data store.

IndexRecord (input/Optional)
Indicates the values for the meta data for the record if module handle is NULL

DataRecord (input)
A pointer to the CSSM_DATA structure which contains the data to be deleted from the data
store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID DL _HANDLE Invalid data storage library handle

CSSM_DL_INVALID_DATA_PTR Invalid data pointer

Page 214 Common Security Services M anager
Application Programming I nterface

Release 1.2

CSSM_DL_INVALID_DB_HANDLE Invalid Data Storage handle

CSSM_DL_DATA_NOT_IN_DB Data record not in Data Store

CSSM_DL_DATA_DELETE FAIL Delete caused an exception
See Also

CSSM_DL_Datal nsert.

Release 1.2 Common Security Services M anager Page 215
Application Programming I nterface

6.4.3 CSSM_DL_DataGetFirst

CSSM_DATA_PTR CSSMAPI CSSM_DL _DataGetFirst

(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_DATA_RECORD_TY PE DataRecordType,
CSSM_QUERY _TAG QueryTag,
CSSM_QUERY _PTR Query,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOf M atchedDataRecords)

This function retrieves the first object in the data store that matches the selection criteria. The
selection criteriais expressed in one of two ways: a predicate formed from a set of triples (OID,
value, relational operator) connected by a single conjunctive operator, or a single string whose
required substructure and semantics are defined by the implementing module. This function
returns a count of the total number of objects matching the selection criteria, the first object
matching the criteria, and a selection handle that may be used to retrieve the subsequent objects
matching the selection criteria.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

DataRecordType (input)
A type of datarecordsto be searched by this query.

QueryTag (input/Optional)
Indicates whether a Query string or an array of seletion predicates is used for the query.

Query (input/Optional)
If the Query Tag is Query_String, CSSM_DATA_PTR isused as query string, otherwise
CSSM_SELECTIONA_PREDICATE_PTR is used to build the query string.

ResultsHandl e (output)
This handle should be used to retrieve subsequent records that matched this selection criteria.

Number OfMatchedDataRecor ds (output)
Returns the total number of data records that match the selection criteria

Return Value
Returns a pointer to aCSSM_DATA structure which contains the first data record in the data
store that matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Page 216 Common Security Services M anager Release 1.2
Application Programming I nterface

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid selection predicate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO DATA_FOUND No data records match the selection predicate
CSSM_DL DATA_GETFIRST _FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_DataGetNext, CSSM_DL_DataAbortQuery.

Release 1.2 Common Security Services M anager Page 217
Application Programming I nterface

6.4.4 CSSM_DL_DataGetNext

CSSM_DATA_PTR CSSMAPI CSSM_DL _DataGetNext
(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle,
CSSM_DATA_RECORD_TYPE_PTR DataRecordType)

This function returns the next object referenced by the ResultsHandle. The ResultsHandle was
returned by the DataGetFirst functions.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

ResultsHandle(input)
The selection handle returned from the DL_DataGetFirst function.

DataRecordType (output)
The type of the data record returned by this query.

Return Value
Returns a pointer to a CSSM_DATA structure which contains the next data record in the data
store that matches the original selection criteria. If the pointer isNULL, an error has occurred.
Use CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID DL _HANDLE Invalid data storage library handle
CSSM_DL_INVALID_RESULTS HANDLE Invalid query handle
CSSM_DL_INVALID_DB_HANDLE Invalid Data Store handle
CSSM_DL_NO_MORE_RECORDS No more records for this selection handle
CSSM_DL_DATA_GETNEXT_FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_DataGetFirst, CSSM_DL_DataAbortQuery.

Page 218 Common Security Services M anager Release 1.2
Application Programming I nterface

6.4.5 CSSM_DL_DataAbortQuery

CSSM_RETURN CSSMAPI CSSM_DL_DataAbortQuery (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by DL_DataGetFirst, and allows aDL to release all
intermediate state information associated with the query.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data store associated with the query.

ResultsHandl e (input)
The selection handle returned from the initial query function.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL _HANDLE Invalid data storage library Handle
CSSM_DL_INVALID_DB_HANDLE Invalid data store handle

CSSM_DL_INVALID_RESULTS HANDLE Invalid results handle
CSSM_DL_DATA_ABORT_QUERY_FAIL Unableto abort query

See Also
CSSM_DL_DataGetFirst, CSSM_DL _DataGetNext.

Release 1.2 Common Security Services M anager Page 219
Application Programming I nterface

6.5 Certificate Storage Operations

6.5.1 CSSM_DL_Certinsert

CSSM_RETURN CSSMAPI CSSM_DL _Certlnsert (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert)

This function makes the certificate persistent by inserting it into the specified data store.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

CLHandle (input)
The handle that describes the add-in certificate library module to be used to perform this
function.

Cert (input)
A pointer to the CSSM_DATA structure which contains the certificate to be added to the data
store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CERTIFICATE_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CERT_INSERT_FAIL Add caused an exception
See Also

CSSM_DL_CertDelete.

Page 220 Common Security Services M anager Release 1.2
Application Programming I nterface

6.5.2 CSSM_DL_CertDelete

CSSM_RETURN CSSMAPI CSSM_DL_CertDelete (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert)

This function removes the certificate from the specified data store.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

CLHandle (input)
The handle that describes the add-in certificate library module to be used to perform this
function.

Cert (input)
A pointer to the CSSM_DATA structure which contains the certificate to be deleted from the
data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CERTIFICATE_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CERTIFICATE_NOT_IN_DB Certificate not in DB
CSSM_DL_CERT_DELETE_FAIL Delete caused an exception

See Also

CSSM_DL_Certlnsert.

Release 1.2 Common Security Services M anager Page 221
Application Programming I nterface

6.5.3 CSSM_DL_CertRevoke

CSSM_RETURN CSSMAPI CSSM_DL _CertRevoke (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR CertToBeRevoked)

This function makes persistent the knowledge that this certificate has been revoked.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

CertToBeRevoked (input)
A pointer to the CSSM_DATA structure which contains the certificate to be marked as revoked.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CERTIFICATE_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB HANDLE Invalid DB handle

CSSM_DL_CERT_REVOKE_FAIL Update caused an exception

Page 222 Common Security Services M anager Release 1.2
Application Programming I nterface

6.5.4 CSSM_DL_CertGetFirst

CSSM_DATA _PTR CSSMAPI CSSM_DL_CertGetFirst

(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_SELECTION_PREDICATE_PTR SelectionPredicate,
uint32 SizeSelectionPredicate,
CSSM_DB_CONJUNCTIVE Conjunctive,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOf M atchedCerts)

This function locates the first certificate in the data store which matches the selection criteria.
The selection criteriais the expression formed by connecting all of the relational expressions of
the selection predicate array using the one conjunctive operator. This function returns a count of
the total number of certificates matching the selection criteria, the first certificate matching the
criteria, and a selection handle that may be used to retrieve the subsequent certificates matching
the selection criteria.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

SelectionPredicate (input)

A pointer to aCSSM_SELECTION_PREDICATE array which contains field-value/operator
pairs.

If NULL, thefirst certificate in the data store is returned.

SizeSelectionPredicate(input)
The size of the selection predicate array.

Conjunctive (input)
The Boolean operator used to connect the selection predicates. If the selection predicate is null,
this parameter isignored.

ResultsHandl e (output)
This handle should be used for subsequent retrievals for the same selection criteria.

Number OfMatchedCerts (output)
Returns the total number of certificates that match the selection criteria

Return Value
Returns a pointer to aCSSM_DATA structure which contains the first certificate in the data
store that matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Release 1.2

Common Security Services M anager Page 223
Application Programming I nterface

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid selection predicate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO_CERTIFICATE_FOUND No certificates that match the selection predicate
CSSM_DL CERT_GETFIRST_FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_CertGetNext, CSSM_DL _CertAbortQuery.

Page 224 Common Security Services M anager Release 1.2
Application Programming I nterface

6.5.5 CSSM_DL_CertGetNext

CSSM_DATA_PTR CSSMAPI CSSM_DL _CertGetNext (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate matching the selection criteria used to establish the
ResultsHandle.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

ResultsHandle(input)
The selection handle obtained from the DL_ CertGetFirst function call.

Return Value
Returns a pointer to aCSSM_DATA structure which contains the next certificate in the data
store that matches the selection criteria. 1f the pointer is NULL, an error has occurred. Use
CSSM _ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_RESULTS HANDLE Invalid query handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO _MORE_CERTS No more certificates for that selection handle
CSSM_DL_CERT_GETNEXT_FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_CertGetFirst, CSSM_DL_CertAbortQuery.

Release 1.2 Common Security Services M anager Page 225
Application Programming I nterface

6.5.6 CSSM_DL_CertAbortQuery

CSSM_RETURN CSSMAPI CSSM_DL_CertAbortQuery (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by DL_CertGetFirst and allowsa DL to release all
intermediate state information associated with the query.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data store associated with the query.

ResultsHandl e (input)
The selection handle returned from the DL_ CertGetFirst function.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL _HANDLE Invalid data storage library Handle
CSSM_DL_INVALID_DB_HANDLE Invalid data store handle

CSSM_DL_INVALID_RESULTS HANDLE Invalid results handle
CSSM_DL_CERT_ABORT_QUERY_FAIL Unableto abort query

See Also
CSSM_DL_CertGetFirst, CSSM_DL_CertGetNext.

Page 226 Common Security Services M anager Release 1.2
Application Programming I nterface

6.6 CRL Storage Operations

6.6.1 CSSM_DL_Crlinsert

CSSM_RETURN CSSMAPI CSSM_DL_Crllnsert (CSSM_DL_HANDLE DLHandle,

CSSM_DB_HANDLE DBHandle,
CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Crl)

This function makes the CRL persistent by inserting it into the specified data store.

Parameters
DLHandle (input)

The handle that describes the add-in data store library module to be used to perform this

function.

DBHandle (input)

The handle that describes the data store to be used when performing this function.

CLHandle (input)

The handle that describes the add-in certificate library module to be used to perform this

function.

Crl (input)

A pointer to the CSSM_DATA structure which contains the CRL to be added to the data store.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Value

Description

CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_CRL_PTR
CSSM_DL_INVALID_DB_HANDLE
CSSM_DL_CRL_INSERT_FAIL

See Also
CSSM_DL_CrlDelete

Invalid DL handle
Invalid CRL pointer
Invalid DB handle

Add caused an exception

Release 1.2 Common Security Services M anager Page 227
Application Programming I nterface

6.6.2 CSSM_DL_CrlDelete

CSSM_RETURN CSSMAPI CSSM_DL _CrlIDelete (CSSM_DL_HANDLE DLHandle,

CSSM_DB_HANDLE DBHandle,
CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Crl)

This function removes the CRL from the specified data store.

Parameters
DLHandle (input)

The handle that describes the add-in data store library module to be used to perform this

function.

DBHandle (input)

The handle that describes the data store to be used when performing this function.

CLHandle (input)

The handle that describes the add-in certificate library module to be used to perform this

function.

Crl (input)

A pointer to the CSSM_DATA structure which contains the CRL to be removed from the data

store.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Value

Description

CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_CRL_PTR
CSSM_DL_INVALID_DB_HANDLE
CSSM_DL_CRL_NOT_IN_DB
CSSM_DL_CRL_DELETE_FAIL

See Also
CSSM_DL_Crlinsert.

Invalid DL handle

Invalid CRL pointer
Invalid DB handle

CRL notin DB

Delete caused an exception

Page 228 Common Security Services M anager Release 1.2
Application Programming I nterface

6.6.3 CSSM_DL_CrlGetFirst

CSSM_DATA_PTR CSSMAPI CSSM_DL_CrlGetFirst

(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_SELECTION_PREDICATE_PTR SelectionPredicate,
uint32 SizeSelectionPredicate,
CSSM_DB_CONJUNCTIVE Conjunctive,
CSSM_HANDLE_PTR ResultsHandle,
uint32 * NumberOfM atchedCrls)

This function locates the first CRL in the data store which matches the selection criteria The
selection criteriais the expression formed by connecting all of the relational expressions of the
selection predicate array using the one conjunctive operator. This function returns a count of the
total number of CRLs matching the selection criteria, the first CRL matching the criteria, and a
selection handle that may be used to retrieve the subsequent CRL s matching the selection criteria.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

SelectionPredicate (input)
A pointer to aCSSM_SELECTION_PREDICATE array which contains field-value/operator
pairs. If NULL, the first CRL in the data store is returned.

SizeSelectionPredicate(input)
The size of the selection predicate array.

Conjunctive (input)
The Boolean operator used to connect the selection predicates. If the selection predicate is null,
this parameter isignored.

ResultsHandl e (output)
This handle should be used for subsequent retrievals for the same selection criteria.

Number OfMatchedCrls (output)
Returns the total number of CRLs that match the selection criteria

Return Value
Returns a pointer to aCSSM_DATA structure which contains the first CRL in the data store that
matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Release 1.2 Common Security Services M anager Page 229
Application Programming I nterface

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid selection predicate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO_CRL_FOUND No Crls that match the selection predicate
CSSM_DL_CRL_GET_FIRST_FAIL Get first caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

CSSM_DL_CrlGetNext, CSSM_DL _CrlAbortQuery.

Page 230 Common Security Services M anager Release 1.2
Application Programming I nterface

6.6.4 CSSM_DL_CrlGetNext

CSSM_DATA_PTR CSSMAPI CSSM_DL_CrlGetNext (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate which matches the selection criteria used to establish the

ResultsHandle.

Parameters
DLHandle (input)

The handle that describes the add-in data storage library module to be used to perform this

function.

DBHandle (input)

The handle that describes the data store to be used when performing this function.

ResultsHandle(input)

The selection handle obtained from the DL_ CrlGetFirst function call.

Return Value

Returns a pointer to a CSSM_DATA structure which contains the next CRL in the data store that
matches the selection criteria. If the pointer is NULL, an error has occurred. Use

CSSM _ GetError to obtain the error code.

Error Codes
Value

Description

CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_RESULTS HANDLE
CSSM_DL_INVALID_DB_HANDLE
CSSM_DL_NO_MORE_CRLS
CSSM_DL_CRL_GET_NEXT_FAIL
CSSM_DL_MEMORY_ERROR

See Also
CSSM_DL_CrlGetFirst, CSSM_DL_CrlAbortQuery.

Invalid DL handle

Invalid query handle

Invalid DB handle

No more Crlsfor that selection handle
Opening the records caused an exception
Error in allocating memory

Release 1.2 Common Security Services M anager Page 231
Application Programming I nterface

6.6.5 CSSM_DL_CrlAbortQuery

CSSM_RETURN CSSMAPI CSSM_DL_CrlAbortQuery (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by DL_CrlGetFirst and allows a DL to release all
intermediate state information associated with the query.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle (input)
The handle that describes the data store associated with the query.

ResultsHandl e (input)
The selection handle returned from the DL_ CrlGetFirst function.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL _HANDLE Invalid data storage library Handle
CSSM_DL_INVALID_DB_HANDLE Invalid data store handle
CSSM_DL_INVALID_RESULTS HANDLE Invalid results handle
CSSM_DL_CRL_ABORT_QUERY_FAIL Unable to abort query

See Also

CSSM_DL_CrlGetFirst, CSSM_DL_CrlGetNext.

Page 232 Common Security Services M anager Release 1.2
Application Programming I nterface

6.7 Module Management Functions

6.7.1 CSSM_DL_lInstall

CSSM_RETURN CSSMAPI CSSM_DL _Install
(const char *DLName,
const char *DLFileName,
const char * DL PathName,
const CSSM_GUID_PTR GUID,
const CSSM_DLINFO_PTR DLlInfo,
const void *Reserved],
const CSSM_DATA_PTR Reserved?)

This function updates the CSSM -persistent internal information about a DL module.

Parameters
DLName (input)
The name of the data storage library module to be installed.

DLFileName (input)
The name of the file that contains the data storage library implementation.

DLPathName (input)
The path to the file that implements the data storage library.

GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for a DL module.

DLInfo (input)
A pointer to the CSSM_DLINFO structure containing information about a DL module.

Reservedl
Reserved data for the function.

Reserved?2
Reserved data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in writing registry
See Also

CSSM_DL_Uninstall.

Release 1.2 Common Security Services M anager Page 233
Application Programming I nterface

6.7.2 CSSM_DL_Uninstall

CSSM_RETURN CSSMAPI CSSM_DL_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the CSSM -persistent internal information about a DL module.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for a DL module.

Return Value
A CSSM_TRUE return value signifies that information has been updated. When CSSM_FAL SE
is returned, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_REGISTRY_ERROR Error in writing registry
See Also

CSSM_DL_Ingtall.

Page 234 Common Security Services M anager Release 1.2
Application Programming I nterface

6.7.3 CSSM_DL_ListModules

CSSM_LIST_PTR CSSMAPI CSSM_DL_ListModules (void)

This function returns alist containing the GUID/name pair for each of the currently-installed DL
modules.

Parameters
None

Return Value
A pointer to the CSSM_LIST structure containing the names of DL modules. If the pointer is
NULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_MEMORY_ERROR Error in memory allocation
See Also

CSSM_ FreelL.ist.

Release 1.2 Common Security Services M anager Page 235
Application Programming I nterface

6.7.4 CSSM_DL_Attach

CSSM_DL_HANDLE CSSMAPI CSSM_DL _Attach

(const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
const uint32 DevicelD,
const uint32 DeviceA ccessFl ags,
uint32 Application,
const CSSM_NOTIFY_CALLBACK Notification,
const void * Reserved)

This function attaches the application with a DL module. A DL module tests for compatibility
with the version specified.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for a DL module.

CheckCompatibleVerMajor (input)
The major version number of a DL module that the application is compatible with.

CheckCompatibleVerMinor (input)
The minor version number of a DL module that the application is compatible with.

MemoryFuncs (input)
The caller’s memory allocation and deallocation functions that can be jointly used by aDL and
the caller to manage a common memory pool.

Devicel D (input)

Device ID number of the target hardware storage device. This value should always be taken from
the CSSM_DLINFO structure to insure that a compatible identifier is used. (Software-only
implementations can always use zero for this value.)

DeviceAccessFlags(input)
Bitmask of default access modes. Legal values are defined in the table below. DL service
providers may or may not support all combinations of access modes.

Application(input/optional)
Passed to the application when its callback is invoked allowing the application to determine the
proper context of operation.

Notification (input/optional)

Callback provided by the application that is called by a DL when one of three things takes place:
aparallel operation completes, atoken running in serial mode surrenders control to the
application, or the token is removed (hardware specific).

Reserved
A reserved input.

Page 236 Common Security Services M anager Release 1.2
Application Programming I nterface

Valid DeviceAccessFlagsValues

Vaue Description
CSSM_DL_STORE_ACCESS SERIAL All storage accesses are in serial mode
CSSM_ DL_STORE _ACCESS EXCLUSIVE Storage access is exclusive to this caller

Return Value
A handleisreturned for aDL module. If the handleis NULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_ATTACH_FAIL Unable to attach to DL module
See Also

CSSM_DL_Detach.

Release 1.2 Common Security Services M anager Page 237
Application Programming I nterface

6.7.5 CSSM_DL_Detach

CSSM_RETURN CSSMAPI CSSM_DL_Detach (CSSM_DL_HANDLE DLHandl€)
This function detaches the application from a DL module.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be detached.

Return Value
A CSSM_OK return value signifies that a DL module has been detached. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID ADDIN_HANDLE Invalid DL handle
See Also

CSSM_DL_Attach.

Page 238 Common Security Services M anager Release 1.2
Application Programming I nterface

6.7.6 CSSM_DL_GetInfo

CSSM_DLINFO_PTR CSSMAPI CSSM_DL_GetInfo (const CSSM_GUID_PTR GUID,
CSSM_BOOL CompleteCapabilitiesOnly,
uint32 * NumberOfinfos)

This function returns information describing a DL module and its capabilities.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for a DL module.

CompleteCapabilitiesOnly (input)

Boolean value indicating whether or not partially-specified capabilities should be returned. If set
to TRUE only a completely-specified capability should be returned. If set to false, the registered
structure should be returned regardless of the completeness of its current state.

Number OfI nfos (output)
The number of DLinfo structures returned by the execution of this function.

Return Value
A pointer to an array of one or more CSSM_DLINFO structures containing information about a
DL module. Thereis one Dlinfo structure for each distinct hardware storage device managed by
thisDL. Most DLs manage only one device. If the pointer isNULL, an error has occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INVALID_GUID No known DL module with specified GUID
See Also

CSSM_DL_Freelnfo.

Release 1.2 Common Security Services M anager Page 239
Application Programming I nterface

6.7.7 CSSM_DL_Freelnfo

CSSM_RETURN CSSMAPI CSSM_DL_Freelnfo (CSSM_DLINFO_PTR DLInfo,
uint32 NumberOfinfos)

This function frees the memory allocated by a DL module for the CSSM_DLINFO structure
returned by the CSSM_DL_ GetlInfo function.

Parameters
DLInfo (input)
A pointer to CSSM_DL _Info structure.

number OfInfos (input)
The number of DL Info structures to be freed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Vaue Description

CSSM__INVALID DLINFO_POINTER Invalid CSSM_DLINFO pointer
See Also

CSSM_DL_Getlnfo.

Page 240 Common Security Services M anager Release 1.2
Application Programming I nterface

6.7.8 CSSM_DL_GetDbNames

CSSM_NAME_LIST_PTR CSSMAPI CSSM_DL_GetDbNames (CSSM_DL_HANDLE DLHandle)

This function returns alist of the logical data store names that the specified DL module can
access and a count of the number of logical namesin that list.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

Return Value
Returns a pointer to a CSSM_NAME_LIST structure which contains alist of data store names.
If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_MEMORY_ERROR Error allocating memory
CSSM_DL_NO DATA_SOURCES No known data store hames
CSSM_DL_GET_DB_NAMES FAIL Get DB Names failed
CSSM_DL_INVALID_DL_HANDLE Invalid DL Handle

See Also

CSSM_DL_FreeNameL.ist.

Release 1.2 Common Security Services M anager Page 241
Application Programming I nterface

6.7.9 CSSM_DL_FreeNameList

CSSM_RETURN CSSMAPI CSSM_DL_FreeNameList (CSSM_DL_HANDLE DLHandle,
CSSM_NAME_LIST_PTR NameList)

This function frees the list of the logical data store names that was returned by
DL_GetDbNames ().

Parameters
DLHandle (input)

The handle that describes the add-in data storage library module to be used to perform this
function.

NameList (input)
A pointer to the CSSM_NAME_LIST.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM _GetError to obtain the error code.

Error Codes
Vaue Description
CSSM_DL_MEMORY_ERROR Error allocating memory
CSSM_DL_INVALID_PTR Invalid pointer to the name list
CSSM_DL_INVALID_DL_HANDLE Invalid DL Handle

See Also

CSSM_DL_GetDbNames.

Page 242 Common Security Services M anager Release 1.2
Application Programming I nterface

6.8 Extensibility Functions

6.8.1 CSSM_DL_PassThrough

CSSM_DATA_PTR CSSMAPI DL_PassThrough (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
uint32 PassThroughld,
const CSSM_DATA_PTR InputParams)

This function allows applications to call data storage library module-specific operations that have
been exported. Such operations may include queries or services that are specific to the domain
represented by a DL module.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle (input)
The handle that describes the data store to be used when performing this function.

PassThroughld (input)
Anidentifier assigned by a DL module to indicate the exported function to perform.

InputParams (input)

A pointer to the CSSM_DATA structure containing parameters to be interpreted in a function-
specific manner by the requested DL module. This parameter can be used as a pointer to an array
of CSSM_DATA_PTRs.

Return Value
A pointer to the CSSM_DATA structure containing the output from the pass-through function.
The output data must be interpreted by the calling application based on externally-available
information. If the pointer isNULL, an error has occurred. Use CSSM _GetError to obtain the

error code.

Error Codes
Vaue Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_INVALID_PASSTHROUGH_ID Invalid passthrough ID
CSSM_DL_INVALID_PTR Invalid pointer
CSSM_DL_ PASS THROUGH_FAIL DB exception doing passthrough function

CSSM_DL_MEMORY_ERROR Error in allocating memory

Release 1.2 Common Security Services M anager Page 243
Application Programming I nterface

7. Appendix A. CSSM Error-Handling

7.1 Introduction

This section presents a specification for error handling in CSSM that provides a consistent mechanism
across all layers of CSSM for returning errorsto the caller.

All CSSM API functions will return one of the following:

1. CSSM_RETURN - an enumerated type consisting of CSSM_OK and CSSM_FAIL. Ifitis
CSSM_FAIL, an error code indicating the reason for failure can be obtained by calling
CSSM__GetError ().

2. CSSM_BOOL - an enumerated type consisting of CSSM_TRUE and CSSM_FALSE. Ifitis
CSSM_FALSE, an error code may be available (but not always) by calling CSSM_GetError.

3. A pointer to a data structure, a handle, afile size or whatever islogical for the function to
return. An error code may be available (but not always) by calling CSSM _GetError.

Check documentation for individual functions to determine if error information will be available and what
error values the function uses. Note that there will be additional error values defined by add-in modules.
The information available from CSSM_GetError will include both the error number and a GUID (global
unique ID) that will associate the error with the add-in module that set it. The GUID of each add-in
modul e can be obtained by calling CSSM_ XX _ListModules (where XX = CSP, CL, DL, or TP).
CSSM_CompareGuids can then be called to determine from which module an error came.

Each add-in module must have a mechanism for reporting their errors to the calling application. In
general, there are two types of errors an add-in module can return:

Errors CSSM has defined for it to use CSSM_CSP_| NVALI D SECUR TY_LI ST)
Errors particular to an add-in module (XXX CSP_BAD HW TCKEN SERI AL_NUMBER)

Since some errors are predefined byCSSM, those errors have a set of pre-defined numeric values which
are reserved by CSSM, and cannot be used arbitrarily by add-in modules. For errors which are particular
to an add-in module, a different set of predefined values has been reserved for their use.

It will be up to the calling application to determine how to handle the error returned by CSSM_GetError (
). Detailed descriptions of the error values will be available in the corresponding specification, the
cssmerr.h header file, and the documentation for specific add-in modules. If aroutine does not know how
to handle the error, it may choose to pass the error on up the chain to its caller.

Error values should not be overwritten, if at all possible. For example, if a CSP call returns an error
indicating that it could not encrypt the data, the caller should not overwrite it with an error simply
indicating that the CSP failed, as it destroys valuable error handling and debugging information. For
example, after acall to CL module function, the error could actually be a CSP error.

Page 244 Common Security Services M anager Release 1.2
Application Programming I nterface

7.2 Data Structures

typedef enum cssm_bool {
CSSM_FALSE =0,
CSSM_TRUE =1,
} CSSM_BOOL

typedef enum cssm_return {
CSSM_OK =0,
CSSM_FAIL =-1
} CSSM_RETURN

typedef struct cssm_error {
uint32 error;
CSSM_GUID guid;

} CSSM_ERROR, *CSSM_ERROR_PTR

7.3 Error Codes

Below is atentative list of error codes. Thislist isnot complete, but isto serve as a representation of
errors returned by CSSM and its add-in modules. Each modulein CSSM has its own range of error
values as defined below. Given an error value, the module to which it belongs can be determined by a
series of macro calls (see CSSM_ISCSSMError, CSSM _IsCLError, CSSM_IsDLError, CSSM _ISsTPError,
CSSM_IsCSPError). When acall to CSSM_SetError is made, the value being passed will be checked to

ensure that it falls within one of the ranges below.

7.3.1 CSSM Error Codes

7.3.1.1 Core Errors

CSSM_INVALID_POINTER

CSSM_INCOMPATIBLE_VERSION

CSSM_MEMORY _ERROR
CSSM_NOT_INITIALIZE

CSSM_VERIFY_COMPONENTS_FAILED
CSSM_INTEGRITY_COMPROMISED

7.3.1.2 Common Function Errors

CSSM_INVALID_POINTER

CSSM_INVALID_ADDIN_HANDLE

CSSM_MEMORY _ERROR

7.3.2 CSP Error Codes

7.3.2.1 Cryptographic Context Operation Errors
CSSM_INVALID_CSP_ HANDLE

CSSM_MEMORY _ERROR

Invalid pointer

Incompatible version

Error in allocating memory
CSSM has not been initialized

Unable to verify components
Integrity check failed

Invalid pointer
Invalid add-in handle
Internal memory error

Invalid provider handle
Internal memory error

Release 1.2

Common Security Services M anager Page 245
Application Programming I nterface

7.3.2.2

CSSM_INVALID_CONTEXT_HANDLE
CSSM_INVALID_CONTEXT_POINTER
CSSM_NO_WRAPPING_INFORMATION
CSSM_INVALID_POINTER

Cryptographic sessions and Logon Errors

CSSM_CSP_INVALID_CSP_HANDLE
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_INVALID_PASSWORD
CSSM_CSP_ALREADY_LOGGED_IN
CSSM_CSP_NOT_LOGGED _IN
CSSM_CSP_INVALID_PASSWORD

Invalid context handle

Invalid context pointer

No pass phrase or wrapping key supplied
Invalid pointer to attributes

Invalid CSP handle

Not enough memory to allocate

Invalid password

User attempted to log in more than once
No login session existed

Old password isinvalid

Page 246 Common Security Services M anager Release 1.2

Application Programming I nterface

7.3.2.3 Cryptographic Operation Errors

CSSM_CSP_INVALID_CONTEXT_HANDLE
CSSM_CSP_UNKNOWN_ALGORITHM
CSSM_CSP_NO_METHOD
CSSM_CSP_QUERY_SIZE_FAILED
CSSM_CSP_INVALID_DATA_POINTER
CSSM_CSP_INVALID_DATA_COUNT
CSSM_CSP_SIGN_UNKNOWN_ALGORITHM
CSSM_CSP_SIGN_NO_METHOD
CSSM_CSP_SIGN_FAILED
CSSM_CSP_PRIKEY_NOT_FOUND
CSSM_CSP_PASSWORD_INCORRECT
CSSM_CSP_UNWRAP_FAILED
CSSM_CSP_NOT_ENOUGH_BUFFER
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_VECTOROFBUFS_UNSUPPORTED
CSSM_CSP_SIGN_INIT_FAILED

Invalid context handle
Unknown algorithm
Service not provided
Unable to query size
Invalid pointer

Invalid data count
Unknown algorithm
Service not provided
Sign failed

Cannot find the corresponding private key

Password incorrect

Unwrapped the private key failed
The output buffer is not big enough
Not enough memory to allocate
Supports only a single buffer of input
Staged sign initialize function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

CSSM_CSP_SIGN_UPDATE_FAILED
CSSM_CSP_SIGN_FINAL_FAILED
CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM
CSSM_CSP_VERIFY_NO_METHOD
CSSM_CSP_VERIFY_FAILED
CSSM_CSP_VERIFY_INIT_FAILED
CSSM_CSP_VERIFY_UPDATE_FAILED
CSSM_CSP_VERIFY_FINAL_FAILED
CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM
CSSM_CSP_DIGEST_NO_METHOD
CSSM_CSP_DIGEST_FAILED
CSSM_CSP_DIGEST_INIT_FAILED
CSSM_CSP_DIGEST_UPDATE_FAILED
CSSM_CSP_DIGEST_CLONE_FAILED
CSSM_CSP_DIGEST_FINAL_FAILED
CSSM_CSP_MAC_UNKNOWN_ALGORITHM
CSSM_CSP_MAC_NO_METHOD
CSSM_CSP_MAC_FAILED
CSSM_CSP_MAC_INIT_FAILED
CSSM_CSP_MAC_UPDATE_FAILED
CSSM_CSP_MAC_FINAL_FAILED
CSSM_CSP_ENC_UNKNOWN_ALGORITHM
CSSM_CSP_ENC_NO_METHOD
CSSM_CSP_ENC _FAILED
CSSM_CSP_ENC_BAD_IV_LENGTH
CSSM_CSP_ENC_BAD_KEY_LENGTH
CSSM_CSP_ENC_INIT_FAILED
CSSM_CSP_ENC_FINAL_FAILED
CSSM_CSP_DEC_UNKNOWN_ALGORITHM
CSSM_CSP_DEC_NO_METHOD
CSSM_CSP_DEC _FAILED

Staged sign update function failed
Staged sign final function failed
Unknown algorithm

Service not provided

Unable to perform verification on data
Staged verify initialize function failed
Staged verify update function failed
Staged verify final function failed
Unknown algorithm

Service not provided

Unable to perform digest on data
Unable to perform digest initialization
Unable to perform digest on data
Unable to clone the digest context
Staged digest final failed

Unknown algorithm

Service not provided

Unable to perform mac on data
Unable to perform staged mac init
Unable to perform staged mac update
Unable to perform staged mac final
Unknown algorithm

Service not provided

Unable to encrypt data

Length of 1V unsupported

Length of key unsupported

Unable to perform encrypt initialization
Unable to encrypt data

Unknown algorithm

Service not provided

Unable to encrypt data

Release 1.2

Common Security Services M anager
Application Programming I nterface

Page 247

7.3.2.4

7.3.2.5

CSSM_CSP_DEC _BAD_IV_LENGTH
CSSM_CSP_DEC _BAD_KEY_LENGTH
CSSM_CSP_DEC_INIT_FAILED

CSSM_CSP_DEC _UPDATE_FAILED
CSSM_CSP_DEC_FINAL_FAILED
CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM
CSSM_CSP_KEYGEN_NO_METHOD
CSSM_CSP_KEYGEN_FAILED
CSSM_CSP_RNG_UNKNOWN_ALGORITHM
CSSM_CSP_RNG_NO_METHOD
CSSM_CSP_RNG_FAILED
CSSM_CSP_UIDG_UNKNOWN_ALGORITHM
CSSM_CSP_UIDG_NO_METHOD
CSSM_CSP_UIDG_FAILED
CSSM_INVALID_KEY
CSSM_CSP_PRIKEY_NOT_FOUND
CSSM_CSP_PASSWORD_INCORRECT
CSSM_INVALID_SUBJECT_KEY
CSSM_INVALID_PASSPHRASE

CSSM_INVALID_WRAPPED_KEY
CSSM_CSP_DERIVE _FAILED
CSSM_CSP_KEYEXCH_GENPARAM_FAILED
CSSM_CSP_KEYEXCH_PHASEL_FAILED
CSSM_CSP_KEYEXCH_PHASE2_FAILED

Cryptographic Module Management Function Errors

CSSM_INVALID_POINTER
CSSM_REGISTRY_ERROR
CSSM_NO_ADDIN
CSSM_INVALID_GUID
CSSM_MEMORY_ERROR
CSSM_INCOMPATIBLE_VERSION
CSSM_EXPIRE
CSSM_INVALID_ARGS
CSSM_ATTACH_FAIL
CSSM_INVALID_ADDIN_HANDLE
CSSM_INVALID_CSPINFO_POINTER

Cryptographic Extensibility Function Errors

CSSM_CSP_INVALID_CSP_HANDLE
CSSM_CSP_INVALID_CONTEXT_HANDLE
CSSM_CSP_INVALID_CONTEXT_POINTER
CSSM_CSP_INVALID_DATA_POINTER
CSSM_CSP_MEMORY_ERROR
CSSM_CSP_UNSUPPORTED_OPERATION
CSSM_CSP_PASS THROUGH_FAIL

Length of 1V unsupported

Length of key unsupported

Unable to perform decrypt initialization
Staged encryption update failed

Stages encrypt final failed

Unknown algorithm

Service not provided

Unable to generate key pair

Unknown algorithm

Service not provided

Unable to generate keys

Unknown algorithm

Service not provided

Unable to generate unique 1D

Invalid wrapping key

Cannot find the corresponding private key
Password incorrect

Invalid key to be wrapped

Invalid passphrase for the unwrapping key or
invalid passphrase for securing

the unwrapped key in persistent storage
Invalid wrapped key

Unable to derive key

Unable to generate exchange param data
Unable to generate to stage key exchange
Unable to stage key exchange

Invalid pointer

Error in writing registry

No add-ins found

CSP module was not installed
Error in memory allocation
Incompatible version
Add-in has expired

Invalid argument pointer
Unable to load CSP module
Invalid CSP handle

Invalid pointer

Invalid CSP handle

Invalid context handle

Invalid context pointer

Invalid pointer for input data

Not enough memory to allocate
Add-in does not support this function
Unable to perform custom function

Page 248

Common Security Services M anager
Application Programming I nterface

Release 1.2

7.3.3 TP Error Codes

7.3.3.1 Trust Policy Operation Errors

7.3.3.2

7.3.3.3

CSSM_TP_INVALID_TP_HANDLE
CSSM_TP_INVALID_CL_HANDLE
CSSM_TP_INVALID_DL_HANDLE
CSSM_TP_INVALID_DB_HANDLE
CSSM_TP_INVALID_CC_HANDLE
CSSM_TP_INVALID_CERTIFICATE
CSSM_TP_NOT_SIGNER
CSSM_TP_NOT_TRUSTED
CSSM_TP_CERT_VERIFY_FAIL
CSSM_FUNCTION_NOT_IMPLEMENTED
CSSM_TP_CERTIFICATE_CANT _OPERATE
CSSM_TP_MEMORY_ERROR
CSSM_TP_CERT_SIGN_FAIL
CSSM_TP_INVALID_CRL
CSSM_TP_CERT_REVOKE_FAIL
CSSM_TP_CRL_VERIFY_FAIL
CSSM_TP_CRL_SIGN_FAIL
CSSM_TP_APPLY_CRL_TO DB_FAIL

Trust Policy Extensibility Function Errors

CSSM_TP_INVALID_TP_HANDLE
CSSM_TP_INVALID_CL_HANDLE
CSSM_TP_INVALID_DL_HANDLE
CSSM_TP_INVALID_DB_HANDLE
CSSM_TP_INVALID_CC_HANDLE
CSSM_TP_INVALID_CERTIFICATE
CSSM_TP_INVALID_ACTION
CSSM_TP_NOT_TRUSTED
CSSM_TP_VERIFY_ACTION_FAIL
CSSM_FUNCTION_NOT_IMPLEMENTED
CSSM_TP_INVALID_DATA_POINTER
CSSM_TP_INVALID_ID
CSSM_TP_MEMORY_ERROR
CSSM_TP_PASS THROUGH_FAIL

Trust Policy Module Management Function Errors

CSSM_INCOMPATIBLE_VERSION
CSSM_TP_INVALID_POINTER
CSSM_TP_REGISTRY_ERROR
CSSM_INVALID_POINTER
CSSM_REGISTRY_ERROR
CSSM_NO_ADDIN
CSSM_MEMORY_ERROR

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid certificate

Signer certificate is not signer of subject
Signature can’t be trusted

Unable to verify certificate

Function not implemented

Signer certificate can’t sign subject
Error in allocating memory

Unable to sign certificate

Invalid CRL

Unable to revoke certificate

Unable to verify certificate

Unable to sign certificate revocation list
Unable to apply certificate revocation list on
database

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid handle

Invalid certificate

Invalid action

Certificate not trusted for action
Unable to determine trust for action
Function not implemented
Invalid pointer for input data
Invalid pass-through ID

Error in allocating memory
Unable to perform pass through

Version is not compatible
Invalid pointer

Error in writing registry
Invalid pointer

Error in writing registry
No add-ins found

Error in memory allocation

Release 1.2

Common Security Services M anager
Application Programming I nterface

Page 249

CSSM_EXPIRE
CSSM_ATTACH_FAIL
CSSM_INVALID_ADDIN_HANDLE
CSSM_INVALID_GUID
CSSM_INVALID_TPINFO_POINTER

7.3.4 CL Error Codes

7.34.1

7.3.4.2

Certificate Operation Errors

CSSM_CL_INVALID_CL_HANDLE
CSSM_CL_INVALID_CC_HANDLE
CSSM_CL_INVALID_DATA_POINTER
CSSM_CL_INVALID_CONTEXT
CSSM_CL_UNKNOWN_FORMAT
CSSM_CL_INVALID_SIGNER_CERTIFICATE
CSSM_CL_INVALID_SCOPE
CSSM_CL_MEMORY_ERROR
CSSM_CL_UNSUPPORTED_OPERATION
CSSM_CL_CERT_SIGN_FAIL
CSSM_CL_CERT_UNSIGN_FAIL
CSSM_CL_CERT_VERIFY_FAIL
CSSM_CL_INVALID_FIELD_POINTER
CSSM_CL_INVALID_TEMPLATE
CSSM_CL_CERT_CREATE_FAIL
CSSM_CL_INVALID_FIELD_POINTER
CSSM_CL_CERT_VIEW_FAIL
CSSM_CL_UNKNOWN_TAG
CSSM_CL_CERT_GET_FIELD_VALUE_FAIL
CSSM_CL_INVALID_RESULTS HANDLE
CSSM_CL_NO_FIELD_VALUES
CSSM_CL_CERT_ABORT_QUERY_FAIL
CSSM_CL_CERT_GET_KEY_INFO_FAIL
CSSM_CL_CERT_GET_FIELD_VALUE_FAIL
CSSM_CL_CERT_IMPORT_FAIL
CSSM_CL_CERT_EXPORT_FAIL
CSSM_CL_CERT_DESCRIBE_FORMAT_FAIL

Certificate Group Operation Errors

CSSM_ INVALID_CL_HANDLE
CSSM_CL_INVALID_CERT_GROUP
CSSM_INVALID_DB_HANDLE
CSSM_ MEMORY_ERROR
CSSM_CL_INVALID_CC_HANDLE
CSSM_CL_INVALID_DATA_POINTER
CSSM_CL_INVALID_CONTEXT
CSSM_CL_UNKNOWN_FORMAT
CSSM_CL_INVALID_SCOPE

Add-in has expired
Unable to load TP module
Invalid TP handle
Unknown GUID

Invalid pointer

Invalid Certificate Library Handle
Invalid Cryptographic Context Handle
Invalid pointer input

Invalid context for the requested operation
Unrecognized certificate format
Revoked or expired signer certificate
Invalid scope

Not enough memory

Add-in does not support this function
Unable to sign certificate

Unable to unsign certificate

Unable to verify certificate

Invalid pointer input

Invalid template for this certificate type
Unable to create certificate

Invalid pointer input

Unable to view certificate

Unknown field tag in OID

Unable to get field value

Invalid Results Handle

No more field values for the input handle
Unable to abort the certificate query
Unable to get key information
Unable to return the list of fields
Unable to import certificate

Unable to export certificate

Unable to return the list of fields

Invalid certificate library handle

Invalid certificate group

Bad database handle

Not enough memory to allocate

Invalid Cryptographic Context Handle
Invalid pointer input

Invalid context for the requested operation
Unrecognized certificate format

Invalid scope

Page 250

Common Security Services M anager
Application Programming I nterface

Release 1.2

7.3.4.3

7.3.4.4

7.3.4.5

CSSM_CL_UNSUPPORTED_OPERATION
CSSM_CL_CERT_VERIFY_FAIL

Certificate Revocation List Operation Errors

CSSM_CL_INVALID_CL_HANDLE
CSSM_CL_MEMORY_ERROR
CSSM_CL_CRL_CREATE_FAIL
CSSM_CL_INVALID_CC_HANDLE
CSSM_CL_INVALID_CERTIFICATE_PTR
CSSM_CL_INVALID_CRL
CSSM_CL_CRL_ADD_CERT_FAIL
CSSM_CL_CERT_NOT_FOUND_IN_CRL
CSSM_CL_CRL_REMOVE_CERT_FAIL
CSSM_CL_INVALID_CRL_PTR
CSSM_CL_INVALID_SCOPE
CSSM_CL_CRL_SIGN_FAIL
CSSM_CL_INVALID_SCOPE
CSSM_CL_CRL_VERIFY_FAIL
CSSM_CL_UNKNOWN_TAG
CSSM_CL_NO_FIELD_VALUES
CSSM_CL_CRL_GET_FIELD_VALUE_FAIL
CSSM_CL_NO_FIELD_VALUES
CSSM_CL_INVALID_RESULTS HANDLE
CSSM_CL_CRL_ABORT_QUERY_FAIL
CSSM_CL_CRL_DESCRIBE_FORMAT _FAIL

Add-in does not support this function
Unable to verify certificate

Invalid CL handle

Not enough memory to allocate for the CRL
Unable to create CRL

Invalid Context Handle

Invalid Certificate

Invalid CRL

Unable to add certificate to CRL
Certificate not referenced by the CRL
Unable to remove certificate from CRL
Invalid CRL pointer

Signing scopeisinvalid

Unable to sign CRL

Verify scopeisinvalid

Unable to verify CRL

Unrecognized field tag in OID

No fields match the specified OID
Unable to get first field value

No more matchesin the CRL

Invalid query handle

Unable to get next item

Unable to return the list of fields

Certificate Library Module Management Function Errors

CSSM_INVALID_POINTER
CSSM_REGISTRY_ERROR
CSSM_MEMORY _ERROR
CSSM_INCOMPATIBLE_VERSION
CSSM_ATTACH_FAIL
CSSM_INVALID_ADDIN_HANDLE
CSSM_INVALID_GUID

Certificate Library Extensibility Function Errors

CSSM_CL_INVALID_CL_HANDLE
CSSM_CL_INVALID_CC_HANDLE
CSSM_CL_INVALID_DATA_POINTER
CSSM_CL_UNSUPPORTED_OPERATION
CSSM_CL_PASS THROUGH_FAIL

7.3.5 DL Error Codes

7.35.1

Data Source Operation Errors
CSSM_DL_INVALID_DL_HANDLE

Invalid pointer

Error in writing registry

Error in memory allocation

Incompatible version

Unable to attach to CL module

Invalid CL handle

No known CL module with specified GUID

Invalid Certificate Library Handle
Invalid Cryptographic Context Handle
Invalid pointer input

Add-in does not support this function
Unable to perform pass through

Invalid DL handle

Release 1.2

Common Security Services M anager
Application Programming I nterface

Page 251

7.35.2

7.3.5.3

CSSM_DL_DATASTORE_NOT_EXISTS

CSSM_DL_DB_OPEN_FAIL
CSSM_DL_MEMORY_ERROR
CSSM_DL_INVALID_DB_HANDLE
CSSM_DL_DB_CLOSE_FAIL
CSSM_DL_INVALID_CL_HANDLE
CSSM_DL_INVALID_PTR
CSSM_DL_DB_CREATE_FAIL
CSSM_DL_DB_DELETE_FAIL
CSSM_DL_DB_IMPORT_FAIL
CSSM_DL_DB_EXPORT_FAIL

Generic Security Object Storage Operation Errors

CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_DB_HANDLE
CSSM_DL_INVALID_MODULE_HANDLE

CSSM_DL_INVALID_DATA_PTR
CSSM_DL_DATA_INSERT_FAIL
CSSM_DL_DATA_NOT_IN_DB
CSSM_DL_DATA_DELETE_FAIL
CSSM_DL_INVALID_SELECTION_PTR
CSSM_DL_NO_DATA_FOUND

CSSM_DL _DATA_GETFIRST_FAIL
CSSM_DL_MEMORY_ERROR
CSSM_DL_INVALID_RESULTS HANDLE
CSSM_DL_NO_MORE_RECORDS

CSSM_DL_DATA_GETNEXT_FAIL
CSSM_DL_DATA_ABORT_QUERY_FAIL

Certificate Storage Operation Errors

CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_CERTIFICATE_PTR
CSSM_DL_INVALID_DB_HANDLE
CSSM_DL_CERT_INSERT_FAIL
CSSM_DL_CERTIFICATE_NOT_IN_DB
CSSM_DL_CERT_DELETE_FAIL
CSSM_DL_CERT_REVOKE_FAIL
CSSM_DL_INVALID_SELECTION_PTR
CSSM_DL_NO_CERTIFICATE_FOUND

CSSM_DL_CERT_GETFIRST_FAIL
CSSM_DL_MEMORY_ERROR
CSSM_DL_INVALID_RESULTS HANDLE

The data store with the logical name
does not exist

Open caused an exception

Error in allocating memory

Invalid DB handle

Close caused an exception

Invalid CL handle

Invalid pointer to the data store name
Create caused an exception

Delete caused an exception

DB exception doing import function
DB exception doing export function

Invalid Data Storage Library handle
Invalid Data Store handle

Invalid Module handle for accessing the
data record

Invalid data pointer

Add caused an exception

Data record not in Data Store

Delete caused an exception

Invalid selection predicate pointer

No data records match the selection
predicate

Opening the records caused an exception
Error in allocating memory

Invalid query handle

No more records for this selection
handle

Opening the records caused an exception
Unable to abort query

Invalid DL handle

Invalid certificate pointer

Invalid DB handle

Add caused an exception

Certificate not in DB

Delete caused an exception

Update caused an exception

Invalid selection predicate pointer

No certificates that match the selection
predicate

Opening the records caused an exception
Error in allocating memory

Invalid query handle

Page 252

Common Security Services M anager
Application Programming I nterface

Release 1.2

7.3.5.4

7.3.5.5

CSSM_DL_NO_MORE_CERTS

CSSM_DL_CERT_GETNEXT_FAIL

CSSM_DL_CERT_ABORT_QUERY_FAIL

CSSM_DL_INVALID_CRL_PTR
CSSM_DL_CRL_INSERT_FAIL
CSSM_DL_CRL_NOT_IN_DB
CSSM_DL_CRL_DELETE_FAIL

CSSM_DL_INVALID_SELECTION_PTR

CSSM_DL_NO_CRL_FOUND

CSSM_DL_CRL_GET_FIRST_FAIL
CSSM_DL_NO_MORE_CRLS
CSSM_DL_CRL_GET_NEXT_FAIL

CSSM_DL_CRL_ABORT_QUERY_FAIL

No more certificates for that selection
handle

Opening the records caused an exception
Unable to abort query

Invalid CRL pointer

Add caused an exception

CRL notin DB

Delete caused an exception

Invalid selection predicate pointer

No CRLs that match the selection
predicate

Get first caused an exception

No more CRLs for that selection handle
Opening the records caused an exception
Unable to abort query

Data Storage Library Module Management Function Errors

CSSM_INVALID_POINTER
CSSM_REGISTRY_ERROR
CSSM_MEMORY_ERROR
CSSM_INCOMPATIBLE_VERSION
CSSM_ATTACH_FAIL
CSSM_INVALID_ADDIN_HANDLE
CSSM_INVALID_GUID
CSSM_INVALID_DLINFO_POINTER
CSSM_DL_NO_DATA_SOURCES
CSSM_DL_GET_DB_NAMES_FAIL
CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_PTR

Data Storage Library Extensibility Function Errors

CSSM_DL_INVALID_DL_HANDLE
CSSM_DL_INVALID_DB_HANDLE

CSSM_DL_INVALID_PASSTHROUGH_ID

CSSM_DL_INVALID_PTR
CSSM_DL_ PASS THROUGH_FAIL

CSSM_DL_MEMORY_ERROR

Invalid pointer

Error in writing registry

Error in memory allocation
Incompatible version

Unable to attach to DL module
Invalid DL handle

No known module with specified GUID
Invalid CSSM_DL_INFO pointer
No known data store names

Get DB Names failed

Invalid DL Handle

Invalid pointer to the name list

Invalid DL handle

Invalid DB handle

Invalid passthrough 1D

Invalid pointer

DB exception doing passthrough
function

Error in allocating memory

Release 1.2 Common Security Services M anager Page 253
Application Programming I nterface

7.4 Error Handling Functions

7.4.1 CSSM_GetError

CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

This function returns the current error information.

Parameters
None

Return Value
Returns the current error information. If there is no valid error, the error number will be
CSSM_OK. A NULL pointer indicates that the CSSM _InitError was not called or that a call to
CSSM_DestroyError has been made. No error information is available.

See Also
CSSM_InitError, CSSM_DestroyError, CSSM_ClearError, CSSM_ SetError,
CSSM_IsCSSMError, CSSM _IsCLError, CSSM _IsTPError, CSSM _IsDLError,
CSSM _IsCSPError

Page 254 Common Security Services M anager Release 1.2
Application Programming I nterface

7.4.2 CSSM_SetError

CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR guid,
uint32 error_number)

This function sets the current error information toerror_numberand guid.

Parameters
guid (input)
Pointer to the GUID (global unique ID) of the add-in module.

error_number (input)
An error number. It should fall within one of the valid CSSM, CL, TP, DL, or CSP error ranges.

Return Value
CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates that the error
number passed is not within avalid range, the GUID passed is invalid, CSSM_InitError was not
called, or CSSM_DestroyError has been called. No error information is available.

See Also
CSSM_InitError, CSSM_DestroyError, CSSM_ClearError, CSSM_GetError

Release 1.2 Common Security Services M anager Page 255
Application Programming I nterface

7.4.3 CSSM_ClearError

void CSSMAPI CSSM_ClearError (void)

This function sets the current error value to CSSM_OK. This can be called if the current error
value has been handled and therefore is no longer avalid error.

Parameters
None

See Also
CSSM _SetError, CSSM _GetError

Page 256 Common Security Services M anager Release 1.2
Application Programming I nterface

7.4.4 CSSM_InitError

CSSM_RETURN CSSMAPI CSSM_InitError (void)

This function initializes the error information for that thread/process and allocates any necessary
memory. Should be called by the thread/process initialization function.

Parameters
None

Return Value
CSSM_OK if the error information was successfully initialized. 1f CSSM_FAIL isreturned, no
error information will be available.

Notes
CSSM_InitError does not need to be called if you have loaded the CSSM DLL.

See Also
CSSM_DestroyError

Release 1.2 Common Security Services M anager Page 257
Application Programming I nterface

7.45 CSSM_DestroyError

CSSM_RETURN CSSMAPI CSSM_DestroyError (void)

This function destroys the error information for a thread/process and frees any necessary
memory. It should be called by the function performing clean up before a thread/process exits.

Parameters
None

Return Value
CSSM_OK if the error information was successfully destroyed. If CSSM_FAIL isreturned, no
error information will be available.

Notes

CSSM_DestroyError does not need to be called if you have loaded the CSSM DLL.

See Also
CSSM _InitError

Page 258 Common Security Services M anager Release 1.2
Application Programming I nterface

7.4.6 CSSM_IsCSSMError

CSSM_BOOL CSSMAPI CSSM _IsCSSMError (uint32 error_number)

This function determinesiferror_numberis within the CSSM range of errors.

Parameters
error_number (input)
An error number.

Return Value
CSSM_TRUE if the error isa CSSM error; otherwise CSSM_FALSE.

See Also
CSSM _IsCLError, CSSM _IsDLError, CSSM _IsTPError, CSSM _IsCSPError

Release 1.2 Common Security Services M anager Page 259
Application Programming I nterface

7.4.7 CSSM_IsCLError

CSSM_BOOL CSSMAPI CSSM _IsCLError (uint32 error_number)

This function determinesiferror_numberis within the CL range of errors.

Parameters
error_number (input)
An error number.

Return Value
CSSM_TRUE if the error isa CL error; otherwise CSSM_FALSE.

See Also
CSSM _IsCSSMError, CSSM _IsDLError, CSSM _IsTPError, CSSM_IsCSPError

Page 260 Common Security Services M anager Release 1.2
Application Programming I nterface

7.4.8 CSSM_IsDLError

CSSM_BOOL CSSMAPI CSSM _IsDLError (uint32 error_number)

This function determinesiferror_numberis within the DL range of errors.

Parameters
error_number (input)
An error number.

Return Value
CSSM_TRUE if the error isa DL error; otherwise CSSM_FALSE.

See Also
CSSM _IsCLError, CSSM_IsCSSMError, CSSM _IsTPError, CSSM _IsCSPError

Release 1.2 Common Security Services M anager
Application Programming I nterface

Page 261

7.4.9 CSSM _ISTPError

CSSM_BOOL CSSMAPI CSSM _IsTPError (uint32 error_number)

This function determinesiferror_numberis within the TP range of errors.

Parameters
error_number (input)
An error number.

Return Value
CSSM_TRUE if the error isa TP error; otherwise CSSM_FAL SE.

See Also

CSSM _IsCLError, CSSM_IsDLError, CSSM_IsCSSM Error, CSSM _IsCSPError

Page 262 Common Security Services M anager Release 1.2
Application Programming I nterface

7.4.10 CSSM_IsCSPError

CSSM_BOOL CSSMAPI CSSM _IsCSPError (uint32 error_number)

This function determinesiferror_numberis within the CSP range of errors.

Parameters
error_number (input)
An error number.

Return Value
CSSM_TRUE if the error is a CSP error; otherwise CSSM_FAL SE.

See Also
CSSM _IsCLError, CSSM_IsDLError, CSSM_IsTPError, CSSM_IsCSSMError

Release 1.2 Common Security Services M anager Page 263
Application Programming I nterface

7.4.11 CSSM_CompareGuids

CSSM_BOOL CSSMAPI CSSM_CompareGuids (CSSM_GUID guidi,
CSSM_GUID guid?2)

This function determines if two GUIDs are equal.

Parameters
guidl (input)
A GUID.

guidl (input)
A GUID.

Return Value
CSSM_TRUE if the two GUIDs are equal, CSSM_FAL SE otherwise.

Notes
GUIDs arereturned in the error information of CSSM_GetError. Once you know which type of
error isreturned (CSP, CL, TP, DL), you can call CSSM_XX_ListModulesto get alist of al the
modules that are registered and their GUIDs in order to determine which module set the error.
This can be useful for debugging purposes if there is more than one type of module for each add-
in type installed on the system.

See Also
CSSM_GetError, CSSM_CSP_ListModules, CSSM_CL _ListModules, CSSM_TP_ListModules,
CSSM_DL_ListModules.

Page 264 Common Security Services M anager Release 1.2
Application Programming I nterface

8. Appendix B. Application Memory Functions

8.1 Introduction

When CSSM or add-in modules return memory structures to applications, that memory is maintained by
the application. Instead of using a model where the application passes memory blocks to the add-in
modules to work on, the CSSM model requires the application to supply memory functions. This has the
advantage for applications not requiring to know the sizes of memory blocks to supply to the CSSM and
the add-ins. The memory that the application receivesisin its process space, and this prevents the
application from walking through the memory of the CSSM or the add-in modules. An application that
has access to secure memory could supply functions to the cryptographic service provider for managing
that memory. All datareturned from the cryptographic service provider will be through that secure
memory. When the application no longer requires the memory, it is responsible for freeing it.

Applications will register memory functions with the add-in modules during attach time and with CSSM
during initialization. A memory function table will be passed from the application to add-in modules
through the CSSM_ xxx_Attach functions associated with each add-in. The CSSM _Init function is where
the CSSM will receive the application’s memory function.

8.1.1 CSSM_API_MEMORY_FUNCS Data Structure

This structure is used by applications to supply memory functions for the CSSM and the add-in modules.
The functions are used when memory needs to be allocated by the CSSM or add-ins for returning data
structures to the applications.

typedef struct cssm_api_memory_funcs {
void * (*malloc_func) (uint32 size, void * allocRef);
void (*free_func) (void *memblock, void * allocRef);
void * (*realloc_func) (void *memblock, uint32 size, void * allocRef);
void * (*calloc_func) (uint32 num, uint32 size, void * allocRef);
} CSSM_API_MEMORY_FUNCS, *CSSM_API_MEMORY_FUNCS_PTR

Definition:
malloc_func- pointer to function that returns a void pointer to the allocated memory block of at least
size bytes from heap allocRef

free_func- pointer to function that deallocates a previously-allocated memory blockneémblock) from
heap allocRef

realloc_func- pointer to function that returns a void pointer to the reallocated memory block
(memblock) of at least size bytes from heap allocRef

calloc_func- pointer to function that returns a void pointer to an array ohumelements of lengthsize
initialized to zero from heap allocRef

8.1.2 Initialization of Memory Structure

The memory structure CSSM_API_MEMORY _FUNCS requires pointers to functions that implement the
memory routines. Below is an example of an application supplying the C runtime utilities malloc, realloc
and free to the memory structure. The memory structure is then used by the CSSM_Init call.

Release 1.2 Common Security Services M anager Page 265
Application Programming I nterface

/* Alocating the structure */
Menor yFuncs = (CSSM APl _ MEMCRY_FUNCS _PTR) mal | oc (
si zeof (CSSM APl _MEMORY_FUNCS)) ;

/* Initialize the menory function structure */
Menor yFuncs->nal | oc_func = HeapMal | oc;

Menor yFuncs->real | oc_func = HeapReal | oc;

Menor yFuncs->free_f unc = HeapFr ee;

Menor yFuncs->cal | oc_func = HeapCal | oc;

/* Initialize the CSSM */
CSSMInit (CSSM MAJOR, CSSM M NOR MenoryFuncs, NULL);

Page 266

Common Security Services M anager
Application Programming I nterface

Release 1.2

9. Appendix C. Acronyms

For a complete glossary of terms, see th&€€D SA Specification

API
CBC
CDSA
CLI
CsP
CSSM
DLI
DLL
GUID

SPI
TC
TPI

Application Programming Interface

Cipher Block Chaining (cryptographic algorithm context)

Common Data Security Architecture

Certificate Library Interface

Cryptographic Service Provider

Common Security Services Manager

Data Storage Library Interface

Dynamic Link Library

Global Unique Identifier

Initialization Vector (cryptographic algorithm context)
Cryptographic Service Provider Interface

Test and Check used to ensure CSSM self-integrity

Trust Policy Interface

