

Common Security�Services Manager

Cryptographic Service Provider Interface (SPI) Specification

Release 1.0

October 1996�Updated December 1996

�

Subject to Change Without Notice

Specification Disclaimer and Limited Use License

This specification is for release version 1.0, October 1996.

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Some aspects of this Specification may be covered under various United States or foreign patents. No license, express or implied, by estoppel or otherwise, to any other intellectual property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information in this specification. Intel doesn't warrant or represent that such implementation(s) will not infringe such rights.

If you are interested in receiving an appropriate license to Intel's intellectual property rights relating to the interface defined in this specification, contact us for details at cdsa@ibeam.intel.com.

Copyright© 1996 Intel Corporation. All rights reserved.

Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*Other product and corporate names may be trademarks of other companies and are used only for explanation and to the owner’s benefit, without intent to infringe.

��Table of Contents�

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc374330262 � PAGEREF _Toc374330262 �1��

1.1 CDSA Overview	� GOTOBUTTON _Toc374330263 � PAGEREF _Toc374330263 �1��

1.2 Cryptographic Service Provider Overview	� GOTOBUTTON _Toc374330264 � PAGEREF _Toc374330264 �3��

1.3 CSSM Service Provider Interface Specification	� GOTOBUTTON _Toc374330265 � PAGEREF _Toc374330265 �4��

1.3.1 Intended Audience	� GOTOBUTTON _Toc374330266 � PAGEREF _Toc374330266 �4��

1.3.2 Document Organization	� GOTOBUTTON _Toc374330267 � PAGEREF _Toc374330267 �4��

1.4 References	� GOTOBUTTON _Toc374330268 � PAGEREF _Toc374330268 �4��

2. Service Provider Interface	� GOTOBUTTON _Toc374330269 � PAGEREF _Toc374330269 �5��

2.1 Overview	� GOTOBUTTON _Toc374330270 � PAGEREF _Toc374330270 �5��

2.1.1 Cryptographic Operations	� GOTOBUTTON _Toc374330271 � PAGEREF _Toc374330271 �6��

2.1.2 Extensibility Functions	� GOTOBUTTON _Toc374330272 � PAGEREF _Toc374330272 �7��

2.1.3 Module Management Functions	� GOTOBUTTON _Toc374330273 � PAGEREF _Toc374330273 �7��

2.2 Data Structures	� GOTOBUTTON _Toc374330274 � PAGEREF _Toc374330274 �8��

2.2.1 CSSM_CSP_HANDLE	� GOTOBUTTON _Toc374330275 � PAGEREF _Toc374330275 �8��

2.2.2 CSSM_DATA	� GOTOBUTTON _Toc374330276 � PAGEREF _Toc374330276 �8��

2.2.3 CSSM_KEYHEADER	� GOTOBUTTON _Toc374330277 � PAGEREF _Toc374330277 �8��

2.2.4 CSSM_KEYBLOB	� GOTOBUTTON _Toc374330278 � PAGEREF _Toc374330278 �9��

2.2.5 CSSM_KEY	� GOTOBUTTON _Toc374330279 � PAGEREF _Toc374330279 �9��

2.2.6 CSSM_CRYPTO_DATA	� GOTOBUTTON _Toc374330280 � PAGEREF _Toc374330280 �10��

2.2.7 CSSM_CSPINFO	� GOTOBUTTON _Toc374330281 � PAGEREF _Toc374330281 �10��

2.2.8 CSSM_SPI_FUNC_TBL	� GOTOBUTTON _Toc374330282 � PAGEREF _Toc374330282 �10��

2.2.9 CSSMContextAttributes	� GOTOBUTTON _Toc374330283 � PAGEREF _Toc374330283 �11��

2.2.10 CSSMContext	� GOTOBUTTON _Toc374330284 � PAGEREF _Toc374330284 �12��

2.3 Cryptographic Operations	� GOTOBUTTON _Toc374330285 � PAGEREF _Toc374330285 �15��

2.3.1 CSP_QuerySize	� GOTOBUTTON _Toc374330286 � PAGEREF _Toc374330286 �15��

2.3.2 CSP_SignData	� GOTOBUTTON _Toc374330287 � PAGEREF _Toc374330287 �16��

2.3.3 CSP_SignDataInit	� GOTOBUTTON _Toc374330288 � PAGEREF _Toc374330288 �18��

2.3.4 CSP_SignDataUpdate	� GOTOBUTTON _Toc374330289 � PAGEREF _Toc374330289 �19��

2.3.5 CSP_SignDataFinal	� GOTOBUTTON _Toc374330290 � PAGEREF _Toc374330290 �20��

2.3.6 CSP_VerifyData	� GOTOBUTTON _Toc374330291 � PAGEREF _Toc374330291 �21��

2.3.7 CSP_VerifyDataInit	� GOTOBUTTON _Toc374330292 � PAGEREF _Toc374330292 �22��

2.3.8 CSP_VerifyDataUpdate	� GOTOBUTTON _Toc374330293 � PAGEREF _Toc374330293 �23��

2.3.9 CSP_VerifyDataFinal	� GOTOBUTTON _Toc374330294 � PAGEREF _Toc374330294 �24��

2.3.10 CSP_DigestData	� GOTOBUTTON _Toc374330295 � PAGEREF _Toc374330295 �25��

2.3.11 CSP_DigestDataInit	� GOTOBUTTON _Toc374330296 � PAGEREF _Toc374330296 �27��

2.3.12 CSP_DigestDataUpdate	� GOTOBUTTON _Toc374330297 � PAGEREF _Toc374330297 �28��

2.3.13 CSP_DigestDataClone	� GOTOBUTTON _Toc374330298 � PAGEREF _Toc374330298 �29��

2.3.14 CSP_DigestDataFinal	� GOTOBUTTON _Toc374330299 � PAGEREF _Toc374330299 �30��

2.3.15 CSP_GenerateMac	� GOTOBUTTON _Toc374330300 � PAGEREF _Toc374330300 �31��

2.3.16 CSP_GenerateMacInit	� GOTOBUTTON _Toc374330301 � PAGEREF _Toc374330301 �33��

2.3.17 CSP_GenerateMacUpdate	� GOTOBUTTON _Toc374330302 � PAGEREF _Toc374330302 �34��

2.3.18 CSP_GenerateMacFinal	� GOTOBUTTON _Toc374330303 � PAGEREF _Toc374330303 �35��

2.3.19 CSP_EncryptData	� GOTOBUTTON _Toc374330304 � PAGEREF _Toc374330304 �36��

2.3.20 CSP_EncryptDataInit	� GOTOBUTTON _Toc374330305 � PAGEREF _Toc374330305 �38��

2.3.21 CSP_EncryptDataUpdate	� GOTOBUTTON _Toc374330306 � PAGEREF _Toc374330306 �39��

2.3.22 CSP_EncryptDataFinal	� GOTOBUTTON _Toc374330307 � PAGEREF _Toc374330307 �41��

2.3.23 CSP_DecryptData	� GOTOBUTTON _Toc374330308 � PAGEREF _Toc374330308 �42��

2.3.24 CSP_DecryptDataInit	� GOTOBUTTON _Toc374330309 � PAGEREF _Toc374330309 �44��

2.3.25 CSP_DecryptDataUpdate	� GOTOBUTTON _Toc374330310 � PAGEREF _Toc374330310 �45��

2.3.26 CSP_DecryptDataFinal	� GOTOBUTTON _Toc374330311 � PAGEREF _Toc374330311 �47��

2.3.27 CSP_GenerateKey	� GOTOBUTTON _Toc374330312 � PAGEREF _Toc374330312 �48��

2.3.28 CSP_GenerateRandom	� GOTOBUTTON _Toc374330313 � PAGEREF _Toc374330313 �49��

2.3.29 CSP_GenerateUniqueId	� GOTOBUTTON _Toc374330314 � PAGEREF _Toc374330314 �50��

2.3.30 CSP_KeyExchGenParam	� GOTOBUTTON _Toc374330315 � PAGEREF _Toc374330315 �51��

2.3.31 CSP_KeyExchPhase1	� GOTOBUTTON _Toc374330316 � PAGEREF _Toc374330316 �52��

2.3.32 CSP_KeyExchPhase2	� GOTOBUTTON _Toc374330317 � PAGEREF _Toc374330317 �53��

2.4 Extensibility Functions	� GOTOBUTTON _Toc374330318 � PAGEREF _Toc374330318 �54��

2.4.1 CSP_PassThrough	� GOTOBUTTON _Toc374330319 � PAGEREF _Toc374330319 �54��

2.5 Module Management Functions	� GOTOBUTTON _Toc374330320 � PAGEREF _Toc374330320 �55��

2.5.1 CSP_Initialize	� GOTOBUTTON _Toc374330322 � PAGEREF _Toc374330322 �56��

2.5.2 CSP_Uninitialize	� GOTOBUTTON _Toc374330323 � PAGEREF _Toc374330323 �57��

3. CSP Structure and Management	� GOTOBUTTON _Toc374330324 � PAGEREF _Toc374330324 �59��

3.1 Introduction	� GOTOBUTTON _Toc374330325 � PAGEREF _Toc374330325 �59��

3.2 CSP Structure	� GOTOBUTTON _Toc374330326 � PAGEREF _Toc374330326 �59��

3.3 CSP Installation	� GOTOBUTTON _Toc374330327 � PAGEREF _Toc374330327 �59��

3.3.1 Global Unique Identifiers (GUIDs)	� GOTOBUTTON _Toc374330328 � PAGEREF _Toc374330328 �60��

3.4 Attaching a CSP	� GOTOBUTTON _Toc374330329 � PAGEREF _Toc374330329 �60��

3.4.1 The CSP module function table	� GOTOBUTTON _Toc374330330 � PAGEREF _Toc374330330 �60��

3.4.2 Memory management upcalls	� GOTOBUTTON _Toc374330331 � PAGEREF _Toc374330331 �60��

3.5 CSP Basic Services	� GOTOBUTTON _Toc374330332 � PAGEREF _Toc374330332 �61��

3.5.1 Function Implementation	� GOTOBUTTON _Toc374330333 � PAGEREF _Toc374330333 �61��

3.5.2 Error handling	� GOTOBUTTON _Toc374330334 � PAGEREF _Toc374330334 �61��

3.6 CSP Utility Libraries	� GOTOBUTTON _Toc374330335 � PAGEREF _Toc374330335 �61��

3.7 Attach/Detach Example	� GOTOBUTTON _Toc374330336 � PAGEREF _Toc374330336 �62��

3.7.1 DLLMain	� GOTOBUTTON _Toc374330337 � PAGEREF _Toc374330337 �62��

3.8 Cryptographic Operations Examples	� GOTOBUTTON _Toc374330338 � PAGEREF _Toc374330338 �64��

4. Appendix A. Relevant CSSM API functions	� GOTOBUTTON _Toc374330339 � PAGEREF _Toc374330339 �65��

4.1 Overview	� GOTOBUTTON _Toc374330340 � PAGEREF _Toc374330340 �65��

4.2 Function Definitions	� GOTOBUTTON _Toc374330341 � PAGEREF _Toc374330341 �65��

4.2.1 CSSM_CSP_Install	� GOTOBUTTON _Toc374330342 � PAGEREF _Toc374330342 �65��

4.2.2 CSSM_CSP_Uninstall	� GOTOBUTTON _Toc374330343 � PAGEREF _Toc374330343 �67��

4.2.3 CSSM_CSP_RegisterServices	� GOTOBUTTON _Toc374330344 � PAGEREF _Toc374330344 �68��

4.2.4 CSSM_CSP_DeregisterServices	� GOTOBUTTON _Toc374330345 � PAGEREF _Toc374330345 �69��

4.2.5 CSSM_CSP_Attach	� GOTOBUTTON _Toc374330346 � PAGEREF _Toc374330346 �70��

4.2.6 CSSM_CSP_Detach	� GOTOBUTTON _Toc374330347 � PAGEREF _Toc374330347 �71��

4.2.7 CSSM_GetError	� GOTOBUTTON _Toc374330348 � PAGEREF _Toc374330348 �72��

4.2.8 CSSM_SetError	� GOTOBUTTON _Toc374330349 � PAGEREF _Toc374330349 �73��

4.2.9 CSSM_ClearError	� GOTOBUTTON _Toc374330350 � PAGEREF _Toc374330350 �74��

��Introduction

CDSA Overview

The Common Data Security Architecture (CDSA) defines the infrastructure for a comprehensive set of security services. CDSA is an extensible architecture that provides mechanisms to manage add-in security modules which use cryptography as a computational base to build secure protocols and secure systems. Figure 1 shows the four basic layers of the Common Data Security Architecture: Applications, System Security Services, the Common Security Services Manager, and Security Add-in Modules. The Common Security Services Manager (CSSM) is the core of CDSA. It provides a means for applications to directly access security services through the CSSM security API, or to indirectly access security services via layered security services and tools implemented over the CSSM API. CSSM manages the add-in security modules and directs application calls through the CSSM API to the selected add-in module that will service the request. Add-in modules perform various aspects of security services, including:

Cryptographic Services

Trust Policy Services

Certificate Library Services

Data-Storage Library Services

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations including encryption, decryption, digital signaturing, key pair generation, random number generation, and key exchange. Trust Policy (TP) modules implement policies defined by authorities and institutions, such as VeriSign* (as a certificate authority) or MasterCard* (as an institution). Each trust policy module embodies the semantics of a trust model based on using digital certificates as credentials. Applications may use a digital certificate as an identity credential and/or an authorization credential. Certificate Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital certificates and certificate revocation lists. Data-Storage Library (DL) modules provide persistent storage for certificates and certificate revocation lists.�

�

�

�

Figure 1. The Common Data Security Architecture for all platforms.

Applications directly or indirectly select the modules used to provide security services to the application. These add-in modules will be provided by independent software and hardware vendors. The functionality of the add-in module may be extended beyond the services defined by the CSSM API by exporting additional services to applications via the CSSM pass-through mechanism.

The API calls defined for add-in modules are categorized as service operations, module management operations, and module-specific operations. Service operations include functions which perform a security operation such as encrypting data, inserting a certificate revocation list into a data-source, or verifying that a certificate is trusted. Module management functions support module installation, registration of module features and attributes, and queries to retrieve information on module availability and features. Module-specific operations are enabled in the API through pass-through functions whose behavior and use are defined by the add-in module developer.

CSSM also provides integrity services and security context management. CSSM applies the integrity check facility to itself to ensure that the currently-executing instance of CSSM code has not been tampered.

Security context management provides secured runtime caching of user-specific state information and secrets. The manager focuses on caching state information and parameters for performing cryptographic operations. Examples of secrets that must be cached during application execution include the application’s private key and the application’s digital certificate.

In summary, the CSSM provides these services through its API calls:

Certificate-based services and operations

Comprehensive, extensible SPIs for cryptographic service provider modules, trust policy modules, certificate library modules, and data storage modules

Registration and management of available cryptographic service provider modules, trust policy modules, certificate library modules, and data storage modules

Caching of keys and secrets required as part of the runtime context of a user application

Call-back functions for disk, screen, and keyboard I/O supported by the operating system

A test-and-check function to ensure CSSM integrity

Management of concurrent security operations

Cryptographic Service Provider Overview

The CSSM infrastructure doesn’t implement any cryptography. It has been termed “crypto with a hole.” The Cryptographic Services Manager provides applications with access to cryptographic functions that are implemented by Cryptographic Service Provider (CSP) modules. This achieves the objective of centralizing all the cryptography into exchangeable modules.

The Cryptographic Services Manager defines two categories of services:

Module management - installation, feature registration, and query of CSP features

Selection, initialization, and use of cryptographic operations, which are implemented by a CSP

The nature of the cryptographic functions contained in any particular CSP depends on what task the CSP was designed to perform. For example, a VISA* smartcard would be able to digitally sign credit card transactions on behalf of the card’s owner, whereas a digital employee badge would be able to authenticate a user for physical or electronic access.

A CSP can perform one or more of these cryptographic functions:

Bulk encryption

Digital signature

Cryptographic hash

Unique identification number

Random number generator

Secure storage

The Cryptographic Services Manager doesn’t assume any particular form factor for a CSP. Indeed, CSPs can be instantiated in hardware, software or both. Operationally, the distinction must be transparent. The two visible distinctions between hardware and software implementations are the degree of trust the application receives by using a given CSP, and the cost of developing that CSP. A hardware implementation should be more tamper-resistant than a software implementation. Hence a higher level of trust is achieved by the application.

Software CSPs are the default and are portable in that they can be carried as an executable file. Additionally, the modules that implement a CSP must be digitally signed (to authenticate their origin and integrity), and they should be made as tamper�resistant as possible. This requirement extends to software implementations and hardware. Multiple CSPs may be loaded and active within the CSSM at any time. A single application may use multiple CSPs concurrently. Interpreting the resulting level of trust and security is the responsibility of the application or the trust-policy module used by the application.

A small (yet significant) number of CSPs existed prior to the definition of CSSM Cryptographic API. These legacy CSPs have defined their own API for cryptographic services. These interfaces are CSP-specific, non-standard, and in general low-level, key-based interfaces. Low-level, key-based interfaces present a considerable development effort to the application developer attempting to secure an application by using those services.

The Cryptographic Services Manager defines a high-level, certificate-based API for cryptographic services to better support application development. In consideration of legacy and divergent CSPs, the Cryptographic Services Manager defines a lower-level Service Provider Interface (SPI) that more closely resembles typical CSP APIs, and provides CSP developers with a single interface to support. A CSP may or may not support multithreaded applications.

Acknowledging legacy CSPs, the CSSM architecture defines an optional adaptation layer between the Cryptographic Services Manager and a CSP. The adaptation layer allows the CSP vendor to implement a shim to map the CSSM SPI to the CSP’s existing API and to implement any additional management functions that are required for the CSP to function as an add-in module in the extensible CSSM architecture. New CSPs may support the CSSM SPI directly (without the aid of an adaptation layer).

CSSM Service Provider Interface Specification

Intended Audience

This document is intended for use by Independent Software Vendors (ISVs) who will develop their own CSPs to provide cryptographic services. These ISVs will be highly experienced software and security architects, advanced programmers, and sophisticated users. They are familiar with network operating systems and high-end cryptography. We assume that this audience is familiar with the basic capabilities and features of the protocols they are considering.

Document Organization

This document is divided into the following sections.

Section 2, Service Provider Interface, describes the functions which a CSP makes available to applications via the CSSM.

Section 3, CSP Structure and Management, describes important considerations in developing a CSP. It also gives examples of how CSP functions might be implemented.

References

BSAFE*�BSAFE Cryptographic Toolkit, RSA Data Security, Inc., Redwood City, CA��PKCS*

�The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA: RSA Data Security, Inc.��X.509�CCITT. Recommendation X.509: The Directory – Authentication Framework. 1988. CCITT stands for Comite Consultatif Internationale Telegraphique et Telphonique (International Telegraph and Telephone Consultative Committee)��Cryptography�Applied Cryptography, Second Edition Protocols, Algorithms, and Source Code in C, Bruce Schneier: John Wiley & Sons, Inc., 1996��CDSA Spec�Common Data Security Architecture Specification, Intel Architecture Labs, 1996��CSSM API�CSSM Application Programming Interface, Intel Architecture Labs, 1996��

	

Service Provider Interface

Overview

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations including encryption, decryption, digital signaturing, key pair generation, random number generation, message digest, and key exchange. Besides the traditional cryptographic functions, CSPs may provide other vendor specific services.

The range and types of services a CSP supports is at the discretion of the vendor. A registry and query mechanism is available through the CSSM for CSPs to disclose the services and details about the services. As an example, a CSP may register with the CSSM: encryption is supported, the algorithms present are DES with cipher block chaining for key sizes 40 and 56 bits, triple DES with 3 keys for key size 168 bits.

All cryptographic services requested by applications will be channeled to one of the CSPs via the CSSM. CSP vendors only need target their modules to CSSM for all security-conscious applications to have access to their product.

Calls made to a Cryptographic Service Provider (CSP) to perform cryptographic operations occur within a framework called a session, which is established and terminated by the application. The session context (simply referred to as the context) is created prior to starting CSP operations and is deleted as soon as possible upon completion of the operation. Context information is not persistent; it is not saved permanently in a file or database.

Before an application calls a CSP to perform a cryptographic operation, the application uses the query services function to determine what CSPs are installed, and what services they provide. Based on this information, the application then can determine which CSP to use for subsequent operations; the application creates a session with this CSP and performs the operation.

Depending on the class of cryptographic operations, individualized attributes are available for the cryptographic context. Besides specifying an algorithm when creating the context, the application may also initialize a session key, pass an initialization vector and/or pass padding information to complete the description of the session. A successful return value from the create function indicates the desired CSP is available. Functions are also provided to manage the created context.

When a context is no longer required, the application calls CSSMDeleteContext. Resources that were allocated for that context can be reclaimed by the operating system.

Cryptographic operations come in two flavors - a single call to perform an operation and a staged method of performing the operation. For the single call method, only one call is needed to obtain the result. For the staged method, there is an initialization call followed by one or more update calls, and ending with a completion (final) call. The result is available after the final function completes its execution for most crypto operations - staged encryption/decryption are an exception in that each update call generates a portion of the result.

�

Cryptographic Operations

CSSM_RETURN CSP_QuerySize - accepts as input a handle to a cryptographic context describing the sign, digest, message authentication code, encryption, or decryption operation. This function returns pointers to variables indicating the input size (encryption and decryption only) and output size for the specified algorithm.

CSSM_RETURN CSP_SignData

CSSM_RETURN CSP_SignDataInit

CSSM_RETURN CSP_SignDataUpdate

CSSM_RETURN CSP_SignDataFinal - accepts as input a handle to a cryptographic context describing the sign operation and the data to operate on. The result of the completed sign operation is returned in a CSSM_DATA structure.

CSSM_BOOL CSP_VerifyData

CSSM_RETURN CSP_VerifyDataInit

CSSM_RETURN CSP_VerifyDataUpdate

CSSM_BOOL CSP_VerifyDataFinal - accepts as input a handle to a cryptographic context describing the verify operation and the data to operate on. The result of the completed verify operation is a CSSM_TRUE or CSSM_FALSE.

CSSM_RETURN CSP_DigestData

CSSM_RETURN CSP_DigestDataInit

CSSM_RETURN CSP_DigestDataUpdate

CSSM_RETURN CSP_DigestDataFinal- accepts as input a handle to a cryptographic context describing the digest operation and the data to operate on. The result of the completed digest operation is returned in a CSSM_DATA structure.

CSSM_CC_HANDLE CSP_DigestDataClone - accepts as input a handle to a cryptographic context describing the digest operation. A handle to another cryptographic context is created with similar information and intermediate result as described by the first context.

CSSM_RETURN CSP_GenerateMac

CSSM_RETURN CSP_GenerateMacInit

CSSM_RETURN CSP_GenerateMacUpdate

CSSM_RETURN CSP_GenerateMacFinal- accepts as input a handle to a cryptographic context describing the MAC operation and the data to operate on. The result of the completed MAC operation is returned in a CSSM_DATA structure.

CSSM_RETURN CSP_EncryptData

CSSM_RETURN CSP_EncryptDataInit

CSSM_RETURN CSP_EncryptDataUpdate

CSSM_RETURN CSP_EncryptDataFinal - accepts as input a handle to a cryptographic context describing the encryption operation and the data to operate on. The encrypted data is returned in CSSM_DATA structures.

CSSM_RETURN CSP_DecryptData

CSSM_RETURN CSP_DecryptDataInit

CSSM_RETURN CSP_DecryptDataUpdate

CSSM_RETURN CSP_DecryptDataFinal- accepts as input a handle to a cryptographic context describing the decryption operation and the data to operate on. The decrypted data is returned in CSSM_DATA structures.

CSSM_RETURN CSP_GenerateKey - accepts as input a handle to a cryptographic context describing the generate key operation. The key is returned in a CSSM_KEY structure.

CSSM_RETURN CSP_GenerateRandom - accepts as input a handle to a cryptographic context describing the generate random operation. The random data is returned in a CSSM_DATA structure.

CSSM_RETURN CSP_GenerateUniqueId- accepts as input a handle to a cryptographic context describing the generate unique identifier operation. The unique identifier is returned in a CSSM_DATA structure.

CSSM_RETURN CSP_KeyExchGenParam

CSSM_RETURN CSP_KeyExchPhase1

CSSM_RETURN CSP_KeyExchPhase2- accepts as input a handle to a cryptographic context describing the key exchange operation. The intermediate results are returned in a CSSM_DATA structure. For the exchange to be successful, it has to complete phase 2 of the sequence.

Extensibility Functions

CSSM_RETURN CSP_PassThrough () - This performs the CSP module-specific function indicated by the operation ID. The operation ID specifies an operation which the CSP has exported for use by an application or module. Such operations should be specific to the key format of the private keys stored in the CSP module.

Module Management Functions

CSSM_BOOL CSP_CheckVersion () - This function checks whether the version of the attached CSP module is compatible with the input version number. It is called by the CSSM Core as part of the CSSM_CSP_Attach routine. It is called immediately after the CSP module’s function table is registered with CSSM. If the versions are incompatible, a CSSM_INCOMPATIBLE_VERSION error is set, the CSP module is detached, and a NULL handle is returned to the calling application.

Data Structures

This section describes the data structures which may be passed to or returned from a CSP function. They will be used by applications to prepare data to be passed as input parameters into CSSM API function calls which will be passed without modification to the appropriate CSP. The CSP is then responsible for interpreting them and returning the appropriate data structure to the calling application via CSSM. These data structures are defined in the header file cssm.h distributed with CSSM.

CSSM_CSP_HANDLE

The CSSM_CSP_HANDLE is used to identify the association between an application thread and an instance of a CSP module. It is assigned when an application causes CSSM to attach to a CSP. It is freed when an application causes CSSM to detach from a CSP. The application uses the CSSM_CSP_HANDLE with every CSP function call to identify the targeted CSP. The CSP uses the CSSM_CSP_HANDLE to identify the appropriate application’s memory management routines when allocating memory on the application’s behalf.

typedef uint32 CSSM_CSP_HANDLE /* Cryptographic Service Provider Handle */

CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous memory. This memory must be allocated and freed using the memory management routines provided by the calling application via CSSM.

typedef struct cssm_data{

 uint32 Length; /* in bytes */

 uint8 *Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definition:

Length - length of the data buffer in bytes

Data - pointer to a data buffer

CSSM_KEYHEADER

typedef struct CSSM_KeyHeader{

 CSSM_GUID CspId;

 uint32 BlobType;

 uint32 FormatVersion;

 uint32 AlgorithmId;

 uint32 AlgorithmMode;

 uint32 SizeInBits; /* in bits */

 uint32 WrapMethod;

 uint32 Reserved;

} CSSM_KEYHEADER, *CSSM_KEYHEADER_PTR

�

Definition:

CspId - Globally unique Id of the CSP that generated the key (if appropriate).

BlobType - Key blob type. The key blob types currently-defined are CSSM_SESSION_KEY_BLOB, CSSM_RSA_PUBLIC_KEY_BLOB, CSSM_RSA_PRIVATE_KEY_BLOB, CSSM_DSA_PUBLIC_KEY_BLOB, and CSSM_DSA_PRIVATE_KEY_BLOB.

FormatVersion - Version number of the key blob format. Current value is 0x01.

AlgorithmId - Algorithm identifier for the key contained by the key blob. Valid identifier values are indicated in Table 3 below.

AlgorithmMode - Algorithm mode for the key contained by the key blob. Valid algorithm mode values are indicated in Table 4 below. The identified list of algorithm modes apply only to symmetric algorithms.

SizeInBits - Size of the key in bits.

WrapMethod - Key wrapping scheme. The key wrapping methods currently-defined are CSSM_KEYWRAP_NONE, CSSM_KEYWRAP_MD5WithDES, CSSM_KEYWRAP_MD5WithIDEA, CSSM_KEYWRAP_SHAWithDES, and CSSM_KEYWRAP_SHAWithIDEA.

Reserved - Reserved for future use.

CSSM_KEYBLOB

This is the data structure which contains both information about the key and the key data itself. This structure allows the passage of keys as one contiguous unit of data.

typedef struct cssm_keyblob{

CSSM_KEYHEADER KeyHeader;

uint8 KeyData[MAX_KEYBLOB_LEN];

} CSSM_KEYBLOB, *CSSM_KEYBLOB_PTR;

Definition:

KeyHeader - Key header for the key.

KeyData - Data representation of the key.

CSSM_KEY

typedef struct cssm_key{

 uint32 KeyBlobLength;

 CSSM_KEYBLOB_PTR KeyBlob;

} CSSM_KEY, *CSSM_KEY_PTR

Definition:

KeyBlobLength - Length of the key blob.

KeyBlob - Pointer to a key blob which holds all of the data associated with the key.

CSSM_CRYPTO_DATA

typedef struct cssm_crypto_data {

	CSSM_DATA_PTR Param;

	CSSM_CALLBACK Callback;	

}CSSM_CRYPTO_DATA, *CSSM_CRYPTO_DATA_PTR

Definition:

Param - A pointer to the parameter data and its size in bytes.

Callback - An optional call back routine for the add-in modules to obtain the parameter.

CSSM_CSPINFO

typedef struct cssm_cspinfo {

	uint32 VerMajor;

	uint32 VerMinor;

	CSSM_BOOL ExportFlag;

	char *Vendor;

	char *Description;

	uint32 NumberOfContexts;

	CSSM_CONTEXT_PTR Contexts;

}CSSM_CSPINFO, *CSSM_CSPINFO_PTR

Definition:

VerMajor - Major version number.

VerMinor - Minor version number.

ExportFlag - Exportable flag.

Vendor - CSP Vendor name.

Description - Detailed description filed for the CSP.

NumberOfContexts - Number of contexts.

Contexts - Pointer to a CSSM_CONTEXT structure that describes the context and its attributes.

CSSM_SPI_FUNC_TBL

This data structure contains function pointers to the calling application’s memory management routines. These routines will be used by the CL module to allocate and free any memory which belongs to or will belong to the application.

typedef struct cssm_spi_func_tbl {

 void *(*malloc_func) (uint32, size_t);

 void (*free_func) (uint32, void *);

 void *(*realloc_func) (uint32, void *, size_t);

}CSSM_SPI_FUNC_TBL, *CSSM_SPI_FUNC_TBL_PTR;

�

CSSMContextAttributes

typedef struct cssm_context_attribute{

 uint32 AttributeType; /* attribute type */

 uint32 AttributeLength; /* length of attribute */

 union {

 uint8 *Description;

 uint32 *Length;

 void *Pointer;

 CSSM_CRYPTO_DATA_PTR SeedPassPhrase;

 CSSM_KEY_PTR Key;

 CSSM_DATA_PTR Data;

 }Attribute; /* data that describes attribute */ }CSSM_CONTEXT_ATTRIBUTE, *CSSM_CONTEXT_ATTRIBUTE_PTR

Definition:

AttributeType - An identifier describing the type of attribute.

Table � SEQ Table * ARABIC �1�. Attribute types

Value�Description��CSSM_ATTRIBUTE_NONE�No attribute��CSSM_ATTRIBUTE_DESCRIPTION�Description of attribute��CSSM_ATTRIBUTE_KEY�Key Data��CSSM_ATTRIBUTE_INIT_VECTOR�Initialization vector ��CSSM_ATTRIBUTE_SALT	�Salt ��CSSM_ATTRIBUTE_PADDING�Padding information��CSSM_ATTRIBUTE_RANDOM�Random data��CSSM_ATTRIBUTE_SEED	�Seed ��CSSM_ATTRIBUTE_PASSPHRASE�Pass phrase ��CSSM_ATTRIBUTE_CUSTOM�Custom data ��CSSM_ATTRIBUTE_KEY_LENGTH�Key length (specified in bits)��CSSM_ATTRIBUTE_MODULUS_LEN�Modulus length (specified in bits)��CSSM_ATTRIBUTE_INPUT_SIZE�Input size��CSSM_ATTRIBUTE_OUTPUT_SIZE�Output size��CSSM_ATTRIBUTE_ROUNDS�Number of runs (or rounds)��

AttributeLength - Length of the attribute data.

Attribute - Attribute data. Depending on the AttributeType, the attribute data represents different information.

�CSSMContext

typedef uint32 CSSM_CC_HANDLE /* Cryptographic Context Handle */

typedef CSSM_CONTEXT CSSM_CONTEXTINFO

typedef struct cssm_context {

 uint32 ContextType; /* context type */

 uint32 AlgorithmType; /* algorithm type of context */

 uint32 Mode; /* for encryption only */

 uint32 Reserve; /* reserved for future use */

 uint32 NumberOfAttributes; /* number of attributes associated with context */

 CSSM_CONTEXT_ATTRIBUTE_PTR ContextAttributes; /* pointer to attributes */

} CSSM_CONTEXT, *CSSM_CONTEXT_PTR

Definitions:

ContextType - An identifier describing the type of services for this context.

Table � SEQ Table * ARABIC �2�. Context types

Value�Description��CSSM_ALGCLASS_NONE�Null Context type��CSSM_ALGCLASS_CUSTOM�Custom Algorithms��CSSM_ALGCLASS_KEYXCH�Key Exchange Algorithms��CSSM_ALGCLASS_SIGNATURE�Signature Algorithms��CSSM_ALGCLASS_SYMMETRIC�Symmetric Encryption Algorithms��CSSM_ALGCLASS_DIGEST�Message Digest Algorithms��CSSM_ALGCLASS_RANDOMGEN�Random Number Generation Algorithms��CSSM_ALGCLASS_UNIQUEGEN�Unique ID Generation Algorithms��CSSM_ALGCLASS_MAC�Message Authentication Code Algorithms��CSSM_ALGCLASS_ASYMMETRIC�Asymmetric Encryption Algorithms��CSSM_ALGCLASS_KEYGEN�Key Generation Algorithms��

AlgorithmType - An ID number describing the algorithm to be used.

Table � SEQ Table * ARABIC �3�. Algorithms for a session context.

Value�Description��CSSM_ALGID_NONE�Null algorithm��CSSM_ALGID_CUSTOM�Custom algorithm��CSSM_ ALGID_DH �Diffie Hellman key exchange algorithm��CSSM_ ALGID_PH �Pohlig Hellman key exchange algorithm��CSSM_ ALGID_KEA�Key Exchange Algorithm��CSSM_ ALGID_MD2�MD2 hash algorithm��CSSM_ALGID_MD4�MD4 hash algorithm��CSSM_ ALGID_MD5�MD5 hash algorithm��CSSM_ ALGID_SHA1�Secure Hash Algorithm��CSSM_ALGID_NHASH�N-Hash algorithm��CSSM_ALGID_HAVAL�HAVAL hash algorithm (MD5 variant)��CSSM_ALGID_RIPEMD	�RIPE-MD hash algorithm (MD4 variant - developed for the European Community’s RIPE project)��CSSM_ALGID_IBCHASH �IBC-Hash (keyed hash algorithm or MAC)��CSSM_ALGID_RIPEMAC�RIPE-MAC��CSSM_ALGID_DES �Data Encryption Standard block cipher��CSSM_ALGID_DESX �DESX block cipher (DES variant from RSA)��CSSM_ALGID_RDES �RDES block cipher (DES variant)��CSSM_ALGID_3DES_3KEY�Triple-DES block cipher (with 3 keys)��CSSM_ALGID_3DES_2KEY�Triple-DES block cipher (with 2 keys)��CSSM_ALGID_3DES_1KEY�Triple-DES block cipher (with 1 key)��CSSM_ALGID_IDEA �IDEA block cipher��CSSM_ALGID_RC2 �RC2 block cipher ��CSSM_ALGID_RC5 �RC5 block cipher��CSSM_ ALGID_RC4 �RC4 stream cipher��CSSM_ ALGID_SEAL�SEAL stream cipher ��CSSM_ALGID_CAST�CAST block cipher ��CSSM_ALGID_BLOWFISH �BLOWFISH block cipher��CSSM_ALGID_SKIPJACK�Skipjack block cipher��CSSM_ALGID_LUCIFER �Lucifer block cipher ��CSSM_ALGID_MADRYGA �Madryga block cipher��CSSM_ALGID_FEAL �FEAL block cipher ��CSSM_ALGID_REDOC	 �REDOC 2 block cipher��CSSM_ALGID_REDOC3�REDOC 3 block cipher��CSSM_ALGID_LOKI�LOKI block cipher��CSSM_ALGID_KHUFU �KHUFU block cipher ��CSSM_ALGID_KHAFRE	 �KHAFRE block cipher��CSSM_ALGID_MMB�MMB block cipher (IDEA variant)��CSSM_ALGID_GOST�GOST block cipher ��CSSM_ALGID_SAFER �SAFER K-64 block cipher��CSSM_ALGID_CRAB�CRAB block cipher��CSSM_ALGID_RSA�RSA public key cipher��CSSM_ALGID_DSA �Digital Signature Algorithm��CSSM_ ALGID_MD5WithRSA�MD5/RSA signature algorithm��CSSM_ALGID_MD2WithRSA�MD2/RSA signature algorithm��CSSM_ALGID_ElGamal�ElGamal signature algorithm��CSSM_ALGID_MD2Random�MD2-based random numbers��CSSM_ALGID_MD5Random�MD5-based random numbers��CSSM_ALGID_SHARandom�SHA-based random numbers��CSSM_ALGID_DESRandom�DES-based random numbers���

Mode - An algorithm mode - values identified in table below apply only to symmetric algorithms.

Table 4. Modes of algorithms.

Value�Description��CSSM_ALGMODE_NONE�Null Algorithm mode��CSSM_ALGMODE_CUSTOM�Custom mode��CSSM_ALGMODE_ECB�Electronic Code Book��CSSM_ALGMODE_ECBPad�ECB with padding��CSSM_ALGMODE_CBC�Cipher Block Chaining��CSSM_ALGMODE_CBC_IV8�CBC with Initialization Vector of 8 bytes��CSSM_ALGMODE_CBCPadIV8�CBC with padding and Initialization Vector of 8 bytes��CSSM_ALGMODE_CFB�Cipher FeedBack��CSSM_ALGMODE_CFB_IV8�CFB with Initialization Vector of 8 bytes��CSSM_ALGMODE_OFB�Output FeedBack��CSSM_ALGMODE_OFB_IV8�OFB with Initialization Vector of 8 bytes��CSSM_ALGMODE_COUNTER�Counter��CSSM_ALGMODE_BC�Block Chaining��CSSM_ALGMODE_PCBC�Propagating CBC��CSSM_ALGMODE_CBCC�CBC with Checksum��CSSM_ALGMODE_OFBNLF�OFB with NonLinear Function��CSSM_ALGMODE_PBC�Plaintext Block Chaining ��CSSM_ALGMODE_PFB	�Plaintext FeedBack ��CSSM_ALGMODE_CBCPD�CBC of Plaintext Difference��

NumberOfAttributes - Number of attributes associated with this service.

ContextAttributes - Pointer to data that describes the attributes.

�Cryptographic Operations

CSP_QuerySize

CSSM_RETURN CSSMSPI CSP_QuerySize (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�uint32 SizeOfInput,�uint32 * ReqSizeOutBlock)

This function queries for the size of the output data for Signature, Message Digest, and Message Authentication Code context types and queries for the algorithm block size or the size of the output data for encryption and decryption context types. For encryption, the total size of all output buffers must always be a multiple of the output block size. This function can also be used to query the output size requirements for the intermediate steps of a staged cryptographic operation (for example, CSP_EncryptDataUpdate and CSP_DecryptDataUpdate). There may be algorithm-specific and token-specific rules restricting the lengths of data following data update calls.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

SizeOfInput (input)

This parameter currently applies only to encrypt and decrypt context types. If this parameter is 0, the function returns the algorithm block size. Otherwise, the size of the output data is returned.

ReqSizeOutBlock (output)

Pointer to a uint32 variable where the function returns the size of the output in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_NO_METHOD�Service not provided.��CSSM_CSP_QUERY_SIZE_FAILED�Unable to query size��

See Also

CSP_EncryptData, CSP_EncryptDataUpdate, CSP_DecryptData, CSP_DecryptDataUpdate, CSP_SignData, CSP_VerifyData, CSP_DigestData, CSP_GenerateMac

�CSP_SignData

CSSM_RETURN CSSMSPI CSP_SignData (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�CSSM_DATA_PTR Signature)

This function signs data using the private key associated with the public key specified in the context.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the data to be signed.

DataBufCount (input)

The number of DataBufs to be signed.

Signature (output)

A pointer to the CSSM_DATA structure for the signature.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_INVALID_CALLBACK�Invalid call back function��CSSM_CSP_SIGN_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_SIGN_NO_METHOD�Service not provided.��CSSM_CSP_SIGN_FAILED�Sign failed��CSSM_CSP_PRIKEY_NOT_FOUND�Cannot find the corresponding private key��CSSM_CSP_PASSWORD_INCORRECT�Password incorrect��CSSM_CSP_PASSWORD_NO_PARAM�No password or callback function provided��CSSM_CSP_UNWRAP_FAILED�Unwrapped the private key failed��CSSM_CSP_NOT_ENOUGH_BUFFER�The output buffer is not big enough��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_VECTOROFBUFS_UNSUPPORTED�Supports only a single buffer of input��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_VerifyData, CSP_SignDataInit, CSP_SignDataUpdate, CSP_SignDataFinal

CSP_SignDataInit

CSSM_RETURN CSSMSPI CSP_SignDataInit (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context)

This function initializes the staged sign data function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_SIGN_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_SIGN_NO_METHOD�Service not provided.��CSSM_CSP_SIGN_INIT_FAILED�Staged sign initialize function failed��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��See Also

CSP_SignData, CSP_SignDataUpdate, CSP_SignDataFinal

CSP_SignDataUpdate

CSSM_RETURN CSSMSPI CSP_SignDataUpdate (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

This function updates the data for the staged sign data function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the data be signed.

DataBufCount (input)

The number of DataBufs to be signed.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_SIGN_UPDATE_FAILED�Staged sign update function failed��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_SignData, CSP_SignDataInit, CSP_SignDataFinal

CSP_SignDataFinal

CSSM_RETURN CSSMSPI CSP_SignDataFinal (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR Signature)

This function completes the final stage of the sign data function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Signature (output)

A pointer to the CSSM_DATA structure for the signature.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_SIGN_FINAL_FAILED�Staged sign final function failed��CSSM_NOT_ENOUGH_BUFFER�The output buffer is not big enough��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_SignData, CSP_SignDataInit, CSP_SignDataUpdate

CSP_VerifyData

CSSM_BOOL CSSMSPI CSP_VerifyData (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�const CSSM_DATA_PTR Signature)

This function verifies the input data against the provided signature.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the data be verified.

DataBufCount (input)

The number of DataBufs to be verified.

Signature (input)

A pointer to a CSSM_DATA structure which contains the signature and the size of the signature.

Return Value

A CSSM_TRUE return value signifies the signature was successfully verified. When CSSM_FALSE is returned, either the signature was not successfully verified or an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_VERIFY_NO_METHOD�Service not provided.��CSSM_CSP_VERIFY_SIGNATURE_BAD�Signature is bad��CSSM_CSP_VERIFY_FAILED�Unable to perform verification on data��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_VECTOROFBUFS_UNSUPPORTED�Supports only a single buffer of input��

See Also

CSP_SignData, CSP_VerifyDataInit, CSP_VerifyDataUpdate, CSP_VerifyDataFinal

CSP_VerifyDataInit

CSSM_RETURN CSSMSPI CSP_VerifyDataInit (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR Signature)

This function initializes the staged verify data function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Signature (input)

A pointer to a CSSM_DATA structure which contains the starting address for the signature to verify against and the length of the signature in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_VERIFY_NO_METHOD�Service not provided.��CSSM_CSP_VERIFY_INIT_FAILED�Staged verify initialize function failed��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_VerifyDataUpdate, CSP_VerifyDataFinal, CSP_VerifyData

CSP_VerifyDataUpdate

CSSM_RETURN CSSMSPI CSP_VerifyDataUpdate (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

This function updates the data to the staged verify data function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the data be verified.

DataBufCount (input)

The number of DataBufs to be verified.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_VERIFY_UPDATE_FAILED�Staged verify update function failed��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_VerifyData, CSP_VerifyDataInit, CSP_VerifyDataFinal

CSP_VerifyDataFinal

CSSM_BOOL CSSMSPI CSP_VerifyDataFinal (CSSM_CSP_HANDLE CSPHandle,

CSSM_CC_HANDLE CCHandle)

This function finalizes the staged verify data function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Return Value

A CSSM_TRUE return value signifies the signature successfully verified. When CSSM_FALSE is returned, either the signature was not successfully verified or an error has occurred; use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_VERIFY_FINAL_FAILED�Staged verify final function failed��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_VerifyData, CSP_VerifyDataInit, CSP_VerifyDataUpdate

�CSP_DigestData

CSSM_RETURN CSSMSPI CSP_DigestData (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�CSSM_DATA_PTR Digest)

This function computes a message digest for the supplied data.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)

The number of DataBufs.

Digest (output)

A pointer to the CSSM_DATA structure for the message digest.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_DIGEST_NO_METHOD�Service not provided.��CSSM_CSP_DIGEST_FAILED�Unable to perform digest on data��CSSM_CSP_VECTOROFBUFS_UNSUPPORTED�Supports only a single buffer of input��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer this is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_DigestDataInit, CSP_DigestDataUpdate, CSP_DigestDataFinal, CSP_DigestDataClone

�CSP_DigestDataInit

CSSM_RETURN CSSMSPI CSP_DigestDataInit (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context)

This function initializes the staged message digest function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_DIGEST_NO_METHOD�Service not provided.��CSSM_CSP_DIGEST_INIT_FAILED�Unable to perform digest initialization��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_DigestData, CSP_DigestDataUpdate, CSP_DigestDataClone, CSP_DigestDataFinal

�CSP_DigestDataUpdate

CSSM_RETURN CSSMSPI CSP_DigestDataUpdate (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

This function updates the staged message digest function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)

The number of DataBufs.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DIGEST_UPDATE_FAILED�Unable to perform digest on data��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_DigestData, CSP_DigestDataInit, CSP_DigestDataClone, CSP_DigestDataFinal

�CSP_DigestDataClone

CSSM_CC_HANDLE CSSMSPI CSP_DigestDataClone (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE oldCCHandle,�CSSM_CC_HANDLE newCCHandle)

This function clones a given staged message digest context with its cryptographic attributes and intermediate result.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

oldCCHandle (input)

The old handle that describes the context of a staged message digest operation.

newCCHandle (output)

The new handle that describes the cloned context of a staged message digest operation.

Return Value

The pointer to a user-allocated CSSM_CC_HANDLE for holding the cloned context handle return from CSSM. If the pointer is NULL, an error has occured; use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DIGEST_CLONE_FAILED�Unable to clone the digest context��

Comments

When a digest context is cloned, a new context is created with data associated with the parent context. Changes made to the parent context after calling this function will not be reflected in the cloned context. The cloned context could be used with the CSP_DigestDataUpdate and CSP_DigestDataFinal functions.

See Also

CSP_DigestData, CSP_DigestDataInit, CSP_DigestDataUpdate, CSP_DigestDataFinal

�CSP_DigestDataFinal

CSSM_RETURN CSSMSPI CSP_DigestDataFinal (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR Digest)

This function finalizes the staged message digest function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Digest (output)

A pointer to the CSSM_DATA structure for the message digest.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DIGEST_FINAL_FAILED�Staged digest final failed��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_DigestData, CSP_DigestDataInit, CSP_DigestDataUpdate, CSP_DigestDataClone

�CSP_GenerateMac

CSSM_RETURN CSSMSPI CSP_GenerateMac (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount,�CSSM_DATA_PTR Mac)

This function generates a message authentication code for the supplied data.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)

The number of DataBufs.

Mac (output)

A pointer to the CSSM_DATA structure for the message authentication code.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_MAC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_MAC_NO_METHOD�Service not provided.��CSSM_CSP_MAC_FAILED�Unable to perform mac on data��CSSM_CSP_VECTOROFBUFS_UNSUPPORTED�Supports only a single buffer of input��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_GenerateMacInit, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

�CSP_GenerateMacInit

CSSM_RETURN CSSMSPI CSP_GenerateMacInit (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context)

This function initializes the staged message authentication code function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_MAC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_MAC_NO_METHOD�Service not provided.��CSSM_CSP_MAC_INIT_FAILED�Unable to perform staged mac init��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_GenerateMac, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

�CSP_GenerateMacUpdate

CSSM_RETURN CSSMSPI CSP_GenerateMacUpdate (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR DataBufs,�uint32 DataBufCount)

This function updates the staged message authentication code function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

DataBufs (input)

A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)

The number of DataBufs.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_MAC_UPDATE_FAILED�Unable to perform staged mac update��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��

See Also

CSP_GenerateMac, CSP_GenerateMacInit, CSP_GenerateMacFinal

�CSP_GenerateMacFinal

CSSM_RETURN CSSMSPI CSP_GenerateMacFinal (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Mac (output)

A pointer to the CSSM_DATA structure for the message authentication code.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_MAC_FINAL_FAILED�Unable to perform staged mac final��CSSM_CSP_STAGED_OPERATION_UNSUPPORTED�Supports only single stage operations��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_GenerateMac, CSP_GenerateMacInit, CSP_GenerateMacUpdate

�CSP_EncryptData

CSSM_RETURN CSSM_SPI CSP_EncryptData (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�uint32 *bytesEncrypted,�CSSM_DATA_PTR RemData)

This function encrypts the supplied data using information in the context. The CSP_QuerySize function can be used to estimate the output buffer size required.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ClearBufs (input)

A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)

The number of ClearBufs.

CipherBufs (output)

A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)

The number of CipherBufs.

bytesEncrypted (output)

A pointer to uint32 for the size of the encrypted data in bytes.

RemData (output)

A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_ENC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_ENC_NO_METHOD�Service not provided.��CSSM_CSP_ENC _FAILED�Unable to encrypt data��CSSM_CSP_ENC_BAD_IV_LENGTH���CSSM_CSP_ENC_BAD_KEY_LENGTH���Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be done by supplying the same input and output buffers.

See Also

CSP_QuerySize, CSP_DecryptData, CSP_EncryptDataInit, CSP_EncryptDataUpdate, CSP_EncryptDataFinal

�CSP_EncryptDataInit

CSSM_RETURN CSSMSPI CSP_EncryptDataInit (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context)

This function initializes the staged encrypt function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_ENC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_ENC_NO_METHOD���CSSM_CSP_ENC_INIT_FAILED�Unable to perform encrypt initialization��CSSM_CSP_ENC_BAD_IV_LENGTH���CSSM_CSP_ENC_BAD_KEY_LENGTH���

See Also

CSP_EncryptData, CSP_EncryptDataUpdate, CSP_EncryptDataFinal

�CSP_EncryptDataUpdate

CSSM_RETURN CSSMSPI CSP_EncryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�uint32 *bytesEncrypted)

This function updates the staged encrypt function. The CSP_QuerySize function can be used to estimate the output buffer size required for each update call. There may be algorithm-specific and token-specific rules restricting the lengths of data in CSP_EncryptUpdate calls.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

ClearBufs (input)

A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)

The number of ClearBufs.

CipherBufs (output)

A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)

The number of CipherBufs.

bytesEncrypted (output)

A pointer to uint32 for the size of the encrypted data in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_ENC_UPDATE_FAILED�Unable to encrypt data��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be done by supplying the same input and output buffer.

See Also

CSP_QuerySize, CSP_EncryptData, CSP_EncryptDataInit, CSP_EncryptDataFinal

�CSP_EncryptDataFinal

CSSM_RETURN CSSMSPI CSP_EncryptDataFinal (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR RemData)

This function finalizes the staged encrypt function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

RemData (output)

A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_ENC_FINAL_FAILED�Unable to encrypt data��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be done by supplying the same input and output buffers.

See Also

CSP_EncryptData, CSP_EncryptDataInit, CSP_EncryptDataUpdate

�CSP_DecryptData

CSSM_RETURN CSSMSPI CSP_DecryptData (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�const CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�uint32 *bytesDecrypted,�CSSM_DATA_PTR RemData)

This function decrypts the supplied encrypted data. The CSP_QuerySize function can be used to estimate the output buffer size required.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

CipherBufs (input)

A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)

The number of CipherBufs.

ClearBufs (output)

A pointer to one or more CSSM_DATA structures for the decrypted data.

ClearBufCount (input)

The number of ClearBufs.

bytesDecrypted (output)

A pointer to uint32 for the size of the decrypted data in bytes.

RemData (output)

A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DEC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_DEC_NO_METHOD�Service not provided.��CSSM_CSP_DEC _FAILED�Unable to encrypt data��CSSM_CSP_DEC_BAD_IV_LENGTH���CSSM_CSP_DEC_BAD_KEY_LENGTH���Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be done by supplying the same input and output buffer.

See Also

CSP_QuerySize, CSP_EncryptData, CSP_DecryptDataInit, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

�CSP_DecryptDataInit

CSSM_RETURN CSSMSPI CSSM_CSP_DecryptDataInit (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context)

This function initializes the staged decrypt function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DEC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_DEC_NO_METHOD�Service not provided.��CSSM_CSP_DEC_INIT_FAILED�Unable to perform decrypt initialization��CSSM_CSP_DEC_BAD_IV_LENGTH���CSSM_CSP_DEC_BAD_KEY_LENGTH���

See Also

CSP_DecryptData, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

�CSP_DecryptDataUpdate

CSSM_RETURN CSSMSPI CSP_DecryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR CipherBufs,�uint32 CipherBufCount,�CSSM_DATA_PTR ClearBufs,�uint32 ClearBufCount,�uint32 *bytesDecrypted)

This function updates the staged decrypt function. The CSP_QuerySize function can be used to estimate the output buffer size required for each update call. There may be algorithm-specific and token-specific rules restricting the lengths of data in CSP_DecryptUpdate calls.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

CipherBufs (input)

A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)

The number of CipherBufs.

ClearBufs (output)

A pointer to one or more CSSM_DATA structures for the decrypted data. The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate spaces, application has to free the memory in this case. If this is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

ClearBufCount (input)

The number of ClearBufs.

bytesDecrypted (output)

A pointer to uint32 for the size of the decrypted data in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_INVALID_DATA_COUNT�Invalid data count��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DEC_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_DEC_NO_METHOD�Service not provided.��CSSM_CSP_DEC _UPDATE_FAILED�Staged encryption update failed��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be done by supplying the same input and output buffers.

See Also

CSP_QuerySize, CSP_DecryptData, CSP_DecryptDataInit, CSP_DecryptDataFinal

�CSP_DecryptDataFinal

CSSM_RETURN CSSMSPI CSP_DecryptDataFinal (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�CSSM_DATA_PTR RemData)

This function finalizes the staged decrypt function.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

RemData (output)

A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_DEC_FINAL_FAILED�Stages encrypt final failed��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be done by supplying the same input and output buffers.

See Also

CSP_DecryptData, CSP_DecryptDataInit, CSP_DecryptDataUpdate

�CSP_GenerateKey

CSSM_RETURN CSSMSPI CSP_GenerateKey (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�CSSM_KEY_PTR Key)

This function generates a symmetric key or asymmetric key pair. In the case of a symmetric key, this function returns the symmetric key. In the case of an asymmetric key pair, this function returns the public key and saves the wrapped private key in the CSP associated with the context.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Key (output)

Pointer to CSSM_ KEY structure used to obtain the key.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_KEYGEN_NO_METHOD�Service not provided.��CSSM_CSP_KEYGEN_FAILED�Unable to generate key��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_GenerateRandom

�CSP_GenerateRandom

CSSM_RETURN CSSMSPI CSP_GenerateRandom (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�CSSM_DATA_PTR RandomNumber)

This function generates random data.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

RandomNumber (output)

Pointer to CSSM_DATA structure used to obtain the random number and the size of the random number in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_RNG_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_RNG_NO_METHOD�Service not provided.��CSSM_CSP_RNG_FAILED�Unable to generate random number��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

�CSP_GenerateUniqueId

CSSM_RETURN CSSMSPI CSP_GenerateUniqueId (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�CSSM_DATA_PTR UniqueID)

This function generates unique identification code.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

UniqueId (output)

Pointer to CSSM_DATA structure used to obtain the unique ID and the size of the unique ID in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_UIDG_UNKNOWN_ALGORITHM�Unknown algorithm��CSSM_CSP_UIDG_NO_METHOD�Service not provided.��CSSM_CSP_UIDG_FAILED�Unable to generate unique id��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

�CSP_KeyExchGenParam

CSSM_RETURN CSSMSPI CSP_KeyExchGenParam (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�uint32 ParamBits,�CSSM_DATA_PTR Param)

This function generates key exchange parameter data for CSP_KeyExchPhase1.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ParamBits (input)

Used to generate parameters for the key exchange algorithm (for example, Diffie-Hellman).

Param (output)

Pointer to CSSM_DATA structure used to obtain the key exchange parameter and the size of the key exchange parameter in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_KEYEXCH_GENPARAM_FAIL�Unable to generate exchange param data��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_KeyExchPhase1, CSP_KeyExchPhase2

�CSP_KeyExchPhase1

CSSM_RETURN CSSMSPI CSP_KeyExchPhase1 (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR Param,�CSSM_DATA_PTR Param1)

Phase 1 of the key exchange operation - generates data for CSP_KeyExchPhase2.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Param (input)

Param is the return value from the CSP_KeyExchGenParam function.

Param1 (output)

Pointer to CSSM_DATA structure used to obtain the Phase 1 output.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_KEYEXCH_PHASE1_FAILED�Unable to generate to stage key exchange��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_KeyExchGenParam, CSP_KeyExchPhase2

�CSP_KeyExchPhase2

CSSM_RETURN CSSMSPI CSP_KeyExchPhase2 (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_DATA_PTR Param1,�CSSM_KEY_PTR ExchangedKey)

Phase 2 of the key exchange operation.

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed information.

Param1 (input)

Param is the return value from the CSP_KeyExchPhase1 function.

ExchangedKey (output)

Pointer to CSSM_KEY structure used to obtain the exchanged key blob.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_KEYEXCH_PHASE2_FAILED�Unable to stage key exchange ��Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s memory allocation functions to allocate space, application has to free the memory in this case. If the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also

CSP_KeyExchPhase1, CSP_KeyExchGenParam

�

Extensibility Functions

The CSP_PassThrough function is provided to allow CSP developers to extend the crypto functionality of the CSSM API. Because it is only exposed to CSSM as a function pointer, its name internal to the CSP can be assigned at the discretion of the CSP module developer. However, its parameter list and return value must match what is shown below. The error codes given in this section constitute the generic error codes which may be used by all CSPs to describe common error conditions. CSP developers may also define their own module-specific error codes, as described in Section 3.5.2.

CSP_PassThrough

CSSM_RETURN CSSMSPI CSP_PassThrough (CSSM_CSP_HANDLE CSPHandle,�CSSM_CC_HANDLE CCHandle,�const CSSM_CONTEXT_PTR Context,�uint32 PassThroughId,�const CSSM_DATA_PTR InData,�CSSM_DATA_PTR OutData)

Parameters

CSPHandle (input)

The handle that describes the add-in cryptographic service provider module used to perform up calls to CSSM for the memory functions managed by CSSM.

CCHandle (input)

The handle that describes the context of this cryptographic operation.

Context (input)

Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

PassThroughId (input)

An identifier specifying the custom function to be performed.

InData (input)

A pointer to CSSM_DATA structure containing the input data.

OutData (output)

A pointer to CSSM_DATA structure for the output data.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if an error has occurred.

Error Codes

Value�Description��CSSM_CSP_INVALID_CSP_HANDLE�Invalid csp handle��CSSM_CSP_INVALID_CONTEXT_HANDLE�Invalid context handle��CSSM_CSP_INVALID_CONTEXT_POINTER�Invalid context pointer��CSSM_CSP_INVALID_DATA_POINTER�Invalid pointer for input data��CSSM_CSP_MEMORY_ERROR�Not enough memory to allocate��CSSM_CSP_UNSUPPORTED_OPERATION�Add-in does not support this function��CSSM_CSP_PASS_THROUGH_FAILED�Unable to perform custom function��

Module Management Functions

The CSP_CheckVersion function is used by the CSSM Core to determine whether the CSP module version being attached is compatible with the CSP module version being requested. Because it is only exposed to CSSM as a function pointer, its name internal to the CSP can be assigned at the discretion of the CSP module developer. However, its parameter list and return value must match what is shown below. The error codes given in this section constitute the generic error codes which may be used by all CSPs to describe common error conditions. CSP developers may also define their own module-specific error codes, as described in Section 3.5.2.

The CSP_Initialize function is used by the CSSM Core to determine whether the CSP module version being attached is compatible with the CSP module version being requested and to perform any module-specific setup activities. The CSP_Uninitialize function is used to perform any module-specific cleanup activities prior to module detach. Because these functions are only exposed to CSSM as function pointers, their names internal to the certificate library can be assigned at the discretion of the CSP module developer. However, their parameter lists and return values must match what is shown below. The error codes given in this section constitute the generic error codes, which may be used by all certificate libraries to describe common error conditions. Certificate library developers may also define their own module-specific error codes, as described in Section 3.5.2.

CSP_CheckVersion

CSSM_RETURN CSSMSPI CSP_CheckVersion (uint32 VerMajor,�uint32 VerMinor)

This function checks whether the current version of the CSP module is compatible with the input version.

Parameters

VerMajor (input)

The major version number of the CSP module expected by the calling application.

VerMinor (input)

The minor version number of the CSP module expected by the calling application.

Return Value

A CSSM_OK return value signifies that the current version of the CSP module is compatible with the input version numbers. An error code signifies that the current CSP module is incompatible with the requested CSP module version. Use CSSM_GetError to obtain the error code.

�CSP_Initialize

CSSM_RETURN CSSMCSP CSP_Initialize	(uint32 VerMajor,� uint32 VerMinor)

This function checks whether the current version of the CSP module is compatible with the input version and performs any module-specific setup activities.

Parameters

VerMajor (input)

The major version number of the CSP module expected by the calling application.

VerMinor (input)

The minor version number of the CSP module expected by the calling application.

Return Value

A CSSM_OK return value signifies that the current version of the CSP module is compatible with the input version numbers and all setup operations were successfully performed. When CSSM_FAIL is returned, either the current CSP module is incompatible with the requested CSP module version or an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_CSP_INITIALIZE_FAIL�Unable to perform module initialization��See Also

CSP_Uninitialize

�CSP_Uninitialize

CSSM_RETURN CSSMCSP CSP_Uninitialize (void)

This function performs any module-specific cleanup activities.

Parameters

None

Return Value

A CSSM_OK return value signifies that all cleanup operations were successfully performed. When CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_CSP_UNINITIALIZE_FAIL�Unable to perform module cleanup��See Also

CSP_Initialize

�

�

CSP Structure and Management

Introduction

A CSP is an add-in module which can be used by applications via CSSM to perform cryptographic services.

There exists today a variety of cryptographic protocols, techniques, and algorithms. Even for the same cryptographic algorithm, there exist variants based on key lengths, padding schemes, and algorithm modes. Because all algorithm and key-specific information is encapsulated in the CSP, the application can focus on interesting uses of cryptography, rather than the tedious details of algorithm variations and key formats. The availability of CSPs also allows CSP developers to easily customize and extend the cryptographic protocols to meet changing market requirements.

This section is provided to aid the CSP developers in creating a CSP module which will interface properly with CSSM. It covers the structure of a CSP, CSP installation, the expected behavior of a CSP on attach, and some behaviors expected of CSP modules. This section also includes examples of CSP function implementations as a reference for new CSP modules.

CSP Structure

A CSP is a dynamically linkable library which contains routines which implement some or all of the CSSM SPI described in Section 2. The CSP should also contain functions which are called when the CSP is attached and detached. The attach function will be responsible for registering a function table with CSSM, accepting the memory management upcalls, and performing any module-specific setup. The detach function will be responsible for any cleanup required by the module. The attach and detach functions will vary depending on the target operating system. For example, DLLMain would be used to implement these functions for a CSP targeted to Windows NT*. _init and _fini would be used to implement these functions for a CSP targeted to SunOS*.

The CSP functionality can be broadly classified into the following categories:

Registration with CSSM

Token management

Private key management

Cryptographic services

Other services

A CSP may implement all or some of the components listed above. A CSP need not expose all the functions for every component. A CSP vendor can expose other service functions through the CSP_PassThrough interface. A unique function ID is required to identify the custom function.

CSP Installation

Before a CSP can be used by an application, its name, location, and capabilities must be registered with CSSM by an installation application. The name of a CSP module is given by both a logical name and a globally unique identifier (GUID). The logical name is a string chosen by the CSP developer to describe the CSP module. The GUID is used to differentiate between library modules in the CSSM registry. GUIDs are discussed in more detail below. The location of the CSP module is required on installation so that CSSM can locate the module when an application requests an attach. The CSP capabilities are registered with CSSM at install time so that an application can query for CSP module availability and features.

Global Unique Identifiers (GUIDs)

Each CSP must have a globally unique identifier (GUID) which will be used by CSSM, applications, and CSP modules to uniquely identify a CSP. The GUID will be used by the CSSM registry to expose add-in module availability to applications. The application will use this GUID to identify a targeted CSP in all cryptographic function calls. The CSP module will use this GUID to identify itself when it sets an error.

GUID generators are publicly available for Windows 95*, Windows NT, and many UNIX* platforms.

A GUID is defined as:

typedef struct guid

{

 unsigned long Data1;

 unsigned short Data2;

 unsigned short Data3;

 unsigned char Data4[8];

} GUID;

Attaching a CSP

Before an application can use the functions of a specific CSP, it must attach the CSP to CSSM using the CSSM_CSP_Attach function. On attach, the CSP uses the CSSM_CSP_RegisterServices function to register its function table with CSSM and to obtain the application’s memory management upcalls from CSSM. CSSM will use the CSP module’s function table to direct calls from the application to the correct function in the CSP module. The CSP module uses the memory management upcalls to allocate any memory which will be returned to the calling application and to free any memory which it received from the calling application.

When CSSM attaches to or detaches from a CSP module, it initiates a function in the CSP which performs the necessary setup and cleanup operations. The attach and detach functions will vary depending on the target operating system for the CSP module. For example, DLLMain would be used to implement these functions in a CSP targeted to Windows NT. _init and _fini would be used to implement these functions in a CSP targeted to SunOS.

The CSP module function table

The function table for a CSP module is a structure which contains pointers to the CSP module’s implementation of the functions specified in the Service Provider Interface. This structure is specified as a part of the CSSM header file, cssm.h. If a CSP does not support some function in the SPI, the pointer to that function should be set to NULL.

Memory management upcalls

All memory allocation and de-allocation for data passed between the application and the CSP module via CSSM is ultimately the responsibility of the calling application. Since the CSP module will need to allocate memory in order to return data to the application, the application must provide the CSP module a means of allocating memory which the application has the ability to free. It does this by providing the CSP module with memory management upcalls.

Memory management upcalls are simply pointers to the memory management functions used by the calling application. They are provided to the CSP module via CSSM as a structure of function pointers. The functions will be the calling application’s equivalent of malloc, free and re-alloc and will be expected to have the same behavior as those functions. The function parameters will consist of a CSP handle followed by the normal parameters for that function. The CSP handle is used by CSSM to direct the memory operation to the target application. The function return values should be interpreted in the standard manner. The CSP module is responsible for making the memory management functions available to all of its internal functions.

CSP Basic Services

Function Implementation

A CSP developer may choose to implement some or all of the functions specified in the SPI. The expected behavior of each function is detailed in Section 2 (Service Provider Interface).

A CSP developer may choose to leverage the capabilities of another CSP module to implement certain functions. To do this, the CSP would attach to another CSP using CSSM_CSP_Attach. Subsequent function calls to the first CSP would call the corresponding function in the second CSP for some or all of its implementation.

Error handling

When an error occurs, the function in the CSP module should call the CSSM_SetError function. The CSSM_SetError function takes the module’s GUID and an error number as inputs. The module’s GUID will be used to identify where the error occurred. The error number will be used to describe the error.

The error number set by the CSP module should fall into one of two ranges. The first range of error numbers is predefined by CSSM. These are errors which are expected to be common to all CSP modules implementing a given function. They are described in this document as part of the function definitions in Sections 2.3, 2.4, and 2.5. They are defined in the header file cssmerr.h which is distributed as part of CSSM. The second range of error numbers is used to define module-specific error codes. These module-specific error codes should be in the range of CSSM_CSP_PRIVATE_ERROR to CSSM_CSP_END_ERROR. CSSM_CSP_PRIVATE_ERROR and CSSM_CSP_END_ERROR are also defined in the header file cssmerr.h. The CSP module developer is responsible for making the definition and interpretation of their module-specific error codes available to applications.

When no error has occurred, but the appropriate return value from a function is CSSM_FALSE, that function should call CSSM_ClearError before returning. When the application receives a CSSM_FALSE return value, it is responsible for checking whether an error has occurred by calling CSSM_GetError. If the function in the CSP module has called CSSM_ClearError, the calling application will receive CSSM_OK response from the CSSM_GetError function, indicating that no error has occurred.

CSP Utility Libraries

CSP Utility Libraries are software components which may be provided by a CSP developer for use by other CSP developers. They are expected to contain functions which may be useful to several CSP modules, such as BER and DER encoding and decoding.

A CSP may want its public/private key blobs to be PKCS conformant. The following functions might be provided by the CSP utility library:

Pkcs_MakePublicKeyBlob

Pkcs_MakePrivateKeyBlob

Pkcs_ConvPublicKeyBlob

Pkcs_ConvPrivateKeyBlob

 The CSP Utility Library developer is responsible for making the definition, interpretation, and usage of their library available to other CSP module developers.

�Attach/Detach Example

The CSP module is responsible for performing certain operations when CSSM attaches to and detaches from it. CSP modules which have been developed for Windows-based systems will use the DllMain routine to perform those operations, as shown in the example below.

DLLMain

#include “cssm.h”

CSSM_GUID csp_guid =

{ 0x83bafc39, 0xfac1, 0x11cf, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd } };

BOOL WINAPI DllMain (HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)

{

switch (dwReason)

{

case DLL_PROCESS_ATTACH:

{

CSSM_FUNCTIONTABLE FunctionTable;

CSSM_SPI_FUNC_TBL_PTR UpcallTable;

/* Fill in FunctionTable with function pointers */

FunctionTable.QuerySize = CSP_QuerySize;

FunctionFuncTable.SignData = CSP_SignData;

FunctionTable.SignDataInit = CSP_SignDataInit;

FunctionTable.SignDataUpdate = CSP_SignDataUpdate;

FunctionTable.SignDataFinal = CSP_SignDataFinal;

FunctionTable.VerifyData = CSP_VerifyData;

FunctionTable.VerifyDataInit = CSP_VerifyDataInit;

FunctionTable.VerifyDataUpdate = CSP_VerifyDataUpdate;

FunctionTable.VerifyDataFinal = CSP_VerifyDataFinal;

FunctionTable.DigestData = CSP_DigestData;

FunctionTable.DigestDataInit = CSP_DigestDataInit;

FunctionTable.DigestDataUpdate = CSP_DigestDataUpdate;

FunctionTable.DigestDataClone = CSP_DigestDataClone;

FunctionTable.DigestDataFinal = CSP_DigestDataFinal;

FunctionTable.GenerateMac = CSP_GenerateMac;

FunctionTable.GenerateMacInit = CSP_GenerateMacInit;

FunctionTable.GenerateMacUpdate = CSP_GenerateMacUpdate;

FunctionTable.GenerateMacFinal = CSP_GenerateMacFinal;

FunctionTable.EncryptData = CSP_EncryptData;

FunctionTable.EncryptDataInit = CSP_EncryptDataInit;

FunctionTable.EncryptDataUpdate = CSP_EncryptDataUpdate;

FunctionTable.EncryptDataFinal = CSP_EncryptDataFinal;

FunctionTable.DecryptData = CSP_DecryptData;

FunctionTable.DecryptDataInit = CSP_DecryptDataInit;

FunctionTable.DecryptDataUpdate = CSP_DecryptDataUpdate;

FunctionTable.DecryptDataFinal = CSP_DecryptDataFinal;

FunctionTable.GenerateKey		 = CSP_GenerateKey;

FunctionTable.GenerateRandom = CSP_GenerateRandom;

FunctionTable.GenerateUniqueId = CSP_GenerateUniqueId;

FunctionTable.KeyExchGenParam = CSP_KeyExchGenParam;

FunctionTable.KeyExchPhase1 = CSP_KeyExchPhase1;

FunctionTable.KeyExchPhase2 = CSP_KeyExchPhase2;

FunctionTable.PassThrough = CSP_PassThrough;

FunctionTable.Initialize = CSP_Initialize;

FunctionTable.Uninitialize = CSP_Uninitialize;

/* Call CSSM_CSP_RegisterServices to register the FunctionTable */

/* with CSSM and to receive the application’s memory upcall table */

if (CSSM_CSP_RegisterServices (&csp_guid, FunctionTable, &UpcallTable) != CSSM_OK)

return FALSE;

/* Make the upcall table available to all functions in this library */

break;

}

case DLL_THREAD_ATTACH:

break;

case DLL_THREAD_DETACH:

break;

case DLL_PROCESS_DETACH:

if (CSSM_CSP_DeregisterServices (&csp_guid) != CSSM_OK)

return FALSE;

break;

}

return TRUE;

}

�

Cryptographic Operations Examples

CSSM_RETURN CSSMSPI CSP_GenerateKey (CSSM_CSP_HANDLE CSPHandle,

 CSSM_CC_HANDLE CCHandle,

 const CSSM_CONTEXT_PTR Context,

 CSSM_KEY_PTR Key)

{

 CSP_SESSION session;

 uint32 rtn;

 rtn = l_ValidateContextParam(Context);

 if (rtn != CSSM_OK)

 return rtn;

 /* Create a temp session and fill the information */

 Token_InitSession(&session);

 Token_FillSession(&session, CSPHandle, CCHandle, Context);

 /* calls crypto func to generate key, return the key blob,

 and save the wrapped prikey in the token (in the asymmetric

 key pair generation case) */

 return Cryp_GenerateKey(session, Key);

}

�

Appendix A. Relevant CSSM API functions

Overview

There are several API functions which will be particularly relevant to CSP developers, because they are used by the application to access the CSP module or because they are used by the CSP module to access CSSM services, such as the CSSM registry or the error-handling routines. They have been included in this appendix for quick-reference by CSP module developers. For more information, the CSP module developer is encouraged to reference the CSSM Application Programming Interface.

Function Definitions

CSSM_CSP_Install

CSSM_RETURN CSSMAPI CSSM_CSP_Install (const char *CSPName,�const char *CSPFileName,�const char *CSPPathName,�const CSSM_GUID_PTR GUID,�const CSSM_CSPINFO_PTR CSPInfo,�const void * Reserved1,�const CSSM_DATA_PTR Reserved2)

This function updates the CSSM-persistent internal information about the CSP module.

Parameters

CSPName (input)

The name of the CSP module.

CSPFileName (input)

The name of the file that implements the CSP.

CSPPathName (input)

The path to the file that implements the CSP.

GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP module.

CSPInfo (input)

A pointer to the CSSM_CSPINFO structure containing information about the CSP module.

Reserved1 (input)

Reserve data for the function.

Reserved2 (input)

Reserve data for the function.

Return Value

A CSSM_OK return value signifies that information has been updated. If CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_INVALID_POINTER�Invalid pointer��CSSM_REGISTRY_ERROR�Error in the registry ��See Also

CSSM_CSP_Uninstall

�CSSM_CSP_Uninstall

CSSM_RETURN CSSMAPI CSSM_CSP_Uninstall (const CSSM_GUID_PTR GUID)

This function deletes the persistent CSSM internal information about the CSP module.

Parameters

GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP module.

Return Value

A CSSM_OK return value means the CSP has been successfully uninstalled. If CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_INVALID_POINTER�Invalid pointer��CSSM_INVALID_ GUID�CSP module was not installed��CSSM_REGISTRY_ERROR�Unable to delete information��See Also

CSSM_CSP_Install

� CSSM_CSP_RegisterServices

CSSM_RETURN CSSMAPI CSSM_CSP_RegisterServices

(const CSSM_GUID_PTR GUID,�const CSSM_SPI_CSP_FUNCS_PTR FunctionTable,�CSSM_SPI_MEMORY_FUNCS_PTR UpcallTable,�void *Reserved)

A CSP module uses this function to register its function table with CSSM and to receive a memory management upcall table from CSSM.

Parameters

GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP module.

FunctionTable (input)

A structure containing pointers to the CSP Interface functions implemented by the CSP module.

UpcallTable (output)

A structure containing pointers to the memory routines used by the CSP module to allocate and free memory returning to the calling application.

Reserved (input)

A reserved input.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_INVALID_POINTER�Invalid pointer��CSSM_INVALID_FUNCTION_TABLE�Invalid function table��CSSM_MEMORY_ERROR�Memory error��CSSM_REGISTRY_ERROR�Unable to register services��See Also

CSSM_CSP_DeregisterServices

�CSSM_CSP_DeregisterServices

CSSM_RETURN CSSMAPI CSSM_CSP_DeregisterServices (const CSSM_GUID_PTR GUID)

A CSP module uses this function to deregister its services from the CSSM.

Parameters

GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP module.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_INVALID_POINTER�Invalid pointer GUID��CSSM_MEMORY_ERROR�Unable to deregister services��See Also

CSSM_CSP_RegisterServices

�CSSM_CSP_Attach

CSSM_CSP_HANDLE CSSMAPI CSSM_CSP_Attach

(const CSSM_GUID_PTR GUID,�uint32 CheckCompatibleVerMajor,�uint32 CheckCompatibleVerMinor,�const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,�const void * Reserved)

This function attaches the CSP module and verifies that the version of the module expected by the application is compatible with the version on the system.

Parameters

GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP module.

CheckCompatibleVerMajor (input)

The major version number of the CSP module that the application is compatible with.

CheckCompatibleVerMinor (input)

The minor version number of the CSP module that the application is compatible with.

MemoryFuncs (input)

A structure containing pointers to the memory routines.

Reserved (input)

A reserved input.

Return Value

A handle is returned for the CSP module. If the handle is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_INVALID_POINTER�Invalid pointer��CSSM_MEMORY_ERROR�Internal memory error��CSSM_INCOMPATIBLE_VERSION�Incompatible version��CSSM_EXPIRE�Add-in has expired��CSSM_ATTACH_FAIL�Unable to load CSP module��See Also

CSSM_CSP_Detach

�CSSM_CSP_Detach

CSSM_RETURN CSSMAPI CSSM_CSP_Detach (CSSM_CSP_HANDLE CSPHandle)

This function detaches the application from the CSP module.

Parameters

CSPHandle (input)

The handle that describes the CSP module.

Return Value

A CSSM_OK return value signifies that the application has been detached from the CSP module. If CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value�Description��CSSM_INVALID_ADDIN_HANDLE�Invalid CSP handle��See Also

CSSM_CSP_Attach

�CSSM_GetError

CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

This function returns the current error information.

Parameters

None

Return Value

Returns the current error information. If there is no valid error, the error number is CSSM_OK. A NULL pointer indicates the CSSM_InitError was not called by the CSSM Core or that CSSM Core made a call to CSSM_DestroyError. No error information is available.

See Also

CSSM_ClearError, CSSM_SetError

�CSSM_SetError

CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR guid,�uint32 error_number)

This function sets the current error information to error_number and guid.

Parameters

guid (input)

Pointer to the GUID (global unique ID) of the add-in module.

error_number (input)

An error number. It falls within one of the valid CSSM, CL, TP, DL, or CSP error ranges.

Return Value

CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates the error number passed is not within a valid range, the GUID passed is invalid, CSSM_InitError was not called by the CSSM Core, or the CSSM core called CSSM_DestroyError. No error information is available.

See Also

CSSM_ClearError, CSSM_GetError

�CSSM_ClearError

void CSSMAPI CSSM_ClearError (void)

This function sets the current error value to CSSM_OK. This is called if the current error value has been handled and therefore is no longer a valid error.

Parameters

None

See Also

CSSM_SetError, CSSM_GetError

Page � PAGE �iv�	Common Security Services Manager	Draft Release 1.0

	Application Programming Interface

Release 1.0	Common Security Services Manager	Page � PAGE �iv�

	Service Provider Interface Specification

