Common Security
Services Manager

Cryptographic Service Provider Interface (SPI)
Specification

Release 1.0

October 1996
Updated December 1996

Subject to Change Without Notice

Specification Disclaimer and Limited Use License

This specification is for release version 1.0, October 1996.

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Some aspects of this Specification may be covered under various United States or foreign
patents. No license, express or implied, by estoppel or otherwise, to any other intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information in this specification. Intel doesn't warrant or represent that such
implementation(s) will not infringe such rights.

If you are interested in receiving an appropriate license to Intel's intellectual property rights
relating to the interface defined in this specification, contact us for details at
cdsa@ibeam.intel.com.

Copyright© 1996 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

Table of Contents

N NI O] 16 I O N SRR 1
1.1 CDSA OVERVIEW. .. utttieitieteeatiee ettt e ettt e e e aabee e e s aabee e e aste e e e e sbe e e s eabee e e e sbe e e e e anbe e e e anseeeeeanseeeesnneeeeennnneeaan 1
1.2 CRYPTOGRAPHIC SERVICE PROVIDER OVERVIEWuciiiiutieieiitiitasatteeesabeeasssateeassasseaessabeeessnaseeassnsseesens 3
1.3 CSSM SERVICE PROVIDER INTERFACE SPECIFICATIONtttteittetaestteeassubeeassauteeasssseessanraeessssseesssnsseessns 4
RS I 101 =0T (< o [N 0o 1< o o USRS 4
1.3.2 DOCUMENT OFGANIZALIONeeveeteeiteesteesteesteesteesteesteesteesbeesseesbeesbeesbsesbeesseesseesaeesssesnnesnnesnnesnnesnnens 4
L REFERENCES. ... ettt ittttaeatteeaeauttee e s aabee e e sttt e e e sabee e e e aabee e e e s bt e e e aasee e e e aabee e e e nbee e e enbe e e e easbeeeeanneeeeenneeeeennnneaean 4
2. SERVICE PROVIDER INTERFACE ...ttt ittt sttt st et sae e s esnneeeneas 5
2.1 OVERVIEW ...ttt ittt ettt ettt ettt e e ettt e o aa et e e ekttt e e oa b bt e e e ea ke e e e £ abe e e e 2 sbe e e e easbe e e e anbe e e e enneeeeennneeeeannneeeeanneeas 5
2.1.1 CryptographiC OPEIAtiONS..........ceiueiieiiieiriee sttt sttt sttt er bt s e s bt bt ere b e eneeneennis 6
2.1.2 EXIENSIDIITY FUNCHIONS ...t 7
2.1.3 Module Management FUNCLIONS.cuouiiiie ettt sbe e sbe e sae e e saae e snneeenneas 7
2.2 DATA STRUCTURESetttittttaeittetaaauteeaesauteeasasteeasabeeaesaabeeeeaasbeeeeabeeeesaabeeeeaasbeeeeenbeeesanneeeeannneeesannneas 8
2.2.1 CSAVL_CSP_HANDLE ... oottt ittt ettt sttt e s b e e sate e smte e snbeeesaeeesneeesnneeenneas 8
A A A O S |V I B A NSRS 8
2.2.3 CSAVI_KEYHEADER ...ttt ettt sttt sae e st e b e bt e e sane e saneeenneas 8
2.2.4 CSAVI_KEYBLOB......ctiiiitiie ittt ettt ettt he e st e et e e bt e e be e e sabe e sabeeabe e e aaeeesnbeeenbeeeneeeannas 9
A A 010 S |V T S =) SRR TS 9
2.2.6 CSAVI_CRYPTO _DATA. .ottt ettt ettt bttt ettt be e e be e e be e e saee e sabeeebeeaneeeenneesane 10
A A O S Y I O o 1| @ TS 10
2.2.8 CSAVL_SPl FUNGC _TBL .ttt sttt ettt st s be e sae e sabe e sbe e e beeesnnee e 10
2.2.9 CSIMCONEXIALITIDULES ... s sttt sre e e e s e 11
2.2.10 CSIVICONEEXEeteeeteeesteeestte et e s beeeste e e steeesabeesabeeabeeeabseesabeeeabeeaabeeaabeeesaseesabeeeseeeseeeanneesnne 12
2.3 CRYPTOGRAPHIC OPERATIONS. ... tttestteesuteeasteeesueeesuteesseeasseeessseesnsessnsesasssessssessnsessaseessssessnsessnsesssseeens 15
2.3.1 CSP_QUENYSIZE ... teiitet ettt et e sttt e st e st e e bt e e sbee e sateesmbeeabeeeaseeesmseesnseeeseeeaneeesnseeeneaenns 15
2.3 2 COP_SIGNDELA ...ccveeiteeiteeitee ittt sttt st b et sb e e s b s he e sh e e she e sa et nh e b et ehe e ean e naneenreenneeaneenreen 17
2.3.3 CSP_SgNDALAINITceiteieitiie ittt ettt e e sabe e e bt e e be e e saeeesabeeeabeeabeeesaeeesaneesneaann 19
2.3 4 CSP_SgNDALAUPUALEeeeeieeie ittt ettt ettt ettt sttt e bt sbe e e sae e e sabeeebeeenneeesneeeenes 20
2.3.5 CSP_SGNDAtaFINGLcveeiiieiiieieeiie e sie e see s et esee s esraessaessaesseesraesreesraeesaessaeenaeenaeenaean 21
RGN Y @S SN] Y BT - WP 22
2.3.7 CSP_VEXifyDatalNit........ceiieiieiie e iie e see e seesee st e seeseesraesseessaesseesseesseessaeaseesseesssesnsesnseans 23
2.3.8 CSP_VerifyDataUPUaLe.cceeivieiiieiiieiiee ettt sttt sttt e st e saeesreesneesneesnee e 24
2.3.9 CSP_VerifyDataFiNalceieeiieiie e see ettt e stee st e sbeesreesreesneesreesree e 25
2.3.10 CSP_DigESIDALA ...c.veeiveeiveeiiiesieesieestiestiesteesteesteesteesteesreesseesseesseesseesseesseeaseessaesseesssesneesseaeeans 26
2.3.11 CSP_DigestDatalNit......cceeivieiieiiesiiesieesee e steesteesteesteeseesteesteesteesteesseesseesseesseesseesseessesssensns 28
2.3.12 CSP_DigestDataUPdatecccveiiieiieeiiee ettt e stee e st e st e steesreesreesreesneesseessee e 29
2.3. 13 CSP_DigestDataClONEccueeiiieiieeiiiesieesieeseesteesteestee e e steesteesteesteesteesteesaeesseesseesseesseesseessensns 30
2.3.14 CSP_DigestDataFiNalcceeiieiiieiie e siee ettt sttt st st esbeesaeesreesreesaeesree e 31
2.3.15 CSP_GENETAIEMACeeciuieieeitiee e e et e e et ee e e sttt e e etee e e s s teeeesssteeeeasaeeesaseeeeeasnaeeeensneeeeannneneaan 32
2.3.16 CSP_GENEIatEMACI NIT.......ccivieiieeiciee et se e s e e st e e sae e ste e e te e e s seeesaaeesrreeeneeenseeeenseeanns 34
2.3.17 CSP_GenerateMaCUPUALE.cciveeiiieiieeiiee e sieestee st see sttt st siee st e sbeesbeesbeesaeesreesreesaeesnee e 35
2.3.18 CSP_GENEratEMACFINGLeeciieiiiie et st e et e st e e s aae e s e e e re e e seeeenreeenns 36
ARG T RS Ons o =0 Tor Y/ o1 D - - S 37
2.3.20 CSP_ENCIyptDAtal NIteeiieeiieeiiee et se st saae e st e et e e ae e e saaeesnreeeneeennaeennneeenns 39
2.3.21 CSP_ENCryptDataUpPAALE.......cccveeiieeiiiee st e siee st e e e e stee e se e s et e e aee e snaeesaeeeneeenneeennneeenns 40
2.3.22 CSP_ENCryptDataFiNalcceiveeiieeeiie e s st ee e ste e st e e e e e saae e s ee e e ne e e neeennneeenes 42

ARG I Ons S B L= ok Y/ o 1D - S 43

Release 1.0 Common Security Services M anager Pageiv
Service Provider I nterface Specification

2.3.24 CSP_DeCrYPIDALAINIT.eeiveeitieitie ittt st sb e r e sae e aeesne e 45
2.3.25 CSP_DeCryptDataUPOALE.eeiveeiteeitieitie sttt sb e s saeesnee e 46
2.3.26 CSP_DeCryptDataFiNalcceeiieiieiie i 48
2.3.27 CTP_GONENALEKEYeeeieieiet ettt ettt e et e e e sttt e e e abe e e e ebb e e e s aabe e e e eanneeeessneeesanneeeaan 49
2.3.28 CSP_GenerateRANUOMI.......ccciiiiiieiiiiie e sttt e e etee e e s s e e e stre e e s stee e e s sateeeessaseeesesseeesesseeeesannenenans 50
PRCHZS LS S €= o 1c = 10= 0 o o [0 1= o IR USSR 51
2.3.30 CSP_KEYEXCNGENPAr @Mccivieiiieiiie ittt st st staesteesreesteesseesneesseessee e 52
2.3.3L CSP_KEYEXCHPIASELcoitieiiieiiie it siee sttt sttt ste e st esteestaesteesteesreesseesseesaeensee e 53
2.3.32 CSP_KEYEXCHPRASEDeoivieitee ittt sttt st sttt e steesbeesaeesbeesneesneessee e 54
24 EXTENSIBILITY FUNCTIONS ...ttt eaeas 55
2.4.1 COP_PASSTIIOUGN.....ceeitie ittt ittt sttt sttt ettt bttt sbe e sb e sbe e sbeesbeesb e e sbeesbeesbeesbeesaeesanennee e 55
2.5 MODULE MANAGEMENT FUNCTIONS.oiiiiiiii ittt e aeeaans 56
ST L O i 1 1 (= = SR 57
I A s O o 1o 1] (T S 58
3. CSP STRUCTURE AND MANAGEMENT ..ottt se ittt e e eanbraee e e e s eanannes 60
BLLINTRODUCTION L.t e 60
B2 COP STRUCTURE. ...ttt it ettt 60
BB CSP INSTALLATION L.ttt e 60
3.3.1 Global Unique 1dentifiers (GUIDS)......c.uoiieiieiieiie ettt sttt s 61
BAATTACHING A CSP ... 61
3.4.1 The CSP module FUNCHON TADIEcccuiiieiei e e e 61
3.4.2 Memory management UPCAIIScoiieiieiie ettt 61
B O COP BASIC SERVICESo, 62
3.5. 1 Function IMpPlementation.............coiieiieiie et b e 62
5.2 Error NANAIING ...ceveeiieeieee e b e ae e ne e 62
BB CSP UTILITY LIBRARIES. ... oottt 62
3.7 ATTACH/DETACH EXAMPLE .1veeiiiiii ittt e ettt e e e e e e et e e e e e e s e abbaseeeeeessesssbsseeeeeeseensssrnees 63
T A5 N]I I = T o TR OSSRt 63
3.8 CRYPTOGRAPHIC OPERATIONS EXAMPLES.ciiiiiiii ittt a e 65
4. APPENDIX A. RELEVANT CSSM API FUNCTIONS......coiiiiiiiiitieeeee ettt eevvreee e e 66
R OV = V1 = RPNt 66
4.2 FUNCTION DEFINITIONS......coiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e e eeeeees 66
N O S 1Y I O i 1 0 = || USSR 66
4,22 CSAVI_CSP_UNINSLAIceeiiiieeee et e e et e e e e nn e e e e enneeas 68
4.2.3 CSAVL_CP_ REGISEN SEIVICES ... eiiteteitteeieiee ettt e e stte e sate et e e e abe e e sbee e sabeesabeeesbeeesaeeesabeesnbeeanneeans 69
4.2.4 CSIAVI_CIP_ Dl EgIStEr SEIVICES ...veeeiteieiuieeiiee ettt e sttt e sateesbeessbe e s steeesabeesbeeesbeeesaseesaseesbeeanseeans 70
425 CSIAVL CSP AHACK ...ttt e ettt e e te e e ae e e areeearea s 71
426 CSIAVI_CSP _DEIACK ...t ettt ettt et e e ae e e ear e e earea s 72
A.2.7 CSAVI _GEIEITON ..iiii ittt e e e e e s e s e e e e e e e essbabaeeeaeesesssssnaneeaeeeaans 73
R N O S AV S = = o] ST PP PT PP UPSTRRN 74

e N O S |V I O T= T = o] OSSR 75

Release 1.0 Common Security Services M anager Page 1
Service Provider I nterface Specification

1. Introduction

1.1 CDSA Overview

The Common Data Security Architecture (CDSA) defines the infrastructure for a comprehensive set of
security services. CDSA isan extensible architecture that provides mechanisms to manage add-in security
modules which use cryptography as a computational base to build secure protocols and secure systems.
Figure 1 shows the four basic layers of the Common Data Security Architecture: Applications, System
Security Services, the Common Security Services Manager, and Security Add-in Modules. The Common
Security Services Manager (CSSM) isthe core of CDSA. It provides a means for applications to directly
access security services through the CSSM security API, or to indirectly access security servicesvia
layered security services and toolsimplemented over the CSSM API. CSSM manages the add-in security
modules and directs application calls through the CSSM API to the selected add-in modul e that will
service the request. Add-in modules perform various aspects of security services, including:

» Cryptographic Services
e Trust Policy Services
» Certificate Library Services

« Data-Storage Library Services

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations
including encryption, decryption, digital signaturing, key pair generation, random number generation, and
key exchange. Trust Policy (TP) modules implement policies defined by authorities and institutions, such
as VeriSign* (as a certificate authority) or MasterCard* (as an institution). Each trust policy module
embodies the semantics of a trust model based on using digital certificates as credentials. Applications
may use a digital certificate as an identity credential and/or an authorization credential. Certificate
Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital
certificates and certificate revocation lists. Data-Storage Library (DL) modules provide persistent storage
for certificates and certificate revocation lists.

Release 1.0 Common Security Services M anager Page 2
Service Provider I nterface Specification

- Applications >

S Y (< 1 o I
Security Layered Services, Middleware,

) Language I nterface-adapter, and Tools
Services ———— q_ aq __________ ap ____________________]
Common CSSM Security API
Security 28 csP | TPModule | cL Module | DL Module
Services g § M anager M anager M anager M anager
Manager [SPr][TP J[_Cor J[_DIT]
%CUI: I 1:y Data-store
Add-in
Modules

Figure 1. The Common Data Security Architecture for all platforms.

Applications directly or indirectly select the modules used to provide security servicesto the application.
These add-in modules will be provided by independent software and hardware vendors. The functionality
of the add-in module may be extended beyond the services defined by the CSSM API by exporting
additional servicesto applications viathe CSSM pass-through mechanism.

The API calls defined for add-in modules are categorized as service operations, modul e management
operations, and module-specific operations. Service operations include functions which perform a security
operation such as encrypting data, inserting a certificate revocation list into a data-source, or verifying

that a certificate is trusted. Module management functions support module installation, registration of
module features and attributes, and queries to retrieve information on modul e availability and features.
Module-specific operations are enabled in the API through pass-through functions whose behavior and use
are defined by the add-in module devel oper.

CSSM also provides integrity services and security context management. CSSM applies the integrity
check facility to itself to ensure that the currently-executing instance of CSSM code has not been
tampered.

Security context management provides secured runtime caching of user-specific state information and
secrets. The manager focuses on caching state information and parameters for performing cryptographic
operations. Examples of secrets that must be cached during application execution include the
application’s private key and the application’s digital certificate.

In summary, the CSSM provides these services through its API calls:

» Certificate-based services and operations

» Comprehensive, extensible SPIs for cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

Release 1.0 Common Security Services M anager Page 3
Service Provider I nterface Specification

* Registration and management of available cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

» Caching of keys and secrets required as part of the runtime context of a user application
» Call-back functions for disk, screen, and keyboard I/O supported by the operating system
* Atest-and-check function to ensure CSSM integrity

* Management of concurrent security operations

1.2 Cryptographic Service Provider Overview

The CSSM infrastructure doesn’t implement any cryptography. It has been termed “crypto with a hole.”
The Cryptographic Services Manager provides applications with access to cryptographic functions that are
implemented by Cryptographic Service Provider (CSP) modules. This achieves the objective of
centralizing all the cryptography into exchangeable modules.

The Cryptographic Services Manager defines two categories of services:

* Module management - installation, feature registration, and query of CSP features

* Selection, initialization, and use of cryptographic operations, which are implemented by a CSP

The nature of the cryptographic functions contained in any particular CSP depends on what task the CSP
was designed to perform. For example, a VISA* smartcard would be able to digitally sign credit card
transactions on behalf of the card’s owner, whereas a digital employee badge would be able to authenticate
a user for physical or electronic access.

A CSP can perform one or more of these cryptographic functions:
» Bulk encryption
» Digital signature
* Cryptographic hash
* Unique identification number
* Random number generator

+ Secure storage

The Cryptographic Services Manager doesn’t assume any particular form factor for a CSP. Indeed, CSPs
can be instantiated in hardware, software or both. Operationally, the distinction must be transparent. The
two visible distinctions between hardware and software implementations are the degree of trust the
application receives by using a given CSP, and the cost of developing that CSP. A hardware
implementation should be more tamper-resistant than a software implementation. Hence a higher level of
trust is achieved by the application.

Software CSPs are the default and are portable in that they can be carried as an executable file.
Additionally, the modules that implement a CSP must be digitally signed (to authenticate their origin and
integrity), and they should be made as tamper-resistant as possible. This requirement extends to software
implementations and hardware. Multiple CSPs may be loaded and active within the CSSM at any time.

A single application may use multiple CSPs concurrently. Interpreting the resulting level of trust and
security is the responsibility of the application or the trust-policy module used by the application.

Release 1.0 Common Security Services M anager Page 4
Service Provider I nterface Specification

A small (yet significant) number of CSPs existed prior to the definition of CSSM Cryptographic API.
These legacy CSPs have defined their own API for cryptographic services. These interfaces are CSP-
specific, non-standard, and in general low-level, key-based interfaces. Low-level, key-based interfaces
present a considerable development effort to the application developer attempting to secure an application
by using those services.

The Cryptographic Services Manager defines a high-level, certificate-based API for cryptographic services
to better support application development. In consideration of legacy and divergent CSPs, the
Cryptographic Services Manager defines alower-level Service Provider Interface (SPI) that more closely
resembles typical CSP APIs, and provides CSP devel opers with a single interface to support. A CSP may
or may not support multithreaded applications.

Acknowledging legacy CSPs, the CSSM architecture defines an optional adaptation layer between the
Cryptographic Services Manager and a CSP. The adaptation layer allows the CSP vendor to implement a
shim to map the CSSM SPI to the CSP’s existing API and to implement any additional management
functions that are required for the CSP to function as an add-in module in the extensible CSSM
architecture. New CSPs may support the CSSM SPI directly (without the aid of an adaptation layer).

1.3 CSSM Service Provider Interface Specification

1.3.1 Intended Audience

This document is intended for use by Independent Software Vendors (ISVs) who will develop their own
CSPs to provide cryptographic services. These ISVs will be highly experienced software and security
architects, advanced programmers, and sophisticated users. They are familiar with network operating
systems and high-end cryptography. We assume that this audience is familiar with the basic capabilities
and features of the protocols they are considering.

1.3.2 Document Organization

This document is divided into the following sections.
Section 2, Service Provider Interface, describes the functions which a CSP makes available to
applications via the CSSM.

Section 3, CSP Structure and Management, describes important considerations in developing a CSP. It
also gives examples of how CSP functions might be implemented.

1.4 References

BSAFE* BSAFE Cryptographic Toolkit, RSA Data Security, Inc., Redwood City, CA

PKCS* The Public-Key Cryptography Sandards, RSA Laboratories, Redwood City, CA:
RSA Data Security, Inc.

X.509 CCITT. Recommendation X.509: The Directory — Authentication Framework

1988. CCITT stands for Comite Consultatif Internationale Telegraphique et
Telphonique (International Telegraph and Telephone Consultative Committee)

Cryptography Applied Cryptography, Second Edition Protocols, Algorithms, and Source Code in
C, Bruce Schneier: John Wiley & Sons, Inc., 1996

CDSA Spec Common Data Security Architecture Specificatibmtgl Architecture Labs, 1996
CSSM AP CSSM Application Programming Interfadetel Architecture Labs, 1996

Release 1.0 Common Security Services M anager Page 5
Service Provider I nterface Specification

2. Service Provider Interface

2.1 Overview

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations
including encryption, decryption, digital signaturing, key pair generation, random number generation,
message digest, and key exchange. Besidesthe traditional cryptographic functions, CSPs may provide
other vendor specific services.

The range and types of services a CSP supportsis at the discretion of the vendor. A registry and query
mechanism is available through the CSSM for CSPs to disclose the services and details about the services.
Asan example, a CSP may register with the CSSM: encryption is supported, the algorithms present are
DES with cipher block chaining for key sizes 40 and 56 bits, triple DES with 3 keys for key size 168 hits.

All cryptographic services requested by applications will be channeled to one of the CSPs viathe CSSM.
CSP vendors only need target their modules to CSSM for all security-conscious applications to have
access to their product.

Calls made to a Cryptographic Service Provider (CSP) to perform cryptographic operations occur within a
framework called a session, which is established and terminated by the application. The session context
(simply referred to as the context) is created prior to starting CSP operations and is deleted as soon as
possible upon completion of the operation. Context information is not persistent; it is not saved
permanently in afile or database.

Before an application calls a CSP to perform a cryptographic operation, the application uses the query
services function to determine what CSPs are installed, and what services they provide. Based on this
information, the application then can determine which CSP to use for subsegquent operations; the
application creates a session with this CSP and performs the operation.

Depending on the class of cryptographic operations, individualized attributes are available for the
cryptographic context. Besides specifying an algorithm when creating the context, the application may
alsoinitialize a session key, pass an initialization vector and/or pass padding information to complete the
description of the session. A successful return value from the create function indicates the desired CSPis
available. Functions are aso provided to manage the created context.

When a context is no longer required, the application calls CSSMDeleteContext. Resources that were
allocated for that context can be reclaimed by the operating system.

Cryptographic operations come in two flavors - asingle call to perform an operation and a staged method
of performing the operation. For the single call method, only one call is needed to obtain the result. For
the staged method, thereisan initialization call followed by one or more update calls, and ending with a
completion (final) call. Theresult isavailable after the final function completes its execution for most
crypto operations - staged encryption/decryption are an exception in that each update call generates a
portion of the result.

Release 1.0 Common Security Services M anager Page 6
Service Provider I nterface Specification

2.1.1 Cryptographic Operations

CSSM_RETURN CSP_QuerySize - accepts as input a handle to a cryptographic context
describing the sign, digest, message authentication code,
encryption, or decryption operation. This function returns
pointers to variables indicating the input size (encryption and
decryption only) and output size for the specified algorithm.

CSSM_RETURN CSP_SignData

CSSM_RETURN CSP_SignDatal nit

CSSM_RETURN CSP_SignDataUpdate

CSSM_RETURN CSP_SignDataFinal - accepts as input a handle to a cryptographic context
describing the sign operation and the data to operate on. The
result of the completed sign operation isreturnedin a
CSSM_DATA structure.

CSSM_BOOL CSP_VerifyData

CSSM_RETURN CSP_VerifyDatal nit

CSSM_RETURN CSP_VerifyDataUpdate

CSSM_BOOL CSP_VerifyDataFinal - accepts as input a handle to a cryptographic context
describing the verify operation and the data to operate on.
The result of the completed verify operationisa
CSSM_TRUE or CSSM_FALSE.

CSSM_RETURN CSP_DigestData

CSSM_RETURN CSP_DigestDatal nit

CSSM_RETURN CSP_DigestDataUpdate

CSSM_RETURN CSP_DigestDataFinal- accepts asinput a handle to a cryptographic context
describing the digest operation and the data to operate on.
The result of the completed digest operation isreturnedin a
CSSM_DATA structure.

CSSM_CC_HANDLE CSP_DigestDataClone - accepts as input a handle to a cryptographic
context describing the digest operation. A handle to another
cryptographic context is created with similar information and
intermediate result as described by the first context.

CSSM_RETURN CSP_GenerateMac

CSSM_RETURN CSP_GenerateM acl nit

CSSM_RETURN CSP_GenerateM acUpdate

CSSM_RETURN CSP_GenerateM acFinal- accepts as input a handle to a cryptographic
context describing the MAC operation and the data to operate
on. Theresult of the completed MAC operation is returned in
aCSSM_DATA structure.

CSSM_RETURN CSP_EncryptData

CSSM_RETURN CSP_EncryptDatal nit

CSSM_RETURN CSP_EncryptDataUpdate

CSSM_RETURN CSP_EncryptDataFinal - accepts as input a handle to a cryptographic
context describing the encryption operation and the data to
operate on. The encrypted dataisreturned in CSSM_DATA
structures.

CSSM_RETURN CSP_DecryptData

CSSM_RETURN CSP_DecryptDatal nit

CSSM_RETURN CSP_DecryptDataUpdate

Release 1.0 Common Security Services M anager Page 7
Service Provider I nterface Specification

CSSM_RETURN CSP_DecryptDataFinal- accepts as input a handle to a cryptographic context
describing the decryption operation and the data to operate
on. The decrypted datais returned in CSSM_DATA
structures.

CSSM_RETURN CSP_GenerateK ey - accepts as input a handle to a cryptographic context
describing the generate key operation. The key isreturned in
aCSSM_KEY structure.

CSSM_RETURN CSP_GenerateRandom - accepts as input a handle to a cryptographic context
describing the generate random operation. The random data
isreturned inaCSSM_DATA structure.

CSSM_RETURN CSP_GenerateUniquel d- accepts asinput a handle to a cryptographic
context describing the generate unique identifier operation.
The uniqueidentifier isreturned inaCSSM_DATA
structure.

CSSM_RETURN CSP_KeyExchGenParam

CSSM_RETURN CSP_KeyExchPhasel

CSSM_RETURN CSP_K eyExchPhase2- accepts as input a handle to a cryptographic context
describing the key exchange operation. The intermediate
results are returned in a CSSM_DATA structure. For the
exchange to be successful, it has to complete phase 2 of the
sequence.

2.1.2 Extensibility Functions

CSSM_RETURN CSP_PassThrough () - This performs the CSP module-specific function
indicated by the operation ID. The operation |D specifies an operation which
the CSP has exported for use by an application or module. Such operations
should be specific to the key format of the private keys stored in the CSP
module.

2.1.3 Module Management Functions
| CSSM_BOOL CSP_CheckVersion

Release 1.0 Common Security Services M anager Page 8
Service Provider I nterface Specification

2.2 Data Structures

This section describes the data structures which may be passed to or returned from a CSP function. They
will be used by applications to prepare data to be passed as input parameters into CSSM API function
calls which will be passed without modification to the appropriate CSP. The CSP is then responsible for
interpreting them and returning the appropriate data structure to the calling application via CSSM. These
data structures are defined in the header file cssm.h distributed with CSSM.

2.2.1 CSSM_CSP_HANDLE

The CSSM_CSP_HANDLE is used to identify the association between an application thread and an

instance of a CSP module. It is assigned when an application causes CSSM to attach to aCSP. Itisfreed
when an application causes CSSM to detach from a CSP. The application uses the

CSSM_CSP_HANDLE with every CSP function call to identify the targeted CSP. The CSP usesthe
CSSM_CSP_HANDLE to identify the appropriate application’s memory management routines when
allocating memory on the application’s behalf.

t ypedef uint32 CSSM CSP_HANDLE /* Cryptographic Service Provider Handle */

2.2.2 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssm data{
uint32 Length; /* in bytes */
ui nt 8 *Dat a;

} CSSM DATA, *CSSM DATA PTR

Definition:
Length - length of the data buffer in bytes

Data - pointer to a data buffer

2.2.3 CSSM_KEYHEADER

typedef struct CSSM KeyHeader {
CSSM_GUI D Cspl d;
ui nt 32 Bl obType;
ui nt 32 For mat Ver si on;
ui nt 32 Al gorithmd;
ui nt 32 Al gori t hmvbde;
uint32 SizelnBits; /* in bits */
ui nt 32 W apMet hod;
ui nt 32 Reserved,;
} CSSM KEYHEADER, *CSSM KEYHEADER PTR

Release 1.0 Common Security Services M anager Page 9
Service Provider I nterface Specification

Definition:
Cspld - Globally unique Id of the CSP that generated the key (if appropriate).

BlobType - Key blob type. The key blob types currently-defined are CSSM_SESSION_KEY _BL OB,
CSSM_RSA_PUBLIC_KEY_BLOB, CSSM_RSA_PRIVATE_KEY_BLOB,
CSSM_DSA_PUBLIC _KEY_BLOB, and CSSM_DSA_PRIVATE_KEY_BLOB.

FormatVersion - Version number of the key blob format. Current value is 0x01.

Algorithmld - Algorithm identifier for the key contained by the key blob. Valid identifier values are
indicated in Table 3 below.

AlgorithmMode - Algorithm mode for the key contained by the key blob. Valid algorithm mode
valuesareindicated in Table 4 below. Theidentified list of algorithm modes apply only to symmetric
algorithms.

SzelnBits - Size of the key in bits.

WrapMethod - Key wrapping scheme. The key wrapping methods currently-defined are
CSSM_KEYWRAP_NONE, CSSM_KEYWRAP_MD5WithDES,
CSSM_KEYWRAP_MD5WithIDEA, CSSM_KEYWRAP_SHAWIthDES, and
CSSM_KEYWRAP_SHAWiIthIDEA.

Reserved - Reserved for future use.

2.2.4 CSSM_KEYBLOB

Thisisthe data structure which contains both information about the key and the key dataitself. This
structure allows the passage of keys as one contiguous unit of data.

typedef struct cssm keybl ob{
CSSM_KEYHEADER KeyHeader ;
ui nt 8 KeyDat a[f MAX_KEYBLOB_LEN] ;
} CSSM KEYBLOB, *CSSM KEYBLOB_PTR

Definition:
KeyHeader - Key header for the key.

KeyData - Data representation of the key.

2.2.5 CSSM_KEY

typedef struct cssm key{
ui nt 32 KeyBl obLengt h;
CSSM _KEYBLOB_PTR KeyBl ob;

} CSSM KEY, *CSSM KEY_PTR

Definition:
KeyBlobLength - Length of the key blob.

KeyBlab - Pointer to akey blob which holds all of the data associated with the key.

Release 1.0 Common Security Services M anager Page 10
Service Provider I nterface Specification

2.2.6 CSSM_CRYPTO_DATA

typedef struct cssmcrypto_data {
CSSM_DATA_PTR Par am
CSSM _CALLBACK Cal | back;

} CSSM_CRYPTO DATA, *CSSM CRYPTO DATA PTR

Definition:
Param- A pointer to the parameter data and its size in bytes.

Callback - An optional call back routine for the add-in modules to obtain the parameter.

2.2.7 CSSM_CSPINFO

typedef struct cssmcspinfo {

ui nt 32 Ver Maj or;

ui nt 32 Ver M nor;

CSSM BOOL Export Fl ag;

char *Vendor;

char *Description;

ui nt 32 Number O Cont ext s;

CSSM_CONTEXT_PTR Cont ext s;
} CSSM_CSPI NFO, * CSSM_CSPI NFO_PTR

Definition:
VerMajor - Major version number.

VerMinor - Minor version number.

ExportFlag - Exportable flag.

Vendor - CSP Vendor name.

Description - Detailed description filed for the CSP.
Number OfContexts - Number of contexts.

Contexts - Pointer to aCSSM_CONTEXT structure that describes the context and its attributes.

2.2.8 CSSM_SPI_FUNC_TBL

This data structure contains function pointers to the calling application’s memory management routines.
These routines will be used by the CL module to allocate and free any memory which belongs to or will
belong to the application.

typedef struct cssmspi_func_tbl {

void *(*nmalloc_func) (uint32, size_t);

void (*free_func) (uint32, void *);

void *(*realloc_func) (uint32, void *, size_t);
} CSSM SPI_FUNC TBL, *CSSM SPI _FUNC TBL_PTR

Release 1.0

Common Security Services M anager

Service Provider I nterface Specification

2.2.9 CSSMContextAttributes

typedef struct cssmcontext_attribute{
/* attribute type */
/* length of attribute */

uint32 AttributeType;
ui nt 32 Attri butelLengt h;
uni on {

uint8 *Description;

ui nt 32 *Lengt h;

voi d *Pointer;

CSSM_CRYPTO_DATA PTR SeedPassPhr ase;

CSSM KEY_PTR Key;
CSSM _DATA_PTR Dat a;
}Attribute;

/* data that describes attribute */

} CSSM_CONTEXT_ATTRI BUTE, * CSSM CONTEXT_ATTRI BUTE_PTR

Definition:

AttributeType - An identifier describing the type of attribute.

Table 1. Attributetypes

Value Description
CSSM_ATTRIBUTE_NONE No attribute
CSSM_ATTRIBUTE_DESCRIPTION Description of attribute
CSSM_ATTRIBUTE_KEY Key Data
CSSM_ATTRIBUTE_INIT_VECTOR Initialization vector
CSSM_ATTRIBUTE_SALT Salt
CSSM_ATTRIBUTE_PADDING Padding information
CSSM_ATTRIBUTE_RANDOM Random data
CSSM_ATTRIBUTE_SEED Seed
CSSM_ATTRIBUTE_PASSPHRASE Pass phrase
CSSM_ATTRIBUTE_CUSTOM Custom data

CSSM_ATTRIBUTE_KEY_LENGTH
CSSM_ATTRIBUTE_MODULUS LEN
CSSM_ATTRIBUTE_INPUT_SIZE
CSSM_ATTRIBUTE_OUTPUT_SIZE
CSSM_ATTRIBUTE_ROUNDS

AttributelLength - Length of the attribute data.

Key length (specified in bits)
Modulus length (specified in bits)
Input size

Output size

Number of runs (or rounds)

Attribute - Attribute data. Depending on the AttributeType, the attribute data represents different

information.

Page 11

Release 1.0

Common Security Services M anager

Service Provider I nterface Specification

Page 12

2.2.10 CSSMContext
t ypedef uint32 CSSM CC HANDLE

/* Cryptographic Context Handle */

t ypedef CSSM CONTEXT CSSM_CONTEXTI NFO

typedef struct cssmcontext {
ui nt 32 Cont ext Type;
ui nt 32 Al gori t hnilype;
ui nt 32 Mbde;
ui nt 32 Reserve;
ui nt 32 Nunmber Of Attri but es;
*/

CSSM _CONTEXT_ATTRI BUTE_PTR Cont ext Attri butes;

*)
} CSSM_CONTEXT,

Definitions:

/* context type */

/* algorithmtype of context */
/* for encryption only */

/* reserved for future use */
/* nunber of attributes associated wi th context

*CSSM_CONTEXT_PTR

ContextType - An identifier describing the type of servicesfor this context.

Table 2. Context types

Vaue

Description

/* pointer to attributes

CSSM_ALGCLASS NONE
CSSM_ALGCLASS CUSTOM
CSSM_ALGCLASS KEYXCH
CSSM_ALGCLASS_SIGNATURE
CSSM_ALGCLASS SYMMETRIC
CSSM_ALGCLASS _DIGEST

CSSM_ALGCLASS_RANDOMGEN

CSSM_ALGCLASS_UNIQUEGEN
CSSM_ALGCLASS MAC

CSSM_ALGCLASS ASYMMETRIC

CSSM_ALGCLASS KEYGEN

Null Context type

Custom Algorithms

Key Exchange Algorithms

Signature Algorithms

Symmetric Encryption Algorithms
Message Digest Algorithms

Random Number Generation Algorithms
Unique ID Generation Algorithms
Message Authentication Code Algorithms
Asymmetric Encryption Algorithms

Key Generation Algorithms

AlgorithmType - An ID number describing the algorithm to be used.

Table 3. Algorithmsfor a session context.

Value Description
CSSM_ALGID_NONE Null algorithm
CSSM_ALGID_CUSTOM Custom algorithm

CSSM_ALGID_DH
CSSM_ALGID_PH
CSSM_ALGID_KEA
CSSM_ALGID_MD2
CSSM_ALGID_MD4
CSSM_ALGID_MD5
CSSM_ALGID_SHA1
CSSM_ALGID_NHASH
CSSM_ALGID_HAVAL

Diffie Hellman key exchange algorithm
Pohlig Hellman key exchange algorithm
Key Exchange Algorithm

MD2 hash agorithm

M D4 hash agorithm

MDS5 hash agorithm

Secure Hash Algorithm

N-Hash agorithm

HAVAL hash agorithm (MD5 variant)

Release 1.0

Common Security Services M anager

Service Provider I nterface Specification

Page 13

CSSM_ALGID_RIPEMD

CSSM_ALGID_IBCHASH
CSSM_ALGID_RIPEMAC
CSSM_ALGID_DES
CSSM_ALGID_DESX
CSSM_ALGID_RDES
CSSM_ALGID_3DES_3KEY
CSSM_ALGID_3DES_2KEY
CSSM_ALGID_3DES_1KEY
CSSM_ALGID_IDEA
CSSM_ALGID_RC2
CSSM_ALGID_RC5
CSSM_ALGID_RC4
CSSM_ ALGID_SEAL
CSSM_ALGID_CAST
CSSM_ALGID_BLOWFISH
CSSM_ALGID_SKIPJACK
CSSM_ALGID_LUCIFER
CSSM_ALGID_MADRYGA
CSSM_ALGID_FEAL
CSSM_ALGID_REDOC
CSSM_ALGID_REDOC3
CSSM_ALGID_LOKI
CSSM_ALGID_KHUFU
CSSM_ALGID_KHAFRE
CSSM_ALGID_MMB
CSSM_ALGID_GOST
CSSM_ALGID_SAFER
CSSM_ALGID_CRAB
CSSM_ALGID_RSA
CSSM_ALGID_DSA

CSSM_ ALGID_MD5WithRSA
CSSM_ALGID_MD2WithRSA
CSSM_ALGID_ElGamal
CSSM_ALGID_MD2Random
CSSM_ALGID_MD5Random
CSSM_ALGID_SHARandom
CSSM_ALGID_DESRandom

RIPE-MD hash agorithm (MD4 variant - developed
for the European Community’s RIPE project)
IBC-Hash (keyed hash algorithm or MAC)
RIPE-MAC
Data Encryption Standard block cipher
DESX block cipher (DES variant from RSA)
RDES block cipher (DES variant)
Triple-DES block cipher (with 3 keys)
Triple-DES block cipher (with 2 keys)
Triple-DES block cipher (with 1 key)
IDEA block cipher
RC2 block cipher
RCS5 block cipher
RC4 stream cipher
SEAL stream cipher
CAST block cipher
BLOWFISH block cipher
Skipjack block cipher
Lucifer block cipher
Madryga block cipher
FEAL block cipher
REDOC 2 block cipher
REDOC 3 block cipher
LOKI block cipher
KHUFU block cipher
KHAFRE block cipher
MMB block cipher (IDEA variant)
GOST block cipher
SAFER K-64 block cipher
CRAB block cipher
RSA public key cipher
Digital Signature Algorithm
MD5/RSA signature algorithm
MD2/RSA signature algorithm
ElGamal signature algorithm
MD2-based random numbers
MD5-based random numbers
SHA-based random numbers
DES-based random numbers

Release 1.0 Common Security Services M anager
Service Provider I nterface Specification

Page 14

Mode - An algorithm mode - valuesidentified in table below apply only to symmetric algorithms.

Table4. Modes of algorithms.

Value Description
CSSM_ALGMODE_NONE Null Algorithm mode
CSSM_ALGMODE_CUSTOM Custom mode

CSSM_ALGMODE_ECB
CSSM_ALGMODE_ECBPad
CSSM_ALGMODE_CBC
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBCPadIV8

CSSM_ALGMODE_CFB
CSSM_ALGMODE_CFB_IV8
CSSM_ALGMODE_OFB
CSSM_ALGMODE_OFB_[V8
CSSM_ALGMODE_COUNTER
CSSM_ALGMODE_BC
CSSM_ALGMODE_PCBC
CSSM_ALGMODE_CBCC
CSSM_ALGMODE_OFBNLF
CSSM_ALGMODE_PBC
CSSM_ALGMODE_PFB
CSSM_ALGMODE_CBCPD

Electronic Code Book

ECB with padding

Cipher Block Chaining

CBC with Initialization Vector of 8 bytes
CBC with padding and Initialization Vector of 8
bytes

Cipher FeedBack

CFB with Initialization Vector of 8 bytes
Output FeedBack

OFB with Initialization Vector of 8 bytes
Counter

Block Chaining

Propagating CBC

CBC with Checksum

OFB with NonLinear Function

Plaintext Block Chaining

Plaintext FeedBack

CBC of Plaintext Difference

Number OfAttributes - Number of attributes associated with this service.

ContextAttributes - Pointer to data that describes the attributes.

Release 1.0 Common Security Services M anager Page 15
Service Provider I nterface Specification

2.3 Cryptographic Operations

2.3.1 CSP_QuerySize

CSSM_RETURN CSSMSPI CSP_QuerySize (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 SizeOfInput,
uint32 * ReqSizeOutBlock)

This function queries for the size of the output data for Signature, Message Digest, and Message
Authentication Code context types and queries for the algorithm block size or the size of the
output data for encryption and decryption context types. For encryption, the total size of all
output buffers must always be a multiple of the output block size. Thisfunction can aso be used
to query the output size requirements for the intermediate steps of a staged cryptographic
operation (for example, CSP_EncryptDataUpdate and CSP_DecryptDataUpdate). There may be
algorithm-specific and token-specific rules restricting the lengths of data following data update
cals.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

S zeOfInput (input)
This parameter currently applies only to encrypt and decrypt context types. If this parameter is0,
the function returns the algorithm block size. Otherwise, the size of the output datais returned.

ReqSizeOutBlock (output)
Pointer to a uint32 variable where the function returns the size of the output in bytes.

Return Value

A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_NO _METHOD Service not provided.
CSSM_CSP_QUERY_SIZE FAILED Unableto query size

See Also

Release 1.0

Common Security Services M anager
Service Provider I nterface Specification

Page 16

CSP_EncryptData, CSP_EncryptDataUpdate, CSP_DecryptData, CSP_DecryptDataUpdate,

CSP_SignData, CSP_VerifyData, CSP_DigestData, CSP_GenerateMac

Release 1.0 Common Security Services M anager Page 17
Service Provider I nterface Specification

2.3.2 CSP_SignData

CSSM_RETURN CSSMSPI CSP_SignData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Signature)

This function signs data using the private key associated with the public key specified in the
context.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be signed.

DataBufCount (input)
The number of DataBufs to be signed.

Sgnature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_INVALID_CALLBACK Invalid call back function
CSSM_CSP_SIGN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_SIGN_NO_METHOD Service not provided.
CSSM_CSP_SIGN_FAILED Sign failed
CSSM_CSP_PRIKEY_NOT_FOUND Cannot find the corresponding private key
CSSM_CSP_PASSWORD_INCORRECT Password incorrect

CSSM_CSP_PASSWORD_NO _PARAM No password or callback function provided

Release 1.0 Common Security Services M anager Page 18
Service Provider I nterface Specification

CSSM_CSP_UNWRAP_FAILED Unwrapped the private key failed
CSSM_CSP_NOT_ENOUGH_BUFFER The output buffer is not big enough
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_VECTOROFBUFS_UNSUPPORTED Supports only asingle buffer of input

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_VerifyData, CSP_SignDatalnit, CSP_SignDataUpdate, CSP_SignDataFinal

Release 1.0 Common Security Services M anager Page 19
Service Provider I nterface Specification

2.3.3 CSP_SignDatalnit

CSSM_RETURN CSSMSPI CSP_SignDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_SIGN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_SIGN_NO_METHOD Service not provided.
CSSM_CSP_SIGN_INIT_FAILED Staged sign initialize function failed
CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also

CSP_SignData, CSP_SignDataUpdate, CSP_SignDataFinal

Release 1.0 Common Security Services M anager Page 20
Service Provider I nterface Specification

2.3.4 CSP_SignDataUpdate

CSSM_RETURN CSSM SPI CSP_SignDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the data for the staged sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data be signed.

DataBufCount (input)
The number of DataBufs to be signed.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_SIGN_UPDATE_FAILED Staged sign update function failed
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_SignData, CSP_SignDatalnit, CSP_SignDataFina

Release 1.0 Common Security Services M anager Page 21
Service Provider I nterface Specification

2.3.5 CSP_SignDataFinal

CSSM_RETURN CSSM SPI CSP_SignDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Signature)

This function completes the final stage of the sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Sgnature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_ HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_SIGN_FINAL_FAILED Staged sign final function failed
CSSM_NOT_ENOUGH_BUFFER The output buffer is not big enough
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_SignData, CSP_SignDatalnit, CSP_SignDataUpdate

Release 1.0 Common Security Services M anager Page 22
Service Provider I nterface Specification

2.3.6 CSP_VerifyData

CSSM_BOOL CSSMSPI CSP_VerifyData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
const CSSM_DATA_PTR Signature)

This function verifies the input data against the provided signature.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data be verified.

DataBufCount (input)
The number of DataBufs to be verified.

Sgnature (input)
A pointer to aCSSM_DATA structure which contains the signature and the size of the signature.

Return Value
A CSSM_TRUE return value signifies the signature was successfully verified. When
CSSM_FALSE isreturned, either the signature was not successfully verified or an error has
occurred. Use CSSM_ GetError to obtain the error code.

Error Codes
Value Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID _DATA_COUNT Invalid data count
CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP _VERIFY_NO_METHOD Service not provided.
CSSM_CSP _VERIFY_SIGNATURE_BAD Signatureis bad
CSSM_CSP _VERIFY_FAILED Unable to perform verification on data
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_VECTOROFBUFS _UNSUPPORTED Supports only asingle buffer of input

See Also
CSP_SignData, CSP_VerifyDatalnit, CSP_VerifyDataUpdate, CSP_V erifyDataFinal

Release 1.0 Common Security Services M anager Page 23
Service Provider I nterface Specification

2.3.7 CSP_VerifyDatalnit

CSSM_RETURN CSSMSPI CSP_VerifyDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR Signature)

Thisfunction initializes the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Sgnature (input)
A pointer to aCSSM_DATA structure which contains the starting address for the signature to
verify against and the length of the signature in bytes.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID CONTEXT _HANDLE Invalid context handle
CSSM_CSP_INVALID _CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID DATA_POINTER Invalid pointer
CSSM_CSP VERIFY_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP _VERIFY_NO _METHOD Service not provided.
CSSM_CSP _VERIFY_INIT_FAILED Staged verify initialize function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_VerifyDataUpdate, CSP_VerifyDataFinal, CSP_VerifyData

Release 1.0 Common Security Services M anager Page 24
Service Provider I nterface Specification

2.3.8 CSP_VerifyDataUpdate

CSSM_RETURN CSSM SPI CSP_VerifyDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the data to the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data be verified.

DataBufCount (input)
The number of DataBufs to be verified.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID CONTEXT _HANDLE Invalid context handle
CSSM_CSP_INVALID _CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID DATA_POINTER Invalid pointer
CSSM_CSP INVALID DATA_COUNT Invalid data count
CSSM_CSP VERIFY _UPDATE_FAILED Staged verify update function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_VerifyData, CSP_VerifyDatalnit, CSP_VerifyDataFina

Release 1.0 Common Security Services M anager Page 25
Service Provider I nterface Specification

2.3.9 CSP_VerifyDataFinal

CSSM_BOOL CSSMSPI CSP_VerifyDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle)

This function finalizes the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
calsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Return Value
A CSSM_TRUE return value signifies the signature successfully verified. When CSSM_FALSE
isreturned, either the signature was not successfully verified or an error has occurred; use
CSSM_GetError to obtain the error code.

Error Codes
Value Description
CSSM_CSP_INVALID _CONTEXT_POINTER Invalid context pointer
CSSM_CSP_VERIFY_FINAL_FAILED Staged verify final function failed

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_VerifyData, CSP_VerifyDatalnit, CSP_VerifyDataUpdate

Release 1.0 Common Security Services M anager Page 26
Service Provider I nterface Specification

2.3.10 CSP_DigestData

CSSM_RETURN CSSM SPI CSP_DigestData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Digest)

This function computes a message digest for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID _DATA_POINTER Invalid pointer
CSSM_CSP_INVALID _DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP _DIGEST_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP DIGEST_NO_METHOD Service not provided.
CSSM_CSP _DIGEST_FAILED Unable to perform digest on data

CSSM_CSP_VECTOROFBUFS_UNSUPPORTED Supports only a single buffer of input

Comments

Release 1.0 Common Security Services M anager Page 27
Service Provider I nterface Specification

The output can be obtained either by filling the caller-supplied buffer or using the application’s

memory allocation functions to allocate space, application has to free the memory in this case.

the output buffer pointer this is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER
is returned.

See Also
CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFinal, CSP_DigestDataClone

If

Release 1.0 Common Security Services M anager Page 28
Service Provider I nterface Specification

2.3.11 CSP_DigestDatalnit

CSSM_RETURN CSSM SPI CSP_DigestDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP _DIGEST_NO_METHOD Service not provided.
CSSM_CSP _DIGEST_INIT_FAILED Unable to perform digest initialization

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP DigestData, CSP_DigestDataUpdate, CSP_DigestDataClone, CSP_DigestDataFind

Release 1.0 Common Security Services M anager Page 29
Service Provider I nterface Specification

2.3.12 CSP_DigestDataUpdate

CSSM_RETURN CSSM SPI CSP_DigestDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID _DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_DIGEST_UPDATE_FAILED Unable to perform digest on data

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataClone, CSP_DigestDataFinal

Release 1.0 Common Security Services M anager Page 30
Service Provider I nterface Specification

2.3.13 CSP_DigestDataClone

CSSM_CC_HANDLE CSSMSPI CSP_DigestDataClone (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE oldCCHandle,
CSSM_CC_HANDLE newCCHandle)

This function clones a given staged message digest context with its cryptographic attributes and
intermediate result.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

oldCCHandle (input)
The old handle that describes the context of a staged message digest operation.

newCCHandle (output)
The new handle that describes the cloned context of a staged message digest operation.

Return Value
The pointer to auser-alocated CSSM_CC_HANDLE for holding the cloned context handle
return from CSSM. If the pointer isNULL, an error has occured; use CSSM_GetError to obtain
the error code.

Error Codes
Value Description
CSSM_CSP_INVALID _CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP _DIGEST_CLONE_FAILED Unable to clone the digest context
Comments

When a digest context is cloned, a new context is created with data associated with the parent
context. Changes made to the parent context after calling this function will not be reflected in
the cloned context. The cloned context could be used with the CSP_DigestDataUpdate and
CSP_DigestDataFinal functions.

See Also
CSP DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFina

Release 1.0 Common Security Services M anager Page 31
Service Provider I nterface Specification

2.3.14 CSP_DigestDataFinal

CSSM_RETURN CSSMSPI CSP_DigestDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Digest)

This function finalizes the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_ HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP DIGEST_FINAL_FAILED Staged digest final failed
Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case.
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataClone

Release 1.0 Common Security Services M anager Page 32
Service Provider I nterface Specification

2.3.15 CSP_GenerateMac

CSSM_RETURN CSSM SPI CSP_GenerateMac (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

This function generates a message authentication code for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
calsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID _DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_MAC_NO_METHOD Service not provided.
CSSM_CSP_MAC_FAILED Unable to perform mac on data

CSSM_CSP_VECTOROFBUFS_UNSUPPORTED Supports only a single buffer of input

Comments

Release 1.0 Common Security Services M anager Page 33
Service Provider I nterface Specification

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If

the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_GenerateMaclnit, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

Release 1.0 Common Security Services M anager Page 34
Service Provider I nterface Specification

2.3.16 CSP_GenerateMaclnit

CSSM_RETURN CSSM SPI CSP_GenerateMaclnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_MAC_NO_METHOD Service not provided.
CSSM_CSP_MAC_INIT_FAILED Unable to perform staged mac init

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_GenerateMac, CSP_GenerateM acUpdate, CSP_GenerateM acFinal

Release 1.0 Common Security Services M anager Page 35
Service Provider I nterface Specification

2.3.17 CSP_GenerateMacUpdate

CSSM_RETURN CSSM SPI CSP_GenerateMacUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBuf Count)

This function updates the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID _DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC _UPDATE_FAILED Unable to perform staged mac update

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

See Also
CSP_GenerateMac, CSP_GenerateMaclnit, CSP_GenerateM acFinal

Release 1.0 Common Security Services M anager Page 36
Service Provider I nterface Specification

2.3.18 CSP_GenerateMacFinal

CSSM_RETURN CSSMSPI CSP_GenerateMacFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_MAC_FINAL_FAILED Unable to perform staged mac final

CSSM_CSP_STAGED_OPERATION_UNSUPPORTED Supports only single stage operations

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_GenerateMac, CSP_GenerateMaclnit, CSP_GenerateMacUpdate

Release 1.0 Common Security Services M anager Page 37
Service Provider I nterface Specification

2.3.19 CSP_EncryptData

CSSM_RETURN CSSM_SPI CSP_EncryptData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 * bytesEncrypted,
CSSM_DATA_PTR RemData)

This function encrypts the supplied data using information in the context. The CSP_QuerySize
function can be used to estimate the output buffer size required.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ClearBufs (input)
A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)
The number of ClearBufs.

CipherBufs (output)
A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted datain bytes.

RembData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes

Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle

Release 1.0 Common Security Services M anager Page 38
Service Provider I nterface Specification

CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID _DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_ENC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_ENC_NO_METHOD Service not provided.
CSSM_CSP_ENC _FAILED Unable to encrypt data

CSSM_CSP_ENC_BAD_IV_LENGTH
CSSM_CSP_ENC_BAD_KEY_LENGTH

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place encryption can be done by supplying the same input and output buffers.

See Also
CSP_QuerySize, CSP_DecryptData, CSP_EncryptDatalnit, CSP_EncryptDataUpdate,
CSP_EncryptDataFinal

Release 1.0 Common Security Services M anager Page 39
Service Provider I nterface Specification

2.3.20 CSP_EncryptDatalnit

CSSM_RETURN CSSM SPI CSP_EncryptDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged encrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_ENC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_ENC_NO_METHOD
CSSM_CSP_ENC_INIT_FAILED Unable to perform encrypt initialization

CSSM_CSP_ENC_BAD_IV_LENGTH
CSSM_CSP_ENC_BAD_KEY_LENGTH

See Also
CSP_EncryptData, CSP_EncryptDataUpdate, CSP_EncryptDataFinal

Release 1.0 Common Security Services M anager Page 40
Service Provider I nterface Specification

2.3.21 CSP_EncryptDataUpdate

CSSM_RETURN CSSM SPI CSP_EncryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 * bytesEncrypted)

This function updates the staged encrypt function. The CSP_QuerySize function can be used to
estimate the output buffer size required for each update call. There may be algorithm-specific
and token-specific rules restricting the lengths of datain CSP_EncryptUpdatecalls.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
calsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

ClearBufs (input)
A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)
The number of ClearBufs.

CipherBufs (output)
A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted datain bytes.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_ENC_UPDATE_FAILED Unable to encrypt data

CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

Release 1.0 Common Security Services M anager Page 41
Service Provider I nterface Specification

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place encryption can be done by supplying the same input and output buffer.

See Also
CSP_QuerySize, CSP_EncryptData, CSP_EncryptDatalnit, CSP_EncryptDataFinal

Release 1.0 Common Security Services M anager Page 42
Service Provider I nterface Specification

2.3.22 CSP_EncryptDataFinal

CSSM_RETURN CSSMSPI CSP_EncryptDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged encrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP ENC _FINAL_FAILED Unable to encrypt data

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case.
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place encryption can be done by supplying the same input and output buffers.

See Also
CSP_EncryptData, CSP_EncryptDatalnit, CSP_EncryptDataUpdate

Release 1.0 Common Security Services M anager Page 43
Service Provider I nterface Specification

2.3.23 CSP_DecryptData

CSSM_RETURN CSSM SPI CSP_DecryptData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 *bytesDecrypted,
CSSM_DATA_PTR RemData)

This function decrypts the supplied encrypted data. The CSP_QuerySize function can be used to
estimate the output buffer size required.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

CipherBufs (input)
A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

ClearBufs (output)
A pointer to one or more CSSM_DATA structures for the decrypted data.

ClearBufCount (input)
The number of ClearBufs.

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted datain bytes.

RembData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes

Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle

Release 1.0 Common Security Services M anager Page 44
Service Provider I nterface Specification

CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_INVALID_DATA_COUNT Invalid data count
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP _DEC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP DEC_NO_METHOD Service not provided.
CSSM_CSP_DEC _FAILED Unable to encrypt data

CSSM_CSP_DEC_BAD_IV_LENGTH
CSSM_CSP DEC_BAD_KEY_ LENGTH

Comments
The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place decryption can be done by supplying the same input and output buffer.

See Also
CSP_QuerySize, CSP_EncryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate,
CSP_DecryptDataFinal

Release 1.0 Common Security Services M anager Page 45
Service Provider I nterface Specification

2.3.24 CSP_DecryptDatalnit

CSSM_RETURN CSSM SPI CSSM_CSP_DecryptDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged decrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_DEC_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_DEC NO _METHOD Service not provided.
CSSM_CSP_DEC_INIT_FAILED Unable to perform decrypt initialization

CSSM_CSP_DEC_BAD_IV_LENGTH
CSSM_CSP_DEC_BAD_KEY_LENGTH

See Also
CSP_DecryptData, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

Release 1.0 Common Security Services M anager Page 46
Service Provider I nterface Specification

2.3.25 CSP_DecryptDataUpdate

CSSM_RETURN CSSM SPI CSP_DecryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 *bytesDecrypted)

This function updates the staged decrypt function. The CSP_QuerySize function can be used to
estimate the output buffer size required for each update call. There may be algorithm-specific
and token-specific rules restricting the lengths of datain CSP_DecryptUpdate calls.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
calsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

CipherBufs (input)
A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

ClearBufs (output)

A pointer to one or more CSSM_DATA structures for the decrypted data. The output can be

obtained either by filling the caller-supplied buffer or using the application’s memory allocation
functions to allocate spaces, application has to free the memory in this case. If this is NULL, an
error code CSSM_CSP_INVALID_DATA POINTER is returned.

ClearBufCount (input)
The number ofClearBufs.

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted data in bytes.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA POINTER Invalid pointer

CSSM_CSP_INVALID_DATA_COUNT Invalid data count

Release 1.0 Common Security Services M anager Page 47
Service Provider I nterface Specification

CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_DEC_UNKNOWN_ALGORITHM Unknown algorithm

CSSM_CSP_DEC_NO_METHOD Service not provided.

CSSM_CSP DEC _UPDATE_FAILED Staged encryption update failed
Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place decryption can be done by supplying the same input and output buffers.

See Also
CSP_QuerySize, CSP_DecryptData, CSP_DecryptDatalnit, CSP_DecryptDataFinal

Release 1.0 Common Security Services M anager Page 48
Service Provider I nterface Specification

2.3.26 CSP_DecryptDataFinal

CSSM_RETURN CSSM SPI CSP_DecryptDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged decrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP DEC FINAL_FAILED Stages encrypt final failed

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned. In-place decryption can be done by supplying the same input and output buffers.

See Also
CSP_DecryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate

Release 1.0 Common Security Services M anager Page 49
Service Provider I nterface Specification

2.3.27 CSP_GenerateKey

CSSM_RETURN CSSMSPI CSP_GenerateKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_KEY_PTR Key)

This function generates a symmetric key or asymmetric key pair. Inthe case of asymmetric key,
this function returns the symmetric key. In the case of an asymmetric key pair, this function
returns the public key and saves the wrapped private key in the CSP associated with the context.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
calsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Key (output)
Pointer to CSSM_ KEY structure used to obtain the key.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_KEYGEN_NO_METHOD Service not provided.
CSSM_CSP_KEYGEN_FAILED Unable to generate key

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case.
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_GenerateRandom

Release 1.0 Common Security Services M anager Page 50
Service Provider I nterface Specification

2.3.28 CSP_GenerateRandom

CSSM_RETURN CSSM SPI CSP_GenerateRandom (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_DATA_PTR RandomNumber)

This function generates random data.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

RandomNumber (output)
Pointer to CSSM_DATA structure used to obtain the random number and the size of the random
number in bytes.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_RNG_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CSP_RNG_NO_METHOD Service not provided.
CSSM_CSP_RNG_FAILED Unable to generate random number

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case.
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

Release 1.0 Common Security Services M anager Page 51
Service Provider I nterface Specification

2.3.29 CSP_GenerateUniqueld

CSSM_RETURN CSSM SPI CSP_GenerateUniqueld (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_DATA_PTR Uniquel D)

This function generates unique identification code.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Uniqueld (output)
Pointer to CSSM_DATA structure used to obtain the unique ID and the size of the unique ID in
bytes.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CSP_HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_UIDG_UNKNOWN_ALGORITHM Unknown algorithm
CSSM_CsP _UIDG_NO_METHOD Service not provided.
CSSM_CSP _UIDG_FAILED Unable to generate unique id

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case.
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

Release 1.0 Common Security Services M anager Page 52
Service Provider I nterface Specification

2.3.30 CSP_KeyExchGenParam

CSSM_RETURN CSSM SPI CSP_KeyExchGenParam (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 ParamBits,

CSSM_DATA_PTR Param)

This function generates key exchange parameter datafor CSP_KeyExchPhasel.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ParamBits (input)
Used to generate parameters for the key exchange algorithm (for example, Diffie-Hellman).

Param (output)
Pointer to CSSM_DATA structure used to obtain the key exchange parameter and the size of the
key exchange parameter in bytes.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_KEYEXCH_GENPARAM_FAIL Unable to generate exchange param data
Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case.
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_KeyExchPhasel, CSP_KeyExchPhase2

Release 1.0 Common Security Services M anager Page 53
Service Provider I nterface Specification

2.3.31 CSP_KeyExchPhasel

CSSM_RETURN CSSM SPI CSP_KeyExchPhasel (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Param,
CSSM_DATA_PTR Paraml)

Phase 1 of the key exchange operation - generates data for CSP_KeyExchPhase2.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Param (input)
Param is the return value from the CSP_KeyExchGenParam function.

Paraml (output)
Pointer to CSSM_DATA structure used to obtain the Phase 1 output.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_ HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_KEYEXCH_PHASE1 FAILED Unable to generate to stage key exchange
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_KeyExchGenParam, CSP_KeyExchPhase?2

Release 1.0 Common Security Services M anager Page 54
Service Provider I nterface Specification

2.3.32 CSP_KeyExchPhase2

CSSM_RETURN CSSM SPI CSP_KeyExchPhase2 (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Paraml,
CSSM_KEY_PTR ExchangedK ey)

Phase 2 of the key exchange operation.

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Paraml (input)
Param is the return value from the CSP_K eyExchPhasel function.

ExchangedKey (output)
Pointer to CSSM_KEY structure used to obtain the exchanged key blaob.

Return Value
A CSSM return value. Thisfunction returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID _CSP HANDLE Invalid csp handle
CSSM_CSP_INVALID CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate
CSSM_CSP_KEYEXCH_PHASE2 FAILED Unable to stage key exchange

Comments

The output can be obtained either by filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space, application has to free the memory in this case. If
the output buffer pointer is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_KeyExchPhasel, CSP_KeyExchGenParam

Release 1.0 Common Security Services M anager Page 55
Service Provider I nterface Specification

2.4 Extensibility Functions

The CSP_PassThrough function is provided to allow CSP developers to extend the crypto functionality of
the CSSM API. Becauseit isonly exposed to CSSM as a function pointer, its name internal to the CSP
can be assigned at the discretion of the CSP module developer. However, its parameter list and return
value must match what is shown below. The error codes given in this section constitute the generic error
codes which may be used by all CSPs to describe common error conditions. CSP developers may also
define their own modul e-specific error codes, as described in Section 3.5.2.

2.4.1 CSP_PassThrough

CSSM_RETURN CSSM SPI CSP_PassThrough (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 PassThroughld,
const CSSM_DATA_PTR InData,
CSSM_DATA_PTR OutData)

Parameters
CSPHandle (input)
The handle that describes the add-in cryptographic service provider module used to perform up
callsto CSSM for the memory functions managed by CSSM.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

PassThroughld (input)
An identifier specifying the custom function to be performed.

InData (input)
A pointer to CSSM_DATA structure containing the input data.

OutData (output)
A pointer to CSSM_DATA structure for the output data.

Return Value
A CSSM return value. This function returns CSSM_OK if successful and returns an error code if
an error has occurred.

Error Codes
Value Description
CSSM_CSP_INVALID_CSP_ HANDLE Invalid csp handle
CSSM_CSP_INVALID_CONTEXT_HANDLE Invalid context handle
CSSM_CSP_INVALID_CONTEXT_POINTER Invalid context pointer
CSSM_CSP_INVALID_DATA_POINTER Invalid pointer for input data
CSSM_CSP_MEMORY_ERROR Not enough memory to allocate

CSSM_CSP_UNSUPPORTED_OPERATION Add-in does not support this function

Release 1.0 Common Security Services M anager Page 56
Service Provider Interface Specification

CSSM_CSP_PASS THROUGH_FAILED Unable to perform custom function

2.5 Module Management Functions

The CSP Initialize function is used by the CSSM Core to determine whether the C SP module version
being attached is compatible with the CSP module version being requested and to perform any module-
specific setup activities. The CSP_Uninitialize function is used to perform any modul e-specific cleanup
activities prior to module detach. Because these functions are only exposed to CSSM as function pointers,
their names internal to the certificate library can be assigned at the discretion of the C SP module
developer. However, their parameter lists and return values must match what is shown below. The error
codes given in this section constitute the generic error codes, which may be used by all certificate libraries
to describe common error conditions. Certificate library developers may also define their own module-
specific error codes, as described in Section 3.5.2.

Release 1.0 Common Security Services M anager Page 57
Service Provider Interface Specification

2.5.1 CSP Initialize

CSSM RETURN CSSMCSP CSP Initialize (uint32 VerMajor,
uint32 VerMinor)

This function checks whether the current version of the CSP module is compatible with the input
version and performs any modul e-specific setup activities.

Parameters
VerMajor (input
The major version number of the CSP modul e expected by the calling application.

VerMinor (input
The minor version number of the CSP module expected by the calling application.

Return Value
A CSSM_OK return value signifies that the current version of the C SP module is compatible
with the input version numbers and all setup operations were successful ly performed. When
CSSM_FAIL isreturned, either the current C SP module is incompatible with the requested CSP
module version or an error has occurred. Use CSSM _ GetError to obtain the error code.

Error Codes

Vaue Description

CSSM_CSP INITIALIZE FAIL Unable to perform moduleinitialization
See Also

CSP Uninitialize

Release 1.0 Common Security Services M anager Page 58
Service Provider Interface Specification

2.5.2 CSP _Uninitialize

CSSM RETURN CSSMCSP CSP Uninitialize (void)

This function performs any modul e-specific cleanup activities.

Parameters
None

Return Value
A CSSM_OK return value signifies that al cleanup operations were successfully performed.
When CSSM_FAIL isreturned, an error has occurred. Use CSSM _ GetError to obtain the error

code.
Error Codes

Vaue Description

CSSM_CSP UNINITIALIZE FAIL Unable to perform modul e cleanup
See Also

CSP Initidlize

Release 1.0

Common Security Services M anager
Service Provider I nterface Specification

Page 59

Release 1.0 Common Security Services M anager Page 60
Service Provider I nterface Specification

3. CSP Structure and Management

3.1 Introduction

A CSP isan add-in module which can be used by applications via CSSM to perform cryptographic
services.

There exists today a variety of cryptographic protocols, techniques, and algorithms. Even for the same
cryptographic algorithm, there exist variants based on key lengths, padding schemes, and algorithm
modes. Because all algorithm and key-specific information is encapsul ated in the CSP, the application
can focus on interesting uses of cryptography, rather than the tedious details of algorithm variations and
key formats. The availability of CSPs also allows CSP developers to easily customize and extend the
cryptographic protocols to meet changing market requirements.

This section is provided to aid the CSP devel opersin creating a CSP module which will interface properly
with CSSM. It coversthe structure of a CSP, CSP installation, the expected behavior of a CSP on attach,
and some behaviors expected of CSP modules. This section aso includes examples of CSP function
implementations as a reference for new CSP modules.

3.2 CSP Structure

A CSPisadynamically linkable library which contains routines which implement some or all of the
CSSM SPI described in Section 2. The CSP should also contain functions which are called when the CSP
is attached and detached. The attach function will be responsible for registering a function table with
CSSM, accepting the memory management upcalls, and performing any module-specific setup. The
detach function will be responsible for any cleanup required by the module. The attach and detach
functions will vary depending on the target operating system. For example, DLLMain would be used to
implement these functions for a CSP targeted to Windows NT*. _init and _fini would be used to
implement these functions for a CSP targeted to SunOS*.

The CSP functionality can be broadly classified into the following categories:
* Registration with CSSM
* Token management
e Private key management
* Cryptographic services
* Other services

A CSP may implement all or some of the components listed above. A CSP need not expose all the
functions for every component. A CSP vendor can expose other service functions through the
CSP_PassThrough interface. A unique function ID is required to identify the custom function.

3.3 CSP Installation

Before a CSP can be used by an application, its name, location, and capabilities must be registered with
CSSM by aninstallation application. The name of a CSP moduleis given by both alogical name and a
globally unique identifier (GUID). Thelogical name isastring chosen by the CSP developer to describe
the CSP module. The GUID isused to differentiate between library modulesin the CSSM registry.
GUIDs are discussed in more detail below. The location of the CSP module is required on installation so
that CSSM can locate the module when an application requests an attach. The CSP capabilities are
registered with CSSM at install time so that an application can query for CSP module availability and
features.

Release 1.0 Common Security Services M anager Page 61
Service Provider I nterface Specification

3.3.1 Global Unique Identifiers (GUIDSs)

Each CSP must have a globally unique identifier (GUID) which will be used by CSSM, applications, and
CSP modules to uniquely identify a CSP. The GUID will be used by the CSSM registry to expose add-in
module availability to applications. The application will use this GUID to identify atargeted CSPin al
cryptographic function calls. The CSP module will use this GUID to identify itself when it setsan error.
GUID generators are publicly available for Windows 95*, Windows NT, and many UNIX* platforms.

A GUID is defined as:
typedef struct guid

unsi gned | ong Dat al;

unsi gned short Dat a2;

unsi gned short Dat a3;

unsi gned char Dat a4[8] ;
} QUID;

3.4 Attaching a CSP

Before an application can use the functions of a specific CSP, it must attach the CSP to CSSM using the
CSSM_CSP_Attach function. On attach, the CSP usesthe CSIM_CSP_Register Services function to

register its function table with CSSM and to obtain the application’s memory management upcalls from
CSSM. CSSM will use the CSP module’s function table to direct calls from the application to the correct
function in the CSP module. The CSP module uses the memory management upcalls to allocate any
memory which will be returned to the calling application and to free any memory which it received from
the calling application.

When CSSM attaches to or detaches from a CSP module, it initiates a function in the CSP which performs
the necessary setup and cleanup operations. The attach and detach functions will vary depending on the
target operating system for the CSP module. For example, DLLMain would be used to implement these
functions in a CSP targeted to Windows NT. _init and _fini would be used to implement these functions

in a CSP targeted to SunOS.

3.4.1 The CSP module function table

The function table for a CSP module is a structure which contains pointers to the CSP module’s
implementation of the functions specified in the Service Provider Interface. This structure is specified as
a part of the CSSM header file, cssm.h. If a CSP does not support some function in the SPI, the pointer to
that function should be set to NULL.

3.4.2 Memory management upcalls

All memory allocation and de-allocation for data passed between the application and the CSP module via
CSSM is ultimately the responsibility of the calling application. Since the CSP module will need to
allocate memory in order to return data to the application, the application must provide the CSP module a
means of allocating memory which the application has the ability to free. It does this by providing the
CSP module with memory management upcalls.

Memory management upcalls are simply pointers to the memory management functions used by the
calling application. They are provided to the CSP module via CSSM as a structure of function pointers.
The functions will be the calling application’s equivalent of malloc, free and re-alloc and will be expected
to have the same behavior as those functions. The function parameters will consist of a CSP handle
followed by the normal parameters for that function. The CSP handle is used by CSSM to direct the
memory operation to the target application. The function return values should be interpreted in the
standard manner. The CSP module is responsible for making the memory management functions
available to all of its internal functions.

Release 1.0 Common Security Services M anager Page 62
Service Provider I nterface Specification

3.5 CSP Basic Services

3.5.1 Function Implementation

A CSP developer may choose to implement some or all of the functions specified in the SPI. The expected
behavior of each function is detailed in Section 2 (Service Provider Interface).

A CSP developer may choose to leverage the capabilities of another CSP module to implement certain
functions. To do this, the CSP would attach to another CSP using CSSM_CSP_Attach. Subsequent
function calls to the first CSP would call the corresponding function in the second CSP for some or all of
its implementation.

3.5.2 Error handling

When an error occurs, the function in the CSP module should call the CSSM_SetError function. The
CSSM_SetError function takes the module’s GUID and an error number as inputs. The module’s GUID
will be used to identify where the error occurred. The error number will be used to describe the error.

The error number set by the CSP module should fall into one of two ranges. The first range of error
numbers is predefined by CSSM. These are errors which are expected to be common to all CSP modules
implementing a given function. They are described in this document as part of the function definitions in
Sections 2.3, 2.4, and 2.5. They are defined in the header file cssmerr.h which is distributed as part of
CSSM. The second range of error numbers is used to define module-specific error codes. These module-
specific error codes should be in the range of CSSM_CSP_PRIVATE_ERROR to
CSSM_CSP_END_ERROR. CSSM_CSP_PRIVATE_ERROR and CSSM_CSP_END_ERROR are also
defined in the header file cssmerr.h. The CSP module developer is responsible for making the definition
and interpretation of their module-specific error codes available to applications.

When no error has occurred, but the appropriate return value from a function is CSSM_FALSE, that
function should calCSSM_ClearError before returning. When the application receives a CSSM_FALSE
return value, it is responsible for checking whether an error has occurred by &#tivyy GetError. If

the function in the CSP module has cal@8SV_ClearError, the calling application will receive
CSSM_OK response from ti@SSM_GetError function, indicating that no error has occurred.

3.6 CSP Utility Libraries

CSP Utility Libraries are software components which may be provided by a CSP developer for use by
other CSP developers. They are expected to contain functions which may be useful to several CSP
modules, such as BER and DER encoding and decoding.

A CSP may want its public/private key blobs to be PKCS conformant. The following functions might be
provided by the CSP utility library:

* Pkcs_MakePublicKeyBlob

* Pkcs_MakePrivateKeyBlob

e Pkcs_ConvPublicKeyBlob

* Pkcs_ConvPrivateKeyBlob

The CSP Utility Library developer is responsible for making the definition, interpretation, and usage of
their library available to other CSP module developers.

Release 1.0 Common Security Services M anager Page 63
Service Provider Interface Specification

3.7 Attach/Detach Example

The CSP module is responsible for performing certain operations when CSSM attaches to and detaches
from it. CSP modules which have been developed for Windows-based systems will use the DIIMain
routine to perform those operations, as shown in the example below.

3.7.1 DLLMain

| #include “cssm.h”

CSSM_GUID csp_guid =
{ 0x83bafc39, Oxfacl, Ox11icf, { 0x81, 0x72, 0x0, Oxaa, 0x0, Oxb1, 0x99, Oxdd }
%

BOOL WINAPI DlIMain (HANDLE hinstance, DWORD dwReason, LPVOID IpReserved)

switch (dwReason)

{
case DLL_PROCESS_ATTACH:

{
CSSM_FUNCTIONTABLE FunctionTable;

CSSM_SPI_FUNC_TBL_PTR UpcallTable;

/* Fill in FunctionTable with function pointers */

FunctionTable.QuerySize = CSP_QuerySize;
FunctionFuncTable.SignData = CSP_SignData;
FunctionTable.SignDatalnit = CSP_SignDatalnit;
FunctionTable.SignDataUpdate = CSP_SignDataUpdate;
FunctionTable.SignDataFinal = CSP_SignDataFinal;
FunctionTable.VerifyData = CSP_VerifyData;

FunctionTable.VerifyDatalnit = CSP_VerifyDatalnit;
FunctionTable.VerifyDataUpdate = CSP_VerifyDataUpdate;
FunctionTable.VerifyDataFinal = CSP_VerifyDataFinal;
FunctionTable.DigestData = CSP_DigestData;
FunctionTable.DigestDatalnit = CSP_DigestDatalnit;
FunctionTable.DigestDataUpdate = CSP_DigestDataUpdate;
FunctionTable.DigestDataClone = CSP_DigestDataClone;
FunctionTable.DigestDataFinal = CSP_DigestDataFinal;
FunctionTable.GenerateMac = CSP GenerateMac;
FunctionTable.GenerateMaclnit = CSP GenerateMaclnit;
FunctionTable.GenerateMacUpdate = CSP_GenerateMacUpdate;
FunctionTable.GenerateMacFinal = CSP GenerateMacFinal;
FunctionTable.EncryptData = CSP_EncryptData;
FunctionTable.EncryptDatalnit = CSP_EncryptDatalnit;
FunctionTable.EncryptDataUpdate = CSP_EncryptDataUpdate;
FunctionTable.EncryptDataFinal = CSP_EncryptDataFinal;
FunctionTable.DecryptData = CSP_DecryptData,;
FunctionTable.DecryptDatalnit = CSP_DecryptDatalnit;
FunctionTable.DecryptDataUpdate = CSP_DecryptDataUpdate;
FunctionTable.DecryptDataFinal = CSP_DecryptDataFinal;
FunctionTable.GenerateKey = CSP_GenerateKey;
FunctionTable.GenerateRandom = CSP GenerateRandom;
FunctionTable.GenerateUniqueld = CSP_GenerateUniqueld;
FunctionTable.KeyExchGenParam = CSP_KeyExchGenParam;
FunctionTable.KeyExchPhasel = CSP_KeyExchPhasel,
FunctionTable.KeyExchPhase2 = CSP_KeyExchPhase2,;

Release 1.0 Common Security Services M anager
Service Provider I nterface Specification

Page 64

CSP_PassThr ough;
CSP Initialize;
CSP Uninitialize;

Functi onTabl e. PassThr ough
FunctionTable.Initialize
FunctionTable.Uninitialize

/* Call CSSM CSP_Regi sterServices to register the FunctionTable */

/* with CSSM and to receive the application’s memory upcall table */
if (CSSM_CSP_RegisterServices (&csp_guid, FunctionTable,
&UpcallTable) 1= CSSM_OK)

return FALSE;

/* Make the upcall table available to all functions in this library
*

break;
}
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
if (CSSM_CSP_DeregisterServices (&csp_guid) = CSSM_OK)
return FALSE;
break;
}
return TRUE;

}

Release 1.0 Common Security Services M anager Page 65
Service Provider I nterface Specification

3.8 Cryptographic Operations Examples

CSSM_RETURN CSSMsSPI CSP_Gener at eKey (CSSM CSP_HANDLE CSPHandl e,
CSSM _CC_HANDLE CCHandl e
const CSSM CONTEXT_PTR Cont ext,
CSSM _KEY_PTR Key)

{
CSP_SESSI ON sessi on;
uint32 rtn;
rtn = | _Validat eCont ext Par am Cont ext) ;

if (rtn !'= CSSM OK)
return rtn;

/* Create a tenp session and fill the information */
Token_l ni t Sessi on(&essi on) ;
Token_Fi | | Sessi on(&sessi on, CSPHandl e, CCHandl e, Context);

/* calls crypto func to generate key, return the key bl ob
and save the w apped prikey in the token (in the asynmetric
key pair generation case) */

return Cryp_Generat eKey(session, Key);

Release 1.0 Common Security Services M anager Page 66
Service Provider I nterface Specification

4. Appendix A. Relevant CSSM API functions

4.1 Overview

There are several API functions which will be particularly relevant to CSP devel opers, because they are
used by the application to access the CSP module or because they are used by the CSP module to access
CSSM services, such as the CSSM registry or the error-handling routines. They have been included in
this appendix for quick-reference by CSP module developers. For more information, the CSP module
developer is encouraged to reference the CSSM Application Programming Interface.

4.2 Function Definitions

4.2.1 CSSM_CSP_Install

CSSM_RETURN CSSMAPI CSSM_CSP_Install (const char *CSPName,
const char * CSPFileName,
const char * CSPPathName,
const CSSM_GUID_PTR GUID,
const CSSM_CSPINFO_PTR CSPInfo,
const void * Reservedl,
const CSSM_DATA_PTR Reserved?)

This function updates the CSSM-persistent internal information about the CSP module.

Parameters
CSPName (input)
The name of the CSP module.

CSPFileName (input)
The name of the file that implements the CSP.

CSPPathName (input)
The path to the file that implements the CSP.

GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

CSPInfo (input)
A pointer to the CSSM_CSPINFO structure containing information about the CSP module.

Reservedl (input)
Reserve data for the function.

Reserved?2 (input)
Reserve data for the function.

Return Value

Release 1.0 Common Security Services M anager

Page 67
Service Provider I nterface Specification

A CSSM_OK return value signifies that information has been updated. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Value Description
CSSM_INVALID_POINTER Invalid pointer

CSSM_REGISTRY_ERROR

See Also
CSSM_CSP_Uninstall

Error in the registry

Release 1.0 Common Security Services M anager Page 68
Service Provider I nterface Specification

4.2.2 CSSM_CSP_Uninstall

CSSM_RETURN CSSMAPI CSSM_CSP_Uninstall (const CSSM_GUID_PTR GUID)
This function deletes the persistent CSSM internal information about the CSP module.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

Return Value
A CSSM_OK return value means the CSP has been successfully uninstalled. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Value Description
CSSM_INVALID _POINTER Invalid pointer
CSSM_INVALID_GUID CSP module was not installed
CSSM_REGISTRY_ERROR Unable to delete information
See Also

CSSM_CSP_Install

Release 1.0 Common Security Services M anager Page 69
Service Provider I nterface Specification

4.2.3 CSSM_CSP_RegisterServices

CSSM_RETURN CSSMAPI CSSM_CSP_Register Services
(const CSSM_GUID_PTR GUID,
const CSSM_SPI_CSP_FUNCS_PTR FunctionTable,
CSSM_SPI_MEMORY_FUNCS_PTR Upcall Table,
void * Reserved)

A CSP module uses this function to register its function table with CSSM and to receive a
memory management upcall table from CSSM.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

FunctionTable (input)
A structure containing pointers to the CSP Interface functions implemented by the CSP module.

Upcall Table (output)
A structure containing pointers to the memory routines used by the CSP module to alocate and
free memory returning to the calling application.

Reserved (input)
A reserved input.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_ GetError to obtain the error code.

Error Codes
Value Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_INVALID_FUNCTION_TABLE Invalid function table
CSSM_MEMORY_ERROR Memory error
CSSM_REGISTRY_ERROR Unable to register services
See Also

CSSM_CSP_DeregisterServices

Release 1.0 Common Security Services M anager Page 70

Service Provider I nterface Specification

4.2.4 CSSM_CSP_DeregisterServices

CSSM_RETURN CSSMAPI CSSM_CSP_Deregister Services (const CSSM_GUID_PTR GUID)

A CSP module uses this function to deregister its services from the CSSM.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_ GetError to obtain the error code.

Error Codes
Value Description
CSSM_INVALID_POINTER Invalid pointer GUID
CSSM_MEMORY_ERROR Unable to deregister services
See Also

CSSM_CSP_RegisterServices

Release 1.0 Common Security Services M anager Page 71
Service Provider I nterface Specification

4.25 CSSM_CSP_Attach

CSSM_CSP_HANDLE CSSMAPI CSSM_CSP_Attach
(const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const CSSM_API_MEMORY_FUNCS _PTR MemoryFuncs,
const void * Reserved)

This function attaches the CSP module and verifies that the version of the module expected by
the application is compatible with the version on the system.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

CheckCompatibleVerMajor (input)
The major version number of the CSP module that the application is compatible with.

CheckCompatibleVerMinor (input)
The minor version number of the CSP modul e that the application is compatible with.

MemoryFuncs (input)
A structure containing pointers to the memory routines.

Reserved (input)
A reserved input.

Return Value
A handleisreturned for the CSP module. If the handleis NULL, an error has occurred. Use
CSSM_ GetError to obtain the error code.

Error Codes
Value Description
CSSM_INVALID_POINTER Invalid pointer
CSSM_MEMORY_ERROR Internal memory error
CSSM_INCOMPATIBLE_VERSION Incompatible version
CSSM_EXPIRE Add-in has expired
CSSM_ATTACH_FAIL Unable to load CSP module

See Also

CSSM_CSP_Detach

Release 1.0 Common Security Services M anager Page 72
Service Provider I nterface Specification

4.2.6 CSSM_CSP_Detach

CSSM_RETURN CSSMAPI CSSM_CSP_Detach (CSSM_CSP_HANDLE CSPHandl€)
This function detaches the application from the CSP module.

Parameters
CSPHandle (input)
The handle that describes the CSP module.

Return Value
A CSSM_OK return value signifies that the application has been detached from the CSP module.
If CSSM_FAIL isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes
Value Description
CSSM_INVALID_ADDIN_HANDLE Invalid CSP handle
See Also

CSSM_CSP Attach

Release 1.0 Common Security Services M anager Page 73
Service Provider I nterface Specification

4.2.7 CSSM_GetError

CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

This function returns the current error information.

Parameters
None

Return Value
Returns the current error information. If thereis no valid error, the error number is CSSM_OK.
A NULL pointer indicates the CSSM_InitError was not called by the CSSM Core or that CSSM
Coremade acall to CSSM_DestroyError. No error information is available.

See Also
CSSM_ ClearError, CSSM_ SetError

Release 1.0 Common Security Services M anager Page 74
Service Provider I nterface Specification

4.2.8 CSSM_SetError

CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR guid,
uint32 error_number)

This function sets the current error information to error_number and guid.

Parameters
guid (input)
Pointer to the GUID (global unique ID) of the add-in module.

error_number (input)
An error number. It falls within one of the valid CSSM, CL, TP, DL, or CSP error ranges.

Return Value
CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates the error
number passed is not within avalid range, the GUID passed isinvalid, CSSM_InitError was not
called by the CSSM Core, or the CSSM core called CSSM_DestroyError. No error information
isavailable.

See Also
CSSM__ClearError, CSSM_ GetError

Release 1.0

Common Security Services M anager
Service Provider I nterface Specification

Page 75

4.2.9 CSSM_ClearError

void CSSMAPI CSSM_ClearError (void)

This function sets the current error valueto CSSM_OK. Thisiscaled if the current error value
has been handled and therefore is no longer avalid error.

Parameters
None

See Also

CSSM_SetError, CSSM_GetError

