
Common Security
Services Manager

Data Storage Library Interface (DLI) Specification

Release 1.0
October 1996

Updated December 1996

Subject to Change Without Notice

Specification Disclaimer and Limited Use License

This specification is for release version 1.0, October 1996.

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Some aspects of this Specification may be covered under various United States or foreign
patents. No license, express or implied, by estoppel or otherwise, to any other intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information in this specification. Intel doesn't warrant or represent that such
implementation(s) will not infringe such rights.

If you are interested in receiving an appropriate license to Intel's intellectual property rights
relating to the interface defined in this specification, contact us for details at
cdsa@ibeam.intel.com.

Copyright© 1996 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

Table of Contents

1. INTRODUCTION...1
1.1 CDSA OVERVIEW..1
1.2 DATA STORAGE LIBRARY OVERVIEW..3

1.2.1 Application Interaction ...3
1.2.2 DL Structure and Use ..4

1.3 CSSM DATA STORAGE LIBRARY INTERFACE SPECIFICATION ...4
1.3.1 Intended Audience ...4
1.3.2 Document Organization ..4

1.4 REFERENCES ..4

2. DATA STORAGE LIBRARY INTERFACE...6
2.1 OVERVIEW...6

2.1.1 Data source Operations...7
2.1.2 Certificate Storage Operations ..8
2.1.3 CRL Storage Operations ...9
2.1.4 Module Management Functions...9
2.1.5 Extensibility Functions ..10

2.2 DATA STRUCTURES ..11
2.2.1 CSSM_DB_CONJUNCTIVE..11
2.2.2 CSSM_DB_OPERATOR..11
2.2.3 CSSM_FIELD ...11
2.2.4 CSSM_SELECTION_PREDICATE..12
2.2.5 CSSM_DATA...12
2.2.6 CSSM_NAME_LIST ..12

2.3 DATA SOURCE OPERATIONS ..13
2.3.1 DL_DbOpen..13
2.3.2 DL_DbClose ...14
2.3.3 DL_DbCreate..15
2.3.4 DL_DbDelete ..16
2.3.5 DL_DbImport..17
2.3.6 DL_DbExport..18

2.4 CERTIFICATE STORAGE OPERATIONS...19
2.4.1 DL_CertInsert ...19
2.4.2 DL_CertDelete ..20
2.4.3 DL_CertRevoke ...21
2.4.4 DL_CertGetFirst ...22
2.4.5 DL_CertGetNext ...24
2.4.6 DL_CertAbortQuery..25

2.5 CRL STORAGE OPERATIONS...26
2.5.1 DL_CrlInsert ...26
2.5.2 DL_CrlDelete..27
2.5.3 DL_CrlGetFirst...28
2.5.4 DL_CrlGetNext ...30
2.5.5 DL_CrlAbortQuery ...31

2.6 MODULE MANAGEMENT FUNCTIONS...32
2.6.1 DL_GetDbNames ..32
2.6.2 DL_FreeNameList ...33
2.6.3 DL_Initialize ...34

Release 1.0 Common Security Services Manager Page iv
Data-storage Library Interface Specification

2.6.3 DL_Uninitialize...35
2.7 EXTENSIBILITY FUNCTIONS ..36

2.7.1 DL_PassThrough...36

3. DATA STORAGE LIBRARY STRUCTURE AND MANAGEMENT...38
3.1 DATA STORAGE LIBRARY COMPOSITION ...38
3.2 DATA STORAGE LIBRARY INSTALLATION ..38

3.2.1 Global Unique Identifiers (GUIDs)..38
3.2.2 Data Storage characteristics ...39
3.2.3 Object Identifiers (OIDs) ...39

3.3 ATTACHING A DATA STORAGE LIBRARY ...39
3.3.1 The DL module function table ...39
3.3.2 Memory management upcalls ..40

3.4 DATA STORAGE LIBRARY BASIC SERVICES ..40
3.4.1 Function Implementation ...40
3.4.2 Error handling ..40

3.5 DATA STORAGE UTILITY LIBRARIES..41
3.6 ATTACH/DETACH EXAMPLE ...41

3.6.1 DLLMain...42
3.7 DATA SOURCE OPERATIONS EXAMPLES ...44
3.8 CERTIFICATE STORAGE OPERATIONS EXAMPLES..45

4. APPENDIX A. RELEVANT CSSM API FUNCTIONS...46
4.1 OVERVIEW...46
4.2 DATA STRUCTURES ..46

4.2.1 CSSM_DATA...46
4.2.2 CSSM_OID ...46
4.2.3 CSSM_GUID...46
4.2.4 CSSM_DL_INFO...46
4.2.5 CSSM_HANDLE ...47
4.2.6 CSSM_SPI_FUNC_TBL ..47

4.3 FUNCTION DEFINITIONS..48
4.3.1 CSSM_DL_Install..48
4.3.2 CSSM_DL_Uninstall ...49
4.3.3 CSSM_DL_ListModules ..50
4.3.4 CSSM_FreeList ...51
4.3.5 CSSM_DL_Attach ...52
4.3.6 CSSM_DL_Detach ..53
4.3.7 CSSM_DL_GetInfo..54
4.3.8 CSSM_DL_FreeInfo ..55
4.3.9 CSSM_DL_RegisterServices ..56
4.3.10 CSSM_DL_DeregisterServices ..57
4.3.11 CSSM_GetError ..58
4.3.12 CSSM_SetError ...59
4.3.13 CSSM_ClearError...60

List of Figures
Figure 1. The Common Data Security Architecture for all platforms ...2

Release 1.0 Common Security Services Manager Page 1
Data-storage Library Interface Specification

1. Introduction
1.1 CDSA Overview
The Common Data Security Architecture (CDSA) defines the infrastructure for a complete set of security
services. CDSA is an extensible architecture that provides mechanisms to manage add-in security
modules, which use cryptography as a computational base to build secure protocols and secure systems.
Figure 1 shows the four basic layers of the Common Data Security Architecture: Applications, System
Security Services, the Common Security Services Manager, and Security Add-in Modules. The Common
Security Services Manager (CSSM) is the core of CDSA. It enables applications to directly access security
services through the CSSM security API, or to indirectly access them via layered security services and
tools implemented over the CSSM API. CSSM manages the add-in security modules and directs
application calls through the CSSM API to the selected add-in module servicing the request. Add-in
modules perform various aspects of security services, including:

• Cryptographic Services

• Trust Policy Services

• Certificate Library Services

• Data Storage Library Services

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations
including encryption, decryption, digital signaturing, key pair generation, random number generation, and
key exchange. Trust Policy (TP) modules implement policies defined by authorities and institutions, such
as VeriSign* (as a certificate authority) or MasterCard* (as an institution). Each trust policy module
embodies the semantics of a trust model based on using digital certificates as credentials. Applications
may use a digital certificate as an identity credential and/or an authorization credential. Certificate
Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital
certificates and certificate revocation lists. Data Storage library (DL) modules provide persistent storage
for certificates and certificate revocation lists.

Release 1.0 Common Security Services Manager Page 2
Data-storage Library Interface Specification

Certificate
Library

Data-store

Common
Security
Services
Manager

System
Security
Services

Security
Add-in
Modules

Layered Services, Middleware,
Language Interface-adapter, and Tools

Applications

Cryptographic
Service

Provider

Trust Model
Library

DataStorage
Library

CSSM Security API

CSP
Manager

SPI DLICLITPI

TP Module
Manager

CL Module
Manager

DL Module
Manager

In
te

g
ri

ty
S

er
vi

ce
s S

ecu
rty

C
on

text
M

g
m

t

Figure 1. The Common Data Security Architecture for all platforms

Applications directly or indirectly select the modules used to provide security services to the application.
These add-in modules are provided by independent software and hardware vendors. The functionality of
the add-in module may be extended beyond the services defined by the CSSM API by exporting additional
services to applications via the CSSM pass through mechanism.

The API calls defined for add-in modules are categorized as service operations, module management
operations, and module-specific operations. Service operations include functions that perform a security
operation such as encrypting data, inserting a certificate revocation list into a data store, or verifying that
a certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through pass-through functions whose behavior and use is
defined by the add-in module developer.

CSSM also provides integrity services and security context management. CSSM applies the integrity
check facility to itself to ensure that the currently executing instance of CSSM code has not been tampered
with.

Security context management provides secured runtime caching of user-specific state information and
secrets. The manager focuses on caching state information and parameters for performing cryptographic
operations. Examples of secrets that must be cached during application execution include the
application’s private key and the application’s digital certificate.

Release 1.0 Common Security Services Manager Page 3
Data-storage Library Interface Specification

In summary, the CSSM provides these services through its API calls:

• Certificate-based services and operations

• Comprehensive, extensible service provider interfaces (SPI) for cryptographic service provider
modules, trust policy modules, certificate library modules, and data storage modules

• Registration and management of available cryptographic service provider modules, trust policy
modules, certificate library modules, and data storage modules

• Caching of keys and secrets required as part of the runtime context of a user application

• Call-back functions for disk, screen, and keyboard I/O supported by the operating system

• A test-and-check function to ensure CSSM integrity

• Management of concurrent security operations

1.2 Data Storage Library Overview
A data storage library (DL) Module provides persistent storage for certificates and certificate revocation
lists (CRLs). Stable storage could be provided by a

• Commercially-available database management system product

• Native file system

• Custom hardware-based storage devices

Each DL module may choose to implement only those operations required to provide persistent storage for
certificates and CRLs under its selected model of service.

The implementation of DL operations should be semantically free. For example, the DL operation should
not be responsible for checking whether the certificate values or CRL values conform to X.509 format.
Semantic interpretation of such values should be implemented in TP modules, layered services, and
applications.

A pass-through function is defined in the DL API. This mechanism allows each DL to provide additional
functions to store and retrieve certificates and CRLs, such as performance-enhancing retrieval functions.

1.2.1 Application Interaction

When a new DL is installed on a system, information specific to the DL is stored in the system or CSSM
registry. An application uses that information to find an appropriate DL and to request that CSSM attach
to the DL. When CSSM attaches to the DL, it returns a DL handle to the application that uniquely
identifies the pairing of the application thread to the DL module instance. The application uses this
handle to identify the DL in future function calls. The DL also uses the handle to identify the calling
application.

CSSM passes function calls from an application to a data storage library by making use of the DL’s
function table. The function table consists of pointers to the data storage functions from the CSSM API,
which are supported by the DL. When an application causes CSSM to attach the DL, the data storage
library registers its function table with CSSM using CSSM_DL_RegisterServices. During future function
calls from the application, CSSM will use these function pointers to direct the call appropriately.

Release 1.0 Common Security Services Manager Page 4
Data-storage Library Interface Specification

The calling application is responsible for the allocation and de-allocation of all memory that is passed into
or out of the data storage library module. The application must register memory allocation and de-
allocation upcalls with CSSM when it requests a DL attach. These upcalls and the handle identifying the
application/DL pairing are passed to the DL when it calls CSSM_DL_RegisterServices. These functions
must be used whenever a data storage library allocates or de-allocates memory that belongs to or will
belong to the application.

1.2.2 DL Structure and Use

A data storage library is composed of functions, which are invoked when the DL is attached and detached
and ones that mirror the CSSM API for data storage operations. When the DL is attached, it registers its
function table with the CSSM registry and CSSM provides the DL with a set of upcalls for management of
the application’s memory. When the DL is detached, any necessary cleanup actions are performed. The
remainder of the data storage library functions perform basic storage and retrieval operations on
certificates and certificate revocation lists (CRLs). Extended services may be provided via the
DL_PassThrough function. This function passes a DL module-defined operation identifier and
parameters to the DL.

Data storage libraries may use other CSSM add-in modules to implement their functionality. For
example, a data storage library that builds an index to support fast retrieval may use the capabilities of a
CL add-in module library to obtain the individual fields of a certificate or CRL to build the index. More
information about CL modules can be found in the Common Data Security Architecture Specification and
in the CSSM Certificate Library Interface Specification.

Similarly, data storage Libraries may be used by other CSSM add-in modules to implement their
functionality. For example, Trust Policy modules may call the data storage library functions to store
certificates and CRLs. More information about the TP module can be found in the Common Data
Security Architecture Specification and the CSSM Trust Policy Interface Specification.

1.3 CSSM Data Storage Library Interface Specification

1.3.1 Intended Audience

This document should be used by Independent Software Vendors (ISVs) who want to develop their own
data storage libraries to store and retrieve certificates and/or CRLs. These ISVs should be highly
experienced software and security architects, advanced programmers, and sophisticated users. They are
familiar with data storage systems, high-end cryptography, and digital certificates. We assume that this
audience is familiar with the basic capabilities and features of the protocols they are considering.

1.3.2 Document Organization

This document is divided into the following sections.
Section 2, Data Storage Library Interface, describes the functions that a data storage library makes
available to applications via the CSSM.

Section 3, Data Storage Library Structure and Management, describes important considerations in
developing a data storage library. It also gives examples of how several data storage library functions
might be implemented.

1.4 References
PKCS* The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA:

RSA Data Security, Inc

Release 1.0 Common Security Services Manager Page 5
Data-storage Library Interface Specification

X.509 CCITT. Recommendation X.509: The Directory – Authentication Framework, 1988.
CCITT stands for Comite Consultatif Internationale Telegraphique et Telephonique
(International Telegraph and Telephone Consultative Committee)

SPKI Simple Public Key Infrastructure

SDSI SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B. Lampson,
1996

CDSA Common Data Security Architecture Specification, Intel Architecture Labs, 1996
CSSM API CSSM Application Programming Interface, Intel Architecture Labs, 1996
CSSM SPI CSSM Cryptographic Service Provider Interface Specification,

Intel Architecture Labs, 1996
CSSM TPI CSSM Trust Policy Interface Specification, Intel Architecture Labs, 1996
CSSM CLI CSSM Certificate Library Interface Specification,

Intel Architecture Labs, 1996
CSSM Java CSSM Java Application Programming Interface (API) Specification,

Intel Architecture Labs, 1996

Release 1.0 Common Security Services Manager Page 6
Data-storage Library Interface Specification

2. Data Storage Library Interface

2.1 Overview
The data storage library Interface (DLI) specifies the functions that a data storage library makes available
to applications via CSSM for storing and retrieving certificates and certificate revocation lists (CRLs).
These functions mirror the CSSM API. They include the basic areas of functionality expected of a data
storage library: data-source management operations, certificate storage operations, certificate revocation
list storage operations, extensibility functions, and module management functions. The data storage
library developer may choose to implement some or all of the DLI functions. The available functions are
registered with CSSM at attach time in the form of a DL function table. In the function table, all non-
supported functions are represented by a NULL function pointer. The data storage library module
developer is responsible for making its general functionality known to application developers.

The data storage library Services API defines two categories of operations:

• Data-source management functions

• Persistence operations on certificates and certificate revocation lists

The Data-source management functions operate on a data store as a single unit. These operations include:

• Opening and closing data stores. The DL module manages the mapping of logical data store
names to the storage mechanisms it uses to provide persistence. The caller uses logical names to
reference persistent data stores. The open operation prepares an existing data store for future
access by the caller. The close operation terminates current access to the data store by the caller.

• Creating and deleting data stores. The DL module creates a new, empty data store and opens it
for future access by the caller. An existing data store may be deleted. Deletion discards all data
contained in the data store.

• Importing and exporting data stores. Occasionally a data store must be moved from one system
to another or from one storage medium to another. The import and export operations support the
transfer of an entire data store. The export operation prepares a snapshot of a data store. (Export
does not delete the data store it snapshots.)

 The import operation accepts a snapshot (generated by the export operation) and includes it as a
new data store managed by the DL module. The imported data store is assigned a new logical
name, which is then known by the local DL module.

A data store may contain certificates only, certificate revocation records only, or both. It is unusual for a
DL module to manage a data store containing both certificates and certificate revocation records, but there
is nothing in the CSSM or the DL module API that prevents a DL module from implementing persistence
in this manner. Typically, separate physical data stores will be used to store certificates and CRLs.

Release 1.0 Common Security Services Manager Page 7
Data-storage Library Interface Specification

The persistence operations on data stores include:

• Adding or updating new certificates and new certificate revocation records. The DL module adds
a persistent copy of a certificate or a certificate revocation record to an open data store. This
operation may or may not include the creation of index entries. The mechanisms used to store
and retrieve persistent certificates and certificate revocation records are private to the
implementation of the DL module. Existing certificates may be updated, but certificate
revocation records should only be added and deleted.

• Deleting certificates and certificate revocation records. The DL module removes a single
certificate or a single certificate revocation record from the data store. The operation fails if the
record is not found in the data store.

• Retrieving certificates and certificate revocation records. Applications and add-in security
modules need to search data stores for certificates and certificate revocation records. The DL
module must provide a search mechanism for selectively retrieving a copy of these persistent
objects. Selection is based on a selection criterion, such as a unique certificate ID, date of
certificate issue, name of the agent who signed a revocation record and/or other parameters.

Module management functions include:

• Check module version compatibility. A data storage library module must provide support for the
DL_CheckVersion operation. CSSM uses this operation to verify that the attached DL module
version is compatible with the DL module version requested by the calling application. It is
called as part of CSSM_DL_Attach, immediately following the data storage library’s registration
of its function table. If the versions are incompatible, CSSM will detach the DL and the
CSSM_DL_Attach operation will fail.

Extensibility of data store operations is achieved via:

• Pass-through for unique, module-specific operations. A pass-through function is included in the
data storage library Interface to allow data store libraries to expose additional services beyond
what is currently defined in the CSSM API. CSSM passes an operation identifier and input
parameters from the application to the appropriate data storage library. Within the
DL_PassThrough function in the data storage library, the input parameters are interpreted and
the appropriate operation performed. The data storage library developer is responsible for
making known to the application the identity and parameters of the supported pass-through
operations.

2.1.1 Data source Operations

DL_DbOpen () - This function opens the data- store with the specified logical name. Before
accessing a data store for certificate or CRL operations, a caller must open
the data store.

DL_DbClose () - This function closes a previously opened data store.

DL_DbCreate () - This function creates a new, empty data store with the specified logical
name. A DL may implement this function by opening the data store if it
already exists or creating the data store if it does not exist. The DL may also
create the data store schema as part of the implementation of this function.
The data store should be opened after this operation.

Release 1.0 Common Security Services Manager Page 8
Data-storage Library Interface Specification

DL_DbDelete () - This function deletes all records from the specified data store and removes
current state information associated with it.

DL_DbImport () - This function imports all records from an exported copy of a certificate or
CRL data store into the local system. The certificates or CRLs contained in
the file must be in the native format of the DL module. The DL module
imports all certificates or CRL records in the file, creating a new certificate
data store or CRL data store, respectively. This mechanism can be used to
copy data stores among systems or to restore a persistent data store of
certificates or CRLs from a backup copy.

DL_DbExport () - This function exports a copy of the records from the data store. This
mechanism can be used to copy data stores among systems or to create a data
store backup.

2.1.2 Certificate Storage Operations

DL_CertRevoke () - This function makes the revocation of a specified certificate persistent.
The revocation may be recorded by marking the certificate record in the
persistent data store as revoked, by adding a record to a persistent CRL, or
both. The representation of this information and the mechanism for
creating and managing the representation of revocation is private to the
implementation of the Data Storage Library.

DL_CertInsert () - This function stores the certificate in the data store. This may or may not
include the creation of index entries. The mechanisms used to store and
retrieve persistent certificates are private to the implementation of the Data
Storage Library.

DL_CertDelete () - This function removes a certificate from the data store. If the certificate is
not found, the operation fails.

DL_CertGetFirst () - This function retrieves from a data store the first certificate that matches
the selection criteria. The selection criterion is the expression formed by
connecting relational operators using a conjunctive operator. “Greater
than”, “less than”, “equal to”, and “not equal to” are examples of
relational operators. “Boolean and” and “Boolean or” are examples of
conjunctive operators. The implementation of the data storage library can
specify which relational expressions and conjunctive operations it
supports. If multiple certificate records match the selection criteria, a
selection handle is returned to the caller. The selection handle is used by
DL_CertGetNext to retrieve additional records. The caller may terminate
the query by calling DL_CertAbortQuery. A data storage library may
limit the number of concurrently-managed selection handles. The library
developer must document all restrictions and application developers
should be aware of these restrictions.

DL_CertGetNext () - This function retrieves the next certificate that matches the selection
criteria. If all certificates have already been returned from the set
specified by the selection criteria, the function returns a NULL pointer. A
data storage library may limit the number of concurrently-managed

Release 1.0 Common Security Services Manager Page 9
Data-storage Library Interface Specification

selection handles. The library developer must document all restrictions,
and application developers should be aware of these restrictions.

DL_CertAbortQuery () - This function cancels the query initiated by DL_CertGetFirst and
resets the selection handle.

2.1.3 CRL Storage Operations

DL_CrlInsert () - This function saves the CRL in the data store. This may or may not include
the creation of index entries. The mechanisms used to store and retrieve
persistent CRL records are private to the implementation of the data storage
library.

DL_CrlDelete () - This function deletes a CRL record from the data store. If the record is not
found in the specified data store, the operation fails.

DL_CrlGetFirst () - This function retrieves from the data store a CRL record that matches the
selection criteria. The selection criterion is the expression formed by
connecting relational operators and conjunctive operator. “Greater than”,
“less than”, “equal to”, and “not equal to” are examples of relational
operators. “Boolean and” and “Boolean or” are examples of conjunctive
operators. The implementation of the data storage library can specify
which of the relational expressions and conjunctive operations it supports.
If multiple certificate records match the selection criteria, a selection
handle is returned to the caller. The selection handle is used by
DL_CrlGetNext function to retrieve additional records. The caller may
terminate the query at any time by calling DL_CrlAbortQuery. A data
storage library may limit the number of concurrently-managed selection
handles. The library developer must document all restrictions, and
application developers should be aware of these restrictions.

DL_CrlGetNext () - This function retrieves the next CRL record that matches the selection
criteria. If all CRLs have already been returned from the set specified by
selection criteria, the function returns a NULL CRL record. A data storage
library may limit the number of concurrently-managed selection handles.
The library developer must document all restrictions, and application
developers should be aware of these restrictions.

DL_CrlAbortQuery () - This function cancels the query initiated by DL_CrlGetFirst and resets
the selection handle.

2.1.4 Module Management Functions

DL_GetDbNames () - This function returns a list of the logical data store names that this
module can access and a count of the number of logical names in that
list.

DL_FreeNameList () - This function frees the list returned by DL_GetDbNames.

DL_CheckVersion () - This function checks whether the version of the attached DL module is
compatible with the input version number. It is called by the CSSM
when attaching the DL. If the versions are incompatible, CSSM
detaches the DL module.

Release 1.0 Common Security Services Manager Page 10
Data-storage Library Interface Specification

2.1.5 Extensibility Functions

DL_PassThrough () - This function performs the DL specific function indicated by the
operation ID. The operation ID may specify any type of operation the
DL wishes to export for use by an application or by another module.
Such operations may include queries or services that are specific to
certain types of certificates, CRLs or to the relationships between the
certificates and CRLs manipulated by the DL module.

Release 1.0 Common Security Services Manager Page 11
Data-storage Library Interface Specification

2.2 Data Structures
This section describes the data structures that may be passed to or returned from a data storage library
function. Applications use these data structures to prepare and then pass input parameters into CSSM
API function calls, which are passed without modification to the appropriate DL. The DL is responsible
for interpreting them and returning the appropriate data structure to the calling application via CSSM.
These data structures are defined in the header file, cssm.h, distributed with CSSM.

typedef uint32 CSSM_DL_HANDLE /* data storage library Handle */
typedef uint32 CSSM_DB_HANDLE /* data store Handle */

2.2.1 CSSM_DB_CONJUNCTIVE

These are the conjunctive operations that can be used when specifying a selection criterion.

typedef enum cssm_db_conjunctive{
 CSSM_AND,
 CSSM_OR,
 CSSM_NONE
} CSSM_DB_CONJUNCTIVE

2.2.2 CSSM_DB_OPERATOR

These are the logical operators that can be used when specifying a selection predicate.

typedef enum cssm_db_operator {
 CSSM_EQUAL,
 CSSM_NOT_EQUAL,
 CSSM_LESS_THAN,
 CSSM_GREATER_THAN
} CSSM_DB_OPERATOR

2.2.3 CSSM_FIELD

This structure contains the tag/value pair for a single field of a certificate or CRL.

typedef struct cssm_field {
 CSSM_OID FieldOid;
 CSSM_VALUE FieldValue;
}CSSM_FIELD, *CSSM_FIELD_PTR

Definition:
FieldOid - The object identifier that uniquely identifies this certificate or CRL field.

FieldValue - The value of this certificate field.

Release 1.0 Common Security Services Manager Page 12
Data-storage Library Interface Specification

2.2.4 CSSM_SELECTION_PREDICATE

This structure defines the selection predicate to be used for data store queries.

typedef struct cssm_selection_predicate {
 CSSM_FIELD Field;
 CSSM_DB_OPERATOR DbOperator;
} CSSM_SELECTION_PREDICATE, *CSSM_SELECTION_PREDICATE_PTR

Definition:
Field - The object identifier that uniquely identifies the search field in a data store record.

dbOperator - The operator to be used when comparing the Field to the data store record.

2.2.5 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssm_data {
 uint32 Length;
 uint8 Data[0];
} CSSM_DATA, *CSSM_DATA_PTR

Definition:
Length - The length, in bytes, of the memory block pointed to by Data

Data - A byte array of size 0. Acts as a placeholder for a contiguous block of memory.

2.2.6 CSSM_NAME_LIST

The CSSM_NAME_LIST structure is used to return the logical names of the data stores that a DL module
can access.

typedef struct cssm_name_list {
 uint32 NumStrings;
 char** String;
} CSSM_NAME_LIST, *CSSM_NAME_LIST_PTR;

Defintion:
NumStrings - Number of strings in the array pointed to by String.

String - A pointer to an array of strings.

Release 1.0 Common Security Services Manager Page 13
Data-storage Library Interface Specification

2.3 Data source Operations
This section describes the function prototypes and error codes defined for the data-source operations in the
DLI. The functions are exposed to CSSM via a function table, so the function names may vary at the
discretion of the data storage library developer. However, the function parameter list and return type must
match the prototypes given in this section in order to be used by applications. The error codes listed in
this section are the generic codes defined by CSSM for use by all data storage libraries in describing
common error conditions. A data storage library developer may define additional module-specific error
codes, as described in Section 3.5.2.

2.3.1 DL_DbOpen

CSSM_DB_HANDLE CSSMDLI DL_DbOpen (CSSM_DL_HANDLE DLHandle,
const char *DbName)

This function opens the data store with the specified logical name.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbName(input)
A pointer to the string containing the logical name of the data store.

Return Value
Returns the CSSM_DB_HANDLE of the opened data store. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_DATASTORE_NOT_EXISTS The data store with the logical name does not exist
CSSM_DL_MEMORY_ERROR Not enough memory
CSSM_DL_DB_OPEN_FAIL Open caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_DbClose

Release 1.0 Common Security Services Manager Page 14
Data-storage Library Interface Specification

2.3.2 DL_DbClose

CSSM_RETURN CSSMDLI DL_DbClose (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle)

This function closes an open data store.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_DB_CLOSE_FAIL Close caused an exception

See Also
DL_DbOpen

Release 1.0 Common Security Services Manager Page 15
Data-storage Library Interface Specification

2.3.3 DL_DbCreate

CSSM_RETURN CSSMDLI DL_DbCreate (CSSM_DL_HANDLE DLHandle,
CSSM_CL_HANDLE CLHandle,
const char *DbName)

This function creates a new, empty data store with the specified logical name.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

CLHandle(input)
The handle that describes the add-in certificate library module to be used to perform this
function.

DbName(input)
A pointer to the string containing the logical name of the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_DB_CREATE_FAIL Create caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_DbOpen, DL_DbClose

Release 1.0 Common Security Services Manager Page 16
Data-storage Library Interface Specification

2.3.4 DL_DbDelete

CSSM_RETURN CSSMDLI DL_DbDelete (CSSM_DL_HANDLE DLHandle,
const char *DbName)

This function deletes all records from the specified data store and removes all state information
associated with it.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DbName(input)
A pointer to the string containing the logical name of the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_DB_DELETE_FAIL Delete caused an exception

See Also
DL_DbCreate, DL_DbOpen, DL_DbClose

Release 1.0 Common Security Services Manager Page 17
Data-storage Library Interface Specification

2.3.5 DL_DbImport

CSSM_RETURN CSSMDLI DL_DbImport (CSSM_DL_HANDLE DLHandle,
const char *DbDestLogicalName,
const char *DbSrcFileName)

This function imports data store records, from a file, to create a new data store. The data store
records must be in the DL module’s native format.

Parameters
DLHandle(input)
The handle that describes the add-in data store library module to be used to perform this
function.

DbDestLogicalName(input)
The name of the destination data store in which to insert the records.

DbSrcFileName(input)
The name of the source file from which to obtain the data store records.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_PTR NULL source or destination file names
CSSM_DL_DB_IMPORT_FAIL DB exception doing import function
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_DbExport

Release 1.0 Common Security Services Manager Page 18
Data-storage Library Interface Specification

2.3.6 DL_DbExport

CSSM_RETURN CSSMDLI DL_DbExport (CSSM_DL_HANDLE DLHandle,
const char *DbSrcLogicalName,
const char *DbDestFileName)

This function exports a copy of the data store records from the source data store to a file.

Parameters
DLHandle(input)
The handle that describes the add-in data store library module to be used to perform this
function.

DbSrcLogicalName(input)
The name of the data store from which the records are to be exported.

DbDestFileName(input)
The name of the destination file that will contain a copy of the source data store records.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_PTR NULL source or destination file names
CSSM_DL_DB_EXPORT_FAIL DB exception doing export function
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also

DL_DbImport

Release 1.0 Common Security Services Manager Page 19
Data-storage Library Interface Specification

2.4 Certificate Storage Operations
This section describes the function prototypes and error codes defined for the persistent storage operations
in the DLI. The functions will be exposed to CSSM via a function table, so the function names may vary
at the discretion of the data storage library developer. However, the function parameter list and return
type must match the prototypes given in this section in order to be used by applications. The error codes
listed in this section are the generic codes defined by CSSM for use by all data storage libraries in
describing common error conditions. A data storage library developer may also define their own module-
specific error codes, as described in Section 3.5.2.

2.4.1 DL_CertInsert

CSSM_RETURN CSSMDLI DL_CertInsert (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR Cert)

This function makes the certificate persistent by inserting it into the specified data store.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

Cert (input)
A pointer to the CSSM_DATA structure that contains the certificate to be added to the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CERTIFICATE_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CERT_INSERT_FAIL Add caused an exception

See Also
DL_CertDelete

Release 1.0 Common Security Services Manager Page 20
Data-storage Library Interface Specification

2.4.2 DL_CertDelete

CSSM_RETURN CSSMDLI DL_CertDelete (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR Cert)

This function removes the certificate from the specified data store.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

Cert (input)
A pointer to the CSSM_DATA structure that contains the certificate to be deleted from the data-
store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CERTIFICATE_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CERTIFICATE_NOT_IN_DB Certificate not in DB
CSSM_DL_CERT_DELETE_FAIL Delete caused an exception

See Also
DL_CertInsert

Release 1.0 Common Security Services Manager Page 21
Data-storage Library Interface Specification

2.4.3 DL_CertRevoke

CSSM_RETURN CSSMDLI DL_CertRevoke (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR CertToBeRevoked)

This function makes persistent the knowledge that this certificate has been revoked.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

CertToBeRevoked(input)
A pointer to the CSSM_DATA structure that contains the certificate to be revoked.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CERTIFICATE_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CERT_REVOKE_FAIL Update caused an exception

See Also
DL_CertInsert, DL_CertDelete

Release 1.0 Common Security Services Manager Page 22
Data-storage Library Interface Specification

2.4.4 DL_CertGetFirst

CSSM_DATA_PTR CSSMDLI DL_CertGetFirst
(CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_SELECTION_PREDICATE_PTR SelectionPredicate,
uint32 SizeSelectionPredicate,
CSSM_DB_CONJUNCTIVE Conjunctive,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedCerts)

This function locates the first certificate in the data store that matches the selection criteria. The
selection criterion is the expression formed by connecting all of the relational expressions of the
selection predicate array using the conjunctive operator. This function returns a count of the total
number of certificates matching the selection criteria, the first certificate matching the criteria,
and a selection handle that may be used to retrieve the subsequent certificates matching the
selection criteria.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

SelectionPredicate(input)
A pointer to a CSSM_SELECTION_PREDICATE array, which contains field and relational
operator pairs. If the pointer is NULL, the first certificate in the data store is returned.

SizeSelectionPredicate(input)
The size of the selection predicate array.

Conjunctive(input)
The Boolean operator used to connect the selection predicates. If the selection predicate is
NULL, this parameter is ignored.

ResultsHandle(output)
This handle should be used for subsequent retrievals for the same selection criteria.

NumberOfMatchedCerts(output)
Returns the total number of certificates that match the selection criteria.

Return Value
Returns a pointer to a CSSM_DATA structure, which contains the first certificate in the data
store that matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Release 1.0 Common Security Services Manager Page 23
Data-storage Library Interface Specification

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO_CERTIFICATE_FOUND No certificates that match the selection predicate
CSSM_DL _CERT_GETFIRST_FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_CertGetNext, DL_CertAbortQuery

Release 1.0 Common Security Services Manager Page 24
Data-storage Library Interface Specification

2.4.5 DL_CertGetNext

CSSM_DATA_PTR CSSMDLI DL_CertGetNext (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate matching the selection criteria used to establish the
ResultsHandle.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

ResultsHandle(input)
The selection handle returned from the DL_CertGetFirst function.

Return Value
Returns a pointer to a CSSM_DATA structure which contains the next certificate in the data
store that matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO_MORE_CERTS No more certificates for that selection handle
CSSM_DL CERT_GETNEXT_FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_CertGetFirst, DL_CertAbortQuery

Release 1.0 Common Security Services Manager Page 25
Data-storage Library Interface Specification

2.4.6 DL_CertAbortQuery

CSSM_RETURN CSSMDLI DL_CertAbortQuery (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by DL_CertGetFirst and allows the DL to release all
intermediate state information associated with the query.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

ResultsHandle (input)
The selection handle returned from the DL_CertGetFirst function.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid data storage library Handle
CSSM_DL_INVALID_RESULTS_HANDLE Invalid results handle
CSSM_DL_CRL_ABORT_QUERY_FAIL Unable to abort query

See Also
DL_CertGetFirst, DL_CertGetNext

Release 1.0 Common Security Services Manager Page 26
Data-storage Library Interface Specification

2.5 CRL Storage Operations
This section describes the function prototypes and error codes defined for the persistent storage operations
in the DLI. The functions are exposed to CSSM via a function table, so the function names may vary at
the discretion of the data storage library developer. However, the function parameter list and return type
must match the prototypes given in this section in order to be used by applications. The error codes listed
in this section are the generic codes defined by CSSM for use by all data storage libraries in describing
common error conditions. A data storage library developer may also define their own module-specific
error codes, as described in Section 3.5.2.

2.5.1 DL_CrlInsert

CSSM_RETURN CSSMDLI DL_CrlInsert (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR Crl)

This function makes the CRL persistent by inserting it into the specified data store.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

Crl (input)
A pointer to the CSSM_DATA structure that contains the CRL to be added to the data store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CRL_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CRL_INSERT_FAIL Add caused an exception

See Also
DL_CrlDelete

Release 1.0 Common Security Services Manager Page 27
Data-storage Library Interface Specification

2.5.2 DL_CrlDelete

CSSM_RETURN CSSMDLI DL_CrlDelete (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
const CSSM_DATA_PTR Crl)

This function removes the CRL from the specified data store.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

Crl (input)
A pointer to the CSSM_DATA structure that contains the CRL to be removed from the data-
store.

Return Value
A CSSM_OK return value signifies that the function completed successfully. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_CRL_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_CRL_NOT_IN_DB CRL not in DB
CSSM_DL_CRL_DELETE_FAIL Delete caused an exception

See Also
DL_CrlInsert

Release 1.0 Common Security Services Manager Page 28
Data-storage Library Interface Specification

2.5.3 DL_CrlGetFirst

CSSM_DATA_PTR CSSMDLI DL_CrlGetFirst (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_SELECTION_PREDICATE_PTR
SelectionPredicate,
uint32 SizeSelectionPredicate,
CSSM_DB_CONJUNCTIVE Conjunctive,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedCrls)

This function locates the first CRL in the data store that matches the selection criteria. The
selection criterion is the expression formed by connecting all of the relational expressions of the
selection predicate array using the conjunctive operator. This function returns a count of the total
number of CRLs matching the selection criteria, the first CRL matching the criteria, and a
selection handle that may be used to retrieve the subsequent CRLs matching the selection criteria.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

SelectionPredicate(input)
A pointer to a CSSM_SELECTION_PREDICATE array that contains field and relational
operator pairs. If NULL, the first CRL in the data store is returned.

SizeSelectionPredicate(input)
The size of the selection predicate array

Conjunctive(input)
The Boolean operator used to connect the selection predicates. If the selection predicate is
NULL, this parameter is ignored.

ResultsHandle(output)
This handle should be used for subsequent retrievals for the same selection criteria.

NumberOfMatchedCrls(output)
Returns the total number of CRLs that match the selection criteria.

Return Value
Returns a pointer to a CSSM_DATA structure which contains the first CRL in the data store that
matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Release 1.0 Common Security Services Manager Page 29
Data-storage Library Interface Specification

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO_CRL_FOUND No Crls that match the selection predicate
CSSM_DL_CRL_GET_FIRST_FAIL Get first caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_CrlGetNext, DL_CrlAbortQuery

Release 1.0 Common Security Services Manager Page 30
Data-storage Library Interface Specification

2.5.4 DL_CrlGetNext

CSSM_DATA_PTR CSSMDLI DL_CrlGetNext (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate that matches the selection criteria used to establish the
ResultsHandle.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

ResultsHandle(input)
The selection handle returned from the DL_CrlGetFirst function.

Return Value
Returns a pointer to a CSSM_DATA structure, which contains the next CRL in the data store
that matches the selection criteria. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_SELECTION_PTR Invalid certificate pointer
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_DL_NO_MORE_CRLS No more CRLs for that selection handle
CSSM_DL_CRL_GET_NEXT_FAIL Opening the records caused an exception
CSSM_DL_MEMORY_ERROR Error in allocating memory

See Also
DL_CrlGetFirst, DL_CrlAbortQuery

Release 1.0 Common Security Services Manager Page 31
Data-storage Library Interface Specification

2.5.5 DL_CrlAbortQuery

CSSM_RETURN CSSMDLI DL_CrlAbortQuery (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by DL_CrlGetFirst and allows the DL to release all
intermediate state information associated with the query.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module used to perform this function.

DBHandle(input)
The handle that describes the data store to be used when performing this function.

ResultsHandle (input)
The selection handle returned from the DL_CrlGetFirst function.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid data storage library Handle
CSSM_DL_INVALID_RESULTS_HANDLE Invalid results handle
CSSM_DL_CRL_ABORT_QUERY_FAIL Unable to abort query

See Also
DL_CrlGetFirst, DL_CrlGetNext

Release 1.0 Common Security Services Manager Page 32
Data-storage Library Interface Specification

2.6 Module Management Functions
This section describes the function prototypes and error codes defined for module management in the DLI.
The functions are exposed to CSSM via a function table, so the function name can be assigned at the
discretion of the DL module developer. However, the parameter list and return value must match what is
shown below. The error codes listed in this section are the generic codes that all data storage libraries use
to describe common error conditions. data storage library developers may also define their own module-
specific error codes, as described in Section 3.5.2.

2.6.1 DL_GetDbNames

CSSM_NAME_LIST_PTR CSSMDLI DL_GetDbNames (CSSM_DL_HANDLE DLHandle)

This function returns a list of the logical data store names that the specified DL module can
access and a count of the number of logical names in that list.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

Return Value
Returns a pointer to a CSSM_NAME_LIST structure which contains a list of data store names.
If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_MEMORY_ERROR Error allocating memory
CSSM_DL_GET_DB_NAMES_FAIL Get DB Names failed
CSSM_DL_NO_DATASOURCES No Data sources found
CSSM_DL_INVALID_DL_HANDLE Invalid DL Handle

See Also
DL_FreeNameList

Release 1.0 Common Security Services Manager Page 33
Data-storage Library Interface Specification

2.6.2 DL_FreeNameList

CSSM_RETURN CSSMDLI DL_FreeNameList (CSSM_DL_HANDLE DLHandle,
CSSM_NAME_LIST_PTR NameList)

This function frees the list of logical data store names returned by DL_GetDbNames ().

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

NameList(input)
A pointer to the CSSM_NAME_LIST.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_MEMORY_ERROR Error allocating memory
CSSM_DL_INVALID_DL_HANDLE Invalid DL Handle

See Also
DL_GetDbNames

Release 1.0 Common Security Services Manager Page 34
Data-storage Library Interface Specification

DL_Initialize

CSSM_RETURN CSSMDLI DL_Initialize (uint32 VerMajor,
 uint32 VerMinor)

This function checks whether the current version of the DL module is compatible with the input
version and performs any module-specific setup activities.

Parameters
VerMajor (input)
The major version number of the DL module expected by the calling application.

VerMinor (input)
The minor version number of the DL module expected by the calling application.

Return Value
A CSSM_OK return value signifies that the current version of the DL module is compatible with
the input version numbers and all setup operations were successfully performed. When
CSSM_FAIL is returned, either the current DL module is incompatible with the requested DL
module version or an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INITIALIZE_FAIL Unable to perform module initialization

See Also
DL_Uninitialize

Release 1.0 Common Security Services Manager Page 35
Data-storage Library Interface Specification

2.6.3 DL_Uninitialize

CSSM_RETURN CSSMDLI DL_Uninitialize (void)

This function performs any module-specific cleanup activities.

Parameters
None

Return Value
A CSSM_OK return value signifies that all cleanup operations were successfully performed.
When CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error
code.

Error Codes

Value Description
CSSM_DL_UNINITIALIZE_FAIL Unable to perform module cleanup

See Also
DL_Initialize

Release 1.0 Common Security Services Manager Page 36
Data-storage Library Interface Specification

2.7 Extensibility Functions
The DL_PassThrough function is provided to allow DL developers to extend the certificate and CRL
format-specific storage functionality of the CSSM API. Because it is exposed to CSSM as only a function
pointer, its name internal to the data storage library can be assigned at the discretion of the DL module
developer. However, its parameter list and return value must match what is shown below. The error
codes listed in this section are the generic codes all data storage libraries may use to describe common
error conditions. Data storage library developers may also define their own module-specific error codes,
as described in Section 3.5.2.

2.7.1 DL_PassThrough

CSSM_DATA_PTR CSSMDLI DL_PassThrough (CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
uint32 PassThroughId,
const CSSM_DATA_PTR InputParams)

This function allows applications to call additional module-specific operations that have been
exported by the data storage library. Such operations may include queries or services specific to
the domain represented by the DL module.

Parameters
DLHandle(input)
The handle that describes the add-in data storage library module to be used to perform this
function.

DBHandle(input)
The handle that describes the data storage to be used when performing this function.

PassThroughId (input)
An identifier assigned by the DL module to indicate the exported function to perform.

InputParams(input)
A pointer to the CSSM_DATA structure containing parameters to be interpreted in a function-
specific manner by the requested DL module.

Return Value
A pointer to the CSSM_DATA structure containing the output from the pass-through function.
The output data must be interpreted by the calling application based on externally available
information and documentation. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid DL handle
CSSM_DL_INVALID_DB_HANDLE Invalid DB handle
CSSM_INVALID_PASSTHROUGH_ID Invalid passthrough Id
CSSM_INVALID_DATA_PTR Invalid pointer

Release 1.0 Common Security Services Manager Page 37
Data-storage Library Interface Specification

CSSM_DL_ PASSTHROUGH_FAIL DB exception doing passthrough function
CSSM_DL_MEMORY_ERROR Error in allocating memory

Release 1.0 Common Security Services Manager Page 38
Data-storage Library Interface Specification

3. Data Storage Library Structure and Management

3.1 Data Storage Library Composition
A data storage library is a dynamically-linkable library, which is composed of functions that implement
some or all of the CSSM DLI described in Section 2. The DL must also contain one or more functions
that are called when the DL is attached and detached. Within the data storage library, the attach function
is responsible for registering a function table with CSSM, accepting the memory management upcalls, and
performing any module-specific setup. The detach function is responsible for any cleanup the module
requires. The remaining functions implement a subset of the DLI, as determined by the DL developer.

The data storage library composition can be broadly classified into the following categories:

• Module management
• Memory management

• Data store management functions

 - Opening and closing data stores

 - Creating and deleting data stores

 - Importing and exporting data stores

• Persistence operations on certificates and certificate revocation lists

 - Adding new certificates and new certificate revocation records

 - Updating existing certificates

 - Deleting certificates and certificate revocation records

 - Retrieving certificates and certificate revocation records

• Pass-through for unique, module-specific operations

3.2 Data Storage Library Installation
Before an application can use a data storage library, its name and other descriptive information must be
registered with CSSM by an installation application. The name given to a data storage library module is
both a logical name and a globally unique identifier (GUID). The logical name is a string chosen by the
data storage library developer to describe the DL module. The GUID is a structure used to differentiate
between library modules in the CSSM registry. GUIDs are discussed in more detail below. The location
of the DL module is required at installation time so the CSSM can locate the module when an application
requests an attach.

3.2.1 Global Unique Identifiers (GUIDs)

Each data storage library must have a globally unique identifier (GUID) that the CSSM, applications, and
DL modules use to uniquely identify a DL. The DL GUID is used by the CSSM registry to expose add-in
module availability to applications. The DL module uses its GUID to identify itself when it sets an error.
When attaching the library, the application uses the DL_GUID to identify the requested DL module.

Release 1.0 Common Security Services Manager Page 39
Data-storage Library Interface Specification

A GUID is defined as:
typedef struct cssm_guid {
 uint32 Data1;
 uint16 Data2;
 uint16 Data3;
 uint8 Data4[8];
} CSSM_GUID, *CSSM_GUID_PTR;

GUID generators are publicly available for Windows* 95, Windows NT*, and on many UNIX* platforms.

3.2.2 Data Storage characteristics

The version number of each data storage library is registered with CSSM during module installation. The
application may query a module’s version number by querying the CSSM module registry.

Applicatioons can use the version number of a data storage library to determine the compatibility of the
installed DL with its required DL. If the compatible versions are unknown, the application can pass the
required version number to the DL at attach time. The DL will check for compatibility before attaching.
If the versions are not compatible, the attach request fails.

3.2.3 Object Identifiers (OIDs)

Object Identifiers(OIDs) are used to reference specific data types or data structures within a given
certificate or CRL format. OIDs are defined by a certificate library developer at a granularity appropriate
for the expected usage of the CL.

To support search operations on fields within a certificate or CRL, a data storage library recognizes the
OIDs defined by a related certificate library. DL developers may define OIDs in addition to or in place of
those defined by a certificate library.

3.3 Attaching a Data Storage Library
Before an application can use the functions of a specific DL, it must attach the DL to CSSM using the
CSSM_DL_Attach function. On attach, the data storage library uses the CSSM_DL_RegisterServices
function to register its function table with CSSM and to obtain the application’s memory management
upcalls from CSSM. CSSM uses the DL module’s function table to direct calls from the application to the
correct function in the data storage library module. The DL module uses the memory management
upcalls to allocate any memory that will be returned to the calling application and to free any memory that
it received from the calling application.

When CSSM attaches to or detaches from a data storage library module, it initiates a function in the DL
that performs the necessary setup and cleanup operations. The attach and detach functions will vary
depending on the target operating system for the data storage library module. For example, DLLMain
would be used to implement these functions in a DL targeted to Windows NT*. _init and _fini would be
used to implement these functions in a DL targeted to SunOS.

3.3.1 The DL module function table

The function table for a data storage library module is a structure that contains pointers to the DL
module’s implementation of the functions specified in the data storage library Interface. This structure is

Release 1.0 Common Security Services Manager Page 40
Data-storage Library Interface Specification

specified as a part of the CSSM header file, cssm.h. If a DL does not support some function in the DLI,
the pointer to that function should be set to NULL.

3.3.2 Memory management upcalls

All memory allocation and de-allocation for data passed between the application and the DL module via
CSSM is ultimately the responsibility of the calling application. Since the DL module needs to allocate
memory to return data to the application, the application must provide the DL module a means of
allocating memory that the application has the ability to free. It does this by providing the DL module
with memory management upcalls.

Memory management upcalls are pointers to the memory management functions used by the calling
application. They are provided to the DL module via CSSM as a structure of function pointers. The
functions will be the calling application’s equivalent of malloc, free and re-alloc and will be expected to
have the same behavior as those functions. The function parameters will consist of a DL handle followed
by the normal parameters for that function. The DL handle is used by CSSM to direct the memory
operation to the target application. The function return values should be interpreted in the standard
manner. The DL module is responsible for making the memory management functions available to all of
its internal functions.

3.4 Data Storage Library Basic Services

3.4.1 Function Implementation

A data storage library developer may choose to implement some or all of the functions specified in the
DLI. Section 2 of this document details the expected behavior of each function.

A data storage library developer may choose to leverage the capabilities of another DL module to
implement certain functions. To do this, the DL would attach to another DL using CSSM_DL_Attach.
Subsequent function calls to the first DL call the corresponding function in the second DL for some or all
of its implementation.

3.4.2 Error handling

When an error occurs, the function in the DL module should call the CSSM_SetError function. The
CSSM_SetError function takes the module’s GUID and an error number as inputs. The module’s GUID
is used to identify where the error occurred. The error number will be used to describe the error.

The error number set by the DL module should fall into one of two ranges. The first range of error
numbers is pre-defined by CSSM. These are errors that are common to all DL modules implementing a
given function. They are described in this document as part of the function definitions in Sections 2.3
through 2.7. They are defined in the header file cssmerr.h, which is distributed as part of CSSM. The
second range of error numbers is used to define module-specific error codes. These module-specific error
codes should be in the range of CSSM_DL_PRIVATE_ERROR to CSSM_DL_END_ERROR.
CSSM_DL_PRIVATE_ERROR and CSSM_DL_END_ERROR are also defined in the header file
cssmerr.h. The DL module developer is responsible for making the definition and interpretation of their
module-specific error codes available to applications.

When no error has occurred, but the appropriate return value from a function is CSSM_FALSE, that
function should call CSSM_ClearError before returning. When the application receives a CSSM_FALSE
return value, it is responsible for checking whether an error has occurred by calling CSSM_GetError. If

Release 1.0 Common Security Services Manager Page 41
Data-storage Library Interface Specification

the function in the DL module has called CSSM_ClearError, the calling application receives a CSSM_OK
response from the CSSM_GetError function, indicating no error has occurred.

3.5 Data Storage Utility Libraries
Data storage utility libraries are software components that may be provided by a data storage library
developer for use by other data storage library developers. They are expected to contain functions that
may be useful to several data storage library modules. The data storage utility library developer is
responsible for making the definition, interpretation, and usage of their library available to other DL
module developers.

3.6 Attach/Detach Example
The data storage library module is responsible for performing certain operations when CSSM attaches to
and detaches from it. DL modules that have been developed for Windows-based systems use the DllMain
routine to perform those operations, as shown in the example below.

Release 1.0 Common Security Services Manager Page 42
Data-storage Library Interface Specification

3.6.1 DLLMain
#include “cssm.h”
CSSM_GUID dl_guid =
{ 0x5fc43dc1, 0x732, 0x11d0, { 0xbb, 0x14, 0x0, 0xaa, 0x0, 0x36, 0x67, 0x2d }
};
CSSM_FUNCTIONTABLE FunctionTable;
CSSM_SPI_FUNC_TBL_PTR UpcallTable;

BOOL WINAPI DllMain (HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)
{

switch (dwReason)
{

case DLL_PROCESS_ATTACH:
{

/* Fill in FunctionTable with function pointers */
FunctionTable.DbOpen = DL_DbOpen;
FunctionTable.DbClose = DL_DbClose;
FunctionTable.DbCreate = DL_DbCreate;
FunctionTable.DbDelete = DL_DbDelete;
FunctionTable.CertInsert = DL_CertInsert;
FunctionTable.CertDelete = DL_CertDelete;
FunctionTable.CertRevoke = DL_CertRevoke;
FunctionTable.CertGetFirst = DL_CertGetFirst;
FunctionTable.CertGetNext = DL_CertGetNext;
FunctionTable.CertAbortQuery = DL_CertAbortQuery;
FunctionTable.CrlInsert = DL_CrlInsert;
FunctionTable.CrlDelete = DL_CrlDelete;
FunctionTable.CrlGetFirst = DL_CrlGetFirst;
FunctionTable.CrlGetNext = DL_CrlGetNext;
FunctionTable.CrlAbortQuery = DL_CrlAbortQuery;
FunctionTable.DbImport = DL_DbImport;
FunctionTable.DbExport = DL_DbExport;
FunctionTable.DLGetDbNames = DL_GetDbNames;
FunctionTable.DLFreeNameList = DL_FreeNameList;
FunctionTable.PassThrough = DL_PassThrough;
FunctionTable.Initialize = DL_Initialize;
FunctionTable.Uninitialize = DL_Uninitialize;

/* Call CSSM_DL_RegisterServices to register the FunctionTable */
/* with CSSM and to receive the application’s memory upcall table */
if (CSSM_DL_RegisterServices (&dl_guid, FunctionTable, &UpcallTable)
!= CSSM_OK)

return FALSE;

/* Make the upcall table available to all functions in this library
*/

break;
}

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
break;

case DLL_PROCESS_DETACH:
if (CSSM_DL_DeregisterServices (&dl_guid) != CSSM_OK)

return FALSE;
break;

}

Release 1.0 Common Security Services Manager Page 43
Data-storage Library Interface Specification

return TRUE;
}

Release 1.0 Common Security Services Manager Page 44
Data-storage Library Interface Specification

3.7 Data source Operations Examples
This section contains a template for the DL_DbOpen function.
/*---
 * Name: DL_DbOpen
 *
 * Description:
 * This function opens a Data store and returns a handle back to the
 * caller which should be used for further access to the data store.
*
 * Parameters:
 * DLHandle(input) : Handle identifying a the DL module.
 * DbName : Handle identifying the opened Data store.
 *
 * Return value:
 * Handle to the Opened Data store.
 * If NULL, use CSSM_GetError to get the follwing return codes
 *
 * Error Codes:
* CSSM_DL_INVALID_DL_HANDLE
* CSSM_DL_DATASTORE_NOT_EXISTS
* CSSM_DL_MEMORY_ERROR
* CSSM_DL_DB_OPEN_FAIL
* CSSM_DL_MEMORY_ERROR
* CSSM_DL_INVALID_DATASTORE_NAME
*
*
*
---/

CSSM_DB_HANDLE CSSMDLI DL_DbOpen(CSSM_DL_HANDLE DLHandle,
 const char *DbName)
{

if(DLHandle == NULL)
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DL_HANDLE);

return NULL;
}
if(DbName == NULL)
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DATASTORE_NAME);

return NULL;
}
if(!dl_IfDataStoreExists(DLHandle, DbName))
{

CSSM_SetError(&dl_guid, CSSM_DL_DATASTORE_NOT_EXISTS);
return NULL;

}
/*DL specific internal implementation of DbOpen*/
CSSM_DB_Handle Handle = dl_OpenDataStore(DbName);

 return Handle;
}

Release 1.0 Common Security Services Manager Page 45
Data-storage Library Interface Specification

3.8 Certificate Storage Operations Examples
This section contains a template for the DL_CertInsert function.
/*---
 * Name: DL_CertInsert
 *
 * Description:
 * This function stores the Certificate into the data storage specified by
 * the DbHandle
*
 * Parameters:
 * DLHandle(input) : Handle identifying the DL module.
 * DbHandle(input) : Handle identifying an opened DbModule.
 * Cert : Certificate data pointer to be added.
 *
 * Return value:
 * CSSM_OK if success.CSSM_FAIL, if failed
 * Use CSSM_GetError to get the following return codes
 *
 * Error Codes:
* CSSM_DL_INVALID_DL_HANDLE
* CSSM_DL_INVALID_DB_HANDLE
* CSSM_DL_INVALID_CERTIFICATE_PTR
* CSSM_DL_CERT_INSERT_FAIL
* CSSM_DL_MEMORY_ERROR
*
*
---/

CSSM_RETURN CSSMDLI DL_CertInsert(CSSM_DL_HANDLE DLHandle,
 CSSM_DB_HANDLE DBHandle,
 const CSSM_DATA_PTR Cert)
{

CSSM_RETURN ret = CSSM_OK;
if(DLHandle == NULL)
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DL_HANDLE);

return CSSM_FAIL;
}
if(DBHandle == NULL)
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DB_HANDLE);

return CSSM_FAIL;
}
if((Cert == NULL) && cssm_IsBadReadPtr(Cert->Data, Cert->Length))
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_CERTIFICATE_PTR);

return CSSM_FAIL;
}
/*Do the DL specific Certificate storage here*/

 return CSSM_OK;
}

Release 1.0 Common Security Services Manager Page 46
Data-storage Library Interface Specification

4. Appendix A. Relevant CSSM API functions

4.1 Overview
Several API functions are particularly relevant to data storage library developers, because they are used
either by the application to access the DL module or by the DL module to access CSSM services, such as
the CSSM registry or the error-handling routines. They are included in this appendix for quick-reference
by DL module developers. For additional information, the DL module developer is encouraged to
reference the CSSM Application Programming Interface .

4.2 Data Structures

4.2.1 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via CSSM.

typedef struct cssm_data {
 uint32 Length;
 uint8 Data[0];
} CSSM_DATA, *CSSM_DATA_PTR

Definition:
Length - The length, in bytes, of the memory block pointed to by Data

Data - A byte array of size 0. This is a place holder for a contiguous block of memory.

4.2.2 CSSM_OID

The object identifier (OID) is used to identify the data types and data structures of a certificate or CRL.

typedef CSSM_VALUE CSSM_OID

4.2.3 CSSM_GUID

A GUID is a globally unique identifier used to uniquely identify a DL.

typedef struct cssm_guid {
 uint32 Data1;
 uint16 Data2;
 uint16 Data3;
 uint8 Data4[8];
} CSSM_GUID, *CSSM_GUID_PTR;

4.2.4 CSSM_DL_INFO

This structure contains all of the static data associated with a data storage library add-in module. This
information is added to the DL registry at install time. It can be queried using the command
CSSM_DL_GetInfo ().

Release 1.0 Common Security Services Manager Page 47
Data-storage Library Interface Specification

typedef struct cssm_dlinfo{
 uint32 VerMajor;
 uint32 VerMinor;
 CSSM_DATA_PTR Reserved1;
}CSSM_DLINFO, *CSSM_DLINFO_PTR

Definition:

VerMajor - The major version number of the add-in module.

VerMinor - The minor version number of the add-in module.

Reserved1 - Reserved for future use.

4.2.5 CSSM_HANDLE

Handle used to identify the caller.

typedef uint32 CSSM_HANDLE, *CSSM_HANDLE_PTR;

4.2.6 CSSM_SPI_FUNC_TBL

This data structure contains function pointers to the calling application’s memory management routines.
The DL module uses these routines to allocate and free any memory that belongs to or will belong to the
application.

typedef struct cssm_spi_func_tbl {
 void *(*malloc_func) (CSSM_HANDLE, uint32);
 void (*free_func) (CSSM_HANDLE, void *);
 void *(*realloc_func) (CSSM_HANDLE, void *, uint32);
} CSSM_SPI_MEMORY_FUNCS, *CSSM_SPI_MEMORY_FUNCS_PTR;

Release 1.0 Common Security Services Manager Page 48
Data-storage Library Interface Specification

4.3 Function Definitions

4.3.1 CSSM_DL_Install

CSSM_BOOL CSSMAPI CSSM_DL_Install (const char *DLName,
const char *DLFileName,
const char *DLPathName,
const CSSM_GUID_PTR GUID,
const CSSM_DLINFO_PTR DLInfo,
const void *Reserved1,
const CSSM_DATA_PTR Reserved2)

This function updates the CSSM-persistent internal information about the DL module.

Parameters
DLName(input)
The name of the data storage library module to be installed.

DLFileName(input)
The name of the file that implements the data storage library.

DLPathName(input)
The path to the file that implements the data storage library.

GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for the DL
module.

DLInfo(input)
A pointer to the CSSM_DLINFO structure containing information about the DL module.

Reserved1
Reserved data for the function.

Reserved2
Reserved data for the function.

Return Value
A CSSM_TRUE return value signifies that information has been updated. When CSSM_FALSE
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DATA_POINTER Invalid pointer
CSSM_DL_INVALID_DLINFO_POINTER Invalid pointer
CSSM_DL_INVALID_POINTER Invalid pointer
CSSM_DL_INSTALL_FAIL Unable to update internal information

See Also
CSSM_DL_Uninstall

Release 1.0 Common Security Services Manager Page 49
Data-storage Library Interface Specification

4.3.2 CSSM_DL_Uninstall

CSSM_BOOL CSSMAPI CSSM_DL_Uninstall (const CSSM_GUID_PTR GUID)

This function deletes the CSSM persistent internal information about the DL module.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for the DL
module.

Return Value
A CSSM_TRUE return value signifies that information has been updated. When CSSM_FALSE
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DATA_POINTER Invalid pointer
CSSM_DL_INVALID_ GUID DL module was not installed
CSSM_DL_UNINSTALL_FAIL Unable to delete information

See Also
CSSM_DL_Install

Release 1.0 Common Security Services Manager Page 50
Data-storage Library Interface Specification

4.3.3 CSSM_DL_ListModules

CSSM_LIST_PTR CSSMAPI CSSM_DL_ListModules (void)

This function returns a list containing the GUID/name pair for each of the currently installed DL
modules.

Parameters
None

Return Value
A pointer to the CSSM_LIST structure containing the names of DL modules. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_MEMORY_ERROR Error in memory allocation
CSSM_DL_LIST_MODULES_FAIL Unable to find DL modules

See Also
CSSM_FreeList

Release 1.0 Common Security Services Manager Page 51
Data-storage Library Interface Specification

4.3.4 CSSM_FreeList

CSSM_RETURN CSSMAPI CSSM_FreeList (CSSM_LIST_PTR CSSMList)

This function frees the memory allocated to hold a list of strings.

Parameters
CSSMList (input)
A pointer to the CSSM_LIST structure containing the GUID, name pair of add-ins.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_INVALID_POINTER Invalid pointer input

See Also
CSSM_DL_ListModules

Release 1.0 Common Security Services Manager Page 52
Data-storage Library Interface Specification

4.3.5 CSSM_DL_Attach

CSSM_DL_HANDLE CSSMAPI CSSM_DL_Attach (const CSSM_GUID_PTR GUID,
uint32 CheckCompatibleVerMajor,
uint32 CheckCompatibleVerMinor,
const void *Reserved)

This function attaches the application with the DL module specified by the GUID. The DL
module tests for compatibility with the version specified.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for the DL
module.

CheckCompatibleVerMajor(input)
The major version number of the DL module that the application is compatible with.

CheckCompatibleVerMinor(input)
The minor version number of the DL module that the application is compatible with.

Reserved
A reserved input.

Return Value
A handle is returned for the DL module. If the handle is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DATA_POINTER Invalid pointer
CSSM_DL_INVALID_ GUID Invalid DL GUID
CSSM_DL_INCOMPATIBLE_VERSION Incompatible version
CSSM_DL_ATTACH_FAIL Unable to attach to DL module

See Also
CSSM_DL_Detach

Release 1.0 Common Security Services Manager Page 53
Data-storage Library Interface Specification

4.3.6 CSSM_DL_Detach

CSSM_BOOL CSSMAPI CSSM_DL_Detach (CSSM_DL_HANDLE DLHandle)

This function detaches the application from the DL module.

Parameters
DLHandle (input)
The handle that describes the add-in data storage library module to be detached.

Return Value
A CSSM_TRUE return value signifies that the DL module has been detached. If CSSM_FALSE
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DL_HANDLE Invalid handle
CSSM_DL_DETACH_FAIL Unable to detach from DL module

See Also
CSSM_DL_Attach

Release 1.0 Common Security Services Manager Page 54
Data-storage Library Interface Specification

4.3.7 CSSM_DL_GetInfo

CSSM_DLINFO_PTR CSSMAPI CSSM_DL_GetInfo (const CSSM_GUID_PTR GUID)

This function returns the CSSM registry describing the DL module.

Parameters
GUID (input)
A pointer to the CSSM_DATA structure containing the global unique identifier for the DL
module.

Return Value
A pointer to the CSSM_DLINFO structure containing information about the DL module. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_INVALID_DATA_POINTER Invalid pointer
CSSM_DL_INVALID_GUID Can’t find DL
CSSM_DL_MEMORY_ERROR Error allocating memory
CSSM_DL_GET_INFO_FAIL Unable to retrieve DL module information

See Also
CSSM_DL_FreeInfo

Release 1.0 Common Security Services Manager Page 55
Data-storage Library Interface Specification

4.3.8 CSSM_DL_FreeInfo

CSSM_RETURN CSSMAPI CSSM_DL_FreeInfo (CSSM_DLINFO_PTR DLInfo)

This function frees the memory allocated by CSSM for the CSSM_DL_INFO structure and
returned by the CSSM_DL_GetInfo function.

Parameters
DLInfo(input)
A pointer to the CSSM_DL_Info structure.

Return Value
A CSSM_OK return value signifies the function completed successfully. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_DL_FREE_INFO_FAIL Failed to free the DLINFO structure
CSSM_DL_INVALID_DLINFO_PTR Invalid CSSM_DL_INFO pointer

See Also
CSSM_DL_GetInfo

Release 1.0 Common Security Services Manager Page 56
Data-storage Library Interface Specification

4.3.9 CSSM_DL_RegisterServices

CSSM_RETURN CSSMAPI CSSM_DL_RegisterServices
(const CSSM_GUID_PTR GUID,
CSSM_FUNCTIONTABLE FunctionTable,
CSSM_SPI_FUNC_TBL_PTR *UpcallTable,
void *Reserved)

This function is used by a data storage library module to register its function table with CSSM
and to receive a memory management upcall table from CSSM.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the DL
module.

FunctionTable (input)
A structure containing pointers to the data storage library Interface functions implemented by the
DL module.

UpcallTable (output)
A structure containing pointers to the memory routines to be used by the DL module to allocate
and free memory owned by the calling application.

Reserved(input)
A reserved input.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_INVALID_GUID Invalid GUID
CSSM_INVALID_FUNCTION_TABLE Invalid function table
CSSM_REGISTER_SERVICES_FAIL Unable to register services

See Also
 CSSM_DL_DeRegisterServices

Release 1.0 Common Security Services Manager Page 57
Data-storage Library Interface Specification

4.3.10 CSSM_DL_DeregisterServices

CSSM_RETURN CSSMAPI CSSM_DL_DeregisterServices (const CSSM_GUID_PTR GUID)

This function is used by a data storage library module to de-register its function table with
CSSM.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the global unique identifier for the DL
module.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

Error Codes

Value Description
CSSM_INVALID_GUID Invalid GUID
CSSM_DEREGISTER_SERVICES_FAIL Unable to deregister services

See Also
 CSSM_DL_RegisterServices

Release 1.0 Common Security Services Manager Page 58
Data-storage Library Interface Specification

4.3.11 CSSM_GetError

CSSM_ERROR_PTR CSSMDLI CSSM_GetError (void)

This function returns the current error information.

Parameters
None

Return Value
Returns the current error information. If there is currently no valid error, the error number will
be CSSM_OK. A NULL pointer indicates that the CSSM_InitError was not called by the CSSM
Core or that a call to CSSM_DestoryError has been made by the CSSM Core. No error
information is available.

See Also
CSSM_ClearError, CSSM_SetError

Release 1.0 Common Security Services Manager Page 59
Data-storage Library Interface Specification

4.3.12 CSSM_SetError

CSSM_RETURN CSSMDLI CSSM_SetError (CSSM_GUID_PTR guid,
 uint32 error_number)

This function sets the current error information to error_number and guid.

Parameters
guid (input)
Pointer to the GUID (global unique ID) of the add-in module.

error_number (input)
An error number. It should fall within one of the valid CSSM, CL, TP, DL, or CSP error ranges.

Return Value
CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates that the error
number passed is not within a valid range, the GUID passed is invalid, CSSM_InitError was not
called by the CSSM Core, or CSSM_DestroyError has been called by the CSSM Core. No error
information is available.

See Also
CSSM_ClearError, CSSM_GetError

Release 1.0 Common Security Services Manager Page 60
Data-storage Library Interface Specification

4.3.13 CSSM_ClearError

void CSSMDLI CSSM_ClearError (void)

This function sets the current error value to CSSM_OK. This can be called if the current error
value has been handled and therefore is no longer a valid error.

Parameters
None

See Also
CSSM_SetError, CSSM_GetError

