CSSM Application Notes

Purpose

This document isdesigned to aid application developers whowant to write applications on top of
the Common Security Services Manager (CSSM). It provides explanations of concepts and
methods of operation that may not be immediately obvious from reading the CSSM Application
Programming Interface. Short code examples are provided, and are assumed to be written in
C++, unless otherwise noted. Appendix A contains acookbook for common tasks, such as
creating and signing certificates.

12/11/96 1 CSSM Application Notes

1. Incorporating CSSM in an Application

1.1 Include CSSM header files

To incorporate CSSM in an application, include the file CSSM H. It contains all of the definitions for the
structures and error codes the application will use.

#include “cssm.h”

1.2 Initialize CSSM

Toinitialize CSSM, CSSM_Init() must be called. This should be done at application start-up time or load time of
adynamically-linked library (DLL).

As seen from the CSSM AP, this function takes four parameters. The first two parameters are the Mgjor Version
and Minor Version numbers of the CSSM release. They are defined in CSSM.Has CSSM_MAJO#&hd
CSSM_MINORThe third parameter isthe tricky one. It asksfora CSSM_API_MEMORY_FUNCS_PTRmay
seem confusing, but it isreally very simple and ingenious, as described below. The fourth parameter is reserved, so
passin NULL

CSSM livesin a separate process address space. When a piece of datais requested, it must allocate memory for the

return object. However, since CSSM is in a different address space, it can't allocate and pass a memory pointer
back to the application from CSSM’s own space. The pointer would be pointing at something completely different
in the application’s address space.

How does CSSM get around this problem? Easy, it allocates the memory directly in the application’s address
space. In order to do this, the application must pass CSSM a structure containing pointers to the application’s own
memory allocation and deallocation routines. In typical C code, these wootd bec, f ree, real | oc,

cal | oc. However, CSSM's flexibility allows any memory allocation routines to be used, including custom-

written routines.

Here is an example of a CSSM initialization:
CSSM APl _MVEMORY_FUNCS fx = {mall oc, free, realloc, calloc};
CSSM RETURN result = CSSM I nit (CSSM MAJOR, CSSM M NOR, & x, NULL);

if (result == CSSM FAI L)
return -1; /I Error - CSSM couldn't initialize

It isagood ideato declare the CSSM_API_MEMORY_FUNCS objectglobally, since add-in modules also require
this structure to be passed in at attach time.

12/11/96 2 CSSM Application Notes

2. Attaching to Plug-in Modules

2.1 Module Types and Features
CSSM supports four different types of modules.

2.1.1 Cryptographic Services Module

This module contains algorithms for encryption, decryption, hashing, digital signatures, key generation, random
number generation, and any other cryptographic services. Itiscommonly referred to asthe CSP (Cryptographic
Service Provider).

2.1.2 Certificate Library Services Module

This module provides services for creating, signing, verifying, and managing digital certificates. 1t iscommonly
referred to asthe CL (Certificate Library).

2.1.3 Data Storage Library Services Module

This module provides the functionality for securely storing and retrieving digital certificates. It is commonly
referred to asthe DL (Database Library).

2.1.4 Trust Policy Services Module

This module provides a policy for how certificates should be validated and how trust is established. It is commonly
referred to asthe TP (Trust Policy).

2.2 Attaching to a Module

Attaching to amodule is very similar to initializing CSSM. Each module hasan Attach function and a List
Modules function. The List Modules function takes no arguments and returnsa CSSM L1 ST of the available
modules. For example, to list al of the CSP modules available on the system, use the following code can be used:

CSSM LI ST_PTR pCSPMbdul eLi st = CSSM CSP_Li st Modul es();

Thislist consists of anumber of CSSM LI ST_| TEMstructures. Each item containsa CSSM_GUI D (Globally
Unique ID) and a string name.

When the application has confirmed that a particular module is present, it callsthe module’sAttach function. This
function takes five parameters. The first I€8SM _GUI D, which can be obtained from tigSSM LI ST of

modules. The second and third parameters are the module major and minor version numbers, which must be
known at the time the application is written. The fourth parameter is a collection of pointers to memory allocation
and deallocation routines, just as was use@38M | ni t (). The final parameter is reserved, so paskL. If

the call toAttach is successful, the module is dynamically loaded by CSSM and the application is given back a
handle to the module. For example, with the CSP:

12/11/96 3 CSSM Application Notes

#def i ne CSSM CSP_MAJOR VERSI ON 1
#define CSSM_CSP_M NOR_VERSI ON 0
CSSM GUI D CSPMbdul eGUI D
CSSM_CSP_HANDLE hCSP = NULL;

/1 Just pick the first nodule in the list to attach to
CSPModul e@UI D = pCSPMbdul eLi st ->1tens[0] . GUI D

/1 Use the sane nmenory functions as CSSM I nit()
hCSP = CSSM CSP_At t ach(&CSPMbdul eGUI D,
CSSM_CSP_MAJOR_VERSI ON,
CSSM_CSP_M NOR_VERSI ON,
&f x,
NULL)

CSSM dynamically loads the CSP module and the application receives a handleif the call is successful. The other
modules have similar routines. Just substitute the CSP from these examplesfor DL, CL, or TP, depending on the
type of module required.

2.3 Detaching From a Module

The application should keep track of all the handles created from callsto Attach. They should be detached before
the application shuts down. Detaching from modules allows CSSM to unload modules after applications are no
longer using them. Each module has a Detach function which takes a handle as its argument. Continuing with
the CSP example, assume avalid CSSM_CSP_HANDLE called hCSP exists. To detach it, make the following call:

i f (CSSM CSP_Det ach(hCSP) == CSSM FAI L)

// Error! Handle it in here
}

The Detach functions for other modules work the same way.

12/11/96 4 CSSM Application Notes

3. Connecting to a Database

To store and retrieve certificates, the application must connect to a database. Every DL module contains alist of
databases that it owns and can control. To get alist of the available databases, attach your selected DL module and
call CSSM DL_ Get DbNames() with the DL handle asthe argument. It will returna CSSM NAME LI ST_PTR
that pointsto alist of database names. The application can pick a database from thelist, or useit to verify that a
certain database actually exists on the system.

When the name of the database is known, ahandleto it can be obtained by calling CSSM DL_DbOpen(),
passing in the DL handle and the database name as arguments. Database handles should be closed when finished,
using CSSM DL_Dbd ose().

Here is an example of aroutine that checks to make sure a database called “Personal Certificate Database” exists
and, once found, opens the database, does some work, then closes it again:

/1 Assune CSSM DL HANDLE hDL is a valid DL handl e
CSSM NAME LI ST_PTR pDbLi st = NULL;

const char dbName = “Personal Certificate Database”;
CSSM_DB_HANDLE hDB = NULL;

int found = 0O;

inti=0;

pDbList = CSSM_DL_GetDbNames(hDL);

if (pDbList == NULL) return -1; // Error! No database names
for (i=0; i<pDbList->NumStrings; i++)

if (Istrcmp(dbName, pDbList->Strings[i]))

found = 1;
break;

}
if (ffound) return -1; // Didn’t find it

hDB = CSSM_DL_DbOpen(hDL, dbName);
if (hDB == NULL)

return -1; // Error! Couldn’t conrect to the database
/I Do some database work here

/I Okay, now I'm ready to close the database

if (CSSM_DL_DbClose(hDL, hDB) = CSSM_OK)
return -1; // Error! Couldn’t close the database

12/11/96 5 CSSM Application Notes

4. Error Checking

Most CSSM calls return a CSSM_RETURNVvalue, which can be either CSSM_OK or CSSM _FAI L. A few calls
return a pointer, which returns NULL on failure. If any call to CSSM fails, CSSM _Get Er r or () can becalled. It
will return a CSSM_ERROR _PTRthat contains the type of error that occurred. The error codes are defined in the
file CSSVERR. H, which is automatically included in a project when CSSM Hisincluded. Hereisan example:

/1 Assune hDL is a DL handl e already in existence;
CSSM DB_HANDLE hDB = NULL;

hDB = CSSM DL_DbOpen(hDL, “Personal Certificate Database”);
if (hDB == NULL)

CSSM_ERROR_PTR pError = NULL;
pError = CSSM_GetError();
if (pError)

switch (pError->error)
case CSSM_DL_INVALID_DL_HANDLE:
/[Invalid DL handle. Deal with it accordingly

case CSSM_DL_MEMORY_ERROR:
/I Memory error. Free some memory and try again
}

12/11/96 6 CSSM Application Notes

5. General Purpose Data Access

5.1 What is a CSSM_DATA object?

CSSM_DATA objects are passed throughout the CSSM API. Wherever a piece of data content is needed, a
CSSM DATAisused. Thisdata can beamost anything, which iswhat makes th e mechanism general purpose.

The CSSM API definesthe CSSM_DATA structure as follows.

typedef struct cssmdata {
uint32 Length; /* in bytes */
ui nt8 *Dat a;

} CSSM DATA, *CSSM DATA PTR;

Thisis simply a 4-byte length field followed by a pointer to the data. It can be used to represent any type of data,
such as a string, an integer, a certificate, or abitmap. When an application fetches certificates from a database, or
when particular fields are retrieved from a certificate, they are returned as CSSM_DATA structures. When a new
certificateis created, a CSSM_DATA abject must be created for each value passed into CSSM.

5.2 What does a CSSM_DATA object represent?

An application developer’s first question is probably, “| have @@SM_DATA structure, but how do | know what
it represents? It could be a string, an integer, a bitmap, or an array of function pointers for all I know.” This is a
very valid question. No type information is stored i@B5M DATA. It is only a length and a chunk of data.

The answer is that the type of dat&35M DATA object represents is not known. In many cases, this is definitely
the correct behavior. For example, certificates can be passed around without regard to the internal implementation
of the certificate structure.

However, in some cases the programmer needs to be able to correctly use the data SES®ul iDATA

structure. When reading the fields of a certificate, they are return€82 DATA structures. For example, say

an application asks for the Serial Number field of a certificate. Is this serial number supposed to be a
representation of a string, or an integer, or a picture of the person’s badge? The answer is specific to the particular
module being used. One certificate library module (CL) might represent serial numbers as strings, but another
might represent them as unsigned long integers. You can deal with this problem three ways:.

1. The pass-through function the module provides. CSSM provides a method for modules to provide extra
functionality beyond what the CSSM API defines. For example, the CL pass-through method is
CSSM _CL_PassThr ough(). The module writer can provide special pass-through functions to unpack
CSSM DATA objects as C style structures. This method is the best, if it is available, since there is no
ambiguity. The next section covers pass-through functions.

2. Rely on the module writer's documentation. It is important for any module writer, especially for the CL
writer, to include good documentation describing how each field is represented. The module writer may find it
takes too much time and effort to implement pass-through functions for all data members, or that it seems
unnecessary. Inthese cases, good documentation will suffice and the translation is left to the application
developer.

12/11/96 7 CSSM Application Notes

3. Guess. Thisisobviously the worst method and should be used only when trying to write code for badly
documented modules or for all possible future modules. Many fields can probably be safely guessed from the
context. For example, when the name of the issuer for a certificate is requested, it will most likely be a string.
Thisisnot guaranteed, of course, but in many casesit will be good enough. Remember, this method is an
absolute last resort; pass-through functions and documentation should be relied upon instead, if at al possible.

12/11/96 8 CSSM Application Notes

6. Pass-through Functions

6.1 Purpose

Thereisa CSSM pass-through function for each type of module. A pass-through function alows a module to
provide extra features above and beyond the CSSM API. The passthrough mechanism is very generic and can
support awide variety of functions.

The module documentation is extremely important when using pass-through functions. This documentation isthe
only guide to determining what pass-through functions a module provides and how to use them. Often, the input
parameter is some other data structure ssmply cast to a CSSM_DATA_PTRto be passed through. Likewise, a
CSSM DATA_PTRreturn value may really be a pointer to a different structure that must be cast properly. The
only guide to the real data structures that are expected lies in the modul e documentation.

6.2 Usage

Every passthrough function has at least three parameters:

1. Oneor more handles. These are the handle for the particular module plus any other handlesit may need to
perform its operations. Look at the pass-through function for each module type in the CSSM API for details
on which handles are required for each module.

2. A ui nt 32 that isthe pass-through ID. It identifies the pass-through function you want to call. The module
writer will usually give an additional header file which definesthe IDs. Sometimes, however, they may
defined only in the documentation.

3. A CSSM DATA PTRthat pointsto the input parameters of the function. This can be apointer to a
CSSM _DATA structure, a pointer to an array of CSSM_DATA structures, or a pointer to just about anything
simply cast to aCSSM_DATA PTR A pointer isjust a pointer, and the module writer may have some pass-
through functions that take pointers to other data structures that can be cast toa CSSM_DATA_PTRbefore you
pass them in. Be sure to read the module’s documentation very carefully to see what kind of data it expects.

One example of a pass-throughGSSM _CL_Cer t PassThr ough(). As defined in the CSSM API, it takes a
CL handle that represents what CL module to use, a CC handle that represents the cryptographic context, a pass -
through ID, and a CSSM_DATA_PTR to the input parameters.

6.3 Limitations

Pass-through functions are limited to one input pointer and one output pointer. There is no support for inputting
multiple parameters. To perform operations that require multiple pieces of data, the application may need to pack
all pieces of data into one consolidated data structure that can be passed in to the pass -through function. An array
could be passed in, but the length of the array would need to be predefined. Also, an application developer can’t
tell what pass-throughs are available without extra documentation and/or header files.

12/11/96 9 CSSM Application Notes

7. Using OIDs

7.1 Description

OID stands for Object Identifier or Object ID. The structure called CSSM O Drepresentsan OID. Use OIDs

wherever amodule needs an identifier for aparticular field or value it supports. For example, an application wants

to get the “City” field of a certificate. Not every certificate library or certificate format may support a “City” field.
This is where OIDs come in handy. Using the CSSM function called

CSSM CL_Cert CGet First Fi el dval ue(), you pass in an OID to determine which field you want to get from
the certificate.

Each module will define their own OIDs. They will usually place them in an external header file. For example,
the Intel CLM, Release 1.0, defines all of its OIDs in a file calERTO DS. H

7.2 Usage

OIDs are used whenever a field must be uniquely identified, particularly when dealing with certificates. When you
create a new certificate, you pass in an array of OID/Value pairs, where the CSSM_OID defines what field of the
certificate the associated data member represents. OID/Value pairs are also used when doing a database search for
certificates that match certain criteria. Also, if a particular field of a certificate is desired, the certificate and the

OID of the wanted field are passed in, and the module will return a data member for that OID.

7.3 Stumbling Blocks

CSSM _Q Ds are defined i€SSM H as being equivalent toGSSM _DATA. Don't think of them this way though.
Think of them as a static ID, much like you would treat a traditional integer ID. When using them, define a
CSSM _d Don the frame, like so:

CSSM A D nyA Db
Then, just assign it a statically-defined OID from the module’s header file, like this:
nyQl D = CSSMJ D_| NTEL_Subj ect Naned D,

Then, you can go ahead and use myOID as an ID just like you would an integer ID. There is no memory allocation
and deallocation necessary, and no extra data copying. Just the assignment.

7.4 Example of OID Usage

Let's say we have an inexperienced certificate issuer, John Smith. John has been issuing his certificates with the
same serial number. We want to track these certificates down, so they can be revoked and reissued with unique
numbers.

Here is a sample piece of code to retrieve and revoke all of the certificates in a database that have a serial number
“1234567890” and Issuer Name “John Smith”. For definitions of the various structures used, seeCBteMilel.

12/11/96 10 CSSM Application Notes

/1 Assune the follow ng handles are already valid:
/] CSSM DL_HANDLE hDL;
/] CSSM DB_HANDLE hDB;

#include “cssm.h”
#include “certoids.h”

CSSM_HANDLE ResultsHandle;

uint32 numMatched = 0O;
CSSM_SELECTION_PREDICATE_PTR pPredicate;
char SerialNumber[] = “1234567890";

char IssuerName[] = “John Smith”;

/I Allocate a array of selection predicates. We are looking for 2 things, a
Issuer Name and Serial Number
pPredicate = (CSSM_SELECTION_PREDICATE_PTR)

malloc(2 * sizeof(CSSM_SELECTION_PREDICATE));

// Both fields must be a perfect match
pPredicate[0].dbOperator = CSSM_EQUAL;
pPredicate[1].dbOperator = CSSM_EQUAL;

/I Set up the serial number

pPredicate[0].Field.FieldOid = CSSMOID_SerialNumber; // This OID is defined
in certoids.h

pPredicate[0].Field.FieldValue.Length =sizeof(SerialNumber);
pPredicate[0].Field.FieldValue.Data = (uint8*)SerialNumber;

/I Set up the Subject Name

pPredicate[1].Field.FieldOid = CSSMOID_IssuerName; // This OID is defined in
certoids.h

pPredicate[0].Field.FieldValue.Length =sizeof(IssuerName);
pPredicate[0].Field.FieldValue.Data = (uint8*)ssuerName;

/I Now we can perform the database search
CSSM_DATA _PTR pData = NULL; // pointer that will retrieve the results
CSSM_RETURN ret;

pData = CSSM_DL_CertGetFirst(hDL, hDB, pPredicate, 2,
CSSM_AND, &ResultsHandle, &umMatched);
if (humMatched == 0) return;

for(uint32 i=0; i < numMatched; i++)
{
if (pData == NULL)
return; /I Error condition! Should not happen.

/I Revoke the certificate
ret = CSSM_DL_CertRevoke(hDL, hDB, pData);
if (ret == CSSM_FAIL)

/I Handle the error

}

/I free the allocated memory

if (oData->Data) free(pData->Data);
free(pData);

/I Try to get the next matching cerificate
pData = CSSM_DL_CertGetNext(hDL, hDB, ResultsHandle);

12/11/96 11 CSSM Application Notes

12/11/96 12 CSSM Application Notes

Appendix A
Developers’ Cookbook

Here are some code fragmentsyou can use to perform common CSSM tasks. They will help you
get up and running fast, and make writing a CSSM application much less daunting.

This cookbook includes

» Creating and deleting acertificate database

» Generating akey pair

» Creating acertificate

* Signing, verifying, andunsigning acertificate

* Inserting, retrieving, and removing certificates from adatabase

In the following code fragments, thehandles are assumed to be defined and valid. SeeAttaching
to Plug-in Modules for help on obtaining these handles.

CSSM _DL_HANDLE hDL; /1 Data Storage Library Handl e
CSSM CL_HANDLE hCL; /1 Certificate Library Handl e
CSSM_CSP_HANDLE hCSP; /1l Crypto Service Provider Handle
CSSM DB _HANDLE hDB; /| Dat abase Handl e

Also, it is assumed that the following header files are included in the source files.

#include “cssm.h” /I Core CSSM functions
#include “certoids.h” /I OIDs for certificate operations.

12/11/96 13 CSSM Application Notes

Creating and Deleting a Certificate Database

/I Going to create a new database called “Test Database” and then

// delete it.

const char *dbName = “Test Database”;
CSSM_DB_HANDLE =newDBHandle;
CSSM_ERROR_PTR pError = NULL;

newDBHandle = CSSM_DL_DbCreate(hDL, hCL, dbName);
if (newDBHandle == NULL)

{
pError = CSSM_GetError();
if (pError)
// Deal with the error condition;
free(pError);
return;
}

// Perform database operations here

/I Finished with the database... delete it.
CSSM_RETURN ret;

ret = CSSM_DL_DbDelete(hDL, dbName);
if (ret == CSSM_FAIL)

pError = CSSM_GetError();
if (pError)

/I Deal with the error condition
free(pError);

return;
}else {
/I Database deletion successful!

/I Don't forget that the database handle is now invalid.

/I Set it to NULL for safety.
newDBHandle = NULL;

12/11/96 14

CSSM Application Notes

Generating a Key Pair

/1 W will generate a Public/Private Key pair using the DSA al gorithm
/1l Keep in mind, a particular CSP may support all sorts of
/1 algorithnms and key sizes.

CSSM CC_HANDLE KeyGenCont ext = NULL;

ui nt8 SeedBuf[] = “This is a seed, but it should be more random®;
const char *pwd = “testpassword”;

CSSM_CRYPTO_DATA Seed,;

CSSM_DATA SeedData,;

CSSM_CRYPTO_DATA password;

CSSM_DATA password_data;

CSSM_KEY Key;

/I Create Key Pair Generation context
SeedData.Length = sizeof(SeedBuf);
SeedData.Data = (uint8*)SeedBuf;

Seed.Param = &SeedData;
Seed.Callback = NULL;

/[Initialize the password information
password_data.Length = strlen(pwd);
password_data.Data = (uint8*)pwd;
password.Callback = NULL;
password.Param = &password_data;

/l Here we will create a DSA key pair generation context

/I See the API document for more detailed explanation

KeyGenContext = CSSM_CSP_CreateKeyGenContext
(hCSP, CSSM_ALGID_DSA, &password, 512, 1808, &Seed,
&password_data);

if (IKeyGenContext) {
return;
}

Key.KeyBlobLength = sizeof(CSSM_KEYBLOB);
Key.KeyBlob = (CSSM_KEYBLOB_PTR)malloc(sizeof(CSSM_KEYBLOB));

if (CSSM_FAIL == CSSM_GenerateKey(KeyGenContext, &Key)) {
free(Key.KeyBlob);
return;

}

/I At this point, Key should have availd public DSA public key,
/I with the private key securely stored in the CSP and
/I password protected.

12/11/96 15 CSSM Application Notes

Creating a Certificate

It is not obvious from the CSSM API how to create a certificate. The basic ideaisthat an array of OID/Value pairs
representing all the fieldsin the certificate is passed into CSSM. CSSM will then return aCSSM_DATA that is
the newly-created certificate. In the following example, | use the Intel Certificate Library Module, Release 1.0. If
another Certificate Library moduleis used, consult that documentation for the required OIDs and certificate fields.

/[l Wility function that turns a string into a CSSM DATA structure
CSSM DATA PTR PackString (const char* pSource)

CSSM DATA PTR toRet urn = NULL;
if (pSource == NULL) return NULL;

toReturn = (CSSM DATA PTR)mal | oc(si zeof (CSSM _DATA)) ;
toReturn->Length = strl en(pSource);

char* pData = (char*)mal | oc(si zeof (char) * (strlen(pSource)));
nmencpy(pData, pSource, strlen(pSource));

toReturn->Data = (ui nt8*)pDat a;

return toReturn;

12/11/96 16 CSSM Application Notes

/1 This function will return a CSSM DATA PTR to the
/1 newy created certificate
CSSM _DATA_PTR Create ()

const char *m_CommonName = “USA;Mtel Corp;Los Angeles;Marketing;Smith;John”;
const char *m_lssuerName = “USA;Mtel Corp;Los Angeles;Sales;Doe;Jane”;
const char *m_SerialNumber = “111-532-593822";

// Validity dates must be in X.509 UTC time format. See the CL

/I documentation for further details on UTC time format. See the
// source code for Certificate Viewer for sample routines to convert
/l from MM/DD/YY format to UTC time format

const char *m_StartDate = GetStartingValidityDate();

const char *m_EndDate = GetEndingValidityDate();

/I The key should be one you generated earlier
const CSSM_KEY_PTR m_pKey = GetKey();

/l Extensions are completely defined at the application level. They
/I simply get appended to the certificate. You as the application

/I developer must define IDs to use for your extensions.

/l For this example, I'll only use 2 extensions, a State field and a

Il Zip Code field

#define CSSMEXT _ID_State “220”

#define CSSMEXT_DESC_State “State”

#define CSSMEXT_ID_Zip “221”

#define CSSMEXT_DESC_Zip “Zip Code”

const char *m_State = “CA”;
const char *m_Zip = “91885”;

/I The total number of fields to pass in to CSSM will be 1 for each piece
/I of data, except each extension will require 4 OID/Value pairs.
uint32 totalFields = 14;

CSSM_FIELD_PTR pFields = (CSSM_FIELD_PTR)malloc(sizeof(CSSM_FIELD)
* totalFields);

uint32 index = 0;
CSSM_DATA PTR pData = NULL;
uint32 NotCritical = 0;

/I Set up the Common Name Field
pFields[index].FieldOid = CSSMOID_CommonName;
pData = PackString(m_CommonName);
pFields[index].FieldValue = *pData;

free(pData);

index++;

/I Set up the Issuer Name Field
pFields[index].FieldOid = CSSMOID_IssuerName;
pData = PackString(m_IssuerName);
pFields[index].FieldValue = *pData;

free(pData);

index++;

/I Set up the Serial Number Field

pFields[index].FieldOid = CSSMOID_SerialNumber;
pData = PackString(m_SerialNumber);

12/11/96 17 CSSM Application Notes

pFi el ds[i ndex] . Fi el dval ue = *pDat a;
free(pData);
i ndex++;

/1 Set up the Key Field

pFi el ds[index].FieldOd = CSSMJ D_Publ i cKeyBl ob;

pFi el ds[i ndex] . Fi el dVal ue. Length = si zeof (CSSM _KEYBLOB) ;

pFi el ds[i ndex] .Fi el dval ue. Data = (uint8*)nmal | oc(si zeof (CSSM KEYBLOB)) ;
mencpy(pFi el ds[i ndex] . Fi el dVal ue. Dat a, m pKey- >KeyBIl ob, si zeof (CSSM KEYBLOB)) ;
i ndex++;

/1 Set up the starting validity date field

pFiel ds[index].FieldOd = CSSMJ D Val i dityStart Date;
pData = PackString(m StartDate);

pFi el ds[i ndex].Fi el dval ue = *pDat a;

free(pDat a);

i ndex++;

/1 Set up the ending validity date field

pFi el ds[index].FieldOd = CSSMJ D _Val i di t yEndDat e;
pDat a = PackString(m EndDat e) ;

pFi el ds[i ndex].Fi el dval ue = *pDat a;

free(pDat a);

i ndex++;

/]l Create 4 fields to represent each extension

/] State

/] Create a field for the Extension ID

pFi el ds[index].FieldOd = CSSMJ D_CSSMCerti fi cat eExt ensi onl d;
pData = PackString(CSSM | D _State);

pFi el ds[i ndex].Fi el dval ue = *pDat a;

free(pDat a);

i ndex++;

/Il Create a field for the Critical Flag

pFields[index].Fielddd = CSSMO D CSSMCertificat eExtensionCritical
pFi el ds[i ndex] . Fi el dVal ue. Length = si zeof (ui nt 32);

pFi el ds[i ndex] .Fi el dval ue. Data = (ui nt8*)nal | oc(si zeof (ui nt32));
mencpy(pFi el ds[i ndex].Fi el dval ue. Data, &otCritical, sizeof (uint32));
i ndex++;

/1 Create a field for the Description

pFields[index].Fielddd = CSSMO D CSSMCerti fi cat eExt ensi onDescri ption;
pData = PackStri ng(CSSM DESC St at e) ;

pFi el ds[i ndex] . Fi el dval ue = *pDat a;

free(pData);

i ndex++;

/]l Create a field for the Extension data

pFi el ds[index].Fielddd = CSSMJ D CSSMCerti fi cat eExt ensi on
pbData = PackString(m State);

pFi el ds[i ndex] . Fi el dval ue = *pDat a;

free(pData);

i ndex++;

12/11/96 18 CSSM Application Notes

/1 Zip Code

/]l Create a field for the Extension ID

pFi el ds[index].FieldOd = CSSMJ D_CSSMCertifi cat eExt ensi onl d;
pData = PackString(CSSM | D _Zip);

pFi el ds[i ndex] . Fi el dval ue = *pDat a;

free(pData);

i ndex++;

/|l Create a field for the Critical Flag

pFiel ds[index].FieldOd = CSSMJ D CSSMCertificateExtensionCritical;
pFi el ds[i ndex].Fi el dval ue. Length = si zeof (ui nt 32);

pFi el ds[i ndex].Fi el dval ue. Data = (uint8*)mal | oc(si zeof (ui nt 32));
nmencpy(pFi el ds[i ndex] .Fi el dVal ue. Data, &otCritical, sizeof (uint32));
i ndex++;

/] Create a field for the Description

pFi el ds[index].FieldOd = CSSMJ D CSSMCerti fi cat eExt ensi onDescri ption;
pDat a = PackStri ng(CSSM DESC Zi p);

pFi el ds[i ndex].Fi el dval ue = *pDat a;

free(pDat a);

i ndex++;

/] Create a field for the Extension data

pFi el ds[index].FieldOd = CSSMJ D_CSSMCerti fi cat eExt ensi on;
pData = PackString(m Zip);

pFi el ds[i ndex].Fi el dval ue = *pDat a;

free(pDat a);

i ndex++;

/1 Now that all the fields are set up, let’s actually create thecert
CSSM DATA PTR toReturn = NULL;

toReturn = CSSM CL_Cert Create(hCL, pFields, total Fields));
/1l Cean up
for (uint32 i=0; i<total Fields; i++) {

if (pFields[i].FieldValue.Length)
free(pFields[i].Fieldval ue.Data);

}
if (pFields) free(pFields);

return toReturn;

}

12/11/96 19 CSSM Application Notes

Signing, Verifying, and Unsigning a Certificate

/1 This helper function wll create a Signature Context using
/1 The AlgorithmI|D and pass phrase (for signing and unsigning).
CSSM_CC_HANDLE

Cr eat eSi gnat ur eCont ext (ui nt 32 Al gl D, const char* password)

{

CSSM_CC_HANDLE hSi gCont ext = NULL;
CSSM_CRYPTO _DATA cspbDat a;

CSSM DATA par anDat a;

CSSM _KEY_PTR pKey = NULL;

/1 Set up the crypto data
cspDat a. Cal | back = NULL;

/1 The "cspbData" is the password for the signer’s private key
if (password) ({

paranDat a. Length = strl en(password);

par anDat a. Data = (ui nt 8*) passwor d;
} else {

par anDat a. Length = 0;

par anDat a. Dat a = NULL,;

cspbDat a. Par am = &par anDat a;

/1l Get the public key data fromthe certificate
pKey = GetKey();

/]l Create the signature context
hSi gCont ext = CSSM _CSP_Cr eat eSi gnat ur eCont ext (hCSP, Al gl D, &cspData, pKey);

return hSi gCont ext;

/1 Routine to sign a certificate

CSSM_RETURN

Sign (CSSM DATA PTR const pSignee, CSSM DATA PTR const pSigner,
const char* password)

{

CSSM_CC_HANDLE hCC;
CSSM DATA PTR pSi gnedCert = NULL;

/1 Create a Signature Context with DSA al gorithm
hCC = Creat eSi gnat ur eCont ext (CSSM ALA D _DSA, password);
if ('hCC

return CSSM FAI L;

/1 Sign the input certificate. Use the default of signing all fields
pSi gnedCert = CSSM CL_Cert Sign(hCL, hCC, pSignee, pSigner, 0, 0);

if (!pSignedCert)
return CSSM FAI L;

/1 Set the signee’s data to the newly signed cert and free the old data
/1 NOTE: This is in menory only. You nust explicitly insert the newy
/'l signed certificate into the database if you want to nake the change
/'l persistent.

if (pSignee->Data) free(pSi gnee->Data);

12/11/96 20 CSSM Application Notes

}

*pSi gnee = *pSi gnedCert;
free(pSi gnedCert);
return CSSM OK;

/1 Routine to unsign a certificate by renoving a signature fromthe cert
CSSM_RETURN
Unsign (CSSM DATA PTR const pUnsi gnee, CSSM DATA PTR const pUnsi gner,

{

}

const char* password)

CSSM_CC_HANDLE hCC;
CSSM _DATA_PTR pUnsi gnedCert = NULL;

/]l Create a Signature Context with DSA algorithm
hCC = Creat eSi gnat ur eCont ext (CSSM ALA D DSA, password);
if (1hCO)

return CSSM FAI L;

/1 Unsign the input certificate. Use the default of Unsigning all fields
pUnsi gnedCert = CSSM CL_Cert Unsign(hCL, hCC, pUnsignee, pUnsigner,

if (!pUnsignedCert)
return CSSM FAI L;

/1 Set the unsignee's data to the newy signed cert

/1 NOTE: This is in nenory only. You must explicitly insert the newy
/1 signed certificate into the database if you want to nmake the change
/] persistent.

i f (pUnsignee->Data) free(pUnsignee->Data);

*pUnsi gnee = *pUnsi gnedCert;

free(pUnsi gnedCert);

return CSSM CK;

/1 Routine to verify the certificate on a signature

CSSM_RETURN

Verify (CSSM DATA PTR const pCert, CSSM DATA PTR const pSigner)
{

12/11/96

CSSM_CC_HANDLE hCC,
CSSM RETURN r et ;

/1 Create a Signature Context with DSA al gorithm
hCC = Creat eSi gnat ur eCont ext (CSSM ALG D DSA, NULL);
if (!'hCC

return CSSM FAI L;

/1 Verify the input certificate. Use the default of Unsigning all fields
ret = CSSM CL_CertVerify(hCL, hCC, pCert, pSigner, 0, 0);

return ret;

21 CSSM Application Notes

Inserting, Deleting, and Retrieving Certificates from a Database

/1l Insert and Delete are trivial. You just have to have a handle to
/1l the database and a certificate

CSSM _RETURN Dbl nsert (CSSM DATA PTR pCert)

{

return CSSM DL_Certlnsert(hDL, hDB, pCert);
}
CSSM _RETURN DbDel et e (CSSM DATA PTR pCert)
{

retirmCSSM DL_CertDel ete(hDL, hDB, pCert);
}

/'l Retrieving certificates froma database is much nore conpli cat ed.
/1 The fundanmental concept is sinple though, the rest is

/1 just setup code. You have to specify your search

/] criteria through an array of O D/ Value pairs that represent

/1 the certificate field values to match on.

/1 The following will retrieve the last certificate it finds in the
/| database that nmatches the search criteria. For the search
/] criteria in this exanple, we will use the Common Nane and

/1 Issuer Nanme fromthe Create Certificate exanple
CSSM _DATA PTR DbRetri eve()

const char *m_CommonName = “USA;Mtel Corp;Los Angeles;Marketing;Smith;John”;
const char *m_IssuerName = “USA;Mtel Corp;Los Angeles;Sales;Doe;Jane”;

CSSM_SELECTION_PREDICATE_PTR Filter = NULL;
uint32 FilterSize = 2,

CSSM_HANDLE ResultsHandle;

uint32 NumcCerts = 0;

uint32i=0;

CSSM_DATA_PTR pTemp = NULL;

CSSM_DATA _PTR toReturn = NULL,;

/I Make a filter based on the Common Name and Issuer Name
Filter = (CSSM_SELECTION_PREDICATE_PTR)malloc(FilterSize *
sizeof(CSSM_SELECTION_PREDICATE));

for (i = 0; i<FilterSize; i++) {

/I All fields in the filter must be EQUAL to be a match
Filter[i].dbOperator = CSSM_EQUAL,;

12/11/96 22 CSSM Application Notes

i = 0;

/]l Create a O D/ Value pair for each elenment we are | ooking for.
pTenp = PackStri ng(m ConmmonNane) ;

Filter[i].Field. Fielddd = CSSMJO D _CommonNane;

Filter[i].Field. FieldVvalue = *pTenp;

free(pTenp);

i ++;

pTenp = PackString(m.| ssuerNane);
Filter[i].Field. FieldOd = CSSMJ D_I ssuer Narme;
Filter[i].Field. Fieldvalue = *pTenp;

free(pTemp);

i ++;

/1 Get the first certificate

pTenp = CSSM DL_CertGetFirst(hDL, hDB, Filter, FilterSi ze, CSSM AND,
&Resul t sHandl e, &NunCerts);

/I Keep getting the next certificate until you can’t get any more
while (pTemp)
{

toReturn = pTemp;

pTemp = CSSM_DL_CertGetNext(hDL, hDB, ResultsHandle);
/I Clean up
for (i=0; i<FilterSize; i++)

if (Filter[i].Field.FieldValue.Data)
free(Filter[i].Field.FieldValue.Data);

%ree(FiIter);

return toReturn;

}

12/11/96 23 CSSM Application Notes

