
1

 Universal Serial Bus and the Multimedia PC
Kosar A. Jaff

Intel Architecture Labs
Intel Corporation

Hillsboro, OR
Kosar_A_Jaff@ccm.jf.intel.com

Introduction
The personal computer has evolved into a powerful multimedia appliance over the last several
years. Spurred by such advances as powerful Intel microprocessors, advanced graphics
subsystems, and highly capable software, the mainstream portion of the personal computer
market segment has made impressive advances in multimedia capabilities. However, the PC
has also continued to be plagued by an Achilles’ heel--its unfriendly I/O subsystems. Users
have continued to struggle with cryptic elements of the PC like IRQ, DMA, and I/O
Addresses. The Universal Serial Bus (USB) should go a long way towards solving many of
these problems and offers powerful new multimedia capabilities to help make the PC the
ubiquitous multimedia appliance.

PC Peripherals -- Inside or Outside?
PC peripherals have generally come in two flavors--those that live inside the PC and those
that live outside the PC. Examples of peripherals that live inside the PC include IDE disk
controllers, SCSI bus host adapters, hard drives, internal CD-ROMs, internal fax/modems,
and video adapters. Peripherals that live outside the PC include monitors, mice, keyboards,
external modems, scanners, and external CD-ROMs.

Inside-the-box upgrades (or changes to the PC configuration) tend to be more complex and
more intimidating. This stems from two major reasons: first, opening the PC box itself can
be an intimidating and complex proposition, and second, buses that accommodate upgrades
inside the PC (for example, the PC-AT ISA bus) have typically been hard to configure when
a new adapter is introduced. Cables and assemblies inside the PC can often look like a rat’s
nest, confusing even the most sophisticated user. In addition, users installing new adapter
cards in the PC have often been required to change arcane DIP switches on the add-in board
or modify system BIOS settings.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted herein.

Copyright © 1996 Intel Corporation All rights reserved.

* Other brands and names are the property of their respective owners.

2

Connecting outside-the-box peripherals has a key advantage over inside-the-box peripherals
because the user isn’t required to open the PC. Printers, modems, and the mouse are
examples of outside-the-box peripherals that plug into ports on the PC. However, even a
simple operation such as plugging a modem into a serial port can often lead to problems. The
serial and parallel ports on a PC are based on dated technology that doesn’t support the
detection of devices as they are attached. Rather, configuration software makes “guesses”
about what type of device is connected. Such detection isn’t always successful, nor is it
always correct in identifying the peripheral. In addition, serial and parallel ports have another
major drawback; they can support only one device on the port at a time.

The difficulties in adding peripherals to the PC outlined above have led to a requirement for
an easy-to-use, outside-the-box peripheral attachment point for the PC. Based on this and
other requirements, a group of PC industry leaders defined and are currently implementing a
new PC standard known as the Universal Serial Bus (USB). USB provides solutions to many
of the issues outlined above, and allows PC users to focus on using the PC as an information
appliance by spending less time on installation and configuration. USB provides a Plug and
Play attachment point outside-the-box on the PC so users can simply attach USB peripherals
and use them right away.

USB Architecture in a Nutshell
USB is a 12 megabit per second serial channel that can be used for a wide variety of
peripherals. USB transfers signal and power over a four-wire cable, shown inFigure 1. USB
can be used for keyboards, mice, modems, printers, scanners, CD-ROMs, audio devices (for
example, microphones or digital speakers), digital cameras, and other multimedia-oriented
peripherals. The USB architecture places no limitation on the type of device that is attached
to the bus, but does provide guidelines and upper bounds on the amount of bus bandwidth a
device can consume. Device designers need only be aware of the bandwidth their device
requires before deciding if such a device can be designed for USB.

...

...

5 meters max

VBus

GND

D+
D-

VBus

GND

D+
D-

Figure 1: USB Cable

USB is a token-based bus, similar to other token-based buses such as the token ring network
or FDDI. The USB Host Controller broadcasts tokens on the bus and a device that detects a
match on the address in the token responds by either accepting or sending data to the host.
The host also manages USB bus power by supporting suspend/resume operations.

3

USB uses a tiered star topology to allow simultaneous attachment of up to 127 devices on the
bus at a time. At the root of the tiers is the USB Host Controller, which controls all traffic on
the bus. The topology allows multiple devices to connect to a single logical bus without
introducing delay to devices further downstream. Unlike other bus architectures, USB is not
a store-and-forward bus, so there is no delay in sending a packet to a lower tier on the bus.

4

The USB hub device is a special component of the USB architecture. The hub is central to
USB’s architecture since it provides support for such key features as bus fanout (that is,
providing additional attach points to the bus), detection of device attach and detach, and
device power management. USB hubs are considered a “class” of USB device (USB device
classes are explained in more detail below), and their operation is defined in detail in the USB
specification. (SeeFigure 2.)

Host (Root Tier)

Tier 1

Tier 2

Tier 3

Tier 4

Hub 1

Hub 2 Node

Host
RootHub

Node

Hub 3 Hub 4 Node Node

NodeNodeNode

Figure 2: USB Bus Topology

Hot Attach and Detach
One of the major benefits of USB is its support for “hot” attachment and detachment of
devices. This means that users can plug in and use a new USB device without having to shut
off the system. When a new device has been detected by a USB hub, the host system is
notified, and system software interrogates the device, determines its capabilities, and
configures the device. In addition, system software loads the appropriate device driver so that
the user’s applications can begin using the new device immediately. Some operating systems
refer to this process as “bus enumeration”. Figure 3 outlines the steps in an example
enumeration sequence on USB.

5

New Device Attached

Start Device Driver

Query Device at
Default Bus Address

Assign unique bus
address to device

Load Device Driver for
this device

(Operating System
dependent method)

Configure Device

Device is up and
running

Figure 3: Example Enumeration Sequence

USB Device Classes
The USB specification defines a standard set of device operations that all USB devices must
support1. These standard operations ensure that there is some consistency in basic device
behavior when connecting to USB. In addition, USB device implementers have defined USB
device classes that standardize the behavior of similar USB devices. For example, a class of
USB device has been defined to encompass standard functions in USB Human Input Devices
(HID). USB HID-class-compliant devices benefit from a base level of support built into most
operating systems. For the user, this means that USB-aware operating systems configure and
support devices that conform to the HID device class. When the user plugs in the device,
standard class device drivers will be able to communicate with the device, determine its
capabilities, and either handle the device at the base class level, or hand the device off to a
device-specific driver. In this fashion, it’s still possible for manufacturers to differentiate their
products by providing additional functionality to that specified in the device class. However,
supporting standard USB device class behavior will ensure universal acceptance of the
conforming device.

Natural Data Types on USB
USB devices can take advantage of special bus features to deliver additional functionality to
users. USB supports natural data type delivery for continuous data streams such as audio
data and telephony data. Using USB’s support for isochronous data transfers, devices can
transmit and receive data in a guaranteed and predictable fashion. USB also allows non-
isochronous devices to peacefully coexist with their data-driven brethren. For example, USB
easily supports simultaneous traffic to a pair of digital audio speakers while using a joystick
to play a game and spooling a document to a USB printer in the background. The bus
architecture allows the audio data stream to proceed at the highest priority (as an isochronous

1 USB Specification. Chapter 9: USB Device Framework; Revision 1.0, January, 1996.

6

device) while still allowing bus time for the joystick device. The printer consumes any bus
time that is left over. USB is designed to provide such a balanced bus architecture while
hiding the complexity from the devices connected to the bus. Bus bandwidth management
and control is handled by the USB host controller and system software, and devices are left to
focus on their specific functionality.

Built-in Robustness
USB incorporates several architectural features that contribute to overall bus robustness and
reliability. USB devices enjoy a well-defined electrical and bus protocol. The electrical
interface has been augmented with a set of standard test requirements that USB device
manufacturers can use to ensure their electrical compliance. The bus protocol is relatively
simple and based on other similar token-based bus protocols.

USB’s electrical interface can be implemented in commodity CMOS components, which will
allow rapid adoption and proliferation of USB building blocks. This in turn can lead to more
peripherals with standard USB bus interfaces. USB electrical components should become
readily available in 1996, with mass production slated to begin in late 1996 and early 1997.

To ensure homogeneity in device implementations, industry workshops are being conducted
to allow device manufacturers to test their peripherals (using compliance tools) prior to taking
products to market. Similar workshops have been conducted successfully in other industry
initiatives such as PCI.

USB Software Architecture
USB’s software architecture has been carefully designed to fit into modern operating
systems’ designs. For example, the USB software architecture is designed to allow migration
and adoption in the Microsoft Windows* operating systems such as Windows 95 and
Windows NT. USB takes advantage of existing system programming interfaces to
accommodate device and bus management, device driver loading, and power management.
USB bus-specific details are hidden by “plug-in” components in the operating system.

For example, a USB bus enumerator detects and configures USB devices in a bus-
independent fashion on behalf of the Windows 95 Configuration Manager. In this fashion,
USB software support can be added to existing operating systems with minimal impact on the
operating system and the user.

7

In addition, modern operating systems such as Windows 95 and Windows NT isolate the
hardware-specific software components to allow rapid adoption of new hardware
technologies such as USB peripheral devices. For example, the Microsoft DirectSound*
environment defines interfaces that allows the hardware-specific component to be isolated to
a device driver. The hardware-specific driver is adapted to the specifics of the audio
hardware. This simplifies the USB device manufacturer’s job since the bulk of the system
code has already been written and tested. Only one new piece (the hardware-specific driver)
is added to the software “stack”. See Figure 4.

USB Device

Win32 Application

DirectSound

USB Audio Device Driver
(USB Hardware Specifc)

USB Software Stack

USB Software Subsystem

Figure 4: DirectSound* USB Example

A Modular Approach
The USB software architecture is based on a modular, object-oriented approach. The
components of the USB system software stack are broken into three major modules. At the
lowest level of the software architecture, the USB Host Controller is managed and controlled
by a Host Controller Driver. USB Host Controller implementers define a standard hardware
interface to provide a uniform host controller programming interface. For example, Intel’s
Host Controller, the 82430 PCISet USB Host Controller, implements the Universal Host
Controller Interface (UHCI). UHCI is a hardware interface that has an associated device
driver--the UHCI driver (UHCD). UHCD implements the underlying details of
communicating with and controlling the Intel USB host controller. UHCD hides these details

8

from other components of the system software stack. Higher level components of the USB
system software architecture are “layers” on top of the UHCD component and use UHCD’s
software interface to communicate with the host controller in a host-controller independent
fashion. See Figure 5.

USBD Client Software
USB Device Driver (e.g., USB Audio Device Class Driver)

Configuration
Manager

USB Bus
Enumerator

Universal Serial Bus Driver (USBD)

Universal Host Controller Driver (UHCD)

HCDI

USBDI

USB Host Controller

UHCI

Figure 5: USB Software Architecture

The second major component of the USB software architecture is the Universal Serial Bus
Driver (USBD). USBD provides a device driver-level interface designed to meet the
requirements of existing device driver designs. In defining the USBD interface, the USB
software architects studied how hardware-specific device drivers interacted with their devices
and with other system services such as the Virtual DMA Device (VDMAD) in Windows 3.x
and Windows 95. These case studies were important so that USB could design a device-
driver interface that closely matched what the device drivers used and expected from the
underlying system components.

Using the data from these case studies, the USB software architects defined the requirements
of the USB Driver interface (USBDI) in the USB specification. The general requirements
outlined in the specification reflect what services and operations USBD must perform. The
exact details of USBD implementations differ in different operating system environments
such as Windows 95 and Windows NT. However, the type of operations that USBD
performs are similar in different operating system environments since the USB specification
outlines the requirements of that software layer.

The third major component of the USB software architecture is the USBD client software.
Usually USBD’s clients are device drivers responsible for handling a specific USB device or
class of device. In Windows 95, these device drivers use Plug and Play system features to
handle USB device attach/detach and configuration events. Plug and Play USB device
drivers allow dynamic configuration of a newly added device to insulate the users and
applications from device configuration issues. In Windows 95, USB hubs are handled by a
bus enumerator, which is nothing more than a USB hub device driver that uses Windows 95

9

Configuration Manager services to notify the system of device attach and detach events on
USB. See Figure 6.

D e v i c e
D r i v e r

H C D

U S B D

H o s t S o f t w a r e
C o n f i g u r a t i o n

S u p p o r t

C o n f i g u r a t i o n
C o n t r o l

O p t i o n a l
C o n f i g u r a t i o n
C o n t r o l

H u b
D r i v e r

O p t i o n a l
C o m p o n e n t

B u s E n u m e r a t o r a n d
C o n f i g u r a t i o n M a n a g e r i n

W i n d o w s 9 5

Figure 6: Configuration Interactions

Conclusion
The personal computer has undergone an evolution from a hobbyist-type device into a general
purpose information appliance in the modern household. Novice PC users are much less
tolerant of problems with installation or configuration , so PC peripheral manufacturers are
always looking for ways to make the PC easier to use. To this end, the PC has needed an
easy-to-use connection point to which they can connect a multitude of peripheral devices.
USB addresses many of these issues and will provide an outside-the-box Plug and Play attach
point that will accommodate a wide range of devices. USB will enable a variety of
applications on the PC to enhance ease-of-use for existing peripherals while allowing room
for device designers to dream up new and exciting peripherals to continually improve the PC
usage experience.

For More Information
The USB Specification and other USB-related documents are available on the World Wide
Web:

http://www.teleport.com/~usb

To join the USB Implementers Forum, contact:
USB IMPLEMENTERS FORUM
JF2-51, 2111 NE 25th Avenue,
Hillsboro, OR 97124

