
Intel
Image Processing
Library
Reference Manual

Copyright © 1996, 1997, Intel Corporation
All Rights Reserved
Issued in U.S.A.
Order Number 663791B-002

How to Use This Online Manual

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.
Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.
Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.
Jumping to Topics. Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in green color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:

This software is briefly described in the Overview; see page 1-1.

If you click on the phrase printed in green color, underlined style, or on the page number, the Overview

opens.

Click to hide or show subtopics when the
bookmarks are shown.

Click to go to the previous page.

Double-click to jump to a topic when the
bookmarks are shown.

Click to go to the next page.

Click to display bookmarks. Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.
Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail
view.

Click to go forward from the previous
view.

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

Click and drag to the page to reduce the
view.

Click to fill the width of the window.

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to
jump to the related subjects. Use the
return back icon above to go back.

Intel Image Processing Library
Reference Manual
Order Number: 663791B-002

Revision Revision History Date

B-001 Documents release 1.0 Beta of the library. 01/20/97

B-002 Documents release 1.0 Beta 2 of the library.
The iplBitonalToGray, iplCreateColorTwist, iplDeleteColorTwist,
iplLShiftS, iplMultiplyScale, iplMultiplySScale, and iplNot functions
have been added. Miscellaneous edits have been made.

04/04/97

Information in this manual is provided in connection with Intel products. Intel assumes no liability whatsoever,
including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s
Terms and Conditions of the license agreement for such products.

Intel Corporation retains the right to make changes to these documents at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

Since publication of documents referenced in this document, registration of the Pentium and iCOMP
trademarks has been issued to Intel Corporation.

Intel, the Intel logo, iCOMP, Pentium, and Indeo are registered trademarks of Intel Corporation.
MMX and i486 are trademarks of Intel Corporation.
*Other brands and names are the property of their respective owners.

Copyright 1996, 1997, Intel Corporation. All Rights Reserved.

Contents

iii

Chapter 1 Overview
About This Software .. 1-1

Hardware and Software Requirements 1-1
About This Manual... 1-2

Manual Organization... 1-2
Function Descriptions ... 1-4
Audience for This Manual ... 1-4
Online Version .. 1-4
Related Publications ... 1-5

Notational Conventions ... 1-5
Font Conventions.. 1-5
Naming Conventions .. 1-5
Function Name Conventions..................................... 1-6

Chapter 2 Image Architecture
Data Architecture ... 2-1

Color Models... 2-1
Data Types and Palettes .. 2-2
The Sequence and Order of Color Channels 2-3
Coordinate Systems ... 2-4
Image Regions.. 2-4
Setting an ROI for Multi-Image Operations 2-5
Alpha (Opacity) Channel ... 2-6
Scanline Alignment ... 2-6
Image Dimensions .. 2-7

Execution Architecture... 2-7
Handling Overflow and Underflow 2-7
In-Place and Out-of-Place Operations 2-7

Intel Image Processing Library Reference Manual

iv

Image Tiling ... 2-8
Tile Size .. 2-8
IplCoord Structure ... 2-9
Call-backs ... 2-9
ROI and Tiling ... 2-10
In-Place Operations and Tiling 2-10

Chapter 3 Error Handling
Error-handling Functions ... 3-2

Error .. 3-2
GetErrStatus ... 3-3
SetErrStatus ... 3-3
GetErrMode .. 3-4
SetErrMode... 3-4
ErrorStr ... 3-5
RedirectError... 3-6

Error Macros .. 3-7
Status Codes ... 3-8
Error Handling Example... 3-10
Adding Your Own Error Handler .. 3-13

Chapter 4 Image Creation and Access
Image Header and Attributes ... 4-3
Tiling Fields in the IplImage Structure 4-7
IplTileInfo Structure.. 4-7
Creating Images .. 4-8

CreateImageHeader ... 4-8
AllocateImage ... 4-10
DeallocateImage ... 4-11
Deallocate ... 4-11

Setting Regions of Interest .. 4-12
CreateROI... 4-13

Contents

v

SetROI.. 4-14
Image Borders and Image Tiling .. 4-15

SetBorderMode... 4-15
CreateTileInfo ... 4-17
SetTileInfo .. 4-18
DeleteTileInfo.. 4-18

Memory Allocation Functions... 4-19
Malloc .. 4-19
wMalloc... 4-20
iMalloc .. 4-21
sMalloc.. 4-21
dMalloc ... 4-22
Free .. 4-23

Image Data Exchange ... 4-24
Set .. 4-24
Copy .. 4-25
Exchange.. 4-26
Convert ... 4-27

Working in the Windows DIB Environment 4-28
TranslateDIB... 4-30
ConvertFromDIB ... 4-32
ConvertToDIB ... 4-33

Chapter 5 Image Arithmetic and Logical Operations
Monadic Arithmetic Operations.. 5-3

AddS .. 5-3
SubtractS .. 5-4
MultiplyS ... 5-4
MultiplySScale .. 5-5
Square .. 5-6

Intel Image Processing Library Reference Manual

vi

Dyadic Arithmetic Operations .. 5-7
Add .. 5-7
Subtract .. 5-8
Multiply.. 5-9
MultiplyScale... 5-10

Monadic Logical Operations .. 5-11
LShiftS .. 5-11
RShiftS.. 5-12
Not .. 5-12
AndS .. 5-13
OrS .. 5-14
XorS .. 5-15

Dyadic Logical Operations ... 5-15
And .. 5-16
Or .. 5-16
Xor .. 5-17

Image Compositing Based on Opacity 5-18
Using Pre-multiplied Alpha Values 5-19
AlphaComposite.. 5-19
AlphaCompositeC ... 5-19
PreMultiplyAlpha ... 5-25

Chapter 6 Image Filtering
Linear Filters .. 6-1

Blur .. 6-2
2D Convolution ... 6-3
CreateConvKernel .. 6-4
GetConvKernel ... 6-5
DeleteConvKernel ... 6-6
Convolve2D .. 6-7
ConvolveSep2D .. 6-8

Contents

vii

Non-linear Filters ... 6-9
MedianFilter .. 6-9
MaxFilter ... 6-10
MinFilter .. 6-11

Chapter 7 Linear Image Transforms
Fast Fourier Transform .. 7-1

Real-Complex Packed (RCPack2D) Format 7-1
RealFft2D.. 7-3
CcsFft2D... 7-5

Discrete Cosine Transform .. 7-6
DCT2D.. 7-7

Chapter 8 Morphological Operations
Erode .. 8-2
Dilate .. 8-5
Open .. 8-6
Close .. 8-7

Chapter 9 Color Space Conversion
Reducing the Image Bit Resolution 9-2

ReduceBits ... 9-2
Conversion of Bitonal Images to Gray Scale 9-4

BitonalToGray... 9-4
Conversion of Absolute Colors to and from Palette Colors 9-5
Conversion from Color to Gray Scale 9-5

ColorToGray ... 9-6
Conversion from Gray Scale to Color (Pseudo-color) 9-7

GrayToColor ... 9-7
Conversion of Color Models .. 9-8

RGB2HSV... 9-9
HSV2RGB... 9-10

Intel Image Processing Library Reference Manual

viii

RGB2HLS ... 9-10
HLS2RGB ... 9-11

Using Color-Twist Matrices .. 9-12
CreateColorTwist .. 9-12
SetColorTwist.. 9-13
ApplyColorTwist .. 9-14
DeleteColorTwist... 9-16

Chapter 10 Histogram and Thresholding Functions
Thresholding .. 10-2

Threshold .. 10-2
Lookup Table (LUT) and Histogram Operations 10-3

The IplLUT Structure... 10-3
ContrastStretch ... 10-5
ComputeHisto ... 10-6
HistoEqualize .. 10-7

Chapter 11 Linear Geometric Transforms
Changing Image Size .. 11-1

Zoom .. 11-2
Decimate... 11-3

Changing Image Orientation .. 11-4
Rotate .. 11-5
Mirror .. 11-6

Appendix A Supported Image Attributes and
Operation Modes A-1

Bibliography

Glossary

Index

Contents

ix

Figures
Figure 2-1 Setting an ROI for Multi-Image Operations 2-5
Figure 4-1 RGB Image with a Rectangular ROI and a COI 4-5
Figure 8-1 Erosion in a Rectangular ROI 8-3

Tables
Table 2-1 Data Ordering .. 2-3
Table 3-1 iplError() Status Codes 3-8
Table 4-1 Image Creation, Data Exchange and

 Windows DIB Environment Functions 4-1
Table 4-2 IPL Image Header Attributes 4-3
Table 5-1 Image Arithmetic and Logical Operations 5-1
Table 5-2 Types of Image Compositing Operations 5-23
Table 6-1 Image Filtering Functions 6-1
Table 7-1 Linear Image Transform Functions 7-1
Table 7-2 Arrangement of Output Samples

 in RCPack2D Format ... 7-3
Table 8-1 Morphological Operation Functions 8-1
Table 9-1 Color Space Conversion Functions 9-1
Table 9-2 Source and Resultant Image Data Types

 for Reducing the Bit Resolution 9-4
Table 9-3 Source and Resultant Image Data Types for

 Conversion from Color to Gray Scale 9-6
Table 9-4 Source and Resultant Image Data Types for

 Conversion from Gray Scale to Color 9-8
Table 10-1 Point Operation Functions 10-1
Table 11-1 Image Geometric Transform Functions 11-1

Examples
Example 3-1 Error Functions ... 3-10
Example 3-2 Output for the Error Function Program 3-12
Example 3-3 Output for the Error Function Program 3-12
Example 3-4 A Simple Error Handler 3-14

Intel Image Processing Library Reference Manual

x

Example 4-1 IPLImage Definition 4-6
Example 4-2 IplROI Definition.. 4-12
Example 8-1 Code Used to Produce Erosion

 in a Rectangular ROI 8-4
Example 10-1 IplLUT Definition ... 10-3

Overview

1-1

1
This manual describes the structure, operation and functions of the Intel
Image Processing Library (IPL). This library supports many functions
whose performance can be significantly enhanced on the Intel
Architecture (IA), particularly the MMX TM technology.

The manual describes the architecture of the IPL data and execution and
provides detailed descriptions of the functions included in the Intel Image
Processing Library.

This chapter introduces the Intel Image Processing Library and explains
the organization of this manual.

About This Software

The Intel Image Processing Library focuses on taking advantage of the
parallelism of the SIMD (single-instruction, multiple-data) instructions
that comprise the MMX technology. This technology improves the
performance of computationally intensive image processing functions.
Thus this library includes a set of functions whose performance
significantly improves when used with the Intel Architecture MMX
technology. The library does not support the reading and writing of a wide
variety of image file formats or the display of images.

Hardware and Software Requirements

The Intel Image Processing Library runs on personal computers that are
based on Intel Architecture processors and running Microsoft* Windows*,
Windows 95*, or Windows NT*. The library integrates into the
customer’s application or library written in C or C++.

Intel Image Processing Library Reference Manual

1-2

1
About This Manual

This manual provides a background of the image and execution
architecture of the Intel Image Processing Library as well as detailed
descriptions of the IPL functions. The IPL functions are combined in
groups by their functionality. Each group of functions is described in a
separate chapter (chapters 3 through 11).

Manual Organization

This manual contains eleven chapters:

Chapter 1 “Overview.” Introduces the Image Processing
Library software, provides information on
manual organization, and explains notational
conventions.

Chapter 2 “Image Architecture.” Describes the data
formats supported, the execution architecture,
and image tiling. The data formats include color
models, data types, data order, and coordinate
systems. The execution architecture discussion
focuses on overflow and underflow issues and
in-place and out-of-place operations.

Chapter 3 “Error Handling.” Provides information on the
error-handling functions included with the
library. User-defined error handler is also
described.

Chapter 4 “Image Creation and Access.” Describes the
functions used to: create, set, and access image
attributes; set image border and tiling; and
allocate the memory for different data types. The
chapter also describes the functions that facilitate
operations in the window environment.

Overview

1-3

1
Chapter 5 “ Image Arithmetic and Logical Operations.”

Describes image processing operations that
modify pixel values using simple arithmetic or
logical operations. These operations include
monadic operations (single input image) and
dyadic operations (two input images).

Chapter 6 “Image Filtering.” Describes linear and non-
linear filtering operations that can be applied to
images.

Chapter 7 “Linear Image Transforms.” Describes the fast
Fourier transform (FFT) and Discrete Cosine
Transform (DCT) implemented in the IPL.

Chapter 8 “Morphological Operations.” Describes the
morphological operations supported in the
library: simple Erosion, Dilation, Opening and
Closing

Chapter 9 “Color Space Conversion.” Describes the color
space conversions supported in the library; for
example, color reduction from high resolution
color to low resolution color; conversion from
Palette to Absolute color and vice versa;
conversion to different color models.

Chapter 10 “Histogram and Thresholding Functions.”
Describes functions that treat an image on a
pixel-by-pixel basis: operations that alter the
histogram of the image; contrast stretching,
histogram computation, histogram equalization
and thresholding.

Chapter 11 “Image Geometric Transforms.” Describes
geometric transforms: Zoom, Decimate, Rotate,
and Mirror.

The manual also includes Appendix that lists supported image attributes
and operation modes, Glossary of terms, Bibliography, and Index.

Intel Image Processing Library Reference Manual

1-4

1
Function Descriptions

In Chapters 3 through 11, each function is introduced by name (without
the ipl prefix) and a brief description of its purpose. This is followed by
the function call sequence, more detailed description of the function’s
purpose, and definitions of its arguments. The following sections are
included in each function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation
performed by the function. Often, code examples
and the equations the function implements are
included.

Return Value If present, describes a value indicating the result
of the function execution.

Application Notes If present, describe any special information
which application programmers or other users of
the function need to know.

See Also If present, lists the names of functions which
perform related tasks.

Audience for This Manual

The manual is intended for the developers of image processing
applications and image processing libraries. Both parts of the audience are
expected to be experienced in using C and to have a working knowledge
of the vocabulary and principles of image processing. The developers of
image processing software can use the Intel IPL capabilities to improve
performance on IA with MMX technology.

Online Version

This manual is available in an online hypertext format. To obtain a hard
copy of the manual, print the online file using the printing capability of
Adobe* Acrobat, the tool used for the online presentation of the document.

Overview

1-5

1
Related Publications

For more information about computer graphics concepts and objects, refer
to the books and materials listed in the Bibliography.

Notational Conventions

In this manual, notational conventions include:

• Fonts used for distinction between the text and the code
• Naming conventions
• Function name conventions

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Used in the text for IPL constant identifiers;
for example, IPL_DEPTH_1U.

lowercase courier Mixed with the uppercase in function names
as in SetExecutionMode; also used for key
words in code examples; for example, in the
function call statement void iplSquare() .

lowercase mixed with
UpperCase Courier italic

Variables in arguments and parameters
discussion; for example, mode, dstImage.

Naming Conventions

The following data type conventions are used by the IPL library:

• Constant identifiers are in uppercase; for example, IPL_SIDE_LEFT.
• All constant identifiers have the IPL prefix.
• All of the function names have the ipl prefix. In code examples, you

can distinguish the IPL interface functions from the application
functions by this prefix.

Intel Image Processing Library Reference Manual

1-6

1
NOTE. In this manual, the ipl prefix in function names is always used in
the code examples. In the text, this prefix is sometimes omitted.

• All image header structures have the Ipl prefix; for example,
IplImage, IplROI.

• Each new part of a function name starts with an uppercase character,
without underscore; for example, iplAlphaComposite .

Function Name Conventions

The function names in the IPL library typically begin with the ipl prefix
and have the following general format:

ipl < action > < target > < mod >()

where

action indicates the core functionality; for example,
-Set-, -Create-, or -Convert-.

target indicates the area where image processing is
being enacted; for example, -ConvKernel or
-FromDIB.

In a number of cases, the target consists of two
or more words; for example, -ConvKernel in
the function CreateConvKernel. Some function
names consist of an action or target only; for
example, the functions Multiply or RealFft2D,
respectively.

mod The mod field is optional and indicates a
modification to the core functionality of a
function. For example, in the name
iplAlphaCompositeC() , C indicates that this
function is using constant alpha values.

Image Architecture

2-1

2
This chapter describes the data architecture and the execution architecture
of the Intel Image Processing Library (IPL). The data formats supported
by IPL define the image architecture as explained in the sections that
follow.

Data Architecture

An IPL image has a header that describes the image as a list of attributes
and pointers to the data associated with the image. Library functions use
the image header to get the format and characteristics of the image(s)
passed to the functions. Based on the information obtained from the
header, the functions make appropriate calls to set the data structures.
Images can have different organization of data. IPL supports numerous
data formats that use different color models, data types, data order, and
coordinate systems.

Color Models

The IPL image format supports the following color models:

• Monochrome or gray scale image (one color channel)
• Color image (3 or 4 color channels)
• Multi-spectral image (any number of channels).

Color models are defined by the number of channels and the colors they
contain. Examples of three-channel models are RGB, HSV, CMY, and
YCC. Examples of four-channel color models are CMYK and RGBA.

Image processing operations can be performed on one or all channels in
the image. The operations are performed without specific identification of
the colors, unless it is a certain color conversion operation where color
identification is required.

Intel Image Processing Library Reference Manual

2-2

2
The multi-spectral image (MSI) model is used for general purpose images.
It is used for any kind of multi-spectral data and any kind of image. For
example, the Fourier transform operation writes transform coefficients of
color or monochrome images to this modelone channel for each channel
in the input. The result can be viewed as an MSI image. An MSI image
can contain any number of color channels; they may even correspond to
invisible parts of the spectrum. The library functions do not need to
identify any specific MSI image channels.

Data Types and Palettes

The parameter that determines the image data type is the pixel depth in
bits. The data could be signed or unsigned. The following data types are
supported for various color models (s = signed, u = unsigned):

Gray scale 1, 8s, 8u, 16s, and 16u bits per pixel

Color (three-channel) 8u and 16u bits per channel

Four-channel and MSI 8s, 8u, 16s, 16u, 32s bits per channel

IPL supports only absolute color images in which each pixel is represented
by the channel intensities. For example, in an absolute color 24-bit RGB
image, three bytes (24 bits) per pixel represent the three channel
intensities. LUT (lookup table) images, that is, palette color images are not
supported. You must convert palette images to absolute color images for
further processing by the IPL functions. The library provides functions to
convert DIB palette images to IPL absolute color images.

Color images with 8, 16, or 32 bits per channel simply pack each channel,
respectively, into a byte, word, or doubleword. All channels within a given
image have the same data type.

Signed data (8s, 16s, or 32s) are used for storing the output of some image
processing operations; for example, this is the case for transforms such as
FFT. Unless specified otherwise, signed data cannot be used as input to
image processing operations.

Image Architecture

2-3

2
The Sequence and Order of Color Channels

Channel sequence corresponds to the order of the color channels in
absolute color images. For example, in an RGB image the channels could
be stored in the sequence RGB or in the sequence BGR. The sequence of
the channels is not important to the image processing functions which do
not identify the channels.

NOTE. For the color conversion operations, the information about
channel sequence is required and therefore must be provided.

For images with pixel-oriented data, the channel sequence corresponds to
the color data order for each pixel. Data ordering corresponds to the way
the color data is arranged: by planes or by pixels. Table 2-1 lists the
orderings that are supported for planes and for pixels.

Table 2-1 Data Ordering

Data Ordering Description
RGB Example
(channel ordering = RGB)

Pixel-oriented All channels for each pixel
are clustered.

RGBRGBRGB (line 1)
RGBRGBRGB (line 2)
RGBRGBRGB (line 3)

Plane-oriented All image data for each
channel is contiguous
followed by the next
channel.

RRRRRRRRR (line 1)
RRRRRRRRR (line 2) R plane
RRRRRRRRR (line 3)

GGGGGGGGG (line 1)
GGGGGGGGG (line 2) G plane
GGGGGGGGG (line 3)
...

Intel Image Processing Library Reference Manual

2-4

2
Coordinate Systems

Two coordinate systems are supported by the IPL image format.

• The origin of the image is in the top left corner, the x values increase
from left to right, and y values increase from top to bottom.

• The origin of the image is in the bottom left corner, the x values
increase from left to right, and y values increase from the bottom to
the top.

Image Regions

A very important concept in the IPL library architecture is an image region
of interest (ROI). All image processing functions can operate not only on
entire images but also on image regions.

Depending on the processing needs, the following image regions can be
specified:

• A channel of interest (COI). A COI can be one or all channels of the
image. By default, unless the COI is changed by the SetROI()
function, processing will be carried out on all channels in the image.

• A rectangular region of interest (rectangular ROI). A rectangular ROI
is a portion of the image or, possibly, the entire image. By default,
unless changed by the SetROI() function, the entire image is the
rectangular region of interest.

An IPL image can simultaneously have a rectangular ROI and a channel
of interest. If this is the case, operations will be performed on the
“intersection” of these two ROIs.

Thus an image region specifies some part of an image or the entire image.
Once set, the region information of the IPL image remains the same until
changed by the function SetROI().

Image Architecture

2-5

2
Setting an ROI for Multi-Image Operations

Figure 2-1 illustrates image processing operations that take one or more
input images and store the results onto an output image.

Figure 2-1 Setting an ROI for Multi-Image Operations

Input image Output image

 ROI

 ROI

The processing
is performed in
the shaded area

All images (input and output) in Figure 2-1 have rectangular ROIs that
specify either the entire image or specific regions set by the SetROI()
function. The first step is to align the rectangular ROIs of all the images so
that their top left corners coincide. The operation is, then, performed in the

Intel Image Processing Library Reference Manual

2-6

2
rectangular region where all the images overlap. This scheme gives much
flexibility, effectively enabling translation of image data (even for equal-
size images) from one region of an input image to another region of an
output image.

To successfully perform an image processing operation , one of the
following conditions must be met for the channel of interest (COI):

• Each image (input and output) has one channel in the channel COI,
• Each image (input and output) has all channels included in the ROI

(COI = 0) and all images (input and output) have the same number of
channels (one or more).

If one image (input or output) has one channel in its COI and another
image (input or output) has more than one channel included in its COI, an
error will occur.

Alpha (Opacity) Channel

In addition to the color channels, an IPL image can have one alpha
channel, also known as an opacity channel, which is mainly used for
image compositing operations (see “ Image Compositing Based on
Opacity” in Chapter 5).

The alpha channel is treated like any other channel in the IPL format; you
are allowed not to identify it when not required. However, alpha channels
must be explicitly specified for the functions that require them (see, for
example, the iplAlphaComposite function).

Scanline Alignment

Image row data (scanline) can be aligned on doubleword (32-bit) or
quadword (64-bit) boundaries. Each row is padded with zeros if required.
For maximum performance with MMXTM technology, it is important to
have the image data aligned on quadword boundaries.

Image Architecture

2-7

2
Image Dimensions

There is no practical limit of the image size. An unsigned long integer is
used for the height and width of the image. This allows you to create
images of size up to 231 by 231 pixels, which is much beyond the hardware
and OS constraints of today’s PCs or workstations.

Execution Architecture

This section describes the execution time issues such as
overflow/underflow handling and in-place and out-of-place operations.
Cache optimization and deferred execution mode will be discussed in the
next release.

Handling Overflow and Underflow

Overflow and underflow are handled in each image processing function.
The default mode of operation is saturation which is a mode that prevents
from potential overflow or underflow of the values. In saturation mode,
when an overflow of a value is about to happen, this value is clamped to
the maximum permissible value (for example, 255 for an unsigned byte).
Similarly, when underflow of a value is about to happen, it is clamped to
the minimum permissible value, which is always zero for the case of
unsigned bytes.

In-Place and Out-of-Place Operations

All image processing operations in the library can be in-place or out-of-
place operations, unless it is explicitly specified that a particular operation
must belong to one of these categories only. With an in-place operation,
the output image is one of the input images modified (that is, the pointer to
the output image is the same as the pointer to the input one). With an out-
of-place operation, the output image is a new image, not the same as any
of the input images.

Intel Image Processing Library Reference Manual

2-8

2
Image Tiling

Tiling is a method of image representation in which, for reasons of
efficiency, the image is broken up into smaller images, or tiles. The whole
image is reconstructed by arranging the individual tiles in a grid. Usually,
the tiles are of a uniform size; special techniques can be used to
accommodate an overall image height or width that is not an even multiple
of the tile size. Image processing applications frequently use square tiles
with sizes that are multiples of two; for example, a 64-by-64 tile is typical.

In most IPL functions, tiled images may be used in the same way as non-
tiled images, subject to some restrictions. The effect of functions on tiled
images is always the same as that of the same function on an image of the
same size and content that is not tiled. The behavior varies as stated below,
particularly in the call-back requirement.

This section gives a short overview of image tiling in the IPL. In Chapter 4
you can find more information about tiling, namely, the descriptions of the
TileInfo structure, the imageID parameter, and the functions
CreateTileInfo, SetTileInfo, and DeleteTileInfo.

Tile Size

In the IPL, all tiles must be of the same size, including those on the edge
of an image. The tiles on the edge of an image must contain valid data up
to the border of the image; beyond that, the pixels are ignored, and the
border mode is used instead.

The size of the image tiles is contained within the IplTileInfo structure.
It is restricted to being an even multiple of 8 in each dimension.

For functions that take more than one source image, either all source
images must be tiled with equally-sized tiles or they must all be non-tiled.
The source and destination images tiling and tile sizes need not be the
same.

Image Architecture

2-9

2
IplCoord Structure

The arguments of every function with both an input and output image
include a pointer to the following structure:

iplFunction(..., IplCoord*);

typedef struct _IplCoord {

int xDst, yDst;

} IplCoord

The xDst and yDst fields are the offsets (in pixels) of the origin of the
destination image from the origin of the source image.

If there are multiple source images, these images are assumed to have their
ROI origins aligned with each other.

The IplCoord structure is not specific to tiling in that it is supported
whether the source/destination images are tiled or not. Its intent is to
support for tiling schemes other than the IPL tiling scheme by providing a
method of identifying the location of the destination with respect to the
source. Such a method is important if the argument images are,
unbeknownst to the IPL functions, actually tiles in a user-implemented
tiling scheme. The IplCoord parameter is ignored if NULL.

Call-backs

Since the IplImage structure does not contain any image data, functions
operating on tiled images must acquire data tile-by-tile. To do this, the IPL
uses a system of call-backs, in which the IPL function requests pointers to
individual tiles based on need.

The call-back system is implemented (by the library user) as a single
function, the prototype and behavior of which are specified below. When
called by the library, this function provides or releases one tile’s worth of
data. The function is specified to the library in the callBack field of the
IplTileInfo structure. The prototype is as follows:

void (*IplCallBack) (const IplImage* img, int xIndex,

int yIndex, int mode);

Intel Image Processing Library Reference Manual

2-10

2
where

img is the header provided for the parent image;
xIndex and yIndex are the indices of the requested tile; they refer to the
tile number, not pixel number, and count from the origin at (0,0);
mode is one of the following:

 IPL_GET_TILE_TO_READ get a tile for reading;
the tile data is returned in
img->tileInfo->tileData

and must not be changed;

 IPL_GET_TILE_TO_WRITE get a tile for writing;
the tile data is returned in
img->tileInfo->tileData

and may be changed;
changes will be reflected in the image;

 IPL_RELEASE_TILE release tile; commit writes.

Memory pointers provided by a get function will not be used after the
corresponding release function has been called.

ROI and Tiling

The meaning and behavior of ROI for tiled images are identical to those
for a non-tiled image.

In-Place Operations and Tiling

Functions that are called with identical source and destination images
(header pointers equal) are handled correctly by the library, even with
tiling. If the source and destination image pointers are not equal, no
support for source and destination overlap is provided.

Note that the presence of IplROI and/or IplCoord structures does not
affect this restriction.

Error Handling

3-1

3
This chapter describes the error handling facility of the Image Processing
Library. The IPL functions report a variety of errors including bad
arguments and out-of-memory conditions. When a function detects an
error, instead of returning a status code, the function signals an error by
calling iplSetErrStatus() . This allows the error handling mechanism
to work separately from the normal flow of the image processing code.
Thus, the image processing code is cleaner and more compact as shown in
this example:

ColorTwist = iplSetColorTwist(data, scalingValue);

if(iplGetErrStatus()<0) // check for errors

The error handling system is hidden within the function
iplSetColorTwist() . As a result, this statement is uncluttered by error
handling code and closely resembles a mathematical formula.

Your application should assume that every library function call may result
in some error condition. The Image Processing Library performs extensive
error checks (for example, NULL pointers, out-of-range parameters,
corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. You can modify the way your application handles errors by
calling iplRedirectError() with a pointer to your own error handling
function. For more information, see “Adding Your Own Error Handler”
later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

The Image Processing Library does not process numerical exceptions (for
example, overflow, underflow, and division by zero). The underlying
floating point library or processor has the responsibility for catching and

Intel Image Processing Library Reference Manual

3-2

3
reporting these exceptions. A floating-point library is needed if a
processor that handles floating-point is not present. You can attach an
exception handler using an underlying floating-point library for your
application, if your system supports such a library.

Error-handling Functions

The following sections describe the error functions in the Image
Processing Library.

Error
Performs basic error
handling.

void iplError(IPLStatus status, const char *func,
 const char *context);

status Code that indicates the type of error (see
Table 3-1, “ iplError() Status Codes”.)

func Name of the function where the error occurred.

context Additional information about the context in
which the error occurred. If the value of
context is NULL or empty, this string will not
appear in the error message.

Discussion

The iplError() function must be called whenever any of the IPL
functions encounters an error. The actual error reporting is handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the

Error Handling

3-3

3
error mode flag to alter the behavior of the iplError() function. For
more information on the defined error modes, see “SetErrMode” section.

To simplify the coding for error checking and reporting, the error handling
system supplied by the IPL Library supports a set of error macros. See
“Error Macros” for a detailed description of the error handling macros.

The iplError() function calls the default error reporting function. You
can change the default error reporting function by calling
iplRedirectError(). For more information, see “RedirectError” (for
iplRedirectError()).

GetErrStatus
SetErrStatus
Gets and sets the error codes
that describe the type of
error being reported.

typedef int IPLStatus;

IPLStatus iplGetErrStatus();

void iplSetErrStatus(IPLStatus status);

status Code that indicates the type of error
(see Table 3-1, “iplError() Status Codes”).

Discussion

The iplGetErrStatus() and iplSetErrStatus() functions get and set
the error status codes that describe the type of error being reported. See
“Status Codes” for descriptions of each of the error status codes.

Intel Image Processing Library Reference Manual

3-4

3
GetErrMode
SetErrMode
Gets and sets the error
modes that describe how an
error is processed.

#define IPL_ErrModeLeaf 0
#define IPL_ErrModeParent 1
#define IPL_ErrModeSilent 2
int iplGetErrMode();
void iplSetErrMode(int errMode);

errMode Indicates how errors will be processed. The
possible values for errMode are
IPL_ErrModeLeaf, IPL_ErrModeParent , or
IPL_ErrModeSilent .

Discussion

NOTE. This section describes how the default error handler handles
errors for applications which run in console mode. If your application has
a custom error handler, errors will be processed differently than
described below

The iplSetErrMode() function sets the error modes that describe how
errors are processed. The defined error modes are IPL_ErrModeLeaf,
IPL_ErrModeParent , and IPL_ErrModeSilent .

If you specify IPL_ErrModeLeaf, errors are processed in the “leaves” of
the function call tree. The iplError() function (in console mode) prints
an error message describing status, func, and context. It then
terminates the program.

Error Handling

3-5

3
If you specify IPL_ErrModeParent , errors are processed in the “parents”
of the function call tree. When iplError() is called as the result of
detecting an error, an error message will print, but the program will not
terminate. Each time a function calls another function, it must check to see
if an error has occurred. When an error occurs, the function should call
iplError() specifying IPL_StsBackTrace, and then return. The macro
IPL_ERRCHK() may be used to perform both the error check and back-
trace call. This passes the error “up” the function call tree until eventually
some parent function (possibly main()) detects the error and terminates
the program.

IPL_ErrModeSilent is similar to IPL_ErrModeParent, except that error
messages are not printed.

IPL_ErrModeLeaf is the default, and is the simplest method of processing
errors. IPL_ErrModeParent requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they use IPL_ERRCHK() after function calls). If an application uses the
IPL_ErrModeParent option, it is essential that it check for errors after all
library functions that it calls.

The status code of the last detected error is stored into the global variable
IplLastStatus and can be returned by calling iplGetErrStatus().
The value of this variable may be used by the application during the back-
trace process to determine what type of error initiated the back trace.

ErrorStr
Translates an error or status code
into a textual description.

const char* iplErrorStr(IPLStatus status);

status Code that indicates the type of error
(see Table 3-1, “iplError() Status Codes”).

Intel Image Processing Library Reference Manual

3-6

3
Discussion

The function iplErrorStr() returns a short string describing status.
Use this function to produce error messages for users. The returned
pointer is a pointer to an internal static buffer that may be overwritten on
the next call to iplErrorStr().

RedirectError
Assigns a new error handler
to call when an error occurs.

IPLErrCallBack iplRedirectError(IPLErrCallBack func);

func Pointer to the function that will be called when
an error occurs.

Discussion

The iplRedirectError() function assigns a new function to be called
when an error occurs in the IPL Library. If func is NULL,
iplRedirectError() installs the IPL Library’s default error handler.

The return value of iplRedirectError() is a pointer to the previously
assigned error handling function.

For the definition of the function typedef IPLErrCallBack, see the
include file iplerror.h. See “Adding Your Own Error Handler” for
more information on the iplRedirectError() function.

Error Handling

3-7

3
Error Macros

The error macros associated with the iplError() function are described
below.

#define IPL_ERROR(status, func, context) \
 iplError((status),(func),(context);

#define IPL_ERRCHK(func, context)\
 ((iplGetErrStatus()>=0) ? IPL_StsOk \

: IPL_ERROR(IPL_StsBackTrace,(func),(context)))

#define IPL_ASSERT(expr, func, context)\
 ((expr) ? IPL_StsOk\

: IPL_ERROR(IPL_StsInternal,(func),(context)))

#define IPL_RSTERR() (iplSetErrStatus(IPL_StsOk))

context Provides additional information about the context in
which the error has occurred. If the value of
context is NULL or empty, this string does not
appear in the error message.

expr An expression that checks for an error condition
and returns FALSE if an error has occurred.

func Name of the function where the error occurred.

status Code that indicates the type of error (see Table 3-1,
“iplError() Status Codes.”)

Discussion

The IPL_ASSERT() macro checks for the error condition expr and sets
the error status IPL_StsInternal if the error occurred.

The IPL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error has occurred, IPL_ERRCHK() creates
an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

Intel Image Processing Library Reference Manual

3-8

3
The IPL_ERROR() macro simply calls the iplError() function by
default. This macro is used by other error macros. By changing
IPL_ERROR() you can modify the error reporting behavior without
changing a single line of source code.

The IPL_RSTERR() macro resets the error status to IPL_StsOk, thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

The status codes used by the IPL Library are described in Table 3-1. Status
codes are integers, not an enumerated type. This allows an application to
extend the set of status codes beyond those used by the library itself.
Negative codes indicate errors, while non-negative codes indicate success.

Table 3-1 iplError() Status Codes

Status Code Value Description

IPL_StsOk 0 No error. The iplError() function does
nothing if called with this status code.

IPL_StsBackTrace -1 Implements a back-trace of the function
calls that lead to an error. If IPL_ERRCHK()
detects that a function call resulted in an
error, it calls IPL_ERROR() with this status
code to provide further context information
for the user.

IPL_StsError -2 An error of unknown origin, or of an origin
not correctly described by the other error
codes.

IPL_StsInternal -3 An internal “consistency” error, often the
result of a corrupted state structure. These
errors are typically the result of a failed
assertion.

 continued +

Error Handling

3-9

3
Table 3-1 iplError() Status Codes (continued)

Status Code Value Description

IPL_StsNoMem -4 A function attempted to allocate memory
using malloc() or a related function and
was unsuccessful. The message context
indicates the intended use of the memory.

IPL_StsBadArg -5 One of the arguments passed to the
function is invalid. The message context
indicates which argument and why.

IPL_StsBadFunc -6 The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

IPL_StsNoConv -7 An iterative convergence algorithm failed to
converge within a reasonable number of
iterations.

Application Notes

The global variable IplLastStatus records the status of the last error
reported. Its value is initially IPL_StsOk. The value of IplLastStatus
is not explicitly set by the library function detecting an error. Instead, it is
set by iplSetErrStatus() .

If the application decides to ignore an error, it should reset
IplLastStatus back to IPL_StsOk (see IPL_RSTERR() under “Error
Macros”). An application-supplied error-handling function must update
IplLastStatus correctly; otherwise the Image Processing Library might
fail. This is because the macro IPL_ERRCHK(), which is used internally to
the library, refers to the value of this variable.

Intel Image Processing Library Reference Manual

3-10

3
Error Handling Example

The following example describes the default error handling for a console
application. In the example program, test.c, assume that the function
libFuncB() represents a library function such as ipl?TranslateDIB() ,
and the function libFuncD() represents a function that is called internally
to the library. In this scenario, main() and appFuncA() represent
application code.

The value of the error mode is set to IPL_ErrModeParent . The
IPL_ErrModeParent option produces a more detailed account of the
error conditions.

Example 3-1 Error Functions

/* application main function */

main() {

 iplSetErrMode(IPL_ErrModeParent);

 appFuncA(5, 45, 1.0);

 if (IPL_ERRCHK("main","compute something")) exit(1);

 return 0;
}

/* application subroutine */

void appFuncA(int order1, int order2, double a) {

 libFuncB(a, order1);
 if (IPL_ERRCHK("appFuncA","compute using order1")) return;

 libFuncB(a, order2);
 if (IPL_ERRCHK("appFuncA","compute using order2")) return;

}
 /* do some more work */

continued +

Error Handling

3-11

3
Example 3-1 Error Functions (continued)

/* library function */

void libFuncB(double a, int order) {

 float *vec;

 if (order > 31) {

 IPL_ERROR(IPL_StsBadArg, "libFuncB",
 "order must be less than or equal to 31");

 return;

 }

 if ((vec = libFuncD(a, order)) == NULL) {

 IPL_ERRCHK("libFuncB", "compute using a");

 return;

 }

/* code to do some real work goes here */

 free(vec);

} // next: library function called internally

double *libFuncD(double a, int order) {

 double *vec;

 if ((vec=(double*)malloc(order*sizeof(double))) == NULL) {

 IPL_ERROR(IPL_StsNoMem, "libFuncD",
 "allocating a vector of doubles");
 return NULL;

 }

 /* do something with vec */

return vec;

}

Intel Image Processing Library Reference Manual

3-12

3
When the program is run, it produces the output illustrated in Example 3-2.

Example 3-2 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Invalid argument in function libFuncB: order must
be less than or equal to 31

called from function appFuncA: compute using order2

called from function main: compute something

If the program runs with the IPL_ErrModeLeaf option instead of
IPL_ErrModeParent , only the first line of the above output is produced
before the program terminated.

If the program in Example 3-1 runs out of heap memory while using the
IPL_ErrModeParent option, then the output illustrated in Example 3-3 is
produced.

Example 3-3 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Out of memory in function libFuncD: allocating a
vector of doubles

called from function libFuncB: compute using a

called from function appFuncA: compute using order1

called from function main[]: compute something

Again, if the program is run with the IPL_ErrModeLeaf option instead of
IPL_ErrModeParent , only the first line of the output is produced.

Error Handling

3-13

3
Adding Your Own Error Handler

The Image Processing Library allows you to define your own error
handler. User-defined error handlers are useful if you want your
application to send error messages to a destination other than the standard
error output stream. For example, you can choose to send error messages
to a dialog box if your application is running under a Windows system or
you can choose to send error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replace the iplError() function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can use the iplRedirectError() function to
replace the error handler at run time. The steps below describe how to
create your own error handler and how to use the iplRedirectError()
function to redirect error reporting.

1. Define a function with the function prototype, IPLErrCallBack, as
defined by the IPL.

2. Your application should then call the iplRedirectError() function
to redirect error reporting for your own function. All subsequent calls
to iplError() will call your own error handler.

3. To redirect the error handling back to the default handler, simply call
iplRedirectError() with a NULL pointer.

Example 3-4 illustrates a user-defined error handler function,
ownError(), which simply prints an error message constructed from its
arguments and exits.

Intel Image Processing Library Reference Manual

3-14

3
Example 3-4 A Simple Error Handler

IPLStatus ownError(IPLStatus status, const char *func,

 const char *context, const char *file, int line);

{

 fprintf(stderr, "IPL Library error: %s, ", iplErrorStr(status));

 fprintf(stderr, "function %s, ", func ? func : "<unknown>");

 if (line > 0) fprintf(stderr, "line %d, ", line);

 if (file != NULL) fprintf(stderr, "file %s, ", file);

 if (context) fprintf(stderr, "context %s\n", context);

 IplSetErrStatus(status);

 exit(1);

}

main () {

 extern IPLErrCallBack ownError;

/* Redirect errors to your own error handler */

 iplRedirectError(ownError);

/* Redirect errors back to the default error handler */

 iplRedirectError(NULL);

}

Image Creation and Access

4-1

4
This chapter describes the functions that provide the following
functionalities:

• Creating and accessing attributes of images (both tiled and non-tiled)
• Allocating memory for data of required type (see also the functions

CreateConvKernel in Chapter 6 and CreateColorTwist in Chapter 9)
• Manipulating the image
• Working in the Windows* DIB (device-independent bitmap)

environment.

Table 4-1 Image Creation, Data Exchange and Windows DIB Environment
Functions

Group Function Name Description

Creating
Images

iplCreateImageHeader Creates an image header according to
the specified attributes.

iplAllocateImage Allocates memory for image data.

iplDeAllocateImage Deallocates or frees memory for
image data pointed to in the image
header.

iplCreateROI Creates a region of interest (ROI)
header with specified attributes.

iplDeallocate Deallocates header attributes or
image data or ROI or all of the above.

iplSetROI Sets a region of interest for an image.

iplSetBorderMode Sets the mode for handling the border
pixels.

iplCreateTileInfo Creates the IplTileInfo structure.

iplSetTileInfo Sets the tiling information.

iplDeleteTileInfo Deletes the IplTileInfo structure.

 continued +

Intel Image Processing Library Reference Manual

4-2

4
Table 4-1 Image Creation, Data Exchange and Windows DIB Environment

Functions (continued)

Group Function Name Description

Memory
Allocation

iplMalloc Allocates memory aligned to 8 bytes
boundary.

iplwMalloc Allocates memory aligned to 8 bytes
boundary for 16-bit words.

ipliMalloc Allocates memory aligned to 8 bytes
boundary 32-bit double words.

iplsMalloc Allocates memory aligned to 8 bytes
boundary for single float elements.

ipldMalloc Allocates memory aligned to 8 bytes
boundary for double float elements.

iplFree Frees memory allocated by the
ipl?Malloc functions.

Data
Exchange

iplSet Sets a value for the image pixel data.

iplCopy Copies image data from one IPL image
to another.

iplExchange Exchanges image data between two IPL
images.

iplConvert Converts an IPL image based on the
input and output image requirements.

Windows
DIB

iplTranslateDIB Translates a DIB image into an IPL
image.

iplConvertFromDIB Converts a DIB image to an IPL image
with specified attributes.

iplConvertToDIB Converts an IPL image to a DIB image
with specified attributes.

Image Creation and Access

4-3

4
Image Header and Attributes

The IPL library functions operate on a single format for images in memory
henceforth called the IPL image format. The IPL image format consists of
a header of type IPLImage containing the information for all the attributes
of the image. The header finally contains a pointer to the image data. (See
the attributes description in Chapter 2, section “Data Architecture.”) The
values that these attributes can assume are listed in Table 4-2.

Table 4-2 IPL Image Header Attributes

Description Variable or Value
Corresponding
DIB Attribute

Size of the IPL image
header (for internal use)

nSize in bytes

IPL Image Header
Revision ID (internal use)

ID number

Number of Channels 1 to N
(including alpha channel, if any)

1 (Gray)
3 (RGB)
4 (RGBA)

Alpha channel number 0 (if not present)
n

4 (RGBA)

Bits per channel

Gray only
All images: color, gray,
and multi-spectral

(The signed data is used
only as output for some
image output operations.)

IPL_DEPTH_1U (1-bit)
IPL_DEPTH_8U (8-bit unsigned)

IPL_DEPTH_8S (8-bit signed)
IPL_DEPTH_16U (16-bit unsign.)
IPL_DEPTH_16S (16-bit signed)
IPL_DEPTH_32S (32-bit signed)

Supported
Supported
 (RGB, RGBA)
Not supported
Not supported
Not supported
Not supported

Color model 4 character string: “Gray”, “RGB,”
“RGBA”, “CMYK,” etc.

Not supported.
Implicitly, RGB
color model.

 continued +

Intel Image Processing Library Reference Manual

4-4

4
Table 4-2 IPL Image Header Attributes (continued)

Description Value
Corresponding
DIB Attribute

Channel sequence 4-character string: “Gray”, “RGB,”
“RGBA”, “CMYK,” etc.

Not supported. Always
implicitly BGR for RGB
images.

Data Ordering IPL_DATA_ORDER_PIXEL
IPL_DATA_ORDER_PLANE

Supported
Not supported

Origin IPL_ORIGIN_TL (top left corner)
IPL_ORIGIN_BL (bottom left
corner)

Supported
Supported

Scanline alignment IPL_ALIGN_DWORD
IPL_ALIGN_QWORD

Supported
Not Supported

Image dimensions
 Image Height
 Image Width

m
n

m
n

Region of interest (ROI) Pointer to structure Not supported

Image size (bytes) Integer

Image data pointer Pointer to data

Aligned width Width (row length) in bytes of
aligned image

Border mode of the top,
bottom, left, and right
sides of the image.

BorderMode [4]

Border constant on the
top, bottom, left, and
right side of the image.

BorderConst [4]

Original Image Pointer to original image data

Image ID for tiling For application use. Ignored by IPL

Tiling information Describes tiles for IPL

Image Creation and Access

4-5

4
Figure 4-1 presents a graphical depiction of an RGB IPL image with a
rectangular ROI and a COI.

Figure 4-1 RGB Image with a Rectangular ROI and a COI

 IplImage

IplROI* IplROI
 imageData* Int COI

 plane pixel Rectangular ROI: xOffset
yOffset

 RGBRGB… height
 width

 select
 plane(s)

 R
 G
 B

 R/G/B

OSD05559

Intel Image Processing Library Reference Manual

4-6

4
Example 4-1 presents a C language definition for the IPLImage structure.

Example 4-1 IPLImage Definition

typedef struct _IplImage {

IPL.H

int nSize /* size of iplImage struct */

int ID /* image header version */

int nChannels;

int alphaChannel;

int depth; /* pixel depth in bits */

char colorModel[4];

char channelSeq[4];

int dataOrder;

int origin;

int align; /* 4- or 8-byte align */

int height;

int width;

struct _IplROI *roi; /* pointer to ROI if any */

void *imageId; /* use of the application */

struct _IplTileInfo *tileInfo;
 /* contains information on tiling */

int imageSize; /* useful size in bytes */

char *imageData; /* pointer to aligned
image */

int widthStep; /* size of aligned line in
bytes */

int BorderMode[4]; /* */

int BorderConst[4]; /* */

char *imageDataOrigin; /* ptr to full, nonaligned
 image */

} IplImage;

Image Creation and Access

4-7

4
Tiling Fields in the IplImage Structure

Image tiling in the IPL was briefly described in Section 2.

The following fields serve for tiling purposes in the IplImage structure:

struct IplImage {

 ...

 void* imageId;

 IplTileInfo *tileInfo;

 ...

}

The imageId field can be used by the application, and is ignored by the
library. The tileInfo field contains information on tiling. It is described
in the next section.

The library expects either the tileInfo pointer or the imageData pointer
to be NULL. If the former is NULL, the image is not tiled; if the latter is
NULL, the image is tiled. It is an error condition if both or neither of the
two are NULL.

IplTileInfo Structure

This structure provides information for image tiling:

typedef struct _IplTileInfo

{

 IplCallBack callBack;

 void *id;

 char* tileData

 int width, height;

} IplTileInfo;

Here callBack is the call-back function (see “Call-backs” in Chapter 2);
id is an additional identification field; width and height are the tile sizes
for the image.

Intel Image Processing Library Reference Manual

4-8

4
Creating Images

The following are the ways to create an IPL image:

• Construct an IPL image header by setting the attributes to appropriate
values, then call the function iplAllocateImage()to allocate
memory for the image or set the image data pointer to image data (in a
compatible format) that already exists.

• Call iplCreateImageHeader() to create an IPL image header, then
call the function iplAllocateImage()to allocate memory for the
image or set the image data pointer to image data (in a compatible
format) that already exists.

• Convert a DIB image to an IPL image using the functions
iplTranslateDIB() or iplConvertFromDIB() . See the section
“Working in the Windows DIB Environment.”

CreateImageHeader
Creates an IPL image
header according to the
specified attributes.

IplImage* iplCreateImageHeader(int nChannels,
int alphaChannel, int depth, char* colorModel,
char* channelSeq, int dataOrder, int origin, int align,
int height, int width, IplROI* roi);

nChannels Number of channels in the image.

alphaChannel Alpha channel number (0 if no alpha channel in
the image).

depth Bit depth of pixels. Can be one of
IPL_DEPTH_1U, IPL_DEPTH_8U,
IPL_DEPTH_8S, IPL_DEPTH_16U,
IPL_DEPTH_16S, or IPL_DEPTH_32S.
See Table 4-2.

Image Creation and Access

4-9

4
colorModel A four-character string describing the color

model: “RGB”, “GRAY”, “MSI” etc.

channelSeq The sequence of channels in the image; for
example, “BGR” for an RGB image.

dataOrder IPL_DATA_ORDER_PIXEL or
IPL_DATA_ORDER_PLANE .

origin The origin of the image. Can be IPL_ORIGIN_TL

or IPL_ORIGIN_BL.

align Alignment of image data. Can be
IPL_ALIGN_DWORD or
IPL_ALIGN_QWORD.

height Height of the image in pixels.

width Width of the image in pixels.

roi Pointer to an ROI (region of interest) structure.
This argument can be NULL, which implies that a
region of interest comprises all channels and the
entire image area.

Discussion

The function iplCreateImageHeader() creates an IPL image header
according to the specified attributes. The image data pointer is set to NULL;
no memory for image data is allocated. To allocate memory for image
data, call the function iplAllocateImage(). The image size attribute
(set by the iplAllocateImage() function) in the header is set to zero.

Return Value

The newly constructed IPL image header.

Intel Image Processing Library Reference Manual

4-10

4
AllocateImage
Allocates memory for image
data according to the
specified header.

void iplAllocateImage(IplImage* image, int fillValue)
/* */

image An IPL image header with a NULL image data
pointer. The pointer will be set to newly
allocated image data memory after calling this
function.

fillValue The initial value to use for pixel data. Use a
value of xFFFFFFFF (hexadecimal) not to
initialize the pixel data.

Discussion

The function iplAllocateImage() is used to allocate image data on the
basis of a specified image header. The header must be properly
constructed before calling this function. Memory is allocated for the image
data according to the attributes specified in the image header (see
Example 4-1).

The image data pointer will then point to the allocated memory. It is
highly preferable, for efficiency considerations, that the scanline
alignment attribute (argument align) in the image header be set to
IPL_ALIGN_QWORD. This will force the image data to be aligned on a
quadword (64-bit) memory boundary.

This function sets the image size attribute in the header to the number of
bytes allocated for the image.

Image Creation and Access

4-11

4
DeallocateImage
Deallocates (frees) memory
for image data pointed to in
the image header.

void iplDeallocateImage(IplImage* image)

image An IPL image header with a pointer to the
allocated image data memory. The image data
pointer will be set to NULL after this function
executes.

Discussion

The function iplDeallocateImage() is used to free image data memory
pointed to by the imageData member of the image header. The respective
pointer to image data or ROI data is set to NULL after the memory is freed
up.

Deallocate
Deallocates or frees memory
for image header or data or
region of interest or all
three.

void iplDeallocate (IplImage* image, int flag)

image An IPL image header with a pointer to allocated
image data memory. The image data pointer will
be set to NULL after this function executes.

flag Flag indicating what memory area to free:

IPL_IMAGE_HEADER Free header structure.

Intel Image Processing Library Reference Manual

4-12

4
IPL_IMAGE_IMAGE Free image data, set

pointer to NULL.

IPL_IMAGE_ROI Free image ROI, set
pointer to NULL.

IPL_IMAGE_ALL Free header, image
data, and ROI.

Discussion

The function iplDeallocate() is used to free or destroy memory
allocated for header structure, image data, ROI data, or all three. The
respective pointer is set to NULL after the memory is freed up.

Setting Regions of Interest

To set a region of interest, the function iplSetROI() uses a ROI structure
IplROI presented in Example 4-2. The IplROI member of the IPL image
header must point to this IplROI structure to be effective. This can be
done by a simple assignment. The application may choose to construct the
ROI structure explicitly without the use of the function.

Example 4-2 IplROI Definition

typedef struct _IplROI {

 unsigned int coi;
 //Channel to effect in original image

 int xOffset;

 int yOffset;

 int height;

 int width;

} IplROI;

Image Creation and Access

4-13

4
The members in the above IplROI structure define:

coi The channel of interest number. This parameter
indicates which channel in the original image
will be affected by processing taking place in the
region of interest; coi equal to 0 indicates that
all channels will be affected.

xOffset and yOffset The offset from the origin of the rectangular
ROI. (See section “ Image Regions” in Chapter 2
for the description of image regions.)

height and width The size of the rectangular ROI.

CreateROI
Allocates and sets the
region of interest (ROI)
structure.

IplROI* iplCreateROI(int coi, int xOffset, int yOffset,
int height, int width);

coi The channel of interest. It can be set to 0 (for all
channels) or to a specific channel number.

xOffset, yOffset The offsets from the origin of the rectangular
region.

height, width The size of the rectangular region.

Discussion

The function iplCreateROI() allocates a new ROI structure with the
specified attributes and returns a pointer to this structure. If the IPL image
pointer is NULL, then only a rectangular ROI is defined.

Intel Image Processing Library Reference Manual

4-14

4
Return Value

A pointer to the newly constructed ROI structure.

SetROI
Sets the region of
interest (ROI) structure.

void iplSetROI(IplROI* roi, int coi, int xOffset, int
yOffset, int height, int width);

roi The pointer to the ROI structure to modify in the
original image.

coi The channel of interest in the original image. It
can be set to 0 (for all channels) or to a specific
channel number.

xOffset, yOffset The offset from the origin of the rectangular
region.

height, width The size of the rectangular region.

Discussion

The function iplSetROI() sets the channel of interest and the rectangular
region of interest in the structure roi.

The argument coi defines the number of the channel of interest. The
arguments xOffset and yOffset define the offset from the origin of the
rectangular ROI. The members height and width define the size of the
rectangular ROI.

Image Creation and Access

4-15

4
Image Borders and Image Tiling

Many neighborhood operators need intensity values for pixels that lie
outside the image, that is, outside the borders of the image. For example, a
3 by 3 filter, when operating on the first row of an image, needs to assume
pixel values of the preceding (non-existent) row. A larger filter will
require more rows from the border. These border issues therefore exist at
the top and bottom, left and right sides, and the four corners of the image.
The library provides a function iplSetBorderMode that the application
can use to set the border mode within the image. This function specifies
the behavior for handling border pixels.

For tiled images, the border mode is handled in the same way as for non-
tiled images, except that in the outer tiles there might be extra data which
is ignored.

SetBorderMode
Sets the mode for handling
the border pixels.

void iplSetBorderMode(IplImage *src, int mode,
int border, int constVal)

src The image where the border mode is to be set.

mode The following modes are supported:

 IPL_BORDER_CONSTANT The value constVal is used for all
pixels.

 IPL_BORDER_REPLICATE The last row or column is replicated for
the border.

 IPL_BORDER_REFLECT The last n rows or columns are reflected
in reverse order to create the border.

Intel Image Processing Library Reference Manual

4-16

4
 IPL_BORDER_WRAP The required border rows or columns are

taken from the opposite side of the
image.

border The side that this function is called for. Can be
an OR of one or more of the following four sides
of an image:

IPL_SIDE_TOP Top side.

IPL_SIDE_BOTTTOM Bottom side.

IPL_SIDE_LEFT Left side.

IPL_SIDE_RIGHT Right side.

If no mode has been set for a side, the default
IPL_BORDER_CONSTANT is assumed with a value
of 0 for constVal. The top side is also used to
define all border pixels in the top left and right
corners. Similarly, the bottom side is used to
define the border pixels in the bottom left and
right corners.

constVal The value to use for the border when the mode is
set to IPL_BORDER_CONSTANT .

Discussion

The function iplSetBorderMode() is used to set the border handling
mode of one or more of the four sides of an image. If the mode is not set
for any side, then a constant value of 0 is used for all border pixels on that
side. Intensity values for the border pixels are assumed or created based on
the mode.

Image Creation and Access

4-17

4
CreateTileInfo
Creates the IplTileInfo
structure.

IplTileInfo* iplCreateTileInfo(IplCallBack callBack,
void* id, int width, int height);

callBack The call-back function.

id The image ID (for application use).

width, height The tile sizes.

Discussion

The function iplCreateTileInfo() allocates a new IplTileInfo
structure with the specified attributes and returns a pointer to this
structure.

Return Value

The pointer to the created IplTileInfo structure.

Intel Image Processing Library Reference Manual

4-18

4
SetTileInfo
Sets the IplTileInfo
structure fields.

void iplSetTileInfo(IplTileInfo* tileInfo, IplCallBack
callBack, int width, int height);

tileInfo The pointer to the IplTileInfo structure.

callBack The call-back function.

id The image ID (for application use).

width, height The tile sizes.

Discussion

This function sets attributes for an existing IplTileInfo structure.

DeleteTileInfo
Deletes the IplTileInfo
structure.

void iplDeleteTileInfo(IplTileInfo* tileInfo);

tileInfo The pointer to the IplTileInfo structure.

Discussion

This function deletes the IplTileInfo structure previously created by the
CreateTileInfo function.

Image Creation and Access

4-19

4
Memory Allocation Functions

Functions of the ipl?Malloc() group allocate aligned memory blocks for
IPL image data. The size of allocated memory is specified by the size
parameter. The “?” in ipl?Malloc() stands for w, i, s, or d; these letters
indicate the data type in the function names as follows:

iplMalloc() byte

iplwMalloc() 16-bit word

ipliMalloc() 32-bit double word

iplsMalloc() 4-byte single floating-point element

ipldMalloc() 8-byte double floating-point element

NOTE. The only function to free the memory allocated by any of these
functions is iplFree().

Malloc
Allocates memory aligned to
8 bytes boundary.

void* iplMalloc(int size);

size Size (in bytes) of memory block to allocate.

Discussion

The iplMalloc() function allocates memory block aligned to 8 bytes
boundary.

Intel Image Processing Library Reference Manual

4-20

4
Return Value

The return value of iplMalloc() is a pointer to aligned memory block.
To free this block, only the function iplFree() must be used. If no
memory is available in the system, then the NULL value is returned.

wMalloc
Allocates memory aligned to
8 bytes boundary for 16-bit
words.

short* iplwMalloc(int size);

size Size in words (16 bits) of memory block to
allocate.

Discussion

The iplwMalloc() function allocates memory block aligned to 8 bytes
boundary for 16-bit words.

Return Value

The return value of iplwMalloc() is a pointer to aligned memory block.
To free this block only the function iplFree() must be used. If no
memory is available in the system, then the NULL value is returned.

Image Creation and Access

4-21

4
iMalloc
Allocates memory aligned to 8
bytes boundary for 32-bit
double words.

int* ipliMalloc(int size);

size Size in double words (32 bits) of memory block
to allocate.

Discussion

The ipliMalloc() function allocates memory block aligned to 8 bytes
boundary for 32-bit double words.

Return Value

The return value of iplMalloc() is a pointer to aligned memory block.
To free this block only the function iplFree() must be used. If no
memory available in the system, then the NULL value is returned.

sMalloc
Allocates memory aligned to
8 bytes boundary for
floating-point elements.

float * iplsMalloc(int size);

size Size in float elements (4 bytes) of memory block
to allocate.

Intel Image Processing Library Reference Manual

4-22

4
Discussion

The iplsMalloc() function allocates memory block aligned to 8 bytes
boundary for floating-point elements.

Return Value

The return value of iplsMalloc() is a pointer to aligned memory block.
To free this block only the function iplFree() must be used. If no
memory is available in the system, then the NULL value is returned.

dMalloc
Allocates memory aligned to
8 bytes boundary for double
floating-point elements.

double* ipldMalloc(int size);

size Size in double elements (8 bytes) of memory
block to allocate.

Discussion

The ipldMalloc() function allocates memory block aligned to 8 bytes
boundary for double floating-point elements.

Return Value

The return value of ipldMalloc() is a pointer to aligned memory block.
To free this block only the function iplFree() must be used. If no
memory is available in the system, then the NULL value is returned.

Image Creation and Access

4-23

4
iplFree
Frees memory allocated by
one of the ipl?Malloc
functions.

void iplMalloc(void * ptr);

ptr Pointer to memory block to free.

Discussion

The iplFree() function frees the aligned memory block allocated by one
of the functions iplMalloc(), iplwMalloc(), ipliMalloc(),
iplsMalloc(), or ipldMalloc().

NOTE. The function iplFree() can’t be used to free memory allocated
by standard functions like malloc() or calloc().

Intel Image Processing Library Reference Manual

4-24

4
Image Data Exchange

The functions described in this section provide image manipulation
capabilities, such as setting the image pixel data, copying data from one
image to another, exchanging the data between the images, and converting
one IPL image to another according to the attributes defined in the source
and resultant image headers.

Set
Sets a value for an IPL
image pixel data.

void iplSet(IplImage* image, int fillValue,
IplCoord* map);

image An IPL image header with allocated image data.

fillValue The value to set the pixel data.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplSet() sets an IPL image pixel data. Before calling this
function, the IPL image header must be properly constructed and image
data must be allocated. For images with the bit depth lower than the
fillVallue, the fillValue is truncated when assigned to pixel. If an
ROI is specified, only that ROI is filled.

Image Creation and Access

4-25

4
Copy
Copies image data from one
IPL image to another.

void iplCopy(IplImage* srcImage, IplImage* dstImage,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplCopy() copies image data from a source image to a
resultant image. Before calling this function, the source and resultant
headers must be properly constructed and image data for both images must
be allocated. The following constraints apply to the copying:

• The bit depth per channel of the source image should be equal to that
of the resultant image.

• The number of channels of interest in the source image should be
equal to the number of channels of interest in the resultant image; that
is, either the source coi = the resultant coi = 0 or both cois are
nonzero.

• The data ordering (by pixel or by plane) of the source image should be
the same as that of the resultant image.

The origin, align, height, and width field values (see Table 4-2) may
differ in source and resultant images. Copying applies to the areas that
intersect between the source ROI and the destination ROI.

Intel Image Processing Library Reference Manual

4-26

4
Exchange
Exchanges image data
between two IPL images.

void iplExchange(IplImage* ImageA, IplImage* ImageB,

IplCoord* map);

ImageA The first image.

ImageB The second image.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplExchange() exchanges image data between two images,
the first and the second. The image headers must be properly constructed
before calling this function, and image data for both images must be
allocated. The following constraints apply to the data exchanging:

• The bit depths per channel of both images should be equal.

• The numbers of channels of interest in both images should be equal.

• The data ordering of both images should be the same (either pixel- or
plane-oriented) .

The origin, align, height, and width field values (see Table 4-2) may
differ in the first and the second images. The data are exchanged at the
areas of intersection between the ROI of the first image and the ROI of the
second image.

Image Creation and Access

4-27

4
Convert
Converts source IPL image
data to resultant IPL image
according to the source and
resultant image headers.

void iplConvert(IplImage* srcImage, IplImage* dstImage,
int convertMode, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

convertMode A flag indicating how to perform the image
conversion by reducing the bit depth.

The flag values are:

 IPL_BITS_HIGH Reduce by scaling

 IPL_BITS_LOW Reduce by using the lower part
of the pixel values

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplConvert() converts image data from the source IPL
image to the resultant IPL image according to the attributes defined in the
source and resultant image headers. The images that can be converted may
have the following different characteristics:

• Bit depth per channel

• Data ordering

• Origins

For the above data description, see Table 4-2.

Intel Image Processing Library Reference Manual

4-28

4
The following constraints apply to the conversion:

• If the source image has a bit depth per channel equal to 1, the resultant
image should also have the bit depth equal to 1.

• The number of channels in the source image should be equal to the
number of channels in the resultant image.

• The height and width of the source image should be equal to that of the
resultant image.

All ROIs are ignored; IplCoord must be NULL.

Working in the Windows DIB Environment

The IPL library provides functions to convert a DIB (device-independent
bitmap) image to an IPL image and vice versa. Table 4-2 shows that the
DIB image format is a subset of the IPL image format. Not included in this
subset are the DIB palette images and DIB 8-bit- and 16-bit-per-pixel
absolute color images because they have no equivalent IPL images.

The DIB palette images must be first converted to IPL absolute color
images. DIB 8-bit- and 16-bit-per-pixel images have to be unpacked into
IPL 8-bit, 16-bit- or 32-bit-per-channel images.

However, any DIB 24-bit absolute color image can be directly converted
to an IPL image. You just need to create an IPL image header
corresponding to the DIB attributes. The DIB image data can be pointed to
by the IPL header or it can be duplicated.

Image Creation and Access

4-29

4
The IPL functions can perform conversion from a DIB image to an IPL
image and vice versa with additional useful capabilities:

iplTranslateDIB() Performs a simple translation of a DIB image to
an IPL image as described above. Also converts
a DIB palette image to an IPL absolute color
image.

While this is the most efficient way of converting
a DIB image, it is not the most efficient format
for the IPL functions to manipulate because the
DIB image data is doubleword-aligned, and not
quadword-aligned.

iplConvertFromDIB() Provides more control of the conversion and can
convert a DIB image to an IPL image with a
prepared IPL image header. The IPL image
header must be then set to the desired attributes.
The bit depth of the channels in the IPL image
header must be equal to or greater than that in
the DIB header.

iplConvertToDIB() Performs conversion in the opposite direction: an
IPL image to a DIB image. This function
performs dithering if the bit depth of the DIB is
less than that of the IPL image. It can also be
used to create a DIB palette image from an IPL
absolute color image. The function can
optionally create a new palette.

Intel Image Processing Library Reference Manual

4-30

4
TranslateDIB
Translates a DIB image
into the corresponding
IPL image.

iplImage* iplTranslateDIB(BITMAPINFOHEADER* dib,
BOOL cloneData)

dib The DIB image.

cloneData An output flag (Boolean): if false, indicates that
the image data pointer in the IPL image will
point to the DIB image data; if true, indicates
that the data was copied.

Discussion

The function iplTranslateDIB() translates a DIB image into an IPL
image. The IPL image attributes corresponding to the DIB image are
automatically chosen (see Table 4-2), so no explicit control of the
conversion is provided. A DIB palette image will be converted to an IPL
absolute color image with a bit depth of 8 bits per channel, and the image
data will be copied, returning cloneData = true.

A 24-bit-per-pixel DIB RGB image will be converted to an 8-bit-per-
channel RGB IPL image.

A 32-bit-per-pixel DIB RGBA image will be converted to an 8-bit-per-
channel RGBA IPL image with an alpha channel.

An 8-bit-per-pixel or 16-bit-per-pixel DIB absolute color RGB image will
be converted (by unpacking) into an 8-bit-per-channel RGB IPL image.
The image data will be copied, returning cloneData = true.

A 1-bit-per-pixel or 8-bit-per-pixel DIB gray scale image with a standard
gray palette will be converted to a 1-bit-per-channel or 8-bit-per-channel
IPL gray-scale image, respectively.

Image Creation and Access

4-31

4
A 4-bit-per-pixel DIB gray-scale image with a standard gray palette will
be converted into an 8-bit-per-pixel IPL gray-scale image and the image
data will be copied, returning cloneData = true.

Note that in the cases above where the image data is not copied, it will
result in inefficient access of the image by the IPL image processing
functions. This is because DIB image data is aligned on doubleword (32-
bit) boundaries. Alternatively, when cloneData is true, the DIB image
data is replicated into newly allocated image data memory and
automatically aligned to quadword boundaries which results in a better
memory access.

Return Value

A constructed IPL image.

Intel Image Processing Library Reference Manual

4-32

4
ConvertFromDIB
Converts a DIB image
to an IPL image with
specified attributes.

void iplConvertFromDIB(BITMAPINFOHEADER* dib,
 IplImage* image)

dib The input DIB image.

image The IPL image header with specified attributes.
If the data pointer is NULL, image data memory
will be allocated and the pointer set to it.

Discussion

The function iplConvertFromDIB() converts a DIB image into an IPL
image according to the attributes set in the IPL image header. Explicit
control of the conversion is therefore provided. The following constraints
apply to the conversion:

• The bit depth per channel of the IPL image should be greater than or
equal to that of the DIB image.

• The number of channels (not including the alpha channel) in the IPL
image should be greater than or equal to the number of channels in the
DIB image (not including the alpha channel if present).

• The dimensions of the IPL image should be greater than or equal to
that of the DIB image. When the IPL image is larger than the DIB
image, the origins of the IPL and DIB images are made coincident for
the purposes of copying.

• When converting a DIB RGBA image, the IPL image should also
contain an alpha channel.

Image Creation and Access

4-33

4
ConvertToDIB
Converts an IPL image
to a DIB image with
specified attributes.

void iplConvertToDIB(iplImage* image, BITMAPINFOHEADER*
 dib, int dither, int paletteConversion)

image The input IPL image.

dib The output DIB image.

dither The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
is less than that of the IPL image. The following
algorithms are supported corresponding to these
dither identifiers:

 IPL_DITHER_STUCKEY The Stucki dithering algorithm is used.

 IPL_DITHER_NONE No dithering is done. The most
significant bits in the IPL image pixel
data are retained.

paletteConversion Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting the IPL absolute color image. The
following options are supported:

IPL_PALCONV_NONE The existing palette in the DIB
is used.

IPL_PALCONV_POPULATE

The popularity palette
conversion algorithm is used.

IPL_PALCONV_MEDCUT The median cut algorithm for
palette conversion is used.

Intel Image Processing Library Reference Manual

4-34

4
Discussion

The function iplConvertToDIB() converts an IPL image to a DIB
image. The conversion takes place according to the IPL image and DIB
image attributes. While IPL images are always in absolute color, DIB
images can be in absolute or palette color. When the DIB is a palette
image, the absolute color IPL image is converted to a palette image
according to the palette conversion option specified. When the bit depth of
an absolute color DIB image is less than that of the IPL image, then
dithering according to the specified option is performed.

The following constraints and considerations apply when using this
function:

• The number of channels (not including the alpha and ROI channels) in
the IPL image should be equal to the number of channels in the DIB
image.

• The alpha channel in an IPL image will be passed on only when the
DIB is an RGBA image.

Image Arithmetic and Logical
Operations

5-1

5
This chapter describes image processing functions that modify pixel
values using simple arithmetic or logical operations. It also includes the
library functions that perform image compositing based on opacity (alpha-
blending). All these operations can be broken into two categories: monadic
operations, which use single input images, and dyadic operations, which
use two input images. Table 5-1 lists the functions that perform arithmetic
and logical operations.

Table 5-1 Image Arithmetic and Logical Operations

Group Function Name Description

Arithmetic iplAddS Adds a constant to the image pixel values.

operations iplSubtractS Subtracts a constant from the pixel values
or the values from a constant.

iplMultiplyS Multiplies pixel values by a constant.

iplMultiplySScale Multiplies pixel values by a constant and
scales the product.

iplSquare Squares the pixel values of an image.

iplAdd Adds pixel values of two images.

iplSubtract Subtracts pixel values of one image from
those of another image.

iplMultiply Multiplies pixel values of two images.

iplMultiplyScale Multiplies pixel values of two images and
scales the product.

 Continued +

Intel Image Processing Library Reference Manual

5-2

5
Table 5-1 Image Arithmetic and Logical Operations (continued)

Group Function Name Description

Logical
operations

iplAndS Performs a bitwise AND operation on
each pixel with a constant.

iplOrS Performs a bitwise OR operation on
each pixel with a constant.

iplXorS Performs a bitwise XOR operation on
each pixel with a constant.

iplNot Performs a bitwise NOT operation on
each pixel

iplLShiftS Multiplyes pixel values by a constant
power of 2 by shifting bits to the left.

iplRShiftS Divides pixel values by a constant
power of 2 by shifting bits to the right.

iplAnd Combines corresponding pixels of two
images by a bitwise AND operation.

iplOr Combines corresponding pixels of two
images by a bitwise OR operation.

iplXor Combines corresponding pixels of two
images by a bitwise XOR operation.

Alpha-
blending

iplPreMultiplyAlpha Pre-multiplies pixel values of an image
by alpha values.

iplAlphaComposite Composites two images using alpha
(opacity) values.

iplAlphaCompositeC Composites two images using
constant alpha (opacity) values.

The functions iplSquare(), iplNot(), and iplPreMultiplyAlpha()
as well as all functions with names containing an additional S use single
input images (perform monadic operations). All other functions in the
above table use two input images (perform dyadic operations).

Image Arithmetic and Logical Operations

5-3

5
Monadic Arithmetic Operations

The sections that follow describe the IPL functions that perform monadic
arithmetic operations (note that the iplPreMultiplyAlpha function is
described in the “ Image Compositing Based on Opacity” section of this
chapter). All these functions use a single input image to create an output
image.

AddS
Adds a constant to pixel
values of the source
image.

void iplAddS(IplImage* srcImage, IplImage* dstImage, int

value, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

value The value to be added to the pixel values.

map The structure specifying offsets for tiling purposes.

Discussion

The function iplAddS() changes the image intensity by adding the value

to pixel values. A positive value brightens the image (increases the
intensity); a negative value darkens the image (decreases the intensity).

Intel Image Processing Library Reference Manual

5-4

5
SubtractS
Subtracts a constant from
pixel values, or pixel
values from a constant.

void iplSubtractS(IplImage* srcImage, IplImage* dstImage,

int value, BOOL flip, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

value The value to be subtracted from the pixel values.

flip A Boolean used to change the order of subtraction.

map The structure specifying offsets for tiling purposes.

Discussion

The function iplSubtractS()changes the intensity of an image as
follows:

If flip is false, the value is subtracted from the image pixel values.
If flip is true, the image pixel values are subtracted from the value.

MultiplyS
Multiplies pixel values
by a constant.

void iplMultiplyS(IplImage* srcImage, IplImage* dstImage,

unsigned int value, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

Image Arithmetic and Logical Operations

5-5

5
value A positive value by which to multiply the pixel values.

map The structure specifying offsets for tiling purposes.

Discussion

The function iplMultiplyS() increases the intensity of an image by
multiplying each pixel by a positive constant value.

MultiplySScale
Multiplies pixel values
by a constant and scales
the products.

void iplMultiplySScale(IplImage* srcImage, IplImage*

dstImage, int value, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

value A positive value by which to multiply the pixel values.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplMultiplySScale() multiplies the input image pixel
values by value and scales the products using the following formula:

 dst_pixel = src_pixel * value / max_val

where src_pixel is a pixel value of the source images, dst_pixel is the
resultant pixel value, and max_val is the maximum presentable pixel
value. The source and resultant images must have the same pixel depth.

Intel Image Processing Library Reference Manual

5-6

5
Square
Squares the pixel values
of the image.

void iplSquare(IplImage* srcImage, IplImage* dstImage,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplSquare() increases the intensity of an image by
squaring each pixel value.

Image Arithmetic and Logical Operations

5-7

5
Dyadic Arithmetic Operations

The sections that follow describe the IPL functions that perform dyadic
arithmetic operations. These functions use two input images to create an
output image.

Add
Combines corresponding
pixels of two images by
addition.

void iplAdd(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image obtained as
dstImage = srcImageA + srcImageB.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplAdd() adds corresponding pixels of two input images to
produce an output image.

Intel Image Processing Library Reference Manual

5-8

5
Subtract
Combines corresponding
pixels of two images by
subtraction.

void iplSubtract(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, BOOL flip, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

dstImage If flip (see below) is false, the resultant image is
dstImage = srcImageA - srcImageB,
otherwise it is
dstImage = srcImageB - srcImageA.

flip A Boolean flag to indicate the order in which the input
images are subtracted. See dstImage above.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplSubtract() subtracts corresponding pixels of two input
images to produce an output image.

Image Arithmetic and Logical Operations

5-9

5
Multiply
Combines corresponding
pixels of two images by
multiplication.

void iplMultiply(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplMultiply() multiplies corresponding pixels of two
input images to produce an output image.

Intel Image Processing Library Reference Manual

5-10

5
MultiplyScale
Multiplies pixel values of two
images and scales the products.

void iplMultiplyScale(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplMultiplyScale() multiplies corresponding pixels of
two input images and scales the products using the following formula:

 dst_pixel = srcA_pixel * srcB_pixel / max_val

where srcA_pixel and srcB_pixel are pixel values of the source
images, dst_pixel is the resultant pixel value, and max_val is the
maximum presentable pixel value. Both source images and the resultant
image must have the same pixel depth.

Image Arithmetic and Logical Operations

5-11

5
Monadic Logical Operations

The sections that follow describe the IPL functions that perform monadic
logical operations. All these functions use a single input image to create an
output image.

LShiftS
Shifts pixel values’ bits
to the left.

void iplLShiftS(IplImage* srcImage, IplImage* dstImage,

unsigned int nShift, IplCoord* map);

srcImage Thesource image.

dstImage The resultant image.

nShift The number of bits by which to shift each pixel value to
the left.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplLShiftS() changes the intensity of the source image by
shifting the bits in each pixel value by nShift bits to the left. The
positions vacated after shifting the bits are filled with zeros.

Intel Image Processing Library Reference Manual

5-12

5
RShiftS
Divides pixel values by
a constant power of 2 by
shifting bits to the right.

void iplRShiftS(IplImage* srcImage, IplImage* dstImage,

unsigned int nShift, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

nShift The number of bits by which to shift each pixel value to
the right.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplRShiftS()decreases the intensity of the source image by
shifting the bits in each pixel value by nShift bits. The positions vacated
after shifting the bits are filled with zeros.

Not
Performs a bitwise NOT
operation on each pixel.

void iplNot(IplImage* srcImage, IplImage* dstImage,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

Image Arithmetic and Logical Operations

5-13

5
map The structure specifying offsets for tiling purposes;

see IplCoord Structure in Chapter 2.

Discussion

The function iplNot() performs a bitwise NOT operation on each pixel
value.

AndS
Performs a bitwise AND
operation of each pixel
with a constant.

void iplAndS(IplImage* srcImage, IplImage* dstImage,

unsigned int value, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise AND
operation on each pixel.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplAndS() performs a bitwise AND operation between each
pixel value and value. The least significant bit(s) of the value are used.

Intel Image Processing Library Reference Manual

5-14

5
OrS
Performs a bitwise OR
operation of each pixel
with a constant.

void iplOrS(IplImage* srcImage, IplImage* dstImage,

unsigned int value, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise OR
operation on each pixel.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplOrS() performs a bitwise OR between each pixel value
and value. The least significant bit(s) of the value are used.

Image Arithmetic and Logical Operations

5-15

5
XorS
Performs a bitwise XOR
operation of each pixel
with a constant.

void iplXorS(IplImage* srcImage, IplImage* dstImage,

unsigned int value, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise XOR
operation on each pixel.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplXorS() performs a bitwise XOR between each pixel
value and value. The least significant bit(s) of the value are used.

Dyadic Logical Operations

This section describes the IPL functions that perform dyadic logical
operations. These functions use two input images to create an output
image.

Intel Image Processing Library Reference Manual

5-16

5
And
Combines corresponding pixels
of two images by a bitwise AND
operation.

void iplAnd(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input images srcImageA and srcImageB.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplAnd() performs a bitwise AND operation between the
values of corresponding pixels of two input images.

Or
Combines corresponding
pixels of two images by a
bitwise OR operation.

void iplOr(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

Image Arithmetic and Logical Operations

5-17

5
dstImage The image resulting from the bitwise operation between

input images srcImageA and srcImageB.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplOR() performs a bitwise OR operation between the
values of corresponding pixels of two input images.

Xor
Combines corresponding
pixels of two images by a
bitwise XOR operation.

void iplXor(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage, IplCoord* map);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input images srcImageA and srcImageB.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplXor() performs a bitwise XOR operation between the
values of corresponding pixels of two input images.

Intel Image Processing Library Reference Manual

5-18

5
Image Compositing Based on Opacity

The IPL library provides functions to composite two images using either
the opacity (alpha) channel in the images or a provided alpha value. Alpha
values range from 0 (100% translucent, 0% coverage) to full range (0%
translucent, 100% coverage). Coverage is the percentage of the pixel’s
own intensity that is visible.

Using the opacity channel for image compositing provides the capability
of overlaying the arbitrarily shaped and transparent images in arbitrary
positions. It also reduces aliasing effects along the edges of the combined
regions by allowing some of the bottom image’s color to show through.

Let us consider the example of RGBA images. Here each pixel is a
quadruple (r, g, b, α) where r, g, b, and α are the red, green, blue and
alpha channels, respectively. In the formulas that follow, the Greek letter
α with subscripts always denotes the normalized (scaled) alpha value in
the range 0 to 1, no matter what the full range of the alpha channel value.

There are many ways of combining images using alpha values. In all
compositing operations a resultant pixel (rC, gC, bC, αC) in image C is
created by overlaying a pixel (rA, gA, bA, αA) from the foreground image A
over a pixel (rB, gB, bB, αB) from the background image B. The resulting
pixel values for an OVER operation (A OVER B) are computed as shown
below.

rC = αA * rA + (1 - αA) * αB * rB

gC = αA * gA + (1 - αA) * αB * gB

bC = αA * bA + (1 - αA) * αB * bB

The above three expressions can be condensed into one as follows:

C = αA * A + (1 - αA) * αB * B

In this example, the color of the background image B influences the color
of the resultant image through the second term (1 - αA) * αB * B. The
resulting alpha value is computed as

aC = αA + (1 - αA) * αB

Image Arithmetic and Logical Operations

5-19

5
Using Pre-multiplied Alpha Values

In many cases it is computationally more efficient to store the color
channels pre-multiplied by the alpha values. In the RGBA example, the
pixel (r, g, b, α) would actually be stored as (r*α, g*α, b*α, α). This
storage format reduces the number of multiplications required in the
compositing operations. In interactive environments, when an image is
composited many times, this capability is especially efficient.

One known disadvantage of the pre-multiplication is that once a pixel is
marked as transparent, its color value is gone because the pixel’s color
channels are multiplied by 0.

The function iplPreMultiplyAlpha() implements various alpha
compositing operations between two images. One of them is converting
the pixel values to pre-multiplied form.

The color channels in images with the alpha channel can be optionally pre-
multiplied with the alpha value. This saves a significant amount of
computation for some of the alpha compositing operations. For example,
in an RGBA color model image, if (r, g, b, α) are the channel values for a
pixel, then upon pre-multiplication they are stored as (r*α, g*α, b*α, α).

AlphaComposite
AlphaCompositeC
Composite two images using
alpha (opacity) values.

void iplAlphaComposite(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, int compositeType,

IplImage* alphaImageA, IplImage* alphaImageB, IplImage*

alphaImageDst, BOOL premulAlpha, BOOL divideMode,

IplCoord* map);

Intel Image Processing Library Reference Manual

5-20

5
void iplAlphaCompositeC(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, int compositeType, int aA,

int aB, BOOL premulAlpha, BOOL divideMode, IplCoord* map);

srcImageA The foreground input image.

srcImageB The background input image.

dstImage The resultant output image.

compositeType The composition type to perform. See Table 5-2 for the
type value and description.

aA The constant alpha value to use for the source image
srcImageA. Should be a positive number.

aB The constant alpha value to use for the source image
srcImageB. Should be a positive number.

alphaImageA The image to use as the alpha channel for srcImageA. If
the image contains an alpha channel, that channel is
used. Otherwise channel 1 in the image is used as the
alpha channel. If this is not suitable for the application,
then the alpha channel number in the IPL header for the
image should be set appropriately before calling this
function. If the argument alphaImageA is NULL, then
the internal alpha channel of srcImageA is used. If
srcImageA does not contain an alpha channel, an error
message is issued.

alphaImageB The image to use as the alpha channel for srcImageB. If
the image already contains an alpha channel, that
channel is used. Otherwise channel 1 in the image is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the IPL
header for the image should be set appropriately before
calling this function. If the argument alphaImageB is
NULL, then the internal alpha channel of srcImageB is
used.

Image Arithmetic and Logical Operations

5-21

5
If srcImageB does not contain an alpha channel, then
the value (1- αA) is used for the alpha, where αA is a
scaled alpha value of srcImageA in the range 0 to 1.

alphaImageDst The image to use as the alpha channel for dstImage. If
the image already contains an alpha channel, that
channel is used. Otherwise channel 1 in the image is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the IPL
header for the image should be set appropriately before
calling this function. This argument can be NULL, in
which case the resultant alpha values are not saved.

premulAlpha A Boolean flag indicating whether or not the input
images contain pre-multiplied alpha values. If true, they
contain these values.

divideMode A Boolean flag set to false by default. When true, the
resultant pixel color (see Table 5-2) is further divided by
the resultant alpha value to get the final resultant pixel
color.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplAlphaComposite() performs an image compositing
operation by overlaying the foreground image srcImageA with the
background image srcImageB to produce the resultant image dstImage.

The function iplAlphaComposite() executes under one of the following
conditions for the alpha channels:

Intel Image Processing Library Reference Manual

5-22

5
• If alphaImageA and alphaImageB are both NULL, then the internal

alpha channels of the two input images specified by their respective
IPL image headers are used. The application has to ensure that these
are set to the proper channel number prior to calling this function. If
srcImageB does not have an alpha channel, then its alpha value is set
to (1 - αA) where αA is the scaled alpha value of image srcImageA in
the range 0 to 1.

• If both alpha images alphaImageA and alphaImageB are not NULL,
then they are used as the alpha values for the two input images. If
alphaImageB is NULL, then its alpha value is set to (1 - αA) where αA

is the scaled alpha value of image alphaImageA in the range 0 to 1.

It is an error if none of the above conditions is satisfied.

If alphaImageDst is not NULL, then the resultant alpha values are written
to it. If it is NULL and the output image imageDst contains an alpha
channel (specified by its IPL image header), then it is set to the resulting
alpha values. Otherwise (that is, alpha channel number is zero), the output
pixel values are multiplied by the resulting alpha values before final
storage in the output image occurs.

The function iplAlphaCompositeC() is used to specify constant alpha
values αA and αB to be used for the two input images (usually αB is set to
the value 1 - αA). The output pixel values are multiplied by the resultant
alpha values before final storage in the output image. The resultant alpha
values (also constant) are not saved.

The type of compositing is specified by the argument compositeType
which can assume the values shown in Table 5-2.

Image Arithmetic and Logical Operations

5-23

5
Table 5-2 Types of Image Compositing Operations

Type Output Pixel
(see Note)

Output Pixel
(pre-mult. α)

Resultant
Alpha Description

OVER αA*A+

(1- αA)*αB*B

A+(1-αA)*B αA+

(1- αA)* αB

A occludes B

IN αA*A* αB A*αB αA* αB A within B. A acts as a
matte for B. A shows only
where B is visible.

OUT αA*A*(1- αB) A*(1- αB) αA *(1- αB) A outside B. NOT-B acts as
a matte for A. A shows only
where B is not visible.

ATOP αA*A* αB+

(1- αA)*αB*B

A* αB+

(1- αA)*B

αA* αB+

(1- αA)* αB

Combination of (A IN B)
and (B OUT A). B is both
back-ground and matte for
A.

XOR αA*A*(1-αB)+

(1- αA)* αB*B

A*(1- αB)+

(1- αA)*B

αA*(1- αB)+

(1- αA)* αB

Combination of (A OUT B)
and (B OUT A). A and B
mutually exclude each
other.

PLUS αA *A + αB*B A + B αA + αB Blend without precedence

NOTE. In Table 5-2, the resultant pixel value is divided by the resultant
alpha when divideMode is set to true (see the argument descriptions for
the iplAlphaComposite() function). The Greek letter α here and below
denotes normalized (scaled) alpha values in the range 0 to 1.

For example, for the OVER operation, the output C for each pixel in the
inputs A and B is determined as

C = αA * A + (1 - αA) * αB * B

Intel Image Processing Library Reference Manual

5-24

5
The above operation is done for each color channel in A, B, and C. When the
images A and B contain pre-multiplied alpha values, C is determined as

C = A + (1 - αA) * B

The resultant alpha value aC (alpha in the resultant image C) is computed
as (both pre-multiplied and not pre-multiplied alpha cases) from aA (alpha
in the source image A) and aB (alpha in the source image B):

αC = αA + (1 - αA) * αB

Thus, to perform an OVER operation, use the IPL_COMPOSITE_OVER
identifier for the argument compositeType. For all other types, use
IPL_COMPOSITE_IN, IPL_COMPOSITE_OUT , IPL_COMPOSITE_ATOP ,
IPL_COMPOSITE_XOR , and IPL_COMPOSITE_PLUS , respectively.

The argument divideMode is typically set to false to give adequate results
as shown in the above example for an OVER operation and in Table 5-2.
When divideMode is set to true, the resultant pixel color is divided by the
resultant alpha value. This gives an accurate result pixel value, but the
division operation is expensive. In terms of the OVER example without
pre-multiplication, the final value of the pixel C is computed as

C = (αA * A + (1 - αA) * αB * B)/αC

There is no change in the value of αC, and it is computed as shown above.
When both A and B are 100% transparent (that is, αA is zero and αB is
zero), αC is also zero and the result cannot be determined. In many cases,
the value of αC is 1, so the division has no effect.

Image Arithmetic and Logical Operations

5-25

5
PreMultiplyAlpha
Pre-multiplies alpha
values of an image.

void iplPreMultiplyAlpha (IplImage* image,

int alphaValue, IplCoord* map);

image The image for which the alpha pre-multiplication is
performed.

alphaValue The global alpha value to use in the range 0 to 256. If
this value is negative (for example, -1), the internal
alpha channel of the image is used. It is an error
condition if an alpha channel does not exist.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplPreMultiplyAlpha() converts an image to the pre-
multiplied alpha form. If (R, G, B, A) are the red, green, blue, and alpha
values of a pixel, then the pixel is stored as (R*α, G*α, B*α, A) after
execution of this function. Here α is the pixel’s normalized alpha value in
the range 0 to 1.

Optionally, a global alpha value alphaValue can be used for the entire
image. Then the pixels are stored as (R*α, G*α, B*α, alphaValue) if the
image has an alpha channel or (R*α, G*α, B*α) if the image does not
have an alpha channel. Here α is the normalized alphaValue in the range
0 to 1.

Image Filtering

6-1

6
This chapter describes filtering operations that can be applied to images.
IPL uses linear and non-linear filters. The linear filters include a subgroup
of 2D convolution filters. Table 6-1 lists IPL image filtering functions.

Table 6-1 Image Filtering Functions

Group Function Name Description

Linear Filters iplBlur Applies a simple neighborhood
averaging filter to blur the image.

 2D Convolution
Linear Filters

iplCreateConvKernel Creates a convolution kernel.

iplGetConvKernel Reads the attributes of a convolution
kernel.

iplDeleteConvKernel Deallocates a convolution kernel.

iplConvolve2D Convolves an image with one or more
convolution kernels.

iplConvolveSep2D Convolves an image with a separable
convolution kernel.

Non-linear iplMedianFilter Applies a median filter to the image.

Filters iplMaxFilter Applies a maximum filter to the image.

iplMinFilter Applies a minimum filter to the image.

Linear Filters

Linear filtering includes simple neighborhood averaging filter to blur the
image and 2D convolution operations.

Intel Image Processing Library Reference Manual

6-2

6
Blur
Applies simple neighborhood
averaging filter to blur the
image.

void iplBlur(IplImage* srcImage, IplImage* dstImage,

int nRows, int nCols, int anchorX, int anchorY, IplCoord*

map);

srcImage The source image.

dstImage The resultant image.

nRows Number of rows in the neighborhood to use.

nCols Number of columns in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nRows-1, nCols-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplBlur() sets each pixel in the output image as the
average of all the input image pixels in the neighborhood of size nRows
by nCols with the anchor cell at that pixel. This has the effect of
smoothing or blurring the input image. The linear averaging filter of an
image is also called a box filter.

Image Filtering

6-3

6
2D Convolution

The 2D convolution is a versatile image processing primitive which can be
used in a variety of image processing operations; for example, edge
detection, blurring, noise removal, and feature detection. It is also known
as mask convolution or spatial convolution.

NOTE. In some literature sources, the 2D convolution is referred to as
box filtering, which is an incorrect use of the term. A box filter is a linear
averaging filter (see function iplBlur above). Technically, a box filter
can be effectively (although less efficiently) implemented by 2D
convolution using a kernel with unit or constant values.

For 2D convolution, a rectangular kernel is used. The kernel is a matrix of
signed integers which are, actually, the signed bytes of the C-language
“signed char” type. The value range of these bytes is −128 to 127. The
kernel could be a single row (a row filter) or a single column (a column
filter) or composed of many rows and columns. There is a cell in the
kernel called the “anchor,” which is usually a geometric center of the
kernel, but can be skewed with respect to the geometric center.

For each input pixel, the kernel is placed on the image such that the anchor
coincides with the input pixel. The output pixel value is computed as the
matrix dot product of the image matrix (the portion of the input image on
which the kernel is overlaid) and the kernel matrix. Optionally, the output
pixel value may be scaled.

The convolution function can be used in two ways. The first way uses a
single kernel for convolution. The second way uses multiple kernels and
allows the specification of a method to combine the results of convolution
with each kernel. This enables efficient implementation of multiple
kernels which eliminates the need of storing the intermediate results when
using each kernel. One IPL function, iplConvolve2D(), can implement
both ways.

Intel Image Processing Library Reference Manual

6-4

6
In addition, iplConvolveSep2D() , a convolution function that uses
separable kernels is also provided. The convolution kernel is separable
into the x and y components.

The 2D convolution functions, iplCreateConvKernel() and
iplGetConvKernel() , allow you to create and access kernels, upon
which convolving the image with one or more convolution kernels or with
a separable kernel can be performed.

CreateConvKernel
Creates a convolution
kernel.

IplConvKernel* iplCreateConvKernel(int nRows, int nCols,

int anchorX, int anchorY, char* values, int nShiftR);

nRows The number of rows in the convolution kernel.

nCols The number of columns in the convolution kernel.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
kernel. In this coordinate system, the top left
corner would be [0, 0] and the bottom right
corner would be [nRows-1, nCols-1]. For a 3 by
3 kernel, the coordinates of the geometric center
would be [1, 1]. This specification allows the
kernel to be skewed with respect to its geometric
center.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There
should be exactly nRows*nCols entries in this
array. For example, the array [1, 2, 3, 4, 5, 6, 7,
8, 9] would represent the kernel matrix

Image Filtering

6-5

6
1 2 3
4 5 6
7 8 9

nShiftR Scale the resulting output pixel by shifting it to
the right nShiftR times.

Discussion

The function iplCreateConvKernel()can be used to create a
convolution kernel of arbitrary size and arbitrary anchor point.

Return Value

A pointer to the convolution kernel structure IplConvKernel.

GetConvKernel
Reads the attributes of a
convolution kernel.

void iplGetConvKernel(IplConvKernel* kernel, int* nRows,

int* nCols, int* anchorX, int* anchorY, char** values,
int* nShiftR);

kernel The kernel to get the attributes for. The
attributes are returned in the remaining
arguments.

nRows A pointer to the number of rows in the
convolution kernel. Set by the function.

nCols A pointer to the number of columns in the
convolution kernel. Set by the function.

Intel Image Processing Library Reference Manual

6-6

6
anchorX, anchorY Pointers to the [x, y] coordinates of the anchor

cell in the kernel. (See iplCreateConvKernel
above.) Set by the function.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There will
be exactly nRows*nCols entries in this array.
For example, the array [1, 2, 3, 4, 5, 6, 7, 8, 9]
would represent the kernel matrix

1 2 3
4 5 6
7 8 9

nShiftR A pointer to the number of bits to shift (to the
right) the resulting output pixel of each
convolution. Set by the function.

Discussion

The function iplGetConvKernel()can be used to read the attributes of a
convolution kernel.

DeleteConvKernel
Deletes a convolution
kernel.

void iplDeleteConvKernel(IplConvKernel* kernel);

kernel The kernel to delete.

Discussion

The function iplGetConvKernel() must be used to delete a convolution
kernel which was created by the iplCreateConvKernel() function.

Image Filtering

6-7

6
Convolve2D
Convolves an image
with one or more
convolution kernels.

void iplConvolve2D(IplImage* srcImage, IplImage*

dstImage, IplConvKernel** kernel, int nKernels,

int combineMethod, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

kernel A pointer to an array of pointers to convolution
kernels. The length of the array is nKernels.

nKernels The number of kernels in the array kernel. The
value of nKernels can be 1 or more.

combineMethod The way in which the results of applying each
kernel should be combined. This argument is
ignored when a single kernel is used. The
following combinations are supported:

IPL_SUM Sums the results.

IPL_SUMSQ Sums the squares of the results.

IPL_SUMSQROOT Sums the squares of the results
and then takes the square root.

IPL_MAX Takes the maximum of the results.

IPL_MIN Takes the minimum of the results.

map The structure specifying offsets for tiling
purposes.

Intel Image Processing Library Reference Manual

6-8

6
Discussion

The function iplConvolve2D()is used to convolve an image with a set of
convolution kernels. The results of using each kernel are then combined
using the combineMethod argument.

ConvolveSep2D
Convolves an image with a
separable convolution kernel.

void iplConvolveSep2D(IplImgreg* srcImage, IplImage*

dstImage, IplConvKernel* xKernel, IplConvKernel* yKernel,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

xKernel The x or row kernel. Must contain only one row.

ykernel The y or column kernel. Must contain only one column.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplConvolveSep2D() is used to convolve the input image
srcImage with the separable kernel specified by the row kernel xkernel
and column kernel ykernel. The resulting output image is dstImage.

Image Filtering

6-9

6
Non-linear Filters

Non-linear filtering involves performing non-linear operations on some
neighborhood of the image. Most common are the minimum, maximum
and median filters.

MedianFilter
Apply a median filter to
the image.

void iplMedianFilter(IplImage* srcImage, IplImage*

dstImage, int nRows, int nCols, int anchorX,

int anchorY, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

nRows Number of rows in the neighborhood to use.

nCols Number of columns in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nRows-1, nCols-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

map The structure specifying offsets for tiling
purposes.

Intel Image Processing Library Reference Manual

6-10

6
Discussion

The function iplMedianFilter() sets each pixel in the output image as
the median value of all the input image pixel values in the neighborhood
of size nRows by nCols with the anchor cell at that pixel. This has the
effect of removing the noise in the image.

MaxFilter
Apply a max filter to the
image.

void iplMaxFilter(IplImage* srcImage, IplImage* dstImage,

int nRows, int nCols, int anchorX, int anchorY, IplCoord*

map);

srcImage The source image.

dstImage The resultant image.

nRows Number of rows in the neighborhood to use.

nCols Number of columns in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nRows-1, nCols-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

map The structure specifying offsets for tiling
purposes.

Image Filtering

6-11

6
Discussion

The function iplMaxFilter() sets each pixel in the output image as the
maximum value of all the input image pixel values in the neighborhood of
size nRows by nCols with the anchor cell at that pixel. This has the effect
of increasing the contrast in the image.

MinFilter
Apply a min filter to the
image.

void iplMinFilter(IplImage* srcImage, IplImage* dstImage,

int nRows, int nCols, int anchorX, int anchorY, IplCoord*

map);

srcImage The source image.

dstImage The resultant image.

nRows Number of rows in the neighborhood to use.

nCols Number of columns in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. (In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nRows-1, nCols-1]. For a 3 by
3 neighborhood the coordinates of the geometric
center would be [1, 1]). This specification
allows the neighborhood to be skewed with
respect to its geometric center.

map The structure specifying offsets for tiling
purposes.

Intel Image Processing Library Reference Manual

6-12

6
Discussion

The function iplMinFilter() sets each pixel in the output image as the
minimum value of all the input image pixel values in the neighborhood of
size nRows by nCols with the anchor cell at that pixel. This has the effect
of decreasing the contrast in the image.

Linear Image Transforms

7-1

7
This chapter describes the linear image transforms implemented in the
library: Fast Fourier Transform (FFT) and Discrete Cosine Transform
(DCT). Table 7-1 lists IPL functions performing linear image transform
operations.

Table 7-1 Linear Image Transform Functions

Group Function Name Description

Fast Fourier
Transform (FFT)

iplRealFft2D Computes the forward or inverse 2D
FFT of an image.

iplCcsFft2D Computes the forward or inverse 2D
FFT of an image in a complex-
conjugate format.

Discrete Cosine
Transform (DCT)

iplDCT2D Computes the forward or inverse 2D
DCT of an image.

Fast Fourier Transform

This section describes the functions that implement the forward and
inverse Fast Fourier Transform (FFT) on the 2-dimensional (2D) image
data.

Real-Complex Packed (RCPack2D) Format

The FFT of any real 2D signal, in particular, the FFT of an image is
conjugate-symmetric. Therefore, it can be fully specified by storing only
half the output data. A special format called RCPack2D is provided for this
purpose.

Intel Image Processing Library Reference Manual

7-2

7
The function iplRealFft2D() transforms a 2D image and produces the
Fourier coefficients in the RCPack2D format. To complement this, function
iplCcsFft2D() is provided that uses its input in RCPack2D format,
performs the Fourier transform, and produces its output as a real 2D
image. The functions iplRealFft2D() and iplCcsFft2D() together can
be used to perform frequency domain filtering of images.

RCPack2D format is defined based on the following equations:

A f
ijl

L

iks

KS j

l

L

k l

k

K

, , exp exp= −

 −

=

−

=

−

∑ ∑
0

1

0

1
2 2π π

f
LK

A
ijl

L

iks

Kk l S j

s

K

j

L

, , exp exp=

=

−

=

−

∑∑1 2 2

0

1

0

1
π π

where i = −1 , ()f f x yk l k l, ,= , x k Kk = / , y l Ll = / .

Note that the Fourier coefficients have the following relationship:

~
, ,A As j K s L j= − −

The symbol “~” denotes complex-conjugate. Hence, the L*K real values
can be used to reconstruct the L*K complex coefficients Ak,l . Thus it is
enough to store only L*K real values.

Using the DFT (real or complex) function as(y), we have the following
Fourier coefficients:

()A a l
ilj

L
f

ijl

L

iks

Ks j s

l

L

k l

k

K

l

L

, ,exp exp exp= −

 = −

 −

=

−

=

−

=

−

∑ ∑∑2 2 2

0

1

0

1

0

1
π π π

where
s = 0, ... K/2 for even K
s = 0, ... (K-1)/2 for odd K
j = 0, ... (L-1)

Linear Image Transforms

7-3

7
Other Fourier coefficients can be found using complex-conjugate
relations. Fourier coefficients A0,j for real function a0 (Fourier coefficients
AK/2,j for even K) can be stored in the RCPack format, other coefficients are
standard. The RCPack format is a convenient compact representation of a
complex conjugate-symmetric sequence. The disadvantage of this format
is that if it is not the natural format used by the real FFT algorithms
(“natural” in the sense that bit-reversed order is natural for rad ix-2
complex FFTs).

In the RCPack2D format, the output samples of the FFT are arranged as
shown in Table 7-2 where Re corresponds to Real and Im corresponds to
Imaginary.

Table 7-2 Arrangement of Output Samples in RCPack2D Format

A0,0 ReA0,1

ImA0,1

ReA0,2

ImA0,2

. . .

. . .
ReA0,j

ImA0,j

ReA1,0

ImA1,0

ReA1,1

ImA1,1

ReA1,2

ImA1,2

. . .

. . .

ReA1,j

ImA1,j

.

ReAK/2,0

ImAK/2,0

ReAK/2,1

ImAK/2,1

ReAK/2,2

ImAK/2,2

. . .

. . .

ReAK/2,j

ImAK/2,j

RealFft2D
Computes the forward or
inverse 2D FFT of an image.

void iplRealFft2D(IplImage* srcImage, IplImage* dstImage,

 int flags, IplCoord* map);

srcImage The source image.

Intel Image Processing Library Reference Manual

7-4

7
dstImage The resultant image in RCPack2D format

containing the Fourier coefficients. This image
must be a multi-channel image containing the
same number of channels as srcImage. The data
type for the image must be 8, 16 or 32 bits.

This image cannot be the same as the input
image srcImage (that is, an in-place operation is
not allowed).

flags Specifies how to perform FFT . This is an integer
in which every bit can be assigned the following
values using logical OR:

IPL_FFT_Forw Do forward transform

IPL_FFT_Inv Do inverse transofrm

IPL_FFT_NoScale Do inverse transform without
scaling

IPL_FFT_DoAlpha Transform alpha channel
(if alphaChannel is not 0)

IPL_FFT_UseInt Use only integer core

IPL_FFT_UseFloat Use only float core

IPL_FFT_OnlyOffsetROIandCalc

Take only offset ROI and calc

IPL_FFT_Free Only free all working arrays
and exit

IPL_FFT_Save Save all working arrays on exit

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Linear Image Transforms

7-5

7
Discussion

The function iplRealFft2D() performs an FFT on each channel in the
specified rectangular ROI of the input image srcImage and writes the
Fourier coefficients in RCPack2D format into the corresponding channel of
the output image dstImage.

Note that the output data will be clamped (saturated) to the limits 0 and
Max, where Max is determined by the data type of the output image. The
32-bit data type will produce the best results, so at least 16-bit data is
recommended.

CcsFft2D
Computes the forward
or inverse 2D FFT of an
image in complex-
conjugate format.

void iplCcsFft2D(IplImage* srcImage, IplImage* dstImage,

 int flags, IplCoord* map);

srcImage The source image in RCPack2D format.

dstImage The resultant image. This image must be a multi-
channel image containing the same number of channels
as srcImage.

This image cannot be the same as the input image
srcImage (that is, an in-place operation is not allowed).

flags Specifies how to perform FFT . This is an integer in
which every bit can be assigned the following values
using logical OR:

IPL_FFT_Forw Do forward transform

IPL_FFT_Inv Do inverse transofrm

Intel Image Processing Library Reference Manual

7-6

7
IPL_FFT_NoScale Do inverse transform without

scaling

IPL_FFT_DoAlpha Transform alpha channel
(if alphaChannel is not zero)

IPL_FFT_UseInt Use only integer core

IPL_FFT_UseFloat Use only float core

IPL_FFT_OnlyOffsetROIandCalc

Take only offset ROI and calc

IPL_FFT_Free Only free all working arrays and
exit

IPL_FFT_Save Save all working arrays on exit

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

The function iplRealFft2D() performs an FFT on each channel in the
specified rectangle ROI of the input image srcImage and writes the
output in RCPack2D format to the image dstImage.

Note that the output data will be clamped (saturated) to the limits 0 and
Max, where Max is determined by the data type of the output image.

Discrete Cosine Transform

This section describes the functions that implement the forward and
inverse Discrete Cosine Transform (DCT) on the 2D image data. The
output of the DCT for real input data is real. Therefore, unlike FFT, no
special format for the transform output is needed.

Linear Image Transforms

7-7

7
DCT2D
Computes the forward
or inverse 2D DCT of
an image.

void iplDCT2D(IplImage* srcImage, IplImage* dstImage,

int flags, IplCoord* map);

srcImage The source image.

dstImage The resultant image containing the DCT
coefficients. This image must be a multi-channel
image containing the same number of channels
as srcImage. The data type for the image must
be 8, 16 or 32 bits.

This image cannot be the same as the input
image srcImage (that is, an in-place operation is
not allowed).

flags Specifies how to perform FFT. This is an integer
whose every bit can be assigned the following
values using logical OR:

IPL_DCT_Forward Do forward transform

IPL_DCT_Inverse Do inverse transofrm

IPL_DCT_DoAlpha Transform alpha channel
(if alphaChannel is not 0)

IPL_DCT_Free Only free all working arrays
and exit

IPL_DCT_UseInpBuf Use the input image array for
the intermediate calculations. The
performance of DCT increases,
but the input image is destroyed.
This value is a default.

Intel Image Processing Library Reference Manual

7-8

7
map The structure specifying offsets for tiling

purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplDCT2D() performs a DCT on each channel in the
specified rectangular ROI of the input image srcImage and writes the
DCT coefficients into the corresponding channel of the output image
dstImage.

Note that the output data will be clamped (saturated) to the limits Min and
Max, where Min and Max are determined by the data type of the output
image. The 32-bit data type will produce the best results, so at least 16-bit
data type is recommended.

Morphological Operations

8-1

8
The morphological operations of the Image Processing Library are simple
erosion and dilation of an image. A specified number of erosions and
dilations are performed as part of image opening or closing operations in
order to (respectively) eliminate or fill small and thin holes in objects,
break objects at thin points or connect nearby objects, and generally
smooth the boundaries of objects without significantly changing their area.

Table 8-1 lists the functions that perform these operations.

Table 8-1 Morphological Operation Functions

Group Function Name Description

Erode, Dilate iplErode Erodes the image an indicated number
of times.

iplDilate Dilates the image an indicated number
of times.

Open, Close iplOpen Opens the image while smoothing the
boundaries of large objects.

iplClose Closes the image while smoothing the
boundaries of large objects.

Intel Image Processing Library Reference Manual

8-2

8
Erode
Erodes the image.

void iplErode(IplImage* srcImage, IplImage* dstImage,

int nIterations, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to erode the image.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplErode() performs an erosion of the image
nIterations times. The way the image is eroded depends on whether it
is a binary image or not.

• For a binary input image, the output pixel is set to zero if the
corresponding input pixel or any of its 8 neighboring pixels is a zero.

• For a gray scale or color image, the output pixel is set to the minimum
of the corresponding input pixel and its 8 neighboring pixels.

The effect of erosion is to remove spurious pixels (such as noise) and to
thin boundaries of objects on a dark background (whose pixel values are
less than those of the objects).

Morphological Operations

8-3

8
Figure 8-1 shows an example of 8-bit gray scale image before erosion
(left) and the same image after erosion of a rectangular ROI (right).

Figure 8-1 Erosion in a Rectangular ROI: the Source (left) and Result (right)

__

The following code (Example 8-1) performs erosion of the image inside
the selected rectangular ROI.

Intel Image Processing Library Reference Manual

8-4

8
Example 8-1 Code Used to Produce Erosion in a Rectangular ROI

/* Create output image header with attributes pointed to

by srcImg */

dstImg = iplCreateImageHeader(

src->nChannels, src->alphaChannel, src->depth,

"", "", src->dataOrder, src->align,

src->height, src->width, 0);

/* Allocate output image */

iplAllocateImage(dstImage, NOFILL);

/* Copy source image into output image */

memcpy(dstImg->imageData, srcImg->imageData,

 src->imageSize);

/* Set ROI attributes */

roi.coi = 0; /* channels: all */

/* region: */

roi.xOffset = 10; /* position 10,155 */

roi.yOffset = 155;

roi.width = 192; /* size: 192x86 */

roi.height = 86;

/* Set ROI into srcImg and dstImg */

srcImg->roi = &roi;

dstImg->roi = &roi;

/* Erosion */

IplErode(srcImg,dstImg,2);

NOTE. All source image attributes are defined in the image header
pointed to by srcImage.

Morphological Operations

8-5

8
Dilate
Dilates the image.

void iplDilate(IplImage* srcImage, IplImage* dstImage,

int nIterations, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to dilate the image.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplDilate() performs a dilation of the image
nIterations times. The way the image is dilated depends on whether the
image is a binary image or not.

• For a binary input image, the output pixel is set to 1 if the corresponding
input pixel is 1 or any of 8 neighboring input pixels is 1.

• For a gray scale or color image, the output pixel is set to the maximum
of the corresponding input pixel and its 8 neighboring pixels.

The effect of dilation is to fill up holes and to thicken boundaries of
objects on a dark background (whose pixel values are less than those of
the objects).

Intel Image Processing Library Reference Manual

8-6

8
Open
Opens the image by
performing erosions
followed by dilations.

void iplOpen(IplImage* srcImage, IplImage* dstImage,

int nIterations, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to erode and dilate the
image.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplOpen() performs nIterations of erosion followed by
nIterations of dilation performed by iplErode() and iplDilate(),
respectively.

The process of opening has the effect of eliminating small and thin
objects, breaking objects at thin points, and generally smoothing the
boundaries of larger objects without significantly changing their area.

See Also

Erode

Dilate

Morphological Operations

8-7

8
Close
Closes the image by
performing dilations
followed by erosions.

void iplClose(IplImage* srcImage, IplImage* dstImage,

int nIterations, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to dilate and erode the image.

map The structure specifying offsets for tiling
purposes.

Discussion

The function iplClose() performs nIterations of dilation followed
by nIterations of erosion performed by iplDilate() and
iplErode(), respectively.

The process of closing has the effect of filling small and thin holes in
objects, connecting nearby objects, and generally smoothing the
boundaries of objects without significantly changing their area.

See Also

Erode

Dilate

Color Space Conversion

9-1

9
This chapter describes the Image Processing Library functions that
perform color space conversion. The following color space conversions
are supported in the library:

• Reduction from high bit resolution color to low bit resolution color
• Conversion of absolute color images to and from palette color images
• Color model conversion
• Conversion from color to gray scale and vice versa

Table 9-1 lists color space conversion functions. For information on the
absolute-to-palette and palette-to-absolute color conversion, see “Working
in the Windows DIB Environment” in Chapter 4.

Table 9-1 Color Space Conversion Functions

Conversion Type Function Name Description

Reducing Bit
Resolution

iplReduceBits Reduces the number of bits
per channel in an image.

Bitonal to gray scale iplBitonalToGray Converts bitonal images to 8-
and 16-bit gray scale images.

Color to gray scale
and vice versa

iplColorToGray

iplGrayToColor

Convert color images to and
from gray scale images.

Color Models
Conversion

iplRGB2HSV,
iplHSV2RGB

Convert RGB images to and
from HSV color model.

iplRGB2HLS,
iplHLS2RGB

Convert RGB images to and
from HLS color model.

 continued +

Intel Image Processing Library Reference Manual

9-2

9
Table 9-1 Color Space Conversion Functions (continued)

Conversion Type Function Name Description

Color Models
Conversion

iplApplyColorTwist Applies a color-twist matrix
to an image.

(continued) iplCreateColorTwist Allocates memory for color-
twist matrix data structure.

iplDeleteColorTwist Deletes the color-twist
matrix data structure.

iplSetColorTwist Sets a color-twist matrix
data structure.

Reducing the Image Bit Resolution

This section describes functions that reduce the bit resolution of absolute
color and gray scale images.

ReduceBits
Reduces the bits per
channel in an image.

void iplReduceBits(IplImage* srcImage, IplImage*

dstImage, int ditherType, int jitterType, int levels,

IplCoord* map);

srcImage The source image of a higher bit resolution.
Refer to the discussion below for a list of valid
source and resultant image combinations.

Color Space Conversion

9-3

9
dstImage The resultant image of a lower bit resolution.

Refer to the discussion below for a list of valid
source and resultant image combinations.

jitterType The number specifying the noise added; should
be in the range 0 to 8.

ditherType The type of dithering to be used. The following
types are allowed:

IPL_DITHER_NONE No dithering is done

IPL_DITHER_FS The Floid-Steinberg
dithering algorithm is used.

IPL_DITHER_JJH The Jarvice-Judice-Hinke
dithering algorithm is used.

IPL_DITHER_STUCKEY The Stucki dithering
algorithm is used

IPL_DITHER_BAYER The Bayer dithering
algorithm is used

levels Number of levels for dithering; should be a
power of 2.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplReduceBits() reduces a higher bit resolution of the
absolute color or gray scale source image srcImage to a lower resolution
of the resultant absolute color or gray scale image dstImage. All
combinations of jittering and dithering values are valid. If jitterType is
greater than 0, some random noise is added to all pixels before the
reduction, which eliminates the problem of visible color stepping; see
[Bragg]. The resultant image can be used as input to a color quantization
method for further reduction in the number of colors; see [Thomas] and
[Schumacher].

Intel Image Processing Library Reference Manual

9-4

9
Table 9-2 lists the valid combinations of the source and resultant image bit
data types for reducing the bit resolution.

Table 9-2 Source and Resultant Image Data Types for Reducing the Bit
Resolution

Source Image Resultant Image

32 bit per channel 1 (for gray image), 8 or 16 bit per channel

16 bit per channel 8 or 1 (for gray image) bit per channel

8 bit per channel 1 bit per channel (for gray image)

Bit reducing uses the equation dst = src*(((1<<n) -1)/((1<<m) - 1)),
where m is the bit depth of the source and n is the bit depth of the
destination. To reduce a gray scale image to a bitonal (1-bit) image, see
the discussion under the thresholding function iplThreshold in Chapter
10.

Conversion from Bitonal to Gray Scale Images

This section describes the function that performs the conversion of bitonal
images to gray scale.

BitonalToGray
Converts a bitonal
image to gray scale.

void iplBitonalToGray(IplImage* srcImage, IplImage*

dstImage, int ZeroScale, int OneScale, IplCoord* map);

srcImage The bitonal source image.

Color Space Conversion

9-5

9
dstImage The resultant gray scale image. (See the

discussion below.)

ZeroScale The value that zero pixels of the source image
should have in the resultant image.

OneScale The value given to a resultant pixel if the
corresponding input pixel is 1.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplBitonalToGray() converts the input 1-bit bitonal image
srcImage to an 8s, 8u, 16s or16u gray scale image dstImage.

If an input pixel is 0, the corresponding output pixel is set to ZeroScale.
If an input pixel is 1, the corresponding output pixel is set to OneScale.

Conversion of Absolute Colors to and from Palette Colors

Since the IPL image format supports only absolute color images, this
functionality is provided only within the context of converting an IPL
absolute color image to and from a palette color DIB image. See the
section “Working in the Windows DIB Environment” in Chapter 4.

Conversion from Color to Gray Scale

This section describes the function that performs the conversion of
absolute color images to gray scale.

Intel Image Processing Library Reference Manual

9-6

9
ColorToGray
Converts a color image
to gray scale.

void iplColorToGray(IplImage* srcImage,

IplImage* dstImage, IplCoord* map);

srcImage The source image. See the discussion below for a list of
valid source and resultant image combinations.

dstImage The resultant image. See the discussion below
for a list of valid source and resultant image
combinations.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplColorToGray() converts a color source image
srcImage to a gray scale resultant image dstImage.
Table 9-3 lists the valid combinations of source and resultant image bit
data types for conversion from color to gray scale.

Table 9-3 Source and Resultant Image Data Types for Conversion from
Color to Gray Scale

Source Image (data type) Result image (data type)

32 bit per channel Gray scale (1, 8, or 16 bit)

16 bit per channel Gray scale (1, 8, or 16 bit)

8 bit per channel Gray scale (1, 8, or 16 bit)

The weights to compute true luminance from linear red, green and blue are
these:

Y = 0.212671 * R + 0.715160 * G + 0.072169 * B.

Color Space Conversion

9-7

9
Conversion from Gray Scale to Color (Pseudo-color)

This section describes the conversion of gray scale image to pseudo color.

GrayToColor
Converts a gray scale to
color image.

void iplGrayToColor (IplImage* srcImage,

IplImage* dstImage, float FractR,float FractG,float

FractB, IplCoord* map);

srcImage The source image. See the discussion below for a
list of valid source and resultant image
combinations.

dstImage The resultant image. See the discussion below
for a list of valid source and resultant image
combinations.

FractR, FractG, FractB The red, green and blue intensities for image
reconstruction. See the discussion below for a
list of valid FractR, FractG, and FractB
values.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplGrayToColor() converts a gray scale source image
srcImage to a resultant pseudo-color image dstImage. Table 9-4 lists
the valid combinations of source and resultant image bit data types for
conversion from gray scale to color.

Intel Image Processing Library Reference Manual

9-8

9
Table 9-4 Source and Resultant Image Data Types for Conversion from Gray

Scale to Color

Source Image (data type) Result image (data type)

Gray scale 1 bit 8 bit per channel

Gray scale 8 bit 8 bit per channel

Gray scale 16 bit 16 bit per channel

Gray scale 32 bit 32 bit per channel

The equation for chrominance in RGB from luminance Y is:

R = FractR * Y; 0 <= FractR <= 1
G = FractG * Y; 0 <= FractG <= 1
B = FractB * Y; 0 <= FractB <= 1.

If FractR==0 && FractG==0 && FractB == 0, then the default values
are used in above equation so that:

R = 0.212671 * Y, G = 0.715160 * Y, B = 0.072169 * Y.

Conversion of Color Models

To convert one color model to another, a color twist matrix can be used.
See the “Color Twist Matrices” section, which describes this method and
presents examples of various color model conversions.

Described in this section are conversions of color models when the color
twist matrix cannot be used.

Note that conversion of the RGB to the CMY models can be performed by
a simple subtraction. The function iplSubtractS can be used to
accomplish this conversion for two 8-bit per channel images. For example,
with maximum pixel value of 255, the iplSubtractS() function is used
as follows:

iplSubtractS(rgbImage, cmyImage, 256, TRUE)

Color Space Conversion

9-9

9
This call converts the RGB image rgbImage to the CMY image
cmyImage by setting each channel in the CMY image as follows:

C = 255 - R
M = 255 - G
Y = 255 - B

The conversion from CMY to RGB is similar: just switch the RGB and
CMY images.

RGB2HSV
Converts from the RGB
color model to the HSV
color model.

void iplRGB2HSV(IplImage* rgbImage, IplImage* hsvImage,

IplCoord* map);

rgbImage The source RGB image.

hsvImage The resultant HSV.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplRGB2HSV() converts the RGB image rgbImage to the
HSV image hsvImage. The function checks that the input image is an
RGB image. The channel sequence and color model of the output image
are set to HSV.

Intel Image Processing Library Reference Manual

9-10

9
HSV2RGB
Converts from the HSV
color model to the RGB
color model.

void iplHSV2RGB(IplImage* hsvImage, IplImage* rgbImage,

IplCoord* map);

hsvImage The source HSV image.

rgbImage The resultant RGB.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplHSV2RGB() converts the HSV image hsvImage to the
RGB image rgbImage. The function checks that the input image is an
HSV image. The channel sequence and color model of the output image
are set to RGB.

RGB2HLS
Converts from the RGB
color model to the HLS
color model.

void iplRGB2HLS(IplImage* rgbImage, IplImage* hlsImage,

IplCoord* map);

rgbImage The source RGB image.

hlsImage The resultant HLS.

Color Space Conversion

9-11

9
map The structure specifying offsets for tiling

purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplRGB2HLS() converts the RGB image rgbImage to the
HLS image hlsImage. The function checks that the input image is an
RGB image. The function sets the channel sequence and color model of
the output image to HLS.

HLS2RGB
Converts from the HLS
color model to the RGB
color model.

void iplHLS2RGB(IplImage* hlsImage, IplImage* rgbImage,

IplCoord* map);

hlsImage The source HLS image.

rgbImage The resultant RGB.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplHLS2RGB() converts the HLS image hlsImage to the
RGB image rgbImage; see [Rogers85]. The function checks that the input
image is an HLS image. The channel sequence and color model of the
output image are set to RGB.

Intel Image Processing Library Reference Manual

9-12

9
Using Color-Twist Matrices

One of the methods of color model conversion is using a color-twist
matrix. The color-twist matrix is a generalized 4 by 4 matrix [t i,j] that
converts the three channels (a, b, c) into (d, e, f) according to the
following matrix multiplication by a color-twist matrix (the superscript T
is used to indicate the transpose of the matrix).

[d, e, f, 1]
T
 = t11 t12 t13 t14 * [a, b, c, 1]

 T

 t21 t22 t23 t24

 t31 t32 t33 t34

 0 0 0 t44

To apply a color-twist matrix to an IPL image, use the function
iplApplyColorTwist() . But first call the iplCreateColorTwist()
and iplSetColorTwist()functions to create the data structure
IplColorTwist. This data structure contains the color-twist matrix and
allows you to store the data internally in a form that is efficient for
computation.

The function descriptions that follow provide examples of using the color-
twist matrices for color model conversion.

CreateColorTwist
Creates a color-twist
matrix data structure.

IplColorTwist* iplCreateColorTwist(int data[16],

int scalingValue);

data An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist values that are in
the range -1 to 1 should be scaled up to be in the

Color Space Conversion

9-13

9
range -231 to 231. (Simply multiply the floating
point number in the -1 to 1 range by 231.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 231 was used to multiply the values,
the scalingValue is 31. This value is used for
normalization.

Discussion

The function iplCreateColorTwist() allocates memory for the data
structure IplColorTwist and creates te color-twist matrix that can
subsequently be used by the function iplApplyColorTwist() .

Return Value

A pointer to the IplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist() .

SetColorTwist
Sets a color-twist matrix
data structure.

void iplSetColorTwist(IplColorTwist* cTwist, int

data[16],

int scalingValue);

data An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist values that are in
the range -1 to 1 should be scaled up to be in the

Intel Image Processing Library Reference Manual

9-14

9
range -231 to 231. (Simply multiply the floating
point number in the -1 to 1 range by 231.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 231 was used to multiply the values,
the scalingValue is 31. This value is used for
normalization.

Discussion

The function iplSetColorTwist() is used to set the vaules of the color-
twist matrix in the data structure IplColorTwist that can subsequently be
used by the function iplApplyColorTwist() .

Return Value

A pointer to the IplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist() .

ApplyColorTwist
Applies a color-twist
matrix to an image.

void iplApplyColorTwist(IplImage* srcImage,

IplImage* dstImage, IplColorTwist* cTwist, int offset,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

Color Space Conversion

9-15

9
cTwist The color-twist matrix data structure that was

prepared by a call to the function
iplSetColorTwist() .

offset An offset value that will be added to each pixel
channel after multiplication by the color-twist
matrix.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplApplyColorTwist()applies the color-twist matrix to
each of the first three color channels in the input image to obtain the
resulting data for the three channels.

For example, the matrix below can be used to convert normalized
PhotoYCC to normalized PhotoRGB (both with an opacity channel) when
the channels are in the order YCC and RGB, respectively:

2
31

0 2
31

0

2
31

X Y 0

2
31

2
31

0 0

0 0 0 2
31

where X = -416611827 (that is, -0.194 * 231) and
Y = -1093069176 (that is, -0.509 * 231).

Color-twist matrices may also be used to perform many other color
conversions and operations such as

• Lightening an image
• Color saturation
• Color balance
• R, G, and B color adjustments
• Contrast Adjustment

Intel Image Processing Library Reference Manual

9-16

9
DeleteColorTwist
Frees memory used for
a color-twist matrix.

void iplDeleteColorTwist(IplColorTwist* cTwist);

cTwist The color-twist matrix data structure that was
prepared by a call to the function
iplCreateColorTwist() .

Discussion

The function iplDeleteColorTwist() frees memory used for the color-
twist matrix structure referred to by cTwist.

Histogram and Thresholding
Functions

10-1

10
This chapter describes functions that operate on an image on a pixel-by-
pixel basis, in particular, the operations that alter the histogram of the
image. In addition, the use of color-twist matrices for color model
conversions is described. Table 10-1 lists histogram and thresholding
functions in the IPL.

Table 10-1 Histogram and Thresholding Functions

Group Function Name Description

Thresholding iplThreshold Performs a simple thresholding of
an image.

Lookup Table
and Histogram

iplContrastStretch Stretches the contrast of an image
using intensity transformation.

iplComputeHisto Computes the intensity histogram
of an image.

iplHistoEqualize Enhances an image by flattening
its intensity histogram.

Intel Image Processing Library Reference Manual

10-2

10
Thresholding

The thresholding operation changes pixel values depending on whether
they are less than, equal to, or greater than the specified threshold. If an
input pixel value is less than the threshold, the corresponding output
pixel is set to the minimum presentable value. Otherwise, it is set to the
maximum presentable value.

Threshold
Performs a simple
thresholding of an
image.

void iplThreshold(IplImage* srcImage, IplImage* dstImage,

int threshold, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

threshold The threshold value to use for each pixel. The
pixel value in the output is set to the maximum
presentable value if it is greater than or equal to
the threshold value (for each channel). Otherwise
the pixel value in the output is set to the
minimum presentable value.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplThreshold() thresholds the source image srcImage
using the value threshold to create the resultant image dstImage. The
pixel value in the output is set to the maximum presentable value (for

Histogram and Thresholding Functions

10-3

10
example, 255 for an 8-bit-per-channel image) if it is greater than or equal
to the threshold value. Otherwise it is set to the minimum presentable
value (for example, 0 for an 8-bit-per-channel image). This is done for
each channel in the input image.

To convert an image to bi-tonal, do the following:

• use iplColorToGray() to convert a color image to gray scale
• use iplThreshold() to threshold the image to max and zero values
• use iplConvert() with IPL_BITS_LOW flag set to convert to 1U

depth.

Lookup Table (LUT) and Histogram Operations

A LUT can be used to specify an intensity transformation. Given an input
intensity, LUT can be used to look up an output intensity. Usually a LUT
is provided for each channel in the image, although sometimes the same
LUT can be shared by many channels.

The IplLUT Structure

Example 10-1 presents a C language definition for the IplLUT structure to
set a LUT.

Example 10-1 IplLUT Definition

typedef struct _IplLUT {
int num; /* number of keys or values */

int* key;

int* value;

int* factor;

int interpolateType;

} IplLUT;

Intel Image Processing Library Reference Manual

10-4

10
The key array has the length num; the value and factor are arrays of the
same length num-1. The interpolateType can be either
IPL_LUT_LOOKUP or IPL_LUT_INTER.
Consider the following example of num = 4:

key value factor

k1 v1 f1
k2 v2 f2
k3 v3 f3
k4

If interpolateType is LOOKUP, then any input intensity D in the range
k1 ≤ D < k2 will result in the value v1, in the range k2 ≤ D < k3 will
result in the value v2 and so on. If interpolateType is INTER, then an
intensity D in the range k1 ≤ D < k2 will result in the linearly
interpolated value

v1 + [(v2 - v1)/(k2 - k1)] * (D - k1)

The value (v2-v1)/(k2-k1) is pre-computed and stored in the array
factor in the IplLUT data structure.

The data structure described above can be used to specify a piece-wise
linear transformation that is ideal for the purpose of contrast stretching.

The histogram is a data structure that shows how the intensities in the
image are distributed. The same data structure IplLUT is used for a
histogram except that interpolateType is always IPL_LUT_LOOKUP and
factor is a NULL pointer for a histogram. However, unlike the LUT, the
value array represents counts of pixels falling in the specified ranges in
the key array.

The sections that follow describe the functions that use the above data
structure.

Histogram and Thresholding Functions

10-5

10
ConstrastStretch
Stretches the contrast of
an image using an
intensity transformation.

void iplContrastStretch(IplImage* srcImage,

IplImage* dstImage, IplLUT** lut, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

lut An array of pointers to LUTs, one pointer for
each channel. Each lookup table should have the
key, value and factor arrays fully initialized
(see “The IplLUT Structure”). One or more
channels may share the same LUT. Specifies an
intensity transformation.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplContrastStretch() stretches the contrast in a color
source image srcImage by applying intensity transformations specified
by LUTs in lut to produce an output image dstImage. Fully specified
LUTs should be provided to this function.

Intel Image Processing Library Reference Manual

10-6

10
ComputeHisto
Computes the intensity
histogram of an image.

void iplComputeHisto(IplImage* srcImage, IplLUT** lut,

IplCoord* map);

srcImage The source image for which the histogram will
be computed.

lut An array of pointers to LUTs, one pointer for
each channel. Each lookup table should have the
key array fully initialized. The value array will
be filled by this function. (For the key and
value arrays, see “The IplLUT Structure”
above.) The same LUT can be shared by one or
more channels.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplComputeHisto() computes the intensity histogram of an
image. The histograms (one per channel in the image) are stored in the
array lut containing all the LUTs. The key array in each LUT should be
initialized before calling this function. The value array containing the
histogram information will be filled in by this function. (For the key and
value arrays, see “The IplLUT Structure” above.)

Histogram and Thresholding Functions

10-7

10
HistoEqualize
Enhances an image by
flattening its intensity
histogram.

void iplHistoEqualize(IplImage* srcImage,

IPLImage* dstImage, IplLUT** lut, IplCoord* map);

srcImage The source image for which the histogram will
be computed.

dstImage The resultant image after equalizing.

lut The histogram of the image is represented as an
array of pointers to LUTs, one pointer for each
channel. Each lookup table should have the key
and value arrays fully initialized. (For the key
and value arrays, see “The IplLUT Structure”
above.) These LUTs will contain flattened
histograms after this function is executed. In
other words, the call of iplHistoEqualize() is
destructive with respect to the LUTs.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

The function iplHistoEqualize() enhances the source image
srcImage by flattening its histogram represented by lut and places the
enhanced image in the output image dstImage. After execution, lut
points to the flattened histogram of the output image.

Image Geometric Transforms

11-1

11
This chapter describes the IPL functions that perform geometric
transforms to resize the image or change its orientation. The geometric
transforms are performed by resampling (“Zoom,” “Decimate,” and
“Rotate”) or flipping the axis of the image (“Mirror”). Table 11-1 lists
image geometric transform functions.

Table 11-1 Image Geometric Transform Functions

Group Function Name Description

Resizing iplZoom Zooms or expands an image.

iplDecimate Decimates or shrinks an image.

Changing
Orientation

iplMirror Mirrors an image about a horizontal
or vertical axis.

iplRotate Rotates an image.

Changing Image Size

The functions that expand or shrink an image perform image resampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
convolution.

Intel Image Processing Library Reference Manual

11-2

11
Zoom
Zooms or expands an
image.

void iplZoom(IplImage* srcImage, IplImage* dstImage,

int xDst, int xSrc, int yDst, int ySrc, int interpolate,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

xSrc, ySrc X and Y dimensions of the source image.

xDst, yDst X and Y dimensions of the destination image.

These four integers must be positive, meeting the
conditions of xDst ≥ xSrc and yDst ≥ ySrc to
specify the fractions xDst/xSrc and
yDst/ySrc. These fractions indicate the value to
magnify the image in the X and Y directions. For
example,
xDst = 2, xSrc = 1, yDst = 2, ySrc = 1 doubles
the image size in each dimension to give an
image 4 times larger in area.

interpolate The type of interpolation to perform for
resampling. The following are currently
supported:

IPL_INTER_NN Nearest neighbor
interpolation.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution
interpolation.

Image Geometric Transforms

11-3

11
map The structure specifying offsets for tiling

purposes. See IplCoord Structure in Chapter 2.

Discussion

The function iplZoom() zooms or expands the source image srcImage
by xDst/xSrc in the X direction and yDst/ySrc in the Y direction. The
interpolation specified by interpolate is used during resampling the
input image.

Decimate
Decimates or shrinks an
image.

void iplDecimate(IplImage* srcImage, IplImage* dstImage,

int xDst, int xSrc, int yDst, int ySrc, int interpolate,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

xSrc, ySrc X and Y dimensions of the source image.

xDst, yDst X and Y dimensions of the destination image.

These four integers should be positive, meeting
the conditions xDst ≤ xSrc and yDst ≤ ySrc
to specify the fractions xDst/xSrc and
yDst/ySrc. These fractions indicate the value to
shrink the image in the X and Y directions. For
example, xDst = 1, xSrc = 2, yDst = 1, ySrc =
2 halves the image size in each dimension to give
an image 1/4 times smaller in area.

Intel Image Processing Library Reference Manual

11-4

11
interpolate The type of interpolation to perform for

resampling. The following are currently
supported:

IPL_INTER_NN Nearest neighbor
interpolation.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution
interpolation.

map The structure specifying offsets for tiling
purposes. See IplCoord Structure in Chapter 2.

Discussion

The function iplDecimate() decimates or shrinks the source image
srcImage by xDst/xSrc in the X direction and yDst/ySrc in the Y
direction. The interpolation specified by interpolate is used during
resampling the input image.

Changing Image Orientation

The functions described in this section change image orientation by
rotating or mirroring the source image. Rotation involves image sampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
convolution. Mirroring is performed by flipping the image axis in
horizontal or vertical direction.

Image Geometric Transforms

11-5

11
Rotate
Rotates an image.

void iplRotate(IplImage* srcImage, IplImage* dstImage,

int angle, int centerX, int centerY, int interpolate,

IplCoord* map);

srcImage The source image.

dstImage The resultant image.

angle The angle in hundredths of degree to rotate the
image (for example, 6000 for 60 degrees). The
image is rotated about the center specified as
centerX and centerY coordinates.

centerX, centerY The coordinates of the rotation center.

interpolate The type of interpolation to perform for
resampling. The following are currently
supported:

IPL_INTER_NN Nearest neighbor
interpolation.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution
interpolation.

map The structure specifying offsets for tiling
purposes. See IplCoord Structure in Chapter 2.

Discussion

The function iplRotate() rotates the source image srcImage by angle
degrees around the origin defined by the coordinates centerX and
centerY. The interpolation specified by interpolate is used during
resampling the input image.

Intel Image Processing Library Reference Manual

11-6

11
Mirror
Mirrors an image about
a horizontal or vertical
axis.

void iplMirror(IplImage* srcImage, IplImage* dstImage,

int flipAxis, IplCoord* map);

srcImage The source image.

dstImage The resultant image.

flipAxis Specifies the axis to mirror the image. Use 0 for the
horizontal axis, 1 for a vertical axis and -1 for both
horizontal and vertical axes.

map The structure specifying offsets for tiling purposes.
See IplCoord Structure in Chapter 2.

Discussion

The function iplMirror() mirrors or flips the source image srcImage
about a horizontal or vertical axis or both.

Supported Image Attributes
and Operation Modes

A-1

A
This appendix contains tables that list the supported image attributes and
operation modes for all IPL functions that have input and/or output
images. The ipl prefixes in the function names are omitted.

Table A-1 Image Attributes and Modes of Data Exchange Functions

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Set all† a l w a y s i n - p l a c e x x x

Copy all x x x x x x x

Exchange all x x x x x x x

Convert all x

† all = 1u, 8s, 8u, 16s, 16u, and 32s bits per channel

Table A-2 Windows* DIB Conversion Functions

Input & output images

Function Depths have the same Remarks

input output order origin # of channels

ConvertFromDIB all‡ 1u,8u,16u x x Rectangular ROI,

ConvertToDIB 1u,8u,16u all‡ x x x border mode and

TranslateDIB 1bpp 1u x x tiling are not

other‡ 8u x x supported

‡ all = 1, 4, 8, 16, 24, and 32 bits per pixel (DIB images).
other = 4, 8, 16, 24, and 32 bits per pixel (DIB images).

Intel Image Processing Library Reference Manual

A-2

A
For iplConvertFromDIB , the number of channels, bit depth per channel and the

dimensions of the IPL image should be greater than or equal to those of the DIB image.
When converting a DIB RGBA image, the IPL image should also contain an alpha channel.

Table A-3 Image Attributes and Modes of Arithmetic and Logical Functions

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

AddS all† x x x x x x x

SubtractS all x x x x x x x

MultiplyS all x x x x x x x

MultiplySScale 8u,16u x x x x x x

Square all x x x x x x x

Add all x x x x x x x

Subtract all x x x x x x x

Multiply all x x x x x x x

MultiplyScale 8u,16u x x x x x x

LShiftS all x x x x x x x

RShiftS all x x x x x x x

Not all x x x x x x x

AndS all x x x x x x x

OrS all x x x x x x x

XorS all x x x x x x x

And all x x x x x x x

Or all x x x x x x x

Xor all x x x x x x x

† all = 1u, 8s, 8u, 16s, 16u, and 32s bits per channel

Supported Image Attributes and Operation Modes

A-3

A
Table A-4 Image Attributes and Modes of Alpha-Blending Functions

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

PreMultiplyAlpha 8u,16u x x x x x x

AlphaComposite 8u,16u x x x x x x

AlphaCompositeC 8u,16u x x x x x x

Table A-5 Image Attributes and Modes of Filtering Functions

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Blur >1bpc x x x x x x x x

Convolve2D all† x x x x x x x x

ConvolveSep2D all x x x x x x x

MaxFilter all x x x x x x x

MinFilter all x x x x x x x

MedianFilter all x x x x x x x

† all = 1u, 8s, 8u, 16s, 16u, and 32s bits per channel

Table A-6 Image Attributes and Modes of Fourier and DCT Functions

Input & output images Rect. Border In-place Tiling

Function Depths have the same ROI Mode

input output order origin COI s u p p o r t e d (x)

DCT2D >1bpc 16s,32s x x x

RealFft2D 8u,16u 16s,32s x x x x

CcsFft2D 16s,32s 8u,16u x x x

Intel Image Processing Library Reference Manual

A-4

A
Table A-7 Image Attributes and Modes of Morphological Operations

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Erode 1u,8u,16u x x x x x x x

Dilate 1u,8u,16u x x x x x x x

Open 1u,8u,16u x x x x x x x

Close 1u,8u,16u x x x x x x x

Table A-8 Image Attributes and Modes of Color Space Conversion Functions

Input & output images Rect. Bord. In-place Tiling

Function Depths have the same ROI Mode

input output depth order origin COI s u p p o r t e d (x)

ReduceBits 32s 8u,16u x x x

 16u 8u x x x

BitonalToGray 1u >1bpc x

RGB2HSV 1u,16u,32s x x x x x

HSV2RGB 1u,16u,32s x x x x x

RGB2HLS 1u,16u,32s x x x x x

HLS2RGB 1u, 16u,32s x x x x x

ApplyColorTwist 16u,32s x x x x x x

Supported Image Attributes and Operation Modes

A-5

A
Table A-9 Image Attributes and Modes of Histogram and Thresholding

Functions

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Threshold 8u,8s,16u,
16s, 32s

x x x x x x x

ComputeHisto 1u,8u,16u no output image x x x

HistoEqualize 8u,16u x x x x x x x

ContrastStretch 8u,16u x x x x x x x

Table A-10 Image Attributes and Modes of Geometric Transform Functions

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Mirror 1u,8u,16u x x x x x x

Rotate 1u,8u,16u x x x x x x

Zoom 1u,8u,16u x x x x x x

Decimate 1u,8u,16u x x x x x x

Bibliography

Biblio-1

This bibliography provides a list of publications that might be useful to the
Image Processing Library users. This list is not complete; it serves only as
a starting point. The books [Rogers85], [Rogers90], and [Foley90] are
good resources of information on image processing and computer
graphics, with mathematical formulas and code examples.

The Image Processing Library is part of Intel Performance Libraries Suite.
The manuals [RPL96] and [SPL96] describe Intel Recognition Primitives
Library and Intel Signal Processing Library, which are other parts of the
Performance Libraries Suite.

[Bragg] Dennis Bragg. A simple color reduction filter, Graphic
Gems III: 20–22.

[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics — Principles
and Practice, Second Edition. Addison Wesley, 1990.

[Rogers85] David Rogers. Procedural Elements for Computer
Graphics. McGraw-Hill, 1985.

[Rogers90] David Rogers and J.Alan Adams. Mathematical
Elements for Computer Graphics. McGraw-Hill, 1990.

[RPL96] Intel Recognition Primitives Library Reference Manual.
Intel Corp. Order number 637785, Rev.4, 1996.

[SPL96] Intel Signal Processing Library Reference Manual. Intel
Corp. Order number 630508, Rev.6, 1996.

[Schumacher] Dale A. Schumacher. A comparison of digital halftoning
techniques, Graphic Gems III: 57–71.

[Thomas] Spencer W. Thomas and Rod G. Bogart. Color
dithering, Graphic Gems II: 72–77.

Glossary

Glossary-1

absolute colors Colors specified by each pixel’s coordinates in
a color space. IPL functions use images with
absolute colors. See palette colors.

alpha channel A color channel, also known as the opacity
channel, that can be used in color models; for
example, the RGBA model.

arithmetic operation An operation that adds, subtracts, multiplies,
shifts, or squares the image pixel values.

CCS See complex conjugate-symmetric.

channel of interest The color channel on which an IPL operation
acts (or processing occurs). Channel of interest
(COI) can be considered as a separate case of
region of interest (ROI).

CMY Cyan-magenta-yellow. A three-channel color
model that uses cyan, magenta, and yellow
color channels.

CMYK Cyan-magenta-yellow-black. A four-channel
color model that uses cyan, magenta, yellow,
and black color channels.

COI See channel of interest.

color-twist matrix A matrix used to multiply the pixel coordinates
in one color space for determining the
coordinates in another color space.

complex conjugate-
symmetric

A kind of symmetry that arises in the Fourier
transform of real signals. A complex
conjugate-symmetric signal has the property
that x(-n) = x(n)*, where * denotes
conjugation.

Intel Image Processing Library Reference Manual

Glossary-2

conjugate The conjugate of a complex number a+bj is
a-bj.

conjugate-symmetric See complex conjugate-symmetric.

DCT Acronym for the discrete cosine transform. See
“Discrete Cosine Transform” in Chapter 7.

decimation An IPL geometric transform operation that
shrinks the source image.

DIB Device-independent bitmap, an image format
used by IPL in Windows* environment.

dilation An IPL morphological operation whose effect
is to fill up holes and thicken object
boundaries.

dyadic operation An operation that has two input images. It can
have other input parameters as well.

erosion An IPL morphological operation that results in
less noise and thinner object boundaries.

FFT Acronym for the fast Fourier transform. See
“Fast Fourier Transform” in Chapter 7.

four-channel model A color model that uses four color channels;
for example, the RGBA color model.

geometric transform
functions

IPL functions that perform geometric
transformations of images: zoom, decimation,
rotation, and mirror functions.

gray scale image An image characterized by a single intensity
channel so that each intensity value
corresponds to a certain shade of gray.

HLS Hue-lightness-saturation. A three-channel
color model that uses hue, lightness, and
saturation channels. The HLS and HSV
models differ in the way of scaling the image
luminance. See HSV.

 Glossary

Glossary-3

HSV Hue-saturation-value. A three-channel color
model that uses hue, saturation, and value
channels. HSV is often used as a synonym for
the HSB (hue-saturation-brightness) and HSI
(hue-saturation-intensity) models. See HLS.

hue A color channel in several color models that
measures the “angular” distance (in degrees)
from red to the particular color: 60
corresponds to yellow, 120 to green, 180 to
cyan, 240 to blue, and 300 to magenta. Hue is
undefined for shades of gray.

in-place operation An operation whose output image is one of the
input images. See out-of-place operation.

linear filtering In IPL, either neighborhood averaging (blur)
or 2D convolution operations.

linear image transforms In IPL, either the fast Fourier transform (FFT)
or the discrete cosine transform (DCT).

luminance A measure of image intensity, as perceived by
a “standard observer”. Since human eyes are
more sensitive to green and less to red or blue,
different colors of equal physical intensity
make different contribution to luminance. See
ColorToGray in Chapter 9.

LUT Acronym for lookup table (palette).

MMX TM technology A major enhancement to the Intel Architecture
aimed at better performance in multimedia and
communications applications. The technology
uses four new data types, eight 64-bit MMX
registers, and 57 new instructions
implementing the SIMD (single instruction,
multiple data) technique.

monadic operation An operation that has a single input image. It
can have other input parameters as well.

morphological operation In IPL, simple erosion or dilation of an image.

Intel Image Processing Library Reference Manual

Glossary-4

MSI Acronym for multi-spectral image. An MSI
can use any number of channels and colors.

non-linear filtering In IPL, minimum, maximum, or median
filtering operation.

opacity channel See alpha channel.

out-of-place operation An operation whose output is an image other
than the input image(s). See in-place operation.

palette colors Colors specified by a palette, or lookup table.
IPL uses palette colors only in operations of
image conversion to and from absolute colors.
See absolute colors.

PhotoYCC* A Kodak* proprietary color encoding and
image compression scheme. See YCC.

pixel depth The number of bits determining a single pixel
in the image.

pixel-oriented ordering Storing the image information in such an order
that the values of all color channels for each
pixel are clustered; for example, RGBRGB... .
See “Channel Sequence” in Chapter 2.

plane-oriented ordering Storing the image information so that all data
of one color channel follow all data of another
channel, thus forming a separate “plane” for
each channel; for example, RRRRRGGGGG...

point operation An operation performed on a pixel-by-pixel
basis. IPL point operations include applying a
color-twist matrix, computing and altering the
image histogram, contrast stretching,
histogram equalization and thresholding.

region of interest An image region on which an IPL operation
acts (or processing occurs).

RGB Red-green-blue. A three-channel color model
that uses red, green, and blue color channels.

RGBA Red-green-blue-alpha. A four-channel color
model that uses red, green, blue, and alpha (or

 Glossary

Glossary-5

opacity) channels.

ROI See region of interest.

saturation A quantity used for measuring the purity of
colors. The maximum saturation corresponds
to the highest degree of color purity; the
minimum (zero) saturation corresponds to
shades of gray.

scanline All image data for one row of pixels.

standard gray palette A complete palette of a DIB image whose red,
green, and blue values are equal for each entry
and monotonically increasing from entry to
entry.

three-channel model A color model that uses three color channels;
for example, the CMY color model.

YCC A three-channel color model that uses one
luminance channel (Y) and two chroma
channels (usually denoted by CR and CB). The
term is sometimes used as a synonym for the
entire PhotoYCC encoding scheme. See
PhotoYCC.

zoom A geometric transform function that magnifies
the source image.

Index

Index-1

A

a function that helps you

add a constant to pixel values, 5-3

add pixel values of two images, 5-7

allocate a quadword-aligned memory
block, 4-19

allocate image data, 4-10

allocate memory for 16-bit words, 4-20

allocate memory for 32-bit double words,
4-21

allocate memory for double floating-point
elements, 4-22

allocate memory for floating-point
elements, 4-21

apply a color twist matrix, 9-15

assign a new error-handling function, 3-6

average neighboring pixels, 6-2

change the image orientation, 11-4

change the image size, 11-1

composite images using the alpha channel,
5-18

compute bitwise AND of pixel values and a
constant, 5-13

compute bitwise AND of pixel values of
two images, 5-16

compute bitwise NOT of pixel values, 5-12

compute bitwise OR of pixel values and a
constant, 5-14

compute bitwise OR of pixel values of two
images, 5-16

compute bitwise XOR of pixel values and a
constant, 5-15

compute bitwise XOR of pixel values of
two images, 5-17

compute CCS fast Fourier transform, 7-5

compute discrete cosine transform, 7-7

compute real fast Fourier transform, 7-3

compute the image histogram, 10-6

convert a bitonal image to gray scale, 9-4

convert a color image to gray scale, 9-6

convert a gray scale image to color, 9-7

convert an HLS image to RGB, 9-11

convert an HSV image to RGB, 9-10

convert an RGB image to HLS, 9-10

convert an RGB image to HSV, 9-9

convert images from DIB (changing
attributes), 4-32

convert images from DIB (preserving
attributes), 4-30

convert images to DIB, 4-33

convert images to different data formats,
4-27

convolve an image with 2D kernel, 6-7

convolve an image with a separable kernel,
6-8

Intel Image Processing Library Reference Manual

Index-2

copy image data, 4-25

create 2D convolution kernel, 6-4

create a color twist matrix, 9-12

create a region of interest (ROI), 4-13

create image header, 4-8

create the IplTileInfo structure, 4-17

decimate the image, 11-3

delete 2D convolution kernel, 6-6

delete a color twist matrix, 9-16

delete the IplTileInfo structure, 4-18

divide pixel values by 2N, 5-12

equalize the image histogram, 10-7

exchange data of two images, 4-26

fill image’s pixels with a value, 4-24

free memory allocated by Malloc
functions, 4-23

free the image data memory, 4-11

free the image header memory, 4-11

get error-handling mode, 3-4

get the error status code, 3-3

handle an error, 3-2

magnify the image, 11-2

mirror the image, 11-6

multiply pixel values by a constant, 5-4

multiply pixel values by a constant and
scale the products, 5-5

multiply pixel values of two images, 5-9

multiply pixel values of two images and
scale the products, 5-10

pre-multiply pixel values by alpha values,
5-25

produce error messages for users, 3-5

read convolution kernel’s attributes, 6-5

reduce the image bit resolution, 9-2

report an error, 3-2

rotate the image, 11-5

set a color twist matrix, 9-13

set a region of interest (ROI), 4-14

set error-handling mode, 3-4

set pixels to the maximum value of the
neighbors, 6-10

set pixels to the median value of the
neighbors, 6-9

set pixels to the minimum value of the
neighbors, 6-11

set the error status code, 3-3

set the image border mode, 4-15

set the IplTileInfo structure fields, 4-18

shift pixel bits to the left, 5-11

shift pixel bits to the right, 5-12

shrink the image, 11-3

square pixel values, 5-6

stretch the image contrast, 10-5

subtract pixel values from a constant, 5-4

subtract pixel values of two images, 5-8

threshold the source image, 10-2

zoom the image, 11-2

about this manual, 1-2

about this software, 1-1

absolute color image, 2-2

add a constant to pixel values, 5-3

Add function, 5-7

add pixels of two images, 5-7

AddS function, 5-3

align the rectangular ROIs, 2-5

aligning

image data, 2-6

rectangular ROIs, 2-5

Index

Index-3

scanlines, 2-6

allocate a quadword-aligned memory block,
4-19

allocate memory for 16-bit words, 4-20

allocate memory for 32-bit double words, 4-21

allocate memory for double floating-point
elements, 4-22

allocate memory for floating-point elements,
4-21

AllocateImage function, 4-10

alpha channel, 2-6

alpha pre-multiplication, 5-25

alpha-blending, 5-18

alpha pre-multiplication, 5-25

AlphaComposite function, 5-19

AlphaCompositeC function, 5-19

ATOP operation, 5-23

IN operation, 5-23

OUT operation, 5-23

OVER operation, 5-23

PLUS operation, 5-23

PreMultiplyAlpha function, 5-25

XOR operation, 5-23

AlphaComposite function, 5-19

AlphaCompositeC function, 5-19

And function, 5-16

AndS function, 5-13

apply a color twist matrix, 9-15

ApplyColorTwist function, 9-14

arithmetic operations, 5-1

Add, 5-7

AddS, 5-3

AlphaComposite, 5-19

AlphaCompositeC, 5-19

Multiply, 5-9

MultiplyS, 5-4

MultiplyScale, 5-10

MultiplySScale, 5-5

PreMultiplyAlpha, 5-25

Square, 5-6

Subtract, 5-8

SubtractS, 5-4

ATOP compositing operation, 5-23

attribute values, 4-3

attributes, 4-3

audience for this manual, 1-4

averaging the neighboring pixels, 6-2

B

bit depths supported, A-1

BitonalToGray function, 9-4

bitwise AND

with a constant, 5-13

with another image, 5-16

bitwise NOT, 5-12

bitwise OR

with a constant, 5-14

with another image, 5-16

bitwise XOR

with a constant, 5-15

with another image, 5-17

Blur function, 6-2

brightening the image, 5-3

C

call-backs, 2-9

Intel Image Processing Library Reference Manual

Index-4

CcsFft2D function, 7-5

changing the image orientation, 11-4

changing the image size, 11-1

channel sequence, 2-3

channel(s) of interest, 2-4

Close function, 8-7

COI. See channel(s) of interest

color data order, 2-3

color models, 2-1

gray scale, 2-1

multi-spectral image, 2-2

three or four channels, 2-1

color space conversion functions

ApplyColorTwist, 9-14

BitonalToGray, 9-4

ColorToGray, 9-6

CreateColorTwist, 9-12

DeleteColorTwist, 9-16

GrayToColor, 9-7

HLS2RGB, 9-11

HSV2RGB, 9-10

ReduceBits, 9-2

RGB2HLS, 9-10

RGB2HSV, 9-9

SetColorTwist, 9-13

ColorToGray function, 9-6

compute the image histogram, 10-6

ComputeHisto function, 10-6

ContrastStretch function, 10-5

conventions

font, 1-5

function names, 1-6

naming, 1-5

convert a bitonal image to gray scale, 9-4

convert a color image to gray scale, 9-6

convert a gray scale image to color, 9-7

convert an HLS image to RGB, 9-11

convert an HSV image to RGB, 9-10

convert an RGB image to HLS, 9-10

convert an RGB image to HSV, 9-9

Convert function, 4-27

convert images from DIB (changing attributes),
4-32

convert images from DIB (preserving
attributes), 4-30

convert images to DIB, 4-33

convert images to different data formats, 4-27

ConvertFromDIB function, 4-32

ConvertToDIB function, 4-33

convolution, 6-3

Convolve2D function, 6-7

ConvolveSep2D function, 6-8

coordinate systems, 2-4

Copy function, 4-24

create a color twist matrix, 9-12

CreateColorTwist function, 9-12

CreateConvKernel function, 6-4

CreateImageHeader function, 4-8

CreateROI function, 4-13

CreateTileInfo function, 4-17

creating images, 4-1

D

darkening the image, 5-3

data architecture, 2-1

data exchange, 4-2

Index

Index-5

data exchange functions, 4-24

Convert, 4-27

Copy, 4-24

Exchange, 4-25

Set, 4-24

data ordering, 2-3

data types, 2-2

DCT. See discrete cosine transform

DCT2D function, 7-7

Deallocate function, 4-11

DeallocateImage function, 4-11

Decimate function, 11-3

decimating the image, 11-3

delete a color twist matrix, 9-16

DeleteColorTwist function, 9-16

DeleteConvKernel function, 6-6

DeleteTileInfo function, 4-18

device-independent bitmap, 4-2

DIB. See device-independent bitmap

DIB palette image, 2-2

Dilate function, 8-5

discrete cosine transform, 7-6

divide pixel values by 2N, 5-12

dMalloc function, 4-22

dyadic operations, 5-1

E

equalize the image histogram, 10-7

erode an image, 8-2

Erode function, 8-2

ErrModeLeaf error mode, 3-4

ErrModeParent error mode, 3-5

ErrModeSilent error mode, 3-5

error checks, 3-1

Error function, 3-2

error handling, 3-1

example, 3-10

status codes, 3-8

user-defined error handler, 3-13

error handling macros, 3-7

error processing modes

IPL_ErrModeLeaf, 3-4

IPL_ErrModeParent, 3-5

IPL_ErrModeSilent, 3-5

error-handling functions, 3-2

Error, 3-2

ErrorStr, 3-5

GetErrMode, 3-4

GetErrStatus, 3-3

RedirectError, 3-6

SetErrMode, 3-4

SetErrStatus, 3-3

ErrorStr function, 3-5

Exchange function, 4-25

execution architecture, 2-7

in-place and out-of-place operations, 2-7

overflow and underflow, 2-7

saturation mode, 2-7

F

fast Fourier and discrete cosine transforms

CcsFft2D, 7-5

DCT2D, 7-7

RealFft2D, 7-3

Intel Image Processing Library Reference Manual

Index-6

fast Fourier transform, 7-1

FFT. See fast Fourier transform

fill image’s pixels with a value, 4-24

filtering functions, 6-1

Blur, 6-2

Convolve2D, 6-7

ConvolveSep2D, 6-8

CreateConvKernel, 6-4

DeleteConvKernel, 6-6

GetConvKernel, 6-5

MaxFilter, 6-10

MedianFilter, 6-9

MinFilter, 6-11

font conventions, 1-5

Free function, 4-23

free memory allocated by Malloc functions,
4-23

function descriptions, 1-4

function name conventions, 1-6

G

geometric transform functions

Decimate, 11-3

Mirror, 11-6

Rotate, 11-5

Zoom, 11-2

get the error processing mode, 3-4

get the error status code, 3-3

GetConvKernel function, 6-5

GetErrMode function, 3-4

GetErrStatus function, 3-3

global variables

IplLastStatus, 3-5

gray scale, 2-1

GrayToColor function, 9-7

H

handling overflow and underflow, 2-7

hardware and software requirements, 1-1

HistoEqualize function, 10-7

histogram and thresholding functions

ComputeHisto, 10-6

ContrastStretch, 10-5

HistoEqualize, 10-7

histogram and thresholding functions, 10-1

Threshold, 10-2

histogram of an image, 10-6

histogram operations, 10-3

HLS2RGB function, 9-11

HSV2RGB function, 9-10

I

image attributes, A-1

image compositing, 5-18

alpha pre-multiplication, 5-25

AlphaComposite function, 5-19

AlphaCompositeC function, 5-19

ATOP operation, 5-23

IN operation, 5-23

OUT operation, 5-23

OVER operation, 5-18, 5-23

PLUS operation, 5-23

PreMultiplyAlpha function, 5-25

XOR operation, 5-23

Image Creation function, 4-8

Index

Index-7

image creation functions, 4-1

AllocateImage, 4-10

CreateImageHeader, 4-8

CreateROI, 4-13

CreateTileInfo, 4-17

Deallocate, 4-11

DeallocateImage, 4-11

DeleteTileInfo, 4-18

SetBorderMode, 4-15

SetROI, 4-14

SetTileInfo, 4-18

image dimensions, 2-7

image filtering functions, 6-1

image histogram, 10-6

image processing operation

conditions, 2-6

image row data, 2-6

image size, 2-7

image tiling, 2-8, 4-7

call-backs, 2-9

IplCoord structure, 2-9

IplTileInfo structure, 4-7

iMalloc function, 4-21

IN compositing operation, 5-23

in-place operation, 2-7

invisible colors, 2-2

IPL functionality

2D convolution, 6-3

alpha-blending, 5-1

arithmetic operations, 5-1

color space conversion, 9-1

data exchange, 4-1

DIB environment functions, 4-1, 4-28

discrete cosine transform, 7-6

error handling, 3-1

fast Fourier transform, 7-1

filtering functions, 6-1

geometric transform functions, 11-1

histogram and thresholding functions, 10-1

image compositing, 5-18

image creation, 4-1

image tiling, 2-8, 4-7

logical operations, 5-1

memory allocation, 4-19

morphological operations, 8-1

supported image attributes and modes, A-1

IPL image

attribute values, 4-3

borders and tiling, 4-15

channel sequence, 2-3

color models, 2-1

coordinate systems, 2-4

data architecture, 2-1

data ordering, 2-3

data types, 2-2

format, 4-3

header, 4-3

header attributes, 4-3

regions of interest, 2-4

size, 2-7

tile size, 2-8

tiling, 2-8, 4-7

IPL_ErrModeLeaf, 3-4

IPL_ErrModeParent, 3-5

IPL_ErrModeSilent, 3-5

iplAdd, 5-7

Intel Image Processing Library Reference Manual

Index-8

iplAddS, 5-3

iplAllocateImage, 4-10

iplAlphaComposite, 5-19

iplAlphaCompositeC, 5-19

iplAnd, 5-16

iplAndS, 5-13

iplApplyColorTwist, 9-14

iplBitonalToGray, 9-4

iplBlur, 6-2

iplCcsFft2D, 7-5

iplClose, 8-7

iplColorToGray, 9-6

iplComputeHisto, 10-6

iplContrastStretch, 10-5

iplConvert, 4-27

iplConvertFromDIB, 4-32

iplConvertToDIB, 4-33

iplConvolve2D, 6-7

iplConvolveSep2D, 6-8

IplCoord structure, 2-9

iplCopy, 4-24

iplCreateColorTwist, 9-12

iplCreateConvKernel, 6-4

iplCreateImageHeader, 4-8

iplCreateROI, 4-13

iplCreateTileInfo, 4-17

iplDCT2D, 7-7

iplDeallocate, 4-11

iplDeallocateImage, 4-11

iplDecimate, 11-3

iplDeleteColorTwist, 9-16

iplDeleteConvKernel, 6-6

iplDeleteTileInfo, 4-18

iplDilate, 8-5

ipldMalloc, 4-22

iplErode, 8-2

iplError, 3-2

iplErrorStr, 3-5

iplExchange, 4-25

iplFree, 4-23

iplGetConvKernel, 6-5

iplGetErrMode, 3-4

iplGetErrStatus, 3-3

iplGrayToColor, 9-7

iplHistoEqualize, 10-7

iplHLS2RGB, 9-11

iplHSV2RGB, 9-10

IplImage structure, 4-6

ipliMalloc, 4-21

IplLastStatus global variable, 3-5

iplLShiftS, 5-11

iplMalloc, 4-19

iplMaxFilter, 6-10

iplMedianFilter, 6-9

iplMinFilter, 6-11

iplMirror, 11-6

iplMultiply, 5-9

iplMultiplyS, 5-4

iplMultiplyScale, 5-10

iplMultiplySScale, 5-5

iplNot, 5-12

iplOpen, 8-6

iplOr, 5-16

iplOrS, 5-14

iplPreMultiplyAlpha, 5-25

iplRealFft2D, 7-3

Index

Index-9

iplRedirectError, 3-6

iplReduceBits, 9-2

iplRGB2HLS, 9-10

iplRGB2HSV, 9-9

iplRotate, 11-5

iplRShiftS, 5-12

iplSet, 4-24

iplSetBorderMode, 4-15

iplSetColorTwist, 9-13

iplSetErrMode, 3-4

iplSetErrStatus, 3-3

iplSetROI, 4-14

iplSetTileInfo, 4-18

iplsMalloc, 4-21

iplSquare, 5-6

iplSubtract, 5-8

iplSubtractS, 5-4

iplThreshold, 10-2

IplTileInfo structure, 4-7

iplTranslateDIB, 4-30

iplwMalloc, 4-20

iplXor, 5-17

iplXorS, 5-15

iplZoom, 11-2

L

linear filters, 6-1

logical operations, 5-1

And, 5-16

AndS, 5-13

LShiftS, 5-11

Not, 5-12

Or, 5-16

OrS, 5-14

RShiftS, 5-12

Xor, 5-17

XorS, 5-15

lookup table. See palette color image

lookup table operations, 10-3

LShiftS function, 5-11

M

magnifying the image, 11-2

Malloc function, 4-19

manual organization, 1-2

MaxFilter function, 6-10

maximum permissible value, 2-7

MedianFilter function, 6-9

memory allocation functions, 4-2, 4-19

dMalloc, 4-22

Free, 4-23

iMalloc, 4-21

Malloc, 4-19

sMalloc, 4-21

wMalloc, 4-20

MinFilter function, 6-11

minimum permissible value, 2-7

Mirror function, 11-6

mirroring the image, 11-6

monadic operations, 5-1

morphological operations

Close, 8-7

Dilate, 8-5

Erode, 8-2

Intel Image Processing Library Reference Manual

Index-10

Open, 8-6

MSI. See multi-spectral image

multi-image operations, 2-5

multiply and scale pixel values

by a constant, 5-5

in two input images, 5-10

Multiply function, 5-9

multiply pixel values

by a constant, 5-4

by a negative power of 2, 5-12

in two input images, 5-9

square pixel values, 5-6

MultiplyS function, 5-4

MultiplyScale function, 5-10

MultiplySScale function, 5-5

multi-spectral image, 2-2

N

naming conventions, 1-5

Not function, 5-12

notational conventions, 1-5

numerical exceptions, 3-1

O

online version, 1-4

opacity, 5-18

opacity channel. See alpha channel

Open function, 8-6

opening and smoothing the image, 8-6

operation modes of IPL functions, A-1

Or function, 5-16

OrS function, 5-14

OUT compositing operation, 5-23

out-of-place operation, 2-7

output samples in RCPack2D format, 7-3

OVER compositing operation, 5-18, 5-23

P

palette color image, 2-2

parallelism, 1-1

pixel depth, 2-2

PLUS compositing operation, 5-23

PreMultiplyAlpha function, 5-25

producing error messages for users, 3-6

R

RCPack2D format, 7-1

real-complex packed format, 7-1

RealFft2D function, 7-3

rectangular region of interest, 2-4

RedirectError function, 3-6

reduce the image bit resolution, 9-2

ReduceBits function, 9-2

region of interest, 2-4, 4-12

channel, 2-4

rectangular, 2-4

report an error, 3-2

return value, 1-4

RGB2HLS function, 9-10

RGB2HSV function, 9-9

ROI. See region of interest

Rotate function, 11-5

rotating the image, 11-5

RShiftS function, 5-12

Index

Index-11

S

saturation mode, 2-7

scanline. See image row data

scanline alignment, 2-6

Set function, 4-24

set the error processing mode, 3-4

set the error status code, 3-3

SetBorderMode function, 4-15

SetColorTwist function, 9-13

SetErrMode function, 3-4

SetErrStatus function, 3-3

SetROI function, 4-14

SetTileInfo function, 4-18

shift pixel bits, 5-11, 5-12

shrinking the image, 11-3

signed data, 2-2

SIMD instructions, 1-1

sMalloc function, 4-21

smoothing and closing the image, 8-7

specify a color twist matrix, 9-13

Square function, 5-6

square pixel values, 5-6

status codes, 3-8

stretching the image contrast, 10-5

Subtract function, 5-8

subtract pixel values

from a constant, 5-4

two input images, 5-8

SubtractS function, 5-4

supported image attributes and modes, A-1

T

Threshold function, 10-2

thresholding the source image, 10-2

tiling, 2-8, 4-7

call-backs, 2-9

CreateTileInfo function, 4-17

DeleteTileInfo function, 4-18

IplCoord Structure, 2-9

IplTileInfo structure, 4-7

SetTileInfo function, 4-18

TranslateDIB function, 4-30

two-dimensional convolution, 6-3

U-Z
user-defined error handler, 3-13

Windows DIB, 4-2

Windows DIB functions, 4-2, 4-28

ConvertFromDIB, 4-32

ConvertToDIB, 4-33

TranslateDIB, 4-30

wMalloc function, 4-20

XOR compositing operation, 5-23

Xor function, 5-17

XorS function, 5-15

Zoom function, 11-2

zooming the image, 11-2

	Intel Image Processing Library Reference Manual
	How to Use This Manual
	Copyright Information
	Contents
	Chapter 1 Overview
	About This Software
	Hardware and Software Requirements

	About This Manual
	Manual Organization
	Function Descriptions
	Audience for This Manual
	Online Version
	Related Publications

	Notational Conventions
	Font Conventions
	Naming Conventions

	Chapter 2 Image Architecture
	Data Architecture
	Color Models
	Data Types and Palettes
	The Sequence and Order of Color Channels
	Coordinate Systems
	Image Regions
	Alpha (Opacity) Channel
	Scanline Alignment
	Image Dimensions

	Execution Architecture
	Handling Overflow and Underflow
	In-Place and Out-of-Place Operations

	Image Tiling
	Tile Size
	IplCoord Structure
	Call-backs
	ROI and Tiling
	In-Place Operations and Tiling

	Chapter 3 Error Handling
	Error-handling Functions
	Error
	GetErrStatus
	SetErrStatus
	GetErrMode
	SetErrMode
	ErrorStr
	RedirectError

	Error Macros
	Status Codes
	Error Handling Example
	Adding Your Own Error Handler

	Chapter 4 Image Creation and Access
	Image Header and Attributes
	IplImage Definition
	Tiling Fields in the IplImage Structure
	IplTileInfo Structure

	Creating Images
	CreateImageHeader
	AllocateImage
	DeallocateImage
	Deallocate

	Setting Regions of Interest
	CreateROI
	SetROI

	Image Borders and Image Tiling
	SetBorderMode
	CreateTileInfo
	SetTileInfo
	DeleteTileInfo

	Memory Allocation Functions
	Malloc
	wMalloc
	iMalloc
	sMalloc
	dMalloc
	iplFree

	Image Data Exchange
	Set
	Copy
	Exchange
	Convert

	Working in the Windows DIB Environment
	TranslateDIB
	ConvertFromDIB
	ConvertToDIB

	Chapter 5 Image Arithmetic and Logical Operations
	Monadic Arithmetic Operations
	AddS
	SubtractS
	MultiplyS
	MultiplySScale
	Square

	Dyadic Arithmetic Operations
	Add
	Subtract
	Multiply
	MultiplyScale

	Monadic Logical Operations
	LShiftS
	RShiftS
	Not
	AndS
	OrS
	XorS

	Dyadic Logical Operations
	And
	Or
	Xor

	Image Compositing Based on Opacity
	AlphaComposite
	AlphaCompositeC
	PreMultiplyAlpha

	Chapter 6 Image Filtering
	Linear Filters
	Blur
	CreateConvKernel
	GetConvKernel
	DeleteConvKernel
	Convolve2D
	ConvolveSep2D

	Non-linear Filters
	MedianFilter
	MaxFilter
	MinFilter

	Chapter 7 Linear Image Transforms
	Fast Fourier Transform
	RealFft2D
	CcsFft2D

	Discrete Cosine Transform
	DCT2D

	Chapter 8 Morphological Operations
	Erode
	Dilate
	Open
	Close

	Chapter 9 Color Space Conversion
	Reducing the Image Bit Resolution
	ReduceBits

	Conversion from Bitonal to Gray Scale Images
	BitonalToGray

	Conversion of Absolute Colors to and from Palette Colors
	Conversion from Color to Gray Scale
	ColorToGray

	Conversion from Gray Scale to Color (Pseudo-color)
	GrayToColor

	Conversion of Color Models
	RGB2HSV
	HSV2RGB
	RGB2HLS
	HLS2RGB

	Using Color-Twist Matrices
	CreateColorTwist
	SetColorTwist
	ApplyColorTwist
	DeleteColorTwist

	Chapter 10 Histogram and Thresholding Functions
	Thresholding
	Threshold

	Lookup Table (LUT) and Histogram Operations
	ConstrastStretch
	ComputeHisto
	HistoEqualize

	Chapter 11 Image Geometric Transforms
	Changing Image Size
	Zoom
	Decimate

	Changing Image Orientation
	Rotate
	Mirror

	Appendix A Supported Image Attributes and Operation Modes
	Bibliography
	Glossary
	Index

