|ntel
| mage Processing

Library

Reference Manual

Copyright © 1996, 1997, Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number 663791B-002

]
-

=

-lTT
RN
non

[T 1]
.
non

[l

213

How to Use This Online Manual

Click to hide or show subtopics when the F Click to go to the previous page.
bookmarks are shown.

Double-click to jump to a topic when the b Click to go to the next page.

bookmarks are shown.

Click to display bookmarks. M Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.

*‘ Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail Click to go forward from the previous
view. view.

w
w

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

Click and drag to the page to reduce the Click to fill the width of the window.

view.

)| | (=0)

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to

jump to the related subjects. Use the

v | &

return back icon above to go back.

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.

Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.

Jumping to Topics. Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in green color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:
This softwareis briefly described in the Overview; see page 1-1.
If you click on the phrase printed in green color, underlined style, or on the page number, the Overview

opens.

Intel Image Processing Library
Reference Manual

Order Number: 663791B-002

Revision Revision History Date
B-001 Documents release 1.0 Beta of the library. 01/20/97
B-002 Documents release 1.0 Beta 2 of the library. 04/04/97

The ipIBitonalToGray, iplCreateColorTwist, iplDeleteColorTwist,
ipILShiftS, ipIMultiplyScale, ipIMultiplySScale, and ipINot functions
have been added. Miscellaneous edits have been made.

Information in this manual is provided in connection with Intel products. Intel assumes no liability whatsoever,
including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's
Terms and Conditions of the license agreement for such products.

Intel Corporation retains the right to make changes to these documents at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

Since publication of documents referenced in this document, registration of the Pentium and iCOMP
trademarks has been issued to Intel Corporation.

Intel, the Intel logo, ICOMP, Pentium, and Indeo are registered trademarks of Intel Corporation.
MMX and i486 are trademarks of Intel Corporation.
*Other brands and names are the property of their respective owners.

Copyright [0 1996, 1997, Intel Corporation. All Rights Reserved.

Contents

Chapter 1

Chapter 2

Overview

About This SOftWareoeeviieeiii e,
Hardware and Software Requirements

About This Manual.............ocooeiiiiiiii e
Manual Organization..............oooeeeeeeiiiie e
Function DescCriptionsccooovvviiiiniiiiiieeeeeee
Audience for This Manualccccoeeeeiiiiiiiiiieeennne.
ONliNE VEISION ...
Related Publicationsccooooiiiiiiieieeee

Notational ConVENtioNSc.oveveiiiiiiiieeie e,
Font ConventionS..........cooeeivieeiiieeeeeeee e,
Naming Conventionsccoveveeiiiinniniineeeeeeee
Function Name ConventionsS.........ccc.occvveeeiveeeevnnnenn.

Image Architecture

Data ArChiteCtUreuuuuiiiiiiiiiiiiiiiiiie e
COlOr MOEIS....coiiiiiiiiiieeeeiee
Data Types and Palettescccccceviiiiiiiiiiiicinne
The Sequence and Order of Color Channels
Coordinate SYStEMSuuvuriimiiiieiieeerieieeeeeeeeeeeeeeeeees
Image REQIONS.......cooiiiiiiii
Setting an ROI for Multi-lmage Operations
Alpha (Opacity) Channel ..o,
Scanline AlIgNMENTuviiiiiiiiiiiiieeeeeeeeeeeeeeeee e
Image DIMENSIONScoooviiiiiieiieee e

Execution ArchiteCtUreevvviieiiiiiiiiiieeeeee s
Handling Overflow and Underflowcccceeene
In-Place and Out-of-Place Operations

Intel Image Processing Library Reference Manual

IMmage TiliNgoooee e
Tile SIZe .o
IPICOOrd SErUCIUIE ...
Call-DaCKSoumiiiiiiiiiiiii e
ROIAaNd TiliNG ..evvvviiiiiiiiiiiiiiieieeeeeeee e
In-Place Operations and TiliNgcevvvviiiiiiiiieeeeenn.

Chapter 3 Error Handling
Error-handling FuNCtions ...
ErrOr
GetEStatus
SEtEStatus ...,
GEtEIMMOUE ... e
SEtEIMMOUE... ..o
ErrOrStr e
REdIrECIEITOr......v i
[g (o] 1Y, F=Tod 01
StAtUS COUEBS ..uniiiieee e
Error Handling Example.............ooooiiiiiieeee
Adding Your Own Error Handlerccccoviviiiiiiiiiineneen.

Chapter 4 Image Creation and Access
Image Header and Attributescoovviiiiiiiiiiiies
Tiling Fields in the Iplimage Structureccccccvvveeeeennnn.
IpITIleINfo SrUCtUre.......coooeeeee e
Creating IMagEsoovvviiiiiiiii e,
CreatelmageHeader ...
Allocatelmageoovvvvvviiiiiii
Deallocatelmageueuevrriiiiiiiiiiiiiiiinieeeeeeeeeeeeeees
DeallOCAtEveeeeeeeeeieieeeeeee
Setting Regions Of INErest ...
CreateROI ...

Contents

Chapter 5

SEIROI ...
Image Borders and Image Tiling ...,
SetBorderMode.........ooovveieiieeeeeee e
CreateTilelnfo ...,
SetTilelNfO ..o,
DeleteTilelNfo.....cccooveii e,
Memory Allocation FUNCLIONS.............uuviiiiiiiiiiiiiiiiiiieeeeeeeen
MalIOC coneieeee e
WMaAlIOC ... oo
IMAIIOC .veeiiecee e
SMAllOC. ... i
AMAIIOC . .ceveiiece e
Free
Image Data EXChangecuuvviiiiiiiiiiiiiiiiieeiiieeeeeeeeeeeeee
SOl
COPY oo
EXChange........ooooiiii
CONVEI ..t
Working in the Windows DIB Environment
TranslateDIB........cocvoiiiieeeeeee e
ConvertFromDIB ...
ConvertTODIB ...

Image Arithmetic and Logical Operations

Monadic Arithmetic Operations.............cccccvvvrriirieieeeeeeeeee.
AAS
SUDBLIACES ..o
MUILIPIYS ..
MUItIPlYSSCale ..o,

Intel Image Processing Library Reference Manual

vi

Chapter 6

Dyadic Arithmetic Operations
Add
Subtractccccvviiiii
MUILIPIY e
MultiplyScale..........cccccvvvvivininnnnns

Monadic Logical Operations
LShIftS ..o
RShIftS. ..o

XOIS
Dyadic Logical Operations.....................
ANd
OF
XOI

Image Compositing Based on Opacity

Using Pre-multiplied Alpha Values
AlphaComposite.........cccccvvveveeneen.
AlphaCompositeC............ceevveeeeee.
PreMultiplyAlpha ..o

Image Filtering

Linear Filters.......coovvviiiiiiieeieeeeeeee,
Blur
2D Convolutioncccoeeeveeinnnnnns
CreateConvKernelccccccoeunie.
GetConvKernelccooeeveveeeinnnnnn
DeleteConvKernel..........ccccc.........
Convolve2Dcccceviiiiieiieenn,
ConvolveSep2Dcccccuvvvinnnnnns

Contents

NON-lINEAT Filtersccoeveveevieeiceeieceeeeeeee e
MedianFilter..........eeivieee e -
MaXFIIEr ...oeeeeeeie e 6-10
MINFIEE ..o 6-11

Chapter 7 Linear Image Transforms

Fast Fourier Transformcooeeviiiiie e 7-1
Real-Complex Packed (RCPack2D) Format
REAIFFI2D.......oovieeeeeceeceeeee e
(0701w 1 124 I IR 7-5

Discrete Cosine Transformcccoooiiviiiiiiiiieeieeee 7-6
5 L O 171 5 7-7

Chapter 8 Morphological Operations

Erode ..o 8-2
DIlate v 8-5
OPBN
ClOSE e 8-7

Chapter 9 Color Space Conversion

Reducing the Image Bit Resolutioncccccvvviiiiiennnn. 9-2
ReduceBits ..o
Conversion of Bitonal Images to Gray Scale @
BItONAITOGIAYocvovieiciciieieeeeeese e 9-4
Conversion of Absolute Colors to and from Palette Colors
Conversion from Color to Gray Scaleccccvvvveveiineeenn. 9-5
COIOITOGIAY ..vueveiecieeiee et
Conversion from Gray Scale to Color (Pseudo-color) l&Z?]
GrayToCOIOruviiiiiiieii e
Conversion of Color MOGEISc.coveeeeeeeeeeeeeee e, 9-8
RGB2HSV.....ovieeiieeieeeeeee e,
HSV2RGB.....coiiiiiiiiii e 9-10

vii

Intel Image Processing Library Reference Manual

viii

RGB2HLS ...
HLS2RGB ..o
Using Color-Twist MatriCes ...
CreateColorTWISE ...,
SetCoOlOrTWISE.....ciiiiciee e
APPIYCOIOITWIST ..
DeleteColorTWISE......cocveieiiieeee e

Chapter 10 Histogram and Thresholding Functions
THresholdingcovvvviiiiiii
Threshold ...,
Lookup Table (LUT) and Histogram Operations
The IpILUT Structure..........oooooeeiiiiiiieeeeeeeeee
ContrastStretCh ...
COMPULEHISTO ...
HIStOEQUAlIZEeeviiiiiiiiiiiieeeeee e

Chapter 11 Linear Geometric Transforms
Changing IMage SiZe ...,
4 o To] o 1 TP
DECIMALE.......ciiiiiiiiiiiiieiee e
Changing Image Orientationccccceeeeeeeeiinniiiiiiies
ROTALE .
MITTOT e

Appendix A Supported Image Attributes and
Operation Modes

Bibliography
Glossary

Index

Contents

Figures

Tables

Examples

Figure 2-1 Setting an ROI for Multi-Image Operations

2-5

Figure 4-1 RGB Image with a Rectangular ROl and a COI

Figure 8-1 Erosion in a Rectangular ROlcc.o......

Table 2-1 Data Orderingccoeeeeeeeeeeeeeieiiiicee e
Table 3-1 iplError() Status Codescccccvvvveeeeeeiinnnnnnnnn.

Table 4-1 Image Creation, Data Exchange and

Windows DIB Environment Functions...............
Table 4-2 IPL Image Header Attributesccc.........
Table 5-1 Image Arithmetic and Logical Operations
Table 5-2 Types of Image Compositing Operations
Table 6-1 Image Filtering Functionscccccvvvnnnee.
Table 7-1 Linear Image Transform Functions

Table 7-2 Arrangement of Output Samples

in RCPack2D Format.......cccooeveeeeeevieeeeiiiiiinnn,
Table 8-1 Morphological Operation Functions
Table 9-1 Color Space Conversion Functions

Table 9-2 Source and Resultant Image Data Types

for Reducing the Bit Resolution

Table 9-3 Source and Resultant Image Data Types for

Conversion from Color to Gray Scale

Table 9-4 Source and Resultant Image Data Types for

Conversion from Gray Scale to Color
Table 10-1 Point Operation Functionscccceeeevue.
Table 11-1 Image Geometric Transform Functions

Example 3-1 Error FUNCLIONSccovviieiiiiiiiieeiiiiiieeee
Example 3-2 Output for the Error Function Program
Example 3-3 Output for the Error Function Program
Example 3-4 A Simple Error Handlercccccccceiiiinnns

5-23

Intel Image Processing Library Reference Manual

Example 4-1 IPLImage Definitioncccoeeeeiiiiiincnnnnnn.
Example 4-2 IpIROI Definition ...
Example 8-1 Code Used to Produce Erosion

in a Rectangular ROlcccooooiiiiiiiiis
Example 10-1 IpILUT Definitioncoooeeeiiiiiiiiiiiiiis

Overview

This manual describes the structure, operation and functions of the Intel
Image Processing Library (IPL). Thislibrary supports many functions
whose performance can be significantly enhanced on the Intel
Architecture (1A), particularly the MMX ™ technology.

The manual describes the architecture of the IPL data and execution and
provides detailed descriptions of the functionsincluded in the Intel Image
Processing Library.

This chapter introduces the Intel Image Processing Library and explains
the organization of this manual.

About This Software

The Intel Image Processing Library focuses on taking advantage of the
paralelism of the SIMD (single-instruction, multiple-data) instructions
that comprise the MM X technology. This technology improves the
performance of computationally intensive image processing functions.
Thusthislibrary includes a set of functions whose performance
significantly improves when used with the Intel Architecture MMX
technology. The library does not support the reading and writing of awide
variety of image file formats or the display of images.

Hardware and Software Requirements

The Intel Image Processing Library runs on personal computers that are
based on Intel Architecture processors and running Microsoft* Windows*,
Windows 95*, or Windows NT*. The library integrates into the
customer’s application or library written in C or C++.

1-1

Intel Image Processing Library Reference Manual

About This Manual

This manual provides a background of the image and execution
architecture of the Intel Image Processing Library as well as detailed
descriptions of the IPL functions. The IPL functions are combined in
groups by their functionality. Each group of functionsis described in a
separate chapter (chapters 3 through 11).

Manual Organization

This manual contains eleven chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

“Qverview.” Introduces the Image Processing
Library software, provides information on
manual organization, and explains notational
conventions.

fmage Architecture Describes the data
formats supported, the execution architecture,
and image tiling. The data formats include color
models, data types, data order, and coordinate
systems. The execution architecture discussion
focuses on overflow and underflow issues and
in-place and out-of-place operations.

Error Handling” Provides information on the
error-handling functions included with the
library. User-defined error handler is also
described.

fmage Creation and Acces®Pescribes the
functions used to: create, set, and access image
attributes; set image border and tiling; and
allocate the memory for different data types. The
chapter also describes the functions that facilitate
operations in the window environment.

Overview

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

“Image Arithmetic and Logical Operatiahs
Describes image processing operations that
modify pixel values using simple arithmetic or
logical operations. These operations include
monadic operations (single input image) and
dyadic operations (two input images).

fmage Filtering’ Describes linear and non-

linear filtering operations that can be applied to
images.

Linear Image TransformsDescribes the fast
Fourier transform (FFT) and Discrete Cosine
Transform (DCT) implemented in the IPL.

Morphological Operation$Describes the
morphological operations supported in the
library: simple Erosion, Dilation, Opening and
Closing

Color Space ConversidnDescribes the color
space conversions supported in the library; for
example, color reduction from high resolution
color to low resolution color; conversion from
Palette to Absolute color and vice versa;
conversion to different color models.

Mistogram and Thresholding Functidhs
Describes functions that treat an image on a
pixel-by-pixel basis: operations that alter the
histogram of the image; contrast stretching,
histogram computation, histogram equalization
and thresholding.

Image Geometric TransfornidDescribes
geometric transforms: Zoom, Decimate, Rotate,
and Mirror.

The manual also includesopendixthat lists supported image attributes
and operation mode§lossaryof terms,Bibliography, andindex

Intel Image Processing Library Reference Manual

Function Descriptions

In Chapters 3 through 11, each function isintroduced by name (without
thei pl prefix) and a brief description of its purpose. Thisisfollowed by
the function call sequence, more detailed description of the function’s
purpose, and definitions of its arguments. The following sections are
included in each function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation
performed by the function. Often, code examples
and the equations the function implements are
included.

Return Value If present, describes a value indicating the result
of the function execution.

Application Notes If present, describe any special information
which application programmers or other users of
the function need to know.

See Also If present, lists the names of functions which
perform related tasks.

Audience for This Manual

The manual is intended for the developers of image processing
applications and image processing libraries. Both parts of the audience are
expected to be experienced in using C and to have a working knowledge
of the vocabulary and principles of image processing. The developers of
image processing software can use the Intel IPL capabilities to improve
performance on IA with MMX technology.

Online Version

This manual is available in an online hypertext format. To obtain a hard
copy of the manual, print the online file using the printing capability of
Adobe* Acrobat, the tool used for the online presentation of the document.

Overview

Related Publications

For more information about computer graphics concepts and objects, refer
to the books and materials listed in the Bibliography.

Notational Conventions

In this manual, notational conventions include:

* Fonts used for distinction between the text and the code
« Naming conventions

* Function name conventions

Font Conventions

The following font conventions are used:

UPPERCASE COURI ER Used in the text for IPL constant identifiers;
for example, | PL_DEPTH_1U.
| ower case couri er Mixed with the uppercase in function names

asin Set Execut i onMode; also used for key
words in code examples; for example, in the
function call statement voi d i pl Square() .

| overcase m xed with Variablesin arguments and parameters
Upper Case Courier italic discussion; for example, node, dst | mage.

Naming Conventions

The following data type conventions are used by the IPL library:

e Congtant identifiers are in uppercase; for example, | PL_SI DE_LEFT.

e All constant identifiers have the | PL prefix.

e All of the function names havethei pl prefix. In code examples, you
can distinguish the IPL interface functions from the application
functions by this prefix.

1-5

Intel Image Processing Library Reference Manual

NOTE. Inthismanual, thei p/ prefix in function namesis always used in
the code examples. In the text, this prefix is sometimes omitted.

¢ All image header structures have the | pl prefix; for example,
I pl I mage, | pl RO .

« Each new part of afunction name starts with an uppercase character,
without underscore; for example, i pl Al phaConposite.

Function Name Conventions

The function names in the IPL library typically begin with thei pl prefix
and have the following general format:

ipl < action > < target > < nod >()
where

action indicates the core functionality; for example,
-Set-,-Create-,Or-Convert-.

tar get indicates the area where image processing is
being enacted; for example, - ConvKer nel or
- FronDl B.

In anumber of cases, the target consists of two
or more words; for example, - ConvKer nel in
the function Cr eat eConvKer nel . Some function
names consist of an acti on or t ar get only; for
example, the functions Mul ti pl y or Real Ff t 2D,
respectively.

nod The nod field is optional and indicates a
modification to the core functionality of a
function. For example, in the name
i pl Al phaConpositeC() , Cindicatesthat this
function is using constant apha values.

1-6

lmage Architecture

This chapter describes the data architecture and the execution architecture
of the Intel Image Processing Library (IPL). The data formats supported
by IPL define the image architecture as explained in the sections that
follow.

Data Architecture

An IPL image has a header that describes the image as alist of attributes
and pointers to the data associated with the image. Library functions use
the image header to get the format and characteristics of the image(s)
passed to the functions. Based on the information obtained from the
header, the functions make appropriate callsto set the data structures.
Images can have different organization of data. |PL supports numerous
dataformats that use different color models, data types, data order, and
coordinate systems.

Color Models

The IPL image format supports the following color models:
« Monochrome or gray scale image (one color channel)

e Color image (3 or 4 color channels)

e Multi-spectral image (any number of channels).

Color models are defined by the number of channels and the colors they
contain. Examples of three-channel models are RGB, HSV, CMY,, and
Y CC. Examples of four-channel color models are CMYK and RGBA.

Image processing operations can be performed on one or all channelsin
the image. The operations are performed without specific identification of
the colors, unlessit is a certain color conversion operation where color
identification is required.

2-1

Intel Image Processing Library Reference Manual

2-2

The multi-spectral image (MSI) model is used for general purpose images.
It isused for any kind of multi-spectral data and any kind of image. For
example, the Fourier transform operation writes transform coefficients of
color or monochrome images to this model [one channel for each channel
in the input. The result can be viewed as an MSI image. An M S| image
can contain any number of color channels; they may even correspond to
invisible parts of the spectrum. The library functions do not need to
identify any specific MSI image channels.

Data Types and Palettes

The parameter that determines the image datatype isthe pixel depthin
bits. The data could be signed or unsigned. The following data types are
supported for various color models (s = signed, u = unsigned):

Gray scale 1, 8s, 8u, 16s, and 16u bits per pixel
Coalor (three-channel) 8u and 16u bits per channel
Four-channel and M S| 8s, 8u, 16s, 16u, 32s bits per channel

IPL supports only absolute color images in which each pixel is represented
by the channel intensities. For example, in an absolute color 24-bit RGB
image, three bytes (24 hits) per pixel represent the three channel
intensities. LUT (lookup table) images, that is, palette color images are not
supported. Y ou must convert palette images to absolute color images for
further processing by the IPL functions. The library provides functions to
convert DIB palette images to | PL absolute color images.

Color images with 8, 16, or 32 bits per channel simply pack each channel,
respectively, into a byte, word, or doubleword. All channels within a given
image have the same data type.

Signed data (8s, 16s, or 32s) are used for storing the output of some image
processing operations; for example, thisis the case for transforms such as
FFT. Unless specified otherwise, signed data cannot be used as input to
image processing operations.

Image Architecture

L)

Table 2-1

The Sequence and Order of Color Channels

Channel sequence corresponds to the order of the color channelsin
absolute color images. For example, in an RGB image the channels could
be stored in the sequence RGB or in the sequence BGR. The sequence of
the channelsis not important to the image processing functions which do
not identify the channels.

NOTE. For the color conversion operations, the information about
channel sequenceisrequired and therefore must be provided.

For images with pixel-oriented data, the channel sequence corresponds to
the color data order for each pixel. Data ordering corresponds to the way
the color datais arranged: by planes or by pixels. Table 2-1 liststhe
orderings that are supported for planes and for pixels.

Data Ordering

RGB Example
Data Ordering Description (channel ordering = RGB)
Pixel-oriented All channels for each pixel RGBRGBRGB (line 1)
are clustered. RGBRGBRGB (line 2)

RGBRGBRGB (line 3)
Plane-oriented All image data for each RRRRRRRRR (line 1)

channel is contiguous RRRRRRRRR (line 2) R plane
followed by the next RRRRRRRRR (line 3)
channel.

GGGGGGGGG (line 1)
GGGGGGGGG (line 2) G plane
GGGGGGGGG (line 3)

Intel Image Processing Library Reference Manual

Coordinate Systems

Two coordinate systems are supported by the IPL image format.

e Theorigin of theimageisin the top left corner, the x valuesincrease
from left to right, and y values increase from top to bottom.

e Theorigin of theimageisin the bottom left corner, the x values
increase from left to right, and y values increase from the bottom to
the top.

Image Regions

A very important concept in the IPL library architecture is an image region
of interest (ROI). All image processing functions can operate not only on
entire images but also on image regions.

Depending on the processing needs, the following image regions can be

specified:

¢ A channd of interest (COI). A COI can be one or al channels of the
image. By default, unless the COI is changed by the Set RO ()
function, processing will be carried out on al channelsin the image.

« A rectangular region of interest (rectangular ROI). A rectangular ROI
isaportion of theimage or, possibly, the entire image. By defaullt,
unless changed by the Set RO () function, the entire image is the
rectangular region of interest.

An IPL image can simultaneously have arectangular ROI and a channel
of interest. If thisisthe case, operations will be performed on the
“intersection” of these two ROIs.

Thus an image region specifies some part of an image or the entire image.
Once set, the region information of the IPL image remains the same until
changed by the functioget RO () .

Image Architecture

Figure 2-1

Setting an ROI for Multi-Image Operations

Figure 2-1 illustrates image processing operations that take one or more
input images and store the results onto an output image.

Setting an ROI for Multi-Image Operations

Input image Output image

ROI

The processing
is performed in
the shaded area

All images (input and output) in Figure 2-1 have rectangular ROIs that
specify either the entire image or specific regions set by the Set RO ()
function. Thefirst step isto align the rectangular ROIs of all the images so
that their top left corners coincide. The operation is, then, performed in the

2-5

Intel Image Processing Library Reference Manual

rectangular region where al the images overlap. This scheme gives much
flexibility, effectively enabling trandation of image data (even for equal-
size images) from one region of an input image to another region of an
output image.

To successfully perform an image processing operation, one of the

following conditions must be met for the channel of interest (COI):

« Eachimage (input and output) has one channel in the channel COI,

« Eachimage (input and output) has all channelsincluded in the ROI
(COI = 0) and all images (input and output) have the same number of
channels (one or more).

If oneimage (input or output) has one channel in its COI and another
image (input or output) has more than one channel included in its COI, an
error will occur.

Alpha (Opacity) Channel

In addition to the color channels, an IPL image can have one apha
channel, aso known as an opacity channel, which ismainly used for
image compositing operations (see “Image Compositing Based on
Opacity’ in Chapter 5).

The alpha channel is treated like any other channel in the IPL format; you
are allowed not to identify it when not required. However, alpha channels
must be explicitly specified for the functions that require them (see, for
example, the pl Al phaConposi t e function).

Scanline Alignment

Image row data (scanline) can be aligned on doubleword (32-bit) or
quadword (64-bit) boundaries. Each row is padded with zeros if required.
For maximum performance with MMX technology, it is important to

have the image data aligned on quadword boundaries.

Image Architecture

Image Dimensions

Thereisno practical limit of the image size. An unsigned long integer is
used for the height and width of the image. This allows you to create
images of size up to 2* by 2* pixels, which is much beyond the hardware
and OS constraints of today’s PCs or workstations.

Execution Architecture

This section describes the execution time issues such as
overflow/underflow handling and in-place and out-of-place operations.
Cache optimization and deferred execution mode will be discussed in the
next release.

Handling Overflow and Underflow

Overflow and underflow are handled in each image processing function.
The default mode of operation is saturation which is a mode that prevents
from potential overflow or underflow of the values. In saturation mode,
when an overflow of a value is about to happen, this value is clamped to
the maximum permissible value (for example, 255 for an unsigned byte).
Similarly, when underflow of a value is about to happen, it is clamped to
the minimum permissible value, which is always zero for the case of
unsigned bytes.

In-Place and Out-of-Place Operations

All image processing operations in the library can be in-place or out-of-
place operations, unless it is explicitly specified that a particular operation
must belong to one of these categories only. With an in-place operation,
the output image is one of the input images modified (that is, the pointer to
the output image is the same as the pointer to the input one). With an out-
of-place operation, the output image is a new image, not the same as any
of the input images.

Intel Image Processing Library Reference Manual

2-8

Image Tiling

Tiling is amethod of image representation in which, for reasons of
efficiency, the image is broken up into smaller images, or tiles. The whole
image is reconstructed by arranging the individual tilesin agrid. Usually,
the tiles are of auniform size; special techniques can be used to
accommodate an overall image height or width that is not an even multiple
of thetile size. Image processing applications frequently use square tiles
with sizes that are multiples of two; for example, a 64-by-64 tileistypical.

In most IPL functions, tiled images may be used in the same way as non-
tiled images, subject to some restrictions. The effect of functions on tiled
images is always the same as that of the same function on an image of the
same size and content that is not tiled. The behavior varies as stated below,
particularly in the call-back requirement.

This section gives a short overview of imagetiling in the IPL. In Chapter 4
you can find more information about tiling, namely, the descriptions of the
Ti | el nf o structure, the i magel D parameter, and the functions

CreateTil el nfo, SetTil el nfo, andDel et eTi |l el nfo.

Tile Size

IntheIPL, al tiles must be of the same size, including those on the edge
of animage. Thetiles on the edge of an image must contain valid data up
to the border of the image; beyond that, the pixels are ignored, and the
border mode is used instead.

The size of theimagetilesis contained within the | pl Ti | el nf o structure.
It isrestricted to being an even multiple of 8 in each dimension.

For functions that take more than one source image, either all source
images must be tiled with equally-sized tiles or they must all be non-tiled.
The source and destination images tiling and tile sizes need not be the
same.

Image Architecture

IplCoord Structure

The arguments of every function with both an input and output image
include a pointer to the following structure:

i pl Function(..., |IplCoord*);

typedef struct _Ipl Coord {
int xDst, yDst;
} Ipl Coord

ThexDst and yDst fields are the offsets (in pixels) of the origin of the
destination image from the origin of the source image.

If there are multiple source images, these images are assumed to have their
ROI origins aligned with each other.

The pl Coor d structure is not specific to tiling in that it is supported
whether the source/destination images are tiled or not. Itsintent isto
support for tiling schemes other than the IPL tiling scheme by providing a
method of identifying the location of the destination with respect to the
source. Such amethod isimportant if the argument images are,
unbeknownst to the IPL functions, actually tilesin a user-implemented
tiling scheme. The | pl Coor d parameter isignored if NULL.

Call-backs

Sincethel pl | mage structure does not contain any image data, functions
operating on tiled images must acquire datatile-by-tile. To do this, the IPL
uses a system of call-backs, in which the IPL function requests pointersto
individual tiles based on need.

The call-back system isimplemented (by the library user) asasingle

function, the prototype and behavior of which are specified below. When
called by thelibrary, this function provides or releases one tile’s worth of
data. The function is specified to the library in the | Back field of the

I pl Ti | el nf o structure. The prototype is as follows:

void (*IplCallBack) (const Ipllmage* ing, int xlndex,
int ylndex, int node);

2-9

Intel Image Processing Library Reference Manual

2-10

where

i mg isthe header provided for the parent image;

xI ndex and yI ndex arethe indices of the requested tile; they refer to the
tile number, not pixel number, and count from the origin at (0,0);

nmode isone of the following:

| PL_GET_TILE TO READ get atilefor reading;
thetile dataisreturned in
img->tilelnfo->tileData
and must not be changed;

| PL_GET_TILE_TO WRI TE get atilefor writing;
thetile datais returned in
img->tilelnfo->tileData
and may be changed;
changes will be reflected in the image;

| PL_RELEASE_TI LE release tile; commit writes.

Memory pointers provided by a get function will not be used after the
corresponding rel ease function has been called.

ROl and Tiling

The meaning and behavior of ROI for tiled images are identical to those
for anon-tiled image.

In-Place Operations and Tiling

Functions that are called with identical source and destination images
(header pointers equal) are handled correctly by the library, even with
tiling. If the source and destination image pointers are not equal, no
support for source and destination overlap is provided.

Note that the presence of | pl RO and/or | pl Coor d structures does not
affect thisrestriction.

Error Handling

This chapter describes the error handling facility of the Image Processing
Library. The IPL functions report a variety of errorsincluding bad
arguments and out-of-memory conditions. When a function detects an
error, instead of returning a status code, the function signals an error by
callingi pl Set Err St at us() . Thisallowsthe error handling mechanism
to work separately from the normal flow of the image processing code.
Thus, the image processing code is cleaner and more compact as shown in
this example:

Col or Twi st = i pl Set Col or Twi st (data, scalingVal ue);
i f(iplCGetErrStatus()<0) /'l check for errors

The error handling system is hidden within the function
i pl Set Col or Twi st () . Asaresult, this statement is uncluttered by error
handling code and closely resembles a mathematical formula.

Y our application should assume that every library function call may result
in some error condition. The Image Processing Library performs extensive
error checks (for example, NULL pointers, out-of-range parameters,
corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. Y ou can modify the way your application handles errors by

callingi pl Redi rect Error () with apointer to your own error handling
function. For more information, see “Adding Your Own Error Handlé&r

later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

The Image Processing Library does not process numerical exceptions (for
example, overflow, underflow, and division by zero). The underlying
floating point library or processor has the responsibility for catching and

31

Intel Image Processing Library Reference Manual

reporting these exceptions. A floating-point library is needed if a
processor that handles floating-point is not present. Y ou can attach an
exception handler using an underlying floating-point library for your
application, if your system supports such alibrary.

Error-handling Functions

The following sections describe the error functionsin the Image
Processing Library.

Error

Performs basic error

handling.

void iplError (I PLStatus status, const char *func,
const char * context);

status Code that indicates the type of error (see

Table 3-1, “iplError() Status Codég
func Name of the function where the error occurred.
cont ext Additional information about the context in

which the error occurred. If the value of
cont ext iSNULL or empty, this string will not
appear in the error message.

Discussion

Thei pl Error () function must be called whenever any of the IPL
functions encounters an error. The actual error reporting is handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the

Error Handling

error mode flag to alter the behavior of the i pl Error () function. For
more information on the defined error modes, see “ SetErrModé section.

To simplify the coding for error checking and reporting, the error handling
system supplied by the IPL Library supports a set of error macros. See
“Error Macro$ for a detailed description of the error handling macros.

Thei pl Error () function calls the default error reporting function. You
can change the default error reporting function by calling

i pl Redi rect Error (). For more information, seeédi r ect Err or " (for

i pl RedirectError()).

GetErrStatus
SetErrStatus

Gets and sets the error codes
that describe the type of
error being reported.

typedef int |PLStatus;
I PLStatus ipl GetErrStatus();

void iplSetErrStatus(lPLStatus status);

status Code that indicates the type of error
(see Table 3-1,iplError() Status Codék

Discussion

Thei pl Get Err St at us() andi pl Set Err St at us() functions get and set
the error status codes that describe the type of error being reported. See
“Status Codésfor descriptions of each of the error status codes.

Intel Image Processing Library Reference Manual

GetErrMode
SetErrMode

Gets and setsthe error
modes that describe how an
error is processed.

#define | PL_Err MbdeLeaf 0
#define | PL_Err ModeParent 1
#define | PL_ErrModeSilent 2

int iplGetErrMde();

voi d ipl Set ErrMode(int errMbde);

err Mbde Indicates how errors will be processed. The
possible values for er r Mbde are
| PL_Err ModeLeaf , | PL_Err ModePar ent , Or
| PL_Err ModeSi | ent .

Discussion

errorsfor applications which run in console mode. If your application has
a custom error handler, errorswill be processed differently than
described below

[“ NOTE. This section describes how the default error handler handles

Thei pl Set Err Mode() function sets the error modes that describe how
errors are processed. The defined error modes are | PL_Er r ModelLeaf
| PL_Err ModeParent ,and | PL_Er r MbdeSi | ent .

If you specify | PL_Er r ModeLeaf , errors are processed in the “leaves” of
the function call tree. Thiepl Error () function (in console mode) prints
an error message describingat us, f unc, andcont ext . It then
terminates the program.

34

Error Handling

If you specify | PL_Er r ModePar ent , errors are processed in the “parents”

of the function call tree. Wheirpl Error () is called as the result of
detecting an error, an error message will print, but the program will not
terminate. Each time a function calls another function, it must check to see
if an error has occurred. When an error occurs, the function should call

i pl Error() specifyingl PL_St sBackTr ace, and then return. The macro

| PL_ERRCHK() may be used to perform both the error check and back-
trace call. This passes the error “up” the function call tree until eventually
some parent function (possibtyi n()) detects the error and terminates

the program.

| PL_Err ModeSi | ent is similar tol PL_Er r ModePar ent , except that error
messages are not printed.

| PL_Err ModeLeaf is the default, and is the simplest method of processing
errors.l PL_Er r ModePar ent requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they usdPL_ERRCHK()after function calls). If an application uses the
IPL_ErrModeParenbption, it is essential that it check for errors after all
library functions that it calls.

The status code of the last detected error is stored into the global variable
I pl Last St at us and can be returned by callihgl Get Err St at us() .

The value of this variable may be used by the application during the back-
trace process to determine what type of error initiated the back trace.

ErrorStr

Trandlates an error or status code
into a textual description.

const char* iplErrorStr(lPLStatus status);

status Code that indicates the type of error
(see Table 3-1,iplError() Status Codék

35

Intel Image Processing Library Reference Manual

Discussion

The functioni pl Error Str () returns ashort string describing st at us.
Use this function to produce error messages for users. The returned
pointer is a pointer to an interna static buffer that may be overwritten on
thenext call toi pl ErrorStr ().

RedirectError

Assigns a new error handler
to call when an error occurs.

| PLErr Cal | Back ipl RedirectError (I PLErrCall Back func);

func Pointer to the function that will be called when
an error occurs.

Discussion

Thei pl Redi rect Error () function assigns a new function to be called
when an error occursin the IPL Library. If func iSNULL,
i pl RedirectError () installs the IPL Library’s default error handler.

The return value of pl Redi rect Error () is a pointer to the previously
assigned error handling function.

For the definition of the function typedefLEr r Cal | Back, see the
include filei pl error. h. See Adding Your Own Error Handl&rfor
more information on thepl Redi rect Error () function.

Error Handling

Error Macros

The error macros associated with the i pl Error () function are described
below.

#defi ne | PL_ERROR(status, func, context) \
ipl Error((status), (func), (context);

#defi ne | PL_ERRCHK(func, context)\
((iplGetErrStatus()>=0) ? IPL_StsCk \
| PL_ERROR(| PL_St sBackTrace, (func), (context)))

#defi ne | PL_ASSERT(expr, func, context)\
((expr) ? IPL_StsCk\
| PL_ERROR(I PL_Stslnternal, (func), (context)))

#defi ne | PL_RSTERR() (ipl SetErrStatus(lPL_StsCK))

cont ext Provides additional information about the context in
which the error has occurred. If the value of
cont ext iISNULL or empty, this string does not
appear in the error message.

expr An expression that checks for an error condition
and returns FALSE if an error has occurred.

func Name of the function where the error occurred.

status Code that indicates the type of error (see Table 3-1,

“i pl Error () Status Code9y

Discussion

Thel PL_ASSERT() macro checks for the error conditiempr and sets
the error statusPL_St sI nt er nal if the error occurred.

Thel PL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error has occurred, ERRCHK() creates
an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

37

Intel Image Processing Library Reference Manual

The | PL_ERROR() macro simply callsthei pl Error () function by
default. This macro is used by other error macros. By changing

| PL_ERROR() Yyou can modify the error reporting behavior without
changing asingle line of source code.

Thel PL_RSTERR() macro resetsthe error statusto | PL_ St sk, thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

The status codes used by the IPL Library are described in Table 3-1. Status
codes are integers, not an enumerated type. This allows an application to
extend the set of status codes beyond those used by the library itself.
Negative codes indicate errors, while non-negative codes indicate success.

Table 3-1 iplError() Status Codes

Status Code Value Description

| PL_St sCk 0 No error. The i pl Error () function does
nothing if called with this status code.

IPL_StsBackTrace -1 Implements a back-trace of the function
calls that lead to an error. If | PL_ERRCHK()
detects that a function call resulted in an
error, it calls | PL_ERROR() with this status
code to provide further context information
for the user.

| PL_St sError -2 An error of unknown origin, or of an origin
not correctly described by the other error
codes.

| PL_St sl nt er nal -3 An internal “consistency” error, often the

result of a corrupted state structure. These
errors are typically the result of a failed
assertion.

continued =

Error Handling

Table 3-1

iplError() Status Codes (continued)

Status Code Value Description

| PL_St sNoMem -4 A function attempted to allocate memory
using nal | oc() or a related function and
was unsuccessful. The message cont ext
indicates the intended use of the memory.

| PL_St sBadAr g -5 One of the arguments passed to the
function is invalid. The message cont ext
indicates which argument and why.

| PL_St sBadFunc -6 The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

| PL_St sNoConv -7 An iterative convergence algorithm failed to
converge within a reasonable number of
iterations.

Application Notes

The global variable | pl Last St at us records the status of the last error
reported. Itsvalueisinitially | PL_St sck. Thevalue of | pl Last St at us
is not explicitly set by the library function detecting an error. Instead, it is
setby i pl Set Err St at us() .

If the application decidesto ignore an error, it should reset

| pl Last St at us back to | PL_St sCk (see | PL_RSTERR() under “Error
Macros). An application-supplied error-handling function must update

I pl Last St at us correctly; otherwise the Image Processing Library might
fail. This is because the macreL_ERRCHK() , which is used internally to
the library, refers to the value of this variable.

3-9

Intel Image Processing Library Reference Manual

3-10

Error Handling Example

The following example describes the default error handling for a console
application. In the example program, t est . ¢, assume that the function

I'i bFuncB() representsalibrary function suchasi pl ?Tr ansl at eDl B() ,
and thefunction | i bFuncD() represents afunction that is called internally
to thelibrary. In this scenario, mai n() and appFuncA() represent
application code.

The value of the error mode issetto | PL_Er r ModePar ent . The
| PL_Err ModePar ent option produces a more detailed account of the
error conditions.

Example 3-1 Error Functions

[* application main function */
mai n() {
i pl Set Err Mode(| PL_Er r MbdePar ent) ;
appFuncA(5, 45, 1.0);
if (I PL_ERRCHK("main","conmpute something")) exit(1l);

return O;

}

/* application subroutine */
voi d appFuncA(int orderl, int order2, double a) {

i bFuncB(a, orderl);
i f (I PL_ERRCHK("appFuncA", "conmpute using orderl")) return;

i bFuncB(a, order?2);
i f (I PL_ERRCHK("appFuncA", "conmpute using order2")) return;

}

/* do sonme nore work */

continued &

Error Handling

Example 3-1 Error Functions (continued)

/* library function */

void |ibFuncB(double a, int order) {
fl oat *vec;
if (order > 31) {

| PL_ERROR(| PL_St sBadArg, "libFuncB",
"order nust be less than or equal to 31");

return;
}
if ((vec = libFuncD(a, order)) == NULL) {
I PL_ERRCHK("Ii bFuncB", "conpute using a");
return;
}
/* code to do sone real work goes here */
free(vec);
} /1 next: library function called internally

doubl e *1i bFuncD(double a, int order) {
doubl e *vec;
if ((vec=(doubl e*)nmal | oc(order*sizeof (double))) == NULL) {

| PL_ERROR(I PL_St sNoMem "Ili bFuncD",
"al | ocating a vector of doubles");
return NULL;

}

/* do sonmething with vec */

return vec;

}

311

Intel Image Processing Library Reference Manual

When the program is run, it produces the output illustrated in Example 3-2.

Example 3-2 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Invalid argunment in function |ibFuncB: order mnust
be |l ess than or equal to 31

called fromfunction appFuncA: conpute using order2

called fromfunction main: conpute sonething

If the program runswith the | PL_Er r ModeLeaf option instead of
| PL_Err ModePar ent , only the first line of the above output is produced
before the program terminated.

If the program in Example 3-1 runs out of heap memory while using the
| PL_Err ModePar ent option, then the output illustrated in Example 3-3 is
produced.

Example 3-3 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Qut of nmenory in function |ibFuncD: allocating a
vector of doubles

called fromfunction IibFuncB: conpute using a
called fromfunction appFuncA: conpute using orderl

called fromfunction main[]: conpute sonething

Again, if the programisrun with the | PL_Er r ModeLeaf option instead of
| PL_Err ModePar ent , only thefirst line of the output is produced.

312

Error Handling

Adding Your Own Error Handler

The Image Processing Library alows you to define your own error
handler. User-defined error handlers are useful if you want your
application to send error messages to a destination other than the standard
error output stream. For example, you can choose to send error messages
to adialog box if your application is running under a Windows system or
you can choose to send error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replacethe i pl Error () function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can usethe i pl Redi rect Error () functionto
replace the error handler at run time. The steps below describe how to
create your own error handler and how to usethe i pl Redi rect Error ()
function to redirect error reporting.

1. Define afunction with the function prototype, | PLEr r Cal | Back, as
defined by the IPL.

2. Your application should then call thei pl Redi rect Error () function
to redirect error reporting for your own function. All subsequent calls
toi pl Error () will cal your own error handler.

3. Toredirect the error handling back to the default handler, smply call
i pl Redi rect Error () withaNULL pointer.

Example 3-4 illustrates a user-defined error handler function,
ownEr ror (), which simply prints an error message constructed from its
arguments and exits.

313

Intel Image Processing Library Reference Manual

3-14

Example 3-4 A Simple Error Handler

| PLSt at us ownError (I PLStatus status, const char *func,

const char *context, const char *file, int line);

{
fprintf(stderr, "IPL Library error: %, ", iplErrorStr(status));
fprintf(stderr, "function %, ", func ? func : "<unknown>");
if (line >0) fprintf(stderr, "line %, ", line);
if (file !'= NULL) fprintf(stderr, "file %, ", file);
if (context) fprintf(stderr, "context %\n", context);
| pl Set Err St at us(st atus);
exit(l);
}
main () {

extern | PLErr Cal | Back ownError;

/* Redirect errors to your own error handler */

/*

i pl Redirect Error(ownError);
Redirect errors back to the default error handler */

i pl Redi rect Error (NULL) ;

Image Creation and Access

This chapter describes the functions that provide the following

functionalities:

« Creating and accessing attributes of images (both tiled and non-tiled)
« Allocating memory for data of required type (see aso the functions
CreateConvKernel in Chapter 6 and CreateColorTwist in Chapter 9)

e Manipulating the image

e Working in the Windows* DIB (device-independent bitmap)

environment.

Table 4-1 Image Creation, Data Exchange and Windows DIB Environment
Functions
Group Function Name Description

Creating 1 pl Creat el nageHeader

Images

i pl Al'l ocat el mage

i pl DeAl | ocat el nage

i pl CreateRA

i pl Deal | ocat e

i pl Set RO
i pl Set Bor der Mbde

iplCreateTilelnfo

iplSetTilelnfo

iplDeleteTilelnfo

Creates an image header according to
the specified attributes.

Allocates memory for image data.

Deallocates or frees memory for
image data pointed to in the image
header.

Creates a region of interest (ROI)
header with specified attributes.

Deallocates header attributes or
image data or ROI or all of the above.

Sets a region of interest for an image.

Sets the mode for handling the border
pixels.

Creates the | pl Ti | el nf o structure.
Sets the tiling information.

Deletes the | pl Ti | el nf o structure.

continued =

4-1

Intel Image Processing Library Reference Manual

Table 4-1 Image Creation, Data Exchange and Windows DIB Environment
Functions (continued)
Group Function Name Description
Memory i pl Mal | oc Allocates memory aligned to 8 bytes
Allocation boundary.
i pl wMal | oc Allocates memory aligned to 8 bytes
boundary for 16-bit words.
i pliMalloc Allocates memory aligned to 8 bytes
boundary 32-bit double words.
i pl sMal | oc Allocates memory aligned to 8 bytes
boundary for single float elements.
i pl dMal | oc Allocates memory aligned to 8 bytes
boundary for double float elements.
i pl Free Frees memory allocated by the
i pl ?Mal | oc functions.
Data i pl Set Sets a value for the image pixel data.
Exchange
i pl Copy Copies image data from one IPL image
to another.
i pl Exchange Exchanges image data between two IPL
images.
i pl Conver t Converts an IPL image based on the
input and output image requirements.
Windows i pl Transl at eDl B Translates a DIB image into an IPL
DIB image.

i pl Convert FronDl B

i pl Convert ToDl B

Converts a DIB image to an IPL image
with specified attributes.

Converts an IPL image to a DIB image
with specified attributes.

4-2

Image Creation and Access

Image Header and Attributes

Table 4-2

The IPL library functions operate on asingle format for images in memory
henceforth called the IPL image format. The IPL image format consists of
aheader of type | PLI mage containing the information for all the attributes
of the image. The header finally contains a pointer to the image data. (See
the attributes description in Chapter 2, section “Data Architecture.Y The
values that these attributes can assume are listed in Table 4-2.

IPL Image Header Attributes

Description

Variable or Value

Corresponding
DIB Attribute

Size of the IPL image
header (for internal use)

IPL Image Header
Revision ID (internal use)

Number of Channels

Alpha channel number

Bits per channel

Gray only
All images: color, gray,
and multi-spectral

(The signed data is used
only as output for some
image output operations.)

Color model

nSi ze in bytes

ID number

1toN
(including alpha channel, if any)

0 (if not present)
n

| PL_DEPTH_1U (1-bit)
| PL_DEPTH_8U (8-bit unsigned)

| PL_DEPTH_8S (8-bit signed)

| PL_DEPTH_16U (16-bit unsign.)
| PL_DEPTH_16S (16-bit signed)
| PL_DEPTH 32S (32-bit signed)

4 character string: “Gray”, “RGB,”

“RGBA", “CMYK,” etc.

1 (Gray)
3 (RGB)
4 (RGBA)

4 (RGBA)

Supported

Supported

(RGB, RGBA)
Not supported
Not supported
Not supported
Not supported

Not supported.
Implicitly, RGB
color model.

continued ¥

4-3

Intel Image Processing Library Reference Manual

4-4

IPL Image Header Attributes (continued)

Description

Value

Corresponding
DIB Attribute

Channel sequence

Data Ordering

Origin

Scanline alignment

Image dimensions
Image Height
Image Width

Region of interest (ROI)
Image size (bytes)
Image data pointer

Aligned width

Border mode of the top,
bottom, left, and right
sides of the image.

Border constant on the
top, bottom, left, and
right side of the image.

Original Image
Image ID for tiling

Tiling information

4-character string: “Gray”, “RGB,”
“RGBA", “CMYK,” etc.

| PL_DATA_ORDER Pl XEL
| PL_DATA_ORDER_PLANE

I PL_ORI G N_TL (top left corner)
I PL_ORI G N_BL (bottom left
corner)

| PL_ALI GN_DWORD
| PL_ALI GN_QWORD

m
n

Pointer to structure
Integer
Pointer to data

Width (row length) in bytes of
aligned image

BorderMode [4]

BorderConst [4]

Pointer to original image data

For application use. Ignored by IPL

Describes tiles for IPL

Not supported. Always
implicitly BGR for RGB
images.

Supported
Not supported

Supported
Supported

Supported
Not Supported

m
n

Not supported

Image Creation and Access I

Figure 4-1

Figure 4-1 presents a graphical depiction of an RGB IPL image with a
rectangular ROI and a COl.

RGB Image with a Rectangular ROl and a COI

Iplimage
IpIROI* > IpIROI
imagepata* Int COI
/
plane pixel / Rectangular ROI: xOffset
/ ‘ yOffset
RGBRGB... height
/ | width
- // select ‘
plane(s) ‘
: \
G
| 5 |
I
R/G/B

OSD05559

4-5

Intel Image Processing Library Reference Manual

4-6

Example 4-1 presents a C language definition for the | PLI mage structure.

Example 4-1 IPLImage Definition

typedef struct _Ipllmge {

}

i nt

i nt

i nt

i nt

i nt
char
char

i nt

i nt

i nt

i nt

i nt
struct
voi d
struct

i nt
char

i nt
i nt

i nt
char

| pl | mage;

I PL. H
nSi ze [* size of ipllmge struct
ID /* image header version
nChannel s;
al phaChannel ;
dept h; /* pixel depth in bits
col or Model [4] ;
channel Seq[4] ;
dat aOr der;
origin;
al i gn; /* 4- or 8-byte align
hei ght ;
wi dt h;
_IplRO *roi; /* pointer to RO if any
i magel d; / use of the application
_IplTilelnfo *tilelnfo;
/* contains information on tiling
i mageSi ze; /* useful size in bytes
i mageDat a; / pointer to aligned
i mage
wi dt hSt ep; /* size of aligned line in
byt es
Bor der Mode[4] ; [*

Bor der Const [4] ; /*

i mageDataOrigin; / ptr to full, nonaligned
i mage

*/
*/

*/

*/

*/
*/

*/
*/

*/
*/
*/
*/

*/

Image Creation and Access

Tiling Fields in the Iplimage Structure
Image tiling in the IPL was briefly described in Section 2.

The following fields serve for tiling purposesin the | pl | mage structure:

struct Ipllmage {

voi d* i magel d;
Ipl Tilelnfo *tilelnfo;

}

Thei nagel d field can be used by the application, and isignored by the
library. Theti | el nf o field containsinformation on tiling. It is described
in the next section.

The library expects either the ti | el nf o pointer or the i nageDat a pointer
to be NULL. If the former is NULL, the imageis not tiled; if the latter is
NULL, theimageistiled. It is an error condition if both or neither of the
two are NULL.

IpITileInfo Structure

This structure provides information for image tiling:

typedef struct _IplTilelnfo
{
I pl Cal | Back cal | Back;
void *id;
char* tileData
int wdth, height;
} IplTilelnfo;

Here cal | Back isthe call-back function (see “Call-backs in Chapter 2);
i d is an additional identification fieldii dt h andhei ght are the tile sizes
for the image.

Intel Image Processing Library Reference Manual

Creating Images

The following are the ways to create an | PL image:

e Construct an IPL image header by setting the attributes to appropriate
values, then call the function i pl Al | ocat el mage() to allocate
memory for the image or set the image data pointer to image data (in a
compatible format) that already exists.

e Cadlipl Createl mageHeader () to create an IPL image header, then
call thefunctioni pl Al | ocat el mage() to alocate memory for the
image or set the image data pointer to image data (in a compatible
format) that already exists.

e Convert aDIB imageto an IPL image using the functions
i pl Transl at eDl B() ori pl Convert FronDl B() . Seethe section
“Working in the Windows DIB Environmerit

CreatelmageHeader

Createsan IPL image
header according to the
specified attributes.

I pl I mage* ipl Creat el mageHeader (i nt nChannel s,

i nt al phaChannel , int depth, char* col or Mbdel,

char* channel Seq, int dataOrder, int origin, int align,
int height, int width, IplRO* roi);

nChannel s Number of channels in the image.

al phaChannel Alpha channel number (0 if no alpha channel in
the image).

dept h Bit depth of pixels. Can be one of

| PL_DEPTH 1U, | PL_DEPTH 8U,

| PL_DEPTH 8S, | PL_DEPTH 16U,

| PL_DEPTH 16S, orl PL_DEPTH 32S.
See Table 4-2.

Image Creation and Access

col or Mbdel

channel Seq

dat aOr der

origin

align

hei ght

wi dt h

roi

Discussion

A four-character string describing the color
model: “RGB”, “GRAY”, “MSI” etc.

The sequence of channels in the image; for
example, “BGR” for an RGB image.

| PL_DATA _ORDER Pl XEL or
| PL_DATA_ORDER_PLANE.

The origin of the image. Can b@L_ORI G N_TL
orl PL_ORI G N BL.

Alignment of image data. Can be
| PL_ALI GN_DWORD Or
| PL_ALI GN_QACRD.

Height of the image in pixels.
Width of the image in pixels.

Pointer to an ROI (region of interest) structure.
This argument can beJLL, which implies that a
region of interest comprises all channels and the
entire image area.

The functioni pl Cr eat el nageHeader () creates an IPL image header
according to the specified attributes. The image data pointer issetlto
no memory for image data is allocated. To allocate memory for image
data, call the functionpl Al | ocat el mage() . The image size attribute
(set by the pl Al | ocat el mage() function) in the header is set to zero.

Return Value

The newly constructed IPL image header.

A

Intel Image Processing Library Reference Manual

4-10

Allocatelmage

Allocates memory for image
data according to the
specified header.

void ipl Al'l ocatel mage(IlpllImage* image, int fill Value)
[* *]

i mge An IPL image header with a NULL image data
pointer. The pointer will be set to newly
dlocated image data memory after calling this
function.

fillVval ue Theinitial value to use for pixel data. Usea
value of xFFFFFFFF (hexadecimal) not to
initialize the pixel data.

Discussion

Thefunctioni pl Al | ocat el mage() isused to allocate image data on the
basis of a specified image header. The header must be properly
constructed before calling this function. Memory is allocated for the image
data according to the attributes specified in the image header (see
Example 4-1).

The image data pointer will then point to the allocated memory. It is
highly preferable, for efficiency considerations, that the scanline
aignment attribute (argument a/ i gn) in the image header be set to

I PL_ALI GN_QWORD. Thiswill force theimage datato be aligned on a
quadword (64-bit) memory boundary.

This function sets the image size attribute in the header to the number of
bytes allocated for the image.

Image Creation and Access

Deallocatelmage

Deallocates (frees) memory
for image data pointed toin
the image header.

voi d ipl Deal | ocat el mage(| pl | mage* i nage)

i mge An IPL image header with a pointer to the
dlocated image data memory. The image data
pointer will be set to NULL after this function
executes.

Discussion

Thefunctioni pl Deal | ocat el mage() isused to free image data memory
pointed to by the i mageDat a member of the image header. The respective
pointer to image dataor ROI datais set to NULL after the memory is freed

up.

Deallocate

Deallocates or frees memory
for image header or data or
region of interest or all
three.

void iplDeallocate (Ipllmage* inmge, int flag)

i mge An IPL image header with a pointer to allocated
image data memory. The image data pointer will
be set to NULL after this function executes.

flag Flag indicating what memory areato free:

| PL_| MAGE_HEADER Free header structure.

4-11

Intel Image Processing Library Reference Manual

4-12

| PL_I MAGE_| MAGE Freeimage data, set
pointer to NULL.

| PL_I MAGE_RO Freeimage ROI, set
pointer to NULL.

| PL_I MAGE_ALL Free header, image
data, and ROI.

Discussion

Thefunctioni pl Deal | ocat e() isused to free or destroy memory
dlocated for header structure, image data, ROI data, or all three. The
respective pointer is set to NULL after the memory is freed up.

Setting Regions of Interest

Example 4-2

To set aregion of interest, the function i pl Set RO () usesaROI structure
I pl RO presented in Example 4-2. The | pl RO member of the IPL image
header must point to this| pl RO structure to be effective. This can be
done by a simple assignment. The application may choose to construct the
ROI structure explicitly without the use of the function.

IpIROI Definition

typedef struct _Ipl RO {

unsi gned int coi;
// Channel to effect in original inage

int xOfset;
int yOfset;
i nt height;
int wdth;

} IplRO;

Image Creation and Access

The membersin the above | pl RO structure define:

coi The channel of interest number. This parameter
indicates which channel in the original image
will be affected by processing taking place in the
region of interest; coi equal to O indicates that
all channelswill be affected.

xO fset and yOffset The offset from the origin of the rectangular
ROI. (See section “Image Regiorisin Chapter 2
for the description of image regions.)

hei ght andwi dt h The size of the rectangular ROI.

CreateROIl

Allocates and sets the
region of interest (ROI)
structure.

IplRO* iplCreateRO (int coi, int xOfset, int yOfset,
int height, int wdth);

coi The channel of interest. It can be set to O (for all
channels) or to a specific channel number.

xOffset, yOfset The offsets from the origin of the rectangular
region.

hei ght, width The size of the rectangular region.

Discussion

The functioni pl Creat eRO () allocates a new ROI structure with the
specified attributes and returns a pointer to this structure. If the IPL image
pointer isNULL, then only a rectangular ROI is defined.

4-13

Intel Image Processing Library Reference Manual

4-14

Return Value

A pointer to the newly constructed ROI structure.

SetROl

Sets the region of
interest (ROI) structure.

void iplSetRO(IplRO* roi, int coi, int xOfset, int
yOfset, int height, int wdth);

roi The pointer to the ROI structure to modify in the
original image.
coi The channel of interest in the original image. It

can be set to O (for all channels) or to a specific
channel number.

xOffset, yOfset The offset from the origin of the rectangular
region.

hei ght, width The size of the rectangular region.

Discussion

Thefunctioni pl Set RO () setsthe channel of interest and the rectangular
region of interest in the structure r o/ .

The argument coi defines the number of the channel of interest. The
arguments xO fset and yOf f set define the offset from the origin of the
rectangular ROI. The members hei ght and wi dt h define the size of the
rectangular ROI.

Image Creation and Access I

Image Borders and Image Tiling

Many neighborhood operators need intensity values for pixelsthat lie
outside the image, that is, outside the borders of the image. For example, a
3 by 3 filter, when operating on the first row of an image, needs to assume
pixel values of the preceding (non-existent) row. A larger filter will
require more rows from the border. These border issues therefore exist at
the top and bottom, left and right sides, and the four corners of the image.
Thelibrary providesafunction i pl Set Bor der Mode that the application
can use to set the border mode within the image. This function specifies
the behavior for handling border pixels.

For tiled images, the border mode is handled in the same way as for non-
tiled images, except that in the outer tiles there might be extra data which
isignored.

SetBorderMode

Sets the mode for handling
the border pixels.

voi d i pl Set Border Mbde(I pl I mage * src, int npde,
int border, int constVal)

src The image where the border mode is to be set.
node The following modes are supported:
| PL_BORDER_CONSTANT Thevaue const Val isused for al
pixels.
| PL_BORDER_REPLI CATE Thelast row or column isreplicated for
the border.
| PL_BORDER REFLECT Thelast n rows or columns are reflected

in reverse order to create the border.

4-15

Intel Image Processing Library Reference Manual

4-16

| PL_BORDER \\RAP

bor der

const val

Discussion

The required border rows or columns are
taken from the opposite side of the
image.

The side that this function is called for. Can be
an OR of one or more of the following four sides
of animage:

| PL_SI DE_TOP Top side.

| PL_SI DE_BOTTTOM Bottom side.
| PL_SI DE_LEFT Left side.

| PL_SI DE_RI GHT Right side.

If no mode has been set for aside, the default

| PL_BORDER_CONSTANT is assumed with avalue
of Ofor const Val . Thetop sideisalso used to
define all border pixelsin the top left and right
corners. Similarly, the bottom side is used to
define the border pixelsin the bottom left and
right corners.

The value to use for the border when the mode is
set to | PL_BORDER CONSTANT.

Thefunctioni pl Set Bor der Mode() isused to set the border handling
mode of one or more of the four sides of an image. If the mode is not set
for any side, then a constant value of 0 is used for al border pixels on that
side. Intensity values for the border pixels are assumed or created based on

the mode.

Image Creation and Access

CreateTilelnfo
Createsthe IplTilelnfo

structure.

Ipl Tilelnfo* iplCreateTilelnfo(lplCallBack callBack,
void* id, int width, int height);

cal | Back The call-back function.

id Theimage ID (for application use).
wi dt h, hei ght Thetilesizes.

Discussion

Thefunctioni pl CreateTil el nfo() allocatesanew | pl Til el nfo
structure with the specified attributes and returns a pointer to this
Structure.

Return Value

The pointer to the created | pl Ti | el nf o structure.

4-17

Intel Image Processing Library Reference Manual

SetTilelnfo

Setsthe IplTilelnfo
structure fields.

void iplSetTilelnfo(lplTilelnfo* tilelnfo, IplCallBack
cal | Back, int wdth, int height);

tilelnfo The pointer to the | pl Ti | el nf o structure.
cal | Back The call-back function.

id Theimage ID (for application use).

wi dt h, hei ght Thetilesizes.

Discussion

This function sets attributes for an existing | pl Ti | el nf o structure.

DeleteTilelnfo

Deletesthe IplTilelnfo
Structure.

void iplDeleteTilelnfo(lplTilelnfo* tilelnfo);

tilelnfo The pointer to the | pl Ti | el nf o structure.

Discussion

Thisfunction deletesthe | pl Ti | el nf o structure previously created by the
CreateTilelnfo function.

4-18

Image Creation and Access

Memory Allocation Functions

L)

Functions of thei pl ?Mal | oc() group alocate aligned memory blocks for
IPL image data. The size of alocated memory is specified by the si ze
parameter. The “?” in i pl ?Mal | oc() stands fomw, i, s, ord; these letters
indicate the data type in the function names as follows:

i pl Mal | oc() byte

i pl wwal | oc() 16-bit word

i pliMalloc() 32-bitdouble word

i pl sMalloc() 4-byte single floating-point element

i pl dval 1 oc() 8-byte double floating-point element

NOTE. The only function to free the memory allocated by any of these
functionsisi pl Free() .

Malloc

Allocates memory aligned to
8 bytes boundary.

voi d* iplMlloc(int size);

si ze Size (in bytes) of memory block to allocate.

Discussion

Thei pl Mal | oc() function allocates memory block aligned to 8 bytes
boundary.

4-19

Intel Image Processing Library Reference Manual

4-20

Return Value

Thereturn value of i pl Mal | oc() isapointer to aligned memory block.
To free this block, only the function i pl Free() must be used. If no
memory is available in the system, then the NULL valueis returned.

wMalloc

Allocates memory aligned to
8 bytes boundary for 16-bit
words.

short* iplw\valloc(int size);

si ze Size in words (16 bits) of memory block to
alocate.

Discussion
Thei pl wival | oc() function allocates memory block aligned to 8 bytes
boundary for 16-bit words.

Return Value

Thereturn value of i pl wihal | oc() isapointer to aligned memory block.
To free thisblock only the function i pl Free() must be used. If no
memory is available in the system, then the NULL value is returned.

Image Creation and Access I

iIMalloc

Allocates memory aligned to 8
bytes boundary for 32-bit
double words.

int* ipliMlloc(int size);

size Size in double words (32 bits) of memory block
to dlocate.

Discussion
The i pli Mal | oc() function alocates memory block aligned to 8 bytes
boundary for 32-bit double words.

Return Value

Thereturn value of i pl Mal | oc() isapointer to aligned memory block.
To free this block only the function i pl Free() must be used. If no
memory available in the system, then the NULL valueis returned.

sMalloc

Allocates memory aligned to
8 bytes boundary for
floating-point elements.

float * iplsMalloc(int size);

si ze Sizein float elements (4 bytes) of memory block
to alocate.

4-21

Intel Image Processing Library Reference Manual

4-22

Discussion

Thei pl shval | oc() function alocates memory block aligned to 8 bytes
boundary for floating-point elements.

Return Value

Thereturn value of i pl shal | oc() isapointer to aligned memory block.
To free thisblock only the function i pl Free() must be used. If no
memory is available in the system, then the NULL valueis returned.

dMalloc

Allocates memory aligned to
8 bytes boundary for double
floating-point elements.

doubl e* ipldMalloc(int size);

si ze Size in double elements (8 bytes) of memory
block to allocate.

Discussion

Thei pl dval | oc() function alocates memory block aligned to 8 bytes
boundary for double floating-point elements.

Return Value

Thereturn value of i pl dval | oc() isapointer to aligned memory block.
To free thisblock only the function i pl Free() must be used. If no
memory is available in the system, then the NULL valueis returned.

Image Creation and Access

iplFree

Frees memory allocated by
oneof thei pl ?Mal | oc

functions.
void iplMlloc(void * ptr);
ptr Pointer to memory block to free.
Discussion
Thei pl Free() function frees the aligned memory block allocated by one
of thefunctionsi pl Mal 1 oc(),i pl wval | oc() ,ipliMalloc(),
i pl shMall oc(),oripldwalloc().
NOTE. Thefunctioni pl Free() can’t be used to free memory allocated
by standard functions likeal | oc() orcal | oc() .

4-23

A

Intel Image Processing Library Reference Manual

4-24

Image Data Exchange

The functions described in this section provide image manipulation
capabilities, such as setting the image pixel data, copying datafrom one
image to another, exchanging the data between the images, and converting
one | PL image to another according to the attributes defined in the source
and resultant image headers.

Set

Setsa value for an |PL
image pixel data.

void iplSet(lpllmge* image, int fill Value,
| pl Coord* map);

i mge An IPL image header with allocated image data.

fillVval ue The value to set the pixel data.

map The structure specifying offsets for tiling
pUrposes.

Discussion

Thefunctioni pl Set () setsan IPL image pixel data. Before calling this
function, the IPL image header must be properly constructed and image
data must be allocated. For images with the bit depth lower than the
fillvallue,thefill Val ue istruncated when assigned to pixel. If an
ROI is specified, only that ROI isfilled.

Image Creation and Access I

Copy

Copiesimage data from one
IPL image to another.

voi d ipl Copy(!pllImage* srclmage, |pllnmage* dstl nmage,
| pl Coord* map);

srcl mage The source image.

dst | mage The resultant image.

map The structure specifying offsets for tiling
pUrposes.

Discussion

Thefunctioni pl Copy() copiesimage datafrom a sourceimageto a
resultant image. Before calling this function, the source and resultant
headers must be properly constructed and image data for both images must
be allocated. The following constraints apply to the copying:

e The hit depth per channel of the source image should be equal to that
of the resultant image.

¢ The number of channels of interest in the source image should be
egual to the number of channels of interest in the resultant image; that
is, either the source coi = theresultant coi = 0 or both cois are
nonzero.

« Thedataordering (by pixel or by plane) of the source image should be
the same as that of the resultant image.

Theorigin, align, hei ght,and wi dt h field values (see Table 4-2) may
differ in source and resultant images. Copying appliesto the areas that
intersect between the source ROI and the destination ROI.

4-25

I Intel Image Processing Library Reference Manual

Exchange

Exchanges image data
between two | PL images.

voi d i pl Exchange(l pl | mage* [mageA, |pllnmage* [nmageB,
| pl Coord* map);

| mageA The first image.

| mageB The second image.

map The structure specifying offsets for tiling
pUrposes.

Discussion

Thefunctioni pl Exchange() exchangesimage data between two images,
the first and the second. The image headers must be properly constructed
before calling this function, and image data for both images must be
dlocated. The following constraints apply to the data exchanging:

¢ The hit depths per channel of both images should be equal.
« The numbers of channels of interest in both images should be equal.

e Thedataordering of both images should be the same (either pixel- or
plane-oriented) .

Theorigin, align, hei ght,and wi dt h field values (see Table 4-2) may
differ in the first and the second images. The data are exchanged at the
areas of intersection between the ROI of the first image and the ROI of the
second image.

4-26

Image Creation and Access

Convert

Converts source |IPL image
data to resultant IPL image
according to the source and
resultant image headers.

voi d ipl Convert (Ipllmage* srclmage, |pllmage* dstlnmage,
int convertMde, |plCoord* map);

srcl mage The source image.
dst I mage The resultant image.
convert Mbde A flag indicating how to perform the image

conversion by reducing the bit depth.
Theflag values are;
I PL_BI TS _HI GH Reduce by scaling

I PL_BI TS LOW Reduce by using the lower part
of the pixel values

map The structure specifying offsets for tiling
pUrposes.

Discussion

Thefunctioni pl Convert () convertsimage data from the source IPL
image to the resultant IPL image according to the attributes defined in the
source and resultant image headers. The images that can be converted may
have the following different characteristics:

¢ Bit depth per channel

e Dataordering

e Origins

For the above data description, see Table 4-2.

4-27

Intel Image Processing Library Reference Manual

4-28

The following constraints apply to the conversion:

< If the source image has a bit depth per channel equal to 1, the resultant
image should also have the bit depth equal to 1.

e The number of channelsin the source image should be equal to the
number of channelsin the resultant image.

¢ The height and width of the source image should be equal to that of the
resultant image.

All ROIsareignored; | pl Coor d must be NULL.

Working in the Windows DIB Environment

The IPL library provides functions to convert a DIB (device-independent
bitmap) image to an IPL image and vice versa. Table 4-2 shows that the
DIB image format is a subset of the IPL image format. Not included in this
subset are the DIB palette images and DIB 8-bit- and 16-bit-per-pixel
absolute color images because they have no equivalent IPL images.

The DIB palette images must be first converted to | PL absolute color
images. DIB 8-bit- and 16-bit-per-pixel images have to be unpacked into
IPL 8-bit, 16-bit- or 32-hit-per-channel images.

However, any DIB 24-bit absolute color image can be directly converted
toan IPL image. You just need to create an IPL image header
corresponding to the DIB attributes. The DIB image data can be pointed to
by the IPL header or it can be duplicated.

Image Creation and Access

The IPL functions can perform conversion from aDIB imageto an IPL
image and vice versawith additional useful capabilities:

i pl Transl ateDI B() Performsasimpletransation of a DIB image to
an IPL image as described above. Also converts
aDIB palette image to an |PL absolute color
image.

While thisis the most efficient way of converting
aDIB image, it is not the most efficient format
for the IPL functions to manipulate because the
DIB image data is doubleword-aligned, and not
quadword-aligned.

i pl Convert FronDl B() Provides more control of the conversion and can
convert aDIB imageto an IPL image with a
prepared |PL image header. The IPL image
header must be then set to the desired attributes.
The bit depth of the channelsin the IPL image
header must be equal to or greater than that in
the DIB header.

i pl ConvertToDI B() Performs conversion in the opposite direction: an
IPL image to aDIB image. This function
performs dithering if the bit depth of the DIB is
less than that of the IPL image. It can also be
used to create a DIB palette image from an IPL
absolute color image. The function can
optionally create a new palette.

4-29

A

Intel Image Processing Library Reference Manual

4-30

TranslateDIB

Trandates a DIB image
into the corresponding
IPL image.

i pl I mage* ipl Transl at eDl B(Bl TMAPI NFOHEADER* di b,
BOOL cl oneDat a)

dib The DIB image.

cl oneDat a An output flag (Boolean): if false, indicates that
the image data pointer in the IPL image will
point to the DIB image data; if true, indicates
that the data was copied.

Discussion

Thefunctioni pl Transl at eDl B() trandatesaDIB imageinto an IPL
image. The IPL image attributes corresponding to the DIB image are
automatically chosen (see Table 4-2), so no explicit control of the
conversion is provided. A DIB palette image will be converted to an IPL
absolute color image with a bit depth of 8 bits per channel, and the image
datawill be copied, returning c/ oneDat a = true.

A 24-bit-per-pixel DIB RGB image will be converted to an 8-bit-per-
channel RGB IPL image.

A 32-bit-per-pixel DIB RGBA image will be converted to an 8-bit-per-
channel RGBA IPL image with an alpha channel.

An 8-bit-per-pixel or 16-bit-per-pixel DIB absolute color RGB image will
be converted (by unpacking) into an 8-bit-per-channel RGB IPL image.
The image datawill be copied, returning ¢/ oneDat a = true.

A 1-bit-per-pixel or 8-bit-per-pixel DIB gray scale image with a standard
gray palette will be converted to a 1-bit-per-channel or 8-bit-per-channel
IPL gray-scale image, respectively.

Image Creation and Access

A 4-bit-per-pixel DIB gray-scale image with a standard gray palette will
be converted into an 8-bit-per-pixel 1PL gray-scale image and the image
datawill be copied, returning c/ oneDat a = true.

Note that in the cases above where the image datais not copied, it will
result in inefficient access of the image by the IPL image processing
functions. Thisis because DIB image datais aligned on doubleword (32-
bit) boundaries. Alternatively, when c/ oneDat a istrue, the DIB image
dataisreplicated into newly allocated image data memory and
automatically aligned to quadword boundaries which resultsin a better
Memory access.

Return Value
A constructed IPL image.

4-31

A

Intel Image Processing Library Reference Manual

4-32

ConvertFromDIB

Convertsa DIB image
to an IPL image with
specified attributes.

voi d i pl Convert FronDl B(Bl TMAPI NFOHEADER* di b,

| pl | mage* | nmage)

dib The input DIB image.

i mge The IPL image header with specified attributes.
If the data pointer is NULL, image data memory
will be alocated and the pointer set to it.

Discussion

Thefunctioni pl Convert FronDl B() convertsaDIB imageinto an IPL
image according to the attributes set in the IPL image header. Explicit
control of the conversion is therefore provided. The following constraints
apply to the conversion:

The bit depth per channel of the IPL image should be greater than or
equal to that of the DIB image.

The number of channels (not including the alpha channel) inthe IPL
image should be greater than or equal to the number of channelsin the
DIB image (not including the apha channel if present).

The dimensions of the IPL image should be greater than or equal to
that of the DIB image. When the IPL image islarger than the DIB
image, the origins of the IPL and DIB images are made coincident for
the purposes of copying.

When converting aDIB RGBA image, the IPL image should aso
contain an apha channel.

Image Creation and Access

ConvertToDIB

Convertsan IPL image
to a DIB image with
specified attributes.

voi d ipl Convert ToDl B(i pl | mage* i nmage, Bl TMAPI NFOHEADER*
dib, int dither, int paletteConversion)

i mage
dib
di t her

Theinput IPL image.
The output DIB image.

The dithering agorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
islessthan that of the IPL image. The following
agorithms are supported corresponding to these
di t her identifiers:

| PL_DI THER_STUCKEY The Stucki dithering algorithm is used.

| PL_DI THER_NONE No dithering is done. The most

pal ett eConversi on

significant bitsin the IPL image pixel
data are retained.

Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting the IPL absolute color image. The
following options are supported:

| PL_PALCONV_NONE The existing palette in the DIB
is used.

| PL_PALCONV_POPULATE
The popularity palette
conversion agorithm is used.

| PL_PALCONV_NMEDCUT The median cut algorithm for
palette conversion is used.

4-33

Intel Image Processing Library Reference Manual

4-34

Discussion

Thefunctioni pl Convert ToDl B() convertsan IPL imagetoaDIB
image. The conversion takes place according to the IPL image and DIB
image attributes. While IPL images are always in absolute color, DIB
images can be in absolute or palette color. When the DIB is a palette
image, the absolute color IPL image is converted to a palette image
according to the palette conversion option specified. When the bit depth of
an absolute color DIB imageisless than that of the IPL image, then
dithering according to the specified option is performed.

The following constraints and considerations apply when using this
function:

e The number of channels (not including the alpha and ROI channels) in
the IPL image should be equal to the number of channelsin the DIB
image.

e Thealphachannel in an IPL image will be passed on only when the
DIB isan RGBA image.

lmage Arithmetic and Logical
Operations

Table 5-1

This chapter describes image processing functions that modify pixel

values using simple arithmetic or logical operations. It also includes the
library functions that perform image compositing based on opacity (alpha-
blending). All these operations can be broken into two categories: monadic
operations, which use single input images, and dyadic operations, which
use two input images. Table 5-1 lists the functions that perform arithmetic
and logical operations.

Image Arithmetic and Logical Operations

Group Function Name Description
Arithmetic i pl AddS Adds a constant to the image pixel values.
operations pl Subt ract S Subtracts a constant from the pixel values
or the values from a constant.
i pl Mul tiplyS Multiplies pixel values by a constant.

i pl Mul tiplySScal e Multiplies pixel values by a constant and
scales the product.

i pl Squar e Squares the pixel values of an image.

i pl Add Adds pixel values of two images.

ipl Subtract Subtracts pixel values of one image from
those of another image.

iplMiltiply Multiplies pixel values of two images.

i pl Mul tiplyScale Muliplies pixel values of two images and
scales the product.

Continued =

51

Intel Image Processing Library Reference Manual

5-2

Table 5-1 Image Arithmetic and Logical Operations (continued)
Group Function Name Description
Logical i pl AndS Performs a bitwise AND operation on
operations each pixel with a constant.
iplas Performs a bitwise OR operation on
each pixel with a constant.
i pl XorS Performs a bitwise XOR operation on
each pixel with a constant.
i pl Not Performs a bitwise NOT operation on
each pixel
iplLShiftS Multiplyes pixel values by a constant
power of 2 by shifting bits to the left.
i pl RShi ft S Divides pixel values by a constant
power of 2 by shifting bits to the right.
i pl And Combines corresponding pixels of two
images by a bitwise AND operation.
iplOr Combines corresponding pixels of two
images by a bitwise OR operation.
i pl Xor Combines corresponding pixels of two
images by a bitwise XOR operation.
Alpha- i pl PreMul tipl yAl pha Pre-multiplies pixel values of an image
blending by alpha values.

i pl Al phaConposite

i pl Al phaConpositeC

Composites two images using alpha
(opacity) values.

Composites two images using
constant alpha (opacity) values.

Thefunctionsi pl Square(),ipl Not(),andi pl PreMul ti pl yAl pha()
aswell asall functions with names containing an additional s use single
input images (perform monadic operations). All other functionsin the
above table use two input images (perform dyadic operations).

Image Arithmetic and Logical Operations

Monadic Arithmetic Operations

The sections that follow describe the IPL functions that perform monadic
arithmetic operations (note that the i pl PreMul ti pl yAl pha functionis
described in the “Image Compositing Based on Opatisgction of this
chapter). All these functions use a single input image to create an output
image.

AddS

Adds a constant to pixel
values of the source
image.

voi d ipl AddS(I pl | mage* srclnmage, |pllnmage* dstlmage, int
val ue, | pl Coord* map);

srcl mage The source image.

dst I mage The resultant image.

val ue The value to be added to the pixel values.

map The structure specifying offsets for tiling purposes.
Discussion

The functioni pl AddS() changes the image intensity by addingitheue
to pixel values. A positiveal ue brightens the image (increases the
intensity); a negativeal ue darkens the image (decreases the intensity).

Intel Image Processing Library Reference Manual

5-4

SubtractS

Subtracts a constant from
pixel values, or pixel
values from a constant.

voi d ipl Subtract S(Ipllmage* srclmage, |pllnmage* dstl nmage,
int value, BOCL flip, |plCoord* map);

srcl nage The source image.

dst I mage The resultant image.

val ue The value to be subtracted from the pixel values.
flip A Boolean used to change the order of subtraction.
map The structure specifying offsets for tiling purposes.
Discussion

Thefunctioni pl Subt r act S() changestheintensity of an image as
follows:

If 71ipisfase, the val ue is subtracted from the image pixel vaues.
If 71i pistrue, theimage pixel values are subtracted from the val ve.

MultiplyS

Multiplies pixel values
by a constant.

void iplMiltiplyS(lpllmge* srclmage, |pllnmage* dstlnmage,
unsi gned int value, |pl Coord* map);

srcl mage The source image.

dst | mage The resultant image.

Image Arithmetic and Logical Operations

val ue A positive value by which to multiply the pixel vaues.
map The structure specifying offsets for tiling purposes.
Discussion

Thefunctioni pl Mul tipl yS() increasestheintensity of an image by
multiplying each pixel by a positive constant val ue.

MultiplySScale

Multiplies pixel values
by a constant and scales
the products.

void iplMiltiplySScal e(lpllmge* srclmage, |pllnmge*
dst I mage, int value, |pl Coord* map);

srcl mage The source image.

dst I mage The resultant image.

val ue A positive value by which to multiply the pixel values.
map The structure specifying offsets for tiling purposes;

see IplCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Mul ti pl ySScal e() multipliesthe input image pixel
values by val ue and scales the products using the following formula:

dst_pi xel =src_pixel * val ue | max_val

where src_pi xel isapixel value of the source images, dst_pi xel isthe
resultant pixel value, and nmax_val isthe maximum presentable pixel
value. The source and resultant images must have the same pixel depth.

55

Intel Image Processing Library Reference Manual

Square

Sguares the pixel values
of the image.

voi d ipl Square(lpllmge* srclnmage, |pllmge* dstlnmage,
| pl Coord* map);

srcl mage The source image.
dst | mage The resultant image.
map The structure specifying offsets for tiling purposes;

see IplCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Squar e() increasesthe intensity of an image by
squaring each pixel value.

Image Arithmetic and Logical Operations

Dyadic Arithmetic Operations

The sections that follow describe the IPL functions that perform dyadic
arithmetic operations. These functions use two input images to create an
output image.

Add

Combines corresponding
pixels of two images by
addition.

voi d ipl Add(! pl I mage* srclmageA, |pllnmage* srclmageB,
I pl I mage* dst /I mage, |pl Coord* map);

srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The resultant image obtained as

dst I mage =srclnmageA + srcl mageB.

map The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Add() adds corresponding pixels of two input images to
produce an output image.

57

Intel Image Processing Library Reference Manual

5-8

Subtract

Combines corresponding
pixels of two images by
subtraction.

voi d ipl Subtract(Ipllmage* srclnmageA, |pllmge*
srcl mageB, |pllmage* dstlmage, BOOL flip, |pl Coord* map);

srcl mageA The first source image.

srcl mageB The second source image.

dst I mage If 717 p (seebelow) isfalse, the resultant imageis
dst I mage = srclmageA - srcl nmageB,
otherwiseitis

dst I mage = srclmageB - srcl mageA.

flip A Boolean flag to indicate the order in which the input
images are subtracted. See dst | nage above.

map The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Subt ract () subtracts corresponding pixels of two input
images to produce an output image.

Image Arithmetic and Logical Operations

Multiply

Combines corresponding
pixels of two images by
multiplication.

void iplMiltiply(lpllmage* srclmageA, |pllmnmage*
srcl mageB, |pllmage* dst/lmage, |pl Coord* map);

srcl mageA The first source image.

srcl mageB The second source image.

dst I mage The resultant image.

map The structure specifying offsets for tiling purposes;

see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Mul ti ply() multiplies corresponding pixels of two
input images to produce an output image.

Intel Image Processing Library Reference Manual

5-10

MultiplyScale

Multiplies pixel values of two
images and scales the products.

void iplMiltiplyScal e(lpllmge* srclnmageA, |pllmge*
srcl mageB, |pllmage* dstlmage, |pl Coord* map);

srcl mageA The first source image.

srcl mageB The second source image.

dst I mage The resultant image.

map The structure specifying offsets for tiling purposes;

see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Mul ti pl yScal e() multiplies corresponding pixels of
two input images and scal es the products using the following formula:

dst_pi xel =srcA pixel * srcB pixel [nax_val

where srcA pi xel and srcB_pi xel are pixel values of the source
images, dst_pi xel istheresultant pixel value, and nax_val isthe
maximum presentabl e pixel value. Both source images and the resultant
image must have the same pixel depth.

Image Arithmetic and Logical Operations 5

Monadic Logical Operations

The sections that follow describe the IPL functions that perform monadic
logical operations. All these functions use a single input image to create an
output image.

LShiftS

Shifts pixel values’ bits
to the left.

void iplLShiftS(Ipllnmage* srclmage, |pllmage* dstlnmage,
unsigned int nShift, |pl Coord* nap);

srcl mage Thesource image.

dst I mage The resultant image.

nShi f t The number of bits by which to shift each pixel valueto
the left.

map The structure specifying offsets for tiling purposes;

see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Lshi ft S() changes the intensity of the source image by
shifting the bitsin each pixel value by nshi ft bitsto the left. The
positions vacated after shifting the bits are filled with zeros.

5-11

Intel Image Processing Library Reference Manual

RShiftS

Divides pixel values by
a constant power of 2 by
shifting bitsto the right.

void ipl RShiftS(Ipllnmge* srclmage, |pllmage* dstlnmage,
unsigned int nShift, |pl Coord* nap);

srcl nage The source image.

dst I mage The resultant image.

nShi f t The number of bits by which to shift each pixel valueto
the right.

map The structure specifying offsets for tiling purposes;

see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Rshi f t S() decreases the intensity of the source image by
shifting the bitsin each pixel value by nshi ft bits. The positions vacated
after shifting the bits are filled with zeros.

Not

Performs a bitwise NOT
operation on each pixel.

void iplNot(lpllmage* srclnmage, |pllmage* dstlnage,
I pl Coord* map);

srcl mage The source image.

dst | mage The resultant image.

5-12

Image Arithmetic and Logical Operations

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion
Thefunctioni pl Not () performsabitwise NOT operation on each pixel
value.

AndS

Performs a bitwise AND

operation of each pixel
with a constant.

voi d ipl AndS(I pl | mage* srclmage, |pllnmage* dstl mage,
unsi gned int value, |pl Coord* map);

srcl mage The source image.
dst I mage The resultant image.
val ue The bit sequence used to perform the bitwise AND

operation on each pixel.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

Thefunctioni pl AndS() performs abitwise AND operation between each
pixel value and val ue. The least significant bit(s) of the val ve are used.

5-13

Intel Image Processing Library Reference Manual

5-14

orS

Performs a bitwise OR
operation of each pixel
with a constant.

void ipl OS(lpllmage* srclnmage, |pllmage* dstl nage,
unsi gned int value, |pl Coord* map);

srcl nage The source image.
dst I mage The resultant image.
val ue The bit sequence used to perform the bitwise OR

operation on each pixel.

map The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl O S() performs abitwise OR between each pixel value
and val ue. Theleast significant bit(s) of the val ue are used.

Image Arithmetic and Logical Operations

XorS

Performs a bitwise XOR
operation of each pixel
with a constant.

voi d ipl Xor S(I pl | mage* srclmage, |pllnmage* dstl nmage,
unsi gned int value, |pl Coord* map);

srcl mage The source image.
dst I mage The resultant image.
val ue The bit sequence used to perform the bitwise XOR

operation on each pixel.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Xor S() performs abitwise XOR between each pixel
value and val ue. The least significant bit(s) of the val ue are used.

Dyadic Logical Operations

This section describes the IPL functions that perform dyadic logical
operations. These functions use two input images to create an output
image.

5-15

Intel Image Processing Library Reference Manual

5-16

And

Combines corresponding pixels
of two images by a bitwise AND

operation.
void ipl And(! pl I mage* srclmageA, |pllnmage* srclmageB,
I pl I mage* dst /I mage, |pl Coord* map);
srcl mageA The first source image.
srcl mageB The second source image.
dst I mage The image resulting from the bitwise operation between
input images sr ¢/ mageA and srcl mageB.
map The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.
Discussion
Thefunctioni pl And() performsabitwise AND operation between the
values of corresponding pixels of two input images.
Or

Combines corresponding
pixels of two images by a
bitwise OR operation.

void ipl O (Ipllmage* srclmageA, |pllmge* srclmgeB,
I pl I mage* dst/Image, |pl Coord* map);

srcl mageA The first source image.

srcl mageB The second source image.

Image Arithmetic and Logical Operations

dst | mage The image resulting from the bitwise operation between
input images sr ¢/ mageA and srcl mageB.

map The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl OR() performs a bitwise OR operation between the
values of corresponding pixels of two input images.

Xor

Combines corresponding
pixels of two images by a
bitwise XOR operation.

voi d ipl Xor(Ipllmage* srclmageA, |pllnmage* srclmageB,
I pl I mage* dst /I mage, |pl Coord* map);

srcl mageA The first source image.
srcl mageB The second source image.
dst I mage The image resulting from the bitwise operation between

input images sr ¢/ mageA and srcl mageB.

map The structure specifying offsets for tiling purposes;
see IplCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Xor () performsabitwise XOR operation between the
values of corresponding pixels of two input images.

5-17

5

Intel Image Processing Library Reference Manual

5-18

Image Compositing Based on Opacity

The IPL library provides functions to composite two images using either

the opacity (alpha) channel in the images or a provided aphavalue. Alpha
values range from 0 (100% translucent, 0% coverage) to full range (0%
translucent, 100% coverage). Coverage is the percentage of the pixel's
own intensity that is visible.

Using the opacity channel for image compositing provides the capability
of overlaying the arbitrarily shaped and transparent images in arbitrary
positions. It also reduces aliasing effects along the edges of the combined
regions by allowing some of the bottom image’s color to show through.

Let us consider the example of RGBA images. Here each pixel is a
quadruple (r, g, by) where r, g, b, and are the red, green, blue and

alpha channels, respectively. In the formulas that follow, the Greek letter
o with subscripts always denotes the normalized (scaled) alpha value in
the range 0 to 1, no matter what the full range of the alpha channel value.

There are many ways of combining images using alpha values. In all
compositing operations a resultant pixe| €., b, o) inimage C is

created by overlaying a pixel,(rg,, b,, a,) from the foreground image A
over a pixel (§, g,, b,, a;) from the background image B. The resulting
pixel values for an OVER operation (A OVER B) are computed as shown
below.

re=a,*r,+(1- a,)*ag*ry
9c=0a,*g,+(1- a)*a;*g,
be= 0, * b, + (1- a,) * a5 * by
The above three expressions can be condensed into one as follows:
C=a, *A+(1-a,)*a,*B

In this example, the color of the background image B influences the color
of the resultant image through the second term @) * a, * B. The
resulting alpha value is computed as

8 =a, +(1' GA)*GB

Image Arithmetic and Logical Operations

Using Pre-multiplied Alpha Values

In many cases it is computationally more efficient to store the color
channels pre-multiplied by the alphavalues. In the RGBA example, the
pixel (r, g, b, a) would actually be stored as (r* a, g*a, b*a, a). This
storage format reduces the number of multiplications required in the
compositing operations. In interactive environments, when an imageis
composited many times, this capability is especially efficient.

One known disadvantage of the pre-multiplication isthat once apixel is
marked as transparent, its color value is gone because the pixel’s color
channels are multiplied by 0.

The functioni pl PreMul ti pl yAl pha() implements various alpha
compositing operations between two images. One of them is converting
the pixel values to pre-multiplied form.

The color channels in images with the alpha channel can be optionally pre-
multiplied with the alpha value. This saves a significant amount of
computation for some of the alpha compositing operations. For example,

in an RGBA color model image, if (r, g, &) are the channel values for a
pixel, then upon pre-multiplication they are stored ag,(g*a, b*a, a).

AlphaComposite
AlphaCompositeC

Composite two images using
alpha (opacity) values.

voi d ipl Al phaComposite(lpllmage* srclmageA, |1pllmage*
srcl mageB, |pllmage* dstlmage, int conpositeType,

I pl I mage* al phal mageA, |pllnmage* al phal mageB, 1 pl | mage*
al phal mageDst, BOOL prenul Al pha, BOOL divi deMbde,

| pl Coord* map);

5-19

Intel Image Processing Library Reference Manual

voi d i pl Al phaConpositeC(I pl | mage* srclnmageA, |pllnmge*
srcl mageB, |pllmage* dstlmage, int conpositeType, int aA
int aB, BOOL prenul Al pha, BOOL divideMbde, |pl Coord* map);

srcl mageA The foreground input image.
srcl mageB The background input image.
dst I mage The resultant output image.

conposi t eType The composition type to perform. See Table 5-2 for the
type value and description.

aA The constant apha value to use for the source image
srcl mageA. Should be a positive number.

aB The constant alpha value to use for the source image
srcl mageB. Should be a positive number.

al phal mgeA Theimageto use asthe aphachannel for src/ mageA. If
the image contains an alpha channel, that channel is
used. Otherwise channel 1intheimageis used asthe
aphachannel. If thisis not suitable for the application,
then the apha channel number in the IPL header for the
image should be set appropriately before calling this
function. If the argument a/ phal mageA isNULL, then
the internal alphachannel of src/ mageAisused. If
srcl mageA does not contain an apha channel, an error
message is issued.

al phal mgeB Theimage to use as the apha channel for src/ nageB. If
the image already contains an apha channel, that
channel is used. Otherwise channel 1intheimageis
used as the alpha channel. If thisis not suitable for the
application, then the alpha channel number in the IPL
header for the image should be set appropriately before
calling this function. If the argument a/ phal mageBis
NULL, then the internal alphachannel of src/ mageBis
used.

5-20

Image Arithmetic and Logical Operations

al phal mageDst

prenul Al pha

di vi deMbde

map

Discussion

If srcl mageB does not contain an apha channel, then
thevalue (1- a,) isused for the alpha, where a, isa
scaled alphavaue of srcl mageAintherangeOto 1.

The image to use as the apha channel for dst I mage. If
the image already contains an alpha channel, that
channel is used. Otherwise channel 1intheimageis
used as the alpha channel. If thisis not suitable for the
application, then the alpha channel number in the IPL
header for the image should be set appropriately before
calling this function. This argument can be NULL, in
which case the resultant alpha values are not saved.

A Boolean flag indicating whether or not the input
images contain pre-multiplied alpha values. If true, they
contain these values.

A Boolean flag set to false by default. When true, the
resultant pixel color (see Table 5-2) isfurther divided by
the resultant alpha value to get the final resultant pixel
color.

The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.

Thefunctioni pl Al phaConposi te() performsanimage compositing
operation by overlaying the foreground image sr c/ nageA with the
background image sr ¢/ mageB to produce the resultant image dst | mage.

Thefunctioni pl Al phaConposi te() executes under one of the following
conditions for the alpha channels:

5-21

Intel Image Processing Library Reference Manual

5-22

e If al phal mageA and al phal nageB are both NULL, then the internal

apha channels of the two input images specified by their respective
IPL image headers are used. The application has to ensure that these
are set to the proper channel number prior to calling this function. If
srcl mageB does not have an alpha channel, then its alphavalue is set
to(1- a,) where a, isthe scaled dphavalue of image src/ mageAin
therangeOto 1.

e If both aphaimages al phal mageA and al phal mageB are not NULL,
then they are used as the alpha values for the two input images. If
al phal mageB iSNULL, thenitsaphavalueissetto (1- a,) wherea,
isthe scaled alphavalue of image al phal nageA intherange 0 to 1.

It isan error if none of the above conditionsis satisfied.

If al phal mageDst isnot NULL, then the resultant alpha values are written
toit. If itisNULL and the output image i nageDst contains an alpha
channel (specified by its IPL image header), then it is set to the resulting
adphavaues. Otherwise (that is, alpha channel number is zero), the output
pixel values are multiplied by the resulting a pha values before final
storage in the output image occurs.

Thefunctioni pl Al phaConposi t eC() isused to specify constant alpha
values a, and a, to be used for the two input images (usualy o, is set to

thevaluel - a,). The output pixel values are multiplied by the resultant

aphavalues before final storage in the output image. The resultant alpha
values (aso constant) are not saved.

The type of compositing is specified by the argument conposi t eType
which can assume the values shown in Table 5-2.

Image Arithmetic and Logical Operations

Table 5-2

Types of Image Compositing Operations

Type Output Pixel Output Pixel Resultant
(see Note) (pre-mult. a) Alpha

Description

OVER o, *A+ A+(1-a,)*B oLt

(1' GA)*GB*B (1' GA)* Og
IN o, A% ag A*og o, og
OUT o *A*(1-ag) A*(1-ap) 0, *(1- ap)
ATOP a,*A* ag+ A*ag+ % ogt

(1' GA)*GB*B (1' GA)*B (1' GA)* Og
XOR o, *A*(1l-0p)+ A*(1-ap)+ 0, *(1- ag)+

(1' GA)* GB*B (1' GA)*B (1' GA)* Og
PLUS a,*A+0,*B A+B O, + Op

A occludes B

A within B. A acts as a
matte for B. A shows only
where B is visible.

A outside B. NOT-B acts as
a matte for A. A shows only
where B is not visible.

Combination of (A IN B)
and (B OUT A). B is both
back-ground and matte for
A.

Combination of (A OUT B)
and (B OUT A). Aand B
mutually exclude each
other.

Blend without precedence

NOTE. In Table5-2, theresultant pixel valueis divided by the resultant
alpha when di vi deMbde is set to true (see the argument descriptions for
thei pl Al phaConposite() function). The Greek letter a here and below
denotes normalized (scaled) alpha valuesin therange O to 1.

For example, for the OV ER operation, the output C for each pixel in the

inputs A and B is determined as

C=a,*A+(1-0a)*0,*B

5-23

Intel Image Processing Library Reference Manual

The above operation is done for each color channel in A, B, and C. When the
images A and B contain pre-multiplied alphavalues, C is determined as

C=A+(1-a,)*B

The resultant alphavalue ac (alphain the resultant image C) is computed
as (both pre-multiplied and not pre-multiplied alpha cases) from aA (alpha
in the sourceimage A) and aB (alphain the source image B):

aC=GA+(1_ aA)*aB

Thus, to perform an OVER operation, use the | PL_COVPCSI TE_OVER
identifier for the argument conposi t eType. For al other types, use

| PL_COVPOSI TE_IN, | PL_COVPCSI TE_OUT, | PL_COVPCSI TE_ATOP,
| PL_COVPOSI TE_XOR, and | PL_COVPCSI TE_PLUS, respectively.

The argument di vi deMbde istypically set to false to give adequate results
as shown in the above example for an OVER operation and in Table 5-2.
When di vi deMbde is set to true, the resultant pixel color is divided by the
resultant alpha value. This gives an accurate result pixel vaue, but the
division operation is expensive. In terms of the OVER example without
pre-multiplication, the final value of the pixel C is computed as

C=(a,*A+(1- a,)* o, * B)lo,
Thereis no change in the value of o, and it is computed as shown above.
When both A and B are 100% transparent (that is, o, iszero and o is

zero), d. isalso zero and the result cannot be determined. In many cases,
the value of o is 1, so the division has no effect.

5-24

Image Arithmetic and Logical Operations 5

PreMultiplyAlpha

Pre-multiplies alpha
values of an image.

void iplPreMultiplyA pha (Ipllmge* inmage,
int al phaVal ue, 1pl Coord* map);

i mge The image for which the alpha pre-multiplication is
performed.

al phaVal ue The global aphavalueto usein therange 0 to 256. If
thisvalueis negative (for example, - 1), the internal
apha channel of theimageisused. It isan error
condition if an apha channel does not exist.

map The structure specifying offsets for tiling purposes;
see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl PreMul ti pl yAl pha() convertsanimageto the pre-
multiplied aphaform. If (R, G, B, A) arethered, green, blue, and alpha
values of apixel, then the pixel is stored as (R* a, G*a, B*a, A) after
execution of this function. Here a is the pixel’'s normalized alpha value in
the range O to 1.

Optionally, a global alpha valug phaVal ue can be used for the entire
image. Then the pixels are stored asdR&*a, B*a, al phaVal ue) if the
image has an alpha channel or RG*a, B*a) if the image does not
have an alpha channel. Hexds the normalized/ phaVval ue in the range
Oto 1.

5-25

Image Filtering

This chapter describes filtering operations that can be applied to images.
IPL uses linear and non-linear filters. The linear filters include a subgroup
of 2D convolution filters. Table 6-1 lists IPL image filtering functions.

Table 6-1 Image Filtering Functions
Group Function Name Description
Linear Filters i pl Bl ur Applies a simple neighborhood

averaging filter to blur the image.

2D Convolution i pl Cr eat eConvKer nel ~ Creates a convolution kernel.
Linear Filters

i pl Get ConvKer nel Reads the attributes of a convolution
kernel.

i pl Del et eConvKer nel Deallocates a convolution kernel.

i pl Convol ve2D Convolves an image with one or more
convolution kernels.
i pl Convol veSep2D Convolves an image with a separable
convolution kernel.
Non-linear i pl Medi anFi | ter Applies a median filter to the image.
Filters i pl MaxFilter Applies a maximum filter to the image.
ipl MnFilter Applies a minimum filter to the image.

Linear Filters

Linear filtering includes simple neighborhood averaging filter to blur the
image and 2D convolution operations.

6-1

Intel Image Processing Library Reference Manual

Blur

Applies simple neighborhood
averaging filter to blur the
image.

void iplBlur(lpllnmge* srclmge, |pllnmge* dstl nmage,
int nRows, int nCols, int anchorX, int anchorY, |pl Coord*

mp) ;

srcl mage The source image.

dst I mage The resultant image.

nRows Number of rows in the neighborhood to use.
nCol s Number of columnsin the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, O] and the bottom right
corner would be [nRows- 1, nCol s- 1]. For a3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

map The structure specifying offsets for tiling
pUrposes.

Discussion

Thefunctioni pl Bl ur () setseach pixel in the output image as the
average of all the input image pixels in the neighborhood of size nRows
by ncol s with the anchor cell at that pixel. This has the effect of
smoothing or blurring the input image. The linear averaging filter of an
image is aso caled abox filter.

Image Filtering

2D Convolution

The 2D convolution is a versatile image processing primitive which can be
used in avariety of image processing operations; for example, edge
detection, blurring, noise removal, and feature detection. It is also known
as mask convolution or spatial convolution.

NOTE. In some literature sources, the 2D convolution is referred to as
box filtering, which is an incorrect use of the term. A box filter isa linear
averaging filter (seefunction i pl Bl ur above). Technically, a box filter
can be effectively (although less efficiently) implemented by 2D
convolution using a kernel with unit or constant values.

For 2D convolution, arectangular kernel is used. The kernel is amatrix of
signed integers which are, actually, the signed bytes of the C-language
“signed char” type. The value range of these byted 8 to 127. The
kernel could be a single row (a row filter) or a single column (a column
filter) or composed of many rows and columns. There is a cell in the
kernel called the “anchor,” which is usually a geometric center of the
kernel, but can be skewed with respect to the geometric center.

For each input pixel, the kernel is placed on the image such that the anchor
coincides with the input pixel. The output pixel value is computed as the
matrix dot product of the image matrix (the portion of the input image on
which the kernel is overlaid) and the kernel matrix. Optionally, the output
pixel value may be scaled.

The convolution function can be used in two ways. The first way uses a
single kernel for convolution. The second way uses multiple kernels and
allows the specification of a method to combine the results of convolution
with each kernel. This enables efficient implementation of multiple

kernels which eliminates the need of storing the intermediate results when
using each kernel. One IPL functioml Convol ve2D() , can implement

both ways.

Intel Image Processing Library Reference Manual

In addition, i pl Convol veSep2D)) , a convolution function that uses
separable kernelsis also provided. The convolution kernel is separable
into the x and y components.

The 2D convolution functions, i pl Cr eat eConvKer nel () and

i pl Get ConvKer nel (), alow you to create and access kernels, upon
which convolving the image with one or more convolution kernels or with
a separable kernel can be performed.

CreateConvKernel

Creates a convolution
kernel.

I pl ConvKer nel * ipl Creat eConvKernel (int nRows, int nCols,
int anchorX, int anchorY, char* values, int nShiftR);

nRows The number of rows in the convolution kernel.
nCol s The number of columnsin the convolution kernel.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
kernel. In this coordinate system, the top left
corner would be [0, 0] and the bottom right
corner would be [nRows- 1, nCol s- 1]. For a3 by
3 kernel, the coordinates of the geometric center
would be[1, 1]. This specification allows the
kernel to be skewed with respect to its geometric
center.

val ues A pointer to an array of valuesto be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There
should be exactly nRows*ncCol s entriesin this
array. For example, thearray [1, 2,3, 4,5, 6, 7,
8, 9] would represent the kernel matrix

Image Filtering

123
456
789

nShi ft R Scale the resulting output pixel by shifting it to
theright nShi f t Rtimes.

Discussion

Thefunctioni pl Cr eat eConvKer nel () can be used to create a

convolution kernel of arbitrary size and arbitrary anchor point.

Return Value

A pointer to the convolution kernel structure | pl ConvKer nel .

GetConvKernel

Reads the attributes of a
convolution kernel.

voi d i pl Get ConvKer nel (I pl ConvKernel * kernel, int* nRows,
int* nCols, int* anchorX, int* anchorY, char** val ues,

int* nShiftR);

ker nel The kernel to get the attributes for. The
attributes are returned in the remaining
arguments.

nRows A pointer to the number of rowsin the
convolution kernel. Set by the function.

nCol s A pointer to the number of columnsin the

convolution kernel. Set by the function.

Intel Image Processing Library Reference Manual

6-6

anchor X, anchorY Pointerstothe [x, y] coordinates of the anchor
cell inthe kernel. (See iplCreateConvKernel
above.) Set by the function.

val ues A pointer to an array of valuesto be used for the

kernel matrix. The values are read in row-major
form starting with the top left corner. There will
be exactly nRowus*nCol s entriesin this array.
For example, thearray [1, 2,3, 4,5, 6, 7, 8, 9]
would represent the kernel matrix

123

456

789

nShi ft R A pointer to the number of bitsto shift (to the
right) the resulting output pixel of each
convolution. Set by the function.

Discussion

Thefunctioni pl Get ConvKer nel () can be used to read the attributes of a
convolution kernel.

DeleteConvKernel

Deletes a convolution
kernel.

voi d i pl Del et eConvKer nel (I pl ConvKer nel * kernel);
ker nel The kernel to delete.

Discussion

Thefunctioni pl Get ConvKer nel () must be used to delete a convolution
kernel which was created by the i pl Cr eat eConvKer nel () function.

Image Filtering

Convolve2D

Convolves an image
with one or more
convolution kernels.

voi d ipl Convol ve2D(| pl | mage* srclmage, 1pllmage*
dst I mage, |pl ConvKernel ** kernel, int nKernels,
i nt combi neMet hod, 1 pl Coord* map);

srcl mage The source image.
dst I mage The resultant image.
ker nel A pointer to an array of pointersto convolution

kernels. The length of the array is nKer nel s.

nKer nel s The number of kernelsin the array ker nel . The
value of nKer nel s can be 1 or more.

conbi nelMet hod The way in which the results of applying each
kernel should be combined. This argument is
ignored when asingle kernel isused. The
following combinations are supported:

| PL_SUM Sums the results.
| PL_SUMSQ Sums the squares of the results.

| PL_SUVBQROOT Sums the sgquares of the results
and then takes the square root.

| PL_VAX Takes the maximum of the results.

IPL_MN Takes the minimum of the results.
map The structure specifying offsets for tiling

pUrposes.

6-7

Intel Image Processing Library Reference Manual

Discussion

Thefunctioni pl Convol ve2D)) isused to convolve an image with a set of
convolution kernels. The results of using each kernel are then combined
using the conbi neMet hod argument.

ConvolveSep2D

Convolves an image with a
separable convolution kernel.

voi d i pl Convol veSep2D(| pl | mgreg* srcl mage, |pllmage*
dst I mage, |pl ConvKernel* xKernel, 1plConvKernel* yKernel,
I pl Coord* map);

srcl mage The source image.
dst | mage The resultant image.
xKer nel The x or row kernel. Must contain only one row.
yker nel They or column kernel. Must contain only one column.
map The structure specifying offsets for tiling
puUrposes.
Discussion

Thefunctioni pl Convol veSep2D() isused to convolve the input image
srcl mage with the separable kernel specified by the row kernel xker nel
and column kernel yker nel . The resulting output imageis dst I mage.

Image Filtering

Non-linear Filters

Non-linear filtering involves performing non-linear operations on some
neighborhood of the image. Most common are the minimum, maximum
and median filters.

MedianFilter
Apply a median filter to
the image.

voi d ipl MedianFilter(lpllnmge* srclmage, |pllmge*
dstlmage, int nRows, int nCols, int anchorX,
int anchory, |pl Coord* nap);

srcl mage The source image.

dst I mage The resultant image.

nRows Number of rows in the neighborhood to use.
nCol s Number of columnsin the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, O] and the bottom right
corner would be [nRows- 1, nCol s- 1]. For a3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

map The structure specifying offsets for tiling
pUrposes.

6-9

Intel Image Processing Library Reference Manual

6-10

Discussion

Thefunctioni pl Medi anFi | t er () setseach pixe in the output image as
the median value of all the input image pixel values in the neighborhood
of size nRows by nCol s with the anchor cell at that pixel. This hasthe
effect of removing the noisein the image.

MaxFilter
Apply a max filter to the

void iplMaxFilter(lpllnmge* srclmage, |pllnmge* dstlnmage,
int nRows, int nCols, int anchorX, int anchorY, 1pl Coord*
mp) ;

srcl mage The source image.

dst I mage The resultant image.

nRows Number of rows in the neighborhood to use.
nCol s Number of columnsin the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, O] and the bottom right
corner would be [nRows- 1, nCol s- 1]. For a3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

map The structure specifying offsets for tiling
pUrposes.

Image Filtering

Discussion

Thefunctioni pl MaxFi | ter () setseach pixel inthe output image as the
maximum value of all the input image pixel valuesin the neighborhood of
size nRows by nCol s with the anchor cell at that pixel. This has the effect
of increasing the contrast in the image.

MinFilter

Apply a min filter to the
image.

void iplMnFilter(lpllnmge* srclmge, |pllmge* dstl nmage,
int nRows, int nCols, int anchorX, int anchorY, 1pl Coord*

mp) ;

srcl mage The source image.

dst I mage The resultant image.

nRows Number of rows in the neighborhood to use.
nCol s Number of columnsin the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. (In this coordinate system, the top
left corner would be [0, O] and the bottom right
corner would be [nRows- 1, nCol s- 1]. For a3 by
3 neighborhood the coordinates of the geometric
center would be [1, 1]). This specification
alows the neighborhood to be skewed with
respect to its geometric center.

map The structure specifying offsets for tiling
purposes.

6-11

Intel Image Processing Library Reference Manual

6-12

Discussion

Thefunctioni pl M nFi | ter () setseach pixel inthe output image as the
minimum value of all the input image pixel values in the neighborhood of
size nRows by nCol s with the anchor cell at that pixel. This has the effect
of decreasing the contrast in the image.

Linear Image Transforms

This chapter describes the linear image transforms implemented in the
library: Fast Fourier Transform (FFT) and Discrete Cosine Transform
(DCT). Table 7-1 lists IPL functions performing linear image transform

operations.
Table 7-1 Linear Image Transform Functions

Group Function Name Description

Fast Fourier i pl Real Fft 2D Computes the forward or inverse 2D

Transform (FFT) FFT of an image.

i pl CcsFft 2D Computes the forward or inverse 2D

FFT of an image in a complex-
conjugate format.

Discrete Cosine i pl DCT2D Computes the forward or inverse 2D

Transform (DCT) DCT of an image.

Fast Fourier Transform

This section describes the functions that implement the forward and
inverse Fast Fourier Transform (FFT) on the 2-dimensional (2D) image
data.

Real-Complex Packed (RCPack2D) Format

The FFT of any real 2D signal, in particular, the FFT of animageis
conjugate-symmetric. Therefore, it can be fully specified by storing only
half the output data. A specia format called RCPack2D is provided for this
purpose.

7-1

Intel Image Processing Library Reference Manual

7-2

Thefunctioni pl Real Fft 2D() transformsa 2D image and produces the
Fourier coefficients in the RCPack 2D format. To complement this, function
i pl CcsFft2D() isprovided that usesitsinput in RCPack2D format,
performs the Fourier transform, and produces its output as areal 2D

image. The functionsi pl Real Fft 2D() andi pl CcsFft 2D() together can
be used to perform frequency domain filtering of images.

RCPack2D format is defined based on the following equations:

L-1 K-1

= B et it R
=0 =0

1 e i T ks
i = Tk Z Z Asj eXpEZ L éeXp%Q K %
J =0 s=0
where i = -1, fy; = f(xpyi), Xk = kIK, y; =1IL.
Note that the Fourier coefficients have the following relationship:
A = Acosi-

The symbol “~" denotes complex-conjugate. Hence, thek real values
can be used to reconstruct ttvek complex coefficients\ , . Thus it is
enough to store only*K real values.

Using the DFT (real or complex) functiar(y) , we have the following
Fourier coefficients:

L -

A - Zlas(/) exp% 2T[iLIj %) :Z‘le‘l e, expé‘ 2T[I'le @exp% 2Trll'<ks§
£ =l E)

=0

where
s=0 ... K2 for evenk
$s=0, ... (K1)/2 for oddk
j =0, ... (L1

Linear Image Transforms

Other Fourier coefficients can be found using complex-conjugate
relations. Fourier coefficients A, ; for real function a, (Fourier coefficients
A, for even K) can be stored in the RCPack format, other coefficients are
standard. The RCPack format is a convenient compact representation of a
complex conjugate-symmetric sequence. The disadvantage of this format
isthat if it is not the natural format used by the real FFT agorithms
(“natural” in the sense that bit-reversed order is natural for rad ix-2
complex FFTs).

In theRCPack2D format, the output samples of the FFT are arranged as
shown in Table 7-2 wherRe corresponds to Real ahah corresponds to
Imaginary.

Table 7-2 Arrangement of Output Samples in RCPack2D Format

Aso ReA,, ReA,, ReA,,
ImA, ImA,, oo HImA,
ReA, ReA, , ReA , ... iReAj
ImA, ImA, ImA,, o ImA,
ReAK/Z,O ReAKlZ,l ReAKlZ,Z Re'A‘Klz,j
ImAKlZ,O ImAKlZ,l ImAKlZ,Z ImAKlZ,j
RealFft2D

Computes the forward or
inverse 2D FFT of an image.

voi d ipl Real Fft 2D(1 pl | mage* srclmage, |pllmage* dst! mage,
int flags, |plCoord* nap);

srcl mage The source image.

7-3

Intel Image Processing Library Reference Manual

dst | mage

fl ags

map

The resultant image in RCPack 2D format
containing the Fourier coefficients. Thisimage
must be a multi-channel image containing the
same number of channels as src/ nage. The data
type for the image must be 8, 16 or 32 bits.

This image cannot be the same as the input
image sr ¢/ nage (that is, an in-place operation is
not allowed).

Specifies how to perform FFT . Thisis an integer
in which every bit can be assigned the following
values using logical OR:

| PL_FFT_Forw Do forward transform
| PL_FFT_ I nv Do inverse transofrm

| PL_FFT_NoScal e Do inverse transform without
scaling

| PL_FFT_DoAl pha Transform alphachannel
(if al phachannel isnot Q)

| PL_FFT_Usel nt Use only integer core
| PL_FFT_UseFl oat Useonly float core

| PL_FFT_Onl yO f set RO andCal ¢
Take only offset ROI and calc

| PL_FFT_Free Only free al working arrays
and exit
| PL_FFT_Save Save al working arrays on exit

The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Linear Image Transforms

Discussion

Thefunctioni pl Real Fft 2D() performsan FFT on each channel in the
specified rectangular ROI of the input image src/ mage and writes the
Fourier coefficients in RCPack 2D format into the corresponding channel of
the output image dst I mage.

Note that the output data will be clamped (saturated) to the limits 0 and
Max, where Max is determined by the data type of the output image. The
32-bit data type will produce the best results, so at least 16-bit datais

recommended.

CcsFft2D

Computes the forward
or inverse 2D FFT of an
image in complex-
conjugate format.

void ipl CcsFft2D(1 pl I mage* srclmage, |pllmge* dstl mage,

srcl mage

dst | mage

fl ags

int flags, |plCoord* nap);

The source image in RCPack2D format.

The resultant image. Thisimage must be a multi-
channel image containing the same number of channels
assrcl mage.

This image cannot be the same as the input image
srcl mage (that is, an in-place operation is not allowed).

Specifies how to perform FFT . Thisisan integer in
which every hit can be assigned the following values
using logical OR:

| PL_FFT_Forw Do forward transform

| PL_FFT_ I nv Do inverse transofrm

Intel Image Processing Library Reference Manual

7-6

| PL_FFT_NoScal e Do inverse transform without
scaling

| PL_FFT_DoAl pha Transform aphachannel
(if al phachannel isnot zero)

| PL_FFT_Usel nt Use only integer core
| PL_FFT_UseFl oat Useonly float core

| PL_FFT_Onl yO f set RO andCal ¢
Take only offset ROI and calc

| PL_FFT_Free Only free al working arrays and
exit
| PL_FFT_Save Save al working arrays on exit
map The structure specifying offsets for tiling purposes;

see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Real Fft 2D() performsan FFT on each channel in the
specified rectangle ROI of the input image sr ¢/ mage and writes the
output in RCPack2D format to theimage dst I nage.

Note that the output data will be clamped (saturated) to the limits 0 and
Max, where Max is determined by the data type of the output image.

Discrete Cosine Transform

This section describes the functions that implement the forward and
inverse Discrete Cosine Transform (DCT) on the 2D image data. The
output of the DCT for real input dataisreal. Therefore, unlike FFT, no
specia format for the transform output is needed.

Linear Image Transforms

DCT2D

Computes the forward
or inverse 2D DCT of
an image.

voi d ipl DCT2D(| pl | mage* srcl mage, |pllmage* dstl nage,
int flags, |plCoord* nap);

srcl mage

dst | mage

fl ags

The source image.

The resultant image containing the DCT
coefficients. Thisimage must be a multi-channel
image containing the same number of channels
as srcl mage. The data type for the image must
be 8, 16 or 32 hits.

This image cannot be the same as the input
image sr ¢/ nage (that is, an in-place operation is
not allowed).

Specifies how to perform FFT. Thisis an integer
whose every bit can be assigned the following
values using logical OR:

| PL_DCT_Forward Do forward transform
| PL_DCT I nver se Do inversetransofrm

| PL_DCT_DoAl pha Transform alpha channel
(if al phachannel isnot Q)

| PL_DCT_Free Only free al working arrays
and exit

| PL_DCT_Usel npBuf Usetheinput image array for
the intermediate calculations. The
performance of DCT increases,
but the input image is destroyed.
Thisvalue is adefault.

Intel Image Processing Library Reference Manual

7-8

map The structure specifying offsets for tiling
purposes; see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl DCT2D() performsaDCT on each channel in the
specified rectangular ROI of the input image src/ mage and writesthe
DCT coefficients into the corresponding channel of the output image
dst | mage.

Note that the output data will be clamped (saturated) to the limits M n and
Max, where M n and Max are determined by the data type of the output
image. The 32-bit data type will produce the best results, so at least 16-bit
datatype is recommended.

Mor phological Operations

Table 8-1

The morphological operations of the Image Processing Library are simple
erosion and dilation of an image. A specified number of erosions and
dilations are performed as part of image opening or closing operationsin
order to (respectively) eliminate or fill small and thin holesin objects,
break objects at thin points or connect nearby objects, and generaly
smooth the boundaries of objects without significantly changing their area.

Table 8-1 lists the functions that perform these operations.

Morphological Operation Functions

Group Function Name Description
Erode, Dilate i pl Er ode Erodes the image an indicated number
of times.
iplDilate Dilates the image an indicated number
of times.
Open, Close i pl Open Opens the image while smoothing the

boundaries of large objects.

i pl O ose Closes the image while smoothing the
boundaries of large objects.

81

Intel Image Processing Library Reference Manual

Erode

Erodes the image.

voi d ipl Erode(lpl | mage* srclmage, |pllmage* dstl nage,
int nlterations, |plCoord* map);

srcl mage The source image.

dst | mage The resultant image.

nlterations The number of times to erode the image.

map The structure specifying offsets for tiling
pUrposes.

Discussion

Thefunctioni pl Er ode() performs an erosion of the image

nl terations times. Theway theimage iseroded depends on whether it

isabinary image or not.

e For abinary input image, the output pixel is set to zero if the
corresponding input pixel or any of its 8 neighboring pixelsis a zero.

« For agray scaleor color image, the output pixel is set to the minimum
of the corresponding input pixel and its 8 neighboring pixels.

The effect of erosion isto remove spurious pixels (such as noise) and to
thin boundaries of objects on a dark background (whose pixel values are
less than those of the objects).

Morphological Operations

Figure 8-1

Figure 8-1 shows an example of 8-bit gray scale image before erosion
(left) and the same image after erosion of arectangular ROI (right).

Erosion in a Rectangular ROI: the Source (left) and Result (right)

The following code (Example 8-1) performs erosion of the image inside
the selected rectangular ROI.

8-3

Intel Image Processing Library Reference Manual

84

Example 8-1

Code Used to Produce Erosion in a Rectangular ROI

/* Create output image header with attributes pointed to
by srclng */

dstlng = ipl Createl mageHeader (
src->nChannel s, src->al phaChannel, src->depth,
", "", src->dataOrder, src->align,
src->hei ght, src->wdth, 0);

/* Al ocate output image */
i pl Al l ocat el mage(dst | nage, NOFILL);
/* Copy source image into output image */
mencpy (dst | ng->i mageDat a, srclng->i mageDat a,
src->i nageSi ze) ;

/* Set RO attributes */

roi.coi = 0; /* channel s: all */
/* region: */

roi . xOrfset = 10; /* position 10,155 */

roi.yOrfset = 155;

roi.width = 192; /* size: 192x86 */

roi. hei ght = 86;

/* Set RO into srclng and dstlng */
srcl ng->roi &roi ;
dstlng->roi = &oi;

/* Erosion */
I pl Erode(srclng, dstlng, 2);

NOTE. All sourceimage attributes are defined in the image header
pointed to by src/ nage.

Morphological Operations

Dilate

Dilates the image.

void iplDilate(lpllmge* srclnmage, |pllmge* dstlnmage,
int nlterations, |plCoord* map);

srcl mage The source image.

dst | mage The resultant image.

nlterations The number of times to dilate the image.

map The structure specifying offsets for tiling
purposes.

Discussion

Thefunctioni pl Di | at e() performsadilation of the image

nl t er at i ons times. The way the image is dilated depends on whether the

image is abinary image or not.

e For abinary input image, the output pixel isset to 1 if the corresponding
input pixel is 1 or any of 8 neighboring input pixelsis 1.

e For agray scaleor color image, the output pixel is set to the maximum
of the corresponding input pixel and its 8 neighboring pixels.

The effect of dilation isto fill up holes and to thicken boundaries of
objects on a dark background (whose pixel values are less than those of
the objects).

85

Intel Image Processing Library Reference Manual

8-6

Open

Opens the image by
performing erosions
followed by dilations.

voi d ipl Open(! pl I mage* srclmage, |pllnmage* dstl nmage,
int nlterations, |plCoord* map);

srcl mage The source image.

dst I mage The resultant image.

nlterations The number of times to erode and dilate the
image.

map The structure specifying offsets for tiling
purposes.

Discussion

The functioni pl Open() performs n/ t er at i ons of erosion followed by
nl t erat i ons of dilation performed by i pl Erode() andipl Di | ate(),
respectively.

The process of opening has the effect of eliminating small and thin
objects, breaking objects at thin points, and generally smoothing the
boundaries of larger objects without significantly changing their area.

See Also

Erode
Dilate

Morphological Operations

Close

Closes the image by
performing dilations
followed by erosions.

void ipl dose(lpllmge* srclmage, |pllmage* dstlnage,
int nlterations, |plCoord* map);

srcl mage The source image.
dst I mage The resultant image.
nlterations The number of times to dilate and erode the image.
map The structure specifying offsets for tiling
purposes.
Discussion

Thefunctioni pl C ose() performs ni t er ati ons of dilation followed
by niterations of erosion performed by i pl Di | at e() and
i pl Erode() , respectively.

The process of closing has the effect of filling small and thin holesin
objects, connecting nearby objects, and generally smoothing the
boundaries of objects without significantly changing their area.

See Also

Erode
Dilate

87

Color Space Conversion

Table 9-1

This chapter describes the Image Processing Library functions that
perform color space conversion. The following color space conversions

are supported in the library:

¢ Reduction from high bit resolution color to low bit resolution color
e Conversion of absolute color images to and from pal ette color images

* Color model conversion

e Conversion from color to gray scale and vice versa

Table 9-1 lists color space conversion functions. For information on the
absolute-to-pal ette and pal ette-to-absol ute color conversion, see “Working
in the Windows DIB Environmehin Chapter 4.

Color Space Conversion Functions

Conversion Type Function Name

Description

Reducing Bit i pl ReduceBits

Resolution

Reduces the number of bits
per channel in an image.

Bitonal to gray scale [Pl Bitonal ToG ay

Converts bitonal images to 8-
and 16-bit gray scale images.

Colorto gray scale i pl Col or ToG ay

and vice versa

i pl GayToCol or

Convert color images to and
from gray scale images.

Color Models
Conversion

i pl RGB2HSV,
i pl HSV2RGB

i pl RGB2HLS,
i pl HLS2RGB

Convert RGB images to and
from HSV color model.

Convert RGB images to and
from HLS color model.

continued =

91

Intel Image Processing Library Reference Manual

Table 9-1

Color Space Conversion Functions (continued)

Conversion Type Function Name Description
Color Models i pl Appl yCol or Twi st Applies a color-twist matrix
Conversion to an image.
(continued) i pl Creat eCol or Twi st Allocates memory for color-

twist matrix data structure.

i pl Del et eCol or Twi st Deletes the color-twist
matrix data structure.

i pl Set Col or Twi st Sets a color-twist matrix
data structure.

Reducing the Image Bit Resolution

This section describes functions that reduce the bit resolution of absolute
color and gray scale images.

ReduceBits

Reduces the bits per
channel in animage.

9-2

voi d i pl ReduceBits(Ipllmge* srclmage, |pllmage*
dstlnmage, int ditherType, int jitterType, int [evels,
| pl Coord* map);

srcl mage The source image of a higher bit resolution.
Refer to the discussion below for alist of valid
source and resultant image combinations.

Color Space Conversion

dst | mage

JjitterType

di t her Type

| evel s

map

Discussion

The resultant image of alower bit resolution.
Refer to the discussion below for a list of valid
source and resultant image combinations.

The number specifying the noise added; should
beintherangeOto 8.

The type of dithering to be used. The following
types are allowed:

| PL_DI THER_NONE No dithering is done

| PL_DI THER_FS The Floid-Steinberg

dithering algorithm is used.

| PL_DI THER JJH The Jarvice-Judice-Hinke

dithering algorithm is used.

| PL_DI THER_STUCKEY The Stucki dithering
agorithmis used

| PL_DI THER_BAYER The Bayer dithering
algorithmis used

Number of levels for dithering; should be a
power of 2.

The structure specifying offsets for tiling
purposes; see |plCoord Structure in Chapter 2.

Thefunctioni pl ReduceBi t s() reduces ahigher bit resolution of the
absolute color or gray scale source image sr c/ nmage to alower resolution
of the resultant absolute color or gray scaleimage dst | nage. All
combinations of jittering and dithering values arevalid. If j i t t er Type is
greater than 0, some random noise is added to all pixels before the
reduction, which eliminates the problem of visible color stepping; see
[Bragg]. The resultant image can be used as input to a color quantization
method for further reduction in the number of colors; see [Thomas| and

[Schumacher].

9-3

Intel Image Processing Library Reference Manual

Table 9-2 lists the valid combinations of the source and resultant image bit
datatypes for reducing the bit resolution.

Table 9-2 Source and Resultant Image Data Types for Reducing the Bit

Resolution

Source Image Resultant Image

32 bit per channel 1 (for gray image), 8 or 16 bit per channel
16 bit per channel 8 or 1 (for gray image) bit per channel

8 bit per channel 1 bit per channel (for gray image)

Bit reducing usesthe equation dst = src*(((1<<n) -1)/((1<<n) - 1)),
where mis the bit depth of the source and n is the bit depth of the
destination. To reduce a gray scale image to abitonal (1-bit) image, see
the discussion under the thresholding function i pl Thr eshol d in Chapter
10.

Conversion from Bitonal to Gray Scale Images

This section describes the function that performs the conversion of bitonal
images to gray scale.

BitonalToGray

Converts a bitonal
image to gray scale.

void iplBitonal ToG ay(Ipl|mage* srclnage, |pllnmge*
dst |l mage, int ZeroScale, int (neScal e, |plCoord* map);

srcl mage The bitonal source image.

Color Space Conversion

dst | mage

ZeroScal e

nheScal e

map

Discussion

Thefunctioni pl Bi t onal ToGray() convertstheinput 1-bit bitonal image

The resultant gray scale image. (See the
discussion below.)

The value that zero pixels of the source image
should have in the resultant image.

The value given to aresultant pixel if the
corresponding input pixel is 1.

The structure specifying offsets for tiling

purposes; see IplCoord Structure in Chapter 2.

srcl mage to an 8s, 8u, 16s orl6u gray scaleimage dst | nage.

If an input pixel is 0, the corresponding output pixel is set to Zer oScal e.
If an input pixel is 1, the corresponding output pixel is set to neScal e.

Conversion of Absolute Colors to and from Palette Colors

Since the IPL image format supports only absolute color images, this
functionality is provided only within the context of converting an IPL
absol ute color image to and from a palette color DIB image. See the
section “Working in the Windows DIB Environmehin Chapter 4.

Conversion from Color to Gray Scale

This section describes the function that performs the conversion of

absolute color images to gray scale.

9-5

Intel Image Processing Library Reference Manual

9-6

ColorToGray

Converts a color image

to gray scale.
voi d ipl Col or ToG ay(l pl | mage* srcl nage,
I pl I mage* dst /! mage, |pl Coord* map);
srcl mage The source image. See the discussion below for a list of
valid source and resultant image combinations.
dst I mage The resultant image. See the discussion below
for a list of valid source and resultant image
combinations.
map The structure specifying offsets for tiling
purposes; see |plCoord Structure in Chapter 2.
Discussion
Thefunctioni pl Col or ToGray() convertsacolor source image
srcl mage to agray scale resultant image dst | nage.
Table 9-3 lists the valid combinations of source and resultant image bit
datatypesfor conversion from color to gray scale.
Table 9-3 Source and Resultant Image Data Types for Conversion from

Color to Gray Scale

Source Image (data type) Result image (data type)
32 bit per channel Gray scale (1, 8, or 16 bit)
16 bit per channel Gray scale (1, 8, or 16 bit)
8 bit per channel Gray scale (1, 8, or 16 bit)

The weights to compute true luminance from linear red, green and blue are
these:

Y =0.212671* R+ 0.715160 * G+ 0.072169 * B.

Color Space Conversion

Conversion from Gray Scale to Color (Pseudo-color)

This section describes the conversion of gray scale image to pseudo color.

GrayToColor

Convertsagray scaleto
color image.

void i pl GayToCol or (Ipllnage* srclnmage,
I pl | mage* dstlmage, float FractR float FractG float
Fract B, |pl Coord* map);

srcl mage The source image. See the discussion below for a
list of valid source and resultant image
combinations.

dst I mage The resultant image. See the discussion below
for a list of valid source and resultant image
combinations.

Fract R, FractG FractBThered, green and blue intensities for image
reconstruction. See the discussion below for a
list of valid Fract R, Fract G, and Fract B
values.

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

Thefunctioni pl G ayToCol or () convertsagray scale source image
srcl mage to aresultant pseudo-color image dst | mage. Table 9-4 lists
the valid combinations of source and resultant image bit data types for
conversion from gray scaleto color.

9-7

Intel Image Processing Library Reference Manual

9-8

Table 9-4 Source and Resultant Image Data Types for Conversion from Gray
Scale to Color
Source Image (data type) Result image (data type)
Gray scale 1 bit 8 bit per channel
Gray scale 8 bit 8 bit per channel
Gray scale 16 bit 16 bit per channel
Gray scale 32 bit 32 bit per channel

The equation for chrominance in RGB from luminance Y is:

R= FractR* Y; 0<=FractR<=1
G= Fract G* Y; O0<=FractG<=1
B= FractB* Y; 0<=FractB<=1.

If Fract R==0 & & Fract G==0 & & Fract B== 0, then the default values
are used in above equation so that:

R = 0212671 * ¥, G = 0.715160 * Y, B = 0.072169 * V.

Conversion of Color Models

To convert one color model to another, a color twist matrix can be used.
See the “ Color Twist Matrices section, which describes this method and
presents examples of various color model conversions.

Described in this section are conversions of color models when the color
twist matrix cannot be used.

Note that conversion of the RGB to the CMY models can be performed by
a simple subtraction. The functioml Subt r act S can be used to

accomplish this conversion for two 8-bit per channel images. For example,
with maximum pixel value of 255, thepl Subt ract S() function is used

as follows:

i pl Subtract S(rgbl mage, cnyl mage, 256, TRUE)

Color Space Conversion

This call convertsthe RGB image r gb/ mage to the CMY image
cnyl mage by setting each channel in the CMY image asfollows:

C=255-R
M= 255 - G
Y = 255 - B
The conversion from CMY to RGB is similar: just switch the RGB and
CMY images.
RGB2HSV
Converts from the RGB
color model to the HSV

color model.

voi d i pl RGB2HSV(| pl | mage* rgbl mage, |pl | mage* hsvl mage,
| pl Coord* map);

rgbl mage The source RGB image.
hsvI mage The resultant HSV.
map The structure specifying offsets for tiling

purposes; see IplCoord Structure in Chapter 2.

Discussion

Thefunction i pl RGB2HSV() convertsthe RGB image r gb/ mage to the
HSV image hsvi mage. The function checks that the input imageis an
RGB image. The channel sequence and color model of the output image
areset to HSV.

9-9

Intel Image Processing Library Reference Manual

9-10

HSV2RGB

Converts fromthe HSV
color model to the RGB
color model.

voi d i pl HSV2RGB(| pl | mage* hsvi mage, |pl | mage* rgbl mage,
I pl Coord* map);

hsvI mage The source HSV image.
rgbl mage The resultant RGB.
map The structure specifying offsets for tiling

purposes; see IplCoord Structure in Chapter 2.

Discussion

The function i pl HSV2RGB() convertsthe HSV image hsvi mage tothe
RGB image r gb! mage. The function checks that the input imageis an
HSV image. The channel sequence and color model of the output image
are set to RGB.

RGB2HLS

Converts from the RGB
color model tothe HLS
color model.

voi d i pl RGB2HLS(| pl | mage* rgbl mage, |pl I mage* hl sl mage,
| pl Coord* map);

rgbl mage The source RGB image.
hl sl mage The resultant HLS.

Color Space Conversion

map The structure specifying offsets for tiling
purposes; see IplCoord Structure in Chapter 2.

Discussion

Thefunction i pl RGB2HLS() convertsthe RGB image r gb/ mage to the
HLSimage h! s/ mage. The function checks that the input imageisan
RGB image. The function sets the channel sequence and color model of
the output image to HLS.

HLS2RGB

Converts fromthe HLS
color model to the RGB
color model.

voi d i pl HLS2RGB(| pl | mage* hl sl mage, |pl | mage* rgbl mage,
| pl Coord* map);

hl sl mage The source HLS image.
rgbl mage The resultant RGB.
map The structure specifying offsets for tiling

purposes; see IplCoord Structure in Chapter 2.

Discussion

Thefunction i pl HLS2RGB() convertsthe HLSimage h/ s/ nage to the
RGB image r gb! mage; see [Rogers85]. The function checks that the input
image is an HLS image. The channel sequence and color model of the
output image are set to RGB.

9-11

Intel Image Processing Library Reference Manual

9-12

Using Color-Twist Matrices

One of the methods of color model conversion is using a color-twist
matrix. The color-twist matrix is a generalized 4 by 4 matrix [t;] that
converts the three channels (a, b, ¢) into (d, e, f) according to the
following matrix multiplication by a color-twist matrix (the superscript T
is used to indicate the transpose of the matrix).

[d, e, f, 1] = t11 t12 t13 t147 * [a, b, c, 1] '
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 t 44
To apply acolor-twist matrix to an IPL image, use the function
i pl Appl yCol or Twi st () . But first call thei pl Cr eat eCol or Twi st ()
and i pl Set Col or Twi st () functions to create the data structure
| pl Col or Twi st . This data structure contains the color-twist matrix and

allows you to store the datainternally in aform that is efficient for
computation.

The function descriptions that follow provide examples of using the color-
twist matrices for color model conversion.

CreateColorTwist

Creates a color-twist
matrix data structure.

I pl Col or Twi st* i pl CreateCol or Twi st (i nt data[16],
int scalingval ue);

dat a An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist values that arein
therange - 1 to 1 should be scaled up to bein the

Color Space Conversion

range - 2™ to 2*. (Simply multiply the floating
point number in the - 1 to 1 range by 2*)

scal i ngVal ue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 2* was used to multiply the values,
the scal i ngVal ue is31. Thisvalueis used for
normalization.

Discussion

Thefunctioni pl Cr eat eCol or Twi st () alocates memory for the data
structure | pl Col or Twi st and creates te color-twist matrix that can
subsequently be used by the function i pl Appl yCol or Twi st () .

Return Value

A pointer to the | pl Col or Twi st data structure containing the col or-twist
matrix in the form suitable for efficient computation by the function
i pl Appl yCol or Twi st () .

SetColorTwist

Sets a color-twist matrix
data structure.

voi d ipl Set Col or Twi st (I pl Col or Twi st* cTw st, int
dat a[16] ,
i nt scalingval ue);

dat a An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist values that arein
therange - 1 to 1 should be scaled up to bein the

9-13

Intel Image Processing Library Reference Manual

range - 2™ to 2*. (Simply multiply the floating
point number in the - 1 to 1 range by 2*)

scal i ngVal ue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 2* was used to multiply the values,
the scal i ngVal ue is31. Thisvalueis used for
normalization.

Discussion

Thefunctioni pl Set Col or Twi st () isused to set the vaules of the color-
twist matrix in the data structure | pl Col or Twi st that can subsequently be
used by the function i pl Appl yCol or Twi st () .

Return Value

A pointer to the | pl Col or Twi st data structure containing the col or-twist
matrix in the form suitable for efficient computation by the function
i pl Appl yCol or Twi st () .

ApplyColorTwist

Applies a color-twist
matrix to an image.

voi d i pl Appl yCol or Twi st (I pl | nage* srcl nage,
I pl Il mage* dst/lmage, |plColorTwi st* cTwi st, int offset,
| pl Coord* map);

srcl mage The source image.

dst I mage The resultant image.

9-14

Color Space Conversion

cTw st The color-twist matrix data structure that was
prepared by acall to the function
i pl Set Col or Twi st () .

of fset An offset value that will be added to each pixel
channel after multiplication by the color-twist
matrix.

map The structure specifying offsets for tiling

purposes; see |plCoord Structure in Chapter 2.

Discussion

The functioni pl Appl yCol or Twi st () appliesthe color-twist matrix to
each of the first three color channelsin the input image to obtain the
resulting data for the three channels.

For example, the matrix below can be used to convert normalized
Phot oYCC to nhormalized Phot oRGB (both with an opacity channel) when
the channels arein the order Y CC and RGB, respectively:

2 0 2% o0
X Y O
2 0 0
0 0 2

31

2
2 31
O 31

where = - 416611827 (that is, - 0.194 * 2*") and
Y = - 1093069176 (that is, - 0.509 * 2**).

Color-twist matrices may aso be used to perform many other color
conversions and operations such as

e Lightening animage

e Color saturation

e Color balance

* R, G, and B color adjustments

e Contrast Adjustment

9-15

Intel Image Processing Library Reference Manual

DeleteColorTwist

Frees memory used for
a color-twist matrix.

voi d ipl Del et eCol or Twi st (I pl Col or Twi st* cTw st);

cTw st The color-twist matrix data structure that was
prepared by acall to the function
i pl CreateCol or Twi st () .

Discussion

The functioni pl Del et eCol or Twi st () frees memory used for the color-
twist matrix structure referred to by cTwi st .

9-16

Histogram and Thresholding
Functions

Table 10-1

This chapter describes functions that operate on an image on a pixel-by-
pixel basis, in particular, the operations that alter the histogram of the
image. In addition, the use of color-twist matrices for color model
conversions is described. Table 10-1 lists histogram and thresholding
functionsin the IPL.

Histogram and Thresholding Functions

Group Function Name Description
Thresholding i pl Threshol d Performs a simple thresholding of
an image.
Lookup Table ipl ContrastStretch Stretches the contrast of animage
and Histogram using intensity transformation.
i pl Conput eHi st o Computes the intensity histogram
of an image.
i pl Hi st oEqual i ze Enhances an image by flattening

its intensity histogram.

10-1

Intel Image Processing Library Reference Manual

10-2

Thresholding

The threshol ding operation changes pixel values depending on whether
they are less than, equal to, or greater than the specified ¢ hr eshol d. If an
input pixel valueislessthan the t hr eshol d, the corresponding output
pixel is set to the minimum presentable value. Otherwise, it is set to the
maximum presentable value.

Threshold

Performsa simple
thresholding of an
image.

voi d ipl Threshol d(I pl | mage* srclmage, |pllmage* dstl nmage,
int threshold, |plCoord* map);

srcl mage The source image.
dst I mage The resultant image.
t hreshol d The threshold value to use for each pixel. The

pixel value in the output is set to the maximum
presentable valueif it is greater than or equal to
the threshold value (for each channel). Otherwise
the pixel value in the output is set to the
minimum presentable value.

map The structure specifying offsets for tiling
purposes; see |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Threshol d() thresholds the sourceimage src/ nage
using the value t hr eshol d to create the resultant image dst | nage. The
pixel value in the output is set to the maximum presentable value (for

Histogram and Thresholding Functions 1

example, 255 for an 8-hit-per-channel image) if it is greater than or equal
to the threshold value. Otherwise it is set to the minimum presentable
value (for example, 0 for an 8-bit-per-channel image). Thisis done for
each channel in the input image.

To convert an image to bi-tonal, do the following:
e useipl Col or ToGray() toconvert acolor imageto gray scale
e useipl Threshol d() tothreshold theimage to max and zero values

e useipl Convert () withlI PL_BI TS_LOwflag set to convert to 1U
depth.

Lookup Table (LUT) and Histogram Operations

A LUT can be used to specify an intensity transformation. Given an input
intensity, LUT can be used to look up an output intensity. Usually aLUT
is provided for each channel in the image, although sometimes the same
LUT can be shared by many channels.

The IplLUT Structure

Example 10-1 presents a C language definition for the | pl LUT structure to
setalLUT.

Example 10-1 IpILUT Definition

typedef struct _IplLUT {

int num /* nunber of keys or values */
int* key;
int* val ue;
int* factor;
i nt i nt erpol at eType;
} I'pl LUT;

10-3

Intel Image Processing Library Reference Manual

10-4

The key array hasthe length num the val ue and f act or are arrays of the
same length num 1. The i nt er pol at eType can be either

I PL_LUT_LOOKUP or | PL_LUT_I NTER.

Consider the following example of num = 4.

key val ue factor
k1l vl f1l

k2 v2 f2

k3 v3 f3

k4

If interpol at eType isLOOKUP, then any input intensity D in the range
ki1 < D < k2 will resultinthevauevi, intherangek2 < D < k3 will
result inthevaluev2 and so on. If i nt er pol at eType iS| NTER, then an
intensity Dintherange k1l < D < k2 will result in the linearly
interpolated value

vl + [(v2 - v1)/(k2 - k1)] * (D - ki)

The val ue (v2-v1)/ (k2-k1) ispre-computed and stored in the array
factor inthel pl LUT data structure.

The data structure described above can be used to specify a piece-wise
linear transformation that isideal for the purpose of contrast stretching.

The histogram is a data structure that shows how the intensitiesin the
image are distributed. The same data structure | pl LUT isused for a
histogram except that i nt er pol at eType isaways| PL_LUT_LOOKUP and
factor isaNULL pointer for a histogram. However, unlike the LUT, the
val ue array represents counts of pixelsfalling in the specified rangesin
the key array.

The sections that follow describe the functions that use the above data
structure.

Histogram and Thresholding Functions

ConstrastStretch
Sretches the contrast of
animage using an

intensity transformation.

void ipl ContrastStretch(lpllnage* srclnage,
I pl I mage* dst/lmage, |plLUT** [ut, |plCoord* map);

srcl mage The source image.
dst I mage The resultant image.
I ut An array of pointersto LUTS, one pointer for

each channel. Each lookup table should have the
key, val ue and f act or arraysfully initialized
(see“Thel pl LUT Structuré). One or more
channels may share the same LUT. Specifies an
intensity transformation.

map The structure specifying offsets for tiling
purposes; selCoord Structurén Chapter 2.

Discussion

The functioni pl Contrast Stret ch() stretches the contrast in a color
source imager c/ mage by applying intensity transformations specified
by LUTs in/ ut to produce an output imaget / nage. Fully specified
LUTs should be provided to this function.

10-5

Intel Image Processing Library Reference Manual

10-6

ComputeHisto

Computes the intensity
histogram of an image.

voi d ipl Conmput eHi sto(l pl | mage* srclmage, |plLUT** |ut,
| pl Coord* map);

srcl mage The source image for which the histogram will
be computed.
I ut An array of pointersto LUTS, one pointer for

each channel. Each lookup table should have the
key array fully initialized. The val ue array will

be filled by this function. (For the key and

val ue arrays, see “Thel pl LUT Structuré

above.) The same LUT can be shared by one or
more channels.

map The structure specifying offsets for tiling
purposes; seiplCoord Structurén Chapter 2.

Discussion

The functioni pl Conput eHi st o() computes the intensity histogram of an
image. The histograms (one per channel in the image) are stored in the
array/ ut containing all the LUTs. Theey array in each LUT should be
initialized before calling this function. The/ ue array containing the
histogram information will be filled in by this function. (For they and

val ue arrays, seeThel pl LUT Structuré above.)

Histogram and Thresholding Functions

HistoEqualize

Enhances an image by
flattening its intensity
histogram.

voi d ipl H stoEqualize(lpllmge* srclnage,
| PLI mage* dst/lmage, |plLUT** [ut, |plCoord* map);

srcl mage The source image for which the histogram will
be computed.

dst I mage The resultant image after equalizing.

I ut The histogram of the image is represented as an

array of pointersto LUTS, one pointer for each
channel. Each lookup table should have the key
and val ue arraysfully initialized. (For the key
and val ue arrays, see “Thel pl LUT Structuré
above.) These LUTs will contain flattened
histograms after this function is executed. In
other words, the call afpl Hi st oEqual i ze() is
destructive with respect to the LUTSs.

map The structure specifying offsets for tiling
purposes; selCoord Structurén Chapter 2.

Discussion

The functioni pl Hi st oEqual i ze() enhances the source image

srcl mage by flattening its histogram represented/by and places the
enhanced image in the output image / nage. After execution/ ut
points to the flattened histogram of the output image.

10-7

lmage Geometric Transforms

This chapter describes the IPL functions that perform geometric
transforms to resize the image or change its orientation. The geometric
transforms are performed by resampling (“Zoom,” “Decimate,” and
“Rotate”) or flipping the axis of the image (“Mirror”). Table 11-1 lists
image geometric transform functions.

Table 11-1 Image Geometric Transform Functions

Group Function Name Description
Resizing i pl Zoom Zooms or expands an image.

i pl Deci nat e Decimates or shrinks an image.
Changing iplMrror Mirrors an image about a horizontal
Orientation or vertical axis.

i pl Rot at e Rotates an image.

Changing Image Size

The functions that expand or shrink an image perform image resampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic

convolution.

11-1

Intel Image Processing Library Reference Manual

Zoom

Zooms or expands an
image.

voi d ipl Zoon(| pl | mage* srclmage, |pllnmage* dst! mage,

int xDst, int
| pl Coord* map);

srcl mage
dst | mage
xSrc, ySrc

xDst, yDst

i nterpol at e

11-2

int yDst, int ySrc, int interpolate,

The source image.

The resultant image.

X and Y dimensions of the source image.

X and Y dimensions of the destination image.

These four integers must be positive, meeting the
conditionsof xDst > xSrc and yDst = ySrcto
specify the fractions xDst / xSr ¢ and

yDst/ ySrc. These fractions indicate the value to
magnify theimageinthe X and Y directions. For
example,

xDst =2,xSrc =1, yDst =2, ySrc =1 doubles
the image size in each dimension to give an
image 4 times larger in area.

The type of interpolation to perform for
resampling. The following are currently
supported:

| PL_I NTER_NN Nearest neighbor

interpolation.
I PL_I NTER_LI NEAR Linear interpolation.

| PL_I NTER_CUBI C Cubic convolution
interpolation.

Image Geometric Transforms

map The structure specifying offsets for tiling
purposes. See | plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Zoon() zooms or expands the source image sr ¢/ mage
by xDst / xSrc inthe X directionand yDst/ySrc intheY direction. The
interpolation specified by i nt er pol at e is used during resampling the
input image.

Decimate

Decimates or shrinks an

image.

voi d ipl Deci mate(lpl Il mage* srclmage, |pllmge* dstl mage,
int xDst, int xSrc, int yDst, int ySrc, int interpolate,
| pl Coord* map);

srcl mage The source image.

dst I mage The resultant image.

xSrc, ySrc X and Y dimensions of the source image.
xDst, yDst X and Y dimensions of the destination image.

These four integers should be positive, meeting
the conditions xDst < xSrc and yDst < ySrc
to specify the fractions xDst / xSr ¢ and

yDst/ ySrc. These fractions indicate the value to
shrink theimage in the X and Y directions. For
example, xDst =1, xSrc =2, yDst =1, ySrc =
2 halves the image size in each dimension to give
an image 1/4 times smaller in area.

11-3

Intel Image Processing Library Reference Manual

11-4

i nt er pol at e The type of interpolation to perform for
resampling. The following are currently
supported:

| PL_I NTER_NN Nearest neighbor
interpolation.

I PL_I NTER_LI NEAR Linear interpolation.

| PL_I NTER_CUBI C Cubic convolution
interpolation.

map The structure specifying offsets for tiling
purposes. See |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Deci nat e() decimates or shrinks the source image
srcl mage by xDst/xSrc inthe X directionand yDst/ySrc intheY
direction. Theinterpolation specified by i nt er pol at e isused during
resampling the input image.

Changing Image Orientation

The functions described in this section change image orientation by
rotating or mirroring the source image. Rotation involves image sampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
convolution. Mirroring is performed by flipping the image axisin
horizontal or vertical direction.

Image Geometric Transforms

Rotate

Rotates an image.

void iplRotate(lpllmge* srclnmage, |pllmge* dstlnmage,
int angle, int centerX, int centerY, int interpolate,
| pl Coord* map);

srcl mage The source image.
dst I mage The resultant image.
angl e The angle in hundredths of degree to rotate the

image (for example, 6000 for 60 degrees). The
image is rotated about the center specified as
cent er Xand cent er Y coordinates.

centerX, centerY The coordinates of the rotation center.

i nt er pol at e The type of interpolation to perform for
resampling. The following are currently
supported:

| PL_I NTER_NN Nearest neighbor
interpolation.

I PL_I NTER_LI NEAR Linear interpolation.

| PL_I NTER_CUBI C Cubic convolution
interpolation.

map The structure specifying offsets for tiling
purposes. See | plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl Rot at e() rotates the source image src/ nage by angl e
degrees around the origin defined by the coordinates cent er X and

cent er Y. The interpolation specified by i nt er pol at e isused during
resampling the input image.

11-5

Intel Image Processing Library Reference Manual

11-6

Mirror

Mirrors an image about
a horizontal or vertical

axis.

void iplMrror(lpllmge* srclnage, |pllmge* dstlnmage,
int flipAxis, |plCoord* map);

srcl nage The source image.
dst I mage The resultant image.
flipAxis Specifies the axis to mirror the image. Use O for the

horizontal axis, 1 for avertical axisand - 1 for both
horizontal and vertical axes.

map The structure specifying offsets for tiling purposes.
See |plCoord Structure in Chapter 2.

Discussion

Thefunctioni pl M rror () mirrorsor flips the sourceimage src/ mage
about a horizontal or vertical axis or both.

Supported Image Attributes
and Operation Modes

This appendix contains tables that list the supported image attributes and
operation modes for all IPL functions that have input and/or output
images. Thei pl prefixesin the function names are omitted.

Table A-1 Image Attributes and Modes of Data Exchange Functions
: i Input and output images Rect. Border In-place Tiling
Function Depths must have the same ROl Mode
: depth order origin COI supported (x)
Set. allf alwaysin-place X X X
Copy all X X X X X X X
Exchange all X X X X X X X
Convert all X
Tall = 1u, 8s, 8u, 16s, 16u, and 32s bits per channel
Table A-2 Windows* DIB Conversion Functions
: Input & output images :
Function Depths have the same Remarks
i input output order origin # of channels
Convert FronDI B alif 1u,8u,16u X X Rectangular ROI,
Convert ToDI B 1u,8u,16u all X X X border mode and
TranslateDIB 1bpp 1u X X tiling are not
other? 8u X X supported

Fall= 1, 4, 8, 16, 24, and 32 bits per pixel (DIB images).
other = 4, 8, 16, 24, and 32 bits per pixel (DIB images).

A-1

Intel Image Processing Library Reference Manual

For i pl Convert Fr onDI B, the number of channels, bit depth per channel and the
dimensions of the IPL image should be greater than or equal to those of the DIB image.
When converting a DIB RGBA image, the IPL image should also contain an alpha channel.

Table A-3 Image Attributes and Modes of Arithmetic and Logical Functions
: i Input and output images Rect. Border In-place Tiling
Function Depths must have the same ROl Mode
Edepth order origin COI supported (x)

AddS allf X X X X X X X
SubtractS all X X X X X X X
Ml tiplyS all X X X X X X X
Mul ti pl ySScal e 8u,16u X X X X X X
Squar e all X X X X X X X
Add all X X X X X X X
Subt ract all X X X X X X X
Ml tiply all X X X X X X X
Mil tiplyScale 8u,l6u X X X X X X
LShiftS all X X X X X X X
RShi ft S all X X X X X X X
Not all X X X X X X X
AndS all X X X X X X X
asS all X X X X X X X
Xor S all X X X X X X X
And all X X X X X X X
O all X X X X X X X
Xor. all X X X X X X X

Tall = 1u, 8s, 8u, 16s, 16u, and 32s bits per channel

Supported Image Attributes and Operation Modes

Table A-4 Image Attributes and Modes of Alpha-Blending Functions

: i Input and output images ERect. Border In-place Tiling
Function EDepthsé must have the same ROl Mode

Edepth order origin COIE supported (x)

PreMil ti pl yAl pha 8u,16u X X X X X X

Al phaConposi te 8u,16u X X X X X X
Al phaConpositeC 8u,16u X X X X X X
Table A-5 Image Attributes and Modes of Filtering Functions
Input and output images :Rect. Border In-place Tiling
Function Depths must have the same ROl Mode
depth order origin COI supported (x)

Bl ur >1bpc X X X X X X X X
Convol ve2D allt X X X X X X X X
Convol veSep2D gl X X X X X X X
MaxFilter all X X X X X X X
MnFilter all X X X X X X X
Medi anFi |l ter all X X X X X X X
Tall = 1u, 8s, 8u, 16s, 16u, and 32s bits per channel
Table A-6 Image Attributes and Modes of Fourier and DCT Functions

: Input & output images Rect. Border In-place Tiling
Function Depths have the same ROl Mode

: input output Eorder origin Col supported (x)
DCT2D >lbpc 16s,32s X X X
Real Fft 2D 8u,16u 16s,32s X X X X
CcsFft2D 16s,32s 8u,16u X X X

A-3

Intel Image Processing Library Reference Manual

Table A-7 Image Attributes and Modes of Morphological Operations

: i Input and output images Rect. Border In-place Tiling
Function : Depths must have the same ROl Mode

: Edepth order origin COI supported (x)
Er ode 1u,8u,16u X e e X X X X
Dlate 1u,8u,l6u X X X e X X X
Qpen 1u,8u,16u X X X X X X X
d ose 1u,8u,16u X e e X X X X
Table A-8 Image Attributes and Modes of Color Space Conversion Functions

: i Input & output images ERect. Bord. In-place Tiling

Function Depths i have the same ROl Mode

Einput output Edepth order origin COI supported (x)

ReduceBi ts 32s 8u,16u X X X

16u 8u X X X
Bitonal ToGray 1u >1bpc X
RGB2HSV 1u,16u,32s X X X X X
HSV2RGB 1u,16u,32s X X X X X
RGB2HLS 1u,16u,32s X X X X X
HLS2RGB 1u, 16u,32s X X X X X
Appl yCol or Twi st 16u,32s X X X X X X

Supported Image Attributes and Operation Modes

Table A-9 Image Attributes and Modes of Histogram and Thresholding
Functions

i Input and output images Rect. Border In-place Tiling
Function Depths i musthavethesame {ROI Mode

: Edepth order origin COIE supported (x)
Threshol d 8u,8s,16uU, X X X X X X X

16s, 32s

Conput eHi st o 1u,8u,16u no output image X X X
Hi st oEqual i ze 8u,16u X X X X X X X
ContrastStretch 8u,16u X X X X X X X

Table A-10 Image Attributes and Modes of Geometric Transform Functions

: Input and output images Rect. Border In-place Tiling
Function Depths must have the same ROl Mode

Edepth order origin COI : supported (x)
Mrror 1u,8u,16u X e X X X X
Rotate 1u,8u,16u X X X X X X
Zoom 1u,8u,16u X X X X X X
Deci nat e 1u,8u,16u X e e e X X

A-5

Bibliography

This bibliography provides alist of publications that might be useful to the
Image Processing Library users. Thislist is not complete; it serves only as
astarting point. The books [Rogers85], [Rogers90], and [Foley90] are
good resources of information on image processing and computer
graphics, with mathematical formulas and code examples.

The Image Processing Library is part of Intel Performance Libraries Suite.
The manuals [RPL96] and [SPL96] describe Intel Recognition Primitives
Library and Intel Signal Processing Library, which are other parts of the
Performance Libraries Suite.

[Bragg]

[Foley90]

[Rogers35]

[Rogers90]

[RPLY6]

[SPL96]

[Schumacher]

[Thomas]

Dennis Bragg. A simple color reduction filter, Graphic
Gems|ll: 20-22.

James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughe€omputer Graphics — Principles
and Practice Second Edition. Addison Wesley, 1990.

David Rogers. Procedural Elements for Computer
Graphics McGraw-Hill, 1985.

David Rogers and J. Alan Adams. Mathematical
Elements for Computer Graphidd cGraw-Hill, 1990.

Intel Recognition Primitives Library Reference Manual.
Intel Corp. Order number 637785, Rev.4, 1996.

Intel Signal Processing Library Reference Manuiaiel
Corp. Order number 630508, Rev.6, 1996.

DaeA. Schumacher. A comparison of digital halftoning
techniques, Graphic Gems Il157-71.

Spencer W. Thomas and Rod G. Bogart. Color
dithering,Graphic Gems 1 72—77.

Biblio-1

Glossary

absolute colors

alpha channel

arithmetic operation

CCS
channel of interest

CMY

CMYK

COl
color-twist matrix

complex conjugate-
symmetric

Colors specified by each pixel’s coordinates in
a color space. IPL functions use images with
absolute colorsSee palette colors.

A color channel, also known as the opacity
channel, that can be used in color models; for
example, the RGBA model.

An operation that adds, subtracts, multiplies,
shifts, or squares the image pixel values.

See complex conjugate-symmetric.

The color channel on which an IPL operation
acts (or processing occurs). Channel of interest
(COI) can be considered as a separate case of
region of interest (ROI).

Cyan-magenta-yellow. A three-channel color
model that uses cyan, magenta, and yellow
color channels.

Cyan-magenta-yellow-black. A four-channel
color model that uses cyan, magenta, yellow,
and black color channels.

See channel of interest.

A matrix used to multiply the pixel coordinates
in one color space for determining the
coordinates in another color space.

A kind of symmetry that arises in the Fourier
transform of real signals. A complex
conjugate-symmetric signal has the property
thatx(-n) =x(n)*, where * denotes
conjugation.

Glossary-1

Intel Image Processing Library Reference Manual

conjugate

conjugate-symmetric
DCT

decimation
DIB

dilation

dyadic operation
erosion

FFT

four-channel model

geometric transform
functions

gray scale image

HLS

The conjugate of acomplex number a+bj is
a- bj.
See complex conjugate-symmetric.

Acronym for the discrete cosine transform. See
“Discrete Cosine Transforhin Chapter 7.

An IPL geometric transform operation that
shrinks the source image.

Device-independent bitmap, an image format
used by IPL in Windows* environment.

An IPL morphological operation whose effect
is to fill up holes and thicken object
boundaries.

An operation that has two input images. It can
have other input parameters as well.

An IPL morphological operation that results in
less noise and thinner object boundaries.

Acronym for the fast Fourier transforigee
“Fast Fourier Transfortrin Chapter 7.

A color model that uses four color channels;
for example, the RGBA color model.

IPL functions that perform geometric
transformations of images: zoom, decimation,
rotation, and mirror functions.

An image characterized by a single intensity
channel so that each intensity value
corresponds to a certain shade of gray.

Hue-lightness-saturation. A three-channel
color model that uses hue, lightness, and
saturation channels. The HLS and HSV
models differ in the way of scaling the image
luminance See HSV.

Glossary

HSV Hue-saturation-value. A three-channel color
model that uses hue, saturation, and value
channels. HSV is often used as a synonym for
the HSB (hue-saturation-brightness) and HS
(hue-saturation-intensity) models. See HLS.

hue A color channel in several color models that
measures the “angular” distance (in degrees)
from red to the particular color: 60
corresponds to yellow, 120 to green, 180 to
cyan, 240 to blue, and 300 to magenta. Hue is
undefined for shades of gray.

in-place operation An operation whose output image is one of the
input imagesSee out-of-place operation.

linear filtering In IPL, either neighborhood averaging (blur)
or 2D convolution operations.

linear image transforms In IPL, either the fast Fourier transform (FFT)
or the discrete cosine transform (DCT).

luminance A measure of image intensity, as perceived by

a “standard observer”. Since human eyes are
more sensitive to green and less to red or blue,
different colors of equal physical intensity
make different contribution to luminancgee

Col or ToG ay in Chapter 9.

LUT Acronym for lookup table (palette).

MMX ™ technology A major enhancement to the Intel Architecture
aimed at better performance in multimedia and
communications applications. The technology
uses four new data types, eight 64-bit MMX
registers, and 57 new instructions
implementing the SIMD (single instruction,
multiple data) technique.

monadic operation An operation that has a single input image. It
can have other input parameters as well.
morphological operation In IPL, simple erosion or dilation of an image.

Glossary-3

Intel Image Processing Library Reference Manual

Glossary-4

MSI
non-linear filtering

opacity channel
out-of-place operation

palette colors

PhotoY CC*
pixel depth

pixel-oriented ordering

plane-oriented ordering

point operation

region of interest
RGB

RGBA

Acronym for multi-spectral image. An MSI
can use any number of channels and colors.

In IPL, minimum, maximum, or median
filtering operation.
See apha channel.

An operation whose output is an image other
than the input image(s). See in-place operation.
Colors specified by a palette, or lookup table.
IPL uses palette colors only in operations of
image conversion to and from absolute colors.
See absolute colors.

A Kodak* proprietary color encoding and
image compression scheme. See Y CC.

The number of bits determining a single pixel
in the image.

Storing the image information in such an order
that the values of all color channels for each
pixel are clustered; for example, RGBRGB... .
See “Channel Sequentén Chapter 2.

Storing the image information so that all data
of one color channel follow all data of another
channel, thus forming a separate “plane” for
each channel; for example, RRRRRGGGGG...

An operation performed on a pixel-by-pixel
basis. IPL point operations include applying a
color-twist matrix, computing and altering the
image histogram, contrast stretching,
histogram equalization and thresholding.

An image region on which an IPL operation
acts (or processing occurs).

Red-green-blue. A three-channel color model
that uses red, green, and blue color channels.

Red-green-blue-alpha. A four-channel color
model that uses red, green, blue, and alpha (or

Glossary

ROI
saturation

scanline
standard gray paette

three-channel model

YCC

Zzoom

opacity) channels.

See region of interest.

A quantity used for measuring the purity of
colors. The maximum saturation corresponds
to the highest degree of color purity; the
minimum (zero) saturation corresponds to
shades of gray.

All image data for one row of pixels.

A complete palette of a DIB image whose red,
green, and blue values are equal for each entry
and monotonically increasing from entry to
entry.

A color model that uses three color channels;
for example, the CMY color model.

A three-channel color model that uses one
[uminance channel (Y) and two chroma
channels (usually denoted by C and C;,). The
term is sometimes used as a synonym for the
entire PhotoY CC encoding scheme. See
PhotoY CC.

A geometric transform function that magnifies
the source image.

Glossary-5

| ndex

afunction that helps you

add a constant to pixel values, p-3

add pixel values of two images,

allocate a quadword-aligned memory
block,

allocate image data,

alocate memory for 16-bit words,

allocate memory for 32-bit double words,
4-2

allocate memory for double floating-point
elements,

allocate memory for floating-point
dlements,

apply acolor twist matrix,

assign anew error-handling function, |3-6

average neighboring pixels, -2

change the image orientation,

change theimage size,

composite images using the apha channel,

compute bitwise AND of pixel valuesand a
constant,

compute bitwise AND of pixel values of
two images,

compute bitwise NOT of pixel values,

compute bitwise OR of pixel valuesand a
constant,

compute bitwise OR of pixel values of two
images,

compute bitwise XOR of pixel valuesand a
constant,

compute bitwise XOR of pixel values of
two images,

compute CCS fast Fourier transform,

compute discrete cosine transform, [7-7

compute real fast Fourier transform, [7-3

compute the image histogram,

convert abitonal imageto gray scale,

convert a color image to gray scale, @

convert agray scaleimageto color, @

convert an HL S image to RGB,

convert an HSV image to RGB,

convert an RGB image to HLS,

convert an RGB image to HSV, [0-9

convert images from DIB (changing
attributes),

convert images from DIB (preserving
attributes),

convert images to DIB,

convert images to different data formats,

/

convolve an image with 2D kernel,
convolve an image with a separable kernel,

g

Index-1

Intel Image Processing Library Reference Manual

copy image data,

create 2D convolution kernel, @

create a color twist matrix,

create aregion of interest (ROI),[4-13

create image header, [4-8

create the Ipl Tilelnfo structure, m

decimate the image,

delete 2D convolution kernel, [6-6

delete a color twist matrix,

delete the IplTilelnfo structure,

divide pixel values by 2",

equalize the image histogram,

exchange data of two images,

fill image’s pixels with a valug, 4-24

free memory allocated by Malloc
functions| 4-233

free the image data memory, 4-11

free the image header memdry, 4-11

get error-handling modg, 3-4

get the error status 003-3

handle an errof, 3-2

magnify the imagé, 11-2

mirror the imagd, 1116

report an errof, 3}2

rotate the imag¢, 11-5

set a color twist matriX, 9-13

set a region of interest (ROJ), 4}14

set error-handling modk, 3-4

set pixels to the maximum value of the
neighbors], 6-10

set pixels to the median value of the
neighbors], 6J0

set pixels to the minimum value of the
neighbors, 6-111

set the error status cofle, |3-3

set the image border modie, 4-15

set the IplTilelnfo structure fields, 4118

shift pixel bits to the leff, 5-11

shift pixel bits to the righf, 5-12

shrink the imagéd, 113

square pixel value@-G

stretch the image contrdst, 10-5

subtract pixel values from a const 5-4

subtract pixel values of two ima95-8

threshold the source image, 10-2

zoom the imag¢, 11}2

. . about this manu -2
multiply pixel values by a constaht, b-4 d.1

multiply pixel values by a constant and about this softv_var@-l

scale the productk, §-5 absolute color image, 3-2
multiply pixel values of two imagels, 5-9 add a constant to pixel valups,|5-3
multiply pixel values of two images and Add function[5-7

scale the products, 5110 add pixels of two imagef, $-7
pre-multiply pixel values by alpha values, AddS function| 5-

align the rectangular ROI[s, 2-5
produce error messages for us, 3-5 aligning
read convolution kernel's attribut-5 image dat6

reduce the image bit resoluti9-2 rectangular ROI§, 2}5

Index-2

Index

scanlines, 2-6

allocate a quadword-aligned memory block,

allocate memory for 16-bit words,
allocate memory for 32-bit double words,
allocate memory for double floating-point

elements,

allocate memory for floating-point elements,

21
Allocatel mage function,
alpha channel, P-§
alpha pre-multiplication, |5-25;
alpha-blending,
alpha pre-multiplication,
AlphaComposite function,
AlphaCompositeC function, |5-19
ATOP operation,|5-23
IN operation,
OUT operation, |5-23
OVER operation, |5-2

PLUS operation,
PreMultiplyAlpha function,
XOR operation,

AlphaComposite function,
AlphaCompositeC function,
And function,

AndS function,

apply acolor twist matrix,
ApplyColorTwist function,
arithmetic operations, -1

Add, 57
Adds, B3
AlphaComposite,

AlphaCompositeC,

Multiply,
MultiplyS,
MultiplyScale,
MultiplySScale, 5-5
PreMultiplyAlpha,
Square,
Subtract, 5-§
SubtractS, -4
ATOP compositing operation,|5-2
attribute values, -3
attributes, @
audience for this manual, @
averaging the neighboring pixels, -2

B

bit depths supported, E]
Bitonal ToGray function, @
bitwise AND
with a constant,
with another image,
bitwise NOT,
bitwise OR
with a constant,
with another image,
bitwise XOR
with a constant,
with another image,
Blur function, @
brightening the image, E

C
call-backs, p-9

Index-3

Intel Image Processing Library Reference Manual

CcsFft2D function, [7-5

changing the image orientation,

changing the image size,|11-1}

channel sequence, -3

channel(s) of interest, @

Close function, @

COl. See channel(s) of interest

color data order,

color models, -1
gray scale, -1
multi-spectral image,
three or four channels, @

color space conversion functions
ApplyColorTwist,
Bitonal ToGray,
ColorToGray,
CreateColorTwist,
DeleteColorTwist,
GrayToColor,
HLS2RGB,
HSV2RGB,
ReduceBits, 0-7
RGB2HLS,
RGB2HSV,
SetColorTwist,

ColorToGray function,

compute the image histogram,

ComputeHisto function, |10-6
ContrastStretch function,
conventions

font, E

function names,

naming,

Index-4

convert abitonal imageto gray scale, @

convert a color image to gray scale,

convert agray scaleimageto color,

convert an HL Simage to RGB, [9-11]

convert an HSV image to RGB,

convert an RGB image to HLS,

convert an RGB image to HSV,[9-9

Convert function,

convert images from DIB (changing attributes),

convert images from DIB (preserving
attributes),

convert images to DIB, [4-33

convert images to different data formats,

ConvertFromDIB function,

ConvertToDIB function,

convolution,

Convolve2D function, [-7

ConvolveSep2D function, @

coordinate systems,

Copy function,

create a color twist matrix,

CreateColorTwist function,

CreateConvKernel function, -4

Createl mageHeader function, [4-8

CreateROI function,

CreateTilelnfo function,

creating images, [4-1]

D

darkening the image,
data architecture,
data exchange, [4-2

Index

data exchange functions,

Convert,

Copy,

Exchange,

Set,
data ordering, E
datatypes,
DCT. See discrete cosine transform
DCT2D function, [7-7
Deallocate function,
Deallocatel mage function,
Decimate function,
decimating the image,
delete a color twist matrix,
DeleteColorTwist function,
DeleteConvKernel function, B-6
DeleteTilelnfo function,
device-independent bitmap, -2
DIB. See device-independent bitmap
DIB palette image, 2-2
Dilate function,
discrete cosine transform,
divide pixel values by 2",
dMalloc function,E
dyadic operations,

E

equalize the image histogram,
erode an image,

Erode function, [B-2

ErrModeL esf error mode, B-4
ErrModeParent error mode,

ErrModeSilent error mode,
error checks, [3-1
Error function, B-3
error handling,
example,
status codes, @
user-defined error handler,
error handling macros,
error processing modes
IPL_ErrModel eaf,
IPL_ErrModeParent, B-5
IPL_ErrModeSilent, B-5
error-handling functions, @
Error,
ErrorStr, [3-5
GetErrMode,
GetErrStatus,
RedirectError,
SetErrMode, @
SetErrStatus, B-3
ErrorStr function,
Exchange function,
execution architecture, E

in-place and out-of-place operations,

overflow and underflow,
saturation mode, -7

=

fast Fourier and discrete cosine transforms
CcsFft2D, [7-5
DCT2D, /-7
Real Fft2D, [7-3

Index-5

Intel Image Processing Library Reference Manual

fast Fourier transform, [7-1]
FFT. See fast Fourier transform
fill image’s pixels with a valu¢, 4-p4
filtering functions[61
Blur,
Convolve2D[6J7

ConvolveSep20, 618
CreateConvKerndfl, 6}4

DeleteConvKerne], 616
GetConvKernel| 6]5
MaxFiIter,
MedianFiIter,
MinFilter,

font conventiond, 1}5

Free functior], 4-23

free memory allocated by Malloc functions,

a3
function descriptions, 1}4
function name conventi0-6

G

geometric transform functions

Decimate3

Mirror,

Rotate} 11-5

Zoom[11-}2
get the error processing mo@3-4
get the error status code, 3-3
GetConvKernel functiOIE-S
GetErrMode functior], 314
GetErrStatus functiof, 3-3
global variables

IplLastStatus], 315

Index-6

gray scald, 21
GrayToColor function], 917

H
handling overflow and underflofy, 2-7

hardware and software requiremefits| 1-1

HistoEqualize functiorf, 107
histogram and thresholding functions

ComputeHistd, 1016
ContrastStretc-S
HistoEqualize| 10]7

histogram and thresholding functiops, 10-1

Threshold[10J2
histogram of an imagk, 10-6
histogram operationis, 19-3
HLS2RGB function] 9-11
HSV2RGB function] 9-10

image attribute$, Al1

image compositing, 5-18
alpha pre-multiplicatiorf, 5-25
AlphaComposite functiofi, 5-19
AlphaCompositeC functioh, 5-119
ATOP operatior], 5-23
IN operation| 5-28
OUT operation, 5-23
OVER operatior], 5-18, 5-P3
PLUS operatior], 5-23
PreMultiplyAlpha function] 5-35
XOR operation|, 5-33

Image Creation functioh, 4-8

Index

image creation functions,
Allocatel mage,
Createl mageHeader, [4-§
CreateROI,
CreateTilel nfo,
Deallocate,
Deallocatel mage,
DeleteTilelnfo,[4-18
SetBorderMode,
SetROl,
SetTilelnfo,

image dimensions, P-7

image filtering functions, @

image histogram,

image processing operation
conditions, -6

image row data, E

image size,

image tiling, 2-8 -7
call-backs, 2-9
IplCoord structure,
IpiTilelnfo structure, [4-7

iMalloc function, |4-21]

IN compositing operation, |5-23

in-place operation, E

invisible colors,

IPL functionality
2D convolution, -3
alpha-blending, -1l
arithmetic operations,
color space conversion,
data exchange, -1
DIB environment functions, [4-1]

discrete cosine transform, [7-§

error handling, [3-1

fast Fourier transform,

filtering functions, [6-1]

geometric transform functions,

histogram and thresholding functions,

image compositing,

image creation, [4-1

image tiling, -8, -7

logical operations,

memory allocation,

morphological operations, @

supported image attributes and modes,
IPL image

attribute values, |4-3

borders and tiling,

channel sequence,

color models, p-1l

coordinate systems, @

data architecture, P-1

data ordering, -3

datatypes, -2

format,

header,

header attributes, E

regions of interest, 2-4

size,

tilesize,

tiling,[2-8 [4-7
IPL_ErrModel eaf, B-4
IPL_ErrModeParent, B-5
IPL_ErrModeSilent, B-5

iplAdd, 57

Index-7

Intel Image Processing Library Reference Manual

iplAddS, B3

iplAllocatel mage,

ipl AlphaComposite,

ipl AlphaCompositeC,
iplAnd,

iplAnds,
iplApplyColorTwist,
iplBitonal ToGray,

iplBlur,
iplCesFft2D, [7-5
iplClose, @
iplColorToGray,
iplComputeHisto,
ipl ContrastStretch,
iplConvert,

iplConvertFromDIB,
iplConvertToDIB,
iplConvolve2D, @
iplConvolveSep2D,
IplCoord structure, P-9
iplCopy,
iplCreateColorTwist,
iplCreateConvKernel, @
ipl Createl mageHeader, [4-§
iplCreateROI,[4-13
iplCreateTilelnfo,
ipIDCT2D, [7-1
iplDeallocate,

ipl Deallocatel mage,
iplDecimate,
iplDeleteColorTwist,
ipl DeleteConvKernel, B-6
ipl DeleteTilelnfo,

Index-8

ipIDilate, B-5
ipldMalloc,
iplErode,

iplError, B-2
iplErrorStr,

ipl Exchange,
iplFree,
iplGetConvKernel,
iplGetErrMode,

ipl GetErrStatus,
iplGrayToColor, @
iplHistoEqualize,
iplHLS2RGB,
iplHSV2RGB,
Iplimage structure, [4-6
ipliMalloc,

IplLastStatus global variable, @

iplLShifts,
iplMalloc,[4-19
iplMaxFilter, B-10
ipMedianFilter, -9
ipIMinFilter,|6-11]
ipIMirror,
ipIMultiply, 5-9
iplMultiplys,[5-4
iplMultiplyScale, [5-10
iplMultiplySScale, [5-5
ipINot,

iplOpen, [8-6]

iplOr,

iplors,
iplPreMultiplyAlpha, [5-25
iplReal Fft2D, [7-3

Index

iplRedirectError,
ipl ReduceBits,
iplRGB2HLS,
iplRGB2HSV, [o-9
iplRotate,
iplRShiftS,
iplSet,
iplSetBorderM ode,
ipl SetColor Twist,
iplSetErrMode, B-4

ipl SetErrStatus, @
iplSetROI,

ipl SetTilelnfo,
iplsMalloc,
iplSquare,
iplSubtract, -g
iplSubtractS, 5-4

ipl Threshold,
IpITilelnfo structure, @
ipl TranslateDIB,
iplwMalloc,
iplXor,

iplXors,
iplZoom,

L

linear filters, [-1]
logical operations, 5-1
And,
Ands,[5-13
L ShiftS,
Not,[5-12

Or,
ors,
RShifts,
Xor,|[5-1
XorS,

lookup table. See palette color image
lookup table operations,

L ShiftS function,

M

magnifying theimage,

Malloc function,
manual organization,
MaxFilter function,

maximum permissible value,
MedianFilter function,
memory allocation functions, 4-2,

dMalloc,[4-22
Free, |4-23
iMalloc,[4-21]
Malloc,
sMalloc, [4-21]
wMaIIoc,

MinFilter function, |6-11

minimum permissible value, -7

Mirror function,
mirroring the image,
monadic operations,
morphological operations

Close, [B-1

Dilate,

Erode, [8-2

Index-9

Intel Image Processing Library Reference Manual

Open, B-9
MSI. See multi-spectral image
multi-image operations,
multiply and scale pixel values

by a constant, [5-5

in two input images,
Multiply function,
multiply pixel values

by a constant, [5-4

by anegative power of 2,

in two input images,

square pixel values, 5-6
MultiplyS function,
MultiplyScale function,
MultiplySScale function, 5-5
multi-spectral image, -2

N

naming conventions,
Not function,
notational conventions,
numerical exceptions, B-1

O

online version,

opacity,

opacity channel. See alpha channel
Open function, 8-§

opening and smoothing the image,
operation modes of IPL functions,
Or function,

OrS function,

Index-10

OUT compositing operation,|5-2
out-of-place operation,

output samples in RCPack2D format,
OVER compositing operation,[5-18,

P

palette color image, -2

parallelism,

pixel depth, p-2

PLUS compositing operation,
PreMultiplyAlpha function,
producing error messages for users,

R

RCPack2D format,

real-complex packed format, [7-1]

Real Fft2D function, [7-3

rectangular region of interest,

RedirectError function, B-6

reduce the image bit resolution, @

ReduceBits function,

region of interest, 2-4,
channel, P-4

rectangular,
report an error,
return value, @
RGB2HL S function,

RGB2HSV function,[9-9
ROI. Seeregion of interest
Rotate function,
rotating the image,
RShiftS function,

Index

S

saturation mode,
scanline. See image row data
scanline alignment,
Set function,
set the error processing mode, @
set the error status code, @
SetBorderMode function, m
SetColorTwist function,
SetErrMode function, -4
SetErrStatus function, B-3
SetROI function,
SetTilelnfo function,
shift pixel bits,[5-11]
shrinking the image,
signed data, @
SIMD instructions,
sMalloc function, |4-2
smoothing and closing the image, 8-7
specify acolor twist matrix, [9-13
Square function, @
square pixel values,
status codes,
stretching the image contrast,
Subtract function, 5-§
subtract pixel values

from a constant, EI

two input images, E
SubtractS function, 5-4
supported image attributes and modes, @

T

Threshold function, |10-2
thresholding the source image,
tiling, -8, B-7
call-backs,
CreateTilelnfo function,[4-17]
DeleteTilelnfo function,
IplCoord Structure, @
Ipl Tilelnfo structure,
SetTilelnfo function,

TranslateDIB function,

two-dimensional convolution, -3

U-Z

user-defined error handler,

Windows DIB, @

Windows DIB functions, @
ConvertFromDIB,
ConvertToDIB,
TranglateDIB,

wMalloc function,

XOR compositing operation,

Xor function,

XorS function,|5-1

Zoom function,

zooming the image,

Index-11

	Intel Image Processing Library Reference Manual
	How to Use This Manual
	Copyright Information
	Contents
	Chapter 1 Overview
	About This Software
	Hardware and Software Requirements

	About This Manual
	Manual Organization
	Function Descriptions
	Audience for This Manual
	Online Version
	Related Publications

	Notational Conventions
	Font Conventions
	Naming Conventions

	Chapter 2 Image Architecture
	Data Architecture
	Color Models
	Data Types and Palettes
	The Sequence and Order of Color Channels
	Coordinate Systems
	Image Regions
	Alpha (Opacity) Channel
	Scanline Alignment
	Image Dimensions

	Execution Architecture
	Handling Overflow and Underflow
	In-Place and Out-of-Place Operations

	Image Tiling
	Tile Size
	IplCoord Structure
	Call-backs
	ROI and Tiling
	In-Place Operations and Tiling

	Chapter 3 Error Handling
	Error-handling Functions
	Error
	GetErrStatus
	SetErrStatus
	GetErrMode
	SetErrMode
	ErrorStr
	RedirectError

	Error Macros
	Status Codes
	Error Handling Example
	Adding Your Own Error Handler

	Chapter 4 Image Creation and Access
	Image Header and Attributes
	IplImage Definition
	Tiling Fields in the IplImage Structure
	IplTileInfo Structure

	Creating Images
	CreateImageHeader
	AllocateImage
	DeallocateImage
	Deallocate

	Setting Regions of Interest
	CreateROI
	SetROI

	Image Borders and Image Tiling
	SetBorderMode
	CreateTileInfo
	SetTileInfo
	DeleteTileInfo

	Memory Allocation Functions
	Malloc
	wMalloc
	iMalloc
	sMalloc
	dMalloc
	iplFree

	Image Data Exchange
	Set
	Copy
	Exchange
	Convert

	Working in the Windows DIB Environment
	TranslateDIB
	ConvertFromDIB
	ConvertToDIB

	Chapter 5 Image Arithmetic and Logical Operations
	Monadic Arithmetic Operations
	AddS
	SubtractS
	MultiplyS
	MultiplySScale
	Square

	Dyadic Arithmetic Operations
	Add
	Subtract
	Multiply
	MultiplyScale

	Monadic Logical Operations
	LShiftS
	RShiftS
	Not
	AndS
	OrS
	XorS

	Dyadic Logical Operations
	And
	Or
	Xor

	Image Compositing Based on Opacity
	AlphaComposite
	AlphaCompositeC
	PreMultiplyAlpha

	Chapter 6 Image Filtering
	Linear Filters
	Blur
	CreateConvKernel
	GetConvKernel
	DeleteConvKernel
	Convolve2D
	ConvolveSep2D

	Non-linear Filters
	MedianFilter
	MaxFilter
	MinFilter

	Chapter 7 Linear Image Transforms
	Fast Fourier Transform
	RealFft2D
	CcsFft2D

	Discrete Cosine Transform
	DCT2D

	Chapter 8 Morphological Operations
	Erode
	Dilate
	Open
	Close

	Chapter 9 Color Space Conversion
	Reducing the Image Bit Resolution
	ReduceBits

	Conversion from Bitonal to Gray Scale Images
	BitonalToGray

	Conversion of Absolute Colors to and from Palette Colors
	Conversion from Color to Gray Scale
	ColorToGray

	Conversion from Gray Scale to Color (Pseudo-color)
	GrayToColor

	Conversion of Color Models
	RGB2HSV
	HSV2RGB
	RGB2HLS
	HLS2RGB

	Using Color-Twist Matrices
	CreateColorTwist
	SetColorTwist
	ApplyColorTwist
	DeleteColorTwist

	Chapter 10 Histogram and Thresholding Functions
	Thresholding
	Threshold

	Lookup Table (LUT) and Histogram Operations
	ConstrastStretch
	ComputeHisto
	HistoEqualize

	Chapter 11 Image Geometric Transforms
	Changing Image Size
	Zoom
	Decimate

	Changing Image Orientation
	Rotate
	Mirror

	Appendix A Supported Image Attributes and Operation Modes
	Bibliography
	Glossary
	Index

