
Architectural Description of Embedded Signal
Processors and DSP Algorithm Implementation

Navin Govind
Intel Corporation

Chandler AZ 85226
navin_govind@ccm.ch.intel.com

ABSTRACT
High speed calculations consisting of arithmetic and fast input/output operations

are handled well by standard embedded signal processors. This paper describes the pipeline
architecture of a high performance embedded signal processor and the register to register
architectural feature that speeds up processing and minimizes context switching. To
summarize the architectural features, the design and implementation of a FIR filter and
PID routines are described.

ARCHITECTURAL OVERVIEW
The 80296SA device used as an example in this study has a pipeline architecture

with four stages. Fetch, decode, read/execute and execute/write. This design achieves a
faster throughput of instructions than devices without a pipeline architecture. The device
has a Central Processing Unit (CPU) that connects to both an interrupt controller and a
memory controller. The CPU has both 16-bit and 32-bit functions. The multiply/accumulate
unit is 40-bits wide. An extension of the CPU bus connects the CPU to the internal
peripheral modules. The 80296SA has a 24-bit internal address bus and bonds out 20
address lines, therefore this device can physically address 1 Mbytes of memory. The chip
select logic matches the 24 bit address and can map up to 6 memory regions, each with 1-
Megabyte of address space. The device has 512 bytes of register RAM and 2K bytes of code
RAM, register to register architecture, serial port with a synchronous baud rate of 12.5
Mbaud maximum and a maximum asynchronous baud rate of 3.1 Mbaud, a Pulse Width
Modulator (PWM) with a 195.3 KHz maximum frequency, an Event Processor Array (EPA)
with 80ns resolution. A phase lock loop (PLL) allows an external clock to drive the device at
one half or one quarter the maximum internal clock frequency. In a pipeline architecture, a
different instruction is in each of the four pipeline stages. One instruction moves
sequentially through the pipeline stages. As one instruction moves from the fetch to the
decode stage, the next instruction moves into the fetch stage. Similarly, the previous two
instructions are in the read/execute and execute/write stages. In summary, a pipeline
architecture means that four instructions are in one of the four stages of execution at any
one time. The size of the on-chip register RAM is 512 bytes and an additional 2kbytes of
code/data RAM in address region 0F800h to 0FFFFh in extended mode (1Mbyte addressing
mode) or in small memory mode it is mapped into address region 0FFF800h to 0FFFFFF
(64kbyte addressing mode). This RAM may be used for time critical code such as interrupt
service routines, time critical data such as digital signal processing routines, data tables,
stack, or interrupt vector table. The user must determine appropriate allocation of this
RAM for the system’s time critical use. The 80296SA CPU does not stall instruction
execution due to its four-stage pipeline architecture. It will continue execution of the
instructions in the other three stages of the four stage pipeline.

INSTRUCTION SET MODIFICATIONS
Several instructions implemented in the CPU handle embedded digital signal

processing routines efficiently and manipulates the 40-bit accumulator. The basic functions
of the accumulator instructions include:
• clearing the accumulator before execution (indicated by ‘Z’ suffix)
• relocating the source within a data table (indicated by ‘R’ suffix)
• signed or unsigned math (signed indicated by ‘S’ prefix)
• saturating the accumulator value based on the result.

The opcodes for the multiply-accumulate instructions have the same opcodes as the
multiply instructions. The CPU differentiates the instructions as follows:
• If the destination operand is less than 10h, the CPU executes one of the multiply-

accumulate instructions.
• If the destination operand is greater than or equal to 10h, the CPU executes one of the

multiply instructions.

This convention works because addresses below 17h are special function registers
(SFRs), and therefore should never be the destination of a multiply instruction. The
assembler translates the multiply-accumulate mnemonic into the appropriate opcode and
destination operand. Additionally, the repeat (RPT) instructions make handling repeated
multiply-accumulates easier to implement in code. Also the return from interrupt (RETI)
instruction reduces interrupt latency. The opcode for the repeat instruction is the same
opcode as the AND instructions. The CPU differentiates the instructions by the destination
operand.

ACCUMULATOR
The device under study has a signal processing operational instruction which can

handle a multiply and accumulate with an accumulator. The multiply/accumulate
instruction can operate on signed-integer, unsigned-integer and signed-fractional data.
When positive overflow occurs during an accumulation, a value of 7FFFFFFFH is jammed
into the accumulator and the saturation flag is set. When a negative overflow occurs during
an accumulation, a value of 80000000H is jammed into the accumulator with the saturation
flag set. Accumulation proceeds normally after saturation is reached i.e., the accumulated
value can decrease from positive saturation and increase from negative saturation. Single
precision filters can be implemented efficiently by choosing to round off the 32-bit numbers
rather than truncation. FIR filter coefficients are stored in windowed memory so that
register direct addressing can be used for short fast-executing instruction. The windowing
feature expands the amount of memory that is accessible with register direct 8-bit
addressing. The upper and lower register file and the peripheral SFR’s can be windowed.
The window size can be selected to be 32-bytes, 64-bytes and 128-bytes. Code can be
executed from any page in the address space supplied by the 16-bit data address register.
The upper 8-bits which holds the page number come from sources for extended and non-
extended instructions. Data can be accessed in any page with data accesses to page 00H in
non-extended mode and accesses to all other pages in extended mode.

INTERRUPTS
After reset the device and peripheral interrupts operate in the default priority mode,

but the interrupt structure may be modified to support a hardware prioritized model. The
inclusion of a programmable priority scheme assigned to the actual interrupt vectors
ensures that when the device responds to an interrupt and enters that interrupt service
routine, no interrupt of a lower or equal priority can interfere with that routine. The first
instruction following an interrupt may not be interrupted so it is still possible to disable all

interrupts during the service routine. But, when interrupts are left enabled, only interrupts
with a higher numerical priority can interrupt an active routine. Each interrupts can be
assigned to a fixed priority/vector pair, i.e., each interrupt channel has a 16-way
multiplexer in front of it and a selection register that assigns an interrupt source. This
flexibility of assignment is typically used during initialization, not for dynamic alteration of
interrupt selections and/or priorities. Pending interrupts are latched at the vector priority
input before the interrupt mask. A benefit of this change is that the interrupt mask register
may not need to be passed to the interrupt service routine, on the stack, so that the masks
can be adjusted during that service routine. The Interrupt Unit supports positive and
negative edge sensitive external interrupts and the addition of level sensitive external
interrupts.

DIGITAL FIR FILTER DESIGN
The filter design considered in this paper will deal with causal filters. The design of

a finite duration impulse response (FIR) filter also known as a non recursive filter will be
used as a design example. The classical approach of specifying the properties of the system,
approximating the specifications using the causal, time-invariant, linear and stable system
and finally the realization of the filter will be taken here. Approximation is finding the
transfer function of the filter with the desired frequency response of the filter in the
frequency domain. Non recursive filter design is based on the approximation of the desired
frequency response from a polynomial function. Since digital filters have a relationship
between the input x(t) and the output y(t) a difference equation that establishes the input
and output relationship of the filter can be derived from the rational transfer function (1)

 a 0 + a1 z-1 + a1 z-2 aM z-M

 H(Z) = __ (1)
 1 + b1 z-1 + b2 z-2 bN z-N

The difference equation derived from (1) is in the form of a linear difference
equation. The difference equation realized from the transfer function is normally called a
digital filter and is of the form (2)

y nT a x nT kT b y nT kTk k

k

M

k

N

() =
 = =

∑ ∑− − −
0 1

() () (2)

In the difference equation above denoted as (2), if bk = 0 for k = 1, 2,N, the
realized filter is known as a non recursive filter. Therefore the equation for a FIR filter will
reduce to the first half of (2)

y nT a x nT kTk

k

M

() ()= −
=

∑
0

(3)

Now y(nT) in (3) shows the finite length response of an FIR filter. If the filter has a
unit sample input then the filter has a unit response of h(t)=a(t). To transform the
continuos time signal x(t) into a discrete-time signal x(nT), the Z-transform is used. The Z-
transform provides a relationship between the continuos time and discrete time signal
processing. A sampled impulse signal x*(t) has a Laplace transform of X*(s) and is related
to the Z-transform X(z) of a discrete-time signal x(nT) by the transformation z = est. The Z-
transform maps the left half of the complex S-plane into a unit circle in the complex Z-
plane. An analogy is used to analyze the complex Z-plane in the same way the properties of

the Laplace transforms are used to analyze continuos-time systems. To complete the
transfer function of a linear time-invariant system with respect to the input x(n), output
y(n) and the impulse response h(n) in the Z domain, H(z) is given by (4)

 Y(z)
 H(z) = ------- (4)

 X(z)

with the Z-transform of a continuos-time signal x(t) denoted by

H z h nT z
n

() ()=
=−∞

∞

∑ -n (5)

where “n -> from 0.......M” for a finite impulse response filter. To realize the filter,
equations in the form of (3) and (4) are used, and the filter is implemented using a direct
form network structure.

IMPLEMENTATION OF FILTERS
The 80296SA is used to implement the direct form FIR filter realized by (3) and (4).

Saturation mode can be evoked to handle overflow and underflow when a 16x16 multiply
takes place. Saturation occurs when two positive numbers generate a negative sign bit or
when two negative numbers generate a positive sign bit. Saturation of this kind does not
occur when this mode is enabled. The efficiency of the math performance and the fast I/O
handling capability is required for signal processing applications. The memory addressing
schemes are important since the input data values of x(n) and the coefficients h(n), when
implementing a filter for example, are to be stored in successive memory locations for fast
retrieval and computation. The instruction set with the MAC, RPT and LD/ST instructions
capable of auto increment and the use of index pointers are taken advantage of to
implement a FIR filter which can be optimized for code density, performance or a solution
with the right balance of performance and code density. There is generally a difference in
the performance of a filter when implemented on a limited precision device as opposed to
an infinite precision device due to finite word length arithmetic. The device under
discussion is a fixed point 16-bit device and the ideal filter coefficients are approximated as
close as possible to include the coefficient quantization error present due to approximations.
The effects due to coefficient quantization, finite word-lengths, truncation and rounding off
products as well as A/D quantization noise is taken care off to a great extent by the 32-bit
accumulator, shift instructions and the saturation mode enabled on the accumulator.

DIRECT-FORM FIR FILTER
The output of the FIR filter is a finite length weighted sum of the past inputs and

the current input for a unit-sample response of h(nT). The filter inputs and coefficients are
stored in page 00h memory from higher data address to lower data address. The input
samples x(n) and the coefficient’s h(n) can be stored in page 00h and y(n) computed for a 6-
tap FIR using the relation

y(n) = x(n)h(0) + x(n-1)h(1) +...... x(n-5)h(5) (6)

The code listing for the macro version which has low code density but is execution limited
and the in-line version which is optimized for fast execution but has higher code density is
shown in Listing 1 for the MCS® Kx/Nx version in comparison to the 80296SA version.

PID IMPLEMENTATION

The transfer function of a PID loop has individual proportional, integral and
differential terms which appear as a summed output. As initial conditions, it is assumed
that the sampling time, constant and any scaling factor used will remain unchanged. A
typical PID loop consists of a plant, error sensor, actuator and a controller. The controller in
this case is a embedded signal processor. Analog processes can be implement using a digital
control system in the form of a software algorithm. The PID routine can be implemented
using equation (7). The PID algorithm must be converted to discrete values for
implementing the algorithm on a microprocessor with the rectangular approximation given
by:

 y(n) = y(n-1) + G1*e(n) + G2*e(n-1) + G3*e(n-2) + G4*e(n-3) (7)

The code listing for the PID implementation is shown in Listing 2 and the control loop is
described in Figure 1

CONCLUSION
The implementation of a direct-form 6-tap non recursive FIR filter and a PID

routine was described. The use of an accumulator to speed up real time computations using
the multiply and accumulate instructions with the saturation mode shows techniques to
approximate an ideal FIR. Coefficient quantization and finite-length arithmetic data
handling was described. The architectural and instruction set features for optimum
response, based on code density and speed of code execution of the FIR filter and were
summarized. The 80296SA device can be used to implement recursive filters, PID routines
and other complex algorithms that require digital signal processing functionality and
features. In the case of filters, coefficient quantization effects, stability and characteristics
of the phase response should be given special attention.

BACKGROUND
The Intel MCS 96 microcontrollers are 16-bit CMOS devices that are designed to

handle high-speed calculations and fast I/O operations. The 80296SA is the latest addition
to the MCS 96 controller family. The complete core redesign enhances the performance of
the 16-bit CHMOS microcontroller as well as maintain the binary code compatibility. The
80296SA is pin compatible with the 8XC196NP and the 80C196NU. The 80296SA has 512
bytes of register RAM and 2Kbytes of code RAM, register to register architecture, serial
port with a maximum synchronous baud rate of 12.5 Mbaud and a maximum asynchronous
baud rate of 3.1 Mbaud, Pulse Width Modulator (PWM) with a 195.3 KHz maximum
frequency, Event Processor Array (EPA) with 80ns resolution. A phase lock loop (PLL)
allows an external clock to drive the device at one half or one quarter the maximum internal
clock frequency. The total addressable space using the chip selects is 6 Mbytes with 1 Mbyte
maximum address space for each of the six chip selects. There are five I/O ports sharing a
common pin layout with the 8XC196NP and the 80C196NU. The interrupt controller on the
80C296SA can be programmed to perform like previous MCS 96 microcontrollers or it can
be programmed with prioritized interrupts. The programmable interrupt priority and vector
sources are assigned to various interrupts with fixed priorities.

REFERENCES
[1] A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal Processing,” Prentice-Hall,
NJ,1989.
[2] Intel 80296SA Microcontroller User’s Manual, No. 272803
[3] N. Govind, “Digital Filter Design and Algorithm Implementation with Embedded Signal
Processors”, Proceedings of the 6th International Conference on Signal Processing
Applications and Technology, Oct 24-26, 1995, pp. 551-555

[4] N. Govind and A. R. Hasan, “Real Time Fuzzy Logic Speed Control Using Conventional,
Assembly and Simulation Methods for Industrial DC Motors,” in Proceedings of the 1995
IEEE/IAS International Conference on Industrial Automation and Control, IA&C ’95,
Library of Congress No. 94-77908, pp. 203-208

80296SA BLOCK DIAGRAM

Bus Controller

.5K-3 Port Register RAM

EPA

SIO

Timers

ALU
Adder MAC
Barrel Shifter

Instr Seq.

Ports

Interrupt
Unit

Mem
Data

Mem
Add

Address Data

Chip
Selects

Controls

Extints

NMI

Ports

Ports

Peripheral
Unit

PWM

Core SFRs Mem.
I/UQueue

 2K Code/Data RAM

FIGURE 1. DIRECT FORM FIR FILTER

z-1 z-1 z-1 z-1 z-1x(n)

y(n)

h(0) h(2) h(3) h(4) h(5)h(1)

FIGURE 2. PID CONTROL LOOP

LISTING 1
;**
;* FIR 16-tap filter 80296SA (State Time = 40nS)
;* By: Navin Govind
;* Intel Corporation
;**

;Perform FIR calculations using the following equation

;For an impulse response of h(0), h(1).... h(N-1) and input x(n) at time ’n’, the output y(n) at time n is given by:
;y(n) = h(0)*x(n) + h(1)*x(n-1)+....+h(N-1)*x[n-(N-1)]

; FIR FILTER USING MAC ("DEDICATED" FIR)

;This program illustrates the use of the MAC instruction in the implementation of an FIR digital filter.

;The coefficient here were simply chosen as a portion of a ramp, 16 taps from 0 to 15. This was done not to illustrate
;a useful filter, but to make it easier to recognize the coefficients and trace them through the memory sections
;where they appear.

;The program is for the 80296SA, and can be assembled with the Version 5 cross-assembler from Tasking. After
;linking with LINKER, and conversion with OH196, the object file can be loaded and run on the 80296SA evaluation
;board.

;Another example using index registers is as follows

; START:
; LDB ICB0,#01H ;SET UP INCREMENT CONTROL BYTE REG
; LDB ICB1,#01H
; LD IDX0,SAMPLE ;INIT SAMPLE POINTER
; LD IDX1,COEFF ;INIT COEFFICIENT POINTER
; SMACZ ICX0,ICX1 ;DO INITIAL MPY, ZERO ACC
; RPT #0EH ;REPEAT NEXT INSTR 15X
; SMACR ICX0,ICX1 ;DO 15 SUCCESSIVE MAC’S WITH INC
; MSAC YOUT,#018H ;PLACE RESULTS IN YOUT
; END

$include(_SFR_INC_)

YOUT equ 0
XIN equ 1

PLANT

D2A SENSOR

INPUT OUTPUT

CONTROLLER A2D

+ -

ERR equ 2
YLAST equ 3

 RSEG AT 020h

;Working register declarations

temp: dsw 2
temp_l equ temp
temp_h equ temp+2

out: dsw 2
out_l equ out
out_h equ out+2

;Length of filter (N) = 15
loop: dsb 1

;Locations of x(n-(N-1))
coeff: dsw 2
coeff_0 equ coeff
coeff_1 equ coeff+2
coeff_2 equ coeff+4
coeff_3 equ coeff+6
coeff_4 equ coeff+8
coeff_5 equ coeff+10
coeff_6 equ coeff+12
coeff_7 equ coeff+14
coeff_8 equ coeff+16
coeff_9 equ coeff+18
coeff_10 equ coeff+20
coeff_11 equ coeff+22
coeff_12 equ coeff+24
coeff_13 equ coeff+26
coeff_14 equ coeff+28

;Locations of h(n-1)
sample: dsw 2
sample_0 equ sample
sample_1 equ sample+2
sample_2 equ sample+4
sample_3 equ sample+6
sample_4 equ sample+8
sample_5 equ sample+10
sample_6 equ sample+12
sample_7 equ sample+14
sample_8 equ sample+16
sample_9 equ sample+18
sample_10 equ sample+20
sample_11 equ sample+22
sample_12 equ sample+24
sample_13 equ sample+26
sample_14 equ sample+28
;

CSEG

;MCS(r) 96 family of microcontrollers reset after power-up at 2080h
CSEG AT 0FF2080H
ejmp START

;The following four ’clr’ instructions may not be needed for 80926SA if the contents of temp and out registers are not
;read initially

START:
ld sp,#STACK ;set up stack depth

ldb wsr,#1Eh ;set 128 byte window

clr temp_l ;initialize temp register
clr temp_h

fir macro coef, samp, num
mul temp, coef&num, samp&num
add out_l, temp_l
addc out_h, temp_h

endm

ldb loop,#15
ldbse sample_0,#XIN

;Kx and Nx implementation
;+++++++++++++++++++++++++++++ FIR Calculation +++++++++++++++++++++++++++++++++
BEGIN:

irp temp_count, <0,1,2,3,4,5,6,7,8,9,10,11,12,13,14>
 fir coeff_, sample_, temp_count
endm

mul temp,coeff_0,sample_0 ;h(N-1) * x(n-(N-1))
add out_l,temp_l ;accumulate
addc out_h,temp_h

shll temp,#1
ld out,temp ;save final output
sjmp fir_optz

;+++++++++++++++++++++++++++++ FIR Calculation +++++++++++++++++++++++++++++++++

;80296SA implementation
;+++++++++++++++++++++++++++++ FIR Calculation +++++++++++++++++++++++++++++++++
fir_optz:

smacz coeff,sample ;DO INITIAL MPY, INIT ACC
rpt #0eh ;REPEAT NEXT INSTR 15X
smacr coeff+2,sample+2 ;DO 15 SUCCESSIVE MAC’S
mvac YOUT,#18 ;ROTATE ACC INTO YOUT, BIT-18 = BIT-15

;+++++++++++++++++++++++++++++ FIR Calculation +++++++++++++++++++++++++++++++++

DONE:
sjmp DONE

END

LISTING 2
;**
;* PID routine for 80296SA (State Time = 40nS)
;* By: Navin Govind
;* Intel Corporation
;**

; Perform PID calculations using the following equation

; The PID algorithm must be converted to discrete values for implementing the algorithm on a microprocessor
; The rectangular approximation is given by:
; y(n) = y(n-1) + G1*e(n) + G2*e(n-1) + G3*e(n-2) + G4*e(n-3)

$include(_SFR_INC_)

 RSEG AT 040h

;Working register declarations

out: dsw 2
out_l equ out
out_h equ out+2

temp: dsw 2
temp_l equ temp
temp_h equ temp+2

EN: dsw 1 ;
ENM1: dsw 1 ; Previous error sample
ENM2: dsw 1 ; Latest error sample
ENM3: dsw 1 ; Oldest error sample

G1: dsw 1 ; Constant for gain
G2: dsw 1 ; constant for gain
G3: dsw 1 ; Constant for gain
G4: dsw 1 ; Constant for gain

;NOTE: The fraction notational bit in the respective SFR (special function register) must be set so that a shift left
;(shll) need not be done after every multiply instruction. If the afore mentioned SFR bit is not set a ’shll’ instruction
;must follow a 3-op multiply to preserve data coherency.

;MCS(r) 96 family of microcontrollers reset after power-up at 2080h
CSEG AT 0FF2080H
ejmp START

;The following ’clr’ instructions may not be needed for 80926SA if the contents of temp and out regs are not read
;initially

START:
ld sp,#STACK ;set up stack depth
ldb wsr,#1Eh ;set 128 byte window

clr temp_l ;initialize temp register
clr temp_h

;++++++++++++++++++++++++++++ PID VARIABLES ++++++++++++++++++++++++++++++++++++
ld out_l,#000ah
ld out_h,#000ch

clr temp_l ;initialize temp register
clr temp_h

ld ENM3,#000ah
ld ENM2,#000bh
ld ENM1,#000ch
ld EN,#000dh

ld G1,#000ah
ld G2,#000bh
ld G3,#000ch
ld G4,#000dh

;Kx and Nx implementation
;++++++++++++++++++++++++++++ PID ++
BEGIN:

mul temp,G1,EN ;multiply and accumulate (States = 16+4+4)
add out_l,temp_l
addc out_h,temp_h

mul temp,G2,ENM1
add out_l,temp_l
addc out_h,temp_h

mul temp,G3,ENM2
add out_l,temp_l
addc out_h,temp_h

mul temp,G4,ENM3
add out_l,temp_l
addc out_h,temp_h

;80296SA implementation
;++++++++++++++++++++++++++++ PID ++

smacz G1,EN ; Saturated multiply and accumulate (States = 2)
smac G2,ENM1 ; Saturated multiply and accumulate
smac G3,ENM2 ; Saturated multiply and accumulate
smac G4,ENM3 ; Saturated multiply and accumulate

;++++++++++++++++++++++++++++ PID ++
DONE:

sjmp DONE ; endless loop

END

	ABSTRACT
	ARCHITECTURAL OVERVIEW
	INSTRUCTION SET MODIFICATIONS
	ACCUMULATOR
	INTERRUPTS
	DIGITAL FIR FILTER DESIGN
	IMPLEMENTATION OF FILTERS
	DIRECT-FORM FIR FILTER
	PID IMPLEMENTATION
	CONCLUSION
	BACKGROUND
	REFERENCES

