
Digital Filter Design and Algorithm Implementation with Embedded Signal
Processors

Navin Govind
Intel Corporation

Abstract
Electronic systems deal with signals that have a
frequency spectrum with a wide range of frequency
components. These frequency components require
filter functions that may include isolation, rejection
or attenuation depending on system
implementation. Digital filters are systems that
modify certain frequencies relative to others either
by a digital computational process or by
implementation of an algorithm. A band-limited
signal which is continuos-time is sampled at the
Nyquist rate and converted to discrete-time by a
digital filter. This paper deals with the design of
digital filters which include specification,
approximation and realization of the desired
properties of a causal discrete time system using a
new generation of Intel 80C196 embedded
controllers with digital signal processing
capabilities. The 80C196, in addition to its register
to register architecture, has a hardware based
accumulator and multiply accumulate instructions
suitable for signal processing. Key features of the
instruction set to perform signal processing
functions are described. Fast I/O operations and
software implementation of digital filters in hard
disk drive servo operations, optimized for
performance and memory are discussed, along with
a high level overview of both the architecture and
software are discussed.

Signal Processing with Filters
Signals that have a frequency spectrum with a wide
range of frequency components are transformed
and manipulated with the input/output signal
information during signal processing. Discrete time
signal processing converts a continuos time signal
into a sequence of samples which is a discrete time
signal. Discrete time signals or digital signals
appear mathematically as a sequence of numbers.

Digital filters involve processing continuos time
signals using discrete time signal processing.
Digital signals have an independent variable with
discrete values for both time and amplitude.
Filtering consists of the modification of an input

signal to a desired output signal. Digital filters,
unlike analog filters, can be implemented by an
algorithm. A continuos time input signal which is
sampled appears as a sequence of numbers and is
transformed to an output signal which is a digital
signal. This digital signal can be transformed back
to a continuos time signal after the signal
processing is completed. Filters in general are used
in a variety of applications in the form of low pass
filters passing the lower frequency components,
high pass filters passing the high frequency
components and band pass filters that pass a certain
range of frequencies while attenuating other
frequencies of signals that are continuos in time
and are band limited. Digital filters eliminate
variations normally present in the case of analog
filters due to analog components. The variations
may be in the form of noise and voltage variations
affecting the phase and magnitude response of the
filter being implemented. Presently, fast fixed point
and floating point operations which are normally
used to implement discrete time signal processing
are available on silicon. The digital filter
implemented on a single integrated circuit is an
easy to use programmable microprocessor such as
an 80C196NU, that follows the specified
magnitude and phase response of the filter in
design, accurately and consistently. Signal
processing that require transformation of signals
and are impossible to implement using analog
components are realized in the form of digital
filters on silicon.

The design of digital filters described here will be
in the form of causal, time-invariant, linear
systems. A system in which there is no output
before the input is applied is stated to be a causal
system. When an input h(t) in the form of an
impulse response is applied to a system

h(t) = 0 for all t < 0

In a time-invariant system there will be a shift in
the output sequence of numbers for a delay applied
in the input sequence. For example, a system with
input x(t) and output y(t), for a delay ‘n’ applied to

the input x(t-α) the output will be y(t-α) where α is
the time shift.

 x(t-α) y(t-α)

 TIME-INVARIANT SYSTEM

A linear system is defined by the principle of
superposition. For systems with inputs x1(t) and
x2(t) and outputs y1(t) and y2(t), the system is linear
if

αx1(t) + βx2(t) αy1(t) + βy2(t)

 LINEAR SYSTEM

The properties described above apply to systems
and are not descriptive of the input signals to the
system. Another important property of a system is
the stability of the system. A system is stable when
for every bounded input a bounded output is
generated with all poles of the system transfer
function in the left half of the ‘S’ plane in the ‘S’
domain or all poles lie within the unit circle in the
Z domain. Therefore if input x(t) is bounded then a
fixed finite positive value of X(t) exists i.e.;

x(t)<= X(t) < ∞ for all t

The bounded output y(t) of a stable system tends to
zero for a bounded input when ‘t’ is greater than
zero. The description of linear time-invariant
systems is important since these systems have
important signal processing applications. The
properties of linear time-invariant systems is used
to represent this class of systems, more so, since
filters are a significantly important part of this
class.

Digital FIR Filter Design
The filter design considered in this paper will deal
with causal filters. The design of a finite duration
impulse response (FIR) filter also known as a
nonrecursive filter will be used as a design
example. The classical approach of specifying the
properties of the system, approximating the
specifications using the causal, time-invariant,
linear and stable system and finally the realization
of the filter will be taken here. Approximation is
finding the transfer function of the filter with the

desired frequency response of the filter in the
frequency domain. Nonrecursive filter design is
based on the approximation of the desired
frequency response from a polynomial function.
Since digital filters have a relationship between the
input x(t) and the output y(t) a difference equation
that establishes the input and output relationship of
the filter can be derived from the rational transfer
function (1)

 a0 + a1 z-1 + a1 z-2 aM z-M

 H(Z) = _______________________________________ (1)
 1 + b1 z-1 + b2 z-2 bN z-N

The difference equation derived from (1) is in the
form of a linear difference equation. The difference
equation realized from the transfer function is
normally called a digital filter and is of the form

y nT a x nT kT b y nT kTk k

k

M

k

N

() =
 = =

∑ ∑− − −
0 1

() () (2)

In the difference equation above denoted as (2),
if
bk = 0 for k = 1, 2,N, the realized filter is
known as a nonrecursive filter. Therefore the
equation for a FIR filter will reduce to the first half
of (2)

y nT a x nT kTk

k

M

() ()= −
=

∑
0

 (3)

which shows the finite length response of an FIR
filter. If the filter has a unit sample input then the
filter has a unit response of h(t)=a(t). To transform
the continuos time signal x(t) into a discrete-time
signal x(nT), the Z-transform is used. The Z-
transform provides a relationship between the
continuos time and discrete time signal processing.
A sampled impulse signal x*(t) has a Laplace
transform of X*(s) and is related to the Z-
transform X(z) of a discrete-time signal x(nT) by
the transformation z = est. The Z-transform maps
the left half of the complex S-plane into a unit
circle in the complex Z-plane. An analogy is used
to analyze the complex Z-plane in the same way
the properties of the Laplace transforms are used to
analyze continuos-time systems. To complete the
transfer function of a linear time-invariant system
with respect to the input x(n), output y(n) and the
impulse response h(n) in the Z domain

 Y(z)
 H(z) = -------

(4)
 X(z)

with the Z-transform of a continuos-time signal x(t)
denoted by

H z h nT z
n

() ()=
=−∞

∞

∑ -n (5)

where “n -> from 0.......M” for a finite impulse
response filter. To realize the filter, equations in the
form of (3) and (4) are used and the filter is
implemented using a direct form network
structure.

80C196NU Implementation of Filters
The Intel 80C196NU is used to implement the
direct form FIR filter realized by (3) and (4). The
196NU is a 16-bit high performance CHMOS
microcontroller with the following features:
50 MHz @ 5V
Clock Doubling
16x16 multiply/accumulate
1 Mbyte Address Space
6 Programmable Chip Selects
Idle, Standby and Powerdown
3 Pulse Width Modulators
Peripheral Transaction Server
2 Timer/Counters
4 Event Processor Array
Full Duplex Serial I/O Unit

There is also an 8-byte prefetch queue implemented
for increased program execution and a 32-bit
accumulator peripheral for increased math
performance. Saturation mode can be evoked to
handle overflow and underflow when a 16x16
multiply takes place. Saturation occurs when two
positive numbers generate a negative sign bit or
when two negative numbers generate a positive
sign bit. Saturation of this kind does not occur
when this mode is enabled. The efficiency of the
math performance and the fast I/O handling
capability is required for signal processing
applications. The memory addressing schemes are
important since the input data values of x(n) and
the coefficients h(n), when implementing a filter
for example, are to be stored in successive memory
locations for fast retrieval and computation. The
powerful instruction set with the MAC and LD/ST
instructions capable of autoincrement and the use
of index pointers are taken advantage of to
implement a FIR filter which can be optimized for
code density, performance or a solution with the
right balance of performance and code density.

There is generally a difference in the performance
of a filter when implemented on a limited
precision device as opposed to an infinite precision
device due to finite word length arithmetic. The
80C196NU is a fixed point 16-bit device and the
ideal filter coefficients are approximated as close as
possible to include the coefficient quantization
error present due to approximations. The effects
due to coefficient quantization, finite word-lengths,
truncation and rounding off products as well as
A/D quantization noise is taken care off to a great
extent by the 32-bit accumulator, shift instructions
and the saturation mode enabled on the
accumulator. The 80C196NU is the first member of
the MCS96 architecture to have a signal processing
operational instruction which can handle a multiply
and accumulate with an accumulator. The logic for
the accumulator includes a 16-bit adder, 3x1
multiplex logic and a 32-bit accumulator. The
multiply/accumulate instruction can operate on
signed-integer, unsigned-integer and signed-
fractional data. The accumulator can be configured
in four ways shown in Table 1

 Table 1
Saturation Enable

bit
Fractional Enable bit

0 0
0 1
1 0
1 1

With reference to Table 1, in the first case when
both bits are zero the overflow flag is set if the sign
bit of the accumulator and the signed bit of the
addend are equal and the sign bit of the result is the
opposite. In the second case a shift left by one bit
(multiply x 2) is performed on the addend before
the accumulation and the fractional accumulation
proceeds as described in the first case. In the third
case the 32-bit signed integer value is accumulated
up or down to saturation. When positive overflow
occurs during an accumulation, a value of
7FFFFFFFH is jammed into the accumulator and
the saturation flag is set. When a negative overflow
occurs during an accumulation a value of
80000000H is jammed into the accumulator with
the saturation flag set. Accumulation proceeds
normally after saturation is reached i.e. the
accumulated value can decrease from positive
saturation and increase from negative saturation. In
the fourth case a shift left by one bit is performed
on the addend before the accumulation and the

fractional accumulation proceeds as described in
the third case.

Single precision filters can be implemented
efficiently by choosing to round off the 32-bit
numbers rather than truncation. The FIR filter
coefficients are stored in windowed memory so that
register direct addressing can be used for short fast-
executing instruction. The 196NU memory map is
shown in Table 2. The windowing feature expands
the amount of memory that is accessible with
register direct 8-bit addressing. The upper and
lower register file and the peripheral SFR’s can be
windowed. The windows size can be selected to be
32-bytes, 64-bytes and 128-bytes. This limits the
number of taps on the FIR filter being considered
for implementation. Code can be executed from
any page in the 1Mbyte address space. Internally
the 196NU has 24 address lines with the lower
16-bits

 Table 2 80C196NU Memory Map
ADDRESS DESCRIPTION
FF FFFFH
FF 0100H

EXTERNAL MEMORY

FF 00FFH
FF 0000H

RSVD FOR ICE

FE FFFFH
10 0000H

OVERLAYED MEMORY

0E FFFFH
01 0000H

896K EXTERNAL MEMORY

00 FFFFH
00 2000H

EXTERNAL MEMORY

00 1FFFH
00 1FE0H

PERIPHERAL SPECIAL
FUNCTION REGISTERS

supplied by the 16-bit data address register. The
upper 8-bits which holds the page number come
from sources for extended and nonextended
instructions. Data can be accessed in any page with
data accesses to page 00H in nonextended mode
and accesses to all other pages in extended mode.

Direct-Form FIR Filter
The filter coefficients of a direct form FIR filter can
be obtained from the difference equation (6).

y nT h nT x nT kT
k

M

() () ()= −
=

∑
0

 (6)

The output of the FIR filter from (6) is a finite
length weighted sum of the past inputs and the
current input for a unit-sample response of h(nT).
The filter inputs and coefficients are stored in

196NU page 00h memory from higher data address
to lower data address as seen in Table 3 and Table
4. The input samples x(n) and the coefficient’s h(n)
can be stored in page 00h and y(n) computed for a
6-tap FIR using the relation

y(n) = x(n)h(0) + x(n-1)h(1) +...... x(n-5)h(5)
(7)

The code listing for the macro version which has
low code density but is execution limited and the
in-line version which is optimized for fast
execution but has higher code density is shown in
Listing’s 1 and 2 respectively. The Figure 1 shows
the network structure of a direct-form 6-tap FIR
filter.

 Table 3
00 5FFFh x(n)

. x(n-1)

. x(n-2)

. .

. .
00 4000h x[n-(N-1)]

 Table 4
00 AFFFh h(0)

. h(1)

. h(2)

. .

. .
00 B000h h(N-1)

Conclusion
The implementation of a direct-form 6-tap
nonrecursive FIR filter on the 80C196NU has been
described. The use of an accumulator to speed up
real time computations using the multiply and
accumulate instructions with the saturation mode
shows techniques to approximate an ideal FIR filter
coefficients to minimize the effects of coefficient
quantization and finite-length arithmetic. The
architectural and instruction set features for
optimum response based on code density and speed
of code execution of the FIR filter were
summarized. Assembly code listings for the macro
and in-line implementation are listed. The 80C196
device can be used to implement recursive filters
with the required response and is not limited to just
nonrecursive filters.

References
[1] A. V. Oppenheim and R. W. Schafer, “Discrete-
Time Signal Processing,” Prentice-Hall, NJ,

1989.

[2] Intel 80C196NP Microcontroller User’s Manual

[3] Intel 80C196NU Supplement to the 8XC196NP
Microcontroller User’s Manual

z-1 z-1 z-1 z-1 z-1x(n)

y(n)

h(0) h(2) h(3) h(4) h(5)h(1)

Figure 1. Direct Form FIR Filter

Listing 1
;FIR Filter Implementation in-line using the following equation
;For an impulse response of h(0), h(1).... h(N-1) and input x(n) at time 'n', the output
;y(n) at time n is given by: y(n) = h(0)*x(n) + h(1)*x(n-1)+....+h(N-1)*x[n-(N-1)]

RSEG AT 040h ;Register segment starts at 40h
CSEG AT 0FF2080H ;Code segment starts at 0FF 2080h

BEGIN:
FIR: LD sample,XIN ;INPUT NEW SAMPLE

MAC coeff,sample ;DO INITIAL MPY, INIT ACC
RPT #00EH ;REPEAT NEXT INSTR 15X
MAC coeff+,sample+ ;DO 15 SUCCESSIVE MAC'S
ST acc,ylast[00] ;PLACE RESULTS IN YLAST

DONE: SJMP DONE ;WAIT FOR NEXT SAMPLE
END

Listing 2
;FIR Filter macro implementation

 RSEG AT 040h ;Register segment starts at 40h
 CSEG AT 0FF2080H
fir macro coef, samp, num

MAC accum, coef&num, samp&num
endm

LD loop,#15
LDBSE sample,#XIN

BEGIN:
 irp accum_count, <0,1,2,3,4,5>
 fir coeff_, sample_, accum_count
endm

MAC coeff+,sample+ ;h(N-1) * x(n-(N-1))
ADD sample,#5 ;ACCUMULATE LAST PRODUCT

DONE: ;RESULTS IN ACCUMULATOR
SJMP DONE

END

Filename: DSP_95.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WINDOWS\WINWORD6\TEMPLATE\NORMAL.DOT
Title: Introduction to the Next Generation MCS 96 Microcontroller
Subject:
Author: Navin Govind
Keywords:
Comments:
Creation Date: 07/05/95 10:56 AM
Revision Number: 62
Last Saved On: 07/28/95 1:28 PM
Last Saved By: Navin Govind
Total Editing Time: 769 Minutes
Last Printed On: 12/18/95 3:58 PM
As of Last Complete Printing

Number of Pages: 6
Number of Words: 2,486 (approx.)
Number of Characters: 14,171 (approx.)

	Title Page
	Abstract
	Signal Processing with Filters
	Digital FIR Filter Design
	80C196NU Implementation of Filters
	Direct-Form FIR Filter
	Conclusion
	References

