
APPLICATION
BRIEF

AB-34

April 1989

Integer Square Root Routine
for the 8096

LIONEL SMITH

ECO APPLICATIONS ENGINEER

Order Number: 270523-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

INTEGER SQUARE ROOT
ROUTINE FOR THE 8096

CONTENTS PAGE

Theory ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Practice ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Comments ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

AB-34

This Application Brief presents an example of calculat-
ing the square root of a 32-bit signed integer.

Theory

Newton showed that the square root can be calculated
by repeating the approximation:

Xnew e (R/Xold a Xold)/2 ; Xold e Xnew

where: R is the radicand

Xold is the current approximation of the
square root

Xnew is the new approximation

until you get an answer you like. A common technique
for deciding whether or not you like the answer is to
loop on the approximation until Xnew stops changing.
If you are dealing with real (floating point) numbers
this technique can sometimes get you in trouble because
it’s possible to hang up in the loop with Xnew alternat-
ing between two values. This is not the case with inte-
gers. As an example of how it all works, consider taking
the square root of 37 with an initial guess (Xold) of 1:

Xnew e (37/1 a 1)/2 e 19; Xold e 19

Xnew e (37/19 a 19)/2 e 10; Xold e 10

Xnew e (37/10 a 10)/2 e 6; Xold e 6

Xnew e (37/6 a 6)/2 e 6; Xold e 6 – done!

Note that in integer arithmetic the remainder of a divi-
sion is ignored and the square root of a number is
floored (i.e. the square root is the largest integer which,
when multiplied by itself, is less than or equal to the
radicand).

Practice

The only significant problem in implementing the
square root calculation using this algorithm is that the
division of R by Xold could easily be a 32 by 32 divide
if R is a 32 bit integer. This is ok if you happen to have
a 32 by 32 divide instruction, but most 16-bit machines
(including the 8096) only provide a 32 by 16 divide.
However, a little bit of creative laziness will allow us to
squeeze by using the 32 by 16 bit divide on the 8096.

The largest positive integer you can represent with a
32-bit two’s complement number is 07fff$ffffh, or
2,147,483,647. The square root of this number is
0b504h, or 46,340. The largest square root that we can
generate from a 32-bit radicand can be represented in
16-bits. If we are careful in picking our initial Xold we
can do all of the divisions with the 32 by 16 divide
instruction we have available. Picking the largest possi-
ble 16-bit number (0ffffh) will always work although it
may slow the calculation down by requiring too many
iterations to arrive at the correct result. The algorithm
below takes a slightly more intelligent approach. It uses
the normalize instruction to figure out how many lead-
ing zeros the 32-bit radicand has and picks an initial
Xold based on this information. If there are 16 or more
leading zeros then the radicand is less than 16 bits so an
initial Xold of 0ffh is chosen. If the radicand is more
than 16 bits then the initial Xold is calculated by shift-
ing the value 0ffffh by half as many places as there were
leading zeros in the radicand. To give credit where
credit is due, I first saw this ‘trick’’ in the January 1986
issue of Dr. Dobbs’s Journal in a letter from Michael
Barr of McGill University.

The routine was timed in a 12.0 Mhz 8096 as it calcu-
lated the square roots of all positive 32-bit numbers, the
following numbers include the CALL and return se-
quence and were measured using Timer 1 of the 8096.

Minimum Execution Time: 24 microseconds

Maximum Execution Time: 236 microseconds

Average Execution Time: 102 microseconds

Comments

The program module which follows is part of a collec-
tion of routines which perform integer and real arith-
metic on a software implemented tagged stack. The top
element of the stack is call TOS and is in fixed locations
in the register file. Since the square root operation only
involves TOS, further details of the stack structure are
not shown.

1

AB-34

MCS-96 MACRO ASSEMBLER SQRT 05/12/86 10:44:30 PAGE 1

DOS MCS-96 MACRO ASSEMBLER, V1.1

SOURCE FILE: ROOT2.A96

OBJECT FILE: ROOT2.OBJ

CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB

ERR LOC OBJECT LINE SOURCE STATEMENT

1 ;

2 sqrt module

3 ;

4 ; 32 bit integer square root for the 8096

5 ;

6 public qstk isqrt ; TOPw SQUARE ROOT(TOP)

7 extrn interr:entry ; Integer error routine

8 ;

9 ; id stags for stack integer routines

0019 10 isqrt id equ 19h

11 ;

12 ; error codes

13 ;

0000 14 overflow equ 00h

0001 15 paramerr equ 01h

0002 16 invalid input equ 02h

17

001C 18 oseg at 1ch

19 ; 44444444444

001C 20 ax: dsw 1

001C 21 al equ ax:byte

001D 22 ah equ (ax01):byte

001E 23 dx: dsw 1

0020 24 cx: dsw 1

0022 25 bx: dsw 1

0018 26 sp equ 18h:word

27

28

0030 29 oseg at 30h

30 ; 44444444444

0030 31 qstk reg:

0030 32 dsl 1 ; make sure of alignment

0030 33 next equ qstk reg:word ; pointer to next element in the arg stack.

0032 34 tos tag equ (qstk reg02):word

0034 35 tos value:

0034 36 dsl 1 ; 32 bit integer

37 ;

0000 38 cseg

39 ; 4444

40 b1 macro param

41 bnc param

42 endm

43

44 bhe macro param

45 bc param

46 endm

47 $eject

2

AB-34

MCS-96 MACRO ASSEMBLER SQRT 05/12/86 10:44:30 PAGE 2

ERR LOC OBJECT LINE SOURCE STATEMENT

0000 48 cseg

49 ; 4444

50 ;

0000 51 qstk isqrt:

52 ; Takes the square root of the long integer in TOS

53 ; TOSxTop of argument stack

54 ; iTOS – iSQRT(TOS)

55 ;

0020 56 Xold set cx

0000 A0341C 57 ld ax,tos value

0003 A0361E 58 ld dx,(tos value02)

0006 371F07 59 bbc (dx01),7,qsi05 ; if (TOS k 0)

0009 C90119 60 push #(isqrt id*2560paramerr)

000C EF0000 E 61 call interr ; Call interr.

000F F0 62 ret ; Exit

0010 63 qsi05:

0010 0F221C 64 normal ax, bx

0013 DF3B 65 be qstk isqrt0

0015 991022 66 cmpb bx,#16 ; if (TOS k 2**16)

0018 DA06 67 ble qsi10

001A A1FF0020 68 ld Xold, #0ffh ; Use 0ffh as first estimate.

001E 200A 69 br qstk isqrtloop

0020 70 qsi10:

0020 180122 71 shrb bx,#1 ; else

0023 A1FFFF20 72 ld Xold, #0ffffh ; Base the first estimate on the

0027 082220 73 shr Xold, bx ; number of leading zeroes in TOS.

002A 74 qstk isqrtloop;

002A A0341C 75 ld ax,tos value ; do

002D A0361E 76 ld dx,(tos value02) ; if (The divide will overflow)

0030 88201E 77 cmp dx,Xold ; The loop is done.

78 bhe qstk isqrt done

0035 8C201C 80 divu ax,Xold ; if ((ax4TOS/Xold) l4 Xold)

0038 88201C 81 cmp ax,Xold ; The loop is done.

82 bhe qstk isqrt done

003D 0122 84 clr bx ; Xold4(ax0Xold)/2

003F 641C20 85 add Xold,ax

0042 A40022 86 addc bx,0

0045 0C0120 87 shrl Xold,#1

0048 27E0 88 br qstk isqrtloop ; while (The loop is not done)

004A 89 qstk isqrt done:

004A A02034 90 ld tos value,Xold ; TOS400:Xold

004D A00036 91 ld (tos value02),0

0050 92 qstk isqrt0:

0050 F0 93 ret ; Exit

0051 94 end

ASSEMBLY COMPLETED. NO ERROR(S) FOUND.

3

	Theory
	Practice
	Comments

