
1 rev 2.1, 10/10/95

8XC251SB BENCHMARK REPORT

OBJECTIVE
The purpose of this benchmark was to check the performance of the CPU power of
8XC251SB Vs 8XC51FX with different programs and different hardware.

SUMMARY OF BENCHMARK
A total of 8 programs were written for four experiments: four in pure 51 instructions and
four in optimized 251 instructions. Out of the four types of programs, the first three
programs are 64 bytes Data Transfer, Multiply and Accumulation, and 3x3 Matrix
Multiplication. The last program is a combination of the first three programs to acquire
the overall performance of the microcontrollers. The source for the first program, which
performs the 64 bytes of Data Transfer, is included in Appendix A.

All programs were assembled in two modes: binary mode and source mode. Programs
with 51 instructions assembled in binary mode are 8XC51FX compatible and can be run
by all units. Programs with 51 instructions assembled in source mode and programs with
251 instructions in both binary and source mode can only be run by 87C251SB
microcontrollers.

Experiment 1, 2 and 3 will be run on the EV80C51FX evaluation board while experiment
4 was conducted on a the 8XC51FX target board.

APPARATUS

Experiment 1, 2 and 3
• EV80C51FX evaluation board
• 12 MHz 87C51FB
• 12 MHz 87C251SB
• Texas Instruments TMS27C256 100ns 32K EPROM
• Digital stop watch

Experiment 4
• 8XC51FX target board
• 12 MHz 87C51FB
• 12 MHz 87C251SB
• Intel D27C256 120ns 32K EPROM
• Digital stop watch

2 rev 2.1, 10/10/95

PROCEDURE
• In each experiment, the test programs were programmed into external eprom

(27C256) and internal eprom of the 87C251SB or the 87C51FB.
• For programs that run externally on eproms, all internal eproms of the

microcontrollers were left blank.
• The configuration bytes of the 87C251SB microcontrollers were programmed

accordingly. For example, addresses 80 & 81 of the 87C251SB controller were
programmed as FE and EF to enable binary mode, 0 wait states, and non page-mode.

• Digital stop watch was switched on once the reset button of the target board was
pressed, and stopped when the 5 of the display LEDs were turned on.

• 3 readings were taken to obtain the average processing time. The 87C51FB was taken
as a reference to compare the processing speed of all other microcontrollers.

• Each program was analyzed thoroughly to obtain the exact state percentage of the
type of the instructions. Graphs were plotted for comparison and to give a brief idea
for readers to understand the advantage of new 251 instruction code.

EXPERIMENT 1
This experiment compares the processing speed of the 8XC51FX to the 8XC251SB by
emulating data transfer from internal code memory to external data memory. The
programs used are shown below:-

i) TMAC11B with pure 51 instructions assembled in binary mode.
ii) TMAC11S with pure 51 instructions assembled in source mode.
iii) TMAC12B with 251 new instructions assembled in binary mode.
iv) TMAC12S with 251 new instructions assembled in source mode.

The flow of the programs is shown below:-

1) LEDs of the evaluation board were displayed once (the pattern was 10000001)
2) The benchmarking routine was looped for 31 times
3) The LEDs were displayed at the end of every loop (the pattern was 100XXXXX)

In every loop of TMAC11B, TMAC11S, TMAC12B and TMAC12S, the following tasks
were performed:-

Task Instruction Type
a. Loop 3825 times. In each loop move 64 bytes of constant data from

internal code memory to external data memory.
CPU

b. Flashing the LED through port 1. I/O

3 rev 2.1, 10/10/95

The results of the benchmarking are shown as follows:-

A) MCS 51 COMPATIBILITY

TMAC11B is written in 100% 51 instructions and assembled in Binary Mode

TMAC11S is written in 100% 51 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit Device Mode Mem W/s Page Prog 1 2 3 Ave to

FX
1 87C51FB - Ext - - TMAC11B 3:40 3:40 3:40 3:40 1x

2 87C251SB Bin Ext 0 non-page TMAC11B 1:18 1:18 1:18 1:18 2.82x

3 87C251SB Bin Ext 1 non-page TMAC11B 1:51 1:51 1:51 1:51 1.98x

4 87C251SB Src Ext 0 non-page TMAC11S 1:42 1:42 1:42 1:42 2.16x

5 87C251SB Src Ext 1 non-page TMAC11S 2:27 2:27 2:27 2:27 1.50x

6 87C251SB Bin Int 0 non-page TMAC11B 0:44 0:44 0:44 0:44 5x

7 87C251SB Src Int 0 non-page TMAC11S 0:57 0:57 0:57 0:57 3.86x

TABLE 1.1

B) MCS 251 OPTIMIZATION

TMAC11B is written in 100% 51 instructions and assembled in Binary Mode

TMAC12B is written in optimized 251 instructions and assembled in Binary Mode

TMAC12S is written in optimized 251 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit Device Mode Mem W/s Page Prog 1 2 3 Ave to FX

1 87C51FB - Ext - - TMAC11B 3:40 3:40 3:40 3:40 1x

2 87C251SB Bin Ext 0 non-page TMAC12B 0:31 0:31 0:31 0:31 7.10x

3 87C251SB Bin Ext 1 non-page TMAC12B 0:43 0:43 0:43 0:43 5.12x

4 87C251SB Src Ext 0 non-page TMAC12S 0:27 0:27 0:27 0:27 8.15x

5 87C251SB Src Ext 1 non-page TMAC12S 0:37 0:37 0:37 0:37 5.96x

4 rev 2.1, 10/10/95

6 87C251SB Bin Int 0 non-page TMAC12B 0:14 0:14 0:14 0:14 15.71x

7 87C251SB Src Int 0 non-page TMAC12S 0:12 0:12 0:12 0:12 18.33x

TABLE 1.2

Device Mode Programs Code Size
Code Size
Ratio to

87C51FB
87C51FB Binary TMAC11B 78 1.00

87C251SB Binary TMAC11B 78 1.00

87C251SB Source TMAC11S 94 1.21

87C251SB Binary TMAC12B 81 1.04

87C251SB Source TMAC12S 84 1.08

TABLE 1.3: Code Size Difference

TMAC11B
(In Pure 51 instructions)

Types of Instructions Number of
States

Percentage
(%)

I/O
(Flashing LEDs) 46,326 0.12

Data Transfer
(MOV etc.) 30,061,458 73.97

Branch
(LJMP, LCALL etc.) 3,101,130 7.63

Arithmetic
(ADD, DEC etc.) 7,428,588 18.28

Total 40,637,502 100

TABLE 1.4: Number and Percentage of States in One Complete Loop

TMAC12S
(In Optimized 251 instructions)

Types of Instructions Number of
States

Percentage
(%)

I/O
(Flashing LEDs) 7,722 0.39

5 rev 2.1, 10/10/95

Data Transfer
(MOV etc.) 894,858 45.58

Branch
(LJMP, LCALL etc.) 813,782 41.45

Arithmetic
(ADD, DEC etc.) 246,849 12.58

Total 1,963,211 100

TABLE 1.5: Number and Percentage of States in One Complete Loop

I/O
(Flashing

LEDs)

Data
Transfer

(MOV
etc.)

Branch
(LJMP,
LCALL

etc.)

Arithmetic
(ADD,

DEC etc.)

0
10
20
30
40
50
60
70
80

P
er

ce
nt

ag
e

of
 S

ta
te

s
(%

)

I/O
(Flashing

LEDs)

Data
Transfer

(MOV
etc.)

Branch
(LJMP,
LCALL

etc.)

Arithmetic
(ADD,

DEC etc.)

Type of Instructions

Graph 1.1: State Percentage of the Intructions Used in Data Transfer Program (In Pure 51
Instructions or TMAC11B)

I/O
(Flashing

LEDs)

Data
Transfer

(MOV
etc.)

Branch
(LJMP,
LCALL

etc.)

Arithmetic
(ADD,

DEC etc.)

0
5

10
15
20
25
30
35
40
45
50

P
er

ce
nt

ag
e

of
 S

ta
te

s
(%

)

I/O
(Flashing

LEDs)

Data
Transfer

(MOV
etc.)

Branch
(LJMP,
LCALL

etc.)

Arithmetic
(ADD,

DEC etc.)

Type of Instructions

Graph 1.2: State Percentage of the Instructions Used in Data Transfer Program (In
Optimised 251 Instructions or TMAC12S)

6 rev 2.1, 10/10/95

DISCUSSION
Table 1.4 & Graph 1.1: State Percentage of the Instructions (In Pure 51 Instructions
of TMAC11B)

Graph 1.1 shows the percentage of instruction states in one complete loop of the program
to display the LED once (note that the LEDs were displayed 31 times in the experiment).
The number states calculated for one complete loop of the program (which contains 3825
loops of moving 64 bytes of constant data from internal code memory to external data
memory) is 40,637,502 states. For data transfer instructions, the percentage of states is
73.97%, branches is 7.63%, arithmetic operations take 18.28% while I/O instructions is
only 0.12%. From this we know that data transfer instructions were mainly focused in this
experiment.

Table 1.5 & Graph 1.2: State Percentage of the Instructions (In Optimized 251
Instructions of TMAC12S)

In the program written in 251 instructions and assembled in source mode, the total number
states for one complete loop are greatly reduced to 1,747,219, which is 20 times less than
the 51 instruction’s states. Here, data transfer instructions take 45.58%, branch
instructions take 41.45%, arithmetic operations is 12.58% while I/O instructions take only
0.39%. The states of data transfer instructions such as MOV are greatly reduced here.
Take instruction MOV R0, A for example: it takes 6 states to run with 51 instructions but
only 2 states with 251 instructions. This gives an approximately 3 times reduction of
states in data transfer instructions. However, branch instructions such as LJMP and
LCALL are not reduced as dramatically as data transfer instructions. For example,
LCALL takes 12 states with 51 instructions but 9 states with 251 instructions. The
reduction of states is only 1.3 times. Therefore, if we refer to graph 1.2, the state
percentage of branch instructions (e.g. LJMP, LCALL) is quite high compared to the state
percentage in graph 1.1.

In view of the reduction of states for every instruction type compared to 51 instructions,
data transfer instructions have been reduced from 30,061,458 states to 894,858 states,
which is approximately a 33 times reduction! For arithmetic instructions, the reduction is
also 30 times. However, branch instructions only have a 4 times reduction of states. This
means if the program is looped, 3825 loops to display an LED once in this case, the actual
performance of the CPU is affected. As what have been mentioned, the total average
number of states is only 20 times less when using 251 instructions. A better performance
of the 87C251SB microcontroller is expected for a single loop of the program.

7 rev 2.1, 10/10/95

87
C

51
FB

(T
M

A
C

11
B

)

87
C

25
1S

B
 B

in
(T

M
A

C
11

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
11

S)

87
C

25
1S

B
 B

in
(T

M
A

C
12

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
12

S)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
od

e
Si

ze
 (

R
at

io
 to

 8
7C

51
F

B
)

87
C

51
FB

(T
M

A
C

11
B

)

87
C

25
1S

B
 B

in
(T

M
A

C
11

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
11

S)

87
C

25
1S

B
 B

in
(T

M
A

C
12

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
12

S)

Graph 1.3: Code Size Comparison For Data Transfer Programme (TMAC11 For Pure 51 Instructions & TMAC12
For Optimised 251 Instructions)

Table 1.3 & Graph 1.3: Code Size Comparison
Code size is obtained by calculating the instruction code bytes in the program neglecting
the definition of constants. Briefly, when a program is assembled in binary mode, code
size of the 51 instructions will be less than the 251 instructions, where more bytes will be
added to the 251 instructions. However, if a program is assembled in source mode, code
size of the 51 instructions will be more than 251 instructions as more bytes will be added
to the 51 instructions..

Graph 1.3 shows that the code size of all programs in pure 51 instructions that were run in
experiment 1. From the graph, we can see that the code size of TMAC11S (51
instructions assembled in source mode) is 1.21 times larger than the TMAC11B (51
instructions assembled in binary mode), which is correct as more bytes were added to the
same 51 instructions assembled in binary mode.

The code size of TMAC12B (251 instructions, binary mode) is expected to be less than
TMAC11S and TMAC11B as most of the instructions were reduced in the program using
the new 251 instructions. However, the graph shows the opposite result. This is actually
due to the instructions used in the program. Although the number of instructions were
reduced in TMAC12B, most of the 251 data transfer instructions are related to word
register (WRj), which consume the code size. As the number of instructions related to
word register increases, the code size is increased. This program, whose function is to
transfer data, uses quite a number of word registers and therefore the code size is more
than TMAC11B

For TMAC12S (251 instructions, source mode), an opposite result is obtained again. This
is again due to the instructions. Registers were used in the program and the assembler
takes the instructions related to the registers as 51 instructions. Therefore the code bytes
are added and the code size is larger.

8 rev 2.1, 10/10/95

87
C

51
FB

87
C

25
1S

B
B

in
 0

w
/s

 E
xt

87
C

25
1S

B
B

in
 1

w
/s

 E
xt

87
C

25
1S

B
Sr

c
0w

/s
 E

xt

87
C

25
1S

B
Sr

c
1w

/s
 E

xt

87
C

25
1S

B
B

in
 0

w
/s

 I
nt

87
C

25
1S

B
Sr

c
0w

/s
 I

nt
 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sp
ee

d
(R

at
io

 t
o

87
C

51
F

B
)

87
C

51
FB

87
C

25
1S

B
B

in
 0

w
/s

 E
xt

87
C

25
1S

B
B

in
 1

w
/s

 E
xt

87
C

25
1S

B
Sr

c
0w

/s
 E

xt

87
C

25
1S

B
Sr

c
1w

/s
 E

xt

87
C

25
1S

B
B

in
 0

w
/s

 I
nt

87
C

25
1S

B
Sr

c
0w

/s
 I

nt

 Graph 1.4: Speed Comparison For Data Transfer Program
In 51 Instructions (TMAC11)

87
C

51
FB

(T
M

A
C

11
)

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

0

2

4

6

8

10

12

14

16

18

20

Sp
ee

d
(R

at
io

 to
 8

7C
51

F
B

)

87
C

51
FB

(T
M

A
C

11
)

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

Graph 1.5: Speed Comparison For Data Transfer Program In
Optimised 251 Instructions (TMAC12)

9 rev 2.1, 10/10/95

Table 1.1 & Graph 1.4: MCS 51 Compatibility
This part of the experiment is to compare the processing speed of a direct plug in of the
87C251SB microcontroller to the 87C51FB microcontroller.

In performing the data transfer program written in 51 instructions, the 87C251SB
microcontroller is 2.82 times faster than the 87C51FB. Though, for programs that were
run in the internal eprom of the 87C251SB, the processing speed of a binary mode
87C251SB is increased to 5 times that of the 87C51FB, and 3.86 times faster when in
source mode. The 87C251SB microcontroller runs slower in source mode than binary
mode due to the 51 instructions prefixed by extra code bytes, which extend the processing
time.

Table 1.2 & Graph 1.5: MCS 251 Optimization
A better performance from the 87C251SB microcontroller is obtained from the optimized
251 instruction programs. From the results, running on external eprom, the 87C251SB
microcontroller in source mode, 0 wait state was the fastest with processing speed 8.15
times faster than the 87C51FB microcontroller. For programs that were run on internal
eprom of the 87C251SB microcontroller, configured in source mode with 0 wait states,
the processing speed is 18.33 times faster than an ordinary 87C51FB! This has supported
the analysis result obtained from the program that showed the total state reduction of
approximately 20 times.

For programs that run on binary mode, the processing speed is slightly slower. This is
again due to the additional code bytes that were added by the assembler to the 251
instructions and therefore leads to a delay of processing time.

CONCLUSION
From the experiment, we can conclude that the 87C251SB microcontroller can be
optimized to maximum processing speed by using 251 instructions assembled in source
mode. Minimum usage of instructions related to word registers and branching instructions
will even lead to a faster processing speed.

10 rev 2.1, 10/10/95

EXPERIMENT 2
This experiment compares the processing speed of the 8XC51FX to the 8XC251SB by
performing Multiplication and Accumulation (MAC) routines on 16 bits signed integer
with 32 bits results. The programs used are shown below:

i) TMAC21B with pure 51 instructions assembled in binary mode.
ii) TMAC21S with pure 51 instructions assembled in source mode.
iii) TMAC22B with 251 new instructions assembled in binary mode.
iv) TMAC22S with 251 new instructions assembled in source mode.

The flow of the programs is shown below:-

1) LEDs of the evaluation board were displayed once (the pattern was 10000001) at the
beginning

2) The benchmarking routine was looped 31 times
3) The LEDs were displayed at the end of every loop (the pattern was 100XXXXX)

In every loop of TMAC21B, TMAC21S, TMAC22B and TMAC22S, the following tasks
were performed:-

Task Instruction Type
a. Loop 65,025 times a 16 bit Multiplication and Accumulation (MAC) CPU
b. Flashing the LED through port 1. I/O

The results of the benchmarking are shown as follows:-

A) MCS 51 COMPATIBILITY

TMAC21B is written in 100% 51 instructions and assembled in Binary Mode

TMAC21S is written in 100% 51 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit Device Mode Mem W/s Page Prog 1 2 3 Ave to

FX
1 87C51FB - Ext - - TMAC21B 4:17 4:17 4:17 4:17 1x

2 87C251SB Bin Ext 0 non-page TMAC21B 1:42 1:41 1:42 1:42 2.52x

3 87C251SB Bin Ext 1 non-page TMAC21B 2:29 2:29 2:29 2:29 1.72x

4 87C251SB Src Ext 0 non-page TMAC21S 2:12 2:12 2:12 2:12 1.95x

5 87C251SB Src Ext 1 non-page TMAC21S 3:15 3:15 3:15 3:15 1.32x

6 87C251SB Bin Int 0 non-page TMAC21B 0:57 0:57 0:57 0:57 4.51x

11 rev 2.1, 10/10/95

7 87C251SB Src Int 0 non-page TMAC21S 1:12 1:12 1:12 1:12 3.57x

TABLE 2.1

B) MCS 251 OPTIMIZATION

TMAC21B is written in 100% 51 instructions and assembled in Binary Mode

TMAC22B is written in optimized 251 instructions and assembled in Binary Mode

TMAC22S is written in optimized 251 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit Device Mode Mem W/s Page Prog 1 2 3 Ave to

FX
1 87C51FB - Ext - - TMAC21B 4:17 4:17 4:17 4:17 1x

2 87C251SB Bin Ext 0 non-page TMAC22B 1:09 1:09 1:09 1:09 3.72x

3 87C251SB Bin Ext 1 non-page TMAC22B 1:39 1:39 1:39 1:39 2.60x

4 87C251SB Src Ext 0 non-page TMAC22S 1:00 1:00 1:00 1:00 4.28x

5 87C251SB Src Ext 1 non-page TMAC22S 1:25 1:25 1:25 1:25 3.02x

6 87C251SB Bin Int 0 non-page TMAC22B 0:36 0:36 0:36 0:36 7.14x

7 87C251SB Src Int 0 non-page TMAC22S 0:32 0:32 0:32 0:32 8.03x

TABLE 2.2

Device Mode Programs Code Size
Code Size
Ratio to

87C51FB
87C51FB Binary TMAC21B 150 1.00

87C251SB Binary TMAC21B 150 1.00

87C251SB Source TMAC21S 198 1.32

87C251SB Binary TMAC22B 92 0.61

87C251SB Source TMAC22S 82 0.55

TABLE 2.3: Code Size Difference

12 rev 2.1, 10/10/95

TMAC21B
(In Pure 51 instructions)

Types of Instructions Number of
States

Percentage
(%)

I/O
(Flashing LEDs) 30 6.28E-05

Data Transfer
(MOV etc.) 31,976,448 66.94

Branch
(LJMP, LCALL etc.) 3,161,112 6.62

Arithmetic
(ADD, DEC etc.) 10,658,310 22.31

Logical Operations
(RLC etc.) 1,973,760 4.13

Total 47,769,660 100

TABLE 2.4: Number and Percentage of States in One Complete Loop

TMAC22S
(In Optimized 251 instructions)

Types of Instructions Number of
States

Percentage
(%)

I/O
(Flashing LEDs) 8 0.000138

Data Transfer
(MOV etc.) 2,961,154 51.13

Branch
(LJMP, LCALL etc.) 1,645,574 28.42

Arithmetic
(ADD, DEC etc.) 1,052,672 18.18

Logical Operations
(RLC etc.) 131,584 2.27

Total 5,790,992 100

TABLE 2.5: Number and Percentage of States in One Complete Loop

13 rev 2.1, 10/10/95

I/O
(Flashing

LEDs)

Data
Transfer
(MOV)

Branch
(LJMP,
LCALL)

Arithmetic
(ADD,

DEC etc.)

Logical
Op. (RLC

etc.)

Type of Intructions

0

10

20

30

40

50

60

70

Percentage of States (%)

Graph 2.1: State Percentage of the Instructions Used in Multiplication and
Accumulation Programme (In Pure 51 Instructions or TMAC21B)

I/O
(Flashing

LEDs)

Data
Transfer
(MOV)

Branch
(LJMP,
LCALL)

Arithmetic
(ADD,

DEC etc.)

Logical
Op. (RLC

etc.)

Type of Intructions

0

10

20

30

40

50

60

Percentage of States (%)

Graph 2.2: State Percentage of the Instructions Used in Multiplication and
Accumulation Programme (In Optimised 251 Intructions or TMAC22S)

DISCUSSION
Table 2.4 & Graph 2.1: State Percentage of the Instructions (In Pure 51 Instructions
of TMAC21B)

14 rev 2.1, 10/10/95

From table 2.4, total counted states are 47,769,660 states in one complete loop. In these
states, data transfer instructions dominated with a percentage of 66.94%, followed by
arithmetic instructions with 22.31%. The state percentage of branch and logical
operations is 6.62% and 4.13% respectively. I/O instructions can be neglected for its low
percentage of states.

Referring to the exact program attached at the appendix, for multiply and accumulate
routines, we can see that the data has to be transferred to the data pointer for arithmetic
purposes. This is why data transfer instructions consume more states than arithmetic
instructions in this program.

Table 2.5 & Graph 2.2: State Percentage of the Instructions (In Optimized 251
Instructions of TMAC22S)

For the multiply and accumulate program written in 251 instructions and assembled in
source mode, total states have been reduced to 5,790,992. Percentage of data transfer is
51.13%, followed by branch instructions which is 28.42% and logical operations, 2.27%.
I/O instructions is again neglected for a small percentage.

Total state reduction is 8.25 times that of the 51. This result is less reduction than in the
previous experiment due to the way of the program was written. The number of states of
arithmetic instructions have been reduced from 10,658,310 to 1,052,672 states, which is
an approximate 10 times reduction. The same percentage of reduction is also obtained
from the data transfer instructions. For logical operations, the percentage of state
reduction is 15 times. However, the branch instructions only have a state reduction of
1.92 times. Due to the multiple loops of this test program—that is 65,025 loops done to
display the LED once—the low reduction of states is greatly influenced by the
preponderance of branch instructions, and thus the optimum performance of the
87C251SB microcontroller is affected.

15 rev 2.1, 10/10/95

87
C

51
FB

(T
M

A
C

21
B

)

87
C

25
1S

B
 B

in
(T

M
A

C
21

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
21

S
)

87
C

25
1S

B
 B

in
(T

M
A

C
22

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
22

S
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

87
C

51
FB

(T
M

A
C

21
B

)

87
C

25
1S

B
 B

in
(T

M
A

C
21

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
21

S
)

87
C

25
1S

B
 B

in
(T

M
A

C
22

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
22

S
)

Graph 2.3: Code Size Comparison For Multiplication & Accumulation Program (TMAC21 For Pure
51 Intructions & TMAC22 For Optimised 251 Instructions)

Table 2.3 & Graph 2.3: Code Size Comparison
From Graph 2.3, a significant reduction of code size is clearly shown here. Table 2.3
gives the exact figure of the code size in the test program.

For the programs written in 51 instructions and assembled in source mode, due to the
additional byte added by the assembler, the code size is 1.32 times more than the same
program assembled in binary mode. For the programs written in optimized 251
instructions and assembled in source mode, the code size is smaller due to great reduction
of the instructions. However, the assembler still added some additional bytes for certain
251 instructions, thus the code size is more than the same program assembled in source
mode.

16 rev 2.1, 10/10/95

87
C

51
F

B

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Sp

ee
d

(R
at

io
 t

o
87

C
51

F
B

)

87
C

51
F

B

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

Graph 2.4: Speed Comparison For Multiplication and Accumulation
Program In 51 Instructions (TMAC21)

87
C

51
F

B
(T

M
A

C
21

)

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

0

1

2

3

4

5

6

7

8

9

Sp
ee

d
(R

at
io

 t
o

87
C

51
F

B
)

87
C

51
F

B
(T

M
A

C
21

)

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

Graph 2.5: Speed Comparison For Multiplication and
Accumulation In Optimised 251 Instructions (TMAC22)

17 rev 2.1, 10/10/95

Table 2.1 & Graph 2.4: MCS 51 Compatibility
A same trend of speed performance as experiment 1 is obtained here.

Table 2.2 & Graph 2.5: MCS 251 Optimization
From the results, for programs executed in external eprom, the 87C251SB microcontroller
executed fastest in source mode with 0 wait states -- 4.28 times faster than the 87C51FB
microcontroller. For programs that were run on internal eprom of the 87C251SB
microcontroller, the optimal configuration, the processing speed is 8.03 times faster than
an ordinary 87C51FB.

The results from the program analysis correlates to the results obtained from the
experiment. The recorded optimum execution speed of 87C251SB is 8.03 times, and the
expected speed calculated in the program analysis is 8.25 times. The reason for a slower
experimental execution time for 87C251SB in this experiment was explained earlier, which
is mainly due to the multiple loops in the program.

CONCLUSION
From the experiment, it can be predicted that the 87C251SB will perform better in
executing larger programs than executing multiple loops of one small program.

18 rev 2.1, 10/10/95

EXPERIMENT 3
This experiment compares the processing speed of the 8XC51FX and 8XC251SB
microcontrollers of performing 3x3 Matrix Multiplication on 16 bit signed integers with 32
bit results. The programs used are shown below:-

i) TMAC31B with pure 51 instructions assembled in binary mode.
ii) TMAC31S with pure 51 instructions assembled in source mode.
iii) TMAC32B with 251 new instructions assembled in binary mode.
iv) TMAC32S with 251 new instructions assembled in source mode.

The flow of the programs is shown below:-

1) LEDs of the evaluation board were displayed once (the pattern was 10000001) at the
beginning

2) The benchmarking routine was looped 31 times.
3) The LEDs were displayed at the end of every loop (the pattern was 100XXXXX)

In every loop of TMAC31B, TMAC31S, TMAC32B and TMAC32S, the following tasks
were performed:-

Task Instruction Type
a. Loop 3825 times the 16 bit 3 x 3 Matrix Multiplication CPU
b. Flashing the LED through port 1. I/O

The results of the benchmarking are shown as follows:-

A) MCS 51 COMPATIBILITY

TMAC31B is written in 100% 51 instructions and assembled in Binary Mode

TMAC31S is written in 100% 51 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit Device Mode Mem W/s Page Prog 1 2 3 Ave to

FX
1 87C51FB - Ext - - TMAC31B 6:58 6:58 6:59 6:58 1x

2 87C251SB Bin Ext 0 non-page TMAC31B 3:41 3:41 3:41 3:41 1.89x

3 87C251SB Bin Ext 1 non-page TMAC31B 5:25 5:25 5:26 5:25 1.29x

4 87C251SB Src Ext 0 non-page TMAC31S 3:41 3:41 3:41 3:41 1.89x

5 87C251SB Src Ext 1 non-page TMAC31S 5:25 5:25 5:25 5:25 1.29x

19 rev 2.1, 10/10/95

6 87C251SB Bin Int 0 non-page TMAC31B 2:00 2:00 2:00 2:00 3.48x

7 87C251SB Src Int 0 non-page TMAC31S 2:01 2:01 2:01 2:01 3.45x

TABLE 3.1

B) MCS 251 OPTIMIZATION

TMAC31B is written in 100% 51 instructions and assembled in Binary Mode

TMAC32B is written in optimized 251 instructions and assembled in Binary Mode

TMAC32S is written in optimized 251 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit Device Mode Mem W/s Page Prog 1 2 3 Ave to FX

1 87C51FB - Ext - - TMAC31B 6:58 6:58 6:59 6:58 1x

2 87C251SB Bin Ext 0 non-page TMAC32B 0:59 0:59 0:59 0:59 7.08x

3 87C251SB Bin Ext 1 non-page TMAC32B 1:23 1:23 1:23 1:23 5.04x

4 87C251SB Src Ext 0 non-page TMAC32S 0:53 0:53 0:53 0:53 7.89x

5 87C251SB Src Ext 1 non-page TMAC32S 1:13 1:13 1:13 1:13 5.73x

6 87C251SB Bin Int 0 non-page TMAC32B 0:35 0:35 0:35 0:35 11.94x

7 87C251SB Src Int 0 non-page TMAC32S 0:32 0:32 0:32 0:32 13.06x

TABLE 3.2

Device Mode Programs Code Size
Code Size
Ratio to

87C51FB
87C51FB Binary TMAC31B 1723 1.00

87C251SB Binary TMAC31B 1723 1.00

87C251SB Source TMAC31S 1731 1.005

87C251SB Binary TMAC32B 616 0.36

87C251SB Source TMAC32S 512 0.30

TABLE 3.3: Code Size Difference

20 rev 2.1, 10/10/95

87
C

51
FB

(T
M

A
C

31
B

)

87
C

25
1S

B
 B

in
(T

M
A

C
31

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
31

S)

87
C

25
1S

B
 B

in
(T

M
A

C
32

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
32

S)

0

0.2

0.4

0.6

0.8

1

1.2

87
C

51
FB

(T
M

A
C

31
B

)

87
C

25
1S

B
 B

in
(T

M
A

C
31

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
31

S)

87
C

25
1S

B
 B

in
(T

M
A

C
32

B
)

87
C

25
1S

B
 S

rc
(T

M
A

C
32

S)

Graph 3.1: Code Size Comparison For 3x3 Matrix Multiplication Program (TMAC31 For Pure 51
Instructions & TMAC32 For Optimised 251 Instructions)

DISCUSSION

Table 3.3 & Graph 3.1: Code Size Comparison
From table 3.3, we see that the code size of the program written in 251 instructions
assembled in source mode is significantly reduced up to 70% of the same program in 51
instructions. This tells that most of the 51 instructions was removed or replaced with only
a few 251 instructions.

Other results indicated by Graph 3.3 are almost the same as previous experiments.
Programs written in 51 instructions and assembled in source mode have larger code size
than the same program assembled in binary mode and vice versa. The code size for
TMAC31 in source mode is 1.005 larger than TMAC31 in binary mode, and the code size
for TMAC32 in binary mode is 1.2 times larger than TMAC31 in source mode.

21 rev 2.1, 10/10/95

87
C

51
F

B

87
C

25
1S

B
B

in
 0

w
/s

 E
xt

87
C

25
1S

B
B

in
 1

w
/s

 E
xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
B

in
 0

w
/s

 I
nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

0

0.5

1

1.5

2

2.5

3

3.5
Sp

ee
d

(R
at

io
 t

o
87

C
51

F
B

)

87
C

51
F

B

87
C

25
1S

B
B

in
 0

w
/s

 E
xt

87
C

25
1S

B
B

in
 1

w
/s

 E
xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
B

in
 0

w
/s

 I
nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

Graph 3.2: Speed Comparison For 3x3 Matrix Multiplication
Program In 51 Instructions (TMAC31)

87
C

51
FB

(T
M

A
C

31
)

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

0

2

4

6

8

10

12

14

Sp
ee

d
(R

at
io

 to
 8

7C
51

F
B

)

87
C

51
FB

(T
M

A
C

31
)

87
C

25
1S

B
 B

in
0w

/s
 E

xt

87
C

25
1S

B
 B

in
1w

/s
 E

xt

87
C

25
1S

B
 S

rc
0w

/s
 E

xt

87
C

25
1S

B
 S

rc
1w

/s
 E

xt

87
C

25
1S

B
 B

in
0w

/s
 I

nt

87
C

25
1S

B
 S

rc
0w

/s
 I

nt

Graph 3.3: Speed Comparison For 3x3 Matrix Multiplication Program In
Optimised 251 Instructions (TMAC32)

22 rev 2.1, 10/10/95

Table 3.1 & Graph 3.2: MCS 51 Compatible
A larger program with arithmetic operation and data transfer is tested in this experiment.
For a direct plug-in, the 87C251SB microcontroller is still slightly faster than the
87C51FB by 1.89 times. For programs running in internal eprom of the 87C251SB, the
speed is increased to 3.48 times faster the 87C51FB.

From table 3.1, there is no time difference between a source mode and a binary mode.
This is due to the additional bytes added by the assembler. Since the assembler only add
additional bytes to certain 51 instructions when assemble in source mode, less byte will be
added if less of these instructions were used. This is what exactly happening in this
program, where the time spent for executing the added bytes is little, perhaps in
milliseconds. Therefore, the time difference is little between binary and source mode and
it is not detected in the experiment.

Table 3.2 & Graph 3.3: MCS 251 Optimization
The size of this test program is slightly larger than the ones in experiment 1 and 2. The
performance of the 87C251SB microcontroller is expected to be better as less loops were
executed compared to program in experiment 2.

From the results, the optimum execution speed running on external eprom for 87C251SB
is 7.89 times faster than the 87C51FB. For program executed in internal eprom of the
87C251SB, the processing speed is 13.06 times faster than the 87C51FB.

These results show that the 87C251SB performs as well as expected.

CONCLUSION
State percentage analysis was not done to the test program here as the instructions in this
program are mainly the same as the programs in experiment 1 and 2.

From the results obtained from this experiment and the first two experiments, we can
conclude that the execution speed for 87C251SB range from 2 to 3 times faster than the
87C51FB for a direct plug in running on external eprom and up to 5 times for running
program at internal eprom.

For optimized case, the execution speed for 87C251SB range from 4 to 8 times faster
than the 87C51FB and can be up to 18 times faster for program running at internal eprom.

23 rev 2.1, 10/10/95

EXPERIMENT 4
This experiment is to compares the processing speed of the 8XC51FX and 8XC251SB
microcontrollers on performing a combined program consisting of emulation of Data
transfer from internal code memory to external data memory, Multiplication and
Accumulation (MAC) and 3x3 Matrix Multiplication on 16 bits signed integer.
Experiment 4 was done with a different hardware: the 8XC51FX target board with page
mode capability was used to test the performance of the new feature in 87C251SB. The
programs used are shown below:-

i) TMAC1 with pure 51 instructions assembled in binary mode.
ii) TMAC2 with pure 51 instructions assembled in source mode.
iii) TMAC7 with 251 new instructions assembled in binary mode.
iv) TMAC8 with 251 new instructions assembled in source mode.

The flow of the TMAC1 is shown below:-

1) LEDs of the target board were displayed once (the pattern was 10000001) at the
beginning

2) The benchmarking routine was looped for 31 times
3) The LEDs were displayed at the end of every loop (the pattern was 100XXXXX)

In every loop of TMAC1, the following tasks were performed:-
Task Instruction

Type
a. Loop 3825 times moving 64 bytes of constant data from internal code

memory to external data memory
CPU

b. Loop 65,025 times a 16 bit Multiplication and Accumulation (MAC) CPU

c. Loop 3825 times a 16 bit 3 x 3 matrix Multiplication CPU

d. Flashing the LED through port 1 I/O

The results of the benchmarking are shown as follows:-

A) MCS 51 COMPATIBILITY

TMAC1 is written in 100% 51 instructions and assembled in Binary Mode

TMAC2 is written in 100% 51 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit # Device Mode Mem W/s Page Prog 1 2 3 Ave. to

FX

24 rev 2.1, 10/10/95

1 87C51FB - Int - - TMAC1 14:53 14:53 14:53 14:53 1x

2 87C51FB - Ext - - TMAC1 14:53 14:53 14:53 14:53 1x

5 87C251SB Bin Ext 0 non-page TMAC1 6:40 6:40 6:40 6:40 2.23x

6 87C251SB Bin Ext 1 non-page TMAC1 9:45 9:45 9:45 9:45 1.53x

7 87C251SB Src Ext 0 non-page TMAC2 7:35 7:35 7:35 7:35 1.96x

8 87C251SB Src Ext 1 non-page TMAC2 11:07 11:07 11:07 11:07 1.34x

9 87C251SB Bin Ext 0 page TMAC1 4:06 4:06 4:05 4:06 3.63x

10 87C251SB Bin Ext 1 page TMAC1 6:57 6:57 6:57 6:57 2.14x

11 87C251SB Src Ext 0 page TMAC2 4:35 4:35 4:35 4:35 3.25x

12 87C251SB Src Ext 1 page TMAC2 7:52 7:51 7:51 7:51 1.90x

13 87C251SB Bin Int 0 non-page TMAC1 3:41 3:41 3:41 3:41 4.04x

14 87C251SB Src Int 0 non-page TMAC2 4:10 4:10 4:10 4:10 3.57x

Table 4.1

B) MCS 251 OPTIMIZATION

TMAC1 is written in 100% 51 instructions and assembled in Binary Mode

TMAC7 is written in optimized 251 instructions and assembled in Binary Mode

TMAC8 is written in optimized 251 instructions and assembled in Source Mode

Time (Min:Sec) Ratio
Unit # Device Mode Mem W/s Page Prog 1 2 3 Ave. to FX

1 87C51FB - Int - - TMAC1 14:53 14:53 14:53 14:53 1x

2 87C51FB - Ext - - TMAC1 14:53 14:53 14:53 14:53 1x

3 87C251FB Bin Ext 0 non-page TMAC7 2:34 2:34 2:34 2:34 5.80x

4 87C251FB Bin Ext 1 non-page TMAC7 3:39 3:39 3:39 3:39 4.08x

5 87C251FB Src Ext 0 non-page TMAC8 2:21 2:21 2:21 2:21 6.33x

6 87C251FB Src Ext 1 non-page TMAC8 3:17 3:18 3:17 3:17 4.53x

25 rev 2.1, 10/10/95

7 87C251FB Bin Ext 0 page TMAC7 1:43 1:43 1:43 1:43 8.67x

8 87C251FB Bin Ext 1 page TMAC7 2:38 2:39 2:38 2:38 5.65x

9 87C251FB Src Ext 0 page TMAC8 1:36 1:36 1:36 1:36 9.30x

10 87C251FB Src Ext 1 page TMAC8 2:25 2:25 2:25 2:25 6.16x

11 87C251FB Bin Int 0 non-page TMAC7 1:33 1:33 1:33 1:33 9.60x

12 87C251FB Src Int 0 non-page TMAC8 1:26 1:26 1:26 1:26 10.38x

Table 4.2

87
C

51
FB

 B
in

 I
nt

87
C

51
FB

 B
in

 E
xt

25
1

 B
in

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 0
w

/s

E
xt

 p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 p
ag

e

25
1

 B
in

 0
w

/s

In
t

25
1

 S
rc

 0
w

/s

In
t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
p

ee
d

 (R
at

io
 t

o
 8

7C
51

FB
)

87
C

51
FB

 B
in

 I
nt

87
C

51
FB

 B
in

 E
xt

25
1

 B
in

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 0
w

/s

E
xt

 p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 p
ag

e

25
1

 B
in

 0
w

/s

In
t

25
1

 S
rc

 0
w

/s

In
t

Graph 4.1: Speed Comparison for Combined Program in 51 Instructions (TMAC1)

26 rev 2.1, 10/10/95

87
C

51
FB

 B
in

 I
nt

87
C

51
F

B
 B

in
 E

xt

25
1

 B
in

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 0
w

/s

E
xt

 p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 p
ag

e

25
1

 B
in

 0
w

/s

In
t

25
1

 S
rc

 0
w

/s

In
t

0

2

4

6

8

10

12

S
p

ee
d

 (
ra

ti
o

n
 t

o
 8

7C
51

F
B

)

87
C

51
FB

 B
in

 I
nt

87
C

51
F

B
 B

in
 E

xt

25
1

 B
in

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 n
on

-p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 n
on

-p
ag

e

25
1

 B
in

 0
w

/s

E
xt

 p
ag

e

25
1

 B
in

 1
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 0
w

/s

E
xt

 p
ag

e

25
1

 S
rc

 1
w

/s

E
xt

 p
ag

e

25
1

 B
in

 0
w

/s

In
t

25
1

 S
rc

 0
w

/s

In
t

Graph 4.2: Speed Comparison For Combined Program in Optimised 251 Instructions (TMAC7)

DISCUSSION

Table 4.1 & Graph 4.1
The results of the 15 tests are shown in graph 4.1. The test program were written in pure
51 instructions.

From the graph, for program running externally at external eprom, the 87C251SB is 2.23
times faster than the 87C51FB. However, with the hardware modification to enable page-
mode capability of the 87C251SB microcontroller, the performance rose up to 3.63 times
faster than the 87C51FB. The page mode actually speeds up the execution time of the
87C251SB microcontroller on external eprom processing by approximately 1.63 times. It
is even faster than program assembled in source mode and running at internal eprom,
which only provides a 3.57 times speed increase over the 87C51FB.

Table 4.2 & Graph 4.2
This graph shows a better performance of the 87C251SB after a modification done to the
test program converting it to optimized 251 instructions. Program assembled in source
mode performs better here. For 87C251SB running externally at external eprom without
hardware modification, the execution time is 6.33 times faster than the 87C51FB. With
hardware modification and running in page mode, the speed performance rose up to 9.3
times faster than the 87C51FB. From the graph, the performance of 87C251SB running
at external eprom in page mode can actually compete with program running in internal
eprom of the same microcontroller.

27 rev 2.1, 10/10/95

CONCLUSION
Code size and state analysis was not carried out in this experiment as they were analyzed
in detail in the previous experiments. This experiment is mainly to show the performance
of the 87C251SB in larger program with hardware modification to enable it to run in page
mode.

From experiment 4, it is obvious that more benefits are to be obtained with hardware
modification if a program were to run on external eprom. The performance of the
87C251SB microcontroller can be greatly increased and can even match the speed of
internal memory of the same program.

FINAL CONCLUSION
All the tests mainly exercised the multiplication, addition, moving and branching
instructions. It may not show the most optimized code, but it will give a brief idea on the
actual performance of the microcontrollers.

Overall, the test programs in experiment 1, 2, 3 and 4 consist of small programs looping
multiple times and they may not show the ideal performance of the 87C251SB
microcontroller. In real life, larger programs with less loops will be used and the
performance of the 87C251SB microcontroller will be better.

APPENDIX A: PROGRAM LISTINGS FOR TMAC11 AND TMAC12

Listing 1: TMAC11 application routine base on Data Transfer by using 51 instruction only

;**
; FUNCTION OF ROUTINE:
; Perform moving data from internal code memory location 0100 to
; external data memory location 01:0030. Total of 64 bytes data will
; be moved. The destination is at data memory starting from location
; 01:0030 (XDATA)
; Rev 3.0 Jan. 5th 1995
; File: TMAC11.ASM
;**

NAME TMAC11

ACC EQU 0E0H
DPL EQU 82H
DPH EQU 83H

DSEG AT 01:0030H
DST: DS 40

CSEG AT 0000H
LJMP MAIN

ORG 0100H
SRC0: DB

0H,1H,2H,3H,4H,5H,6H,7H,8H,9H,0AH,0BH,0CH,0DH,0EH,0FH
SRC10: DB

10H,11H,12H,13H,14H,15H,16H,17H,18H,19H,1AH,1BH,1CH,1DH,1EH,1FH

28 rev 2.1, 10/10/95

SRC20: DB
20H,21H,22H,23H,24H,25H,26H,27H,28H,29H,2AH,2BH,2CH,2DH,2EH,2FH

SRC30: DB
30H,31H,32H,33H,34H,35H,36H,37H,38H,39H,3AH,3BH,3CH,3DH,3EH,3FH

TOTAL: DB 40H

ORG 0200H
MOVE1:

PUSH ACC
MOV DPL, #LOW (TOTAL)
MOV DPH, #HIGH (TOTAL)
CLR A
MOVC A, @A+DPTR
MOV R5, A
MOV R3, #LOW (DST)
MOV R2, #HIGH (DST)
MOV DPL, #LOW (SRC0)
MOV DPH, #HIGH (SRC0)

TABLE:
CLR A
MOVC A, @A+DPTR
MOV R6, DPH
MOV R7, DPL
MOV DPL, R3
MOV DPH, R2
MOVX @DPTR, A
INC DPTR
MOV R3, DPL
MOV R2, DPH
MOV DPL, R7
MOV DPH, R6
INC DPTR
DJNZ R5, TABLE
POP ACC
MOV DPTR, #0FF80H
RET

MAIN:
MOV DPTR, #0FF80H ; display LED’s while waiting
MOV A, #07EH ;

START:
MOVX @DPTR, A
LCALL MOVE1
MOV R1, #0FH

DELAY2:
MOV R0, #0FFH

DELAY3:
LCALL MOVE1
DJNZ R0, DELAY3
LCALL MOVE1
DJNZ R1, DELAY2
DEC A
AJMP START

END

Listing 2: TMAC12 application routine base on Data Transfer by using 51 and 251
instruction

;**

29 rev 2.1, 10/10/95

; FUNCTION OF ROUTINE:
; Perform moving data from internal code memory location 0100 to
; external data memory location 01:0030. Total of 64 bytes will be
; moved. The destination is at data memory starting from location
; 01:0030. The 16 bit registers being used.
; Rev 4.0 Jan. 5th 1995
; File: TMAC12.ASM
;**

NAME TMAC12

ACC EQU 0E0H
P1 EQU 90H

DSEG AT 01:0030H
DST: DSW 1CH

CSEG AT 0000H
LJMP MAIN

ORG 0100H
SRC0: DW 0001H,0203H,0405H,0607H,0809H,0A0BH,0C0DH,0E0FH
SRC10: DW 1011H,1213H,1415H,1617H,1819H,1A1BH,1C1DH,1E1FH
SRC20: DW 2021H,2223H,2425H,2627H,2829H,2A2BH,2C2DH,2E2FH
SRC30: DW 3031H,3233H,3435H,3637H,3839H,3A3BH,3C3DH,3E3FH
TOTAL: DB 20H

ORG 0200H
MOVE1:

PUSH ACC
MOV A, R0
PUSH ACC
MOV A, R1
PUSH ACC
MOV WR0, #TOTAL
MOV R5, #20H
MOV WR8, #SRC0
MOV WR12, #DST

TABLE: MOV WR16, @WR8
INC WR8, #2
MOV @WR12, WR16
INC WR12, #2
DJNZ R5, TABLE
POP ACC
MOV R1, A
POP ACC
MOV R0, A
POP ACC
MOV DPTR, #0FF80H
RET

MAIN:
MOV DPTR, #0FF80H ; display LED’s while waiting
MOV A, #07EH ;

START:
MOVX @DPTR, A
LCALL MOVE1
MOV R1, #0FH

DELAY2:
MOV R0, #0FFH

DELAY3:
LCALL MOVE1

30 rev 2.1, 10/10/95

DJNZ R0, DELAY3
LCALL MOVE1
DJNZ R1, DELAY2
DEC A
AJMP START

END

	8XC251SB BENCHMARK REPORT
	OBJECTIVE
	SUMMARY OF BENCHMARK
	APPARATUS
	PROCEDURE
	EXPERIMENT 1
	MCS 51 COMPATIBILITY
	MCS 251 OPTIMIZATION
	DISCUSSION
	CONCLUSION

	EXPERIMENT 2
	MCS 51 COMPATIBILITY
	MCS 251 OPTIMIZATION
	DISCUSSION
	CONCLUSION

	EXPERIMENT 3
	MCS 51 COMPATIBILITY
	MCS 251 OPTIMIZATION
	DISCUSSION
	CONCLUSION

	EXPERIMENT 4
	MCS 51 COMPATIBILITY
	MCS 251 OPTIMIZATION
	DISCUSSION
	CONCLUSION

	FINAL CONCLUSION
	APPENDIX A: PROGRAM LISTINGS FOR TMAC11 AND TMAC12

