
APPLICATION
NOTE

AP-476

April 1993

How to Implement
I2C Serial Communication
Using Intel MCS-51
Microcontrollers

SABRINA D. QUARLES

APPLICATIONS ENGINEER

Order Number: 272319-001



Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996



How to Implement I2C Serial Communication
Using Intel MCS-51 Microcontrollers

CONTENTS PAGE

INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

I2C-Bus System ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

I2C Hardware Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

I2C Protocol Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

MCS-51 Hardware Requirements ÀÀÀÀÀÀÀÀÀÀÀ 4

MCS-51 I2C Software Emulation
Modules ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

CONTENTS PAGE

MCS-51 and I2C-Bus Compatible IC’s
System Implementation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

I2C Software Emulation Performance ÀÀÀÀÀÀÀ 7

CONCLUSION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

REFERENCES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7





AP-476

INTRODUCTION

Did you know that you could implement I2C function-
ality using the Intel MCS-51 family of microcontrol-
lers? The I2C-bus allows the designer to implement in-
telligent application-oriented control circuits without
encountering numerous interfacing problems. This bus
simplicity is maintained by being structured for eco-
nomical, efficient and versatile serial communication.
Proven I2C applications are currently being implement-
ed in digital control/signal processing circuits for audio
and video systems, DTMF generators for telephones
with tone dialing and ACCESS.bus, a lower-cost alter-
native for the RS-232C interface used for connecting
peripherals to a host computer.

This application note describes a software emulation
implementation of the I2C-bus Master-Slave configura-
tion using Intel MCS-51 microcontrollers. It is recom-
mended that the reader become familiar with the Phil-
lips Semiconductors I2C-bus Specification and the Intel
MCS-51 Architecture. However, it is possible to gain a
basic understanding of the I2C-bus and the I2C emula-
tion software from this application note.

I2C-Bus System

The Inter-Integrated Circuit Bus commonly known as
the I2C-bus is a bi-directional two-wire serial communi-
cation standard. It is designed primarily for simple but
efficient integrated circuit (IC) control. The system is
comprised of two bus lines, SCL (Serial Clock) and
SDA (Serial Data) that carry information between the
ICs connected to them. Various communication config-
urations may be designed using this bus; however, this
application note discusses only the Master-Slave system
implementation.

Devices connected to the I2C-bus system can operate as
Masters and Slaves. The Master device controls bus
communications by initiating/terminating transfers,
sending information and generating the I2C system
clock. On the other hand, the Slave device waits to be
addressed by the controlling Master. Upon being ad-
dressed, the Slave performs the specific function re-
quested. An example of this configuration is a Master
Controller sending display data to a LED Slave Receiv-
er that would then output the requested display.

The configuration described above is the most com-
mon; however, at times the Slave can become a Trans-
mitter and the Master a Receiver. For example, the
Master may request information from an addressed
Slave. This requires the Master to receive data from the
Slave. It is important to understand that even during
Master Receive/Slave Transmission, the generation of
clock signals on the I2C bus is always the responsibility
of the Master. As a result, all events on the bus must be
synchronized with the Master’s SCL clock line.

I2C Hardware Characteristics

Both SCL (Serial Clock) and SDA (Serial Data) are bi-
directional lines that are connected to a positive supply
voltage via pull-up resistors. Figure 1 displays a typical
I2C-bus configuration. Devices connected to the bus re-
quire open-drain or open-collector output stage inter-
faces. As a result of these interfaces, the resistors pull
both lines HIGH when the bus is free. The free state is
defined as SDA and SCL HIGH when the bus is not in
use.

SCL e Serial Clock 272319–18
SDA e Serial Data

Figure 1. I2C Master/Slave Bus System

1



AP-476

One important bus characteristic enabled as a result of
this hardware configuration is the wired-AND func-
tion. Similar to the logic AND truth table, when driven
by connected ICs, I2C-bus lines will not indicate the
HIGH state until all devices verify that they too have
achieved the same HIGH state. An I2C-bus system re-
lies on wired-AND functionality to maintain appropri-
ate clock synchronization and to communicate effec-
tively with extremely high and low speed devices. As a
result, a relatively slow I2C device can extend the sys-
tem clock until it is ready to accept more data.

I2C Protocol Characteristics

This section will explain a complete I2C data transfer
emphasizing data validity, information types, byte for-
mats, and acknowledgment. Figure 2-1 displays the
typical I2C protocol data transfer frame. The important
frame components are the START/STOP conditions,
Slave Address, and Data with Acknowledgment. This
frame structure remains constant except for the number
of data bytes transferred and the transmission direc-
tion. It can be seen that all functionality except Ac-
knowledgment is generated by the Master and current

transmitter. Figure 2-2 displays a more detailed repre-
sentation focusing on specific timing sequences of con-
trol signals and data transfers.

272319–19

Figure 2-1. I2C Protocol Data Transfer Frame

DATA VALIDITY

Figure 3 shows the bit transfer protocol that must be
maintained on the I2C-bus. The data on the SDA line
must be stable during the HIGH period of the SCL
clock. The HIGH or LOW state of SDA can only
change when the clock signal on the SCL is LOW. In
addition, these bus lines must meet required setup, hold
and rise/fall times prescribed in the timing section of
the I2C protocol specifications.

272319–20

Figure 2-2. A Complete I2C Data Transfer

272319–21

Figure 3. Bit Transfer on the I2C-Bus

2



AP-476

Control Signals

START and STOP conditions are used to signal the
beginning and end of data communications. A Master
generates a START condition (S) to obtain control of a
free I2C-bus by forcing a HIGH to LOW transition on
the SDA line while maintaining SCL in its HIGH state.
This condition is generated during software emulation
in the MASTERÐCONTROLLER subroutine de-
scribed in another section. Again, START conditions
may be generated by a Master only when the I2C-bus is
free. This free bus state exists only when no other Mas-
ter devices have control of the bus (i.e. both SCL and
SDA lines are pulled to their normal HIGH state).

Upon gaining control of the bus, the Master must
transfer data across the system. After a complete data
transfer, the Master must release the bus by generating
a STOP (P) condition. The SENDÐSTOP subroutine
described in a later section ends data communications
by sending an I2C STOP.

Data Transfers

The Slave address and data being transferred across the
bus must conform to specific byte formats. The only
byte transmission requirement is that data must be
transferred with its Most Significant Bit (MSB) first.
However, the number of bytes that can be transmitted
per transfer is unrestricted. For both Master Transmit/
Receive, the MASTERÐCONTROLLER subroutine
described in a later section performs these functions.

From Figure 4, it can be seen that the Slave address is
one byte made up of a unique 7-bit address followed by
a Read or Write data direction indicator bit. The Least
Significant Bit (LSB) data direction indicator, always
determines the direction of the message and type of
transfer being requested by the MasterÐeither Slave

Receive or Slave Transmit. If the Master requests the
Slave Receive functionality, the LSB of the addressed
Slave would be set to ‘‘0’’ for Write. Therefore, the
Master would Transmit or Write information to the
selected Slave. On the other hand, if the Master was
requesting the Slave Transmit functionality, the LSB
would be set to ‘‘1’’ for Read. As a result, the Master
would Receive or Read information from the Slave.
SENDÐDATA and RECVÐDATA subroutines de-
scribed later send and receive data bytes across the bus.

MSB LSB

R/W

Slave Address DDB

(7 bits Long)
Data

Direction Bit

Slave Transmitter: LSB e 1 for Read Function
Slave Receiver: LSB e 0 for Write Function

Figure 4. Slave Address Byte Format

Address Recognition

When an address is sent from the controlling Master,
each device in a system compares the first 7 bits after
the START condition with its predefined unique Slave
address. If they match, the device considers itself ad-
dressed by the Master as either a Slave-Receiver or
Slave-Transmitter, depending upon the data direction
indicator. Due to the bus’s serial configuration, only
one device at a time may be addressed and communi-
cated with at any given moment.

ACKNOWLEDGMENT

To ensure valid and reliable I2C-bus communication,
an obligatory data transfer acknowledgment procedure
was devised. Figure 5 displays how acknowledgment

3



AP-476

272319–22

Figure 5. Acknowledgement of the I2C-Bus

always affects the Master, Transmitter and Receiver.
Mter every byte transfer, the Master must generate an
acknowledge related clock pulse. In Figure 1, this clock
pulse is indicated as the 9th bit and labeled ‘‘ACK’’.
Following the 8th data bit transmission, the active
Transmitter must immediately release the SDA line en-
abling it to float HIGH. To receive another data byte,
the Receiver must verify successful receipt of the previ-
ous byte by generating an acknowledgment. An ac-
knowledge condition is delivered when the Receiver
drives SDA LOW so that it remains stable LOW dur-
ing the HIGH period of the SCL ACK pulse. Con-
versely, a not acknowledge condition is delivered when
the Receiver leaves SDA HIGH. Set-up and hold times
must always be taken into account and maintained
for valid communications. SENDÐBYTE and
RECVÐBYTE subroutines described later evaluate
and/or generate acknowledgment conditions.

MCS-51 Hardware Requirements

The I2C protocol requires open-drain device outputs to
drive the bus. To satisfy this specification, Port 0 on the
Intel MCS-51 device was chosen. By using open-drain
Port 0, no additional hardware is required to success-
fully interface to the I2C-bus. However, since Port 0 is
designated as the I2C interface, it can no longer be used
to interface with External Program Memory. In order
for a MCS-51 device to communication in this environ-
ment, ASM51 software emulation modules were devel-
oped. This software can only execute out of Internal
Memory. Port 0 is now configured for Input/Output
functionality.

Figure 6 diagrams the necessary hardware connections
of the development circuit. Internal Memory execution
is accomplished by connecting the External Access
(EA) DIP pin Ý31 to VCC. The capacitor attached to
RESET DIP pin Ý9 implements POWER ON RESET.
While the capacitors and crystal attached to XTAL1&2
enable the on-chip oscillator, additional decoupling ca-
pacitors can be added to clean up any system noise.
Additional MCS-51 information can be found in the
1992 Intel Embedded Microcontrollers and Processors
Handbook Volume 1.

272319–23

C1 e C2 e 30 pF
C3 e 10 pF

Figure 6. MCS-51 Hardware Requirements

4



AP-476

The ASM51 software emulation modules described in
this application note will occupy approximately
540 bytes of internal memory. The device’s remaining
memory may be programmed with user software. The
following MCS-51 devices were tested for use in con-
junction with the I2C emulation modules:

MCS-51
Crystal ROM/

Register

Devices
Speeds EPROM

RAM
(MHz) Size

8751BH 12 4K 128 bytes

87C51 12, 16, 20 4K 128 bytes

87C51-FX Core 12, 16, 20, 24 4K 128 bytes

87C51FA 12, 16, 20, 24 8K 256 bytes

87C51FB 12, 16, 20, 24 16K 256 bytes

87C51FC 12, 16, 20, 24 32K 256 bytes

NOTE:
The Internal memory setup described above eliminates the
option of using Port 0 to interface to External Memory.
However, this requirement should pose no problem for the
system designer due to the diverse MCS-51 product line
with various memory sizes offered by Intel.

MCS-51 I2C Software Emulation
Modules

When devices like the MCS-51 do not incorporate an
on-chip I2C port, I2C functionality can be achieved
through software emulation. The following software
modules are based upon three distinct tasks: bus moni-
toring, time delays and bus control. Each task conforms
to the I2C protocol as specified by Philips Semiconduc-
tors.

The software modules designed to implement I2C func-
tionality are comprised of macros and subroutines, each
independently developed, yet both networked to
achieve a desired system function. For example, the use
of macros was favored to implement certain timing de-
lay loops. Macros are extremely flexible and can be
changed to construct delays of varying lengths through-
out the software. On the other hand, subroutines are
verified routines that require no additional changes. To
operate the bus at different frequencies, only the specif-
ic macros must be changed, not the predefined subrou-
tines. The following ASM51 macros and subroutines
are for Master-Slave system control:

Macro Names Functions

DELAYÐ3ÐCYCLES Delay loop for X sec-
onds where X e time
per cycle * 3

DELAYÐ4ÐCYCLES Delay loop for X sec-
onds where X e time
per cycle * 4

* *
* *

DELAYÐ8ÐCYCLES Delay loop for X sec-
onds where X e time
per cycle * 8

RELEASEÐSCLÐHIGH Releases the SCL line
HIGH and waits for
any clock stretching re-
quests from peripheral
devices

Subroutine Names Functions

MASTERÐCONTROLLER Sends an I2C START
condition and Slave Ad-
dress during both a
Master Transmit and
Receive

SENDÐDATA Sends multiple data
bytes during a Master
Transmit

SENDÐBYTE Sends one data byte line
during a Master Trans-
mit

SENDÐMSG Sends a message across
the I2C bus using a pre-
defined format

RECVÐDATA Receives multiple data
bytes from an addressed
Slave during a Master
Receive

RECVÐBYTE Receives one data byte
during a Master Receive

RECVÐMSG Receives a message
from the I2C bus using
a predefined format

TRANSFER Copies EPROM pro-
grammed data into Reg-
ister RAM

SENDÐSTOP Send an I2C STOP con-
dition during both a
Master Transmit/Re-
ceive

These ASM51 modules are listed at the end of the ap-
plication note in Appendix A.

5



AP-476

MCS-51 and I2C-Bus Compatible IC’s
System Implementation

This section of the application note explains the Mas-
ter/Slave system diagrammed in Figure 1. The Intel
MCS-51 is the Master Controller communicating with
two I2C Slave peripherals, the PCF8570 RAM chip
and SAAI064 LED driver. Information related to com-
municating with these specific Slave devices can be
found in the 1992 Philips I2C Peripherals for Micro-
controllers Handbook.

The MCS-51 I2C Software Emulation Modules located
in Appendix A are designed to demonstrate Master
Controller functionality.

As described above, the Intel 51 Master Controller
transmits data to the RAM device, receives it back and
re-transmits it to the LED Slave driver. By using the
SENDÐMSG and RECVÐMSG subroutines, both
Master Transmit and Master Receive functionalities
are demonstrated. Slave addresses used in these trans-
fers are predefined values assigned by their manufactur-
er. These values can be found in their respective data-
books.

An I2C Master Transmission consists of the following
steps:

1. Master polls the bus to see if free state exists

2. Master generates a START condition on the bus

3. Master broadcasts the Slave Address expecting an
Acknowledge from the addressed Slave

4. Master transmits data bytes expecting acknowl-
edgment status following each byte

5. Master generates a STOP condition and releases
the bus

An I2C Master/Receive transaction consists of the ex-
act same steps stated above EXCEPT:

4. Master receives data bytes sending an ACK to the
Slave Transmitter after receipt of each byte. The
Master signals receipt of the last data byte by re-
sponding with the NOT Acknowledge condition.

MASTER TRANSMIT/RECEIVE

Bus transmission and evaluation is achieved by a nested
loop structure. SENDÐDATA represents the outer
loop which directs data transfers. The
MASTERÐCONTROLLER subroutine polls the bus
to determine if any transactions are in progress. Error
checking is performed at this level by evaluating the
following status flags, BUSÐFAULT and
I2CÐBUSY. Based upon this information, the Master
will either abort the transmit procedure or attempt to
send information. If bus control is granted as indicated

by cleared flags, the Master sends a START condition
and the Slave address. On the other hand, if either flag
is set, the transmit procedure is aborted.

SENDÐBYTE, the inner control loop, is responsible
for transmitting 8 bits of each byte as well as monitor-
ing Slave acknowledgment status. Each bit transfer
from I2C-bus lines checks for possible serial wait states.
Wait states occur when slower devices need to commu-
nicate on the bus with faster devices. Due to the wired-
AND bus function, a Receiver can hold the clock line
SCL LOW forcing the Transmitter into this state. Data
transfer may continue when the Receiver is ready for
another byte of data as indicated by releasing the clock
line SCL HIGH.

As stated in its section above, acknowledgment is re-
quired to continue sending data bytes across the bus.
However, situations may arise when a Receiver can not
receive another byte of data until it has performed some
other function like servicing internal interrupts. If the
Slave Receiver does not respond to a Master Transmit-
ter data byte, not acknowledge could indicate that it is
performing some real-time function that prevents it
from responding to I2C-bus communications. This situ-
ation shows the flexibility and versatility of the bus.

The Master Receive process also utilizes the MAS-
TERÐCONTROLLER subroutine to gain control of
the bus. When accepting data from the addressed Slave,
in this case, RECVÐDATA is the outer control loop.
RECVÐBYTE, the inner control loop, is responsible
for receiving 8 bits of each byte as well as generating
the Master’s acknowledgment condition. Similar to
transmission, successful receipt of each byte is con-
firmed by driving SDA LOW so that it remains stable
LOW during the HIGH period of the SCL ACK pulse.
Therefore, the Master still drives both SCL and SDA
lines since control of the system clock is its responsibili-
ty.

In both types of communication, Transmit/Receive,
temporary RAM registers, BITÐCNT, BYTEÐCNT,
SLVÐADDR, and storage buffers, XMTÐDAT,
RCVÐDAT, ALTÐXMT, are integral parts of most
subroutines because they are used for implementing the
I2C protocol. Proper delays are implemented using the
DELAYÐXÐCYCLES (X e any integer) macros.
They give the designer flexibility to devise time delays
of any required length to satisfy system requirements.
For example, to achieve the maximum bus speeds de-
scribed in the next section, DelayÐXÐCycle macros
were adjusted.

Lastly, the TRANSFER subroutine is provided to al-
low predefined communication data programmed in
the microcontrollers EPROM to be transferred into
Register RAM internal to the 51 device. It achieves this

6



AP-476

when used in conjunction with the SENDÐMSG and
RECVÐMSG subroutines. However, when utilizing
TRANSFER, the designer must conform their design
to existing device Register RAM availability and to the
following message format:

Slave Address, Ý of Bytes to be Transmitted/Received, Data
Bytes (For Transmit Only)

The ASM-51 program demonstrating a complete Mas-
ter Controller system is listed at the end of the applica-
tion note in Appendix B. It writes the numeric data
that represents the following display ‘‘ÐI2C’’ to an I2C
compatible IC (PCF8570 RAM), reads the values back
into a buffer and transmits this buffer out to the Philips
I2C SAA1064 LED driver to display the sequence.

I2C Software Emulation Performance

As demonstrated above, the Intel MCS-51 product line
can successfully implement the I2C Master Controller
functionality while maintaining data integrity and reli-
able performance. The system outlined in Figure 1 was
evaluated for maximum bus performance and adher-
ence to all I2C-bus specifications. Performance charac-
terization was conducted at various crystal speeds on
all devices listed in the MCS-51 Hardware Require-
ments section of this application note.

When designing I2C software emulation systems, keep
in mind that the designer has the flexibility to imple-
ment large frequency ranges up to the I2C-bus maxi-
mum. However, by making software changes to adjust
bus frequencies, the newly modified program may no
longer meet required specifications and desired reliabil-
ity standards. Therefore, designers should first always
take into consideration the bus performance level they
want to reach. After deciding this, an appropriate crys-
tal can be chosen to achieve that implementation speed.
The table below gives a few examples of system per-
formance for two of the MCS-51 devices:

MCS-51 Crystal
I2C Bus

Devices Speed
Maximum

Performance

8751BH 12 MHz 66.7 kHz

87C51 (FX-Core) 24 MHz 80.0 kHz

CONCLUSION

As a result of this evaluation, Intel MCS-51 microcon-
trollers can be successfully interfaced to an I2C-bus sys-
tem as a Master controller. The interface communicates
by ASM51 software emulation modules that have been
tested on a wide array of I2C devices ranging from seri-
al RAMS, Displays and a DTMF generators. No com-
patibility problems have been seen to date. Therefore,
when considering the implementation of your next I2C-
bus Master Controller serial communication system,
you have the option of using the Intel MCS-51 Product
Line.

REFERENCES

I2CBITS.ASM, G. Goodhue, Philips Semiconductors,
August 1992.

The I2C-Bus and How to Use It (Including Specifica-
tion), Philips Semiconductors, January 1992.

I2C Peripherals for Microcontrollers, Philips Semicon-
ductors, 1992 Data Handbook.

OM1016 I2C Evaluation Board, E. Rodgers and G.
Moss, Philips Components Applications Lab Auck-
land, New Zealand.

Programming the I2C Interface, Mitchell Kahn, Senior
Engineer, Intel Corporation.

7





AP-476

APPENDIX A

272319–1

A-1



AP-476

272319–2

A-2



AP-476

272319–3

A-3



AP-476

272319–4

A-4



AP-476

272319–5

A-5



AP-476

272319–6

A-6



AP-476

272319–7

A-7



AP-476

272319–24

A-8



AP-476

APPENDIX B

272319–8

B-1



AP-476

272319–9

B-2



AP-476

272319–10

B-3



AP-476

272319–11

B-4



AP-476

272319–12

B-5



AP-476

272319–13

B-6



AP-476

272319–14

B-7



AP-476

272319–15

B-8





AP-476

272319–17

B-10


	Introduction
	I²C-Bus System
	I²C Hardware Characteristics
	1²C Protocol Characteristics
	MCS-51 Hardware Requirements
	MCS-51 I²C Software Emulation Modules
	MCS-51 and I²C-Bus Compatible IC's System Implementation
	I²C Software Emulation Performance

	Conclusion
	References
	Appendix A
	Appendix B
	FIGURES
	Figure 1. 1²C Master/Slave Bus System
	Figure 2-1. I²C Protocol Data Transfer Frame
	Figure 2-2. A Complete I²C Data Transfer
	Figure 3. Bit Transfer on the I²C-Bus
	Figure 4. Slave Address Byte Format
	Figure 5. Acknowledgement of the I²C-Bus
	Figure 6. MCS-51 Hardware Requirements


