
APPLICATION
BRIEF

AB-41

August 1988

Software Serial Port
Implemented with the PCA

BETSY JONES

ECO APPLICATIONS ENGINEER

Order Number: 270531-002



Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995



SOFTWARE SERIAL PORT
IMPLEMENTED WITH THE

PCA

CONTENTS PAGE

Introduction ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Variables ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Initialization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Receive Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Transmit Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Conclusion ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

APPENDIX ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1





AB-41

For microcontroller applications which require more
than one serial port, the 83C51FA Programmable
Counter Array (PCA) can implement additional half-
duplex serial ports. If the on-chip UART is being used
as an inter-processor link, the PCA can be used to in-
terface the 83C51FA to additional asynchronous lines.

This application uses several different Compare/Cap-
ture modes available on the PCA to receive or transmit
bytes of data. It is assumed the reader is familiar the
PCA and ASM51. For more information on the PCA
refer to the ‘‘Hardware Description of the 83C51FA’’
chapter in the Embedded Controller Handbook (Order
No. 210918).

Introduction

The figure below shows the format of a standard 10-bit
asynchronous frame: 1 start bit (0), 8 data bits, and 1
stop bit (1). The start bit is used to synchronize the
receiver to the transmitter; at the leading edge of the
start bit the receiver must set up its timing logic to
sample the incoming line in the center of each bit. Fol-
lowing the start bit are eight data bits which are trans-
mitted least significant bit first. The stop bit is set to the
opposite state of the start bit to guarantee that the lead-
ing edge of the start bit will cause a transition on the
line. It also provides a dead time on the line so that the
receiver can maintain its synchronization.

Two of the Compare/Capture modes on the PCA are
used in receiving and transmitting data bits. When re-
ceiving, the Negative-Edge Capture mode allows the
PCA to detect the start bit. Then using the Software
Timer mode, interrupts are generated to sample the in-
coming data bits. This same mode is used to clock out
bits when transmitting.

This Application Note contains four sections of code:

(1) List of variables
(2) Initialization routine

(3) Receive routine
(4) Transmit routine.

A complete listing of the routines and the test loop
which was used to verify their operation is found in the
Appendix. A total of three half-duplex channels were
run at 2400 Baud in the test program. The listings
shown here are simplified to one channel (Channel 0).

Variables

Listing 1 shows the variables used in both the receive
and transmit routines. Flags are defined to signify the
status of the reception or transmission of a byte
(e.g. RCVÐSTARTÐBIT, TXMÐSTARTÐBIT).
RCVÐBUF and TXMÐBUF simulate the on-chip se-
rial port SBUF as two separate buffer registers. The
temporary registers, RCVÐREG and TXMÐREG,
are used to save bits as they are received or transmitted.
Finally, two counter registers keep track of how many
bits have been received or transmitted.

Variables are also needed to define one-half and one-
full bit times in units of PCA timer ticks. (One bit time
e 1 / baud rate.) With the PCA timer incremented
every machine cycle, the equation to calculate one bit
time can be written as:

Osc. Freq.

(12) c (baud rate)
e 1 bit time (in PCA timer ticks)

In this example, the baud rate is 2400 at 16 MHz.

16 MHz

(12) c (2400)
e 556 counts e 22C Hex

The high and low byte of this value is placed in the varia-
bles FULLÐBITÐHIGH and FULLÐBITÐLOW,
respectively. 115H is the value loaded into
HALFÐBITÐHIGH and HALFÐBITÐLOW.

270531–1

1



AB-41

Listing 1. Variables used by the software serial port. Channel 0

270531–4

2



AB-41

Initialization

Listing 2 contains the intialization code for the receive and transmit process. Module 0 of the PCA is used as a
receiver and is first set up to detect a negative edge from the start bit. Modules 2 and 3 are used for the additional 2
channels (see the Appendix). Module 3 is used as a separate software timer to transmit bits.

Listing 2. Initialization Routine

270531–5

All flags and registers from Listing 1 should be cleared in the initialization process.

Receive Routine

Two operating modes of the PCA are needed to receive bits. The module must first be able to detect the leading edge
of a start bit so it is initially set up to capture a 1-to-0 transition (i.e. Negative-Edge Capture mode). The module is
then reconfigured as a software timer to cause an interrupt at the center of each bit to deserialize the incoming data.
The flowchart for the receive routine is given in Figure 1.

3



AB-41

270531–2

Figure 1. Flowchart for the Receive Routine

4



AB-41

Listing 3.1 shows the code needed to detect a start bit. Notice that the first software timer interrupt will occur one-
half bit time after the leading edge of the start bit to check its validity. If it is valid, the RCVÐSTARTÐBIT is set.
The rest of the samples will occur a full bit time later. The RCVÐCOUNT register is loaded with a value of 9 which
indicates the number of bits to be sampled: 8 data bits and 1 stop bit.

Listing 3.1. Receive Interrupt Routine

270531–6

5



AB-41

The next 8 timer interrupts will receive the incoming data bits; the RCVÐCOUNT register keeps track of how many
bits have been sampled. As each bit is sampled, it is shifted through the Carry Flag and saved in RCVÐREG. The
ninth sample checks the validity of the stop bit. If it is valid, the data byte is moved into RCVÐBUF.

The main routine must have a way to know that a byte has been received. With the on-chip UART, the RI (Receive
Interrupt) bit is set whenever a byte has been received. For the software serial port, any unimplemented interrupt
vector can be used to generate an interrupt when a byte has been received. This routine uses the Timer 1 Overflow
interrupt (its selection is arbitrary). A routine to test this interrupt is included in the listing in the Appendix.

Listing 3.2. Receive Interrupt Routine (Continued)

270531–7

In addition, an error routine (Listing 3.3) is included for invalid start or stop bits to offer some protection against
noise. If an error occurs, the module is re-initialized to look for another start bit.

Listing 3.3 Error Routine for Receive Routine

270531–8

6



AB-41

Transmit Routine

Another PCA module is configured as a software timer to interrupt the CPU every bit time. With each timer
interrupt one or more bits can be transmitted through port pins. In the test program three channels were operated
simultaneously, but in the listings below, one channel is shown for simplicity. The selection of port pins is user
programmable. The flowchart for the transmit routine is given in Figure 2.

270531–3

Figure 2. Flowchart for the Transmit Routine

When a byte is ready to be transmitted, the main program moves the data byte into the TXMÐBUF register and sets
the corresponding TXMÐINÐPROGRESS bit. This bit informs the interrupt routine which channel is transmit-
ting. The data byte is then moved in the storage register TXMÐREG, and the TXMÐCOUNT is loaded. This main
routine is shown in Listing 4.1.

Listing 4.1 Transmit Set Up Routine. Channel 0.

270531–9

7



AB-41

Listing 4.2 shows the transmit interrupt routine. The first time through, the start bit is transmitted. As each
successive interrupt outputs a bit, the contents of TXMÐREG is shifted right one place into the Carry flag, and the
TXMÐCOUNT is decremented. When TXMÐCOUNT equals zero, the stop bit is transmitted.

Listing 4.2. Transmit Interrupt Routine

270531–10

Conclusion

The software routines in the Appendix can be altered to vary the baud rate and number of channels to fit a particular
application. The number of channels which can be implemented is limited by the CPU time required to service the
PCA interrupt. At higher baud rates, fewer channels can be run.

The test program verifies the simultaneous operation of three half-duplex channels at 2400 Baud and the on-chip
full-duplex channel at 9600 Baud. Thirty-three percent of the CPU time is required to operate all four channels. The
test was run for several hours with no apparent malfunctions.

8



AB-41

APPENDIX

2
7
0
5
3
1
–
1
1

A-1



AB-41

2
7
0
5
3
1
–
1
2

A-2



AB-41

2
7
0
5
3
1
–
1
3

A-3



AB-41

2
7
0
5
3
1
–
1
4

A-4



AB-41

2
7
0
5
3
1
–
1
5

A-5



AB-41

2
7
0
5
3
1
–
1
6

A-6



AB-41

2
7
0
5
3
1
–
1
7

A-7



AB-41

2
7
0
5
3
1
–
1
8

A-8



AB-41

2
7
0
5
3
1
–
1
9

A-9



AB-41

2
7
0
5
3
1
–
2
0

A-10



AB-41

2
7
0
5
3
1
–
2
1

A-11



AB-41

2
7
0
5
3
1
–
2
2

A-12



AB-41

2
7
0
5
3
1
–
2
3

A-13



AB-41

2
7
0
5
3
1
–
2
4

A-14


