
E

o
ls.

r
ul
l

nt

he
the
e

g
f

s

e

at

r

s
s,
x

ue

,
ud
e
r

 to

re
d

 is

c-
h-

ck

D
t
-

d
High-Performance Serial
Transfers Using the
Intel386™ EX
Microprocessor
The new Intel386™ EX microprocessor contains tw
independent asynchronous serial I/O (SIO) channe
Each channel is compatible with the 16450 UART
found in PC-AT systems. Although a serial transfe
rate exceeding 19.2K or 38.4K baud is not very usef
in PC/DOS compatible applications, it could be vita
for a traditional embedded application. The releva
question to be raised then is, “What is the highest
serial transfer rate (i.e., baud rate) achievable?” T
answer to this question has two components: one,
limits imposed on the achievable transfer rate by th
design of the SIO module; and two, how fast one
really can transfer the serial data without impactin
the CPU performance substantially. Implications o
both these issues will be discussed in this article.
Also, two possible workarounds will be reviewed,
one of which is offered on the Intel386 EX
microprocessor.

Design Limits

The 16450 is an asynchronous block (i.e., not
clocked) that has a 16-bit baud counter that divide
the clock signal coming into the SIO block by a
programmed value. It takes a certain amount of tim
for a signal to propagate through the gates to be
available at the end of the chain. This mandates th
the circuit cannot be operated beyond a certain
frequency for reliable operation. The limit for the
16450 UART used in the Intel386 EX microprocesso
is 17 MHz. This incoming clock will be divided by
the baud divisor register. Even when this register i
programmed to zero, it divides the clock by 2. Thu
the maximum baud clock derived for the Tx and R
engines is Also, for asynchronous
transfers the baud clock is 16 times the baud rate d
to sampling requirements. This would mean that
maximum baud rate achievable with the 16450 SIO
module used in the Intel386 EX microprocessor is
approximately 530 Kbps.

17 2⁄ 8.5MHz.=
1

CPU Overhead for Serial Transfers

Although the SIO module can transfer at 530 Kbps
this does not necessarily mean that such a high ba
rate can be achieved in a system environment. Th
following examines the impact of the serial transfe
on the CPU bandwidth.

On the Intel386 EX microprocessor, the serial
channel interrupts could be programmed to be tied
the on-chip master 8259A interrupt controller. For
each channel, the receive and transmit interrupts a
combined. The following is a typical scenario relate
to serial transfers:

• Whenever a serial interrupt line is asserted, it
takes a short period of time before it is recog-
nized by the 8259A.

• It goes through priority resolver logic to make
sure that other higher priority interrupts are not
present, then assuming that the serial interrupt
not masked, the 8259A places an interrupt
request to the CPU.

• The interrupt is recognized on the instruction
boundary, then the processor pushes the instru
tion pointer and flags on the stack before branc
ing to the interrupt service routine (ISR).

• A typical ISR requires that all the segment and
general-purpose registers be pushed on the sta
so that their contents are not destroyed.

• Also, since receive and transmit interrupts are
combined, the ISR needs to read the Interrupt I
register to determine the source of the interrup
and jump to appropriate receive or transmit sub
routine.

• The serial data is then transferred from (to) the
SIO buffer to (from) the memory.

• All registers are popped back from the stack an
CPU continues from the Instruction Pointer
saved on the stack.

E

ud

z

l
r

.
t
ta.
e

es.

s-

z

r

he

e
Thus the approximate time1 it takes to transfer one
byte of serial data is:

Assuming serial transfer with 8-bit data, 1 start bit,
and 1 stop bit, at a given baud rate, the number of
characters transferred per second is:

Thus the total number of clock cycles needed to
maintain the baud rate is:

The resulting CPU overhead to maintain a given ba
rate at a given frequency F is:

Figure 1 shows the above relationship at a 25 MH
operating frequency.

Adding a FIFO to the SIO Block2

The addition of a 16-byte FIFO to the serial contro
unit will allow characters to be stuffed in this buffe
until it's full. The interrupt will be sent to the CPU
only when the FIFO buffer is full or about to be full
There will be some additional time required to inpu
the data, increment the pointers, and move the da
The time to transfer 16 bytes of serial data at a tim
could be approximated at:

1. The values used here for the number of clocks required for
various tasks are hypothetical numbers based on typical cas
Actual numbers may vary based on other system design
aspects.

2. This feature is not available on the Intel386 EX microproce
sor.

Txfer-byte Trecognition Tlatency Tdetermine-source+ +=
T+ move Treturn+

5 392 25 2 22+ + + +=

446 clocks=

#of char/sec
BaudRate

10
------------------------=

Txfer-all-char 446
Baud Rate

10
------------------------- 

 ×=

44.6 Baud Rate×=

%CPUOverhead
44.6 Baud Rate×

F
--- 

  100×=

Txfer-fifo Txfer-byte 320+=
446 320+=

766 clocks=
2

Thus,

Figure 2 depicts the above relationship for a 25 MH
operating frequency. This method of reducing CPU
overhead to perform high-speed serial transfers is
employed in the 16550 UART found in some newe
PC systems.

Figure 1. % CPU Overhead for Method Using
UART Interrupts

Figure 2. %CPU Overhead for Method Using
FIFO in UART

Connecting Serial Interrupts to the
DMA

It is clear from the above discussion that the main
bottleneck to the process of serial data transfer is t
interrupt latency of the processor. This bottleneck
could be removed if the serial interrupts could initiat

%CPUOverhead
76.6 Baud Rate×

16 F×
--- 

  100×=

% CPU Overhead @ 25MHz

Baud Rate

0

20

40

60

80

100

% CPU

Overhead

% CPU Overhead @ 25 MHz

Baud Rate

0

2

4

6

8

10

12

% CPU

Overhead

E

e

t
 to

cy.

e

o

n

,

e

a DMA transfer and then use the DMA to transfer th
serial data to and from memory.

To calculate the transfer time with DMA, the time i
takes to arbitrate the bus for DMA transfers needs
be accounted for.

Thus,

Figure 3 shows the percentage of CPU overhead
versus the baud rate at a 25 MHz operating frequen

Figure 3. % CPU Overhead for Method Using
DMA for Serial Transfer

Txfer-byte-DMA Twait-for-bus Tmove+=

18 2+=

20 clocks=

%CPUOverhead
2 Baud Rate×

F
---------------------------------- 

  100×=

% CPU Overhead @ 25 MHz

Baud Rate

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

% CPU

Overhead
3

As can be seen from the above discussion, the
Intel386 EX microprocessor provides a method to
perform high-speed serial transfers that is more
efficient, in terms of reducing CPU overhead, than th
16550 implementation using FIFO buffers.

Synchronous Serial Transfer Rates

Similar arguments could be made for synchronous
serial transfers when the SSIO interrupts are tied t
the Intel386 EX microprocessor’s DMA. Using this
method, transfer rates up to 6 Mbps at 25 MHz
operating frequency are possible.

Conclusion

The constraints imposed on performance by desig
implementation of the 16450 SIO block were
reviewed. It was shown that, even in its simplest form
the SIO implementation on the Intel386 EX
microprocessor could achieve the highest possible
baud rate of 530 Kbps at 25 MHz operating
frequency, although it will occupy 95% of CPU
bandwidth. Performance improvements by using a
16-byte FIFO buffer (similar to a 16550
implementation) were discussed. It was also
demonstrated that the feature to tie the serial
interrupts to the DMA, provided on the Intel386 EX
microprocessor, is the most effective method to fre
up the CPU. With this method, the maximum baud
rate of 530 Kbps would occupy only 5% of CPU
bandwidth. A similar scheme between SSIO and
DMA would attain transfer rates up to 6 Mbps.

	High-Performance Serial Transfers Using the Intel3...
	Design Limits
	CPU Overhead for Serial Transfers
	Adding a FIFO to the SIO Block
	Connecting Serial Interrupts to the DMA

	Synchronous Serial Transfer Rates
	Conclusion
	Figures
	Figure 1. % CPU Overhead for Method Using UART Int...
	Figure 2. %CPU Overhead for Method Using FIFO in U...
	Figure 3. % CPU Overhead for Method Using DMA for ...

