
i960® Microprocessor Technical Notes

August 28, 1996 1 Revision 0.1

August 28, 1996

Revision 0.1

REDUCED POWER OPTIONS FOR THE
80960HA/HD/HT PROCESSOR

ABSTRACT
Intel’s 80960HA/HD/HT processor (abbreviated “Hx”) does not support a low power “Halt” mode,
contrary to some prior claims. However, some customers want to reduce power consumption and
heat dissipation during idle times. The customer expectations have been set by the 80960JA/JF
processor (abbreviated “Jx”) that does offer a Halt mode that provides about 90% power reduction
during idle times.

This paper explains three techniques to reduce the Hx processor power dissipation during idle
times. The three techniques are:

1. Minimum power software loop

2. Reduced clock frequency

3. ONCE mode

The vertical bar in the left margin indicates new information since the last revision.

TOPICS COVERED IN THIS DOCUMENT

TOPIC DESCRIPTION Pg.

SUMMARY Overview of the three power reduction options 2

MINIMUM POWER SOFTWARE LOOP Details of the software loop technique 3

REDUCED CLOCK FREQUENCY Details of the reduced clock frequency technique 5

ONCE MODE Details of the ONCE mode technique 8

APPENDIX A - Code For Minimum
Power Software Loop

Factory-supplied code for the software loop
technique

11

APPENDIX B - Cypress Contact
Information

Clock generator vendor for the reduced frequency
technique

15

APPENDIX C - Reduced Clock
Frequency Hardware Block
DiagramAPPENDIX C -

Description of the additional hardware required to
implement reduced clock technique

16

APPENDIX D - ONCE Mode Design
Overview

State machine description for the ONCE mode
technique

17

REFERENCES Other places to read 23

i960® Microprocessor Technical Notes

August 28, 1996 2 Revision 0.1

SUMMARY
These three options provide increasing levels of power savings at increasing costs. Costs are in
terms of software and hardware complexity, entry and recovery times, and the ability to do useful
work during the idle time.

Table 1 summarizes an example of the techniques for the 50 MHz 80960HD. Power dissipation is
based on typical ICC Active (Thermal) measurements.

Table 1. Summary of Power Reduction Options for 80960HD-50 Processor
(Operating at 50 MHz Internal Clock, 25 MHz Bus Clock)

OPTION
POWER

DISSIPATION
ENTRY
TIME

RECOVERY
TIME

PROCESSING
DURING IDLE

REQ’D
MODS

Software
Loop

2.8 W 2 µs 4 µs No Software

Slow
clock

2.1 W 900 µs 900 µs Yes
Hardware &

software

ONCE
mode

0.1 W 2 µs 400 µs No
Hardware &

software

Max
Power

4.8 W

Typical
Power

3.0 W

Power Saving vs. Cost
The highest power savings come at the highest cost in terms of system complexity. The “Power
Dissipation” column of Table 1 shows the software loop to be the least effective power reduction,
and the ONCE mode to be the most effective. The “Req’d Mods” column indicates the software
loop requires only a software change whereas the slow clock and ONCE modes require
combinations of software and hardware, implying board-level changes. See the technique
description sections for the details.

Entry and Recovery Time
If your application requires fast entry and recovery time, the software loop technique offers the
fastest of both. The ONCE mode offers the next fastest latencies, followed by the slow clock
mode.

Useful Processing During Idle
Only the slow clock technique permits the processor to continue executing useful code during
application idle times, albeit at a reduced clock speed. The other two techniques cannot execute
anything useful during idle. Typical idle time processing could include low intensity I/O polling,
keypad scanning, memory diagnostics, or thermal control.

You can combine the slow clock and software loop techniques to reduce idle power even further,
but the processor would no longer be available for useful work during idle.

i960® Microprocessor Technical Notes

August 28, 1996 3 Revision 0.1

MINIMUM POWER SOFTWARE LOOP

Description
A small, factory-supplied software loop executes inside the processor, thereby preventing power-
consuming external bus accesses. Furthermore, the software loop has been crafted to minimize
on-chip bus transitions inside the processor.

An interrupt service routine (ISR) terminates the loop, returning the processor to useful work.

Table 2 shows the power savings you can expect using the software loop technique.

Table 2. Expected Power Savings for the Software Loop Technique
(Values based on June 1996 data sheet release. Your results may vary.)

PRODUCT CORE CLOCK REDUCED
POWER

TYPICAL
POWER

PWR
SAVINGS

80960HA 25 MHz 1.7 W 1.8 W 9%

33 MHz 2.0 W 2.2 W 9%

40 MHz 2.4 W 2.6 W 8%

80960HD 32 MHz 1.9 W 2.1 W 8%

50 MHz 2.8 W 3.0 W 8%

66 MHz 3.5 W 3.8 W 8%

80960HT 60 MHz 3.1 W 3.4 W 8%

75 MHz 3.8 W 4.1 W 8%

The software loop is the least capable option to reduce power, but it is also least expensive. One
customer has successfully used this technique already to reduce heat dissipation enough to stop
the system cooling fan during idle times.

Table 3 shows the entry and recovery times for the software loop technique.

Required Modifications
Add the two assembly language routines shown in APPENDIX A - Code For Minimum Power
Software Loop to your software. The first routine (“sleep ”) is the procedure your program calls to
invoke the minimum power software loop. The other function (“wake_up ”) is the ISR which
terminates the loop. Include that routine in the ISR of any interrupt intended to terminate the
minimum power software loop.

Any interrupt source (either an internal timer or external XINT pins) can be designated to
terminate the loop. Otherwise, no hardware modifications are required.

i960® Microprocessor Technical Notes

August 28, 1996 4 Revision 0.1

Table 3. Approximate Entry and Recovery Latency Times for the Software Loop
Technique
(Times assume fast interrupt detect mode, cached ISR, and adequate space in
the register cache)

PRODUCT CORE CLOCK ENTRY TIME RECOVERY TIME

80960HA 25 MHz 4 µs 6 µs

33 MHz 3 µs 5 µs

40 MHz 3 µs 5 µs

80960HD 32 MHz 3 µs 6 µs

50 MHz 2 µs 4 µs

66 MHz 2 µs 4 µs

80960HT 60 MHz 2 µs 4 µs

75 MHz 1 µs 4 µs

Operation
Cache the ISRs intended to wake up the processor and reserve space in the Register Cache for
the interrupt context switch. These preparations reduce the wake up interrupt latency. Save the
contents of g14 somewhere (the software loop corrupts that register).

When your application requires power reduction, call the sleep function. No parameters are
necessary. The processor will complete any queued bus requests then suspend all external
activity and reduce its power consumption.

To resume normal operation, assert any interrupt configured to wake up the processor. The ISR
will execute as usual. When the ISR runs its course and returns, the processor will branch out of
the internal software loop, return from the sleep function, and resume normal operation.

Restore g14 if necessary.

Alternately, interrupts can be serviced without terminating the minimum power software loop
provided the ISRs do not execute the wake_up routine and g14 is not corrupted.

Cost
Memory must absorb about 35 additional words of code. The instruction cache must
accommodate the wake_up ISR. No useful processing is available during the idle time.

Restrictions
None.

i960® Microprocessor Technical Notes

August 28, 1996 5 Revision 0.1

REDUCED CLOCK FREQUENCY

Description
Power dissipation declines with declining clock frequency. The reduced clock frequency technique
slows the system clock, thereby reducing power consumption of the processor and the entire
system. As such, this technique may offer the most power savings, depending on your application.

The Hx processor includes an internal phase-locked loop (PLL) clocking circuit. Sudden, large
changes in the input clock (CLKIN) frequency cause the PLL to lose lock, resulting in bus timing
violations and likely system crashes. The Cypress CY2291 and CY2292 “Three-PLL Clock
Generator” chips slew the frequency slowly enough for the Hx PLL to track without degrading the
bus timings.

Digital input pins on the CY2291 and CY2292 clock generators select the clock frequency.

You can reduce the clock speed to any frequency above the processor minimum operating
frequency. See the “Restrictions” section (page 7) for those frequency limits.

Table 4 shows the power savings of the Hx processor alone; system power dissipation will be
reduced as well.

Table 4. Expected Power Savings for the Reduced Clock Frequency Technique.
(Values based on June 1996 data sheet release. Your results may vary.)

PRODUCT NOMINAL
INPUT CLOCK

MINIMUM
FREQ.

REDUCED
POWER

TYPICAL
POWER

PWR
SAVINGS

80960HA 25 MHz 20 MHz 1.4 W 1.8 W 39%

33 MHz 20 MHz 2.2 W 51%

40 MHz 20 MHz 2.6 W 58%

80960HD 16 MHz 16 MHz 2.1 W 2.1 W 0% 1

25 MHz 16 MHz 3.0 W 31%

33 MHz 16 MHz 3.8 W 45%

80960HT 20 MHz 16 MHz 2.7 W 3.4 W 21%

25 MHz 16 MHz 4.1 W 35%

(1) The 32 MHz 80960HD processor already operates at the minimum permissible frequency and
cannot be slowed any further.

Table 5 shows the entry and recovery times for the reduced clock frequency technique.

i960® Microprocessor Technical Notes

August 28, 1996 6 Revision 0.1

Table 5. Approximate Entry and Recovery Latencies for the Reduced Clock Frequency
Technique.

PRODUCT NOMINAL
INPUT CLOCK

ENTRY TIME RECOVERY TIME

80960HA 25 MHz 500 µs 500 µs

33 MHz 1200 µs 1200 µs

40 MHz 1900 µs 1900 µs

80960HD 16 MHz n/a 1 n/a 1

25 MHz 900 µs 900 µs

33 MHz 1600 µs 1600 µs

80960HT 20 MHz 400 µs 400 µs

25 MHz 900 µs 900 µs

(1) The 32 MHz 80960HD processor already operates at the minimum permissible frequency and
cannot be slowed any further.

Useful processing can be done during reduced power times, albeit at a reduced clock frequency.

You can realize further power reductions by combining this reduced clock frequency with the
software loop technique. Of course, doing so eliminates any useful processor work during idle
periods.

Required Modifications
Decide what minimum clock frequency your application will use. See the clock frequency
limitations under “Restrictions” on page 7.

Design your system using either a Cypress CY2291 or CY2292 “Three-PLL Clock Generator”
chip. The CY2291 provides a 32.768 kHz output and a 24 kHz or 32 kHz “FLOPPYCLK” output.
The CY2292 omits these extra outputs and comes in a smaller package. The clock frequencies
(8 to 100 MHz) are custom programmed at the factory. APPENDIX B - Cypress Contact
Information shows how to obtain the chip data sheet.

Map the clock generator frequency selection bits into memory somewhere. Include a data bus
buffer for the frequency selection pins S[2:0]. Add chip select logic in the memory controller to
enable the buffer.

See APPENDIX C - Reduced Clock Frequency Hardware Block Diagram for a drawing of these
modifications.

If necessary, decouple the CPU speed from I/O port speeds with FIFO or other dual-port buffers.
Asynchronous I/O channels such as network ports probably do not slow down with your
application’s CPU clock. Data received during idle times could arrive too fast for the CPU to
handle until the clock resumes normal speed. You may need to add buffering to capture and hold
the data intact until the CPU can work it off. A similar scenario may be true for outgoing data, too.

DRAM controllers – specifically the refresh timers – may need modifications to insure reliable
refreshes at the slower clock speeds.

i960® Microprocessor Technical Notes

August 28, 1996 7 Revision 0.1

Some simple software is required to control the clock generator. Determining the system clock
frequency dynamically may require more innovative software and perhaps hardware such as an
external timer whose clock speed does not change with the processor clock.

Operation
When the application calls for power reduction, reduce the clock frequency by writing the Cypress-
defined code to the S[2:0] clock select pins. The system clock frequency will transition to the new
frequency.

Use an interrupt or poll an external I/O port or timer to signal a return to normal clock speed.

Write the code to the S[2:0] clock select pins to resume normal clock speed.

There is no digital indication on the clock generator to show when the clock generator reaches a
particular frequency. Optionally, a timer or application-specific behavior may be able to indicate
when normal clock speeds have been resumed.

Cost
Existing board designs, layouts, and routings must be revised. More hardware is needed to
interface the Cypress frequency select pins to the data bus. More hardware may be required to
decouple CPU and I/O speeds from one another.

This technique requires the longest entry and recovery latencies of any proposed in this white
paper. However, useful processor work can be done while the clock generator transitions between
frequencies.

Restrictions
The maximum allowable clock ramp rate is no problem; Cypress specifies an adequately slow
transition rate.

The entire system must be able to work at the selected slow and fast clock frequencies.

The 32 MHz (16 MHz input clock) version of the 80960HD processor cannot benefit from this
technique because the processor cannot operate below 16 MHz.

All A-step versions of the 80960HA/HD/HT processor can operate down to 16 MHz input clock.
The B-step versions of the 80960HD and 80960HT can also operate down to 16 MHz input clock.
However, the B-step 80960HA can operate down to only 20 MHz according to the Hx
Specification Update (errata) sheet. These minimum frequency limits are reflected in the power
savings and latency tables.

i960® Microprocessor Technical Notes

August 28, 1996 8 Revision 0.1

ONCE MODE

Description
Freezing the processor and its internal clocks in stasis offers the most power savings possible
short of shutting off VCC. The Hx processor features an On-Circuit Emulator (“ONCE”,
pronounced “ahns”) mode that completely disables the processor, its internal clocks, and floats
the output pins. ONCE mode effectively removes the Hx processor from the socket, which was
originally designed to allow an external emulator probe to assume complete control of the
processor signals.

The processor must be reset to enter ONCE mode, then reset again and run through the normal
boot-up sequence to recover. ONCE mode is invoked by asserting the ONCE# pin while RESET#
is asserted and for at least one clock cycle after RESET# pin deasserts.

Table 6 shows the power savings of the ONCE mode.

Table 6. Expected Power Savings for the ONCE Mode Technique.
(Values based on June 1996 data sheet release.)

PRODUCT NOMINAL
INPUT CLOCK

REDUCED
POWER

TYPICAL
POWER

PWR
SAVINGS

80960HA 25 MHz 1.8 W 95%

33 MHz 2.2 W 96%

40 MHz 0.1 W 2.6 W 97%

80960HD 16 MHz (all speeds) 2.1 W 96%

25 MHz 3.0 W 97%

33 MHz 3.8 W 98%

80960HT 20 MHz 3.4 W 98%

25 MHz 4.1 W 98%

Table 7 shows the entry and recovery times for the ONCE mode technique.

i960® Microprocessor Technical Notes

August 28, 1996 9 Revision 0.1

Table 7. Approximate Entry and Recovery Latencies for the ONCE Mode Technique.
(Assumes 1000 clock cycles of user boot code following processor
initialization.)

PRODUCT NOMINAL
INPUT CLOCK

ENTRY TIME RECOVERY TIME

80960HA 25 MHz 4 µS 500 µS

33 MHz 3 µS 400 µS

40 MHz 3 µS 300 µS

80960HD 16 MHz 3 µS 750 µS

25 MHz 2 µS 400 µS

33 MHz 2 µS 300 µS

80960HT 20 MHz 2 µS 600 µS

25 MHz 1 µS 300 µS

The 10,000 clock cycles required to power up and stabilize the PLL dominate the recovery latency
times. The recovery latency numbers have been rounded conservatively; your user boot-up code
will determine your exact latency.

The processor can do no useful work while in ONCE mode. However, a secondary bus master
(such as a DMA controller) can use the system resources without interference from the processor.

Required Modifications
Design an external ONCE mode controller which consists of...

• an addressable port from the processor to invoke ONCE mode,

• a state machine to generate the ONCE and reset sequences,

• a large (10,000 clock cycle) timer to allow the PLL to stabilize during recovery, and

• an input pin for an external interrupt or timer to initiate recovery.

The addressable port can be a one-bit register that invokes ONCE mode when set. A simpler
solution is to eliminate the register and invoke ONCE when the processor writes to a particular
address range.

For example, decode the upper nibble of the address bus and the ADS# and W/R# signals.
Invoke ONCE when the processor writes to memory Region 15 (0xFXXXXXXX). Typically, read-
only ROMs or EPROMs reside in Region 15, so writing to that region would be unique to the
ONCE controller. If read/write memory like FLASH or EEPROMs are used in that region, use
another read-only or unused memory region.

The state machine can fit into a common 22V10 programmable logic device (PLD) or equivalent.
APPENDIX D - ONCE Mode Design outlines the high level design.

A timer based on a resistor-capacitor (RC) network, either something like a common power-on
reset circuit or a one-shot timer using the 555 timer chip, can provide the 10,000 clock cycle
delay. A digital timer capable of counting 10,000 clock cycles would be prohibitively expensive.

i960® Microprocessor Technical Notes

August 28, 1996 10 Revision 0.1

An event must trigger the ONCE controller to restore the processor. An interrupt or hardware
timer signal must be qualified by a low pass filter (LPF) to ignore spurious noise. A software LPF
can be added to the ONCE controller to require a continuously valid input signal for several clocks
before being recognized.

All processor output pins float (hi-Z) during ONCE mode. Pull the ADS# and DEN# signals high to
prevent sporadic memory accesses. Optionally, pull the LOCK#, HOLDA, and FAIL# signals
inactive (as well as any others necessary for your application) to prevent unpredictable system
behavior. Include any pull-ups or pull-downs in the load analysis for these pins.

Construct the software such that the entire processing state can be stored before invoking ONCE
mode. The software must know where to resume execution after recovery, which is not a trivial
undertaking. Note that the re-boot recovery does not necessarily have to decompress memory
images or copy code and tables from ROM to RAM if the RAM image has been preserved intact
during ONCE mode.

Operation
Save the processing state in RAM memory. Write to the controller to invoke ONCE mode. The
processor power reduces within a few clock cycles.

An external event or timer signals the controller to recover from ONCE mode. The controller
resets the processor. Automatic processor initialization proceeds as usual. Following initialization,
user software recognizes that an ONCE mode recovery is in progress and restores the processing
state from memory.Normal execution resumes.

Cost
The ONCE mode technique is the most expensive and complex of any in this white paper.
Existing logic designs, board layouts, and routings must be revised. An external ONCE controller
must be added to execute the ONCE mode entry and recovery sequences. That controller logic
must be designed. APPENDIX D - ONCE Mode Design offers an example guide.

This technique imposes the longest unproductive recovery latency since no useful work can be
done while the processor is recovering.

Extensive software modifications are required to restore the processing state after recovery from
ONCE mode.

Restrictions
The system must tolerate floating processor output pins during ONCE mode. Any signals that
could disrupt the system by floating must be actively driven or passively pulled to a safe level. For
example, if ADS# floated low then high again, the memory system could access a random
address. Similarly, if DEN# floated low, data bus drivers could be enabled unnecessarily.

The system must provide RAM memory to store the software state during ONCE mode. The RAM
must be incorruptible while the processor is in ONCE mode.

The CPU RESET# signal is separate from system RESET# signal. The external controller must
reset the processor independent of the rest of the system.

i960® Microprocessor Technical Notes

August 28, 1996 11 Revision 0.1

APPENDIX A - CODE FOR MINIMUM POWER SOFTWARE LOOP
The code for the minimum power software loop is written in ASM960 and comes in two parts:

1. ‘sleep’ - the procedure to invoke the software loop

2. ‘wake_up’ - the Interrupt Service Routine (ISR) to terminate the software loop

An electronic version of this code is available through your Intel sales representative.

i960® Microprocessor Technical Notes

August 28, 1996 12 Revision 0.1

##
#
Function: sleep Date: 3/13/96
#
Author: Intel Corporation
#
Disclaimer: Intel provides this AS IS, WITHOUT ANY WARRANTY,
INCLUDING THE WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, and makes no
guarantee or representations regarding the use
of, or the results of the use of, the software
and documentation in terms of correctness,
accuracy, reliability, currentness, or
otherwise, and you rely on the software,
documentation, and results solely at your own
risk.
#
Overview:
This code reduces power consumption during idle periods by
preventing external bus accesses and I_cache accesses. A small
loop executes from the Instruction Queue inside the processor.
No useful processing is done during idle.
#
Use the companion Interrupt Service Routine "wake_up" to exit this
idle loop and resume normal operation.
#
Use:
Call this function to invoke reduced idle power dissipation.
Execute Interrupt Service Routine "wake_up" to resume processing.
#
Note:
If g14 is not available in your application, you can use g7, g11,
or g13 without affecting the power dissipation. Otherwise, any
modification of this code will increase the power dissipation.
#
Resources Modified: g14, I_cache enabled (then restored to former
condition before return)
#
Example Supports: 80960HA/HD/HT
#
Revision History:
#-- #
##

sleep:
 #enable I_cache
 mov sf2, r4
 mov 0, sf2 #sf2 = CCON

 #initialize g14
 mov 0x1f, g14

.align 4

 b loop
 .word 0xFFFFFFFF #fill the Instruction Queue with "1's"
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF

breakloop: b endloop

loop: cmpis g14, 0x1f
 ble loop #loop until g14 > 0x1f
 bo breakloop

i960® Microprocessor Technical Notes

August 28, 1996 13 Revision 0.1

 .word 0xFFFFFFFF #fill the Instruction Queue with "1's"
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF
 .word 0xFFFFFFFF

 #restore the I_cache
endloop: mov r4, sf2 #sf2 = CCON
 syncf

 ret

i960® Microprocessor Technical Notes

August 28, 1996 14 Revision 0.1

##
#
ISR: wake_up Date: 3/13/96
#
Author: Intel Corporation
#
Disclaimer: Intel provides this AS IS, WITHOUT ANY WARRANTY,
INCLUDING THE WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, and makes no
guarantee or representations regarding the use
of, or the results of the use of, the software
and documentation in terms of correctness,
accuracy, reliability, currentness, or
otherwise, and you rely on the software,
documentation, and results solely at your own
risk.
#
Overview:
This Interrupt Service Routine (ISR) inserts a value into register
g14, causing the "sleep" function to exit its loop and resume
normal processing.
#
Use:
Vector to this ISR when an interrupt occurs that you intend to wake
up the processor from it's idle loop.
#
Optionally, add this code to the end of any ISR you intend to wake
the processor. Any ISR that leaves g14 greater than 0x1F will
force the processor to break out of the idle loop.
#
Resources Modified: g14
#
Example Supports: 80960HA/HD/HT
#
Revision History:
#-- #
##

wake_up:
 lda 0x20, r4 #any value > 0x1f
 mov r4, g14
 ret

i960® Microprocessor Technical Notes

August 28, 1996 15 Revision 0.1

APPENDIX B - CYPRESS CONTACT INFORMATION
Cypress Semiconductor Corporation
3901 North First Street
San Jose, CA 95134
USA
(408) 943-2600
(408) 943-6822 - FAX

World Wide Web Homepage:

www.cypress.com

World Wide Web Data Sheet:

www.cypress.com:80/cypress/prodgate/timi/cy2291.html

World Wide Web Sales Contacts:

www.cypress.com:80/cypress/ww_sales/sale_top.htm

CY2291 / CY2292 Three-PLL Clock Generator Data Sheet Document #: 38-00410

(Cypress information verified 8/12/96)

i960® Microprocessor Technical Notes

August 28, 1996 16 Revision 0.1

APPENDIX C - REDUCED CLOCK FREQUENCY HARDWARE BLOCK
DIAGRAM

The necessary hardware changes for the reduced clock frequency technique are depicted below.

80960Hx Processor

A[31:2]

BE#[3:0]

D[31:0]

ADS#

W/R#

CLKIN<

XINT#[7:0]

NMI#

Memory Controller

A[31:2]

BE#[3:0]

D[31:0]

ADS#

W/R#
Clock_Select

>CLK

CY2291 or
CY2292

S[2:0]

CLOCK_OUT

Buffer
CS

D
Q

>CLK

To the rest of
the system

Optional external
recovery trigger
signal(s)

i960® Microprocessor Technical Notes

August 28, 1996 17 Revision 0.1

APPENDIX D - ONCE MODE DESIGN OVERVIEW

Block Diagram of System Using ONCE Mode Controller
An application using the ONCE mode power reduction technique involves the addition of a ONCE
mode controller, a 10,000 clock cycle timer, and interface to the 80960 processor and memory
controller. Also, the system reset signal and an ONCE_Recover signal are included.

ONCE Mode Controller

ONCE_Invoke
CPU_ONCE#

ONCE_Recover
CPU_RESET#

System_RESET#
Timer_Start

Timer_Done

State[3:0]
>Clock

80960Hx Processor

A[31:2]

BE#[3:0]

D[31:0]

ADS#

W/R#

ONCE#

RESET#

CLKIN<

Memory Controller

A[31:2]

BE#[3:0]

D[31:0]

ADS#

W/R#
ONCE_Invoke

>CLK

Timer
Done

Start

Clock
Osc

ONCE_Recover

System_RESET#

i960® Microprocessor Technical Notes

August 28, 1996 18 Revision 0.1

Input and Output Signals
The ONCE controller described here uses five inputs and seven outputs, compatible with a 22V10
PLD.

Inputs
SIGNAL NAME DESCRIPTION

ONCE_Invoke Command to invoke ONCE mode

ONCE_Recover Command to recover from ONCE mode

System_RESET# Master RESET# signal on the board

Timer_Done Report from timer that its delay has elapsed

Clock System clock

Outputs
SIGNAL NAME DESCRIPTION

CPU_ONCE# Controls 80960Hx processor ONCE# pin

CPU_RESET# Controls 80960Hx processor RESET# pin

Timer_Start Command to start the timer delay; expect response on Timer_Done

State[3:0] Moore model state counter bits

i960® Microprocessor Technical Notes

August 28, 1996 19 Revision 0.1

Waveforms
The ONCE controller must produce the following waveforms to invoke and recover from ONCE
mode.

Clock:

CPU_RESET#:

CPU_ONCE#:

16 clock cycles

INVOKE ONCE MODE:INVOKE ONCE MODE:

Clock:

CPU_RESET#:

CPU_ONCE#:

16 clock cycles

RECOVER FROM ONCE MODE:

i960® Microprocessor Technical Notes

August 28, 1996 20 Revision 0.1

State Machine Description

State Bubble Diagram

Idle

ONCE 1

ONCE 2

ONCE 3

ONCE 4

ONCE 5

ONCE 6

ONCE 7

ONCE 8

ONCE 9

ONCE 10

ONCE 11

ONCE 12

ONCE 13

ONCE 14

ONCE 15

ONCE 16

ONCE 17

Wait

RESET 1

RESET 2

RESET 3

RESET 4

RESET 5

RESET 6

RESET 7

RESET 8

RESET 9

RESET 10

RESET 11

RESET 12

RESET 13

RESET 14

RESET 15

RESET 16

ONCE_Recover = 1

Timer_Done = 1

ONCE_Invoke = 1

ONCE_Invoke = 0
ONCE_Recover = 0

i960® Microprocessor Technical Notes

August 28, 1996 21 Revision 0.1

State Diagram Definitions
NAME CPU_RESET# CPU_ONCE# Timer_Start State[3:0]

Idle high high low 0

Wait low high high 0

ONCE 1 low low low 0

ONCE 2 low low low 1

ONCE 3 low low low 2

ONCE 4 low low low 3

ONCE 5 low low low 4

ONCE 6 low low low 5

ONCE 7 low low low 6

ONCE 8 low low low 7

ONCE 9 low low low 8

ONCE 10 low low low 9

ONCE 11 low low low 10

ONCE 12 low low low 11

ONCE 13 low low low 12

ONCE 14 low low low 13

ONCE 15 low low low 14

ONCE 16 low low low 15

ONCE 17 high low low 0

RESET 1 low high low 0

RESET 2 low high low 1

RESET 3 low high low 2

RESET 4 low high low 3

RESET 5 low high low 4

RESET 6 low high low 5

RESET 7 low high low 6

RESET 8 low high low 7

RESET 9 low high low 8

RESET 10 low high low 9

RESET 11 low high low 10

RESET 12 low high low 11

RESET 13 low high low 12

RESET 14 low high low 13

RESET 15 low high low 14

RESET 16 low high low 15

i960® Microprocessor Technical Notes

August 28, 1996 22 Revision 0.1

Logic Pseudo Code

“Inputs
ONCE_Invoke;
ONCE_Recover;
System_RESET#;
Timer_Done;
clock;

“Outputs
CPU_ONCE# istype ‘buffer, reg_D’;
CPU_RESET# istype ‘buffer, reg_D’;
Timer_Start istype ‘buffer, reg_D’;
State[3:0] istype ‘buffer, reg_D’;

“State register assignment
(see STATE DEFINITIONS table)

Equations
CPU_RESET# = System_RESET; ”reset CPU when the system resets

state_diagram

state Idle: if ONCE_Recover then Wait else
if ONCE_Invoke then ONCE_1 else
Idle;

state Wait: if Timer_Done then RESET_1 else Wait;
state RESET_1: RESET_2;
state RESET_2: RESET_3;
state RESET_3: RESET_4;
state RESET_4: RESET_5;
state RESET_5: RESET_6;
state RESET_6: RESET_7;
state RESET_7: RESET_8;
state RESET_8: RESET_9;
state RESET_9: RESET_10;
state RESET_10: RESET_11;
state RESET_11: RESET_12;
state RESET_12: RESET_13;
state RESET_13: RESET_14;
state RESET_14: RESET_15;
state RESET_15: RESET_16;
state RESET_16: Idle;

state ONCE_1: ONCE_2;
state ONCE_2: ONCE_3;
state ONCE_3: ONCE_4;
state ONCE_4: ONCE_5;
state ONCE_5: ONCE_6;
state ONCE_6: ONCE_7;
state ONCE_7: ONCE_8;
state ONCE_8: ONCE_9;
state ONCE_9: ONCE_10;
state ONCE_10: ONCE_11;
state ONCE_11: ONCE_12;
state ONCE_12: ONCE_13;
state ONCE_13: ONCE_14;
state ONCE_14: ONCE_15;
state ONCE_15: ONCE_16;
state ONCE_16: ONCE_17;
state ONCE_17: Idle;

end

i960® Microprocessor Technical Notes

August 28, 1996 23 Revision 0.1

REFERENCES
The following documents provide more information on the i960 Hx microprocessor family.

1. i960 Hx Microprocessor User’s Manual, Intel order number 272484.

2. 80960HA/HD/HT Embedded 32-bit Microprocessor Advance Data Sheet, order number
272495. Also available in the i960 Processors and Related Products handbook, Intel order
number 272084.

	Cover Page
	Contents
	Tables
	Table 1. Summary of Power Reduction Options for 80960HD-50 Processor (Operating at 50 MHz Internal Clock, 25 MHz Bus Clock)
	Table 2. Expected Power Savings for the Software Loop Technique (Values based on June 1996 data sheet release. Your results may
	Table 3. Approximate Entry and Recovery Latency Times for the Software Loop Technique (Times assume fast interrupt detect mode,
	Table 4. Expected Power Savings for the Reduced Clock Frequency Technique. (Values based on June 1996 data sheet release. Your r
	Table 5. Approximate Entry and Recovery Latencies for the Reduced Clock Frequency Technique.
	Table 6. Expected Power Savings for the ONCE Mode Technique. (Values based on June 1996 data sheet release.)
	Table 7. Approximate Entry and Recovery Latencies for the ONCE Mode Technique. (Assumes 1000 clock cycles of user boot code foll

	ABSTRACT
	TOPICS COVERED IN THIS DOCUMENT
	SUMMARY
	Power Saving vs. Cost
	Entry and Recovery Time
	Useful Processing During Idle

	MINIMUM POWER SOFTWARE LOOP
	Description
	Required Modifications
	Operation
	Cost
	Restrictions

	REDUCED CLOCK FREQUENCY
	Required Modifications
	Operation
	Cost
	Restrictions

	ONCE MODE
	Required Modifications
	Operation
	Cost
	Restrictions

	APPENDIX A - CODE FOR MINIMUM POWER SOFTWARE LOOP
	APPENDIX B - CYPRESS CONTACT INFORMATION
	APPENDIX C - REDUCED CLOCK FREQUENCY HARDWARE BLOCK DIAGRAM
	APPENDIX D - ONCE MODE DESIGN OVERVIEW
	Input and Output Signals
	Waveforms
	State Machine Description
	State Bubble Diagram
	State Diagram Definitions
	Logic Pseudo Code

	REFERENCES

