
80960CA/CF

 SPECIFICATION UPDATE

Release Date: July, 1996

Order Number: 272875-001

The 80960CA/CF may contain design defects or errors known as errata. Characterized errata that
may cause the 80960CA/CF’s behavior to deviate from published specifications are documented
in this specification update.

80960CA/CF SPECIFICATION UPDATE

ii July, 1996 272875-001

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The 80960CA/CF may contain design defects or errors known as errata. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

* Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call in North America 1-800-879-4683, Europe 44-0-1793-431-155, France 44-0-1793-421-777,

Germany 44-0-1793-421-333 other Countries 708-296-9333

Copyright  1996, Intel Corporation

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 iii

CONTENTS

REVISION HISTORY ..1

PREFACE ...1

SUMMARY TABLE OF CHANGES..3

IDENTIFICATION INFORMATION ...7

ERRATA ...8

SPECIFICATION CHANGES ...28

SPECIFICATION CLARIFICATIONS ...28

DOCUMENTATION CHANGES ...29

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 1 of 31

REVISION HISTORY

Date of Revision Version Description

07/01/96 001 This is the new Specification Update document. It contains all
identified errata published prior to this date.

PREFACE

As of July, 1996, Intel's Semiconductor Products Group has consolidated available
historical device and documentation errata into this new document type called the
Specification Update. We have endeavored to include all documented errata in the
consolidation process, however, we make no representations or warranties concerning
the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected
Documents/Related Documents table below. This is the first release of the 80960CA/CF
Specification Update. This document is a compilation of device and documentation
errata, specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update
and are no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents
Title Order

80960CA/CF 32-Bit High-Performance Embedded Processor datasheet 272886-001

i960 Cx Microprocessor User’s Manual 270710-003

i960 Cx Microprocessor User’s Manual - Instruction Set Quick Reference 272220-002

Nomenclature

Errata are design defects or errors. These may cause the published (component, board,
system) behavior to deviate from published specifications. Hardware and software
designed to be used with any component, board, and system must consider all errata
documented.

Specification Changes are modifications to the current published specifications. These
changes will be incorporated in any new release of the specification.

80960CA/CF SPECIFICATION UPDATE

2 of 31 July, 1996 272875-001

Specification Clarifications describe a specification in greater detail or further highlight
a specification’s impact to a complex design situation. These clarifications will be
incorporated in any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in any new release of the
specification.

NOTE:

Errata remain in the specification update throughout the product’s lifecycle, or until a
particular stepping is no longer commercially available. Under these circumstances,
errata removed from the specification update are archived and available upon request.
Specification changes, specification clarifications and documentation changes are
removed from the specification update when the appropriate changes are made to the
appropriate product specification or user documentation (datasheets, manuals, etc.).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 3 of 31

SUMMARY TABLE OF CHANGES

The following table indicates the errata, specification changes, specification
clarifications, or documentation changes which apply to the 80960CA/CF product. Intel
may fix some of the errata in a future stepping of the component, and account for the
other outstanding issues through documentation or specification changes as noted. This
table uses the following notations:

Codes Used in Summary Table

New No
(#) The new assigned errata number.

Prev No
(#) The previously assigned errata number. These anomalies

fall into three categories: (A) Anomalies that can cause
serious problems in the users applications. These
problems involve data corruption, crashing of programs etc.
A hardware or software workaround must be employed to
prevent these problem types. (B) Anomalies that may effect
performance or interface requirements, but not function.
(C) Anomalies that are largely definitional and may or may
not be corrected or even need to be fixed.

Steps

X: Errata exists in the stepping indicated. Specification
Change or Clarification that applies to this stepping.

(No mark)
or (Blank box): This erratum is fixed in listed stepping or specification

change does not apply to listed stepping.
Page
(Page): Page location of item in this document.

Status
Doc: Document change or update will be implemented.
Fix: This erratum is intended to be fixed in a future step of the

component.
Fixed: This erratum has been previously fixed.
NoFix: There are no plans to fix this erratum.
Eval: Plans to fix this erratum are under evaluation.

Row
Change bar to left of table row indicates erratum is either
new or modified from previous version of the document.

80960CA/CF SPECIFICATION UPDATE

4 of 31 July, 1996 272875-001

Errata (1 of 3)
New # Prev # Steppings Pg Status ERRATA

80960CA 80960CF

C2 C3 D B C E

9600001 A2 X X 8 Fixed Bus Backoff and Ready

9600002 A5A X X 8 Fixed DACK Timing Vs Ready Wait States

9600003 A5B X X 8 Fixed DACK Timing with Multiple Accesses Per
Bus Request

9600004 A18 X X 9 Fixed DMA SSDEM Mode Packing and EOP

9600005 A19 X X 9 Fixed Suspend DMA, EOP and SDMA

9600006 A20A X X 10 Fixed EOP, SDMA and Multi-Channel DMA
Operations

9600007 A20B X X 10 Fixed EOP, SDMA and Multi-Channel DMA
Operations

9600008 A21 X X 11 Fixed Disabling Branch Lookahead causes DMA
Problems (See also 960013)

9600009 A22 X X 11 Fixed NMI is Level-Triggered after RESET

9600010 A25 X X X 11 Fixed Interrupts during SYSCTL Instruction to
Load and Lock the Instruction Cache

9600011 A26 X X X 12 Fixed 32-32 Bit Transfers in Source-
Synchronized Demand Mode with
Unaligned Destination Address

9600012 A27 X 12 Fixed TC (Terminal Count) pins are non-
functional when using any channel in
source synchronized demand mode or
block mode

9600013 A28 X X X 13 Fixed DMA and Instruction Scheduler Interaction

9600014 A29 X X X 15 Fixed Destination Synchronized 128- to 128-Bit
Quad Word Transfer Mode

9600015 A30 X 15 Fixed Disabling the Instruction Cache

9600016 A31 X 15 Fixed Interrupt Can Cause User Process Stall
when DMA Active Under Certain Complex
Conditions

9600017 A32 X 16 NoFix Register Cache

9600018 B1 X X 16 Fixed Cache Functionality/Re-fetching Cached
Instructions

9600019 B3 X X 17 Fixed COBR Branch Trace

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 5 of 31

Errata (2 of 3)
New # Prev # Steppings Pg Status ERRATA

80960CA 80960CF

C2 C3 D B C E

9600020 B5 X X 18 Fixed EOP and DREQ Deassertion

9600021 B6 X X 18 Fixed DREQ Sampling

9600022 B8 X X 18 Fixed SYSCTL followed by RET May Incorrectly
Fault

9600023 B10 X X 18 Fixed Terminal Count Operation

9600024 B11A X X 19 Fixed Testif and Faultif Cause Incorrect Branch
Trace

9600025 B11B X X 20 Fixed Branch Tracing Missies Branch Instruction

9600026 B12 X X 20 Fixed Disabling Interrupts with the sysctl
Instruction is Non-atomic

9600027 B13 X X X 20 Fixed Unaligned DMA Transfer Modes When
Using Incrementing Source and
Destination Address

9600028 B14 X X X 21 NoFix Data Cache Global Disable Bit is a 0 After
a Device Reset

9600029 C1 X X X X X X 21 NoFix Instruction Cache

9600030 C2 X X X X X 21 NoFix Register Cache

9600031 C3 X X X X X X 21 NoFix Data Address Breakpoint Fault on a
CALLX

9600032 C4 X X X X X X 22 NoFix Data Address Breakpoints on Stacks and
Tables

9600033 C5 X X X X X X 22 NoFix Pipelined Region Limitation

9600034 C6 X X X X X X 23 NoFix EOP and Buffer Complete Interrupt

9600035 C7 X X X X X X 23 NoFix MULI Fault Return

9600036 C8 X X X 23 NoFix Fault Handler Executes before Interrupt
Handler

9600037 C9 X X X X X X 24 NoFix Extra RIP Read

9600038 C10 X X X X X X 24 NoFix Disabling and Enabling Interrupts via
Modifying the Interrupt Mask Register (sf1)

9600039 C10b X X X X X X 24 NoFix Microcoded Instructions can be Corrupted
after Writing to Interrupt Mask Register
(sf1)

9600040 C11 X X X 25 Fixed NMI During Built-In-Self-Test (BIST)

9600041 C12 X X X 25 Fixed BTERM Functionality

80960CA/CF SPECIFICATION UPDATE

6 of 31 July, 1996 272875-001

Errata (3 of 3)
New # Prev # Steppings Pg Status ERRATA

80960CA 80960CF

C2 C3 D B C E

9600042 C13 X X X X X 26 NoFix Modifying the Previous Frame Pointer
(PFP) before Returning

9600043 X X X 27 NoFix Erroneous TC Can Be Signaled When
Using Multiple DMA Channels

Specification Changes
No. Steppings Page Status SPECIFICATION CHANGES

None for this revision of this specification update.

Specification Clarifications
No. Steppings Page Status SPECIFICATION CLARIFICATIONS

#

None for this revision of this specification update.

Documentation Changes
No. Document

Revision
Page DOCUMENTATION CHANGES

001 270710-003 29 Chapter 4 - Instruction Set Summary

002 270710-003 29 Chapter 9 - Instruction Set Reference

003 270710-003 29 Chapter 11 - External Bus Description

004 270710-003 29 Chapter 12 - Interrupt Controller

005 270710-003 29 Chapter 12 - Page 12-22 Table 12-2

006 270710-003 30 Chapter 13 - DMA Controller

007 270710-003 30 Appendix A - Instruction Execution and Performance Optimization

008 270710-003 30 Appendix A - Page 1-42, Section A.2.6.10

009 270710-003 30 Appendix B - Bus Interface Examples

010 270710-003 30 Appendix F - Register and Data Structures

011 272220-002 30 Instruction Set Quick Reference - Page 9

012 272220-002 31 Instruction Set Quick Reference - Page 11

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 7 of 31

IDENTIFICATION INFORMATION

Markings

The various 80960CA steppings are identified by a topside mark as indicated below.

C-2 Stepping C-3 Stepping D-Stepping

KU 80960CA -25 SV914 SW033 D2

KU 80960CA -16 SV913 SW032 D2

A 80960CA-33 SV908 SW031 D2

A 80960CA-25 SV907 SW030 D2

A 80960CA-16 SV906 SW029 D2

TA 80960CA-16 SW147 VA80960CA-16*

* TA80960CA16,S W147 will no longer be offered. It is replaced by VA80960CA16,
which has a temperature range of -40 to +125C, and manufactured on the D-stepping.
In addition, a 25 MHz extended temperature part will be offered as VA80960CA25.

80960CA/CF SPECIFICATION UPDATE

8 of 31 July, 1996 272875-001

ERRATA

9600001. A2 Bus Backoff and /READY

PROBLEM: If either /RDY or /BTERM is asserted between the deassertion of /BOFF
and the completion of the /ADS strobe, the regenerated access will be lost or corrupted.

IMPLICATION: Improper operation and/or data corruption may result.

WORKAROUND: The work around is to ensure that /RDY or /BTERM is not asserted
from the time /BOFF is asserted until the time that /ADS is regenerated.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600002. A5A DACK Timing Vs Ready Wait States

PROBLEM: The deassertion of DACK can be triggered by conditions other than the end
of a Ready access. Because DACK is used as a chip select, simple connection of DACK
to system DACK does not work for Ready controlled regions.

IMPLICATION: Additional glue logic is required.

WORKAROUND: External logic is necessary for proper operation. This logic should
latch DACK during the address cycle.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600003. A5B DACK Timing with Multiple Accesses Per Bus Request

PROBLEM: DACK deasserts early on multiple bus accesses per bus request during the
following conditions. If the DMA transfer type and external bus width are unequal such
that the Bus Controller is required to issue multiple bus accesses per request, DACK
deasserts on the rising edge of BLAST of the first access and stays deasserted for the
duration of the request. For example, a DMA transfer type of 128 by 128 requires the
Bus Controller to issue quad stores on a non-burst 32-bit external bus. Therefore DACK
asserts with the first ADS and deasserts on the rising edge of BLAST of the first access.

IMPLICATION: Improper DMA transfers may occur.

WORKAROUND: Match the DMA mode transfer width with the external bus width. The
correct functioning of DACK is as follows: DACK should assert at the falling edge of
ADS and remain asserted throughout the entire bus request. DACK should deassert at
the rising edge of BLAST of the last access.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 9 of 31

9600004. A18 DMA SSDEM Mode Packing and EOP

PROBLEM: Asserting EOP during a Source Synchronized Demand Mode DMA can
corrupt the last word or byte of the transfer. The following table shows the packing
modes and how the SAR (Source Address Register) and DAR (Destination Address
Register) are aligned in order to manifest this condition. The EOP failure point denotes
where a failure will occur with respect to EOP and individual transfers.

Packing type SAR DAR EOP Fail Point
16-32 Aligned Aligned All Xfers
8-16 - Aligned 1st Xfer Only
16-16 *Unaligned Aligned 1st Xfer Only
32-32 Aligned Unaligned 1st Xfer Only

 * Block Mode

IMPLICATION: Data corruption may occur.

WORKAROUND: There are three workarounds. One is to not use EOP but rather an
interrupt to signal an asynchronous termination of a transfer. Secondly, if it is known that
the above condition is going to happen, throw away the last word or byte of the transfer
and adjust the SAR and the BCR (Byte Count Register) accordingly. Finally, for those
packing modes where EOP can only cause a failure during the first transfer, a dummy
transfer can be inserted as the first transfer and no data will be corrupted.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600005. A19 Suspend DMA, EOP and SDMA

PROBLEM: An unrecoverable error can occur during the time that an interrupt is being
posted if the Suspend DMA function is enabled (ICON bit 15) and either an EOP or
SDMA event occurs. The following conditions must exist for the error to occur:

 1. Suspend DMA function is enabled by setting ICON Register bit 15.

 2. Two or more DMA channels are operating at the same time.

 3. An interrupt is actually being posted.

4A. An EOP is received or,

4B. An SDMA is executed.

IMPLICATION: Unrecoverable error state may occur.

80960CA/CF SPECIFICATION UPDATE

10 of 31 July, 1996 272875-001

WORKAROUND: There are several workarounds. The Suspend DMA function should
be enabled only if it can be guaranteed that an EOP or an SDMA will not occur. An
SDMA can occur by first disabling the Suspend DMA function by resetting ICON
Register bit 15. EOP, however, due to its asynchronous nature, cannot be used with the
Suspend DMA feature enabled. Instead, a separate external hardware interrupt should
be used to signal the end of a channel. An interrupt handler can then disable the
channel by clearing the enable bit in the DMAC (DMA Command Register sf2) and wait
until the active bit in the DMAC is cleared.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600006. A20A EOP, SDMA and Multi-Channel DMA Operations

PROBLEM: When a Setup DMA (SDMA) instruction is issued, transfer requests on all
four channels are held off until SDMA completion. It is possible to enter a state in which
a DMA Load request has completed but not the corresponding Store. Once the setup is
done, the pending Store request will be serviced and completed. However, during the
time that the SDMA instruction is executing, an EOP on the same channel may be
accepted by the DMA controller. The EOP will be serviced BEFORE the DMA cycle has
completed. The Store access will never be executed.

IMPLICATION: The transfer may be terminated prematurely and the data that is
expected on the last Load may be lost.

WORKAROUND: The workaround for this anomaly is to make sure that an EOP does
not occur during an SDMA instruction. An alternate method of setting up a DMA channel
is to use the Chaining mode with wait. However, the user cannot change the DMA mode
this way.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600007. A20B EOP, SDMA and Multi-Channel DMA Operations

PROBLEM: If, during the time that an SDMA is issued for a channel that was the last
active channel, an EOP occurs on another channel, the Byte Count, Source Address,
and Next Pointer Address pertaining to the SDMA may be corrupted.

IMPLICATION: Data corruption may occur.

WORKAROUND: The workaround for this anomaly is to make sure that an EOP does
not occur during a SDMA instruction.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 11 of 31

9600008. A21 Disabling Branch Lookahead Causes DMA problems

PROBLEM: When using mulltiple DMA channels, bit 21 of the word at PRCB offset
0x20 must be zero (0). Otherwise, DMA data corruption occurs.

IMPLICATION: When using older debug monitors, DMA corruption can occur.

WORKAROUND: Make sure bit 21 of the PRCB offset 0x20 (instruction cache
configuration word) is zero (0). This disables the branch lookahead logic, so some
decrease in performance may be observed.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600009. A22 NMI is Level-Triggered after RESET

PROBLEM: NMI (Non-Maskable Interrupt) normally only occurs after a high-to-low (1-
to-0) transition on the NMI pin. After RESET, however, NMI is level-triggered and a low
(0) on the NMI pin will generate a Non-Maskable Interrupt.

IMPLICATION: Spurious NMI could occur.

WORKAROUND: Make sure the NMI pin is driven high during the RESET sequence.
After RESET is deasserted, (driven high), the user must drive NMI high within 10 clocks.
Otherwise, a Non-Maskable Interrupt will occur.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600010. A25 Interrupts During SYSCTL Instruction to Load and
Lock the Instruction Cache

PROBLEM: Any hardware interrupts (maskable or unmaskable) which occur during the
execution of a SYSCTL instruction to load and lock the instruction cache causes the
processor to malfunction. SYSCTL instructions have the configure cache message and
either the load and lock 1 Kbyte or load and lock 512 bytes cache mode configuration.
The processor actually enters the interrupt handler, but enters in an unrecoverable
state. The only way to completely recover from this malfunction is to reset the device.

IMPLICATION: Processor can enter an unrecoverable error state.

WORKAROUND: The workaround is to disable hardware interrupts while executing the
SYSCTL instruction to load and lock the instruction cache. The user must also
guarantee that his system never generates an NMI during the SYSCTL instruction.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

12 of 31 July, 1996 272875-001

9600011. A26 32-32 Bit Transfers in Source-Synchronized Demand
Mode with Unaligned Destination Address

PROBLEM: The DMA controller is optimized to perform unaligned 32-32 bit transfers.
However, when in source-synchronized demand mode, the DMA controller requires an
extra DREQ# to complete the transfer when the destination address is unaligned.

For example, assume an aligned source address and a destination address which is
unaligned by one byte (has an address of xxxxxxxx1) and a byte count of 16. The DMA
controller should transfer 3 bytes for the first DREQ#, 4 bytes the two middle DREQ#s,
and 5 bytes for the last DREQ#. However, only 4 bytes are transferred for the 4th
DREQ# and requires a 5th DREQ# to transfer the last byte.

All other source synchronized transfer modes with an unaligned destination address will
work correctly (i.e., 16-16, 8-8, etc.).

IMPLICATION: Improper unaligned DMA behavior may result.

WORKAROUND: The workaround is to always ensure that your destination address is
aligned on a 4 byte boundary, or have your hardware generate an extra DREQ#.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600012. A27 Terminal Count (TC) pins are non-functional when
using any channel in source synchronized demand mode or
block mode

PROBLEM: When any EOP/TC# pin is configured as an output (terminal count
function), it may not ever be asserted if any of the four DMA channels is configured for
either source synchronized demand mode, or block mode. The TC pin works correctly
when all DMA channels are programmed only for destination synchronized demand
mode or fly-by modes. This errata does not affect the operation of the EOP/TC# pin
when programmed for the EOP function.

The TC pin will not be asserted when any unsynchronized DMA store is present on the
external bus and the DMA controller issues the last load (the load in which TC should be
asserted) of a source synchronized demand mode or block mode transfer. Note that
even though TC is not asserted, the DACK# pin is asserted correctly for the load. An
unsynchronized DMA store is defined to be a DMA store in which the DACK# pin is not
asserted, as in source synchronized demand mode and block mode transfers.

IMPLICATION: For application purposes, this renders the TC pins non-functional when
using these modes.

WORKAROUND: None

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 13 of 31

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600013. A28 DMA and Instruction Scheduler Interaction

PROBLEM: The DMA controller is implemented primarily in microcode. DMA operations
are executed in microcode while providing core bandwidth for the user's program. Core
resources are shared by implementing a separate hardware process for each DMA
channel and one for the user code. This hardware mechanism allows the core to switch
processes on clock boundaries to service either a DMA process or the user process.
See Chapter 13 in the i960 Cx Microprocessor User’s Manual.

Under very specific circumstances, a DMA process can cause a conditional branch
instruction to branch along the incorrect path. The branch instruction unconditionally
follows the path dictated by the branch prediction bit. The circumstances are:
1. The instruction scheduler must attempt to issue three instructions in parallel (a Reg-

Mem-conditional branch triplet). For the device to execute three instructions in
parallel, they must be in this order. For example:

 CMPI r4,r5 ;reg-side must affect condition codes
 ST r6,(r7)
 BGE.f some_where ;must be conditional branch

;which relies on condition codes

2. The reg-side instruction must begin on an odd word boundary.
3. The mem-side must be scoreboarded; i.e., the ST instruction cannot execute

because of a resource limitation. The conditions in which the mem-side is
scoreboarded are covered in the i960 Cx Microprocessor User’s Manual.

4. A DMA event must occur while the mem-side is scoreboarded. A DMA event is
defined to be the assertion of DREQ# on an active DMA channel and causing a
process switch to a DMA task.

5. The branch prediction bit for the branch instruction must be incorrect for the result of
the reg-side comparison.

6. Branch Lookahead must be enabled.

The instructions affected are listed below. Any combination of these instructions in the
reg-mem-ctrl ordering are affected.

REG-side Mem side Conditional
ADDC LDA offset BE, BNE, BL, BLE
CMPI,CMP0 LDA (reg) BG, BGE, BO, BNO
CMPDECI,CMPDECO LDA offset(reg)
CMPINCI,CMPINCO
CONCMPI,CONCMPO LD/ST offset

80960CA/CF SPECIFICATION UPDATE

14 of 31 July, 1996 272875-001

CHKBIT LD/ST (reg)
SCANBYTE
SUBC

The LD/ST instructions include the byte, short, word, triple, and quad versions. The
chances of this anomaly occurring in an application are exacerbated when the
processor is in NIF mode, because the mem-side is always scoreboarded until the reg-
side compare instruction is finished.

IMPLICATION: Incorrect program operation may occur.

WORKAROUND: For the 80960CA A through C-3 stepping, errata A21 prevents simply
disabling Branch Lookahead for applications which have more than one DMA channel
active at a time. Multichannel DMA applications will have to prevent this code sequence
in their application to workaround this errata for the 80960CA. Intel will also provide
switches for the development tools (C compilers) which will prevent this sequence of
instructions from taking place, as well as a method for screening existing object code for
the instruction triplet. Please contact your local Intel support person for information on
obtaining these tools.

Code workaround - Because it is very difficult to predict when the mem-side will be
scoreboarded, code workarounds should remove all cases of the code triplet. This
guarantees that the errata will not occur in an application.

The simplest workaround is to insert a nop (mov g0,g0) between the reg-side and mem-
side instructions. This prevents the triplet from being issued in parallel. The Intel tools
will provide this kind of workaround as an assembler patch. An alternate workaround is
to reorder the instructions so the triplet is not issued in parallel. A third workaround is to
combine the separate reg-side and conditional branch instructions into a single compare
and branch (cobr) instruction.

CMPI r4,r5 ;insert a nop
MOV g0,g0
ST r6,(r7)
BGE.f some_where

ST r6,(r7) ;reorder the instructions
CMPI r4,r5
BGE.f some_where

ST r6,(r7) ;Use a cobr instruction
CMPIBGE.f r4,r5,some_where #.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 15 of 31

9600014. A29 Destination Synchronized 128- to 128-Bit Quad-Word
Transfer Mode

PROBLEM: The destination synchronized multi-cycle quad-word transfer mode will
execute the final transfer (last sixteen bytes) immediately without waiting for the final
DREQ#. A 32 byte transfer, for example, will only require a single DREQ# to transfer
both quad words. The single DREQ# also causes two DACKS# to be asserted. When
the DMA is programmed to transfer a single quad word (16 bytes), DMA will work
correctly and require a single DREQ#. This erratum does not affect the fly-by, block, or
source synchronized 128- to 128-bit quad word transfer modes.

IMPLICATION: Synchronous DMA operation may occur.

WORKAROUND: Do not use destination synchronized multi-cycle quad-word DMA.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600015. A30 Disabling the Instruction Cache

PROBLEM: The instruction cache cannot be disabled while the DMA is active. Prefetch
algorithms operate differently with the instruction cache disabled. An interrupt, DMA
event, and instruction prefetch all occurring around the same time can infinitely
scoreboard the prefetch, causing user code to stop executing at the prefetch. This
erratum cannot happen while the instruction cache is enabled.

IMPLICATION: No stepping of the 80960CA is effected by this errata.

WORKAROUND: The only way to recover from this condition is to reset the device.

STATUS: Fixed on the C-stepping. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600016. A31 Interrupt Can Cause User Process Stall when DMA
Active Under Certain Complex Conditions

PROBLEM: An interrupt request can cause the user program to stop execution when
several specific events occur in sequence under strict timing requirements. The full
explanation of this condition can be found in the paper titled "80960CF User Process
Stall Bug" available through Intel application's FaxBack system; document number
2050. The FaxBack telephone number is 1-800-628-2283 or 916-356-3105 from outside
the U.S. and Canada. The conditions required to cause the stall are:

80960CA/CF SPECIFICATION UPDATE

16 of 31 July, 1996 272875-001

1) A REG-format instruction followed by an "invalid" word in the cache. An
 "invalid" word is a word that was not written into the cache due to a change of
program flow. This REG-format instruction must be on an even word (address
ending in 0x0 or 0x8).

2) An instruction fetch issued in parallel with the execution of this REG-format
instruction.

3) MEM side of CPU scoreboarded (e.g. due to bus queues full) causing fetch to
be canceled.

4) DMA process switch occurring at least 3 clocks after the fetch, and MEM-side
must still be scoreboarded.

5) Interrupt request occurs while MEM-side still scoreboarded.

This is most likely to occur under heavy bus traffic with 0 data to data wait states, heavy
DMA activity, and heavy interrupt activity.

IMPLICATION: Only the 80960CF B step is affected.

WORKAROUND: DMA activity will continue until the DMA transfer is "done" (e.g. null
chaining pointer, zero byte count, EOP). To recover from this condition, reset the
device.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600017. A32 Register Cache

PROBLEM: Programming a register cache size of zero (0) causes the processor to
generate an operation fault while performing a return. During proper operation, a value
of zero (0) should yield one (1) set of register cache.

IMPLICATION: Improper program operation may occur.

WORKAROUND: Program the register cache size with a value of one (1). A value of
zero (0) or one (1) yields one (1) set of register cache.

STATUS: There are no plans to correct this erratum. Refer to Summary Table of
Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 17 of 31

9600018. B1 Cache Functionality/Re-fetching Cached Instructions

PROBLEM: If loops exceed the cache size (256 instructions), even by one instruction,
all instructions in that loop will be fetched again. This can be eliminated by setting bit 31
of the PRCB offset 0x20 to a one. However, setting this bit may impact performance. As
a rule of thumb, it would be best to operate with bit 31 of the PRCB offset 0x20 cleared
unless this cache re-fetching is clearly affecting the performance of the design.

Further analysis of how the 80960CA fetches instructions shows that other conditions
exist where instructions are fetched from memory instead of being executed from the
cache. This is a result of a change that improves the performance of the prefetch
mechanism. Instructions are fetched into an instruction queue before they are executed.
If an instruction is executed, it is loaded into the cache. If an instruction is not executed
because of a branch or a call being taken, that instruction may not be loaded into the
cache. This may leave instructions in the cache that are invalid, although the tag for the
current cache line is valid. Extra fetches occur because of how the prefetch mechanism
handles an invalid instruction when no cache miss occurs.

This erratum may affect performance as much if not greater than the setting of bit 31
mentioned above. Bit 31 enables or disables the original slow prefetching algorithm
used in previous steppings.

Be aware that even with the above problem corrected, there is the possibility of seeing
instructions being fetched that would appear to have been fetched previously. This extra
fetching occurs because the cache is only guaranteed to be loaded if an instruction is
executed, not just fetched.

IMPLICATION: Performance may be negatively impacted.

WORKAROUND: Setting bit 31 is considered the best workaround.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600019. B3 COBR Branch Trace

PROBLEM: A Branch Trace may be incorrectly reported on a cobr (Compare and
Branch) instruction that is scoreboarded by a previous instruction. This occurs only
when trace faults are enabled. Because the compare is scoreboarded, the branch never
takes place; however, the trace fault is still reported.

IMPLICATION: Debugger may report branch trace when one did not occur.

WORKAROUND: Do not order a cobr instruction just after instructions such as multiply
where one could possibly be using resources needed by the cobr instruction.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

18 of 31 July, 1996 272875-001

9600020. B5 EOP and DREQ Deassertion

PROBLEM: A DMA cycle may terminate prematurely if the DMA controller accepts a
DMA request and EOP occurs while DREQ is still asserted. Data may be buffered
internally but never stored.

IMPLICATION: Data corruption may occur.

WORKAROUND: Do not assert EOP while DREQ is asserted.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600021. B6 DREQ Sampling

PROBLEM: In some DMA modes, the DREQ signal is sampled when the internal wait-
state generator has timed out, regardless of the state of the external READY signal.
This could lead to extra DMA cycles being generated erroneously by the incorrect
sampling of DREQ during the time that READY is deasserted by an external memory
system. Sampling of DREQ does not depend on the external system trying to complete
a slow memory cycle; i.e., DREQ sampling does not depend on external READY.

IMPLICATION: Extra DMA transfers may occur.

WORKAROUND: Make sure DREQ is de-asserted before wait-state timer expires.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600022. B8 SYSCTL followed by RET May Incorrectly Fault

PROBLEM: A sysctl instruction followed by a ret instruction with no instructions in
between may cause the false generation of an OPERATION.UNIMPLEMENTED fault.

IMPLICATION: User software operation may be negatively impacted.

WORKAROUND: Insert an instruction other than ret between sysctl and Ret instruction.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 19 of 31

9600023. B10 Terminal Count Operation

PROBLEM: On the 80960CA only (80960CF not affected): on steppings previous to the
D-step the Terminal Count (TC) pin timing does not become active at the specified time.
TC should have the same timing as DACK#, but does not. The following describes the
condition:

Source Synchronized Demand Mode (SSDEM): The TC bit will not become active
until all stores related to the last access are issued. For most aligned transfers in which
there is no unpacking, the number of clock cycles between the deassertion of the last
DACK and the active edge of TC will be 20. This assumes the 4:1 DMA cycle mode.

Block Mode: Same as SSDM with above.

Destination Synchronized Demand Mode (DSDEM): The last store is synchronized
with the external bus. When the DACK deasserts, there are approximately 17 cycles to
the active edge of TC.

The TC pin externally indicates when the DMA has fully completed its transfer and is no
longer active. The TC bit in the DMA control register is set in parallel with pin activation.

Current Operation: On the D step -- which is not affected by this erratum, TC is active
during the last DACK# of that channel and has the same timing as DACK#. For Source
Synchronized transfers, TC is active during the last load. For Destination Synchronized
transfers, TC is active during the last store.

If the last load/store bus request is executed as multiple bus accesses (such as a quad
store to a non burst bus or unequal bus widths), DACK# and TC are active for the entire
bus request (multiple accesses) with only one negative edge and one positive edge. An
exception is if Nxda wait states are used. In this case, TC is only active for the first
access. Note that TC is not a one clock cycle pulse but a pulse as long as the DACK.

IMPLICATION: Performance may be negatively impacted.

WORKAROUND: Rely on TC only after waiting the appropriate amount of time.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600024. B11A Testif and Faultif Cause Incorrect Branch Trace

PROBLEM: The testif and faultif instructions may cause branch traces.

IMPLICATION: Debugger may report branch trace when one did not occur.

WORKAROUND: None.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

20 of 31 July, 1996 272875-001

9600025. B11B Branch Tracing Misses Branch Instruction

PROBLEM: When modpc is used to enable tracing and the Branch Tracing bit is set in
the Process Control Register, a branch in parallel with the modpc instruction is not
traced. If tracing is already enabled and modtc is used to turn on branch tracing, the
same thing happens with a branch in parallel with the modtc.

IMPLICATION: Debugger may miss a branch breakpoint.

WORKAROUND: Separate the branch instruction from modtc or modpc by at least one
instruction.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600026. B12 Disabling Interrupts with sysctl is non-atomic

PROBLEM: When the sysctl instruction is used to disable interrupts, there is a two-
clock period window of time where interrupts can still be received and posted.

IMPLICATION: User software must take this period into account.

WORKAROUND: None.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600027. B13 Unaligned DMA Transfer Modes When Using
Incrementing Source and Destination Address

PROBLEM: Existing DMA functionality limits the alignment address of the synchronizing
device to the DMA transfer width; transfer width is equal to the synchronized side of the
DMA transfer. For example, for a 32-32 source synchronized transfer, the source
address must be aligned to word boundary (synchronizing side), while the destination
can be aligned to a byte boundary. For a 16-32 destination synchronized transfer, the
destination must be aligned to a word boundary, and the source address can be aligned
to a byte boundary.

Byte count must also be aligned to the transfer width boundary or evenly divisible by the
transfer.

IMPLICATION: Incorrect DMA operation will result.

WORKAROUND: Use only aligned source addresses.

STATUS: Fixed on the D stepping. Refer to Summary Table of Changes to determine
the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 21 of 31

9600028. B14 Data Cache Global Disable Bit is 0 After Device Reset

PROBLEM: The data cache comes up globally enabled after device reset

IMPLICATION: Data cache operation may not function as expected.

WORKAROUND: Applications that need the data cache disabled after a device reset
should disable the data cache by executing a setbit 30,sf2,sf2 before referencing any
data that resides in a cacheable region.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600029. C1 Instruction Cache

PROBLEM: When the instruction cache is disabled, two cache lines (16 words) of the
cache remain enabled. These two lines are not part of the 1024 byte cache.

IMPLICATION: Instructions of an extremely tight loop may be cached even when cache
is disabled.

WORKAROUND: None.

STATUS: There are no plans to fix. . Refer to Summary Table of Changes to determine
the affected stepping(s).

9600030. C2 Register Cache

PROBLEM: Local Register Cache Size - programming a register cache size of 0 causes
15 sets to be allocated. During proper operation, the register cache should be disabled
by programming 0 frames.

IMPLICATION: User software must take this restriction into account.

WORKAROUND: Use data cache enable bit to disable data cache.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

22 of 31 July, 1996 272875-001

9600031. C3 Data Address Breakpoint Fault on a CALLX

PROBLEM: When a Data Address breakpoint fault occurs on a CALLX, or any call with
a frame flush, the return IP (RIP) reported will be that of the call. Per specification, the
RIP should point to the first instruction of the called procedure.

IMPLICATION: Debugger must provide additional logic.

WORKAROUND: The trace fault handler must detect this condition and adjust the RIP
before returning.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600032. C4 Data Address Breakpoints on Stacks and Tables

PROBLEM: If a data address breakpoint occurs on a memory access associated with
the processor's interrupt or fault context switches or execution of a CALLS instruction,
the fault may not be signaled. If it is signaled, the associated fault record may be
incorrect and the Trace Controls register (TC) may be corrupted. During proper
operation, the data address breakpoint fault would be signaled after completion of all
operations associated with these microcoded sequences.

IMPLICATION: This may result in improper debugger behavior.

WORKAROUND: Data address breakpoints should not be set on the system procedure
table, fault table, interrupt table, or stack locations which will contain interrupt records or
fault records.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600033. C5 Pipelined Region Limitation

PROBLEM: Each pipelined region which has burst enabled must have Ready Control
disabled in that region. During proper operation, the ready pins are ignored during reads
in a pipelined region but can be used in a write to a pipelined region.

IMPLICATION: User software must take this restriction into account.

WORKAROUND: Disable READY for pipelined-burst memory regions.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 23 of 31

9600034. C6 EOP and Buffer Complete Interrupt

PROBLEM: There is no way to distinguish between an interrupt caused by an EOP and
the interrupt that occurs at the end of a buffer in a DMA transfer when using source
AND destination chaining.

IMPLICATION: User is not provided enough information about the interrupt.

WORKAROUND: To distinguish between the two interrupts, connect EOP to an
interrupt pin.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600035. C7 MULI Fault Return

PROBLEM: A situation can occur where a MULI instruction generates a fault and the
next instruction after the MULI is a complex memory instruction which is scoreboarded
from some previous instruction. When the fault handler microcode executes, it may not
return a correct RIP and, therefore, the complex memory instruction may never
complete. All that is guaranteed is that the fault handler returns the proper IP for the
MULI instruction.

IMPLICATION: Users must be aware of this fault handler restriction.

WORKAROUND: Fault handler for MULI should explicitly adjust RIP.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600036. C8 (B7) Fault Handler Executes before Interrupt Handler

PROBLEM: The i960 Cx Microprocessor User’s Manual states that if an interrupt
occurs at the same time that an instruction generates a fault, the interrupt will be
serviced first and then the fault handler executes. Currently, the handler is executed
first, then the interrupt service routine is executed.

IMPLICATION: This could result in abnormally long interrupt latencies and negatively
impact performance.

WORKAROUND: None.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

80960CA/CF SPECIFICATION UPDATE

24 of 31 July, 1996 272875-001

 9600037. C9 (A17) Extra RIP Read

PROBLEM: The return instruction (RET) does not perform as documented in the i960
Cx Microprocessor User’s Manual. At the end of RET execution, an extra RIP (Return
Instruction Pointer) read from the previous Stack Frame occurs. This may cause
problems if the current PFP (Previous Frame Pointer) is not valid, such as during cold
Reset. If the memory region that the PFP points to has Ready enabled and no memory
exists in that region, the processor hangs.

IMPLICATION: User software must take this into account.

WORKAROUND: Make sure that the PFP is valid.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600038. C10 (B9) Disabling and Enabling Interrupts via Modifying
the Interrupt Mask Register (sf1)

PROBLEM: One way to enable and disable interrupts is to mask interrupts by
controlling certain bits of the Interrupt Mask Register (IMSK or sf1). Setting appropriate
bits of sf1 to zero masks individual interrupts at the input pins. This occurs as soon as
the IMSK register is modified by an instruction such as setbit or move. However,
interrupts that occur at or just before the IMSK register is modified can still be serviced
for up to eight clock cycles after the execution of the instruction that modifies the IMSK
register.

IMPLICATION: User software must take this into consideration.

WORKAROUND: To ensure that critical code is not interrupted, insert eight no-op (mov
g0, g0) instructions immediately after the instruction modifying the IMSK register.
Conversely, after unmasking interrupts, it takes four clock cycles after modifying the
IMSK register to generate interrupts.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600039. C10b Microcoded Instructions Can Be Corrupted after
Writing to Interrupt Mask Register (sf1)

PROBLEM: One way to mask or disable interrupts is to clear certain bits in the Interrupt
Mask Register (IMSK or sf1). If a hardware interrupt occurs during the same clock in
which it was masked by a write to IMSK, any microcoded instruction executed within
eight clock cycles following the write to IMSK will be corrupted.

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 25 of 31

IMPLICATION: User software must take this into consideration.

WORKAROUND: Make sure that no microcoded instructions are executed in eight
clocks following any write to the IMSK register. The microcoded instructions are covered
in Appendix A of the user's manual. It is probably best to simply insert 8 no-op (mov
g0,g0) instructions after writing to the IMSK register, as this is also the workaround for
errata C10.

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600040. C11 NMI during Built-In-Self-Test (BIST)

PROBLEM: If an NMI occurs during BIST, the processor hangs and does not recover
until the processor is reset.

IMPLICATION: Improper processor state may result.

WORKAROUND: Make sure NMI cannot occur during processor self test.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600041. C12 BTERM# Functionality

PROBLEM: This applies to 8-bit and 16-bit mode. This is best described by example:
lda 0x0, r3
ldq (r3), r4

Correct Operation

If BTERM# is asserted during data(0), ADS# will be asserted again for data(1) and the
access will end by asserting BLAST# while reading data(3).

Ta data0 Ta data1 data2 data3 Ta data4

PCLK

/ADS

/BTERM

/BLAST

 Figure 1: Timings for Correct Operation

Incorrect Operation

80960CA/CF SPECIFICATION UPDATE

26 of 31 July, 1996 272875-001

The access spans over data3. For example, BLAST# is asserted while data4 is read.

Ta data0 Ta data1 data2 data3 data4 Ta

PCLK

/ADS

/BTERM

/BLAST

 Figure 2: Timings for Incorrect Operation

IMPLICATION: Memory and I/O systems must accept these forms of access when
using BTERM.

WORKAROUND: None.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600042. C13 Modifying the Previous Frame Pointer (PFP) before
Returning

PROBLEM: If a return is performed immediately after the PFP’s three least significant
bits (Encoding of Return Status Field) is modified, the return instruction may operate
improperly. This can occur because the return instruction may not see the new value in
the PFP. This is most likely to occur when instructions are cached. See Example 1.

Example 1:
or g1, 7, pfp /* modify return status in PFP */

ret

IMPLICATION: User software must take this into consideration.

WORKAROUND: PFP modification must occur at least three clock cycles before the
return instruction is executed. One solution is to place three no-op (mov g0, g0)
instructions between the instruction that modifies the PFP and the return instruction.
See Example 2.
Example 2:

or g1, 7, pfp /* modify return status in PFP */
mov g0, g0 /* no-op */
mov g0, g0 /* no-op */
mov g0, g0 /* no-op */
ret

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 27 of 31

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

9600043. Erroneous TC Can Be Signaled When Using Multiple DMA
Channels

PROBLEM: A terminal count on one DMA channel causes the assertion of TC on
another DMA channel under certain specific conditions. This only occurs when one or
more channels are programmed as “source synchronized”. The problem is due to the
lack of synchronization (by the CPU microcode) of the store operation when performing
“Source Synchronized” DMA transfers. When an end of buffer condition occurs on a
source-synchronized transfer, the DMA microcode asserts an internal signal used by the
bus controller to cause the assertion of TC on the next DMA transfer (DACK asserted).
The bus controller resets this handshaking bit after the access is completed on the bus.
A DREQ for another channel which occurs near the last access of a source-
synchronized transfer causes internal microcode process switching between the load
and store of the source-synchronized transfer. When this occurs, the bus controller
incorrectly fails to reset this internal TC request bit. This causes the next DMA transfer
to incorrectly include an active TC.

WORKAROUND: Any of the following four workarounds may be used:

1) When using multiple DMA channels, do not use any source-synchronized
transfers. Fly-by and destination-synchronized transfers do not exhibit this
behavior.

2) Ensure that when performing source-synchronized transfers that no other DMA
activity can occur on other channels.

3) Do not use the TC output signal, use interrupts instead. Program the transfer
count to perform all but one transfer using the DMA. Enable interrupt on buffer
complete bits. The interrupt handler should complete the access using an
address similar to the DMA device, but change one address bit so it can be
used as a pseudo TC. For example, if address bit 22 is not decoded in the
system, it can be used as follows:

 0x00001000 Regular access to address 0x1000 (DMA access)

 0x00401000 Last access to address 0x1000 (From Interrupt handler)

4) Use a fixed high-priority DMA dummy channel (requires an unused DMA
channel). Gate the TC pin of each source-synchronized DMA channel, with an
“and” gate, to the DREQ pin of the highest priority channel which is
programmed to perform a dummy fly-by transfer from memory. This will cause
the erroneous TC to occur on an unused channel.

80960CA/CF SPECIFICATION UPDATE

28 of 31 July, 1996 272875-001

STATUS: There are no plans to fix. Refer to Summary Table of Changes to determine
the affected stepping(s).

SPECIFICATION CHANGES

None for this revision of this specification update.

SPECIFICATION CLARIFICATIONS

None for this revision of this specification update.

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 29 of 31

DOCUMENTATION CHANGES

001. Chapter 4 - Instruction Set Summary

ITEM: Page 4-22, Table 4-4 For the CF, Mode 100 was incorrectly shown as locking 4
Kbytes; it now correctly shows 2 Kbytes.

In the third paragraph below the table, the second sentence was removed and replaced
with bullets that more accurately describe the load and lock mechanism. This errata also
occurs in Table 12-2 on page 12-22. The corrected pages are appended to this
document.

002. Chapter 9 - Instruction Set Reference

ITEM: On page 9-78, in the sysctl description, the last paragraph on the page is
incorrect and should be removed. It reads:

"When executing a sysctl instruction to load and lock either half or all of the cache, it is
necessary to provide a cache load address. The last two bits of the cache load address
must be 10base2 for the cache locking mechanism to work properly."

003. Chapter 11 - External Bus Description

ITEM: In Figure 11-2 (pg 11-8) WAIT# signal is incorrectly shown as transitioning; it now
correctly shows that the signal is asserted high throughout. The corrected page is
appended to this document.

004. Chapter 12 - Interrupt Controller

ITEM: Page 12-11 Figure 12-6. Vector Cache Enable bits (ICON.vce) are incorrectly
defined.

Bit 0 was debounce; it now is correctly defined as Fetch From External Memory.

Bit 1 was Fast; is now correctly defined as Fetch From Internal RAM. The corrected
page is appended to this document.

005. Chapter 12 - Page 12-22, Table 12-2

ITEM: For the CF, Mode 100 was incorrectly shown as locking 4 Kbytes; it now correctly
shows 2 Kbytes. This errata also occurs on page 4-22. The corrected pages are
appended to this document.

80960CA/CF SPECIFICATION UPDATE

30 of 31 July, 1996 272875-001

006. Chapter 13 - DMA Controller

ITEM: Page 13-22, Figure 13-9. DMA Command Register bits 30 (Data Cache Global
Disable) and 31 (Data Cache Invalidate) are not defined in Figure 13-9 or in the text that
follows the figure. These were correctly defined in the i960 Cx Microprocessor User’s
Manual supplement and unintentionally omitted from the latest revision of the user’s
manual. The corrected page is appended to this document.

007. Appendix A - Instruction Execution and Performance
Optimization

ITEM: Page A-29, Table A-11. Mnemonic "bbe” is changed to “be." The corrected page
is appended to this document.

008. Appendix A - Page A-42, Section A.2.6.10

ITEM: modpc definition changed to say, "requires 25 clocks."

modac definition changed to say, "requires 11 clocks."

The corrected page is appended to this document. See also the document change for
the Instruction Set Quick Reference (Documentation Item #11).

009. Appendix B - Bus Interface Examples

ITEM: On pg B-5, Fig B-3, the ADS# signal incorrectly showed a deassertion in the 6th
cycle and the 3rd deassertion in the 11th cycle. It now correctly shows NO deassertion
in the 6th cycle and the last deassertion in the 10th cycle. (2nd deassertion removed;
3rd deassertion shifted left 1 cycle). The corrected page is appended to this document.

010. Appendix F - Register and Data Structures

ITEM: Appendix F is a compilation of all registers and data structures; therefore, this
appendix has the same errata indicated in Figure 13-9 and Figure 12-6.

011. i960 ® Cx Microprocessor Users Guide Instruction Set Quick
Reference (272220-002)

ITEM: Page 9: (changes indicated with heavier lines in the corrected page, which is
appended to this document.): divi Instruction Issue changed to 13, emul Result Latency
changed to 2,3,5,6

80960CA/CF SPECIFICATION UPDATE

272875-001 July, 1996 31 of 31

012. i960 ® Cx Microprocessor Users Guide Instruction Set Quick
Reference (272220-002)

ITEM: Page 11: (changes indicated with heavier lines in the corrected page, which is
appended to this document.): modac Instruction Issue changed to 11; Result Latency
changed to 11. modpc Instruction Issue changed to 25; Result Latency changed to 25.

INSTRUCTION SET SUMMARY

4-22

October 28, 1994 11:55 am g:\techpubs\80960\prm\book\inst_sum.frm

INTEL CONFIDENTIAL
(until publication date)

Mode 0002 configures the cache as two way set associative. Mode XX12 completely disables the
cache. Either of these cache configurations can be specified when the processor initializes by
programming the Cache Configuration Word in the PRCB. See section 14.2.6, “Process Control
Block (PRCB)” (pg. 14-8). The modes allow the cache to be turned off temporarily to aid in
debugging.

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide
decoding instructions. The instruction buffer operates as a small cache, organized as two sets of
two way set associative cache, with a four word line size. When the main cache is disabled, small
code loops may still execute entirely within the instruction buffer.

Modes 1002 and 1102 select cache load-and-lock options:

• On the CA: mode 1002 loads and locks the full 1 Kbyte cache, 1102 loads and locks half the
cache.

• On the CF: either mode (1002 and 1102) loads and locks half the cache.

The sysctl instruction’s field 3 must contain an address; this address points to a quad-word
aligned block of memory in the external address space. Instructions starting at this address are
loaded into the cache. These instructions can only be accessed by selected interrupts which vector
to these instructions’ addresses. The load-and-lock mechanism selectively optimizes latency and
throughput for interrupts.

4.3.2.4 Reinitialize Processor

Executing sysctl with message type 03H reinitializes the processor. sysctl fields 3 and 4 must
contain, respectively, the First Instruction Pointer and the PRCB Pointer. Reinitialization bypasses
the i960 Cx processors’ built-in self-test. The PRCB is processed and the processor branches to the
first instruction. See section 14.2, “INITIALIZATION” (pg. 14-2) for a complete description of
the processor reinitialization steps.

Table 4-4. Cache Configuration Modes

Mode Field Mode Description 80960CA 80960CF

0002 normal cache enabled 1 Kbyte 4 Kbytes

XX12 full cache disabled 1 Kbyte 4 Kbytes

1002 Load and lock full cache (execute off-chip) 1 Kbyte1 2 Kbytes2

1102
Load and lock half the cache;
remainder is normal cache enabled

512 bytes 2 Kbytes

0102 Reserved 1 Kbyte 4 Kbytes

NOTES:

1. On the CA, only interrupt procedures can execute in the locked portion of the cache.

2. On the CF, interrupt procedures and other code can operate in the locked portion of the cache.

ERRATA:
06/14/94:
Page 4-22, Table 4-4
For the CF, Mode 1002 was incorrectly
shown as locking 4 Kbytes; it now
correctly shows 2 Kbytes.
In the third paragraph below the table,
the second sentence was removed
and replaced with bullets that more
accurately describe the load and lock
mechanism.
This errata also occurs on page 12-
22.

EXTERNAL BUS DESCRIPTION

11-8

Figure 11-2. Quad-word Read from 32-bit Non-burst Memory

IN1 IN2 IN3IN0

ADS

A31:4, SUP

DMA, D/C,

BE3:0, LOCK

W/R

BLAST

DT/R

DEN

WAIT

D31:0

PCLK

Valid

00 1101 10

re
se

rv
ed Byte

Order
Bus

Width NWDD NWAD NXDA NRDD NRAD

Pipe-
Lining

External
Ready
Control

Burst

re
se

rv
ed

31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0

X
x

0
0

1
01

32-bit
10

X
xx

X
xxxxx

X 0 OFF
0

Disabled
0

0
0..0

Disabled
0

Ti Ti A D A D A D A D 1 A

Function

Bit

Value

F_CA039A

A3:2

00000xx

Errata 10/31/94 SRB.

Wait signal incorrectly shown
as transitioning; it now correctly
shows that the signal is
asserted high throughout.

INTERRUPT CONTROLLER

12-11

12

12.3.3 Programmer’s Interface

The programmer’s interface to the interrupt controller is through four control registers and two
special function registers (all described in this section): ICON control register, IMAP0-IMAP2
control registers, IMSK special-function register (sf1) and IPND special function register(sf0).

12.3.4 Interrupt Control Register (ICON)

The ICON register (Figure 12-6) is a 32-bit control register that sets up the interrupt controller.
Software can load this register using the sysctl instruction. The ICON register is also automati-
cally loaded at initialization from the control table in external memory.

Figure 12-6. Interrupt Control (ICON) Register

Interrupt Mode - ICON.im
(00) dedicated
(01) expanded
(10) mixed
(11) reserved

Signal Detection Mode - ICON.sdm
 (0) level-low activated
 (1) falling-edge activated

Global Interrupts Enable - ICON.gie
 (0) enabled
 (1) disabled

Mask Operation - ICON.mo
(00) move to R3, mask unchanged
(01) move to R3 and clear for dedicated mode interrupts
(10) move to R3 and clear for expanded mode interrupts
(11) move to R3 and clear for dedicated and expanded

Vector Cache Enable - ICON.vce
 (0) fetch from external memory
 (1) fetch from internal RAM

Sampling Mode -ICON.sm
 (0) debounce
 (1) fast

Reserved
(Initialize to 0)

F_CA053A

DMA Suspension - ICON.dmas
 (0) run on interrupt
 (1) suspend on interrupt

Interrupt Control Register (ICON)

28 24 20 16 12 8 4 031

 d
m
a
s

s
m

v
c
e

m
o
1

m
o
0

g
i
e

s
d

7
m

s
d
m
6

s
d
m
5

s
s
m
4

s
d
m

s
d
m

3 2

s
d
m
1

s
d
m
0

i
m
1

i
m
0

mode interrupts

Errata (12-06-94 SRB)

Vector Cache Enable
bits (ICON.vce)
incorrectly defined.
Bit 0 was “debounce”;
it now is correctly
defined as “Fetch From
External Memory”.

Bit 1 was “Fast”; is now
correctly defined as
“Fetch From Internal
RAM”.

INTERRUPT CONTROLLER

12-22

The i960 CA processor supports 512 bytes or 1 Kbytes of locked cache. The i960 CF processor,
with larger instruction cache, supports 2 Kbytes or 4 Kbytes of locked cache. As indicated in Table
12-2, the mode field of the sysctl instruction specifies the size of locked cache.

When sysctl executes (mode 1102) with a command to lock half of the instruction cache, one way
of the i960 CF processor’s two-way set associative cache is preloaded and locked from the
specified address. The other half of the instruction cache functions as a 2 Kbyte direct-mapped
instruction cache. On the i960 CA processor, the instruction cache’s unlocked portion functions as
a 512 byte two-way set associative cache.

The i960 CF processor’s instruction scheduler checks both ways of the cache for every instruction
fetched. If an instruction is not found in either way, it is fetched from external memory and cached
in the unlocked way.

The i960 CA processor only allows interrupt handlers to be locked in the cache. The interrupt
vector’s two least-significant bits must be set to 0102 to cause the processor to fetch the interrupt
procedure from locked cache rather than the normal memory/cache hierarchy. The interrupt
procedure executes from the locked cache until a miss occurs in the locked section.

The cache remains locked until the cache mode is changed by the next sysctl instruction. The
invalidate instruction cache sysctl message invalidates both the locked and unlocked halves of the
cache. Refer to section 4.3, “SYSTEM CONTROL FUNCTIONS” (pg. 4-19) for details on using
the sysctl instruction to configure the instruction cache.

Table 12-2. Cache Configuration Modes

Mode Field Mode Description 80960CA 80960CF

0002 normal cache enabled 1 Kbyte 4 Kbytes

XX12 full cache disabled 1 Kbyte 4 Kbytes

1002 Load and lock half cache (execute off-chip) 1 Kbyte1 2 Kbytes2

1102
Load and lock half the cache;
remainder is normal cache enabled

512 bytes 2 Kbytes

0102 Reserved 1 Kbyte 4 Kbytes

NOTES:
1. On the CA, only interrupt procedures can execute in the locked portion of the cache.
2. On the CF, interrupt procedures and other code can operate in the locked portion of the cache.

ERRATA:
06/14/94:
Page 12-22, Table 12-2
For the CF, Mode 1002
was incorrectly shown as
locking 4 Kbytes; it now
correctly shows 2 Kbytes.
This errata also occurs
on page 4-22.

DMA CONTROLLER

13-22

Figure 13-9. DMA Command Register (DMAC)

The channel enable bits (bits 3-0) enable (1) or suspend (0) a DMA after a channel is set up. Bits 0
through 3 enable or disable channels 0 through 3, respectively. If an enable bit for a channel is
cleared when a channel is active, the DMA is suspended after pending DMA requests for the
channel are completed and all bus activity for the pending request is complete. The channel active
bits indicate the channel is suspended. DMA operation resumes at the point it was suspended when
the channel enable bit is set. To ensure that a DMA channel does not start immediately after it is
set up, the enable bit for the channel must be cleared by software before sdma is issued. This is
necessary because the DMA controller does not explicitly clear the enable bit after a DMA has
completed.

28 24 20 16

12 8 4 0

31

Channel Active Flags - DMAC.ca
(0) idle
(1) active

Channel Done Flags - DMAC.cd
(0) not done
(1) done (software must reset)

c
a

c
a
1

c
t
c

c
t
c

c
t
c

c
t
c

c
e
3

c
e
22

3 2 1 0

c
d
0

c
a
3

c
e
1

c
e
0

Channel Enable Bits - DMAC.ce
(0) suspend
(1) enable

Channel Terminal Count Flags - DMAC.ctc
(0) non-zero byte count
(1) zero byte count (software must reset)

t p
m

c
w
3

c
w
2

c
w
1

c
w
0

c
d
3

c
d
2

c
d
1

Throttle Bit - DMAC.t
(0) 4 DMA to 1 user clock max
(1) 1 DMA to 1 user clock max

Channel Wait Bits - DMAC.cw
(0) read next descriptor
(1) descriptor has been read

Priority Mode Bit - DMAC.pm
(0) fixed
(1) rotating

Reserved
(Initialize to 0)

F_CA066A

c
a
0

DMA Command Register (DMAC)

Data Cache Global Disable - DMAC.dcgd
(0) Enabled
(1) Disabled

Data Cache Invalidate - DMAC.dci
(0) Enabled
(1) Invalidate

d
c
i

d
c
g
d

ERRATA:

7/11/94

DMA Command
Register bits 30
(Data Cache Global
Disable) and 31 (Data
Cache Invalidate) not
defined in Figure 13-9
or in the text that
follows the figure.

These were correctly
defined in the i960®
CF Microprocessor
Reference Manual
Supplement and
unintentionally
omitted from this
manual.

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

A-29

A

w: b x
 ...
x: b y
 ...
y: b z
 ...
z: b w

Figure A-14. CTRL Pipeline for Branches to Branches

Figures A-15, A-16 and A-17 show the IS issue stage and the CTRL pipeline for each case of
possible IS branch lookahead detection. Assuming that the IS can see four instructions every clock
from the instruction cache, the branch can be in the first, second or third group of instructions seen.

An executable group of instructions is a group of sequential instructions in the currently visible
quad-word which can be issued in the same clock. See section A.2, “PARALLEL INSTRUCTION
PROCESSING” (pg. A-14).

Figure A-15 shows the cases where a branch, when first seen by the IS, is in the first executable
group of instructions. The IS issues the branch immediately, along with the first one (or two)
instruction(s) ahead of it. Since the branch takes two clocks in the CTRL pipeline to execute, a
one-clock break in the IS’s ability to issue instructions occurs. On the next clock, the IS issues a
new group of instructions from the branch target.

Table A-11. CTRL Instructions

Mnemonic Issue Clocks Latency Clocks
Back-to-Back Throughput

Clocks

be
bne
bl
ble
bg
bge
bo
bno

1 2 2

Instruction
Scheduler

Issue w: b x: b y: b z: b w: b

CTRL
Pipeline

Execute

ERRATA (12/15/95) SRB

In Appendix A, Table A-11,
Mnemonic “bbe” is changed
to “be”.

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

A-42

A.2.6.7 Conditional Faults

fault* instructions are implemented with micro-flows and require one issue clock if the prediction
bit is correct and no fault occurs. If the prediction bit is incorrect and no fault occurs, the instruc-
tions require two issue clocks. The time it takes to enter a fault handler varies greatly depending
upon the state of the processor’s parallel processing units.

A.2.6.8 Debug

mark and fmark are implemented with micro-flows. mark takes one issue clock if no trace fault is
signaled. If a trace fault is signaled or fmark is executed, the processor performs an implicit call to
the trace fault handler. As with conditional faults, the time required to enter a fault handler varies
greatly.

A.2.6.9 Atomic

Atomic instructions are implemented with micro-flows. atadd takes seven issue clocks and atmod
takes eight issue clocks to execute with an idle bus in a zero-wait state system. Memory wait states
directly affect execution speed.

A.2.6.10 Processor Management

Processor management instructions implemented as micro-flows include: modpc, modac, modtc,
syncf, flushreg, sdma, udma and sysctl.

modpc requires 25 clocks.

modac requires 11 clocks.

modtc requires 15 clocks.

syncf takes 4 issue clocks if there are no possible outstanding faults. Otherwise, the
instruction locks the IS until it is certain that no prior instruction will fault.

flushreg requires 24 clocks for each frame that is flushed. This translates to 120 cycles to
flush five frames. Wait states in the memory being written affect this
instruction’s performance.

sdma executes in 22 clocks. In the case of back-to-back sdma instructions, 40 clocks
are required.

udma requires 4 clocks.

sysctl Timings shown in Table A-19 assume a zero wait-state memory system.

ERRATA (12/15/95) SRB

modpc definition changed to say, “requires 25 clocks.”

modac definition changed to say, “requires 11 clocks.”

BUS INTERFACE EXAMPLES

B-4

B.1.4 Waveforms

Figure B-2 shows a Non-Pipelined SRAM Read Waveform; Figure B-3 shows a Non-Pipelined
SRAM Write Waveform.

Figure B-2. Non-Pipelined SRAM Read Waveform

A D D D D A D D D D A D

Valid Valid Valid

CLK

CS

A3:2

A31:4

DATA

W/R

BLAST

CE

OE

ADS

NRAD = 0
NRDD = 0
NXDA = 0

0 - Wait State

Non-Pipelined
Burst Read

21 30 21 30 0

21 30 21 30 0

F_CA102A

ERRATA (10-31-94) SRB
On pg B-5, Fig B-3, the
ADS# signal incorrectly
showed a deassertion in
the 6th cycle and the 3rd
deassertion in the 11th
cycle.

It now correctly shows
NO deassertion in the 6th
cycle and the last
deassertion in the 10th
cycle. (2nd deassertion
removed; 3rd deassertion
shifted left 1 cycle).

REGISTER AND DATA STRUCTURES

F-12

Figure F-12. DMA Command Register (DMAC)

Section 13.10.1, “DMA Command Register (DMAC)” (pg. 13-21)

28 24 20 16

12 8 4 0

31

Channel Active Flags - DMAC.ca
(0) idle
(1) active

Channel Done Flags - DMAC.cd
(0) not done
(1) done (software must reset)

c
a

c
a
1

c
t
c

c
t
c

c
t
c

c
t
c

c
e
3

c
e
22

3 2 1 0

c
d
0

c
a
3

c
e
1

c
e
0

Channel Enable Bits - DMAC.ce
(0) suspend
(1) enable

Channel Terminal Count Flags - DMAC.ctc
(0) non-zero byte count
(1) zero byte count (software must reset)

t p
m

c
w
3

c
w
2

c
w
1

c
w
0

c
d
3

c
d
2

c
d
1

Throttle Bit - DMAC.t
(0) 4 DMA to 1 user clock max
(1) 1 DMA to 1 user clock max

Channel Wait Bits - DMAC.cw
(0) read next descriptor
(1) descriptor has been read

Priority Mode Bit - DMAC.pm
(0) fixed
(1) rotating

Reserved
(Initialize to 0)

F_CA066A

c
a
0

DMA Command Register (DMAC)

Data Cache Global Disable - DMAC.dcgd
(0) Enabled
(1) Disabled

Data Cache Invalidate - DMAC.dci
(0) Enabled
(1) Invalidate

d
c
i

d
c
g
d

ERRATA: 7/11/94

DMA Command
Register bits 30 (Data
Cache Global Disable)
and 31 (Data Cache
Invalidate) not defined
in Figure 13-9 or in the
text that follows the
figure.

These were correctly
defined in the i960®
CF Microprocessor
Reference Manual
Supplement and
unintentionally omitted
from this manual.

REGISTER AND DATA STRUCTURES

F-15

F

Figure F-16. Interrupt Control (ICON) Register

Section 12.3.4, “Interrupt Control Register (ICON)” (pg. 12-11)

Interrupt Mode - ICON.im
(00) dedicated
(01) expanded
(10) mixed
(11) reserved

Signal Detection Mode - ICON.sdm
 (0) level-low activated
 (1) falling-edge activated

Global Interrupts Enable - ICON.gie
 (0) enabled
 (1) disabled

Mask Operation - ICON.mo
(00) move to R3, mask unchanged
(01) move to R3 and clear for dedicated mode interrupts
(10) move to R3 and clear for expanded mode interrupts
(11) move to R3 and clear for dedicated and expanded

Vector Cache Enable - ICON.vce
 (0) Fetch From External Memory
 (1) Fetch From Internal RAM

Sampling Mode -ICON.sm
 (0) debounce
 (1) fast

Reserved
(Initialize to 0)

F_CA053A

DMA Suspension - ICON.dmas
 (0) run on interrupt
 (1) suspend on interrupt

Interrupt Control Register (ICON)

28 24 20 16 12 8 4 031

 d
m
a
s

s
m

v
c
e

m
o
1

m
o
0

g
i
e

s
d

7
m

s
d
m
6

s
d
m
5

s
s
m
4

s
d
m

s
d
m

3 2

s
d
m
1

s
d
m
0

i
m
1

i
m
0

mode interrupts

Errata (12-06-94 SRB)

Vector Cache Enable
bits (ICON.vce)
incorrectly defined.

Bit 0 was “debounce”;
it now is correctly
defined as “Fetch From
External Memory”.

Bit 1 was “Fast”; is now
correctly defined as
“Fetch From Internal
RAM”.

i960® Cx Microprocessor User’s Guide — Instruction Set Quick Reference

March 1994 Page 9 of 18 Order Number 272220-002

concmpi
Conditional Compare Integer

src1, src2,
reg/lit/sfr reg/lit/sfr

if (AC.cc2 = 0)
{
if (src1 ≤ src2) AC.cc ← 010;

else AC.cc ← 001;
}

— — — ÷ ÷ ÷ — ÷ — — I — I U — — — M 5A:3 REG R 0.5 - 1 1

concmpo
Conditional Compare Ordinal

src1, src2,
reg/lit/sfr reg/lit/sfr

if (AC.cc2 = 0)
{
if (src1 ≤ src2) AC.cc ← 010;

else AC.cc← 001;
}

— — — ÷ ÷ ÷ — ÷ — — I — I U — — — M 5A:2 REG R 0.5 - 1 1

divi
Divide Integer

src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

if (src1 =0) Arithmetic Zero Divide fault
dst ← quotient (src2/src1)

/* src2, src1 and dst are 32 bits*/

— — ¦ — — — — ÷ — — I — I U
IO
ZD

— — M 74:B REG m 13 37

divo
Divide Ordinal

src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

if (src1 = 0) Arithmetic Zero Divide fault
dst ← quotient (src2/src1)

/* src2, src1 and dst are 32 bits */

— — — — — — — ÷ — — I — I U ZD — — M 70:B REG m 3 35,36

ediv
Extended Divide

src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

if (src1 = 0) Arithmetic Zero Divide fault
dst ← remainder (src2/src1)
dst + 1 ← quotient (src2/src1)

/* src2 is 64 bits; src1, dst and dst + 1 are 32 bits */

— — — — — — — ÷ — — I — I U ZD — — M 67:1 REG R 3 35,36

emul
Extended Multiply

src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

dst ← src2 * src1
/* src2 and src1 are 32 bits; dst is 64 bits */

— — — — — — — ÷ — — I — I U — — — M 67:0 REG R 0.5 - 1 2,3,5,6

eshro
Extended Shift Right Ordinal

src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

dst ← src2 >> (src1 mod 32) /*src2 is 64 bits */

— — — — — — — ÷ — — I — I U — — — M 5D:8 REG R 0.5 - 1 1

extract
Extract

bitpos, len, src/dst
reg/lit/sfr reg/lit/sfr reg

src/dst ← (src/dst >> (bitpos mod 32))
and (2^(len mod 32) -1)

— — — — — — — ÷ — — I — I U — — — M 65:1 REG µ 4 4

faulte
Fault If Equal

if ((AC.cc and 010) ≠ 0)
Constraint Range fault

— — — — — — — ÷ — — I — I U — R — — 1A CTRL µ 1 - 2
99 if fault

taken

Mnemonic Description
Arithmetic Controls Process Controls Trace Controls Faults

Opcode
Opcode
Format

Instruction Execution

nif om of
cc
2

cc
1

cc
0

p tfp em te Events Modes T O A C P Y
Mach.
Type

Instruction
Issue

Result
Latency

i960® Cx Microprocessor User’s Guide — Instruction Set Quick Reference

March 1994 Page 11 of 18 Order Number 272220-002

ldl
Load Long

src, dst
mem reg

dst, dst+1 ← memory_long(src)

— — — — — — — ÷ — — I — I
OP
U

OC
— — — — 98 MEM M or µ 1 + efa

1 + efa +
bus

ldob
Load Ordinal Byte

src, dst
mem reg

dst ← memory_byte(src) zero-extended

— — — — — — — ÷ — — I — I
OP
U

OC
— — — — 80 MEM M or µ 1 + efa

1 + efa +
bus

ldos
Load Ordinal Short

src, dst
mem reg

dst ← memory_short(src) zero-extended

— — — — — — — ÷ — — I — I
OP
U

OC
— — — — 88 MEM M or µ 1 + efa

1 + efa +
bus

ldq
Load Quad

src, dst
mem reg

dst, dst+1, dst+2, dst+3 ← memory_quad(src)

— — — — — — — ÷ — — I — I
OP
U

OC
— — — — B0 MEM M or µ 1 + efa

1 + efa +
bus

ldt
Load Triple

src, dst
mem reg

dst, dst+1, dst+2 ← memory_triple(src)

— — — — — — — ÷ — — I — I
OP
U

OC
— — — — A0 MEM M or µ 1 + efa

1 + efa +
bus

mark
Mark

if ((PC.te = 1) and (TC.btm = 1))
{ PC.tfp ← 1;
TC.bte ← 1;
Trace Breakpoint fault }

— — — — — — — ÷ — — IBR — IBR U — — — — 66:B REG µ 17 17

modac
Modify AC

mask, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

temp ← AC
AC ← (src and mask) or (AC and not (mask))
dst ← temp

÷ ÷ ÷ ÷ ÷ ÷ — ÷ — — I — I U — — — M 64:5 REG µ 11 11

modi
Modulo Integer

src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

if (src2 = 0) Arithmetic Zero Divide fault
dst ← src2 mod src /* src2, src1 and dst are 32 bits*/

— — ¦ — — — — ÷ — — I — I U
IO
ZD

— — M 74:9 REG R 3 36

modify
Modify

mask, src, src/dst
reg/lit/sfr reg/lit/sfr reg

src/dst ← (src and mask)
or (src/dst and not(mask))

— — — — — — — ÷ — — I — I U — — — M 65:0 REG µ 3 3

modpc
Modify PC

src, mask, src/dst
reg/lit/sfr reg/lit/sfr reg

if ((mask ≠ 0) and (PC.em ≠ Supervisor))
Type Mismatch fault

temp ← PC
PC ← (mask and src/dst)

or (PC and not(mask))
src/dst ← temp

— — — — — — ÷ ÷ ÷ ÷ I — I U — — — M 65:5 REG µ 25 25

Mnemonic Description
Arithmetic Controls Process Controls Trace Controls Faults

Opcode
Opcode
Format

Instruction Execution

nif om of
cc
2

cc
1

cc
0

p tfp em te Events Modes T O A C P Y
Mach.
Type

Instruction
Issue

Result
Latency

	REVISION HISTORY
	PREFACE
	SUMMARY TABLE OF CHANGES
	IDENTIFICATION INFORMATION
	ERRATA
	9600001. A2 Bus Backoff and /READY
	9600002. A5A DACK Timing Vs Ready Wait States
	9600003. A5B DACK Timing with Multiple Accesses Per Bus Request
	9600004. A18 DMA SSDEM Mode Packing and EOP
	9600005. A19 Suspend DMA, EOP and SDMA
	9600006. A20A EOP, SDMA and Multi-Channel DMA Operations
	9600007. A20B EOP, SDMA and Multi-Channel DMA Operations
	9600008. A21 Disabling Branch Lookahead Causes DMA problems
	9600009. A22 NMI is Level-Triggered after RESET
	9600010. A25 Interrupts During SYSCTL Instruction to Load and Lock the Instruction Cache
	9600011. A26 32-32 Bit Transfers in Source-Synchronized Demand Mode with Unaligned Destination Address
	9600012. A27 Terminal Count (TC) pins are non-functional when using any channel in source synchronized demand mode or block mode
	9600013. A28 DMA and Instruction Scheduler Interaction
	9600014. A29 Destination Synchronized 128- to 128-Bit Quad-Word Transfer Mode
	9600015. A30 Disabling the Instruction Cache
	9600016. A31 Interrupt Can Cause User Process Stall when DMA Active Under Certain Complex Conditions
	9600017. A32 Register Cache
	9600018. B1 Cache Functionality/Re-fetching Cached Instructions
	9600019. B3 COBR Branch Trace
	9600020. B5 EOP and DREQ Deassertion
	9600021. B6 DREQ Sampling
	9600022. B8 SYSCTL followed by RET May Incorrectly Fault
	9600023. B10 Terminal Count Operation
	9600024. B11A Testif and Faultif Cause Incorrect Branch Trace
	9600025. B11B Branch Tracing Misses Branch Instruction
	9600026. B12 Disabling Interrupts with sysctl is non-atomic
	9600027. B13 Unaligned DMA Transfer Modes When Using Incrementing Source and Destination Address
	9600028. B14 Data Cache Global Disable Bit is 0 After Device Reset
	9600029. C1 Instruction Cache
	9600030. C2 Register Cache
	9600031. C3 Data Address Breakpoint Fault on a CALLX
	9600032. C4 Data Address Breakpoints on Stacks and Tables
	9600033. C5 Pipelined Region Limitation
	9600034. C6 EOP and Buffer Complete Interrupt
	9600035. C7 MULI Fault Return
	9600036. C8 (B7) Fault Handler Executes before Interrupt Handler
	9600037. C9 (A17) Extra RIP Read
	9600038. C10 (B9) Disabling and Enabling Interrupts via Modifying the Interrupt Mask Register (sf1)
	9600039. C10b Microcoded Instructions Can Be Corrupted after Writing to Interrupt Mask Register (sf1)
	9600040. C11 NMI during Built-In-Self-Test (BIST)
	9600041. C12 BTERM# Functionality
	9600042. C13 Modifying the Previous Frame Pointer (PFP) before Returning
	9600043. Erroneous TC Can Be Signaled When Using Multiple DMA Channels

	SPECIFICATION CHANGES
	SPECIFICATION CLARIFICATIONS
	DOCUMENTATION CHANGES
	001. Chapter 4 - Instruction Set Summary
	002. Chapter 9 - Instruction Set Reference
	003. Chapter 11 - External Bus Description
	004. Chapter 12 - Interrupt Controller
	005. Chapter 12 - Page 12-22, Table 12-2
	006. Chapter 13 - DMA Controller
	007. Appendix A - Instruction Execution and Performance Optimization
	008. Appendix A - Page A-42, Section A.2.6.10
	009. Appendix B - Bus Interface Examples
	010. Appendix F - Register and Data Structures
	011. i960 ® Cx Microprocessor Users Guide Instruction Set Quick Reference (272220-002)
	012. i960 ® Cx Microprocessor Users Guide Instruction Set Quick Reference (272220-002)

	i960 Cx User's Microprocessor User's Manual Change Pages
	Page 4-22
	Page 11-8
	Page 12-11
	Page 12-22
	Page 13-22
	Page A-29
	Page A-42
	Page B-4
	Page F-12
	Page F-15
	Page Q-9
	Page Q-11

