
80960JA/JF/JD

 SPECIFICATION UPDATE

Release Date: July, 1996

Order Number: 272852-001

The 80960JA/JF/JD may contain design defects or errors known as errata. Characterized errata
that may cause the 80960JA/JF/JD’s behavior to deviate from published specifications are
documented in this specification update.

80960JA/JF/JD SPECIFICATION UPDATE

ii July, 1996 272852-001

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The 80960JA/JF/JD may contain design defects or errors known as errata. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

* Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call in North America 1-800-879-4683, Europe 44-0-1793-431-155, France 44-0-1793-421-777,

Germany 44-0-1793-421-333 other Countries 708-296-9333

Copyright  1996, Intel Corporation

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 iii

CONTENTS

REVISION HISTORY.. 1

PREFACE... 2

SUMMARY TABLE OF CHANGES ... 4

IDENTIFICATION INFORMATION... 7

ERRATA ... 8

SPECIFICATION CHANGES ... 18

SPECIFICATION CLARIFICATIONS... 18

DOCUMENTATION CHANGES ... 19

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 1 of 24

REVISION HISTORY

The 80960JA/JF/JD series was introduced on June 6, 1994. The A-0 stepping was the
initial silicon release. The 80960Jx family is now in production on the A-2 stepping.

Date of Revision Version Description

07/01/96 001 This is the new Specification Update document. It contains all
identified errata published on or before this date.

11/29/95 2.2 Added new errata #16: VIH level on TRST#/RESET# Greater than
Specified in Data Sheets.

10/31/95 2.1 Added new errata #15: Actual Max Tov Greater than Specified in
Data Sheets.

3/30/95 2.0 Added the 80960JD to the errata sheet.

Added the A-2 stepping, whose only difference from the A-0
stepping is the fix of the RDYRCV# errata during a Th(hold cycle).

A new technote was added to the list of 80960Jx technotes.

3/10/95 1.9 Added new errata section User’s Manual Errata containing only
application critical users’s manual errata.

Added new user’s manual errata #1: Manual Errata: IPND should
not be Modified using a MEM Format Instruction.

Two lines of code in errata #4 Fault Stack Alignment were changed
as shown:

from: sele r5, r10, r8 to: sele r5, r10, r4

from: sele r5, r10, r9 to: sele r5, r10, r5

2/9/95 1.8 Added new errata #13: Data Breakpoints on System Procedure
Entries are Lost for Certain Fault Types.

1/23/95 1.7 Added new errata #12: “balx” Instruction Does Not Branch When
targ and dst Use the Same Register.

80960JA/JF/JD SPECIFICATION UPDATE

2 of 24 July, 1996 272852-001

PREFACE

As of July, 1996, Intel's Semiconductor Products Group has consolidated available
historical device and documentation errata into this new document type called the
Specification Update. We have endeavored to include all documented errata in the
consolidation process, however, we make no representations or warranties concerning
the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected
Documents/Related Documents table below. This is the first release of the Specification
Update. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification
update and are no longer published in other documents.

This document may also contain additional information that was not previously
published.

Affected Documents/Related Documents

Title Order

i960® Jx Microprocessor User’s Manual 272483-001

80960JA/JF Embedded 32-Bit Microprocessor
data sheet

272504-004

80L960JA/JF 3.3 V Embedded 32-Bit Microprocessor
data sheet

272744-002

80960JD Embedded 32-Bit Microprocessor
data sheet

272596-002

AP- 712: DRAM Controller for i960® JA/JF/JD Processors 272674-001

AP-716: Architectural Comparison 80960Cx/Jx/Hx 272694-001

AP-727: Interfacing the i960® Jx Processor to NEC SAR 272779-001

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 3 of 24

Nomenclature

Errata are design defects or errors. These may cause the published (component,
board, system) behavior to deviate from published specifications. Hardware and
software designed to be used with any component, board, and system must consider
all errata documented.

Specification Changes are modifications to the current published specifications.
These changes will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further
highlight a specification’s impact to a complex design situation. These clarifications will
be incorporated in any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in any new release of the
specification.

NOTE:

Errata remain in the specification update throughout the product’s
lifecycle, or until a particular stepping is no longer commercially
available. Under these circumstances, errata removed from the
specification update are archived and available upon request.
Specification changes, specification clarifications and documentation
changes are removed from the specification update when the
appropriate changes are made to the appropriate product specification
or user documentation (datasheets, manuals, etc.).

80960JA/JF/JD SPECIFICATION UPDATE

4 of 24 July, 1996 272852-001

SUMMARY TABLE OF CHANGES

The following table indicates the errata, specification changes, specification
clarifications, and documentation changes which apply the 80960JA/JF/JD product.
Intel may fix some of the errata in a future stepping of the component, and account for
the other outstanding issues through documentation or specification changes as noted.
This table uses the following notations:

Codes Used in Summary Table

Steps

X: Errata exists in the stepping indicated. Specification
Change or Clarification that applies to this stepping.

(No mark)
or (Blank box): This erratum is fixed in listed stepping or specification

change does not apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.
Fix: This erratum is intended to be fixed in a future step of the

component.
Fixed: This erratum has been previously fixed.
NoFix: There are no plans to fix this erratum.
Eval: Plans to fix this erratum are under evaluation.

Row

Change bar to left of table row indicates this erratum is
either new or modified from the previous version of the
document.

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 5 of 24

Errata
No. Steppings Page Status ERRATA

A-0 A-2

9600001 X 8 Fixed RDYRCV# Restriction During Ta, Th and Ti
Cycles (A-0 Stepping Only)

9600002 X X 9 Fix RDYRCV# Restriction During Ta and Ti Cycles
(A-2 Stepping Only)

9600003 X X 10 Fix System-Local Fault Calls Use System-
Supervisor Trace Enable Bit

9600004 X X 10 Fix Instructions “inten” and “intdis” Not Fully
Implemented

9600005 X X 10 Fix Fault Stack Alignment

9600006 X X 13 Fix Software Interrupt Erratum

9600007 X X 14 Fix Pullup on LOCK#/ONCE# Pin Does Not Turn
Off

9600008 X X 14 Fix Software Reinitialization Values in LMMR0,
LMMR1, DLMCON

9600009 X X 14 Doc Power Supply Current (Icc) Higher than
Anticipated

9600010 X X 15 Fix One Cycle Performance Hit Due to Instruction
Order with LOAD Instructions

9600011 X X 15 Fix “divi” Instruction Performance Hit When src2 =
dst

9600012 X X 15 Fix Instructions Executed Between Back to Back
Interrupts

9600013 X X 16 Fix “balx” Instruction Does Not Branch When targ
and dst Use the Same Register

9600014 X X 16 Fix Data Breakpoints on System Procedure Entries
are Lost for Certain Fault Types

9600015 X X 17 Fix Actual Max Tov Greater than Specified in Data
Sheets

96000016 X X 17 Fix VIH level on TRST#/RESET# Greater than
Specified in Data Sheets

Specification Changes
No. Steppings Page Status SPECIFICATION CHANGES

#

None for this revision of this specification update.

80960JA/JF/JD SPECIFICATION UPDATE

6 of 24 July, 1996 272852-001

Specification Clarifications
No. Steppings Page Status SPECIFICATION CLARIFICATIONS

#

None for this revision of this specification update.

Documentation Changes
No. Document Revision Page Status DOCUMENTATION CHANGES

001 272483-001 19 Fix IPND should not be modified using a MEM
Format Instruction

002 272483-001 19 Fix Page 7-9

003 272483-001 19 Fix Page 9-10

004 272483-001 19 Fix Page 9-3, Table 9-1

005 272483-001 20 Fix Page 12-10, section 12.6.1

006 272483-001 20 Fix Page C-23, Figure C-25

007 272483-001 20 Fix Page 11-29, Example 11-6

008 272483-001 20 Fix Page 17-09, Section 17. 3.5

009 272483-001 21 Fix Page 13-08, Section 13.2.6.3

010 272483-001 21 Fix Page 9-8, Table 9-3

011 272483-001 21 Fix Page 14-10, Section 14.3

012 272483-001 22 Fix Page 6-57, Section 6.6.32

013 272483-001 22 Fix Page 11-13, Example 11-1

014 272483-001 22 Fix Page 3-9, Table 3-4

015 272483-001 23 Fix Page 11-13, Example 11-1

016 272483-001 23 Fix Page 3-22

017 272483-001 23 Fix Pages B-1, B-6, and B7

018 272483-001 23 Fix Page 13-21, Table 13-10

019 272483-001 24 Fix Page 2-5, Table 2-4

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 7 of 24

IDENTIFICATION INFORMATION

Markings

80960JA/JF/JD processors may be identified electrically according to device type and
stepping.

Stepping register

The following table lists the devices to which this errata sheet applies:

Device and Stepping Identifier in g0

80960JA A0 & A2 0x08821013

80960JD A0 & A2 0x08820013

80960JF A0 & A2 0x08820013

Refer to the data sheet for instructions on how to obtain the identifier number.

80960JA/JF/JD SPECIFICATION UPDATE

8 of 24 July, 1996 272852-001

ERRATA

9600001. RDYRCV# Restriction During Ta, Th and Ti Cycles
(A-0 Stepping Only)

PROBLEM: The RDYRCV# pin indicates that data on the address-data (AD) lines can
be sampled or removed. If RDYRCV# is not asserted during a Td cycle, the Td cycle is
extended to the next cycle by inserting a wait state (Tw).

Normally the processor ignores this pin during the address state (Ta). On this stepping,
however, the processor can recognize the assertion of RDYRCV# during the address
state of an access and prematurely terminate the access. For example, in a quad-word
load (with RDYRCV# asserted during Ta) the processor will erroneously take the first
word of data off the bus during the address cycle, and will then read only three more
words of data. This will cause the last word of data to be lost, and the first three will be
corrupted. The processor also incorrectly responds to RDYRCV# assertion during the
idle (Ti) and (Th) states. Under these conditions, the processor will deassert HOLDA (if
asserted), one clock after the RDYRCV# assertion. Hold acknowledge can never be
asserted (or reasserted) until one clock after RDYRCV# is sampled high.

IMPLICATION: The RDYRCV# generation logic must be designed to only assert
RDYRCV# during either the Td or Tr states, and should not be used by a multi-master
system for any of the other bus masters.

WORKAROUND: Make sure that the system implementation does not allow RDYRCV#
assertion during any state except valid data (Td) and recovery (Tr) states. Typical
synchronous state logic for the 80960Jx can be described as “normally-not-ready” (i.e.,
the pin is only asserted when the system is ready). Normally-not-ready logic will usually
satisfy the requirement without modification.

Strict “normally-ready” state logic cannot be used in 80960Jx systems because the
logical sense of RDYRCV# changes during the recovery state. Driving RDYRCV# low
indefinitely during Tr would, by definition, cause the processor to hang in Tr states
indefinitely. If the ready logic resembles a normally-ready system, change it to
normally-not-ready.

If the 80960Jx is the sole bus master, multiple open-drain ready signals can be wire-
OR’ed with a pull-up resistor to drive RDYRCV#. Be sure to satisfy the processor’s
setup and hold timing requirements at the end of every bus clock.

If the 80960Jx is part of a multi-master system, do not share the RDYRCV# signal with
the other bus masters. Providing separate ready signals will prevent the 80960Jx from
spuriously deasserting HOLDA.

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 9 of 24

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600002. RDYRCV# Restriction During Ta and Ti Cycles
(A-2 Stepping Only)

PROBLEM: The RDYRCV# signal indicates that data on the AD lines can be sampled
or removed. If RDYRCV# is not asserted during a Td cycle, the Td cycle is extended to
the next cycle by inserting a wait state (Tw).

Normally the processor ignores this pin during the address state (Ta). On this stepping,
however, the processor can recognize the assertion of RDYRCV# during the address
state of an access and prematurely terminate the access. For example, in a quad-word
load (with RDYRCV# asserted during Ta) the processor erroneously takes the first
word of data off the bus during the address cycle, and then reads only three more
words of data. This causes the last word of data to be lost, and the first three are
corrupted.

The processor also incorrectly responds to RDYRCV# assertion during the idle (Ti)
state.

IMPLICATION: The RDYRCV# generation logic must be designed to only assert
RDYRCV# during either the Td or Tr states.

Typical synchronous state logic for the 80960Jx can be described as “normally-not-
ready” (i.e., the pin is only asserted when the system is ready). Normally-not-ready
logic will usually satisfy the requirement without modification.

WORKAROUND: Make sure that the system implementation does not allow RDYRCV#
to be asserted during any state except valid data (Td) and recovery (Tr) states. Typical
synchronous state logic for the 80960Jx can be described as “normally-not-ready” (i.e.,
the pin is only asserted when the system is ready). Normally-not-ready logic will usually
satisfy the requirement without modification.

Strict “normally-ready” state logic cannot be used in 80960Jx systems because the
logical sense of RDYRCV# changes during the recovery state. Driving RDYRCV# low
indefinitely during Tr would, by definition, cause the processor to hang in Tr states
indefinitely. If the ready logic resembles a normally-ready system, change it to
normally-not-ready.

If the 80960Jx is the sole bus master, multiple open-drain ready signals can be wire-
OR’ed with a pull-up resistor to drive RDYRCV#. Be sure to satisfy the processor’s
setup and hold timing requirements at the end of every bus clock.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960JA/JF/JD SPECIFICATION UPDATE

10 of 24 July, 1996 272852-001

9600003. System-Local Fault Calls Use System-Supervisor Trace Enable
Bit

PROBLEM: When a fault handler is implemented through a system-local fault call, the
fault handler IP is found in the system procedure table. All other characteristics of the
call are those of a local call: PC.te (trace enable bit in the Process Controls), PC.em
(execution mode flag in the Process Controls) remain unchanged and there is no stack
switch. A system-local fault call on the 80960Jx has all of the previously mentioned
characteristics, except that PC.te is copied from SSP.te (trace control bit in the
Supervisor Stack Pointer). This erratum could cause tracing to be toggled when
entering a system-local fault call. In addition when the processor is in user mode while
executing the fault handler, PC.te will not be restored upon the return from the fault
handler.

IMPLICATION: Little to none. Use system-supervisor calls or a local-call handler
instead of a system-local fault handler.

WORKAROUND: Do not use the system-local fault handlers. If a local fault handler is
required, use a local-call handler and place the handler pointer directly in the fault
table. The other option is to use only system-supervisor calls from the system
procedure table. If system-local fault handlers must be used, then the designer should
make sure that the PC.te in user mode is the same as SSP.te in the System Procedure
Table.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600004. Instructions “inten” and “intdis” Not Fully Implemented

PROBLEM: Two new instructions used for interrupt control, inten and intdis , on the
80960Jx were not fully implemented.

IMPLICATION: Must use intctl instruction instead of either inten or intdis ; however,
intctl takes more cycles to execute.

WORKAROUND: Do not use inten and intdis for globally enabling and disabling
interrupts. Instead, use the interrupt control instruction intctl which can both enable
and disable interrupts.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 11 of 24

9600005. Fault Stack Alignment

PROBLEM: In some situations, when a fault occurs, an unaligned (not quad-word
aligned) fault record is written to the stack; as a result, a return-from-supervisor-mode-
fault incorrectly restores the arithmetic controls (AC) register and process controls (PC)
register. Furthermore, while within the fault handler, the FP incorrectly points to the
beginning of the fault record. This case happens when:

(1) a local fault handler is selected for the fault or the current execution mode is
Supervisor when the fault occurs; and

(2) the current stack is offset from a quad-word boundary by 1 to 8 bytes:

SP = 16 x N + 1
SP = 16 x N + 2
SP = 16 x N + 3
SP = 16 x N + 4
SP = 16 x N + 5
SP = 16 x N + 6
SP = 16 x N + 7
SP = 16 x N + 8

Where N is a positive integer.

The other possible values of SP do not generate the erratum:
SP = 16 x N and SP = 16 x N + 9 through SP = 16 x N + 15

Code Sequences Affected

Assuming the SP described above, the erratum manifests itself any time a fault is taken
and does not result in a stack switch (all cases except system supervisor fault taken
from user mode). This forces the fault record to become misaligned with respect to the
FP and the stack pointer (SP) to become non-quad-word aligned. The fault type and
the fault IP fields of the fault record are then stored at address FP and FP+4
respectively. The user cannot retrieve information from the fault record at the location
expected in memory. Upon return from the fault handler the AC is cleared. The PC is
also cleared upon return if the fault handler was executing in supervisor mode.

IMPLICATION: Requires extra code in every fault handler and extra time to implement
the workaround.

80960JA/JF/JD SPECIFICATION UPDATE

12 of 24 July, 1996 272852-001

WORKAROUND: The workaround requires special code at the beginning of each fault
handler that corrects the unaligned fault record and makes accessing the fault record
and returning from the fault handler operate correctly. There is one limitation to the
workaround (discussed in further detail below). The workaround code is guaranteed to
work on all versions of the 80960Jx present and future. The workaround consists of
assembly code that rewrites the entire fault record to an aligned location when the
situation is detected. This code should be placed at the beginning of all fault handlers.

Restriction: If the application is composed only of C code compiled by the Intel CTools
or GNU C compiler, this anomaly cannot occur. If an application is compiled by another
C compiler or contains customer routines coded directly in 80960 assembly code, it
may be possible for the improper fault record to be generated when a fault occurs. For
code generated by the latter method, a code restriction should be followed to ensure
that the improper fault record is not generated: if the SP is always quadword aligned,
(i.e., if SP is always incremented and decremented by multiples of 16) the proposed
workaround is not needed.

Fix Start - Place at beginning of all fault handlers.
Uses r3 through r15
and not 0xf, sp, r3
cmpobe sp, r3, 1f ## No fix needed if equal

Problem detected: Fix Unaligned Fault Record
lda 24(sp),sp ## Fix the stack to be quadword aligned
lda 32(fp),fp ## Fix the frame pointer
lda -72(fp), r3 ## r3 = base for fault record
not 0, r5 ## r5 = 0xFFFF FFFF Wrong type of value
ldl 40(r3), r10 ## r10= 1st fault type (from fault record)

r11= 1st fault IP (from fault record)
subo 24, sp, r12 ## r12= original value of SP
Were the fault type and fault IP clobbered by a frame spill?
cmpo r11, r12 ## is the SP = first fault IP?

<=> has an interrupt occurred?
No | Yes

sele r5, r10, r4 ## r4 = fault type* | 0xFFFF FFFF
sele r5, r11, r5 ## r5 = fault IP* | 0xFFFF FFFF

* = from original fault record
Get information from the existing fault record
ldq -24(r3),r8 ## Get 2nd Fault type, Fault Address,

Get saved TC, fault IP (resumption record)
ldq 24(r3),r12 ## Get Fault Data, Otype, saved PC, AC
Write new fault record
stl r4, 64(r3) ## Store Fault Type & Fault IP
stl r8, (r3) ## Write 2nd Fault Address and Fault Type
stl r10, 8(r3) ## Write Record
stl r12, 48(r3) ## Write Fault Data and Otype
stl r14, 56(r3) ## Write Saved PC, AC
Fix End
1: ## Start of actual fault handler code.

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 13 of 24

Limitations of the Workaround

The workaround will not work if the following conditions occur:

• An interrupt occurs on the way to the fault handler.

• The local register frame of the fault handler is spilled due to the interrupt.

When this limitation occurs and the fault record is incomplete, the value 0xFFFF FFFF
is written in the fault type and fault IP fields of the new fault record (created by the
workaround code listed above).

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600006. Software Interrupt Erratum

PROBLEM: When the processor is executing in supervisor mode at process priority N
due to a fault or interrupt that comes from user mode at a lower process priority, a
software interrupt is posted at priority S, where S≤N. Then a fault or interrupt return to
user mode is executed. When the PC is restored due to the return to user mode the
process priority is reset to U, where U<S. As a result, before the first instruction in user
mode can execute, control is transferred to the software interrupt handling mechanism
for the interrupt posted at priority S.

The error occurs when the software interrupt handling mechanism updates the interrupt
table and Software-Interrupt Priority Register before switching to Supervisor mode.
Because the processor is in the wrong mode, a type.mismatch fault will occur and
control will be transferred to the fault handling mechanism before the first instruction of
the software interrupt handler can be issued. Upon return from the fault handler,
execution of the interrupt handler will continue; however, subsequent software
interrupts may be lost.

IMPLICATION: Overhead is needed to make sure software interrupts do not occur in
user mode, or the loss of software interrupt capabilities will result.

WORKAROUND: The only workarounds for this erratum are either not allowing
software interrupts while the processor is in user mode or avoiding the use of software
interrupts altogether.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960JA/JF/JD SPECIFICATION UPDATE

14 of 24 July, 1996 272852-001

9600007. Pullup on LOCK#/ONCE# Pin Does Not Turn Off

PROBLEM: The pin for the LOCK#/ONCE# signals is provided with a weak pullup
device intended to keep the processor from accidentally entering ONCE mode at reset.
The pullup device is supposed to turn off after the deassertion of RESET#. However,
the pullup remains on, even in the ONCE high impedance mode.

The strength of the pullup device was measured at 140 µA, which means it looks
approximately like a 35k resistor attached to Vcc.

IMPLICATION: Ensure driver strengths will overdrive the pullup transistor.

WORKAROUND: No workaround is necessary; the erratum mostly affects factory test
procedures. The LOCK# pulldown transistor and any reasonable driver attached to the
pin during ONCE mode have ample strengths to overdrive the pullup transistor.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600008. Software Reinitialization Values in LMMR0, LMMR1, DLMCON

PROBLEM: After software reinitialization, LMMR0.lmte, LMMR1.lmte, and
DLMCON.dcen should be zero (refer to the i960Jx Microprocessor User’s Manual,
Table 11-2). In the current implementation, of both the processor and the user’s
manual, these bits retain their values prior to the software reinitialization.

IMPLICATION: Software should take into account the fact that these values may
change on a future stepping of the 80960JX and should be able to handle both current
and future values of these registers.

WORKAROUND: None.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600009. Power Supply Current (Icc) Higher than Anticipated

PROBLEM: The Icc values measured on early silicon samples are approximately 10 -
20% higher than the targeted values in the data sheet.

IMPLICATION: User must account for higher current required from the power supply.

WORKAROUND: Intel will publish corrected Icc when device is fully characterized.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 15 of 24

9600010. One Cycle Performance Hit Due to Instruction Order with LOAD
Instructions

PROBLEM: Under certain conditions, a LOAD instruction immediately followed by a
REG instruction could cause an extra bus cycle to be added to the execution time. This
is due to internal processor bus availability and is non-predictable.

IMPLICATION: Instructions may need to be re-ordered to avoid performance loss.

WORKAROUND: For critical code sequences that contain LOAD’s followed by a REG
instruction, experiment with the order of the instructions that follow the LOAD
instruction. This may eliminate the extra cycle. There is no workaround for this problem.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600011. “divi” Instruction Performance Hit When src2 = dst

PROBLEM: Execution of the divi instruction takes approximately 40 extra cycles when
the register used in the src2 operand is equal to the dst operand register.

IMPLICATION: One less register is available if performance hit is to be avoided.

WORKAROUND: To avoid the ~40 cycle performance hit for divi , do not use the same
register for src2 and dst. If the application is composed only of C code compiled by the
Intel CTools or GNU C compiler version 4.6 or above, then this situation will not occur.

STATUS: Intel plans to fix on subsequent steppings of the 80960JA/JF/JD.

9600012. Instructions Executed Between Back to Back Interrupts

PROBLEM: The processor can insert instructions from interrupted process code in
between back to back interrupts under certain conditions. This situation could cause a
slightly longer interrupt latency depending on the instruction(s) executed.

This situation occurs when the processor is executing an interrupt handler, and an
interrupt(s) is pending at a priority which is lower than the current interrupt handler
priority and higher than the interrupted process priority. Upon return from the current
interrupt handler, the processor retains the interrupt handler process priority for 4-5
cycles. This prevents lower priority interrupts from being serviced immediately and
allows interrupted process code to be executed until the priority is lowered. Extra cycles
will be added to the interrupt latency of the pending interrupts based on the instructions
executed during the process priority interim.

IMPLICATION: Increased interrupt latency may result.

WORKAROUND: There is no workaround for this latency problem.

80960JA/JF/JD SPECIFICATION UPDATE

16 of 24 July, 1996 272852-001

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600013. “balx” Instruction Does Not Branch When targ and dst Use the
Same Register

PROBLEM: When the targ and dst operands of balx use the same register, balx does
not branch. Typically, the targ register holds the address to branch to, specified by the
user, and the dst register is automatically loaded by the processor with the address to
return to. When the same register is used for the dst and the targ, the targ register,
after being used to calculate the target address, receives the processor-loaded address
to return to. Architecturally, using the same registers for targ and dst is permissible and
works on other 80960 family members, but on the 80960Jx this causes the balx to
become non-functional.

In the following example, balx should compute a target address of “xyz”, load “abc” into
r12, and branch to “xyz”. However, “abc” gets loaded into r12 and the processor
branches to “abc”.

lda xyz, r12
balx (r12), r12

abc: addo
.
.
.
xyz: ...

IMPLICATION: This erratum reduces the number of registers available for other use.

WORKAROUND: Avoid using the same register for the targ and the dst registers of a
balx instruction. If the application is composed only of C code compiled by the Intel
CTools or GNU C compiler, then this situation will not occur.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600014. Data Breakpoints on System Procedure Entries are Lost for
Certain Fault Types

PROBLEM: This erratum occurs when tracing is enabled (PC.te = 1), and a system
supervisor fault call is serviced from supervisor mode or a system local fault call is
serviced from either user or supervisor mode. If there is a data breakpoint on the fault
handler entry in the system procedure table, the breakpoint trace fault is lost.

IMPLICATION: A data breakpoint cannot break upon entering a fault handler pointed to
in the system procedure table.

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 17 of 24

WORKAROUND: Avoid setting data breakpoints on fault handler entries in the system
procedure table for the above mentioned fault cases.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600015. Actual Max Tov Greater than Specified in Data Sheets

PROBLEM: The actual maximum output valid delay on PQFP packages for all outputs
except ALE/ALE# inactive and DT/R# is 18ns at cold and room temperatures (-6 and
25 degrees Celsius). This exceeds the specified value (15ns) in 80960JX data sheets.

IMPLICATION: In systems requiring output valid times less than 18ns, wait states may
have to be added.

WORKAROUND: There are no workarounds.

STATUS: Intel plans to fix on subsequent steppings of the 80960JA/JF/JD.

9600016. VIH level on TRST#/RESET# Greater than Specified in Data
Sheets

PROBLEM: The input high level voltage (VIH) on PQFP packages for inputs TRST#
and RESET# is 2.6V at cold, room and hot temperatures (-6, 25 and 121 degrees
Celsius). This exceeds the specified value (2.0V) in 80960JX data sheets.

IMPLICATION: Increased drive is needed to ensure the threshold of the affected
signals is exceeded.

WORKAROUND: There are no workarounds.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

80960JA/JF/JD SPECIFICATION UPDATE

18 of 24 July, 1996 272852-001

SPECIFICATION CHANGES

None for this revision of this specification update.

SPECIFICATION CLARIFICATIONS

None for this revision of this specification update.

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 19 of 24

DOCUMENTATION CHANGES

001. IPND should not be Modified using a MEM Format Instruction

ISSUE: Table 3-4 on page 3-9 of the user’s manual states that the access types for the
IPND register include ld , st , sysctl , and atmod . It should state that only atmod should
be used for modification of the IPND register. Using MEM Format instructions to access
this register may result in unpredictable behavior.

Intel plans to fix in the next revision of the i960 Jx Microprocessor User’s Manual.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

002. Page 7-9

ISSUE: The settings specified in the last two sentences on the page were reversed.
These sentences should read: "Setting the value to 0 reserves no frames for high-
priority interrupts. Setting the value to 7 causes the register cache to become disabled
for non-critical code."

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

003. Page 9-10

ISSUE: Fault types not listed in correct order. Also, OPERATION.UNALIGNED is
missing from the list. The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

004. Page 9-3, Table 9-1

ISSUE: Incorrect fault record number for 7H PROTECTION fault.

Original text: XX07 XX01H

Corrected text: XX07 XX02H

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

80960JA/JF/JD SPECIFICATION UPDATE

20 of 24 July, 1996 272852-001

005. Page 12-10, section 12.6.1

ISSUE: Incomplete sentence. Original text: Address bits for are compared...

Corrected text: Only address bits with corresponding MA bits set are compared.

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

006. Page C-23, Figure C-25

ISSUE: LMMR0-1 Register Diagram is a duplicate of LMADR0-1 register. Figure12-5
(page 12-5) displays the register correctly.

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

007. Page 11-29, Example 11-6

ISSUE: Trace Controls section not included in example. The bottom two sections of the
part of the example that appeared on page 11-2 is incorrect.

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

008. Page 17-09, Section 17 3.5

ISSUE: Sentence six of the first paragraph of section 17.3.5 incorrectly states:

"The TAP controller is automatically initialized on power-up."

 A new paragraph has been added between the first and second paragraphs:

"The TAP controller is not automatically initialized on power-up. Therefore, it is
important that the system resets the TAP controller after power up by asserting the
TRST# pin. In addition, the TAP controller can be initialized by applying a high signal
level on the TMS input for five TCK periods. Systems that do not use JTAG, or that
normally do not apply a clock to TCK should provide a pull-down resistor on TRST# to
hold the TAP controller in the Test_Logic_Reset state. A 2.7k value is strong enough to
overcome the TRST# pins internal pull-up, but weak enough to allow automatic test
equipment to overdrive it during production testing.

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 21 of 24

Alternatively, the TRST# pin may be connected to ground if the Test Access Port will
never be used."

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

009. Page 13-08, Section 13.2.6.3

ISSUE: Paragraph 2, Sentence 1 formerly read, “The low-order four bits of IMAP0 are
used to buffer the expanded-mode interrupt internally.”

The sentence now reads: "Do not write to the low-order four bits of IMAP0 as these bits
are used to buffer the expanded-mode interrupt internally."

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

010. Page 9-8, Table 9-3

ISSUE: The bottom right cell in Table 9-3 incorrectly reads "Any access." The text in
that cell now reads "Break on Data Read or Data Write Access."

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

011. Page 14-10, Section 14.3

ISSUE: The second bulleted item in section 14.3, page 14-10 incorrectly reads:

"- the auto reload is not selected (TMRx.reload=0). See section 14.1.1.1, Bit 0 -
Terminal Count Status Bit (TMRx.tc) (pg. 143)"

In section 14.3, the last sentence and its two bulleted items have been deleted. The
second sentence of section 14.3 correctly states: "When a timer detects a zero count in
its TCR, the timer will force the generation of an internal edge-detected Timer Interrupt
signal (TINTx) to the interrupt controller, and the interrupt-pending (IPND.tipx) will be
set in the interrupt controller."

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

80960JA/JF/JD SPECIFICATION UPDATE

22 of 24 July, 1996 272852-001

012. Page 6-57, Section 6.6.32

ISSUE: The action section of the halt instruction (Section 6.6.32 on page 6-57) contains
the following incorrect pseudocode:

case 0: # Disable interrupts. Clear ICON.gie.
 global_interrupt_enable = false; break;

case 1: # Enable interrupts. Set ICON.gie.
 global_interrupt_enable = true; break;

case 2: # Use the current interrupt enable state. break;

The pseudocode now correctly reads:

case 0: # Disable interrupts. Clear ICON.gie.
 global_interrupt_enable = true; break;

case 1: # Enable interrupts. Set ICON.gie.
 global_interrupt_enable = false; break;
case 2: # Use the current interrupt enable state. break;

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

013. Page 11-13, Example 11-1

ISSUE: In Example 11-1, on page 11-13, the line:

for (i=0; i<6; i++) /* carry is carry out from previous add */

Has been changed to:

for (i=0; i<8; i++) /* carry is carry out from previous add */

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

014. Page 3-9, Table 3-4

ISSUE: The allowed access types for the IPND and IMSK registers are listed R/W,
AtMod. The corrected text states that the user must use the atmod instruction to modify
these registers.

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

80960JA/JF/JD SPECIFICATION UPDATE

272852-001 July, 1996 23 of 24

015. Page 11-13, Example 11-1

ISSUE: In the original example, the order of the two lines is reversed.:

DLMCON.be = (memory[ibr_ptr + 0xc] >> 7);

PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr + 8];

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

016. Page 3-22

ISSUE: The second paragraph originally read: When the processor is reinitialized with
a sysctl reinitialize message, the PC register is not changed.

The corrected text reads: When the processor is reinitialized with a sysctl reinitialize
message, the PC register returns to its reset value.

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

017. Pages B-1, B-6 and B7

ISSUE: Tables B-1, B-3 and B-4 show a "T" column for a branch prediction bit. Since
branch prediction is not implemented on the i960 Jx processor, this bit is ignored.

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

018. Page 13-21, Table 13-10

ISSUE: The decision (diamond) incorrectly reads: is ICON.GIE = 1?

The corrected statement reads: is ICON.GIE = 0?

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960 Jx Microprocessor User’s Manual, Order #272483

80960JA/JF/JD SPECIFICATION UPDATE

24 of 24 July, 1996 272852-001

019. Page 2-5, Table 2-4

ISSUE: The bottom right cell originally read:
12345678H (r4)
F0DEBC9AH (r5)

The corrected text reads:
12345678H (r4)
9ABCDEF0H (r5)

The corrected page is appended to this document.

AFFECTED DOCUMENT: i960® Jx Microprocessor User’s Manual, Order #272483

DATA TYPES AND MEMORY ADDRESSING MODES

2-5

2

For example, Table 2-3 shows four bytes of data in memory. Table 2-4 shows the differences
between little and big endian accesses for byte, short, word and long word data. Figure 2-2 shows
the resultant data placement in registers.

Once data is read into registers, byte order is no longer relevant. The lowest significant bit is
always bit 0. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7
for bytes.

Byte ordering affects the way the i960 Jx processor handles bus accesses. See section 15.2.6, “Byte
Ordering and Bus Accesses” (pg. 15-28) for more information.

Table 2-3. Memory Contents For Little and Big Endian Example

ADDRESS DATA

1000H 12H

1001H 34H

1002H 56H

1003H 78H

Table 2-4. Byte Ordering for Little and Big Endian Accesses

Access Example
 Register Contents

(Little Endian)
Register Contents

(Big Endian)

Byte at 1000H ldob 0x1000, r3 12H 12H

Short at 1002H ldos 0x1002, r3 7856H 5678H

Word at 1000H ld 0x1000, r3 78563412H 12345678H

Long Word at 1000H ldl 0x1000, r4
78563412H (r4)

F0DEBC9AH (r5)

12345678H (r4)

9ABCDEF0H (r5)

Errata: 5-13-96 BWL.

Table 2-4 on page 2-5:

The bottom right cell
originally read:

12345678H (r4)

F0DEBC9AH (r5)

The corrected text
reads:

12345678H (r4)

9ABCDEF0H (r5)

PROGRAMMING ENVIRONMENT

3-9

3

Table 3-4. Supervisor Space Family Registers and Tables (Sheet 1 of 3)

Register Name Memory-Mapped Address Access Type

Reserved FF00 8000H to FF00 80FFH —

(DLMCON) Default Logical Memory Configuration
Register

FF00 8100H R/W

Reserved FF00 8104H —

(LMADR0) Logical Memory Address Register 0 FF00 8108H R/W

(LMMR0) Logical Memory Mask Register 0 FF00 810CH R/W

(LMADR1) Logical Memory Address Register 1 FF00 8110H R/W

(LMMR1) Logical Memory Mask Register 1 FF00 8114H R/W

Reserved FF00 8118H to FF00 83FFH —

(IPB0) Instruction Address Breakpoint Register 0 FF00 8400H Sysctl- RwG/WwG

(IPB1) Instruction Address Breakpoint Register 1 FF00 8404H Sysctl- RwG/WwG

Reserved FF00 8408H to FF00 841FH —

(DAB0) Data Address Breakpoint Register 0 FF00 8420H R/W, WwG

(DAB1) Data Address Breakpoint Register 1 FF00 8424H R/W, WwG

Reserved FF00 8428H to FF00 843FH —

(BPCON) Breakpoint Control Register FF00 8440H R/W, WwG

Reserved FF00 8444H to FF00 84FFH —

(IPND) Interrupt Pending Register FF00 8500H AtMod

(IMSK) Interrupt Mask Register FF00 8504H AtMod

Reserved FF00 8508H to FF00 850FH —

(ICON) Interrupt Control Word FF00 8510H R/W

Reserved FF00 8514H to FF00 851FH —

(IMAP0) Interrupt Map Register 0 FF00 8520H R/W

(IMAP1) Interrupt Map Register 1 FF00 8524H R/W

(IMAP2) Interrupt Map Register 2 FF00 8528H R/W

Reserved FF00 852CH to FF00 85FFH —

Errata Table 3-4, Page 3-9
(3/8/96) BWL.

The allowed access types
for the IPND and IMSK
registers include R/W and
AtMod.

The corrected text states
that the user must use the
atmod instruction to modify
these registers.

PROGRAMMING ENVIRONMENT

3-22

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is reinitialized with a sysctl reinitialize message, the PC register returns to its
reset value.

Normally, modpc is not used to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in CHAPTER 10,
TRACING AND DEBUGGING.

3.7 USER SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts access to all or parts of the kernel by the application
code. This protection mechanism prevents application software from inadvertently altering the
kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode which provides several additional capabilities over user
mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
system debugging software or a system monitor to be accessed, even if an application’s
program destroys its own stack.

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

Errata Page 3-22: 3/12/96 BWL:

The second paragraph originally
read:

When the processor is reini-
tialized with a sysctl reinitialize
message, the PC register is not
changed.

The corrected text reads:

When the processor is reini-
tialized with a sysctl reinitialize
message, the PC register returns
to its reset value.

INSTRUCTION SET REFERENCE

6-57

6

6.2.32 halt (80960Jx-Specific Instruction)

Mnemonic: halt Halt CPU

Format: halt src1
reg/lit

Description: Causes the processor to enter HALT mode which is described in Chapter 16,
HALT MODE. Entry into Halt mode allows the interrupt enable state to be
conditionally changed based on the value of src1.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

Action: implicit_syncf;
if (PC.em != supervisor)
 generate_fault(TYPE.MISMATCH);
switch(src1) {

case 0: # Disable interrupts. Clear ICON.gie.
global_interrupt_enable = true; break;

case 1: # Enable interrupts. Set ICON.gie.
 global_interrupt_enable = false; break;

case 2: # Use the current interrupt enable state.
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}

ensure_bus_is_quiescient;
enter_HALT_mode;

Faults: STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).

TYPE.MISMATCH Attempt to execute instruction
while not in supervisor mode.

OPERATION.INVALID_OPERAND

src1 Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2
Use current interrupt enable
state and halt.

Errata, 4-18-95. BWL.
Section 6.6.32 (pg 6-57)

The action section of the halt
instruction contains the
following incorrect pseudocode:

case 0: # Disable interrupts.
Clear ICON.gie.
global_interrupt_enable = false;
break;
case 1: # Enable interrupts. Set
ICON.gie.
 global_interrupt_enable =
true;break;
case 2: # Use the current
interrupt enable state.
break;

The pseudocode now correctly
reads as shown.

PROCEDURE CALLS

7-9

7

The instruction flushreg, described in section 6.2.30, “flushreg” (pg. 6-55), is provided to write all
local register sets (except the current one) to their associated stack frames in memory. The register
cache is then invalidated, meaning that all flushed register sets are restored from their save areas in
memory.

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, some cases where it may not be apparent follow.

• Without executing flushreg first, a store to memory does not necessarily update a local
register set.

• Without executing flushreg first, reading from memory does not necessarily return the current
value of a local register set.

• There is no mechanism, including flushreg, to access the current local register set with a read
or write to memory.

• flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not
predictable.

• The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts (interrupted state and process priority
greater than or equal to 28), software can limit the number of frames available to all remaining
code. This includes code that is either in the executing state (non-interrupted) or code that is in the
interrupted state, but, has a process priority less than 28. For the purposes of discussion here, this
remaining code will be referred to as non-critical code. Specifying a limit for non-critical code,
ensures that some number of free frames are available to high-priority interrupt service routines.
Software can specify the limit for non-critical code by writing bits 10 through 8 of the register
cache configuration word in the PRCB (see Figure 11-6 on page 11-16). The value indicates how
many frames within the register cache may be used by non-critical code before a frame needs to be
flushed to external memory. The programmed limit is used only when a frame is pushed, which
occurs only for an implicit or explicit call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to 0 reserves no
frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code.

Errata: 11/14/94
BWL

The settings

specified in the last

two sentences on

the page were

reversed. These

sentences should

read:

“Setting the value

to 0 reserves no

frames for high-

priority interrupts.

Setting the value to

7 causes the

register cache to

become disabled

for non-critical

code.”

FAULTS

9-3

9

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The i960 Jx processor recognizes i960 architecture-defined faults and a new fault
subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the i960 Jx
processor detects, arranged by type and subtype. Text that follows the table gives column defini-
tions.

In Table 9-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

Table 9-1. i960® Jx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name
Number or
Bit Position

Name

0H OVERRIDE NA NA
See section 9.10.1,
“Overrides” (pg. 9-21)

0H PARALLEL NA NA
see section 9.6.4, “Parallel
Faults” (pg. 9-11)

1H TRACE

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

SUPERVISOR

MARK

XX01 XX02H

XX01 XX04H

XX01 XX08H

XX01 XX10H

XX01 XX20H

XX01 XX40H

XX01 XX80H

2H OPERATION

1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

XX02 XX01H

XX02 XX02H

XX02 XX03H

XX02 XX04H

3H ARITHMETIC
1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

XX03 XX01H

XX03 XX02H

4H Reserved

5H CONSTRAINT 1H RANGE XX05 XX01H

6H Reserved

7H PROTECTION Bit 1 LENGTH XX07 XX02H

8H - 9H Reserved

AH TYPE 1H MISMATCH XX0A XX01H

BH - FH Reserved

Errata (10-25-94) BWL- Incorrect
fault record number for 7H
PROTECTION fault.

Original text: XX07 XX01H
Corrected text: XX07 XX02H

TRACING AND DEBUGGING

9-8

Figure 9-2. Breakpoint Control Register (BPCON)

Programming the BPCON register is summarized in Table 9-2.

The mode bits of BPCON control what type of access generates a fault, trace message, or break
event, as summarized in Table 9-3.

Table 9-2. Configuring the Data Address Breakpoint Registers

PC.te DABx.e1 DABx.e0 Description

0 X X No action. With PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

Note: “X” = don’t care. Reserved combinations must not be used.

Table 9-3. Programming the Data Address Breakpoint Modes

DABx.m1 DABx.m0 Mode

0 0 Break on Data Write Access Only.

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Break on Data Read or Data Write Access.

28 24 20 16 12 8 4 031

DAB0

ee

1 0

m

0

m

1

e

0

e

1

m

0

m

1

DAB1

Reserved
(Initialize to 0)

Hardware Reset Value: 0000 0000H

Software Re-Init Value: Retains State

Errata: 2/14/95,
BWL.

The bottom right
cell in Table 9-3
incorrectly reads
“Any access.” The
text in that cell now
reads “Break on Data

Read or Data Write

Access.”

FAULTS

9-10

9.6 MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and may not report all detected faults on a single instruction.

In a multiple fault situation, the reported fault condition is left to the implementation. On the Jx
processor, all non-trace fault conditions present in one instruction are prioritized. Only the non-
trace fault of highest priority is reported in the fault record. The faults by order of decreasing
priority are:

• PROTECTION.LENGTH

• OPERATION.UNIMPLEMENTED (Attempt to execute from on-chip RAM or a memory-
mapped region only.)

• OPERATION.UNALIGNED

• OPERATION.INVALID_OPCODE

• OPERATION.INVALID_OPERAND

• TYPE.MISMATCH

• OPERATION.UNIMPLEMENTED (All other faults related to unimplemented operations)

• ARITHMETIC.ZERO_DIVIDE

• ARITHMETIC.INTEGER_OVERFLOW

• CONSTRAINT.RANGE

9.6.2 Multiple Trace and Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise.
Multiple trace fault conditions on the same instruction are reported in a single trace fault record
(with the exception of prereturn trace, which always happens alone). To support this multiple fault
reporting, the trace fault uses bit positions in the fault-subtype field to indicate occurrences of
multiple faults of the same type (Table 9-1).

Errata 11/14/94, BWL

Faults types not listed in
correct order. Also,
OPERATION.UNALIG
NED is missing from the
list.

INITIALIZATION AND SYSTEM REQUIREMENTS

11-13

11

Bit 31 of the assembled PMCON word loaded from the IBR is written to DLMCON.be to establish
the initial endianism of memory; the processor initializes the DLMCON.dcen bit to 0 to disable
data caching. The remainder of the assembled word is used to initialize PMCON14_15. In
conjunction with this step, the processor clears the bus control table valid bit (BCON.ctv), to
ensure for the remainder of initialization that every bus request issued takes configuration
information from the PMCON14_15 register, regardless of the memory region associated with the
request. At a later point in initialization, the processor loads the remainder of the memory region

Example 11-1. Processor Initialization Flow

Processor_Initialization_flow()
{ FAIL_pin = true;

restore_full_cache_mode; disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */
PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
if (STEST_ON_RISING_EDGE_OF_RESET)

status = BIST(); /* BIST does not return if it fails */
FAIL_pin = false;

 PC = 0x001f2002; /* PC.Priority = 31, PC.em = Supervisor,*/
 /* PC.te = 0; PC.State = Interrupted */

ibr_ptr = 0xfeffff30; /* ibr_ptr used to fetch IBR words */

/** Read PMCON14_15 image in IBR **/

FAIL_pin = true; IMSK = 0;
DLMCON.dcen = 0; LMMR0.lmte = 0; LMMR1.lmte = 0;
PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr + 8];
DLMCON.be = (memory[ibr_ptr + 0xc] >> 7);

/** Compute CheckSum on Boot Record **/
carry = 0; CheckSum = 0xffffffff;
for (i=0; i<6; i++) /* carry is carry out from previous add*/

CheckSum = memory[ibr_ptr + 16 + i*4] + CheckSum + carry;
if (CheckSum != 0)

{ fail_msg = 0xfeffff64; /* Fail BUS Confidence Test */
 dummy = memory[fail_msg]; /* Do load with address = fail_msg */
 for (;;) ;

 } /* loop forever with FAIL pin true */
else FAIL_pin = false;

/** Process PRCB and Control Table **/
prcb_ptr = memory[ibr_ptr+0x14];
ctrl_table = memory[prcb_ptr+4];
Process_PRCB(prcb_ptr); /* See Process PRCB Section for Details */
IP = memory[ibr_ptr+0x10];

g0 = DEVICE_ID;
return;/* Execute First Instruction */

}

ERRATA (3-8-96) BWL Page 11-13, Example 11-1

In the original example, the order of the two lines:

DLMCON.be = (memory[ibr_ptr + 0xc] >> 7);
PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr + 8];

is reversed.

INITIALIZATION AND SYSTEM REQUIREMENTS

11-13

11

Bit 31 of the assembled PMCON word loaded from the IBR is written to DLMCON.be to establish
the initial endianism of memory; the processor initializes the DLMCON.dcen bit to 0 to disable
data caching. The remainder of the assembled word is used to initialize PMCON14_15. In
conjunction with this step, the processor clears the bus control table valid bit (BCON.ctv), to
ensure for the remainder of initialization that every bus request issued takes configuration
information from the PMCON14_15 register, regardless of the memory region associated with the
request. At a later point in initialization, the processor loads the remainder of the memory region

Example 11-1. Processor Initialization Flow

Processor_Initialization_flow()
{ FAIL_pin = true;

restore_full_cache_mode; disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */
PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
if (STEST_ON_RISING_EDGE_OF_RESET)

status = BIST(); /* BIST does not return if it fails */
FAIL_pin = false;

 PC = 0x001f2002; /* PC.Priority = 31, PC.em = Supervisor,*/
 /* PC.te = 0; PC.State = Interrupted */

ibr_ptr = 0xfeffff30; /* ibr_ptr used to fetch IBR words */

/** Read PMCON14_15 image in IBR **/

FAIL_pin = true; IMSK = 0;
DLMCON.dcen = 0; LMMR0.lmte = 0; LMMR1.lmte = 0;
DLMCON.be = (memory[ibr_ptr + 0xc] >> 7);
PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr + 8];

/** Compute CheckSum on Boot Record **/
carry = 0; CheckSum = 0xffffffff;
for (i=0; i<8; i++) /* carry is carry out from previous add*/

CheckSum = memory[ibr_ptr + 16 + i*4] + CheckSum + carry;
if (CheckSum != 0)

{ fail_msg = 0xfeffff64; /* Fail BUS Confidence Test */
 dummy = memory[fail_msg]; /* Do load with address = fail_msg */
 for (;;) ;

 } /* loop forever with FAIL pin true */
else FAIL_pin = false;

/** Process PRCB and Control Table **/
prcb_ptr = memory[ibr_ptr+0x14];
ctrl_table = memory[prcb_ptr+4];
Process_PRCB(prcb_ptr); /* See Process PRCB Section for Details */
IP = memory[ibr_ptr+0x10];

g0 = DEVICE_ID;
return;/* Execute First Instruction */

}

Errata: 12-20-94 BWL.

In Example 11-1, the
line:
for (i=0; i<6; i++) /*
carry is carry out from
previous add*/

Has been changed to:
for (i=0; i<8; i++) /*
carry is carry out from
previous add*/

INITIALIZATION AND SYSTEM REQUIREMENTS

11-29

11

Example 11-6. Control Table (ctltbl.c)

/*--*/
/* ctltbl.c */
/*--*/
#include "init.h"

typedef struct
 {
 unsigned control_reg[28];
 }CONTROL_TABLE;
const CONTROL_TABLE boot_control_table = {

/* Reserved */
0, 0, 0, 0,
/* Interrupt Map Registers */
0, 0, 0,/* Interrupt Map Regs (set by code as needed) */

 0x43bc, /* ICON
 * - dedicated mode,
 * - enabled
 * system_init 0 - falling edge actived,
 * system_init 1 - falling edge actived,
 * system_init 2 - falling edge actived,
 * system_init 3 - falling edge actived,
 * system_init 4 - level-low activated,
 * system_init 5 - falling edge actived,
 * system_init 6 - falling edge actived,
 * system_init 7 - falling edge actived,
 * - mask unchanged,
 * - not cached,
 * - fast,
 */

/* Physical Memory Configuration Registers */

DEFAULT, 0, /* Region 0_1 */
DEFAULT, 0, /* Region 2_3 */
DEFAULT, 0, /* Region 4_5 */
I_O, 0, /* Region 6_7 */
DEFAULT, 0, /* Region 8_9 */
DEFAULT, 0, /* Region 10_11 */
DRAM, 0, /* Region 12_13 */
ROM, 0, /* Region 14_15 */

0, 0, /* Reserved */
0, /* Trace Controls */
1 /* Bus Control Register (Region config. valid) */

};

Errata 10-25-
94 --BWL.

Added Trace
Controls
section to
Example 11-
6.

MEMORY CONFIGURATION

12-10

Figure 12-6. Default Logical Memory Configuration Register (DLMCON)

12.6.1 Defining the Effective Range of a Logical Data Template

For each logical data template, an LMADR register sets the base address using the A31:12 field.
The LMMR register sets the address mask using the MA31:12 field. The effective address range
for a logical data template is defined using the A31:12 field in an LMADRx register and the
MA31:12 field in an LMMRx register. For each access, the upper 20 address bits (A31:12) are
compared against A31:12 in the LMADRx register. Only address bits with corresponding MA bits
set are compared. Address bits with corresponding MA bits cleared (0) are automatically
considered a “match”. The processor will only use the logical data template when all compared
address bits match. Two examples help clarify the operation of the address comparators.

Mnemonic Bit/Bit Field Name Bit Position(s) Function

DCEN Data Cache Enable 1

Controls data caching for areas not within other
logical memory templates.

0 = Data caching disabled

1 = Write-through caching enabled

Instruction caching is never affected by this bit.

BE
Big Endian Byte
Order

0

Controls byte order for all accesses, both
instruction and data, to memory.
0 = Little endian
1 = Big endian

28 24 20 16 12 8 4 031

Reserved,
write to zero

D
C
E

B
E

Byte Order
0 = Little endian
1 = Big endian

Data Cache Enabled
0 = Data caching disabled
1 = Write-through caching enabled

N

Errata (10-20-94) BWL-
Incomplete sentence.

Original text: Address
bits for are compared...

Corrected text: Only
address bits with corre-
sponding MA bits set are
compared.

INTERRUPT CONTROLLER

13-8

13.2.6.3 Mixed Mode

In mixed mode, pins XINT0 through XINT4 are configured for expanded mode. These pins are
encoded for the five most-significant bits of an expanded-mode vector number; the three least-
significant bits of the vector number are set internally to 0102. Pins XINT5 through XINT7 are
configured for dedicated mode.

Do not write to the low-order four bits of IMAP0 as these bits are used to buffer the expanded-
mode interrupt internally. XINT4:1 are placed in IMAP0[3:0]; XINT0 is latched in a special
register for use in further arbitrating the interrupt and in selecting the interrupt handler.

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits 5 through 7 mask the
dedicated interrupts from pins XINT5 through XINT7, respectively. IMSK register bits 1-4 must
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins
XINT7:5. IPND register bits that correspond to expanded-mode inputs are not used.

13.2.7 Saving the Interrupt Mask

Whenever an interrupt requested by XINT7:0 or by the internal timers is serviced, the IMSK
register is automatically saved in register r3 of the new local register set allocated for the interrupt
handler. After the mask is saved, the IMSK register is optionally cleared. This allows all interrupts
except NMIs to be masked while an interrupt is being serviced. Since the IMSK register value is
saved, the interrupt procedure can restore the value before returning. The option of clearing the
mask is selected by programming the ICON register as described in section 13.3.4, “Interrupt
Control Register (ICON)” (pg. 13-12). Several options are provided for interrupt mask handling:

1. Mask is unchanged.

2. Clear for dedicated-mode sources only.

3. Clear for expanded-mode sources only.

4. Clear for all hardware-requested interrupts (dedicated and expanded mode).

Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode inputs
are allowed. Timer unit interrupts are always dedicated-mode interrupts.

Note that if the same interrupt is requested simultaneously by a dedicated- and an expanded-mode
source, the interrupt is considered an expanded-mode interrupt and the IMSK register is handled
accordingly.

Errata 2-3-95, BWL:

Section 13.2.6.3, Paragraph
2, Sentence 1 formerly read,
“The low-order four bits of
IMAP0 are used to buffer the
expanded-mode interrupt
internally.” The sentence
now explicitly tells the user
not to write to the low-order
four bits of IMAP0.

INTERRUPT CONTROLLER

13-21

13

set bit in IPND

Expanded InterruptDedicated Interrupt

get vector encoded

Non-Maskable Interrupt (NMI)

is
int.prio

> PC.pr NO

YES

signal core to
process interrupt

Software Interrupt

is
IMSK

ANDed with
IPND
= 0?

YES

get vector from
IMAP register

YES

NO
PC.s = 1

SP = interrupt
stack pointer

PFP = FP

SIPR =

get vector in field 1

set corresponding

New PC =

state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

YES
software
interrupt

NO

on XINT pins

store interrupt
record at FP - 16

get interrupt procedure pointer
SP = FP + 64
IP = interrupt procedure pointer

pending bits in
interrupt table

interrupt priority

?

or = 31?

?

FP = SP aligned to
next 16 byte boundary

+16

clear trace fault pending bit (TC.tfp)

clear trace enable bit (TC.te)

vector = 248

NO

YES

continue normal

operation

(Test for external

is

ICON.gie

= 0?

update SIPR with
next highest priority

read pending interrupt bits;
clear pending interrupt bits

in interrupt table,

 interrupts enabled)

(See if
 Interrupt
Priority is

(Test for
 interrupted
state)

Servicing
NMI

already

YES

NO

greater than
process
priority OR
at interrupt
priority=31)

PFP[3:0] = 0111

Figure 13-10. Interrupt Service Flowchart

Errata 4-8-96 BWL

Page 13-21, Table 13-10.

The diamond that reads:

“is ICON.GIE = 1?”

Should read:

“is ICON.GIE = 0?”

TEST FEATURES

17-9

17

17.3.5 TAP Controller

The TAP controller is a 16-state synchronous finite state machine that controls the sequence of test
logic operations. The TAP can be controlled via a bus master. The bus master can be either
automatic test equipment or a component (i.e., PLD) that interfaces to the Test Access Port (TAP).
The TAP controller changes state only in response to a rising edge of TCK or power-up. The value
of the test mode select (TMS) input signal at a rising edge of TCK controls the sequence of state
changes.

The TAP controller is not automatically initialized on power-up. Therefore, it is important that the
system resets the TAP controller after power up by asserting the TRST pin. In addition, the TAP
controller can be initialized by applying a high signal level on the TMS input for five TCK periods.
Systems that do not use JTAG, or that normally do not apply a clock to TCK should provide a pull-
down resistor on TRST to hold the TAP controller in the Test_Logic_Reset state. A 2.7k value is
strong enough to overcome the TRST pin’s internal pull-up, but weak enough to allow automatic
test equipment to overdrive it during production testing. Alternatively, the TRST pin may be
connected to ground if the Test Access Port will never be used.

bypass

IEEE 1149.1

Required

11112

bypass instruction selects the Bypass register between TDI and TDO pins while in
SHIFT_DR state, effectively bypassing the processor’s test logic. 02 is captured in
the CAPTURE_DR state. This is the only instruction that accesses the Bypass
register. While this instruction is in effect, all other test data registers have no
effect on the operation of the system. Test data registers with both test and system
functionality perform their system functions when this instruction is selected.

runbist
i960 Jx
Processor
Optional

01112

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and
connects it to TDO. It also initiates the processor’s built-in self test (BIST) feature
which is able to detect approximately 82% of the stuck-at faults on the device. The
processor AC/DC specifications for VCC and CLKIN must be met and RESET must
be de-asserted prior to executing runbist.

After loading runbist instruction code into the instruction register, the TAP
controller must be placed in the Run-Test/Idle state. bist begins on the first rising
edge of TCK after the Run-Test/Idle state is entered. The TAP controller must
remain in the Run-Test/Idle state until bist is completed. runbist requires approx-
imately 414,000 core cycles to complete bist and report the result to the
RUNBIST register’s. The results are stored in bit 0 of the RUNBIST register. After
the report completes, the value in the RUNBIST register is shifted out on TDO
during the Shift-DR state. A value of 0 being shifted out on TDO indicates bist
completed successfully. A value of 1 indicates a failure occurred. After bist
completes, the processor must be recycled through the reset state to begin normal
operation.

Table 17-3. IEEE Instructions (Sheet 2 of 2)

Instruction /
Requisite

Opcode Description

Errata: BWL (12-16-94)

Sentence 6 of the first
paragraph of section
17.3.5 incorrectly
stated:

“The TAP controller is
automatically initialized
on powerup.”

A new paragraph
(<--left) has been added
between the first and
second paragraphs.

B-1

B

APPENDIX B
OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCODE

This section lists the instruction encoding for each i960 Jx microprocessor instruction. Instructions
are grouped by instruction format and listed by opcode within each format.

Table B-1. Miscellaneous Instruction Encoding Bits

M3 M2 M1 S2 S1 Description

REG Format

x x 0 x 0 src1 is a global or local register

x x 1 x 0 src1 is a literal

x x 0 x 1 reserved

x x 1 x 1 reserved

x 0 x 0 x src2 is a global or local register

x 1 x 0 x src2 is a literal

x 0 x 1 x reserved

x 1 x 1 x reserved

0 x x x x src/dst is a global or local register

1 x x x x src/dst is a literal when used as a source. M3 may not be 1 when src/dst
is used as a destination only or is used both as a source and destination
in an instruction (atmod, modify, extract, modpc).

COBR Format

— — 0 0 — src1 src2 and dst are global or local registers

— — 1 0 — src1 is a literal, src2 and dst are global or local registers

— — 0 1 — reserved

— — 1 1 — reserved

Errata, 4/8/96 BWL:
Tables B-1, B-3 and B-4
show a "T" column for a
branch prediction bit. Since
branch prediction is not
implemented on the i960 Jx
processor, this bit is ignored.
The “T” column has been
removed.

OPCODES AND EXECUTION TIMES

B-6

Table B-3. COBR Format Instruction Encodings

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e

sr
c1

sr
c2 M

D
is

p
la

ce
m

en
t

S
2

31 24 23 . 19 18... 14 13 12.........2 0

20 testno 4 0010 0000 dst M1 S2

21 testg 4 0010 0001 dst M1 S2

22 teste 4 0010 0010 dst M1 S2

23 testge 4 0010 0011 dst M1 S2

24 testl 4 0010 0100 dst M1 S2

25 testne 4 0010 0101 dst M1 S2

26 testle 4 0010 0110 dst M1 S2

27 testo 4 0010 0111 dst M1 S2

30 bbc 2 + 11 0011 0000 bitpos src M1 targ S2

31 cmpobg 2 + 1 0011 0001 src1 src2 M1 targ S2

32 cmpobe 2 + 1 0011 0010 src1 src2 M1 targ S2

33 cmpobge 2 + 1 0011 0011 src1 src2 M1 targ S2

34 cmpobl 2 + 1 0011 0100 src1 src2 M1 targ S2

35 cmpobne 2 + 1 0011 0101 src1 src2 M1 targ S2

36 cmpoble 2 + 1 0011 0110 src1 src2 M1 targ S2

37 bbs 2 + 1 0011 0111 bitpos src M1 targ S2

38 cmpibno 2 + 1 0011 1000 src1 src2 M1 targ S2

39 cmpibg 2 + 1 0011 1001 src1 src2 M1 targ S2

3A cmpibe 2 + 1 0011 1010 src1 src2 M1 targ S2

3B cmpibge 2 + 1 0011 1011 src1 src2 M1 targ S2

3C cmpibl 2 + 1 0011 1100 src1 src2 M1 targ S2

3D cmpibne 2 + 1 0011 1101 src1 src2 M1 targ S2

3E cmpible 2 + 1 0011 1110 src1 src2 M1 targ S2

3F cmpibo 2 + 1 0011 1111 src1 src2 M1 targ S2

1. Indicates that it takes 2 cycles to execute the instruction plus an additional cycle to fetch the target instruction if
the branch is taken.

Errata, 4/8/96 BWL:
Tables B-1, B-3 and B-4 show a "T"
column for a branch prediction bit.
Since branch prediction is not
implemented on the i960 Jx proces-
sor, this bit is ignored. The “T” col-
umn has been removed.

OPCODES AND EXECUTION TIMES

B-7

B

Table B-4. CTRL Format Instruction Encodings

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to

E
xe

cu
te

O
p

co
d

e

D
is

p
la

ce
m

en
t

0

31............24 23...........2 0

08 b 1 + 11 0000 1000 targ 0

09 call 7 0000 1001 targ 0

0A ret 6 0000 1010 0

0B bal 1 + 1 0000 1011 targ 0

10 bno 1 + 1 0001 0000 targ 0

11 bg 1 + 1 0001 0001 targ 0

12 be 1 + 1 0001 0010 targ 0

13 bge 1 + 1 0001 0011 targ 0

14 bl 1 + 1 0001 0100 targ 0

15 bne 1 + 1 0001 0101 targ 0

16 ble 1 + 1 0001 0110 targ 0

17 bo 1 + 1 0001 0111 targ 0

18 faultno 13 0001 1000 0

19 faultg 13 0001 1001 0

1A faulte 13 0001 1010 0

1B faultge 13 0001 1011 0

1C faultl 13 0001 1100 0

1D faultne 13 0001 1101 0

1E faultle 13 0001 1110 0

1F faulto 13 0001 1111 0

1. Indicates that it takes 1 cycle to execute the instruction plus an additional cycle to
fetch the target instruction if the branch is taken.

Errata, 4/8/96 BWL:
Tables B-1, B-3 and B-4 show a "T"
column for a branch prediction bit.
Since branch prediction is not
implemented on the i960 Jx proces-
sor, this bit is ignored. The “T” col-
umn has been removed.

REGISTER AND DATA STRUCTURES

C-23

C

Figure C-25. Logical Memory Template Mask Registers (LMMR0-1)

Section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8)

Figure C-26. Default Logical Memory Configuration Register (DLMCON)

Section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8)

Reserved,

28 24 20 16 12

8 4 0

31

write to zero

Logical Memory Template Enabled
0 = LMT disabled
1 = LMT enabled

Template Address Mask

L
M
T
E

M
A
3
1

M
A
3
0

M
A
2
9

M
A
2
8

M
A
2
7

M
A
2
6

M
A
2
5

M
A
2
4

M
A
2
3

M
A
2
2

M
A
2
1

M
A
2
0

M
A
1
9

M
A
1
8

M
A
1
7

M
A
1
6

M
A
1
5

M
A
1
4

M
A
1
3

M
A
1
2

Errata 11/14/94 BWL.

Figure C-25, LMMR0-1
Register Diagramis a
duplicate of LMADR0-1
register. Figure12-5
(page 12-5) displays the
register correctly.

28 24 20 16 12 8 4 031

Reserved,
write to zero

D
C
E

B
E

Big Endian Byte Order
0 = Little endian
1 = Big endian

Data Cache Enabled
0 = Data caching disabled
1 = Write-through caching enabled

N

	REVISION HISTORY
	PREFACE
	SUMMARY TABLE OF CHANGES
	IDENTIFICATION INFORMATION
	ERRATA
	9600001. RDYRCV# Restriction During Ta, Th and Ti Cycles (A-0 Stepping Only)
	9600002. RDYRCV# Restriction During Ta and Ti Cycles (A-2 Stepping Only)
	9600003. System-Local Fault Calls Use System-Supervisor Trace Enable Bit
	9600004. Instructions “inten” and “intdis” Not Fully Implemented
	9600005. Fault Stack Alignment
	9600006. Software Interrupt Erratum
	9600007. Pullup on LOCK#/ONCE# Pin Does Not Turn Off
	9600008. Software Reinitialization Values in LMMR0, LMMR1, DLMCON
	9600009. Power Supply Current (Icc) Higher than Anticipated
	9600010. One Cycle Performance Hit Due to Instruction Order with LOAD Instructions
	9600011. “divi” Instruction Performance Hit When src2 = dst
	9600012. Instructions Executed Between Back to Back Interrupts
	9600013. “balx” Instruction Does Not Branch When targ and dst Use the Same Register
	9600014. Data Breakpoints on System Procedure Entries are Lost for Certain Fault Types
	9600015. Actual Max Tov Greater than Specified in Data Sheets
	9600016. VIH level on TRST#/RESET# Greater than Specified in Data Sheets

	SPECIFICATION CHANGES
	SPECIFICATION CLARIFICATIONS
	DOCUMENTATION CHANGES
	001. IPND should not be Modified using a MEM Format Instruction
	002. Page 7-9
	003. Page 9-10
	004. Page 9-3, Table 9-1
	005. Page 12-10, section 12.6.1
	006. Page C-23, Figure C-25
	007. Page 11-29, Example 11-6
	008. Page 17-09, Section 17 3.5
	009. Page 13-08, Section 13.2.6.3
	010. Page 9-8, Table 9-3
	011. Page 14-10, Section 14.3
	012. Page 6-57, Section 6.6.32
	013. Page 11-13, Example 11-1
	014. Page 3-9, Table 3-4
	015. Page 11-13, Example 11-1
	016. Page 3-22
	017. Pages B-1, B-6 and B7
	018. Page 13-21, Table 13-10
	019. Page 2-5, Table 2-4

	i960® Jx Microprocessor User's Manual Change Pages
	Page 2-5
	Page 3-9
	Page 3-22
	Page 6-57
	Page 7-9
	Page 9-3
	Page 9-8
	Page 9-10
	Page 11-13
	Page 11-13
	Page 11-29
	Page 12-10
	Page 13-8
	Page 13-21
	Page 17-9
	Page B-1
	Page B-6
	Page B-7
	Page C-23

