
Release Date: January, 1997

Order Number: 272830-002

80960HA/HD/HT
SPECIFICATION UPDATE
The 80960HA/HD/HT may contain design defects or errors known as errata. Charac-
terized errata that may cause the 80960HA/HD/HT’s behavior to deviate from
published specifications are documented in this specification update.

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s
Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any
express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual
property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or call in North America 1-800-879-4683, Europe 44-0-1793-431-155,
France 44-0-1793-421-777, Germany 44-0-1793-421-333, other countries 708-296-9333

Copyright © 1997, INTEL CORPORATION
ii January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
REVISION HISTORY ...5

PREFACE ..7

SUMMARY TABLE OF CHANGES ...9

IDENTIFICATION INFORMATION ..13

ERRATA ..14

SPECIFICATION CHANGES ..33

SPECIFICATION CLARIFICATIONS ..35

DOCUMENTATION CHANGES ..38
272830-002 January, 1997 iii

80960HA/HD/HT SPECIFICATION UPDATE
REVISION HISTORY

The errata and information that has changed in this Specification Update since the last
revision are outlined below:

REVISION HISTORY (Sheet 1 of 2)

Rev. Date Version Description

01/01/97 002 Added descriptions of the B-0 stepping.
Added errata items:
20. Using atmod or sysctl to Change IMSK or IPND MMRS Can
Hang the Processor
21. Storing the Contents of the I_CACHE to External Memory
Also Disables the Cache
22. PCHK# Pin Does Not Indicate Parity Failures On HD and HT
Processors
23. Spurious INVALID_OPCODE Faults Can Occur with
Level-Detect Interrupts
24. Parity Can Fail on Reliable Data and Can Pass on Corrupted
Data
Added Document Change items:
5. Page 6-45
13. Page 11-19

07/01/96 001 This is the new 80960Hx Specification Update document. It
contains all identified errata published prior to this date.

12/08/95 1.01 Add errata item #22 Instruction Breakpoints Are Superseded by
Invalid Opcode Faults
272830-002 January, 1997 5 of 44

80960HA/HD/HT SPECIFICATION UPDATE
11/17/95 1.00 The A-1 stepping fixes the following errata from the A-0 (A-0
Errata Sheet numbering shown):
#6 RESET Has Priority Over HOLD,
#9 Data Cache Global Disable Bit (CCON.dci, sf2) May Take 1
Extra Clock Cycle to Complete,
#16 Low Temperature Operating Limit is Increased to 25C, and
#18 IPND Register Not Cleared Automatically.
Remaining errata have been renumbered for the A-1 stepping.
See the Summary of Known Errata, pg. 3
Add errata:
#20 Halt Mode Does not Conserve Power, and
#21 Invalidating the Data Cache Automatically Re-enables It
Modifications since rev 0.11 (10/27/95) of the A-0 errata sheet...
#8 Hold Vcc Above 3.15V and Below 3.45V
#15 DEN# Remains Asserted During ADS# Cycles
#16 TRST# Input Can Be Tied Low, and
#17 Burst Accesses on 8- and 16-Bit Buses Do Not Behave Like
the Cx Processor

REVISION HISTORY (Sheet 2 of 2)

Rev. Date Version Description
6 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
PREFACE

As of July, 1996, Intel has consolidated available historical device and documentation
errata into this new document type called the Specification Update. We have endeavored
to include all documented errata in the consolidation process, however, we make no
representations or warranties concerning the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected
Documents/Related Documents table below. This document is a compilation of device
and documentation errata, specification clarifications and changes. It is intended for
hardware system manufacturers and software developers of applications, operating
systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update
and are no longer published in other documents.

This document may also contain information that was not previously published.

Nomenclature

Errata are design defects or errors. These may cause the published (component, board,
system) behavior to deviate from published specifications. Hardware and software
designed to be used with any component, board, and system must consider all errata
documented.

Specification Changes are modifications to the current published specifications. These
changes will be incorporated in any new release of the specification.

1. can be downloaded from the Intel worldwide web homepage at:
http://www.intel.com/design/i960/technote/hxlopwr.htm

Affected Documents/Related Documents

Contact your Intel sales representative to receive copies of the following documents:

Title Order #

80960HA/HD/HT 32-Bit High Performance Superscalar Processor Data
Sheet

272495-004

i960® Hx Microprocessor User’s Manual 272484-001
i960® Hx Microprocessor Instruction Set and Register Quick Reference 272792-001
Reduced Power Options for the 80960HA/HD/HT Processor1
272830-002 January, 1997 7 of 44

80960HA/HD/HT SPECIFICATION UPDATE
Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorpo-
rated in any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These will be incorporated in any new release of the specification.

NOTE:
Errata remain in the specification update throughout the product’s lifecycle, or until a
particular stepping is no longer commercially available. Under these circumstances, errata
removed from the specification update are archived and available upon request. Specifi-
cation changes, specification clarifications and documentation changes are removed from
the specification update when the appropriate changes are made to the appropriate
product specification or user documentation (datasheets, manuals, etc.).
8 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
SUMMARY TABLE OF CHANGES

The following table indicates the errata, specification changes, specification clarifications,
or documentation changes which apply to the 80960HA/HD/HT product. Intel may fix
some of the errata in a future stepping of the component, and account for the other
outstanding issues through documentation or specification changes as noted. This table
uses the following notations:

Codes Used in Summary Table

Stepping

X: Errata exists in the stepping indicated. Specification Change
or Clarification that applies to this stepping.

(No mark)
or (Blank box): This erratum is fixed in listed stepping or specification change

does not apply to listed stepping.

Page
(Page): Page location of item in this document.

Status
Doc: Document change or update will be implemented.
Fix: This erratum is intended to be fixed in a future step of the com-

ponent.
Fixed: This erratum has been previously fixed.
NoFix: There are no plans to fix this erratum.
Eval: Plans to fix this erratum are under evaluation.

Row
Change bar to left of table row indicates this erratum is either
new or modified from the previous version of the document.
272830-002 January, 1997 9 of 44

80960HA/HD/HT SPECIFICATION UPDATE
Errata (Sheet 1 of 2)

No.

Steppings

Page Status ERRATAA0 A1 A2 B0 B1

1. X X X 14 Fixed Parity Failure on 8- and 16-bit Unaligned
Loads

2. X X X X X 14 NoFix Read Wrong Location from Non-Burst, 8-
and 16-bit Memory Regions

3. X X X X X 15 NoFix Breakpoints on Stacks Produce Wrong
Fault IP

4. X X X 15 Fixed Parity Faults May Not Report Correct
Address and Access Type

5. X X X 16 Fixed PMCON15 Temporarily Initialized
Incorrectly During RESET

6. X X X 16 Fixed BCON Register is not Cleared Before
Software Reset

7. X X X 17 Fixed MODTC Command Can Set TC Register
Event Flags

8. X X X X X 17 NoFix Parity Faults Cannot Be Disabled
Separate from the PCHK# Pin

9. X X X 17 Fixed Timer Terminal Count (TMR.tc) Bit Cannot
Bear Polling

10. X X X X X 18 NoFix Return Instruction Pointer (RIP) Cannot be
Stored by Software

11. X X X 19 Fixed WAIT# Pin Asserts During NXDA Wait
States

12. X X X 19 Fixed Software Interrupts Can Access the Wrong
Handler Address

13. X X X 20 Fixed Invalidating the Data Cache Automatically
Re-enables It

14. X 21 Fixed RESET Has Priority Over HOLD
15. X 21 Fixed Data Cache Global Disable Bit (CCON.dci,

sf2) May Take 1 Extra Clock Cycle To
Complete

16. X 22 Fixed Low Temperature Operating Limit
Increased to 25°C

17. X 22 Fixed IPND Register Not Cleared Automatically
10 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
18. X X X 23 Fixed Cycle Type Bits (CT3:0) Do Not Indicate
Some Fault Types

19. X X X X X 25 NoFix Operation Fault Occurs When Clearing the
IMASK (sf1) Register

20. X X X 26 Fixed Using atmod or sysctl to Change IMSK or
IPND MMRS Can Hang the Processor

21. X X X 27 Fixed Storing the Contents of the I_CACHE to
External Memory Also Disables the Cache

22. X X X 28 Fixed PCHK# Pin Does Not Indicate Parity
Failures On HD and HT Processors

23. X X X X X 28 NoFix Spurious INVALID_OPCODE Faults Can
Occur with Level-Detect Interrupts

24. X X X X 32 Fixed Parity Can Fail on Reliable Data and Can
Pass on Corrupted Data

Specification Changes

No.
Document
Revision Page Status SPECIFICATION CHANGES

1. 272495-003 33 Hold VCC Above 3.15V and Below 3.45V
2. 272495-003 33 TRST# Input Can Be Tied Low
3. 272495-003 34 Halt Mode Does Not Conserve Power

Specification Clarifications

No.
Document
Revision Page Status SPECIFICATION CLARIFICATIONS

1. 272484-001 35 Burst Accesses on 8- and 16-Bit Buses Do Not
Behave Like the Cx Processor

2. 272484-001 36 Instruction Breakpoints Are Superseded by Invalid
Opcode Faults

Errata (Sheet 2 of 2)

No.

Steppings

Page Status ERRATAA0 A1 A2 B0 B1
272830-002 January, 1997 11 of 44

80960HA/HD/HT SPECIFICATION UPDATE
Documentation Changes

No.
Document
Revision Page DOCUMENTATION CHANGES

1. 272484-001 38 Page 3-11, Table 3-4
2. 272484-001 38 Page 3-11, Table 3-4
3. 272484-001 38 Page 3-26
4. 272484-001 38 Page 4-6, Section 4.4.3
5. 272484-001 39 Page 6-45
6. 272484-001 39 Page 6-60, Table 6-8
7. 272484-001 39 Page 6-61, Figure 6-4
8. 272484-001 39 Page 6-62, Table 6-9
9. 272484-001 40 Page 6-63, Figure 6-5

10. 272484-001 40 Page 6-64, Figure 6-6
11. 272484-001 40 Page 6-116
12. 272484-001 40 Page 8-6, Figure 6-6
13. 272484-001 41 Page 11-19
14. 272484-001 41 Page 12-15
15. 272484-001 42 Page 13-4, Figure 13-2
16. 272484-001 42 Page 13-9, Section 13.2.2.5
17. 272484-001 42 Page 13-11, Section 13.2.2.5
18. 272484-001 43 Page 13-23, Table 13-7
19. 272484-001 43 Page 13-37, Figure 13-9
20. 272484-001 43 Page 13-37, Figure 13-10
21. 272484-001 43 Page 15-15
22. 272484-001 43 Pages E-41, E-44, E-45, Examples E-1, E-3, E-4
12 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
IDENTIFICATION INFORMATION

STEPPING REGISTER

80960HA/HD/HT processors may be identified electrically according to device type and
stepping. The g0 register contains this information after reset initialization. The following
table lists the devices to which this errata sheet applies:

Refer to the data sheet for instructions on how to obtain the identifier number from the g0
register.

JTAG REGISTERS

See the data sheet, release -004, dated June 1996, Section 5.1 80960Hx Boundary Scan
Chain, pages 74-78 for the boundary scan chain definition.

See the data sheet, release -004, dated June 1996, Section 5.2 Boundary Scan
Description Language Example (BSDL) for the simulator file describing the boundary scan
configuration in the PGA and PQ2 packages. Contact your Intel sales office for an ASCII
version of these files. Optionally, these BSDL files can be downloaded from the Intel
worldwide web homepage at: http://www.intel.com/design/i960/swsup/ .

See the user’s manual, release -001, dated November 1995, Section 16.2 Boundary Scan
(JTAG) for a full description of the implemented boundary scan registers and instructions.

DEVICE IDENTIFIER CODES FOUND IN THE g0 REGISTER AFTER RESET

Device

Stepping 80960HA 80960HD 80960HT

A-0 0x08840013 0x08841013 0x18840013

A-1 & A-2 0x08841013 0x08841013 0x18841013

B-0 & B-1 0x08842013 0x08841013 0x18842013
272830-002 January, 1997 13 of 44

80960HA/HD/HT SPECIFICATION UPDATE
ERRATA

1. Parity Failure on 8- and 16-bit Unaligned Loads
PROBLEM: The parity detection logic can falsely indicate a parity failure under specific
conditions.

IMPLICATION: False parity failures may result during unaligned short reads on an 8- or
16-bit bus.

Parity must be enabled on that 8- or 16-bit memory region for the failure to occur. Also, the
error does not appear if the 8- or 16-bit memory region is designated as cacheable.

This error does not affect 32-bit memory regions.

WORKAROUND: One or more of the following conditions will prevent this error:

• Disable parity for 8- or 16-bit memory regions containing unaligned data.

• Make the 8- or 16-bit memory region cacheable. (Since cacheable loads are always
promoted to word loads, the errata conditions never occur.)

• Do not use short loads (ldis or ldos) on unaligned data in 8- or 16-bit regions. If
necessary, break short loads into two discrete byte loads.

These workarounds do not necessarily have to be removed after this errata is corrected in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

2. Read Wrong Location from Non-Burst, 8- and 16-bit Memory Regions
PROBLEM: Under certain conditions, the processor reads a wrong memory location
when reading unaligned data from either an 8- or 16-bit memory region.

The failure mode occurs when all the following conditions are present:

• Bursting disabled

• Pipelining enabled

• 8- or 16-bit memory region

• NRAD = 0 and NRDD ≠ 0

• Unaligned memory read access that crosses a 16-byte (quad word) boundary

If any of the above conditions are not present, the processor behaves correctly.
14 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
When the above conditions are present, the processor may fail to access the correct
location in the next 16-byte memory segment. Instead, it may “wrap around” and access a
wrong location at the beginning of the current 16-byte segment.

IMPLICATION: There is little impact to the user since it is impractical to design a pipelined
memory systems using NRAD = 0 with NRDD ≠ 0.

WORKAROUND: In every 8- or 16-bit memory region where bursting is disabled and
pipelining is enabled, set NRAD ≠ 0 or NRDD = 0. Else, avoid at least one of the other
conditions listed above.

STATUS: STATUS: NoFix. Refer to Summary Table of Changes to determine the
affected stepping(s).

3. Breakpoints on Stacks Produce Wrong Fault IP
PROBLEM: When a data breakpoint is set on a stack location and a call, callx, or calls
instruction causes a flush to that stack location, the resulting trace fault record may report
the instruction pointer (IP) of the called procedure instead of the calling instruction.

This error occurs only when the procedure call causes a frame flush from the on-chip
register cache to the procedure stack.

IMPLICATION: The IP returned for breakpoints set on stack locations is unreliable.

WORKAROUND: Avoid setting data breakpoints on the stack. Else, ensure that the
register cache is large enough to prevent frame spills during debugging.

Otherwise, ignore the fault IP if you only need to know that data was flushed to the stack.

STATUS: NoFix. Refer to Summary Table of Changes to determine the affected
stepping(s).

4. Parity Faults May Not Report Correct Address and Access Type
PROBLEM: When a parity fault occurs, the fault record may report the wrong faulting
address and bus access type. Specifically, if another load or fetch access immediately
follows the faulting access, the fault record address and bus access type describes the
second access instead of the faulting access.

IMPLICATION: The faulting address and bus access type in a parity fault record are not
reliable.

WORKAROUND: Ignore the address of faulting instruction and the access type word of
the parity fault record.
272830-002 January, 1997 15 of 44

80960HA/HD/HT SPECIFICATION UPDATE
STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

5. PMCON15 Temporarily Initialized Incorrectly During RESET
PROBLEM: The PMCON15 bytes loaded from the Initialization Boot Record (IBR) after
RESET is deasserted become corrupted inside the processor. The resulting wait state
profile can cause initialization read accesses to have more address-to-data (NRAD) and
data-to-data (NRDD) wait states than intended.

This problem corrects itself later during initialization when the processor overwrites
PMCON15 with the correct wait state profile from the Control Table image in user
memory.

Specifically, the low nibble of IBR PMCON Byte 1 is logically OR’d with the high nibble of
PMCON Byte 0.

The write wait states in Byte 1 are not at issue here because no writes occur during
processor initialization after PMCON15 is overwritten from the Control Table.

IMPLICATION: If the workaround is ignored, some systems may “hang” indefinitely during
processor initialization. Memory systems that use READY# during processor initialization
cannot afford arbitrary extra wait states because the processor ignores the READY#
signal until after the wait states expire. In that case, the processor can “hang” during
initialization, awaiting a READY# signal that has already occurred.

WORKAROUND: Program IBR address 0xFEFFFF34 with 0x00.

No workaround is strictly necessary for memory systems that use the internal wait state
generator. Processor initialization proceeds correctly, but possibly at a slower speed until
the processor loads the Control Table from external memory.

This workaround does not necessarily have to be removed once this errata is corrected in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

6. BCON Register is not Cleared Before Software Reset
PROBLEM: Processor microcode does not clear the BCON.sirp bit before performing a
sysctl software reset.

IMPLICATION: A TYPE MISMATCH fault is generated if the BCON.sirp bit is set when a
software reset is executed.
16 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
WORKAROUND: Clear BCON.sirp before executing a sysctl reset sequence.

This workaround does not necessarily have to be removed after this errata is corrected in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

7. MODTC Command Can Set TC Register Event Flags
PROBLEM: The modtc instruction can be used to set event flags in the Trace Control
(TC) Register. Normally, event flags are set by hardware trace events and cleared by user
software with modtc. There is no utility in the user setting those flags.

IMPLICATION: User code could accidentally set the TC Register event flags with unpre-
dictable results.

WORKAROUND: Only use modtc to clear event flags.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

8. Parity Faults Cannot Be Disabled Separate from the PCHK# Pin
PROBLEM: Contrary to section 16.3.5 “Parity Generation and Checking” in the user’s
manual revision -001 (dated November 1995), parity faults cannot be disabled indepen-
dently from the hardware parity checking pin, PCHK#. There is no bit in the PRCB Fault
Configuration Word to enable/disable faults on parity errors.

IMPLICATION: When parity is enabled, parity faults and the PCHK# pin responds to
parity failures. Users cannot independently disable one or the other response.

WORKAROUND: Under evaluation.

STATUS: NoFix. Refer to Summary Table of Changes to determine the affected
stepping(s).

9. Timer Terminal Count (TMR.tc) Bit Cannot Bear Polling
PROBLEM: The TMRx.tc bit randomly fails to go true (high) if polled by software when the
timer is used in one-shot mode. Timer0 and Timer1 are both affected.

Specifically, if the user software reads TMRx.tc at or about the same time the bit is set by
the processor, the bit never gets set. The timer expires and halts as normal.
272830-002 January, 1997 17 of 44

80960HA/HD/HT SPECIFICATION UPDATE
IMPLICATION: This errata affects applications that use the timer(s) to produce finite,
one-shot delays. Applications that require cyclic, periodic delays can usually use the timer
interrupts instead of polling.

WORKAROUND: Use either of the following techniques:

1. Poll the Timer Count Register (TCRx) until it decrements to zero. In one-shot mode,
TCRx remains cleared when it reaches 0x0000000.

2. Poll the Timer Enable bit (TMRx.en) until it clears. In one-shot mode, TMRx.en clears
when TCRx reaches 0x00000000.

These workarounds do not necessarily have to be removed after this errata is corrected in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

10. Return Instruction Pointer (RIP) Cannot be Stored by Software
PROBLEM: A fault occurs when writing the RIP (located in register r2) directly to an
external address using the following code sequence.

lda <address>, r6 # the register used is not significant
st RIP, (r6)

The following code sequence does not produce a fault.

mov RIP, r7 # mov and lda execute in parallel
(1 clock cycle)

lda <address>, r6
st r7, (r6)

IMPLICATION: Storing the RIP to external memory is a common debug method, but
rarely used in actual applications. Of course, user software should never modify (write) the
RIP directly. Section 7.2 “Modifying the PFP Register” in the user’s manual, revision -001
(dated November 1995) describes the recommended way to change the processor’s
context.

WORKAROUND: Use an intermediate register to write the RIP from r2 to an external
address.

This workaround does not necessarily have to be removed after this errata is corrected in
silicon.

STATUS: NoFix. Refer to Summary Table of Changes to determine the affected
stepping(s).
18 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
11. WAIT# Pin Asserts During NXDA Wait States
PROBLEM: The WAIT# pin toggles true (low) during internally generated NXDA wait
states. These extra WAIT# signals occur only when a bus request requires multiple bus
accesses.

IMPLICATION: Applications that use WAIT# to derive a write data strobe can generate
sporadic strobes between valid memory accesses.

WORKAROUND: If your application uses WAIT# to qualify write strobes, modify your
write strobe logic to ignore any WAIT# signals after BLAST# and before ADS#. A 1-bit
state machine is sufficient. Add the equivalent of the following ABEL logic equations to
your strobe logic:

write_en := ads # (write_en & !blast);
write0_out = write0 & write_en;
write1_out = write1 & write_en;
write2_out = write2 & write_en;
write3_out = write3 & write_en;

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

12. Software Interrupts Can Access the Wrong Handler Address
PROBLEM: Posting a sysctl software interrupt to a vector ending in 0xa while vector
caching is enabled causes the processor to begin executing at an undefined address,
which usually results in an OPERATION fault. The processor fetches an interrupt handler
address from the internal vector cache, where it should not.

This behavior occurs every time vector caching is enabled and the vector least significant
nibble is 0xa, i.e., the set of "bad" vectors is:

0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, 0x6a, 0x7a,

0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa

This failure does not occur when either of the above conditions is false -- when vector
caching is disabled or another vector besides 0xa is used.

Interrupt vectors ending in 0xa are not cacheable, so the processor should read the
external interrupt vector table even though vector caching is enabled. When the failure
occurs, the processor doesn’t read the handler address from the external interrupt vector
table.
272830-002 January, 1997 19 of 44

80960HA/HD/HT SPECIFICATION UPDATE
Expanded or mixed hardware interrupts can use these vectors with impunity. For
example, vector 0xaa has been shown to work correctly as an expanded hardware
interrupt vector.

IMPLICATION: Sixteen (16) software interrupt vectors (all vectors ending in 0xa) are
unavailable while vector caching is enabled. The remaining 224 software interrupt vectors
are unaffected.

WORKAROUND: Disable interrupt vector caching (ICON.vce = 0) when posting software
interrupts to vectors ending in 0xa. Otherwise, avoid using vectors ending in 0xa.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

13. Invalidating the Data Cache Automatically Re-enables It
PROBLEM: Invalidating the data cache (“D_cache”) enables the D_cache.

Applications that disable the D_cache then invalidate it result in the D_cache being
enabled again. This behavior occurs regardless of whether the software directly writes to
the CCON (sf2) or uses the dcctl instruction to manipulate the D_cache.

IMPLICATION: The D_cache can be enabled when users do not expect it.

WORKAROUND: Follow one of the sequences below to invalidate and disable the
D_cache:

1. Set CCON.dci = 1 to invalidate the D_cache.

2. Loop on the CCON.dci bit until it clears.

3. Set CCON.dcgd = 1 to disable the D_cache.

or

1. Issue the dcctl instruction, mode 2 to invalidate the D_cache first.

2. Issue the dcctl instruction, mode 0 to disable the D_cache.

This workaround does not necessarily have to be removed after this errata is corrected in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).
20 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
14. RESET Has Priority Over HOLD
PROBLEM: If the RESET and HOLD pins are both true, the processor output and I/O pins
assume the RESET state. The output and I/O pins are supposed to remain in the HOLD
state regardless of the RESET pin.

IMPLICATION: Single bus master systems are not affected.

Multiple bus master systems that require the 80960Hx processor to remain in HOLD
mode during RESET must use the workaround.

WORKAROUND: Prevent the RESET and HOLD pins from being active at the same time.

If a multiple bus master system uses HOLD independent of the system RESET signal,
add external logic to qualify the system RESET signal with the HOLD signal.

RESET#sys + HOLD = RESET#proc

where:

RESET#sys (active low) -- system RESET signal from the host or other
controlling bus master,

HOLD (active high) -- HOLD signal applied to the processor,

RESET#proc (active low) -- processor RESET pin.

If the latter option is used, ensure that RESET#proc remains asserted for at least 16 bus
clock cycles after HOLD goes away to provide enough time to properly reset the
processor.

This workaround does not necessarily have to be removed after this errata is corrected in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

15. Data Cache Global Disable Bit (CCON.dci, sf2) May Take 1 Extra
Clock Cycle To Complete

PROBLEM: Sometimes the CCON.dci bit stays high one extra clock cycle. The processor
randomly appears to take an extra clock cycle to invalidate the data cache. Functionally,
the bit still works as specified; it may simply take longer.

A hardware race condition in the processor causes the bit to discharge in 2 clock cycles.
Setting this bit is not affected.

IMPLICATION: Probably no impact. In normal use, user software sets CCON.dci and
polls it until it is cleared by the processor, signaling that the invalidation has completed
272830-002 January, 1997 21 of 44

80960HA/HD/HT SPECIFICATION UPDATE
(see Section 4.5.1 in the user’s manual, revision -001, dated November 1995). Since most
software does not measure the elapse time of those operations, you may not see this
condition.

WORKAROUND: Do not count the number of cycles required to invalidate the data
cache. Otherwise, no workaround is required.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

16. Low Temperature Operating Limit Increased to 25°C
PROBLEM: At low temperatures (about -5°C), the on-chip PLL clock circuitry has been
observed to lose lock and oscillate unpredictably on a portion of units tested. When this
failure condition occurs, the processor behavior becomes unpredictable.

IMPLICATION: Unpredictable processor behavior.

WORKAROUND: Avoid operating the processor below 25°C case temperatures.

STATUS: Fixed. This limitation was screened during production testing at the factory and
fixed on all steppings after the A-0 step. (Refer to Summary Table of Changes to
determine the affected stepping(s).)

17. IPND Register Not Cleared Automatically
PROBLEM: Sometimes the processor does not automatically clear the Interrupt Pending
(IPND) register when servicing a dedicated interrupt. The interrupt itself is still handled
correctly. When the failure condition occurs, the interrupt service routine (ISR) keeps
executing repeatedly without further interrupt requests until the Interrupt Mask (IMSK) or
IPND are cleared.

This failure condition does not appear on every device, and is more pronounced at high
VCC voltages. This behavior has been observed at VCC as low as 3.33 V.

IMPLICATION: Unless corrected, ISRs can be invoked indefinitely by one dedicated
interrupt event.

WORKAROUND: Manually clear the IPND register during the dedicated interrupt ISR.
Intel recommends all applications that use dedicated interrupts implement this
workaround since the failure condition may appear on some but not all devices.

STATUS: Fixed. This failure condition has been fixed on the A-1 and all subsequent
steps. Refer to Summary Table of Changes to determine the affected stepping(s).
22 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
18. Cycle Type Bits (CT3:0) Do Not Indicate Some Fault Types
PROBLEM: Bit CT2 does not go high for certain types of faults.

The table below summarizes the fault conditions when the CT2 bit does and does not
work. All cases of each fault subtype are implied to either work correctly or not unless
otherwise noted.

The table below summarizes fault conditions when the CT2 bit does and does not work.

AULT TYPE CT2 BIT WORKS FOR...

0H Parallel PARALLEL
1H Trace INSTRUCTION

BRANCH
CALL
RETURN
SUPERVISOR
MARK/BREAKPOINT
breakpoint always works
correctly, mark when Mark Trace
Mode is not set in the TC
register.

PRERETURN

MARK/BREAKPOINT
mark when Mark Trace Mode is set in
the TC register, fmark.

2H Operation INVALID_OPCODE
UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND
non-existent sfr, unaligned long-,
triple-, or quad-register,
undefined register, writing to
RIP.

UNIMPLEMENTED
sysctl message type 04H

INVALID_OPERAND
undefined sysctl, icctl, dcctl, or intctl
operand.

3H Arithmetic INTEGER_OVERFLOW

ZERO_DIVIDE

INTEGER_OVERFLOW
integer divide overflow (divi)
272830-002 January, 1997 23 of 44

80960HA/HD/HT SPECIFICATION UPDATE
CT2 does behave correctly on interrupts.

IMPLICATION: The CT3:0 bits do not reliably indicate fault code execution. This condition
should not affect most applications since the CT3:0 bits are typically only used during
development and diagnosis on most applications and by emulator systems.

WORKAROUND: None available. Do not rely on the CT3:0 bits to indicate faults.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

5H Constraint RANGE
all other cases.

RANGE
only if a fault<cc> test evaluates true.

7H Protection BAD_ACCESS
GMU detection

BAD_ACCESS
GMU protection
LENGTH

8H Machine PARITY_ERROR
AH Type MISMATCH

execute a privileged instruction
while in user mode (intdis, inten),
write to Supervisor MMR while in
User mode,
access an sfr while in User
mode,
write to internal RAM with
BCON.irp set and in User mode,
User write to timer register when
timer is protected against User
writes,
write to the first 64 bytes of
internal RAM with BCON.sirp set
(User and Supervisor modes).

MISMATCH
execute a privileged instruction while
in User mode (modpc, sysctl, icctl,
dcctl, intctl).

10H Override OVERRIDE

AULT TYPE CT2 BIT WORKS FOR...
24 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
19. Operation Fault Occurs When Clearing the IMASK (sf1) Register
PROBLEM: An INVALID_OPCODE operation fault occurs on the microcoded instruction
when an interrupt occurs within 6-7 bus clock cycles before any of the following
sequences:

A.
Clear_IMASK_sfr_register
microcoded instruction

B.
Clear_IPND_sfr_register
microcoded instruction

C.
Clear_IMSK_sfr_Bit_for_Posted_Interrupt
microcoded instruction

D.
Clear_IPND_sfr_Bit_for_Posted_Interrupt
microcoded instruction

In cases “C” and “D”, clearing bits for inactive interrupts does not cause the failure mode.
Setting IMSK or IPND bits does not exhibit the failure mode, either.

A “microcoded instruction” is any assembly language instruction that executes a CISC
microcode sequence. Examples include call, ret, sysctl, dcctl, atmod, atadd, most
branches, and flushreg. The key to preventing this failure mode is to insert at least
3 RISC instructions, such as nops (mov g0, g0), after clearing all or part of the IMSK or
IPND special function registers.

When the anomalous fault occurs, an interrupt request input occurs within 6-7 bus clock
cycles before the bit-clearing instruction sequence. The interrupt can be either external or
internal.

The instruction cache, data cache, interrupt vector, interrupt service routine (ISR) caching,
Supervisor/User mode, process priority and interrupted/executing state are insignificant to
this failure mode.

When the failure condition occurs, the fault handler does execute properly. Then the ISR
also executes properly after the fault handler. All subsequent interrupts execute correctly,
too.

Other special function registers that also appear as memory mapped registers (MMRs) --
sf2 (CCON), sf3 (ICON), and sf4 (GCON) -- are not affected by this failure condition.
272830-002 January, 1997 25 of 44

80960HA/HD/HT SPECIFICATION UPDATE
IMPLICATION: The fault adds an unexpected time delay in the program execution, and
depending on the INVALID_OPCODE fault handler, can unnecessarily redirect the
program execution by attempting to recover from an invalid error.

WORKAROUND: Use the three new instructions (intctl, intdis, and inten) to globally
enable and disable the interrupts before manipulating the IMSK or IPND register. These
instructions ensure that the new processor state is in full effect before the instruction
completes.

intdis
Clear_IMASK_or_IPND_sfr_bits
inten

This sequence takes 13 core clock cycles -- no more, no less -- and occupies 3 words of
execution code. It guarantees the processor will not service any masked interrupts after
the intdis instruction is issued.

An alternative is to insert at least three nop (mov g0, g0) instructions as shown below.

Clear_IMASK_or_IPND_sfr_bits
nop
nop
nop
resume normal instruction sequence

This sequence uses no less than 4 core clock cycles and occupies 4 words of execution
code. The maximum execution time is indeterminate because the processor may service
an interrupt request masked in the first instruction during any point in the sequence until
the normal instruction sequence resumes.

STATUS: NoFix. Refer to Summary Table of Changes to determine the affected
stepping(s).

20. Using atmod or sysctl to Change IMSK or IPND MMRS Can Hang the
Processor

PROBLEM: When an interrupt signal occurs in the vicinity of an atmod or sysctl
instruction acting on the IMSK or IPND memory mapped registers (MMR), the processor
can hang.

"Hang" means no further ADS# strobes occur, A31:2 and BE#3:0 maintain their last valid
values, and D31:0 float. The only way to recover is through hardware reset or cycle VCC
off-on according to the data sheet specifications.

This errata affects the HA, HD, and HT processors.
26 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
If an interrupt arrives up to about 15 clocks before the atmod or sysctl executes, the
failure can occur. The failure does not occur every time in the test environment, though. A
minimum of 1 interrupt is required to produce the failure.

When the failure occurs, the interrupt request is never serviced. It’s unknown whether the
interrupt request is posted correctly in the IPND register when the failure occurs.

Using the bit manipulation instructions (setbit, clrbit, etc.) on the special function register
manifestations of IPND (sf0) and IMSK (sf1) does not produce the failure. As defined,
sysctl and atmod are not compatible with special function registers.

Other sysctl operations don’t produce the failure.

Any interrupt pulse of 3 bus clock cycles long or longer can cause this problem.

This failure has been observed only while the data cache and instruction cache are
disabled. Interrupts are enabled, vector cache disabled, and inputs are debounced.

When using dedicated mode, manipulating the IMSK or IPND MMRs can produce the
failure. However, when using expanded mode, only the IMSK MMR can produce the
problem since expanded interrupts do not affect IPND.

IMPLICATION: Using the atmod or sysctl instructions to modify the MMR implementa-
tions of IMSK or IPND can hang the processor indefinitely.

WORKAROUND: Manipulate the IPND and IMSK registers using the special function
registers (sf0 = IPND and sf1 = IMSK). See errata #19 "Operation Fault Occurs When
Clearing the IMSK (sf1) Register" for related workarounds.

User applications are not well served by atmod or sysctl on MMRs that are also special
function registers because those operations take several clock cycles to complete.
Changes to IMSK and IPND as sfrs complete in 1 clock cycle.

C compilers typically do not generate code to modify IMSK or IPND directly; those instruc-
tions must typically be coded as in-line assembly by the user.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

21. Storing the Contents of the I_CACHE to External Memory Also
Disables the Cache

PROBLEM: Case #6 of the icctl instruction flushes the Instruction Cache (I_cache)
contents to external memory. After flushing, though, the icctl instruction disables the
I_cache.

No other cases of icctl exhibit this problem. The dcctl instruction does not either.
272830-002 January, 1997 27 of 44

80960HA/HD/HT SPECIFICATION UPDATE
IMPLICATION: Since icctl case #6 is predominantly used for I_cache analysis and
system debugging, no impact on production systems is expected.

During system development, users could see abnormally slow system performance after
storing the I_cache contents because the I_cache is disabled.

WORKAROUND: Re-enable the I_cache after flushing the I_cache contents with the icctl
case #6 instruction. While there are several ways to implement this workaround, the
following instruction sequence will do the trick quickly.

icctl 6, src2, src/dst # flush the I_cache contents to src2
setbit 30, sf2, sf2 # re-enable the I_cache through CCON
resume normal instruction sequence

The setbit instruction executes in 1 clock cycle.

This workaround does not necessarily have to be removed after this errata is fixed in
silicon.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

22. PCHK# Pin Does Not Indicate Parity Failures On HD and HT
Processors

PROBLEM: When enabled, a parity failure produces a PARITY_ERROR fault, but does
not always assert the PCHK# pin. This problem affects the HD and HT processors.

IMPLICATION: The PCHK# pin does not work reliably on the HD and HT processors.

WORKAROUND: None available. Do not rely on the PCHK# pin on the HD or HT
processors.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).

23. Spurious INVALID_OPCODE Faults Can Occur with Level-Detect
Interrupts

PROBLEM: Spurious INVALID_OPCODE faults can occur on systems using level-detect
hardware interrupts. The fault record points to a user instruction that in fact is a valid
opcode. The spurious fault occurs when the level-detect interrupt signal on the XINT pins
deasserts within a few clock cycles of an interrupt service routine (ISR) ret instruction.

To review the terminology, the processor recognizes level-detect interrupts as long as the
XINT pins are held low. This mode contrasts to the falling edge detect mode which
28 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
recognizes interrupts only when they transition from high-to-low. Level-detect mode
requires the interrupt source to remain asserted until the user explicitly dismisses it in the
ISR software.

The hardware interrupt contributing to this problem can be either dedicated level-detect or
expanded mode. (All expanded mode interrupts are level-detect by definition.)

This problem affects the HA, HD and HT processors. Enabling or disabling the I_cache,
D_cache or register cache may modulate the problem. The clock speed is not a direct
factor.

This failure resembles errata #19.“Operation Fault Occurs When Clearing the IMASK
(sf1) Register”. Both problems appear when the processor recognizes an interrupt
request that subsequently disappears during the same microcoded instruction. The
processor enters a metastable state and tries to execute a value from an internal lookup
table as an instruction. The value is not a valid opcode, so, an INVALID OPCODE fault
results. The fault record mistakenly points to a valid user instruction opcode as the cause
of the fault.

IMPLICATION: Unless prevented by the workarounds, level-detect interrupts can
produce spurious INVALID OPCODE faults on valid user instructions.

WORKAROUND: In general terms, prevent interrupts from being recognized and disap-
pearing during the same microcoded (CISC) instruction.

In practical terms, make sure the level-detect interrupt request is gone before the ISR ret
instruction. Any or all of the following workarounds can accomplish this objective –

a. dead reckoning - calculate the worst case latencies.

b. delay the ISR until the interrupt is dismissed - wait until the dismissing bus access
completes before proceeding with the ISR execution.

c. poll until the interrupt is gone - poll an interrupt flag until it indicates the interrupt
has retired.

DEAD RECKONING -

This option allows you to guarantee the workaround conditions by deductive reasoning
instead of by direct control. Therefore, the dead reckoning option requires that the bus
access delays are entirely predictable so a worst case timing condition can be calculated.
The Hx processor must be the only bus master in the system (the HOLD, BOFF# and
signals are not used) and the bus wait states must be deterministic (the READY# signal is
not controlled by unpredictable outside events). If bus access delays are not entirely
predictable, use another workaround.
272830-002 January, 1997 29 of 44

80960HA/HD/HT SPECIFICATION UPDATE
In essence, you ensure the interrupt is gone before the ret instruction by calculating and
comparing the time each process takes. In mathematical terms:

TRET > TDIS

The "dismiss interrupt" instruction can be a load or store to an external logic device that
causes it to withdraw the interrupt signal from the XINT pins.

Calculate TRET by summing the external bus clock cycles for the shortest path to the ret.
Assume the I_cache and D_cache are enabled if the application uses them. Take the
internal clock multiplier (HA=1x, HD=2x, HT=3x) into account.

Measuring TRET with a logic analyzer is a little tricky because it is difficult to see when the
instructions are actually issued. The user’s manual explains that issued bus instructions
may not execute right away depending on the condition of the on-chip bus controller.

Calculate TDIS by summing the external bus clock cycles for the longest possible delay
between issuing the dismiss interrupt instruction and the interrupt actually retiring. Include
as many of the following in the calculation as applicable:

• maximum memory wait state profiles for the regions being accessed

• predictable memory access delays (such as DRAM refresh cycles)

• possible delays from bus requests already pending in the bus queue

• response latency of the external interrupt device

Of course, dismiss the interrupt as early in the ISR as practical.

DELAY THE ISR UNTIL THE INTERRUPT IS DISMISSED -

This workaround eliminates ambiguous delays caused by external bus masters.

Some applications involve multiple bus masters such as DMA controllers that can deny
the Hx processor access to the bus for indefinite periods of time. These delays can
arbitrarily extend the time the interrupt request remains on the XINT pins while the ISR
executes at normal speed from the I_cache. In some cases the interrupt request exceeds
the ret instruction and causes a spurious INVALID OPCODE fault.

This workaround delays ISR execution until the Hx processor regains control of the bus
and dismisses the interrupt source. The syncf instruction delays execution indefinitely

where TRET = the minimum time elapse from issuing the dismiss interrupt
instruction to the ret instruction, and
TDIS = the maximum time elapse between issuing the dismiss interrupt
instruction and when the interrupt actually goes away.
30 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
until the bus and instruction fetch queues empty. Then execution proceeds again as
normal. Add the following code as early in your ISR as practical.

#Dismiss external interrupt source
dismiss_interrupt_instruction

#Wait until the dismiss_interrupt_instruction executes
syncf

#Resume ISR execution

You still have the responsibility to ensure the interrupt signal will have enough time to
retire before the ret instruction. (See "DEAD RECKONING", above.)

POLL UNTIL THE INTERRUPT IS GONE -

This workaround relies on an interrupt request flag bit that can be polled by the user. In operation,
you dismiss the external interrupt source as early in the ISR as practical, proceed with the ISR
execution, then, just before the ret instruction, poll on that flag bit until the interrupt request retires.

The Hx processor provides a built-in flag bit for dedicated mode interrupts, but the user’s
system has to provide one for expanded mode interrupts.

DEDICATED MODE: The user’s manual, section 11.7.2 "Interrupt Detection Options" offers
a polling method (Example 11-5) for dedicated mode level-sensitive interrupts which delays
the ret instruction until the dedicated interrupt request deasserts. The polling code example
(with some minor clean-up modifications) appears below. The example assumes that the ld
from address "INTR_SRC" deactivates the XINT7 interrupt input. The loop tries to clear the
IPND bit for XINT7 but the bit remains set until the XINT7 interrupt retires.

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0# Dismiss the extern. interrupt
ldaIPND_MMR, g1# g1 = IPND MMR address
lda0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs0x7, g3, wait# Branch until IPND bit 7 clears

Optionally restore IMSK
movr3, IMSK

ret # Return from handler
272830-002 January, 1997 31 of 44

80960HA/HD/HT SPECIFICATION UPDATE
EXPANDED MODE: Expanded mode interrupts do not post bits in IPND, so an internal
polling loop isn’t available. The user’s system must provide a flag bit on the external
interrupt controller. One suggestion is a read/write register on the interrupt controller that
indicates the state of the signals being applied to the Hx XINT pins. Poll on that external
register until it indicates the interrupt has been retired.

STATUS: NoFix. Refer to Summary Table of Changes to determine the affected
stepping(s).

24. Parity Can Fail on Reliable Data and Can Pass on Corrupted Data
PROBLEM: Under certain conditions, reliable data (data with correct parity) can fail for
parity. Conversely, corrupted data (data with wrong parity) can pass for parity. A parity
failure asserts the PCHK# pin and produces a PARITY_ERROR fault.

Memory read accesses that involve multiple data bus widths (32-, 16-, and/or 8-bit) can
exhibit this problem.

When transitioning from wider to narrower data bus width (e.g. 32- to 16-bit, or 16- to 8-bit)
memory reads, the processor can test the parity of the undefined bits on the narrower data
bus. For example, a 32-bit read followed by a 16-bit read can cause the processor to
mistakenly test the parity of the undefined bits (bits D31:16) of the data bus. Another
example is a 16-bit read followed by an 8-bit read. In that case, the processor can
mistakenly test the undefined bits D15:8. Since those undefined bits may randomly
include wrong parity, the processor can produce an invalid parity failure.

When transitioning from narrower to wider (e.g., 16- to 32-bit, or 8- to 16-bit) memory
reads, the processor sometimes disregards the parity of the upper half of the data bus
bits. Any wrong parity in those upper bits goes unnoticed so the processor indicates no
failure even when one is warranted.

IMPLICATION: The parity check logic cannot be trusted to indicate reliable and corrupted
data parity under all operating conditions.

WORKAROUND: Avoid mixing data bus width reads. Otherwise, do not rely on the parity
check feature.

STATUS: Fixed. Refer to Summary Table of Changes to determine the affected
stepping(s).
32 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
SPECIFICATION CHANGES

1. Hold VCC Above 3.15V and Below 3.45V
ISSUE: The processor does not operate reliably under all conditions while VCC is outside
the range 3.15 ≤ VCC ≤ 3.45 V.

Below 3.15 V VCC, the processor core does not operate at high core speeds. This low
VCC errata applies only to the 80960HD-66 processor.

Above 3.45 V VCC, signal ringing on some output pins causes AC specification violations.
This ringing behavior affects all versions of the processor.

IMPLICATION: Random system failures, faults, and data corruption can occur if VCC is
not regulated within these limits.

WORKAROUND: Regulate VCC within the commonly accepted “±5%” tolerance range
3.15 ≤ VCC ≤ 3.45 V.

AFFECTED DOCUMENT(S): 80960HA/HD/HT 32-Bit High Performance Superscalar
Processor Data Sheet, May 1995, revision -003.

FROM/TO REFERENCE: Table 17. Operating Conditions, page 27. Replace the first
3 rows with the following:

2. TRST# Input Can Be Tied Low
ISSUE: The Boundary Scan TRST# pin can be tied low indefinitely, thus resetting the
Test Access Port (TAP) logic. This is an improvement over the previously published specs
which forbade tying the pin low.

IMPLICATION: Applications that do not use the Boundary Scan features can safely
disable those features by grounding the TRST# input pin.

IEEE 1149.1 Boundary Scan compliance is not affected either way by this change, albeit
this change does make the TAP controller easier to reset as described in the IEEE
Standard Test Access Port and Boundary-Scan Architecture specification describing
IEEE 1149.1, section 3.6.2.

WORKAROUND: None required.

Symbol Parameter Min Max Units

VCC Supply Voltage 3.15 3.45 V
VCC5 Input Protection Bias 3.15 5.5 V
272830-002 January, 1997 33 of 44

80960HA/HD/HT SPECIFICATION UPDATE
AFFECTED DOCUMENT(S): 80960HA/HD/HT 32-Bit High Performance Superscalar
Processor Data Sheet, May 1995, revision -003. This is fixed in the current data sheet
revision -004, dated June 1996, which is now available from Intel Literature Center.

FROM/TO REFERENCE: Table 6. 80960Hx Processor Family Pin Descriptions, page 10,
middle row labeled “TRST#”. Replace the descriptions with the following:

“TEST RESET asynchronously resets the Test Access Port (TAP) controller. TRST# must
be held low at least 10,000 clock cycles after power-up. One method is to provide TRST#
with a separate power-on-reset circuit. TRST# includes a built-in pull-up resistor. (See Table
19. DC Characteristics for the value.) Pull this pin low when not using the TAP controller.”

3. Halt Mode Does Not Conserve Power
ISSUE: Halt mode does not provide nearly expected power savings, so it is being de-featured.

Power consumption in Halt mode depends heavily on instructions executed and processor state just
prior to the Halt instruction. Since Halt mode does not stop on-chip clocks, the processor continues to
spin in the last state before Halting. Depending on power consumption of the particular instruction and
state, the processor can dissipate more than the typical power specified in the data sheet.

Beginning with the B-0 stepping, the processor does not recognize the halt instruction; it
produces an INVALID_OPCODE fault.

IMPLICATION: The 80960Hx processor does not have a low power idle mode.

WORKAROUND: Do not use the Halt instruction. Workaround options are described in
the Tech Bit “Reduced Power Options for the 80960HA/HD/HT.”

AFFECTED DOCUMENT(S): 80960HA/HD/HT 32-Bit High Performance Superscalar
Processor Data Sheet, May 1995, revision -003. This is fixed in the current data sheet
revision -004, dated June 1996, which is now available from Intel Literature Center.

FROM/TO REFERENCE: Table 4. 80960Hx Instruction Set, page 4, bottom column
labeled “Processor Mgmt”. Delete “Halt1,2” from the list.

Table 5. Pin Description Nomenclature, page 5, bottom row labeled “P(...)”. Delete row.

Table 6. 80960Hx Processor Family Pin Descriptions, pages 6-10, column labeled “Type”.
Delete every instance of “P(...)”.

Table 6. 80960Hx Processor Family Pin Descriptions, page 9, second row labeled
“CT3:0”. Replace the following text:

“Processor in HALT mode” with... “Reserved for future products”

Table 19. DC Characteristics, page 29, row labeled “IHALT”. Delete the row.
34 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
SPECIFICATION CLARIFICATIONS

1. Burst Accesses on 8- and 16-Bit Buses Do Not Behave Like the Cx
Processor

ISSUE: The burst behavior on 8-bit and 16-bit buses is more sophisticated on the
80960HA/HD/HT (“Hx”) processors than the 80960CA/CF (“Cx”) processors.

The basic definition of a burst access, is 2-4 consecutive data cycles following a single
address cycle. A 1 data cycle burst is impossible.

8-bit bus differences: Whereas the Cx can only burst beginning at a byte-aligned
boundary (A1:0 = 0x0), the Hx can begin a burst at any of three places (A1:0 = 0x0, 0x1 or
0x2). Of course, a byte access beginning at A1:0 = 0x3 is a single byte access, not a
burst. The table below illustrates this point.

16-bit bus differences: Whereas the Cx maintains the same data type (byte or short)
throughout a burst, the Hx can dynamically change data types within a burst. Specifically,
a multiple short word burst beginning on an odd byte boundary (A2:1 = 0x1 or 0x3) will
produce a burst of a byte followed by a short, or visa versa. The table below illustrates this
point.

8-Bit Bus Behavior for a Word Access

Word 0 Word 1 Hx Accesses

Access beginning
on...

0 1 2 3 4 5 6 7

... Byte 0 (aligned) Burst 4 bytes

... Byte 1 Burst 3 bytes, 1 byte

... Byte 2 Burst 2 bytes, burst 2 more
bytes

... Byte 3 1 byte, burst 3 bytes

16-Bit Bus Behavior for a Word Access (Sheet 1 of 2)

Word 0 Word 1 Hx Accesses

Access beginning
on...

0 1 2 3 4 5 6 7

... Byte 0 (aligned) Burst 2 shorts

... Byte 1 Burst byte & short, byte
272830-002 January, 1997 35 of 44

80960HA/HD/HT SPECIFICATION UPDATE
IMPLICATION: This behavior difference is a problem only when off-chip memory control
logic assumes even boundary bursting or consistent data types within a burst.

Memory systems that assume even boundary bursting generate the 2 least significant
address bits themselves. One such system has been observed to “wrap around” the
address, and overwrite unintended memory addresses.

Memory systems that assume consistent data types within a burst fail to recognize
subsequent data type changes and fail to access all intended bytes.

WORKAROUND: Do not generate the 2 least significant address bits in your external
8-bit bus memory controller. Rather, pass the processor address bits through to the
memory for proper sequencing. Otherwise, disable bursting in memory controllers from
incrementing the 2 least significant bits.

Also, pass BE3#, BE1#, and BE0# to your external 16-bit bus memory systems instead of
latching these signals on the first burst access.

AFFECTED DOCUMENT(S): The i960


 Hx Microprocessor User’s Manual, November
1995, release 001.

FROM/TO REFERENCE: Section 15.3.2 Burst Accesses, page 15-14. Insert the
description and impact text above (sans the “Description” and “Impact” titles) to the bottom
of the page, before Figure 15-5 on the following page.

2. Instruction Breakpoints Are Superseded by Invalid Opcode Faults
ISSUE: An instruction breakpoint on an address containing an invalid opcode does not
produce a trace fault; the breakpoint never “breaks”. Instead, the opcode produces an
INVALID_OPCODE fault.

IMPLICATION: This behavior appears only when breakpoints are used, usually limited to
system development and diagnostic sessions.

WORKAROUND: Do not set instruction breakpoints on addresses that contain invalid
opcodes. More practically, do not set instruction breakpoints on uninitialized or unimple-
mented memory. This workaround applies to software debug tools as well as
user-generated code.

... Byte 2 Short, short (no burst)

... Byte 3 Byte, burst short & byte

16-Bit Bus Behavior for a Word Access (Sheet 2 of 2)
36 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
For user-generated code, the GMU (Guarded Memory Unit) offers a better method to
protect an uninitialized or unimplemented memory region from accidental accesses.

AFFECTED DOCUMENT(S): The i960


 Hx Microprocessor User’s Manual, November
1995, release 001.

FROM/TO REFERENCE: Section 9.5.2.4 Tracing on Return from Implicit Call: Fault
Case, page 9-15. Insert the following text after the first paragraph.

“There is a special case of this behavior. If an instruction breakpoint is set on an address
containing an invalid opcode, the processor services the INVALID_OPCODE fault and
never services the trace fault.”
272830-002 January, 1997 37 of 44

80960HA/HD/HT SPECIFICATION UPDATE
DOCUMENTATION CHANGES

1. Page 3-11, Table 3-4
ISSUE: The original text states that the allowed access types for the IPND and IMSK
registers include R/W and AtMod.

The corrected text states that the user must use the atmod instruction to modify these
registers. The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

2. Page 3-11, Table 3-4
ISSUE: The Access Type listed for the BPCON and XBPCON registers originally read:

“R/W, WwG”

The corrected entries read:

“WwG”

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

3. Page 3-26
ISSUE: The second paragraph originally read: When the processor is reinitialized with a
sysctl reinitialize message, the PC register is not changed.

The corrected text reads: When the processor is reinitialized with a sysctl reinitialize message,
the PC register returns to its reset value. The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

4. Page 4-6, Section 4.4.3
ISSUE: Sentence added to the end of the first paragraph reads:

“Any code can be locked, not just interrupt routines.”

The corrected page is appended to this document.
38 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

5. Page 6-45
ISSUE: Case 8 was inadvertently omitted from previous revision of the reference document.

The added text reads:

case 8: # invalidate the lines that came from LMTs that had DCIIR set
at the time the line was allocated.
NOTE : for compatibility with future products that have
several independent regions, the value of src2 should be one.

invalidate_DCIIR_lines_in_DCache;
break;

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

6. Page 6-60, Table 6-8
ISSUE: The word "blocks" is replaced with "ways”. The corrected page is appended to
this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

7. Page 6-61, Figure 6-4
ISSUE: Under "Src/Dst Format for I_cache Locking Status", constant fixed values for bits
0 - 23 have been added. The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

8. Page 6-62, Table 6-9
ISSUE: The original value for number of ways was listed as 256. The corrected value is
128. The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.
272830-002 January, 1997 39 of 44

80960HA/HD/HT SPECIFICATION UPDATE
9. Page 6-63, Figure 6-5
ISSUE: Each way should have 8 words, as opposed to the 4 originally shown.

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

10. Page 6-64, Figure 6-6
ISSUE: The figure for Valid Bits Values incorrectly shows bit positions 0-8 as the location
of the valid bits. The corrected figure shows the valid bits in positions 0-4.

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

11. Page 6-116
ISSUE: A row has been added to Table 6-10 describing the sysctl 0x4 type field.

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

12. Page 8-6, Figure 6-6
ISSUE: These first few sentences in the description for system-call entry (type 102)
originally read:

“Provides a procedure number in the system procedure table. This entry must
have an entry type of 102 and a value in the second word of 0000 027FH. Using
this entry, the processor invokes the specified fault handling procedure by means
of an implicit call-system operation similar to that performed for the calls
instruction. A fault handling procedure in the system procedure table can be
called with a system-local call or a system-supervisor call, depending on the entry
type in the system-procedure table.”

The corrected text reads:

Message Type Field 1 Field 2 Field 3 Field 4

Load Control Register 0x4 Register Group Number N/U N/U N/U
40 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
“Provides a procedure number in the system procedure table. This entry must
have an entry type of 102 and a value in the second word of 0000 027FH. The
processor computes the system procedure number by shifting right the first word
of the fault entry by two bit positions. Using this system procedure number, the
processor invokes the specified fault handling procedure by means of an implicit
call-system operation similar to that performed for the calls instruction.”

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

13. Page 11-19
ISSUE: Code was inadvertently omitted from previous revision of the reference
document.

The added code reads as follows with original:

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0# Dismiss the extern. interrupt
ldaIPND_MMR, g1# g1 = IPND MMR address
lda0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs0x7, g3, wait# Branch until IPND bit 7 clears

Optionally restore IMSK
movr3, IMSK

ret # Return from handler

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

14. Page 12-15
ISSUE: The last sentence of the first paragraph originally read: For application debugging with
the GMU, conditional branches to regions protected by the GMU should always be predicted
272830-002 January, 1997 41 of 44

80960HA/HD/HT SPECIFICATION UPDATE
taken. The corrected text reads: For application debugging with the GMU, conditional branches
to regions protected by the GMU should always be predicted as not taken.

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

15. Page 13-4, Figure 13-2
ISSUE: The text that appeared near the top center of the diagram:

“VCC and CLKIN Stable to Outputs Valid, maximum 32 CLKIN Periods”

has been deleted.

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

16. Page 13-9, Section 13.2.2.5
ISSUE: The following sentence has been added to the beginning of the first paragraph:

“When the processor fails the self test, the FAIL# pin asserts and the processor
signals the cause of the failure.”

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

17. Page 13-11, Section 13.2.2.5
ISSUE: The address given in the paragraph after the bulleted list has been changed from:

“FEFF FF60H” to

“FF00 0000H”

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.
42 of 44 January, 1997 272830-002

80960HA/HD/HT SPECIFICATION UPDATE
18. Page 13-23, Table 13-7
ISSUE: The entry for address 64H was originally listed as "Breakpoint Control (BPCON)"
-- The entry should be listed as "Reserved (Initialize to Zero)."

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

19. Page 13-37, Figure 13-9
ISSUE: The text near the top of the figure read: 100 Ohms.

The corrected text reads: 100 Ohms (±5%, 1/8 W)

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

20. Page 13-37, Figure 13-10
ISSUE: The text near the top of the figure read: 3.3 V VCC.

The corrected text reads: 5 V VCC.

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

21. Page 15-15
ISSUE: The second sentence originally read: Two short word burst accesses always
begin on an even short word boundary (A1=0). The corrected text reads: Two short word
burst accesses always begin on a four word boundary (A2=0, A1=0).

The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.

22. Pages E-41, E-44, E-45, Examples E-1, E-3, E-4
ISSUE: The cmpinco instructions originally read: cmpinco g0, g3, g0

The corrected text reads: cmpinco g0, g3, g3.
272830-002 January, 1997 43 of 44

80960HA/HD/HT SPECIFICATION UPDATE
The corrected page is appended to this document.

AFFECTED DOCUMENT(S): The i960® Hx Microprocessor User’s Manual, November
1995, release 001.
44 of 44 January, 1997 272830-002

PROGRAMMING ENVIRONMENT

3-11

3

(IPB1) Instruction Address Breakpoint Register 1 FF00 8404H Sysctl- RwG/WwG

(IPB2) Instruction Address Breakpoint Register 2 FF00 8408H Sysctl- RwG/WwG

(IPB3) Instruction Address Breakpoint Register 3 FF00 840CH Sysctl- RwG/WwG

(IPB4) Instruction Address Breakpoint Register 4 FF00 8410H Sysctl- RwG/WwG

(IPB5) Instruction Address Breakpoint Register 5 FF00 8414H Sysctl- RwG/WwG

Reserved FF00 8418H to
FF00 841FH

—

(DAB0) Data Address Breakpoint Register 0 FF00 8420H R/W, WwG

(DAB1) Data Address Breakpoint Register 1 FF00 8424H R/W, WwG

(DAB2) Data Address Breakpoint Register 2 FF00 8428H R/W, WwG

(DAB3) Data Address Breakpoint Register 3 FF00 842CH R/W, WwG

(DAB4) Data Address Breakpoint Register 4 FF00 8430H R/W, WwG

(DAB5) Data Address Breakpoint Register 5 FF00 8434H R/W, WwG

Reserved FF00 8438H to
FF00 843FH

—

(BPCON) Breakpoint Control Register FF00 8440H WwG

(XBPCON) Extended Breakpoint Control Register FF00 8444H WwG

Reserved FF00 8448H to
FF00 84FFH

—

Interrupts

(IPND) Interrupt Pending Register FF00 8500H AtMod

(IMSK) Interrupt Mask Register FF00 8504H AtMod

Reserved FF00 8508H to
FF00 850FH

—

(ICON) Interrupt Control Word FF00 8510H R/W

Reserved FF00 8514H to
FF00 851FH

—

(IMAP0) Interrupt Map Register 0 FF00 8520H R/W

(IMAP1) Interrupt Map Register 1 FF00 8524H R/W

(IMAP2) Interrupt Map Register 2 FF00 8528H R/W

Reserved FF00 852CH to
FF00 85FFH

—

Table 3-4. Supervisor Space Family Registers and Tables (Sheet 3 of 4)

Register Name Memory-Mapped Address Access Type

NOTE:
Shaded rows indicate reserved areas.

Page 3-11, Table 3-4

The incorrect text states that
the allowed access types
for the IPND and IMSK
registers include R/W and
AtMod.

The corrected text states
that the user must use the
AtMod instruction to modify
these registers.

Page 3-11, Table 3-4

The Access Type listed for
the BPCON and XBPCON
registers originally read:

R/W, WwG

The corrected entries should
read:

WwG

PROGRAMMING ENVIRONMENT

3-26

After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is reinitialized with a sysctl reinitialize message, the PC register returns to its
reset value.

Software should not use modpc to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code. Normally, execution mode is changed
through the call and return mechanism. See section 6.2.43, “modpc” (pg. 6-80) for more details.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags that are used to enable specific tracing modes
and record trace events, respectively. Trace controls are described in CHAPTER 9, TRACING
AND DEBUGGING.

3.7 USER-SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts access to all or parts of the kernel by the application
code. This protection mechanism prevents application software from inadvertently altering the
kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it
allows access to system debugging software or a system monitor, even if an application’s
program destroys its own stack.

• When an instruction executed in supervisor mode causes a bus access to occur, the
processor asserts an external supervisor pin (SUP) for loads, stores and instruction
fetches. Hardware protection of system code or data can be implemented by using the
supervisor pin to qualify write accesses to the protected memory.

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

• trace fault pending

Page 3-26, Second Paragraph

The second paragraph originally
read:

When the processor is reini-
tialized with a sysctl reinitialize
message, the PC register is not
changed.

The corrected text reads:

When the processor is reini-
tialized with a sysctl reinitialize
message, the PC register returns
to its reset value.

CACHE AND ON-CHIP DATA RAM

4-6

4.4.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock out all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the i960 Hx processor is any multiple of 4-Kbytes up to the full
16-Kbyte capacity of the cache. Any code can be locked, not just interrupt routines.

An icctl instruction invokes the load-and-lock mechanism for one, two, three, or all four 4-Kbyte
ways of the instruction cache. Legacy software from the i960 Cx processor can still use the sysctl
instruction to lock the cache, but with reduced flexibility. sysctl can load and lock only one 4-
Kbyte way of the instruction cache due to backwards compatibility with the i960 Cx processor
definition of the sysctl instruction. New software for the i960 Hx processor should use icctl for all
instruction cache manipulations. With either instruction, when the lock option is selected, the
processor loads the cache starting at an address specified as an operand to the instruction.

4.4.4 Instruction Cache Visibility

Instruction cache status can be determined by issuing icctl with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by issuing icctl with the store cache operation.

4.4.5 Instruction Cache Coherency

The i960 Hx processor does not snoop the bus to prevent instruction cache incoherency. The cache
does not detect modification to program memory by loads, stores or actions of other bus masters.
Several situations may require program memory modification, such as uploading code at initial-
ization or loading from a backplane bus or a disk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. The icctl instruction
invalidates the instruction cache for the i960 Hx processor. Alternately, i960 Cx processor legacy
software can use the sysctl instruction.

4.4.6 Instruction Cache Interaction with Guarded Memory

The Guarded Memory Unit (GMU) protects only external memory accesses. Instructions executed
from the instruction cache will not activate the GMU mechanisms since these instructions do not
cause an external instruction fetch.

Page 4-6, Section 4.4.3

This sentence has been
added to the end of the first
paragraph:

“Any code can be locked,
not just interrupt routines.”

INSTRUCTION SET REFERENCE

6-45

6

case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end = src_dst[31:16] # Ending set number.

(zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){

Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
for (word = 0; word < words_in_line; word++)

{memory[memadr] =
 Dcache_line[set][way][word];

 memadr += 4;
}
}

}
break;

case 8: # invalidate the lines that came from LMTs that had DCIIR set
at the time the line was allocated.
NOTE : for compatibility with future products that have
several independent regions, the value of src2 should be one.

invalidate_DCIIR_lines_in_DCache;
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations)

;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.
OPERATION.INVALID_OPERAND

Page 6-45, Case 8

Added Case 8. It was
inadvertently omitted
from previous revision.

INSTRUCTION SET REFERENCE

6-60

6.2.33 icctl
Mnemonic: icctl Instruction-cache Control

Format: icctl src1, src2, src/dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description: Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of src1.
Some operations also use src2 and src/dst. When needed by the operation,
the processor orders the effects of the operation with previous and
subsequent operations to ensure correct behavior. For specific function setup,
see the following tables and diagrams:

Table 6-8. icctl Operand Fields

Function src1 src2 src/dst

Disable I-cache 0 NA NA

Enable I-cache 1 NA NA

Invalidate I-cache 2 NA NA

Load and lock
I-cache

3
src: Starting
address of code to
lock.

Number of ways to
lock.

Get I-cache status 4 NA
dst: Receives status
(see Figure 6-4).

Get I-cache locking
status

5 NA
dst: Receives status
(see Figure 6-4)

Store I-cache sets
to memory

6
Destination
address for cache
sets

src: I-cache set #’s
to be stored (see
Figure 6-4).

Page 6-60, Table 6-8

The word "blocks" is replaced
with "ways”.

INSTRUCTION SET REFERENCE

6-61

6

Figure 6-4. icctl src1 and src/dst Formats

8 7 031

Function Type

src1 Format

28 27 16 15 12 8 4 031

src/dst Format for I-cache Status

3711

Enabled = 1
Disabled = 0

log2 (# of Sets)

of Ways-1

8 7 031

src/dst Format for I-cache Locking Status

24 23

of ways that Lock Way Size in Words

031

src/dst Format for Store I-cache Sets to Memory

16 15

Starting Set #Ending Set #

of ways that

Reserved,
(Initialize to 0)

log2 (Atoms/Line)

log2 (Bytes/Atom)

are currently locked

Constants

(0FFFH) (04H)

Page 6-61, Figure 6-4

In Figure 6-4 under "Src/Dst Format for I-cache

Locking Status" constant fixed values for bits
0 - 23 are shown.

INSTRUCTION SET REFERENCE

6-62

Table 6-9. icctl Status Values and Instruction Cache Parameters

Value
Value on
80960Hx

bytes per atom 4

atoms per line 8

number of sets 128

number of ways 4

cache size 16-Kbytes

Status[0] (enable/disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 3

Status[15:12] (log2(number of sets)) 8

Status[27:16] (number of ways - 1) 3

Lock Status[7:0] (number of blocks that lock)

Lock Status[23:8] (block size in words) 1024

Lock Status[31:24] (number of blocks that are locked) 0-4

Page 6-62, Table 6-9

The original value for number of ways was

listed as 256. The corrected value is 128.

INSTRUCTION SET REFERENCE

6-63

6

Figure 6-5. Store Instruction Cache to Memory Output Format

 Set_Data [Starting Set]
Destination
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

.

Word 6 DA + 24H

Word 7 DA + 28H

Tag (Starting set) DA + 2CH

Valid Bits (Starting set) DA + 30H

Word 0 DA + 34H

.

Word 6 DA + 4CH

Word 7 DA + 50H

Tag (Starting set) DA + 54H

Valid Bits (Starting set) DA + 58H

Word 0 DA + 5CH

.

Word 6 DA + 74H

Word 7 DA + 78H

Tag (Starting set) DA + 7CH

Valid Bits (Starting set) DA + 80H

Word 0 DA + 84H

.

Word 6 DA + 9CH

Word 7 DA + A0H

Set_Data [Starting Set + 1] . . .

. . .

W
ay

 0
W

ay
 1

W
ay

 2
W

ay
 3

Page 6-63, Figure 6-5

Each way in Figure 6-5
should have 8 words, as
opposed to the 4
originally shown.

INSTRUCTION SET REFERENCE

6-64

Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats

031

80960Hx Actual Address Bits 31:12

80960Hx Cache Tag Format

031

Set Data I-Cache Values

20 19

031

Valid Bits Values
4

I-Cache Set Data Value

Valid Bit for Words 4 and 5 of current Set and Way

Valid Bit for Words 6 and 7 of current Set and Way

Valid Bit for Words 2 and 3 of current Set and Way

Tag Valid Bit for current Set and Way

Valid Bit for Words 0 and 1 of current Set and Way

1 = Way 1 is least recently used
0 = Way 0 is least recently used

3 = Way 3 is least recently used
2 = Way 2 is least recently used Page 6-64, Figure 6-6

The figure for Valid Bits
Values incorrectly
shows bit positions 0-8
as the location of the
valid bits. The corrected
figure shows the valid
bits in positions 0-4.

INSTRUCTION SET REFERENCE

6-116

6.2.67 sysctl
Mnemonic: sysctl System Control

Format: sysctl src1, src2, src/dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description: Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information.

Processor control function specified by the message field of src1 is executed.
The type field of src1 is interpreted depending upon the command.
Remaining src1 bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.

Figure 6-7. Src1 Operand Interpretation

Table 6-10. sysctl Field Definitions

Message
src1 src2 src/dst

Type Field 1 Field 2 Field 3 Field 4

Request Interrupt 0x0 Vector Number N/U N/U N/U

Invalidate Cache 0x1 N/U N/U N/U N/U

Configure Instruction
Cache

0x2
Cache Mode
Configuration

(See Table 6-11)
N/U Cache load

address N/U

 Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer

Load Control Register 0x4 Register Group
Number N/U N/U N/U

Modify Memory-
Mapped Control
Register (MMR)

0x5 N/U Lower 2 bytes
of MMR address Value to write Mask

Breakpoint Resource
Request

0x6 N/U N/U N/U Breakpoint info
(See Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.

8 7 031 16 15

Message TypeField 2 Field 1

Page 6-116, Table 6-10

A row has been added to Table 6-10 describing the
sysctl 0x4 type field.

FAULTS

8-6

As indicated in Figure 8-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’s second word determine the entry type.

Other entry types (012 and 112) are reserved and have unpredictable behavior.

To summarize, a fault handling procedure can be invoked through the fault table in any of three
ways: a local call, a system-local call or a system-supervisor call.

8.4 STACK USED IN FAULT HANDLING

The i960 architecture does not define a dedicated fault handling stack. Instead, to handle a fault,
the processor uses either the user, interrupt or supervisor stack, whichever is active when the fault
is generated. There is, however, one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit system supervisor call, the processor
switches to the supervisor stack to handle the fault.

8.5 FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the same
stack that the fault handling procedure will use to handle the fault.

local-call entry
(type 002)

Provides an instruction pointer for the fault handling procedure. The
processor uses this entry to invoke the specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry
(type 102)

Provides a procedure number in the system procedure table. This entry must
have an entry type of 102 and a value in the second word of 0000 027FH.
The processor computes the system procedure number by shifting right the
first word of the fault entry by two bit positions. Using this system procedure
number, the processor invokes the specified fault handling procedure by
means of an implicit call-system operation similar to that performed for the
calls instruction.

Page 8-6, System-Call Entry

These first few sentences in the
description for system-call entry
(type 102) originally read:

Provides a procedure number in
the system procedure table. This
entry must have an entry type of
102 and a value in the second word
of 0000 027FH. Using this entry,
the processor invokes the specified
fault handling procedure by means
of an implicit call-system operation
similar to that performed for the
calls instruction. A fault handling
procedure in the system procedure
table can be called with a system-
local call or a system-supervisor
call, depending on the entry type in
the system-procedure table.

The corrected text reads:

Provides a procedure number in
the system procedure table. This
entry must have an entry type of
102 and a value in the second word
of 0000 027FH. The processor
computes the system procedure
number by shifting right the first
word of the fault entry by two bit
positions. Using this system
procedure number, the processor
invokes the specified fault handling
procedure by means of an implicit
call-system operation similar to
that performed for the calls
instruction.

INTERRUPTS

11-19

11

11.7.2 Interrupt Detection Options

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as
dedicated inputs. All dedicated inputs plus the NMI pin are programmed (globally) for fast
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce mode.
Pin detection and sampling options are selected by programming the ICON register.

When falling-edge detection is enabled and a high-to-low transition is detected, the processor sets
the corresponding pending bit in the IPND register. The processor clears the IPND bit upon entry
into the interrupt handler.

When a pin is programmed for low-level detection, the pin’s bit in the IPND register remains set as
long as the pin is asserted (low). The processor attempts to clear the IPND bit on entry into the
interrupt handler; however, if the active level on the pin is not removed at this time, the bit in the
IPND register remains set until the source of the interrupt is deactivated and the IPND bit is
explicitly cleared by software. Software may attempt to clear an interrupt pending bit before the
active level on the corresponding pin is removed. In this case, the active level on the interrupt pin
causes the pending bit to remain asserted.

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, the interrupt is re-
entered after the return is executed.

Example 11-5 demonstrates how a level detect interrupt is typically handled. The example assumes
that the ld from address “timer_0,” deactivates the interrupt input.

Example 11-5. Return from a Level-detect Interrupt

The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs. The
debounce sampling mode requires that a low level is stable for three consecutive cycles before the
expanded mode vector is resolved internally. Expanded mode interrupts are always sampled using
the debounce sampling mode. This allows for skew time between changing outputs of external
priority encoders.

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0 # Dismiss the extern. interrupt
lda IPND_MMR, g1 # g1 = IPND MMR address
lda 0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov 0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs 0x7, g3, wait # Branch until IPND bit 7 clears

Optionally restore IMSK
mov r3, IMSK

ret # Return from handler

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0 # Dismiss the extern. interrupt
lda IPND_MMR, g1 # g1 = IPND MMR address
lda 0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov 0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs 0x7, g3, wait # Branch until IPND bit 7 clears

Optionally restore IMSK
mov r3, IMSK

ret # Return from handler

Page 11-19, Example 11-5

Cleaned up polling code
and revised.

GUARDED MEMORY UNIT (GMU)

12-15

12

Due to instruction prefetching, a spurious PROTECTION.BAD_ACCESS fault may be generated
when the target of a branch is in a region fetch-protected by the GMU and the branch is predicted
to be taken, but not actually taken. For application debugging with the GMU, conditional branches
to regions protected by the GMU should always be predicted as not taken.

Software should not program the GMU to protect the memory-mapped registers in the range of
addresses FFFFFF00H through FFFFFFFFH as this can lead to the unexpected generation of
PROTECTION.BAD_ACCESS faults.

In general, the Interrupt Table should not be protected against Supervisor mode accesses.
Protecting the Interrupt Table from Supervisor mode writes is acceptable if it can be guaranteed
that no software posting of interrupts will occur. Protecting the Interrupt Table against Supervisor
mode reads will cause trouble if any hardware interrupts, including the NMI, occur. Violation of
these cautions will result in improper system behavior.

Page 12-15, First Paragraph

The last sentence of the first paragraph
originally read:

For application debugging with the
GMU, conditional branches to regions
protected by the GMU should always be
predicted taken.

The corrected text reads:

For application debugging with the
GMU, conditional branches to regions
protected by the GMU should always be
predicted as not taken.

INITIALIZATION AND SYSTEM REQUIREMENTS

13-4

Figure 13-2. Cold Reset Waveform

C
LK

IN

C
T

3:
0,

 A
D

S
,

W
/R

, D
T

/R
,

D
31

:0
,

S
T

E
S

T

R
E

S
E

T

V
C

C
,
V

C
C

5,

LO
C

K
, W

A
IT

,
D

E
N

, B
LA

S
T

B
R

E
Q

, F
A

IL

D
P

3:
0

∼∼

∼∼ ∼∼ ∼∼ ∼∼ ∼∼ ∼∼

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

In
va

lid

V
al

id

∼∼ ∼∼ ∼∼ ∼∼ ∼∼ ∼∼ ∼∼

.

∼∼

In
pu

ts

T
se

tu
p

1C
LK

IN
T

ho
ld

1C

LK
IN

∼∼ ∼∼ ∼∼ ∼∼ ∼∼ ∼∼

∼∼ ∼∼

∼∼ ∼∼∼∼ ∼∼

∼∼ ∼∼

A
31

:2
, S

U
P

D
/C

, B
E

3:
0

B
A

B
A

∼∼

∼∼

∼∼

O
N

C
E

R
E

S
E

T
 h

ig
h

 to
 F

irs
t B

us
 a

ct
iv

ity
,

ap
pr

ox
im

at
e

ly
 T

B
D

 C
LK

IN
 p

er
io

ds

C
LK

IN
 a

nd
 V

C
C
 S

ta
bl

e
to

 R
E

S
E

T
 h

ig
h,

m

in
im

um
 1

6
 C

LK
IN

 p
er

io
ds

.

1.
 T

he
 p

ro
ce

ss
or

 a
ss

er
ts

 F
A

IL
 d

ur
in

g
bu

ilt
-in

 s
el

f-
te

st
. I

f s
el

f-
 te

st
 p

as
se

s,
 th

e
F

A
IL

 p
in

 is
 d

ea
ss

er
te

d.
T

he
 p

ro
ce

ss
or

 a
ls

o
as

se
rt

s
F

A
IL

du
rin

g
th

e
bu

s
co

nf
id

en
ce

 te
st

. I
f t

he
 b

us
 c

on
fid

en
ce

 te
st

 p
as

se
s,

 F
A

IL
 is

 d
ea

ss
er

te
d

an
d

th
e

pr
oc

es
so

r
be

gi
ns

 u
se

r
pr

og
ra

m
 e

xe
cu

tio
n.

N
o

te
s:

2.
 If

 th
e

pr
oc

es
so

r
fa

ils
 b

ui
lt-

in
 s

el
f-

te
st

, i
t w

ill
 in

iti
at

e
on

e
du

m
m

y
lo

ad
 b

us
 a

cc
es

s.

3.
 S

in
ce

 th
e

bu
s

is
 id

le
, h

ol
d

re
qu

es
ts

 w
ill

 b
e

ho
no

re
d

du
rin

g
re

se
t a

nd
 b

ui
lt-

in
 s

el
f-

te
st

.

T
he

 lo
ad

 a
dd

re
ss

 w
ill

 in
di

ca
te

 th
e

po
in

t o
f s

el
f-

te
st

 fa
ilu

re
.

Page 13-04, Figure 13-2

The text that appeared near
the top center of the
diagram:

VCC and CLKIN Stable
to Outputs Valid, maximum
32 CLKIN Periods.

has been deleted.

INITIALIZATION AND SYSTEM REQUIREMENTS

13-9

13

When the processor detects a System Error, it asserts the FAIL pin, drives a fail code message onto
the address bus, and stops execution at the point of failure. The only way to resume normal
operation of the processor is to perform a reset operation. Because System Error generation can
occur after the bus confidence test and even after initialization during normal processor operation,
the FAIL pin is a logical “1” before the detection of a System Error.

13.2.2.5 Self Test Failure Codes

When the processor fails the self test, the FAIL pin asserts and the processor signals the cause of
the failure. The processor uses only one read bus transaction to signal the fail code message; the
address of the bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6
to 0 contain a mask recording the possible failures. Bit 7, when 1, indicates the mask contains
failures from BIST; when 0, the mask indicates other failures. The fail codes are shown in Table
13-3 and
Table 13-4.

Table 13-3. Fail Codes for BIST (bit 7 = 1)

Bit When set:

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST

4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

2 Local-register cache or processor core failure detected by
BIST

1 Always zero.

0 Always zero.

Table 13-4. Remaining Fail Codes (bit 7 = 0)

Bit When set:

6 Always One; this bit does not indicate a failure.

5 Always One; this bit does not indicate a failure.

Page 13-9, Section 13.2.2.5

The following sentence has
been added to the beginning
of the first paragraph:

“When the processor fails
the self test, the FAIL pin
asserts and the processor
signals the cause of the
failure.”

INITIALIZATION AND SYSTEM REQUIREMENTS

13-11

13

Several data structures are typically included as part of the IMI because values in these data
structures are accessed by the processor during initialization. These data structures are usually
programmed in the systems’s boot ROM, located in memory region 15 of the address space.

The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt
table, and fault table must not be located in architecturally reserved memory — addresses reserved
for on-chip Data RAM and addresses at and above FF00 0000H. In addition, each of these
structures must start at a word-aligned address; a System Error occurs if any of these structures are
not word-aligned (see section 13.2.2.3).

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system procedure
table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped control
register (see section 3.3, “MEMORY-MAPPED CONTROL REGISTERS (MMRs)” (pg. 3-6)).
Recall that the Supervisor Stack Pointer is located in the preamble of the system procedure table at
byte offset 12 from the base address. The system procedure table base address is programmed in
the PRCB. Consult section 7.5.1, “System Procedure Table” (pg. 7-16) for the format of this table.

At initialization, the NMI vector loads from the interrupt table into location 0000 0000H of the
internal data RAM. The interrupt table is typically programmed in the boot ROM and then
relocated to internal RAM by reinitializing the processor.

Typically, applications locate the fault table in boot ROM. To locate the fault table in RAM, the
processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. Applications must locate these stacks in a system’s RAM.

Page 13-11,Third Paragraph

The address given in the
paragraph after the bulleted
list has been changed from
FEFF FF60H to FF00 0000H.

INITIALIZATION AND SYSTEM REQUIREMENTS

13-23

13

Figure 13-7. Control Table

13.4 DEVICE IDENTIFICATION ON RESET

The DEVICEID memory-mapped register contains a number characterizing the microprocessor
type and stepping. During initialization, the processor places the DEVICEID register value into g0.

Reserved (Initialize to 0)

031

00H

Reserved (Initialize to 0) 04H

Reserved (Initialize to 0) 08H

Reserved (Initialize to 0) 0CH

Interrupt Map 0 (IMAP0) 10H

Interrupt Map 1 (IMAP1) 14H

Interrupt Map 2 (IMAP2) 18H

Interrupt Control (ICON) 1CH

Physical Memory Region 0 Configuration (PMCON0) 20H

Physical Memory Region 1 Configuration (PMCON1) 24H

Physical Memory Region 2 Configuration (PMCON2) 28H

Physical Memory Region 3 Configuration (PMCON3) 2CH

Physical Memory Region 4 Configuration (PMCON4) 30H

Physical Memory Region 5 Configuration (PMCON5) 34H

Physical Memory Region 6 Configuration (PMCON6) 38H

Physical Memory Region 7 Configuration (PMCON7) 3CH

Physical Memory Region 8 Configuration (PMCON8) 40H

Physical Memory Region 9 Configuration (PMCON9) 44H

Physical Memory Region 10 Configuration (PMCON10) 48H

Physical Memory Region 11 Configuration (PMCON11) 4CH

Physical Memory Region 12 Configuration (PMCON12) 50H

Physical Memory Region 13 Configuration (PMCON13) 54H

Physical Memory Region 14 Configuration (PMCON14) 58H

Physical Memory Region 15 Configuration (PMCON15) 5CH

Reserved (Initialize to 0) 60H

Bus Contiguration Control (BCON) 6CH

64H

Trace Controls (TC) 68H

Reserved (Initialize to 0)

Page 13-23, Figure 13-7

The entry for address 64H
was originally listed as
“Breakpoint Control
(BPCON)”

The entry should be listed
as “Reserved (Initialize to
Zero)”.

INITIALIZATION AND SYSTEM REQUIREMENTS

13-37

13

Figure 13-9. VCCPLL Lowpass Filter

13.6.3 VCC5 PIN REQUIREMENTS

In mixed voltage systems that drive the i960 Hx processor inputs in excess of 3.3V, the VCC5 pin
must be connected to the system’s 5V supply. To limit current flow into the VCC5 pin, there is a
limit to the voltage differential between the VCC5 pin and the other VCC pins. The voltage differ-
ential (VDIFF)between the 80960Hx VCC5 pin and its 3.3V VCC pins should never exceed 2.25V.
This limit applies to power up, power down, and steady-state operation. See the 80960HA/HD/HT
Embedded 32-bit Microprocessor Data Sheet for more details.

If the voltage difference requirements cannot be met due to system design limitations, an alternate
solution may be employed. As shown in Figure 13-10, a minimum of 100 ohm series resistor may
be used to limit the current into the VCC5 pin. This resistor ensures that current drawn by the VCC5
pin does not exceed the maximum rating for this pin.

Figure 13-10. VCC5 Current-Limiting Resistor

This resistor is not necessary in systems that can guarantee the VDIFF specification. In 3.3V-only
systems and systems that drive the i960 Hx processor pins from 3.3V logic, connect the VCC5 pin
directly to the 3.3V VCC plane.

100

3.3 VVCC
(Board Plane)

VCCPL L
(On i960 Hx Processors)

Ω (±5%, 1/8 W)

0.01µf 4.7µf

+

5V Vcc VCC5 Pin

100 Ω
(±5%, 0.5W)

(Board Plane)

Page 13-37, Figure 13-9

The text near at the top of
the figure read:

100Ω

The corrected text reads:

100Ω (±5%, 1/8 W)

Page 13-37, Figure 13-10

The text near at the top of
the figure read:

3.3V Vcc

The corrected text reads:

5 V Vcc

EXTERNAL BUS DESCRIPTION

15-15

15

Figure 15-5. 32-Bit-Wide Data Bus Bursts

Burst accesses for a 16-bit bus are always aligned to even short word boundaries. A four short
word burst access always begins on a four short word boundary (A2=0, A1=0). Two short word
burst accesses always begin on a four word boundary (A2=0, A1=0). Single short word transfers
occur on single short word boundaries (see Figure 15-6). For a 16-bit bus, valid data is transferred
on data pins D15:0. Upper data lines D31:16 are also driven on writes. For aligned accesses, the
values are a duplicate of those driven on D15:0.

Quad Word Burst

Triple Word Burst

Double Word Burst

Double Word Burst

32-Bit

32-Bit Burst Bus

00 01 10 11

A3:2

Page 15-15, Figure 15-5

The second sentence originally read:

Two short word burst accesses always begin on an even
short word boundary (A1=0).

The corrected text reads:

Two short word burst accesses always begin on a four word
boundary (A2=0, A1=0).

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

E-41

E

E.2.7.1 Loads and Stores

Separate load instructions from instructions that use load data. Remember that store instructions
can also be reordered. Although it returns no results to a register, a poorly placed store in front of a
critical load slows down the load. Reorder to issue the load first. Example E-1 shows a simple
change that saved one clock from a five-clock loop.

Example E-1. Overlapping Loads (Checksum)

loop: opt_loop:

ldob (g0), g1 ldob (g0), g1

addo g1, g2, g2 cmpinco g0, g3, g3

cmpinco g0, g3, g3 addo g1, g2, g2

bl.t loop bl.t opt_loop

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ldob 1 ldob

2 : 2 cmpinco :

3 : 3 : bl.t

4 addo bl.t 4 addo :

5 cmpinco : 5 ldob

6 ldob

Page E-41, Example E-1

The two cmpinco instructions originally read:

cmpinco g0, g3, g0

The corrected text reads:

cmpinco g0, g3, g3

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

E-44

Example E-3. Unrolling Loops (Checksum)

-- initialize -- -- initialize --
loop: opt_loop:

ldob (g0), g1 ldob (g0), g1
addo g1, g2, g2 cmpinco g0, g3, g3
cmpinco g0, g3, g3 addo g4, g2, g2
bl.t loop bge.f exit1
ret ldob (g0), g4

cmpinco g0, g3, g3
addo g1, g2, g2
bl.t opt_loop
exit2:
addo g4, g2, g2
ret
exit1:
addo g1,g2,g2
ret

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ldob 1 ldob g1

2 : 2 cmpinco : bge.f

3 : 3 addo g4 : :

4 addo bl.t 4 ldob g4

5 cmpinco : 5 cmpinco : bl.t

6 ldob 6 addo g1 : :

7 ldob g1

Page E-44, Example E-3

The three cmpinco instructions originally read:

cmpinco g0, g3, g0

The corrected text reads:

cmpinco g0, g3, g3

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

E-45

E

E.2.7.5 Enabling Constant Parallel Issue

As described in section E.2.1, “Parallel Issue” (pg. E-13), certain sequences of machine-type
instructions can be executed in parallel, such as REG-MEM, REG-MEM-CTRL, MEM-CTRL. In
Example E-4 the checksum loop is repeated. Another clock is eliminated by reordering code for
parallel issue.

E.2.7.6 Alternating from Side to Side

The i960 Hx processor can sustain execution of two instructions per clock. To maximize this
capability, try to start instructions in two of the three pipelines each clock. To increase parallelism,
move an instruction from a unit which has become a critical path to a unit with available clocks.
The AGU performs shifts, additions and moves that can replace EU operations. Literal addressing

Example E-4. Order for Parallelism (Checksum)

-- initialize -- -- initialize --
loop: opt_loop:

ldob (g0), g1 addo g4, g2, g2
addo g1, g2, g2 ldob (g0), g1
cmpinco g0, g3, g3 cmpinco g0, g3, g3
bl.t loop bge.f exit1
ret ldob (g0), g4

cmpinco g0, g3, g3
addo g1, g2, g2
bl.t opt_loop

exit2:
addo g4, g2, g2
ret

exit1:
addo g1,g2,g2
ret

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ldob 1 addo g4 ldob g1 bge.f

2 : 2 cmpinco : :

3 : 3 ldob g4

4 addo bl.t 4 cmpinco : bl.t

5 cmpinco : 5 addo g1 : :

6 ldob 6 addo g4 ldob g1

Page E-45, Example E-4

The three cmpinco instructions originally read:

cmpinco g0, g3, g0

The corrected text reads:

cmpinco g0, g3, g3

	80960HA/HD/HT SPECIFICATION UPDATE
	Copyright Page
	Table of Contents
	REVISION HISTORY
	PREFACE
	Affected Documents/Related Documents
	Nomenclature

	SUMMARY TABLE OF CHANGES
	Codes Used in Summary Table
	Stepping
	Page
	Status
	Row

	Errata (Sheet 2 of 2)
	Specification Changes�
	Specification Clarifications�
	Documentation Changes�

	IDENTIFICATION INFORMATION
	ERRATA
	SPECIFICATION CHANGES
	SPECIFICATION CLARIFICATIONS
	DOCUMENTATION CHANGES
	Document Change Pages
	Page 3-11, Table 3-4
	Page 3-26, Second Paragraph
	Page 4-6, Section 4.4.3
	Page 6-45, Case 8
	Page 6-60, Table 6-8
	Page 6-61, Figure 6-4
	Page 6-62, Table 6-9
	Page 6-63, Figure 6-5
	Page 6-64, Figure 6-6
	Page 6-116, Table 6-10
	Page 8-6, System-Call Entry
	Page 11-19, Example 11-5
	Page 12-15, First Paragraph
	Page 13-04, Figure 13-2
	Page 13-9, Section 13.2.2.5
	Page 13-11,Third Paragraph
	Page 13-23, Figure 13-7
	Page 13-37, Figure 13-9
	Page 15-15, Figure 15-5
	Page E-41, Example E-1
	Page E-44, Example E-3
	Page E-45, Example E-4

