Distributed I/O Processing for High Speed Networks

PCI Spring Developers Conference

Byron Gillespie
Strategic Development Manager
Intel Corporation

Byron Gillespie

Intel Corporation 5000 West Chandler Blvd. MS CH6-319 Chandler, Arizona 85226 (602) 554-2653, Fax (602) 554-7347

Current Activities

Byron Gillespie works as a strategic development manager for Intel's Computing Division. He is responsible for working with customers to define the requirements for future i960® microprocessor products. Currently, Byron is providing technical support for the 80960 RP Intelligent I/O Processor and leading the system validation effort for the i960 RP processor.

Author Background

Since joining Intel in 1991, he has defined three i960 microprocessors, including the i960 RP processor for intelligent PCI I/O applications. Previously, he had eight years experience writing software for embedded avionics applications. The embedded applications used a variety of Intel processors including the superscalar i960 CA microprocessor Gillespie received a B.S. in computer science from Northern Arizona University in 1983.

Distributed I/O Agenda

- Current Intelligent I/O Application Model
- System Performance Issues
- Next Generation Intelligent I/O Application Model
- Hardware PCI enhancements
- Focus on reducing host processor interrupt servicing and processing

Intelligent I/O Application Model

Role of an I/O Processor

- Reduced host CPU utilization for I/O tasks
 - Handling interrupts
- Improve the performance of the client/server environment
 - Server I/O:
 - Simultaneous "conversation" with many clients
 - I/O scalability required

Cost of Interrupt Analysis

- 100 MB/sec Ethernet Example using current generation of intelligent adapter I/O subsystem
- Dumb Ethernet card example
 - Host CPU utilization = 50%
 - Interrupt latency impacts network utilization
 - Lower inter-frame spacing between packets
 - ~ 8us versus ~12us

System Analysis

- Re-directing host interrupts can significantly improve system performance
- Less contention for host memory resulting in higher PCI performance
- Supports greater number of chain links
 - Keeps the transmit pipe full all the time
 - Receive data buffering and packing

Fast Ethernet Card Demonstrates Benefits of Intelligent I/O For **Networks**

50% CPU Utilization

2048 4096 6144 8192 24575 40959 57343

PERFORM 3 Request Size

■ 1 LAN ● 2 LANs ■ 3 LANs ▲ 4 LANs

100% CPU Utilization

100% CPU Utilization

Source: Intel

10240

Focus On System Performance

- System architecture affects I/O performance
- Interrupt sharing
 - Affects both receive and transmit frame data
 - Overall network bandwidth is affected
- Watch surrounding PCI components and systems
 - Poorly designed PCI interfaces can reduce PCI performance
 - Chipset performance affects host memory access latency and PCI bandwidth
 - Disk performance affects network response time

Next-Generation Intelligent I/O Application Model

i960® RP Processor Block Diagram

Hardware Enhancements to Supplement System Performance

- PCI bus local to the card
 - Utilize PCI components designed with PCI performance in mind
- Use PCI commands to fullest
 - Intelligent prefetching strategy for MRMultiple and MRLine commands
 - MWInvalidate for large data transfers
- Hardware Message Queuing Mechanism
 - Simplifies and reduces driver software to reduce latency

PCI Read Performance

Source: Intel IAL Lab Measurement

PCI Write Performance

Reducing Interrupts with Intelligent I/O Subsystems

- Request and Response Queue Model
 - Reduces Host Interrupts
- New Problem: Spin locks as processors contend for queues in SMP systems
 - Utilize the "atomic" nature of PCI to avoid spin locks

Request & Response Queue Model

Messaging Unit: Circular Queues

Hardware-Assisted Queue Structure

Posting an I/O Request

Post Queue

Reply to an I/O Command i960 RP μP Writes I/O 5 Reply to Message Frame Host µP Returns **Interrupt Is Generated to Consumed Message** the Host When the Queue **Block to the Inbound Free** Z **Goes Not Empty** Queue Host **PCI** i960 RP I/O **Outbound** Register Inbound Inbound **Outbound Processor** Interface Free Free **Post Post** A HW Queue B Interface B Queues **Software Queue** C **Interface** 3 i960 RP µP Writes i960® RP µP Reads **Pointer to Outbound Outbound Free Queue**

Summary

- Distributed I/O processing brings enterprise class I/O to PC servers by
 - Improving server throughput
 - Allowing more host CPU cycles for applications
 - Enables server I/O to scale with the frequency of the host CPU and in SMP systems
 - Improves the client/server performance
- The i960[®] RP processor enables high performance I/O subsystems
 - Removes the spin-locks incurred by SMP systems

intel_® - Removes I/O bottlenecks for servers