
I2O Architecture Overview

Mark Brown
Intel Corporation

Technical Marketing Engineer

Abstract

This paper addresses the I2O architecture and the motivation behind forming the I2O Special
Interest Group (SIG). The I2O specification defines an architecture for managing devices that is
independent of the implementation of the device and the operating system. The resulting
architectural framework, or structure, will promote interoperability, performance, and ease-of-use.

The model behind the I2O architecture is to separate the functionality of the driver, which
manages devices, from the specific nature of the operating system that it serves. It acts as an
abstraction layer to allow the part of the device driver that actually manages devices to become
portable among different operating system environments and to be portable and usable across
different vendor implementations.

This paper provides an introduction to the dilemmas that exist in the I/O of server platforms, an
overview of the I2O architecture split driver model and message interface, system models
available with the I2O architecture and an explanation of the structure and membership of the I2O
Special Interest Group.

Introduction

The demand for device driver portability between operating systems and host platforms,
combined with increasing requirements for intelligent, distributed I/O processing has led to the
development of the Intelligent Input/Output, or I2O (pronounced eye-two-oh) specification. The
basic objective of the I2O architecture is to provide an I/O device driver architecture that is
independent of both the specific device being controlled and the host operating system. This is
achieved by logically separating the portion of the driver that is responsible for managing the
device from the specific implementation details for the operating system that it serves. By doing
so, the part of the driver that manages the device becomes portable across multiple operating
systems. The I2O architecture also acts to hide the nature of the communication between various
mechanisms, and in doing so provides processor and bus technology independence.

The I2O architecture is also designed to facilitate intelligent I/O subsystems, with support for
message-passing between multiple independent processors. By relieving the host of interrupt
intensive I/O tasks required by the various layers of a driver architecture, the I2O architecture
greatly improves I/O performance. I2O architecture compatible systems will be able to more
efficiently deliver the I/O throughput required by a wide range of high bandwidth applications,
such as networked video, groupware, and client/server processing. At the same time, the I2O
architecture imposes no restrictions as to where the layered modules execute, providing support
for single processor, multiprocessor, and clustered systems.

While the I2O architecture provides a compelling alternative to traditional monolithic driver
models, its intent is not to create an entirely new interface to replace the driver architectures
currently in existence. Rather, the objective is to provide an open, uniform approach, which is
complementary to existing drivers, and provides a framework for the rapid development of a new
generation of portable, intelligent I/O solutions.

The I/O Bottleneck and Driver Proliferation Dilemma

System balance is critical to optimizing overall system performance. The host processor, local
memory, and I/O devices must all work in concert to provide the end-user with a productive
working environment. If one aspect of the system, such as I/O, becomes a bottleneck, overall
performance will suffer (Figure 1). This is particularly true in the client/server computing

environment, where end-users rely heavily on network resources, such as data, applications and
peripherals, and interact with other users on the network.

Source: Intel Benchmarks

40960

30720

20480

10240

Th
ro

ug
hp

ut
 (K

B
/s

)

0
128 384 640 896 2048 4096 6144 8192 24575 40959 57343

PERFORM 3 Request Size

1 LAN 2 LANs 3 LANs 4 LANs

50% CPU Utilization

90% CPU Utilization
100% CPU Utilization
100% CPU Utilization

Server performance with four PRO/100 adapters Server performance with four intelligent
PRO/100 Server Adapters

40960

30720

20480

10240

Th
ro

ug
hp

ut
 (K

B
/s

)

0
128 384 640 896 2048 4096 6144 8192 24575 40959 57343

PERFORM 3 Request Size

1 LAN 2 LANs 3 LANs 4 LANs

48% CPU Utilization

28% CPU Utilization

12% CPU Utilization

59% CPU Utilization

Figure 1: Intelligent I/O Performance Analysis for Fast Ethernet

While there is a growing range of new technologies designed to offer desktop computer users
improved I/O performance over the network, including ATM, Fast Ethernet, FDDI, and Fibre
Channel, these high-speed networks actually make system I/O balance even more critical. At the
same time, there has been a proliferation of network operating systems for users to choose from,
most notably NetWare 3, NetWare 4, Windows NT Server, and UnixWare. The result is what is
known as the RM x NS problem, where each new combination of I/O technology and operating
system requires a different device driver to be written, tested, and integrated. As the number of
new drivers spirals, development and system management overhead grows.

4.x

3.x

2.2

NetWare

2.1

2.0

1.3

OS/2

3.2.2

SCO

3.5

3.1

Windows NT Windows '95

Baseline Product

Figure 2: Device Driver Proliferation Dilemma

Today, the task of writing, integrating, and testing device drivers for each new release of an
operating system is a significant burden for the entire computing industry (Figure 2). It has even
been suggested that the problems associated with deploying and supporting new network
technologies at the driver level have played a role in slowing the adoption of these exciting new
high-speed networking options. The solution to this problem is the standardization of the I/O
architecture.

I2O Architecture Conceptual Overview

The I2O architecture provides an ideal environment for creating drivers that are portable across
multiple operating systems and host platforms. As shown in Figure 3, drivers are divided into two
parts; the OS Services Module (OSM) which interfaces to the host operating system’s interface;
and the Hardware Device Module (HDM) that interfaces with the particular device, media or
server that the driver must manage. These modules interface with each other through a
communication system comprised of two layers: a Message Layer which sets up a
communications session between two parties, and a Transport Layer which defines how the two
parties will share information. Much like a standard communications protocol, the Message
Layer resides on the Transport Layer.

The I2O communication model, when combined with an execution environment and configuration
interface, provides the HDM with a host independent interface. The modules are able to
communicate without knowledge of the underlying bus architecture or system topology.
Messages form a meta-language for the modules to communicate that is independent of the bus
topology and host Operating System interfaces. Just as a networking protocol stack, such as
TCP/IP, is able to isolate communicating parties for each other’s specific implementation details,
the I2O architecture is able to provide device driver portability.

I 2O

• Implementation-
 Independent Layer
• Enables Node-Node
 Communication

IOP

• OS Specific
• OS Revision
 Independent

Communication Layer

Host

OSM

Hardware

Implementation-
Specific OS
Driver Code

Implementation-
Specific
(Host or IOP)
Code

TODAY

Hardware

HDM
• OS Independent
• I/O Software

Figure 3: I 2O Split Driver Model

How It Works

The communications model for the I2O architecture is a message passing system. The
communication model is analogous to a connection oriented networking protocol or the OSI
layered model, in which two parties interested in exchanging messages utilize the Message Layer
to set up a connection and exchange data and control.

When the OSM is presented with a request from the host operating system, it translates the
request into an I2O message and dispatches it to the appropriate HDM for processing. Upon
completion of the request, the HDM dispatches the result back to the OSM by sending a
message through the I2O Message Layer. The OSM behaves just like any other device driver
from the host operating system’s perspective.

The Message Layer

The foundation of the I2O architecture is the Message Layer, which provides the glue that
connects the framework of the driver model. The Message Layer is responsible for the
management and dispatching of all requests. It provides a set of APIs for delivering messages,
along with a set of support routines that process them.

There are three basic components in the Message Layer: the message handle, the Message
Service Routine (MSR), and the message queue. The message handle is essentially the
‘address’ of the MSR registered in the call. A message handle is returned for every call to the
Message Layer. The message queue provides the link between the requester and the desired
service.

When a driver request is made, a message is deposited in a message queue and an MSR is
activated to process the request. Messages themselves are made up of two parts: a header and
a payload, where the header describes the types of request along with the return address of the
originator.

The I2O architecture is based on a queue between the requester and the MSR as shown in
Figure 4. The requester and service module can reside either on separate execution
environments, or on a single processor system. The I2O architecture also defines a neutral
memory format, which provides independence for the host operating system memory model.

By providing an open, standard and neutral format mechanism for communication between the
service modules, the Message Layer is the foundation.

PCI BUS PCI BUS
Inbound
Queue

Outbound
Queue

IOP
Local

Memory

Message
Frames

Message
Frames

CPU
Physical
System
Memory

IOP

Figure 4: I 2O Message Interface

The Operating System Services Module - OSM

The OSM provides the interface between the host operating system and the I2O Message Layer.
In the split driver module, the OSM represents the portion of the driver that interfaces to host
specific Application Programming Interfaces (APIs), translating them to a neutral message based
format that is then sent to an HDM for processing.

The OSM translates requests from the host operating system into messages which can be
dispatched to the appropriate HDM for processing. HDM information is forwarded back to host
operating system through the OSM via the I2O Message Layer.

Developers can also create host OSM’s that works with multiple HDM’s. By implementing an
OSM with a single message handle which services multiple queues from different service
modules, a single OSM can send and service requests to/from multiple, different devices.

The Hardware Device Module - HDM

The HDM is the lowest level module in the I2O environment, and provides the device specific
portion of the driver that understands how to interface with the particular controller and devices.
HDM’s are roughly analogous to the hardware-specific portion of the network and SCSI drivers
that exist today. The HDM translation layer is unique to each individual hardware device and
vendor, and supports a range of operation types, including synchronous, asynchronous request,
event driven, and polled.

The HDM itself is surrounded by the I2O environment, which provides the necessary support for
the operating system processes, and bus independent execution. HDM’s are typically written in
C or C++ and can be architected in a manner which minimizes changes when moving from one
hardware platform to another.

System Environments

The I2O architecture is designed for single processor, multiprocessor, and clustered processor
systems, as well as desktop, communications, and real-time system environments.

Both the HDM and OSM interface to a basic I2O API set. The execution environment for OSM’s
consists of the execution environment provided by the hosting operating system along with the
basic I2O API set. The host-based I2O environment complements the operating system services
by providing a bridge between the operating system device APIs and the HDM.

In order to accommodate access to real-time operating system environments, HDM’s have an
additional set of I2O Embedded Kernel Services API’s (Figure 5). This interface provides HDM’s
with access to required operating system functions, without exposing the actual Embedded
Operating System’s interfaces to the HDM. This layer provides the set of services needed to
establish a cocoon that HDM’s load into, thereby making them independent of their surrounding
execution environment. This is especially important in meeting the I2O architecture objective of
allowing HDM’s to run in multiple target execution environments.

Transport Layer

Service Layer

Service Module

Transport
Services

RTOS
Services

Message
Services

Device Module
API

SYSTEM BUS SYSTEM BUS

Figure 5: I 2O Message Service Model

Because the I2O architecture is designed to readily support single processor systems, the service
layer is scaleable. It can easily be simplified in scope for more restricted processing
environments.

System Models

The I2O architecture provides for a variety of possible system models. Each I2O architecture
segment is composed of a primary host node and one or more I/O nodes. For each host node,
there is an I2O resource manager responsible for initialization and configuration of the I2O
components within the segment.

Figure 6 shows the host CPU node and two I/O nodes. Although I/O devices A & B and G & H
are directly addressable from the system bus, I/O devices A & B are directly controlled by the
host OS, while I/O devices G & H are controlled by I/O platform 2.
A device appearing behind an IOP is an abstracted device. I/O devices C & D are abstracted
from the system as they are private devices in I/O platform 1 and are only addressable on the
IOP’s local bus.

Further device abstraction is accomplished by I/O devices D & G which contain devices
accessible through their own bus. An example of this abstraction would be a SCSI adapter with
SCSI devices.

IOP
memory

IOP
memory

Host Platform

Physical
System
Memory

IO Device F

IO Device E

IO Platform 1 IO Platform 2

IO
Device

B

IO
Device

A

CPU
CPU

CPU
CPU

System Bus

CPU

Address
Translation

Unit

IO
P

 L
oc

al
 E

xp
an

si
on

 B
us

IO
Device

C

IO
Device

D

CPU

Address
Translation

Unit

IO
P

 L
oc

al
 E

xp
an

si
on

 B
us

IO
Device

G

IO
Device

H

A
da

pt
er

 B
us

A
da

pt
er

 B
us

IO Device J

IO Device I

Figure 6: I 2O System Model

I2O Special Interest Group

The I2O Special Interest Group (SIG) is committed to establishing the I2O architecture as the
industry preferred specification for high performance I/O systems, and to attracting the widest
possible range of vendors to become members of the consortium. A number of leading suppliers
have worked closely to develop the specification, including members of the I2O steering
committee - 3Com Corporation, Compaq Computer, Hewlett-Packard Company, Intel
Corporation, Microsoft Corporation, NetFRAME Systems Incorporated, Novell, Inc., and Symbios
Logic.

Other I2O SIG members include Acer, Adaptec, AMI, Cyclone Microsystems, Inc., Distributed
Processing Technologies, Fore Systems, Harris & Jeffries, ICP/Vortex, ISI, Mylex Corporation,
PLX, SCO, Siemens, SMC, Tandem Computers, Inc., Topmax, V3, Veritas Software, Western
Digital Corporation, WindRiver Systems, and Xpoint Technologies, Inc.

The I2O SIG is open to additional membership. Companies can join either as Contributing or
Associate members. Companies interested in participating in the I2O SIG can obtain copies of
the I2O technical specification and membership details by contacting LoBue & Associates at
415.750.8352. General information is available through the I2O SIG web page at
http://www.i2osig.org.

Conclusion

The I2O architecture model is intended to provide a unifying approach to device driver design by
creating a logical split and off-loading of functions between host specific and device specific
interfaces. The intent behind the I2O architecture is create a framework for rapid product
development and the implementation of portable, high-performance, intelligent I/O systems. The

result is an open specification, defined by proven leaders from all segments of the server and I/O
industry, which provides a clear migration path from today’s legacy driver model.

Biography

Mark Brown
Technical Marketing Engineer
Intel Corporation - Enterprise Computing I/O
(602) 554-3864

Mark Brown works as a Technical Marketing Engineer in Intel’s Computing Enhancement
Division. His current assignment is providing technical support for the I2O Architecture and i960®

RP microprocessor and currently serves as the chair for the I2O SIG Server Management
Working Committee.

Prior to his technical marketing assignment, he was responsible for system validation of the
i960® JX and HX microprocessors. He has 5 years of experience in writing software for
embedded applications including two years writing software for embedded avionics applications.
Mark has a B.S. in electrical engineering from Kansas State University.

	Abstract
	Introduction
	The I/O Bottleneck and Driver Proliferation Dilemma
	Figure 1: Intelligent I/O Performance Analysis for Fast Ethernet
	Figure 2: Device Driver Proliferation Dilemma

	I2O Architecture Conceptual Overview
	Figure 3: I2 O Split Driver Model

	How It Works
	The Message Layer
	Figure 4: I2O Message Interface

	The Operating System Services Module - OSM
	The Hardware Device Module - HDM
	System Environments
	Figure 5: I2O Message Service Model

	System Models
	Figure 6: I2O System Model

	I2O Special Interest Group
	Conclusion
	Biography

