
 TECHNICAL

BRIEF

i960® RP Processor: A Single-Chip
Intelligent I/O Subsystem

i960 RP MICROPROCESSOR TECHNICAL BRIEF

ii

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of
any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel’s FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641
or call 1 (800) 548-4725

© INTEL CORPORATION 1995

iii

TABLE OF CONTENTS

INTRODUCTION.. 1

Examples of Intelligent I/O Innovation.. 1

Storage I/O Interfaces .. 2

Network I/O Interfaces.. 2

Emerging Technologies.. 3

Expanding the Market for Intelligent I/O by Reducing System Costs ... 3

Expanding Server Capabilities with an Intelligent I/O Subsystem.. 3

Intelligent I/O Processor Requirements.. 4

i960® RP PROCESSOR TECHNICAL OVERVIEW ... 1

i960® RP PROCESSOR HIGHLIGHTS .. 1

Core Architecture Performance.. 0

Fast Call-and-Return Mechanism... 0

Set-Associative Cache Design ... 1

Enhanced Bus Control Unit .. 1

Superior Interrupt Performance.. 1

i960® RP Processor Integrated Peripherals.. 0

i960® RP PROCESSOR DATA FLOW REQUIREMENTS ... 0

PCI-TO-PCI BRIDGE... 0

Electrically Isolated PCI Buses... 0

Isolated Data Flow.. 0

i960® RP Processor Bridge Address Decode.. 0

ISA Address Forwarding... 2

VGA Addressing and Snooping Support .. 20

VGA-Compatible Addressing.. 0

64-Bit Addressing with Dual Address Cycle ... 0

Bridge Queues ... 2

PCI Bridge Transactions... 2

PCI Data Streaming.. 1

ADDRESS TRANSLATION UNITS (ATU) ... 1

ATU Queues... 2

ATU Inbound Transactions... 2

Inbound ATU Data Streaming .. 2

Outbound ATU Transactions.. 2

ATU Direct Addressing Transactions ... 3

Generating PCI Configuration Cycles... 3

5

7

7

8

10

11

12

13

14

14

14

14

16

16

17

17

19

19

20

21

23

23

23

23

24

24

6

i960 RP MICROPROCESSOR TECHNICAL BRIEF

iv

PRIVATE PCI DEVICES.. 3

Private PCI Address Space.. 0

MESSAGING UNIT.. 2

Message Registers... 2

Doorbell Registers.. 2

Circular Queues ... 2

Index Registers .. 2

DMA CONTROLLER.. 2

Hardware Unaligned DMA Transfers.. 0

DMA Chaining Operation.. 0

DMA Channel Queues.. 1

DMA Transactions.. 2

Demand Mode DMA Transfers... 37

BUS ARBITRATION SUPPORT .. 1

Local Bus Arbitration Unit ... 1

Secondary PCI Bus Arbitration Unit ... 1

Primary and Secondary Internal PCI Bus Arbiters ... 1

INTEGRATED MEMORY CONTROLLER ... 1

DRAM Control .. 0

Programmable Refresh Timer .. 0

DRAM Performance ... 0

Memory Controller Error Reporting .. 0

Programmable Byte Parity for DRAM... 0

Bus Monitor Support... 0

SRAM, Flash and ROM Control ... 0

FILTERING PCI INTERRUPTS ... 2

I/O APIC Interface .. 0

SERIAL I2C INTERFACE ... 0

i960® RP PROCESSOR CLOCKING ... 1

PCI Configuration ... 0

Peripheral Programming Interface ... 0

Reset Configuration Options .. 1

i960® RP PROCESSOR PACKAGING... 1

COMPLETE TOOL SET FOR EMBEDDED DESIGN.. 0

State-of-the-Art Compiler Technology.. 0

Integrated Software Debuggers ... 0

30

32

32

33

33

34

34

36

36

36

38

39

39

39

39

42

42

44

45

45

45

46

47

48

48

48

27

27

27

29

30

30

31

25

25

27

v

Wide Variety of Operating Systems.. 0

Emulators and Logic Analyzers .. 0

Evaluation Platforms... 0

i960® Microprocessor PCI I/O Software Development Kit .. 1

PCI Compliance.. 1

SUMMARY... 0

48

48

48

49

49

49

i960 RP MICROPROCESSOR TECHNICAL BRIEF

vi

LIST OF FIGURES

Figure 1. Add-In Card Application.. 2
Figure 2. Server Slot Extension Application... 4
Figure 3. i960® RP Processor Block Diagram .. 5
Figure 4. i960® JF Processor Core Block Diagram .. 1
Figure 5. i960® RP Processor Register Model ... 5
Figure 6. Register Cache Example .. 9
Figure 7. Instruction Cache Hit Rate Comparison.. 0
Figure 8. Performance Simulation for Various Cache Sizes .. 0
Figure 9. Application Code Density.. 0
Figure 10. Physical and Logical Memory Control Example.. 1
Figure 11. i960® RP Processor Data Flow Requirements .. 0
Figure 12. i960® RP Processor Bridging Operation.. 1
Figure 13. ISA Mode Address Forwarding... 2
Figure 14. VGA Compatible Address Forwarding.. 1
Figure 15. Primary ATU Inbound PCI Address Translation Example .. 1
Figure 16. Private PCI Address Space .. 1
Figure 17. Overview of Circular Queue Operation... 1
Figure 18. DMA Chaining Example.. 1
Figure 19. Demand Mode DMA Example .. 2
Figure 20. Local Bus Arbitration Example.. 1
Figure 21. Non-Interleaved DRAM Example.. 0
Figure 22. Interleaved DRAM Example.. 0
Figure 23. 8-bit Memory Example.. 1
Figure 24. 32-bit SRAM/Flash Memory Example... 2
Figure 25. PCI Interrupt Steering ... 0
Figure 26. Connecting the IDSEL# Signal Example .. 1

2
4
5
6
7
8
8
9
9
10
13
15
16
18
22
26
28
31
32
34
37
38
40

43
46

41

1

THE i960 RP PROCESSOR FOR EXTENDING PCI BUS
CAPABILITIES AND ENHANCING SERVER PERFORMANCE

INTRODUCTION
Today’s client/server computing environment
presents a challenge for maximizing server
performance. Increasingly powerful host CPUs can
be relieved of I/O processing in order to perform at
optimal levels. Creating intelligent I/O subsystems,
based on high-performance embedded processors,
allows the host CPU to perform more effectively.

Other factors driving the need for intelligent I/O
subsystems include:

■ The stand-alone computing model is being
replaced by networked computing.

■ Networked computers increase the vast quantities
of data the server systems support.

■ Since servers CPUs also run user applications,
they need more powerful storage interfaces for
accessing larger disk storage areas, in addition to
higher reliability offered by RAID storage.

■ Simultaneously, the data sizes and type
increasingly contain natural data elements like
video or audio, in addition to text and graphics.

Clearly, in today’s client/server model, data
congestion occurs more frequently at the servers. An
intelligent I/O subsystem creates the balance
between server performance and the data I/O paths,
thus relieving data congestion.

Examples of Intelligent I/O Innovation

Today’s high-performance add-in adapter cards
demonstrate intelligent I/O innovation. The adapter
card is a subsystem consisting of an embedded
processor, memory, and peripheral components.
The i960® RP processor provides a high level of PCI
integration with an independent PCI bus local to the
add-in card. Low-cost PCI peripheral components
help reduce system costs. The highly integrated i960
RP processor represents a breakthrough in assisting
server host CPUs to attain even higher performance
levels. It does so by alleviating host CPU interrupts
resulting from I/O service request via the PCI bus.
Figure 1 shows the block diagram for an intelligent
I/O add-in card using an i960 RP processor.

i960 RP MICROPROCESSOR TECHNICAL BRIEF

2

Storage I/O Interfaces

In the two basic areas of server I/O, networking and
storage, intelligent I/O subsystems offer enhanced
server performance capabilities.

RAID controllers describe one of the better known
examples of storage I/O. The server can initiate a
disk store or retrieve command as if it were writing to
a single disk. The intelligent RAID controller
separates commands into parallel read or write
commands to its attached array of disks. This
parallel operation, controlled by the intelligent I/O
processor, compensates for the single disk spin-up
delay and provides data redundancy. This results in
superior data transfer rates as well as greater
reliability, a critical necessity as servers become
more widely used for corporate computing and
database transactions.

A similar example of how intelligent I/O improves
server storage connection is in caching disk
controllers. In this application, the host can write a
data file to the intelligent disk controller cache at
speeds matching fast DRAM memory. The host
application execution continues while the I/O
processor controls the actual disk storage
sequences.

Network I/O Interfaces

On the network I/O side, the servers perform many
of the bridging and routing functions. The Ethernet or
token ring LAN interface with intelligent processors
handle the frequent I/O interrupts and intelligently
buffers messages to and from the host. This allows
the host to streamline application processing and to
use other system resources, such as the system bus
and memory, more effectively.

Local
Memory

i960® RP
Processor

Primary
PCI Bus

PCI Peripherals

PCI Interface to
IA Motherboard

Secondary PCI Bus

Figure 1. Add-In Card Application

3

In wide-area network (WAN) interfaces, intelligent
I/O processing also offers significant performance
improvements. For example, intelligent WAN
interfaces can compress large message files prior to
transmission. This not only frees the host CPU to
perform more valuable application tasks, but can
allow more users to share the same fixed, wide-area
connection. The host CPU is transparent to this
operation, thus providing better utilization of the
WAN.

Emerging Technologies

In both storage and network interfaces, new
intelligent I/O approaches will shrink the time-to-
market for newer, high-performance interfaces. As
new interfaces emerge, they are often implemented
before an industry-wide agreement on all aspects of
the interface. However, server buyers often forego
the performance benefits of breakthrough
technological advances because they fear costly
hardware changes when interface implementations
do become standardized.

Intelligent I/O solutions, however, alleviate this fear
with the software programmability of the appropriate
interface elements. For example, with asynchronous
transfer mode (ATM), a next-generation network
interface, uses an intelligent adapter architecture to
implement flow control. Users take advantage of
these adapters while the ATM Forum considers flow
control standards. As these standards solidify,
software updates provide an easy way to maintain
compliance with the evolving standards.

These same benefits apply to storage interfaces. For
example, early-adopter Fibre Channel suppliers are
speeding adoption by offering intelligent I/O
solutions that will evolve to support maturing
standards.

Expanding the Market for Intelligent I/O
by Reducing System Costs

As the price per million of instructions per second
(MIPS) of 32-bit embedded processing has fallen,
lower prices have become the catalyst for significant
system innovation. Innovators can get leading edge
32-bit embedded processors for prices that are far
lower than when their previous-generation EISA or
MCA bus products were designed. Because the PCI
bus allows greater concurrency, each I/O
processor’s MIPS provide a more meaningful
contribution to overall compute system performance.

Low-cost embedded I/O processing utilizes
peripheral components to provide the physical
interface to I/O devices. PCI local bus
standardization has migrated to the peripheral
components, providing components with direct
connection to the PCI bus. Utilizing these
components with an embedded I/O processor
creates the intelligent I/O subsystem.

This unique combination of a robust, widely
accepted PCI bus and low-cost embedded I/O
processing creates a tremendously fertile
environment for I/O innovation.

Expanding Server Capabilities with an
Intelligent I/O Subsystem

The PCI local bus standard enforces a maximum
number of electrical loads that can be connected to
the PCI local bus. This drives the requirements for
PCI-to-PCI bridges within the server to expand the
number of card slots. For example, a PCI bus
operating at 33 MHz allows a maximum of ten
electrical loads on the PCI bus. Each card slot
appears as two electrical loads (one electrical load
for the PCI connector and one electrical load for the
PCI card) within the server. Today’s servers support
up to three PCI card slots. Expansion for additional
card slots requires a PCI-to-PCI bridge to create a
hierarchy of electrically isolated PCI buses.

The i960® RP processor increases the number of
server expansion cards slots, in addition to creating
an intelligent I/O subsystem. Figure 2 shows an
example of the server slot expansion.

i960 RP MICROPROCESSOR TECHNICAL BRIEF

4

Intelligent I/O Processor Requirements

The system requirements for a high-performance
Intelligent I/O processor fall into five basic
categories. The applications include both server
motherboards and add-in adapter cards.

■ ■ Bus Bandwidth Maximize bus-throughput
& concurrency

Reduce wait-states

■ ■ PCI Availability Isolating data traffic

■ ■ Processing
Performance

Reduce interrupts to host
CPU

Handle I/O processing

■ ■ Data Integrity Notification to I/O
processor

■ ■ Flexibility Create cost-effective,
performance driven
memory systems

Innovative design solutions match or meet these
requirements for an intelligent I/O processor for PCI
applications. The i960® RP processor contains
hardware features to ease both hardware design
and software design.

The i960 RP processor architecture focuses on
creating an PCI intelligent I/O subsystem. The
80960RP processor core is the i960 JF processor.
Integrated around the i960 JF processor core are
peripherals to complete requirements of the
intelligent I/O subsystem. The i960 RP processor
contains two PCI buses, i960 processor local bus,
DRAM Bus, I2C Bus, and APIC bus. This highly
integrated single-chip component enables low-cost
intelligent I/O subsystems.

80960RP CPU
Reduces Host

Bus Congestion

80960RP CPU Frees
Host Processor For
Apps Processing

80960RP CPU Enables
Intelligent I/O On

Motherboard
(i.e. RAID)

80960RP CPU Provides
More PCI Expansion

Slots80960RP CPU Provides
Flexibility To Make ‘Dumb’ PCI
Cards Perform Like Intelligent

Cards

Figure 2. Server Slot Extension Application

1

i960® RP PROCESSOR TECHNICAL OVERVIEW
The i960® RP processor integrates functions
required for creating an intelligent I/O subsystem. A
block diagram of the i960 RP processor, shown in
Figure 3, highlights the functionality necessary to
provide an intelligent I/O subsystem.

Integrated around the i960 JF processor core are the
peripherals necessary to an intelligent I/O
subsystem. The basic units of the i960 RP processor
include:

■ i960 JF microprocessor core

■ PCI to PCI bridge

■ Address translation unit for direct access between
PCI and the 80960 local bus

Messaging unit

■ PCI arbiter for secondary PCI bus

■ DMA controller

■ Integrated memory controller

■ I/O Advanced Programmable Interrupt Controller
(APIC) interface

■ I2C interface

■ Interrupt routing

The following sections describe each of these
functional units.

80960 JF
Processor

Core

P
R
I

M
A
R
Y

P
C
I

B
U
S

Primary PCI Bus

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

Primary
Address

Translation
Unit

2 Channel
DMA

Controller

Secondary
Address

Translation
Unit

1 Channel
DMA

Controller

Messaging
Unit

D
em

an
d

M
od

e
D

M
A

 C
on

tr
ol

Memory
Controller

M
A

[1
1:

0]
 +

 C
T

R
L

Internal
Local Bus

Arbiter

I2C
Interface

2
P

in
 I

2
C

 B
us

I/O
APIC

Interface

3
P

in
 A

P
IC

 B
us

Interrupt
Routing

9
E

xt
er

na
l I

nt
er

ru
pt

s

P_INTA-D#

Secondary
PCI

Arbitration
Unit

6 Req/Gnt Pairs

PCI
to

PCI
Bridge

Secondary PCI Bus

Primary Internal
PCI Arbiter

Secondary Internal
PCI Arbiter

80960 Local Bus

80
96

0
Lo

ca
l B

us
 a

nd
 C

on
tr

ol

Figure 3. i960 ® RP Processor Block Diagram

5

i960® RP MICROPROCESSOR TECHNICAL BRIEF

7

i960® RP PROCESSOR HIGHLIGHTS
The i960® RP processor is a high-performance
embedded processor that can achieve more than 31
VAX MIPS

1

. The i960 JF processor core block
diagram, shown in Figure 4, highlights many of the
features and integrated peripherals.

The i960 RP processor features enhancements to
the typical RISC processors that improve
performance and time-to-market. These
enhancements include:

■ Core Architecture Performance

■ Fast Call-and-Return Mechanism

■ Set-Associative Cache Design

1

 Based on Dhrystone Version 2.1 benchmark.

■ State-of-the-Art Testability

■ Integrated Peripherals

■ Flexible Interrupt Controller

■ Interrupt Performance Optimizations

- Caching of Interrupt Vectors

- Dedicated Register Sets

■ - Cache Locking Mechanism

■ Enhanced Bus Control Unit

- Variable Bus-Width Support

- Flexible Data Caching Mechanism

Boundary Scan
Controller

Two 32-bit
Timers

Programmable
Interrupt Controller

Memory-Mapped
Register Interface

1 Kbyte
Data RAM

2 Kbyte
Direct-Mapped

Data Cache

Bus Control
Unit

Physical Region
Configuration

Bus Request
Queues

Control

32-bit
Address/Data

Bus

Interrupt Port

Instruction Cache
4 Kbyte Two-Way
Set-Associative

Instruction Sequencer

Constants Control

Multiply
Divide
Unit

S
R

C
1

S
R

C
2

D
E

S
T

Execution
and

Address
Generation

Unit

Effective
Address

S
R

C
1

S
R

C
2

D
E

S
T

Memory
Interface

Unit

32-bit Address
32-bit Data

S
R

C
1

D
E

S
T

8-Set
Local Register

Cache

Global/Local
Register File

S
R

C
1

S
R

C
2

D
E

S
T

3 Independent 32-bit SRC1, SRC2, and DEST Buses

PLL, Clocks,
Power Mgmt

1
2

8
-b

it
B

u
s

Figure 4. i960 JF Processor Core Block Diagram

6

Core Architecture Performance

The i960 RP processor features an independent
execution-unit (EU); a multiply-divide-unit (MDU);
and a load-store-unit. Individual register
scoreboarding, a feature unique to the i960
architecture, enables the processor to execute some
instructions in parallel or out-of-order. In addition, the
80960RP core supports all combinations of register
source and destination bypassing, a mechanism
which allows these execution units to pass the
results back to the register file. Register
scoreboarding and bypassing enables the processor
to sustain single-cycle instruction execution.

Fast Call-and-Return Mechanism

Software performance is crucial in an embedded
microprocessor environment. The i960 architecture
features a fast call-and-return mechanism to support
the modular software base found in today's
applications. The local register cache provides
storage for the local registers available to software
applications. An executing program always has

access to sixteen 32-bit local registers and sixteen
32-bit global registers. Executing a procedure call or
return (ret) instruction preserves the contents of the
global registers across procedure boundaries. The
core allocates a unique set of local registers for each
new procedure and deallocates them on the return
from that procedure. Figure 5 illustrates the available
registers and the register cache.

Execution of a single call instruction saves the local
registers and allocates a new stack frame for the
new procedure. The return (ret) instruction
deallocates the current local register set and
restores the previous state of the machine. The core
allocates and deallocates each of these register sets
in the local register cache embedded within the
processor core. This mechanism provides for fast
movement of registers to and from the internal local
register cache over a 128-bit wide bus. This feature
allows the core to save or restore all sixteen local
registers in four clocks.

Frame Pointer, FP

G14

G13

G12

G11

G10

G9

G8

G7

G6

G5

G4

G3

G2

G1

G0

31 0

16 Global Registers
- Always visible
- Used for parameter passing

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

Return Instruction Pointer, RIP

Stack Pointer, SP

Return Status, PFP

16 Local Registers
- New register set for each procedure
- Local procedure variable storage

On-chip Local
Register Cache
- Stores up to eight

local register sets
- Can reserve register

sets for interrupt
service routines
(ISR)

Figure 5. i960 ® RP Processor Register Model

7

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

The i960 RP processor provides enough storage in
the local register cache to maintain eight nested call s.
When the call mechanism needs additional register
sets, the processor will automatically spill (or write to
external memory) the oldest register set in the local
register cache. This provides a fresh set of local
registers for the currently called procedure. Execution
of a return instruction will automatically fill (or read
from external memory) the current register set with
the previously spilled registers. In addition, the
register architecture allows the application to reserve
register sets for high priority interrupts. Figure 6
shows the register cache behavior over time with four
register sets reserved for high priority interrupts.

Software complexity for embedded control
applications and faster time-to-market pressure

forces the embedded system designers to rely on
high-level languages in the development of their
application. The nature of structured high-level code
requires a mechanism to save the state of an
executing process when calling a procedure and
torestore the execution state upon return from the
procedure. Typically RISC architectures leave these
duties for the operating system, requiring multiple
instructions to save the processor's state.
Recognizing the frequent use of the call and return
operation, the i960 architecture completely
integrates this mechanism on-chip.

Set-Associative Cache Design

The i960 RP processor contains three independent
caches; instruction cache, data cache, and local
register cache. In addition to the on-chip caches,
there is a zero wait-state on-chip data RAM.

Cache organization refers to the method of
associating locations in main memory with locations
in the cache. Most embedded RISC processors have
direct-mapped instruction caches. In a direct-
mapped cache, only one specific location in the
cache translates into a specific location in main
memory. In a two-way set-associative cache, one of
the two different locations in the internal cache
translates to the specific location in main memory.

Academic studies show that a two-way set-
associative cache is typically as efficient as a direct-
mapped cache of twice the size

2

. Figure 7 shows the
cache hit rates for both types of cache organization.

2

 Computer Architecture A Quantitative Approach,
Hennesy & Patterson, 1990

1
2

4
5

1 1 1
2 2 2 2

3 33 3
4 4 4

5

0 0

TIME

Register Cache
Spills

Register Cache
Fills

Procedure Call
(Allocates New

Procedure
Return from

Register Set)

(Restore Previous
Register Set)

(Stores Register Set
To External Stack)

(Retrieves Register Set
From External Stack)

Figure 7. Instruction Cache Hit Rate Comparison

Figure 6. Register Cache Example

8

When comparing the hit-rate of a two-way set-
associative cache and a direct-mapped cache of
twice the size, the processor performance is
approximately equal.

By using a 4-Kbyte two-way set associative cache
architecture, the designers of the i960® RP
processor can provide the efficiency of an 8-Kbyte
direct mapped instruction cache while consuming
only half the silicon. Through an extensive
performance analysis study performed by the Intel
80960 design team, an instruction cache of 4-Kbytes
provides optimal performance at an optimized cost.

Figure 8 shows the results for a typical performance
simulation.

An important consideration when comparing cache
performance is code density. Code density is a
relative measure of the size of compiled programs.
Programs compiled for the i960 architecture produce
code that is 30% more dense than other embedded
architectures as shown in Figure 9. This improved
code density translates directly into better cache
efficiency (e.g., since the executable code is smaller,
more of the code can fit into the cache).

Microprocessors with on-chip instruction caches
often have nondeterministic response to real-time
events. Typically, it is impossible to know if the
instruction cache contains the interrupt procedure for
a newly detected interrupt request. The i960® RP
processor solves this problem by allowing the

programmer to permanently lock critical sections of
code, such as interrupt handlers, in the instruction
cache. The result is a faster and more deterministic
interrupt response time.

The i960 RP processor provides a 2-Kbyte direct-
mapped data cache. The inclusion of a data cache is
a significant performance enhancement for
applications that keep most of their data in RAM. A
data cache also helps bus-intensive multimaster
applications such as internetworking. While the
processor accesses data in the internal caches, the
memory bus is free for use by external agents such
as Ethernet and Token Ring controllers.

Figure 9. Application Code Density

1-Kbyte 2-Kbyte 4-Kbyte 8-Kbyte 16-Kbyte All Cache
0

20

40

60

80

100

120

140

160

180

200

Million
Cycles

1-Kbyte 2-Kbyte 4-Kbyte 8-Kbyte 16-Kbyte All Cache

Cache Size in Kbytes

Figure 8. Performance Simulation for Various Cache Sizes

9

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

The on-chip data RAM is a unique feature of the
processor. A 1-Kbyte region of zero wait-state
memory provides storage for data variables and
interrupt vectors. Unlike a data cache, variables can
never be “kicked out” of the data RAM. The on-chip
data RAM provides high speed and deterministic
access to data, which profiling compilers can take
advantage of for critical variable storage.

Enhanced Bus Control Unit

The i960 RP processor bus control unit (BCU)
integrates the functionality to reduce system cost
and to support on-chip data caches. Integration of
data caches introduced a new set of issues for
software engineers. Data variable locality, code
locality, and system architecture are now highly
important.

The bus control unit addresses these design
considerations by separating the external bus into
physical and logical attributes.

Physical considerations for external buses provide
the flexibility that system designers need. The i960
RP microprocessor supports mixed external bus
widths. Execution of code can occur on 32-bit,
16-bit, or 8-bit external memory. For example,
system initialization can be executed from a low-cost
8-bit wide ROM. The software executing from the 8-
bit ROM transfers execution to the "Real" executable
code located in a wider memory for higher
performance.

Placement of peripheral components on the external
bus can occasionally cause confusion within a
system. If a system were to place an 8-bit peripheral
on a 32-bit wide external bus, the software would be
responsible for the proper addressing (every fourth
byte) to access multiple locations in the peripheral.
The i960 RP processor solves this problem by
simply defining that portion of the external memory
as 8-bit wide memory. The BCU will automatically
address the peripherals transparent to application
software. The i960 RP processor bus control unit
allows the system designer to define eight
independent regions within the address space of the
i960 RP processor. Each region is 512-Mbytes in
length with 8-bit, 16-bit, or 32-bit wide attributes.

The BCU also applies logical attributes to the
external bus. Logical attributes refer to the data
variables cached in the internal data cache. For
example, application code typically has specific
requirements for the data variables. Depending on
the application, external bus masters often update

variables with new data. When this occurs, an
application would not want all of the data variables
stored in the on-chip data cache.

The BCU accounts for the data caching by allowing
the application to create logical templates. Each of
the logical templates (LMCONs) defines regions
within the 4-Gbyte address space with the attribute
of "cacheable" or "non-cacheable." An LMCON
describes the data access addresses allowed to be
"cached" in the data cache. The i960 RP processor
provides two logical templates. The templates
consist of a base address register and a mask
register. These register pairs provide the
programmer with the capability to define a block of
addresses as small as 4-Kbytes or as large as 4-
Gbytes to be "cacheable" or "non-cacheable." Figure
10 shows an example of the BCU register
programming.

The i960 RP processor supports homogeneous big-
endian or little-endian data types. Hardware
integrated into the BCU automatically converts the
data for the different endian types. There is also
transparent support for unaligned Big-endian and
Little-endian data accesses.

PMCON2_3

PMCON4_5

32-bit Wide
Memory

32-bit Wide
Memory

4 Gbyte Address Space

Cacheable Addresses
for the Data Cache

Cacheable Addresses
for the Data Cache

LMCON1

LMCON0

Figure 10. Physical and Logical
Memory Control Example

10

Superior Interrupt Performance

Interrupt performance within embedded systems is
critical. Many asynchronous events require
immediate response in real time. However, the on-
chip instruction caches can often create
nondeterministic response times. The i960 RP
processor improves the interrupt latency and
throughput issues.

The interrupt controller supports two operational
modes: dedicated and expanded mode. Dedicated
mode requires the external device to signal an
interrupt request to the processor with a dedicated
signal toggling. When the interrupt controller detects
an active signal, it determines the priority and vector
of the associated interrupt. Dedicated mode
supports either edge or level detection and fast or
debounced sampling. Expanded mode requires the
external device to place an interrupt vector on the
interrupt pins, requiring the interrupt controller to
read the pins and determine the priority and vector
of the interrupt.

The processor core determines the address of the
first instruction of the interrupt service routine from
the priority vector. The i960 RP processor allows for
caching of the interrupt vector addresses that point

to the addresses of the first executable instruction.
Reserved for this purpose are the first 64 bytes of
on-chip data RAM. Caching these vectors reduces
the external bus traffic, providing higher throughput.

To reduce the time necessary for the processor to
fetch the first executed instruction, the i960 RP
processor can permanently lock critical sections of
code, such as interrupt handlers, in the instruction
cache. The result is faster and more deterministic
interrupt response time.

The core performs a task switch to the interrupt
service routine. One feature often overlooked in the
i960 architecture is that the processor performs the
overhead associated with a task switch. This
includes allocating a fresh register set, switching to a
dedicated stack, and saving the previous internal
state for later resumption of the interrupted task. The
i960 RP processor can reduce the task switch time
by reserving local register set(s) for interrupts priority
28 and higher. Reserving these register sets is
another method of ensuring deterministic interrupt
response.

These improvements enable the processor to ensure
low interrupt latency for high-performance interrupts.

11

i960® RP Processor Integrated Peripherals

The i960 RP processor core integrates two on-chip
peripheral's, an integrated timer unit and an
integrated interrupt controller unit. Both units provide
flexibility for many applications.

The integrated timer unit provides two identical 32-
bit timers. The timers have a single-shot mode and
an auto-reload mode for continuous operation. Each
timer provides an independent interrupt request to
the i960 RP microprocessor interrupt controller. The
timer registers interface through internal memory-
mapped addresses. When enabled, the timer control
circuitry generates a fault when detecting
unauthorized writes from user mode.

The interrupt controller unit (ICU) provides a flexible
low-latency means for requesting interrupts. This
unit handles the posting of interrupts requested by
hardware and software sources. The interrupt
controller, acting independently from the core,
compares the priorities of posted interrupts with the
current process priority, off-loading this task from the

core. The interrupt controller provides the following
features for handling hardware-requested interrupts:

■ Support of up to 240 external sources

■ Eight external interrupt pins

■ One non-maskable interrupt pin

■ Two internal timer sources for detection of
hardware-requested interrupts

■ Edge or level detection on external interrupt pins

■ Debounce option on external interrupt pins

The application program communicates to the
interrupt controller with six memory-mapped control
registers. The interrupt control register and interrupt
map control registers provide configuration
information. The interrupt pending register posts
hardware-requested interrupts. The interrupt mask
register enables the application to selectively mask
hardware-requested interrupts.

12

i960 RP MICROPROCESSOR TECHNICAL BRIEF

i960® RP PROCESSOR DATA FLOW REQUIREMENTS
I/O processors control data movement between
peripheral components, local and system memories.
The data packets can range from small packets,
such as control descriptors, to large amounts of data
in the megabyte range.

Figure 11 summarizes the three basic data flows.
They include:

■ Bridging of data from one PCI bus to the other PCI
bus

■ Direct data transfers between the primary or
secondary PCI bus and the local bus

■ Indirect data transfers between primary or
secondary PCI buses and the local bus

The optimized i960 RP architecture provides high
data transfer throughput between the PCI buses and
the local bus. The PCI-to-PCI bridge, address
translation units (ATUs) and the DMA channels
contain deep 64-byte queues to reduce latency and
provide high throughput.

Figure 11. i960 ® RP Processor Data Flow Requirements

Local Memory

Memory
Controller

80960RP Processor

Address
Translation Unit
(Direct Transfer)

Address
Translation Unit
(Direct Transfer)

DMA
(Indirect Transfer)

80960 Local Bus

PCI to Memory

DMA Access to Secondary PCI

Processor
to PCI

P
R
I
M
A
R
Y

P
C
I

B
U
S

PCI to Memory

DMA Access to Primary PCI

PCI to PCI Bridge

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

Processor
to PCI

13

i960 RP MICROPROCESSOR TECHNICAL BRIEF

PCI-TO-PCI BRIDGE
The primary function of the PCI-to-PCI bridge
integrated in the i960® RP processor is to create an
electrically isolated PCI bus. This enables the
system designer to connect I/O components directly
to the PCI bus and to add additional PCI card slot
connectors. However, the bridge incorporates many
features that improve overall system-level
performance by reducing bus traffic. In addition,
bridge design features, such as VGA and ISA
addressing support, provide the system designer
with the greatest flexibility in creating a complete PCI
system.

Electrically Isolated PCI Buses

The PCI-to-PCI bridge unit extends the limitations of
10 electrical PCI loads at frequencies of 33 MHz.
The PCI-to-PCI bridge unit enables additional I/O
components or PCI card slots within the system by
creating an electrically isolated secondary PCI bus.

The 80960RP bridge uses the concept of
hierarchical buses where each bus in the hierarchy
is electrically a separate entity, but are logically one
bus. The system BIOS may assign bus numbers to
each PCI bus located within the system. The host
processor programs the bus numbers in the
hierarchy into the bridge.

The PCI interfaces on the 80960RP processor
comply with 5.0V PCI electrical requirements. When
connected to a PCI system, the secondary interface
of the bridge is the first electrical load on the isolated
PCI bus. Up to nine additional loads can be
connected to the secondary PCI bus at 33 MHz.
Additional i960 RP processors downline (connected
to the secondary PCI bus interface) let the designers
extend the hierarchies of buses.

Isolated Data Flow

The bridge design isolates unnecessary data traffic
between the primary PCI bus and the secondary PCI
bus. The PCI data traffic falls into three unique
address spaces:

■ 4 Gbyte memory address space

■ 64 Kbyte I/O address space

■ RP processor bridge configuration space

The 80960RP processor bridge supports the
decoding of these three different address spaces.
The bridge configuration space contains the internal

registers for defining the different address ranges
supported by the bridge. The bridge isolates PCI
transactions initiated on and intended for the same
PCI bus, thus reducing the traffic on the other PCI
bus. This is also known as an opaque PCI-to-PCI
bridge.

i960® RP Processor Bridge
Address Decode

All PCI-compliant devices and cards are dynamically
assigned memory and I/O addresses at powerup.
Each device or card responds to these programmed
values when accessed on the PCI bus. The host
CPU allocates memory and interrupts to all devices
and cards found on the secondary PCI bus. In
addition, the host CPU programs the bridge with the
respective address range that the bridge decodes,
and performs data forwarding between the primary
and secondary PCI buses.

The values programmed into the PCI-to-PCI bridge
define the contiguous range (or window) of
addresses. This window of programmed addresses
create the memory and I/O address spaces for the
secondary PCI address space. Positive decode
means the bridge forwards any address on the
primary side of the bridge that falls within the
programmed secondary space to the secondary
side. The bridge ignores any address presented on
the primary PCI interface that falls outside the
secondary address space. The bridge isolates the
transaction from the secondary PCI bus. The
primary PCI interface performs this positive decode.
Figure 12 shows the addresses (once programmed
by the host CPU) forwarded between the PCI buses.

The positive decode mechanism applies to the
primary interface of the PCI bridge. The secondary
interface of the bridge allows the system designer to
specify any one of the three modes of operation.
They are:

■ Inverse Positive Decoding

■ Subtractive Decoding

■ Positive Decoding

The secondary PCI interface of the bridge works in
reverse of the primary side. Inverse positive decode
means the bridge ignores any addresses within the
programmed secondary address space. Thus, the
bridge isolates the transaction from the primary PCI
bus. The bridge forwards the addresses that fall

14

1

outside the secondary PCI address space from the
secondary PCI bus to the primary PCI bus.

The secondary PCI interface of the bridge also
contains an address forwarding mechanism that
does not require decoding of the addresses on the
secondary PCI bus. Subtractive Decode requires the
secondary interface to claim the transaction on the
fifth clock (assert S_DEVSEL#) after detecting
S_FRAME# asserted by an initiator on the
secondary bus. By PCI definition, a secondary bus
target will claim any transaction initiated on the
secondary bus by asserting the S_DEVSEL# prior to
the fifth clock. Thus, Subtractive Decode will forward
only the unclaimed transactions to the primary PCI
bus.

Peer-to-Peer data transfers require blocks of
addresses dedicated to those devices. The bridge
provides an additional positive decode mechanism
on the secondary interface, independent of the
subtractive decode mechanism. This mode allows
secondary PCI devices/cards to transfer data
between the PCI devices/cards without requiring
primary PCI bus address space.

Each of the memory address decode regions also
contain attributes to determine the rules for the
transaction. For example, the memory address
space may be prefetchable or non-prefetchable. If
the transaction is within a prefetchable memory
address region, the bridge may read additional data
to anticipate the data transfer from the initiator,
resulting in higher throughput for each transaction.

Figure 12. i960 ® RP Processor Bridging Operation

Valid Secondary
PCI Addresses

(Positive Decode)

0000.0000H

FFFF.FFFFH

P
R
I

M
A
R
Y

P
C
I

B
U
S

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

Forwarded to Sec. PCI Bus

Memory Address
Decode and
Forwarding

Valid Primary
PCI Address

(Inverse Positive
Decode)

Forwarded to Primary PCI Bus

Forwarded to Primary PCI Bus

Valid Primary
PCI Address

(Inverse Positive
Decode)

Address Range
Specified by the
Base Address
Register and
Limit Register

Address Range
Specified by the
Inverse of the
Base Address
Register and
Limit Register

Address Range
Specified by the
Inverse of the
Base Address
Register and
Limit Register

15

i960 RP MICROPROCESSOR TECHNICAL BRIEF

2

ISA Address Forwarding

The i960 RP processor bridge implements an ISA
mode that enables the bridge address decode to be
ISA aware. ISA mode only affects I/O addresses
within the address range defined by the I/O address
registers. This mode supports downstream ISA I/O
cards connected to subordinate PCI buses via a
PCI-to-ISA bridge.

When enabled, the bridge filters out and does not
forward I/O transactions with addresses in the upper
768 bytes (300H) of each naturally aligned 1 Kbyte
block. Conversely, I/O transactions on the secondary
bus will inversely decode the ISA addresses and
forward I/O transactions with addresses in the upper
768 bytes of each naturally aligned 1 Kbyte block.

ISA cards only decode the lower 10 bits of an
address (1 Kbyte). General I/O assigns the upper
768 bytes of the 1 Kbyte block. Because these cards
do not decode the upper 6 bits of the 16-bit I/O
address, the ISA address is aliased 64 times in the
64 Kbyte I/O address space. The combination of ISA
addressing modes and the 4 Kbyte I/O address
granularity results in an address decode that is

similar to EISA slot decoding. Devices on the
secondary interface can use the first 256 bytes of
each 1 Kbyte block. ISA addressing does not affect
ordering, posting or error handling behavior of the
80960RP processor PCI-to-PCI bridge. Figure 13
shows which I/O addresses that are forwarded
upstream and downstream during ISA mode.

VGA Addressing and Snooping Support

VGA devices on the secondary PCI bus require
special decode logic which is designed into the
80960RP processor bridge. This logic provides
system designers with greater flexibility when
designing the system.

The issues related to VGA-compatible devices with
the i960 RP processor bridge include VGA-ISA
compatible addressing and VGA palette snooping.
To support a VGA device on a downstream bus from
the 80960RP processor, the bridge can recognize
and forward VGA addresses on the primary interface
to the secondary interface. The bridge unit also
supports downstream graphics devices that have to
snoop VGA palette accesses on the primary bus.

000 - 0FFH

100 - 3FFH

400 - 4FFH

500 - 7FFH

800 - 8FFH

900 - BFFH

C00 - CFFH

D00 - FFFH

Forwarded to
Primary PCI Bus

Forwarded to
Secondary PCI Bus

P
R
I

M
A
R
Y

P
C
I

B
U
S

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

I/O Address
Decode

and Forwarding

Figure 13. ISA Mode Address Forwarding

16

VGA-Compatible Addressing

Compatibility with VGA addressing allows the
80960RP processor to support VGA frame buffer
addressing and VGA register addressing. When
enabled, the bridge will positively decode memory
accesses to a VGA frame buffer and I/O accesses to
VGA registers on a secondary bus. The primary
interface positively decodes the following addresses:

■ VGA memory accesses: addresses 000A.0000H
— 000B.FFFFH

■ VGA I/O accesses: addresses 3B0H — 3BBH and
3C0H — 3DFH

VGA-compatible addressing is not dependent on the
address ranges programmed into the bridge
configuration registers as described by the bridge
address decoding section. The bridge forwards VGA
addresses from the primary bus to the secondary
bus and blocks VGA address from secondary to
primary regardless of the defined address ranges. In
addition, VGA compatible addressing is not
dependent on the ISA addressing mode selected.
Figure 14 summarizes the VGA-compatible
addressing.

64-Bit Addressing with Dual
Address Cycle

The i960 RP processor supports the 64-bit address
extension defined in the PCI local bus extension.
64-bit addressing takes the form of the PCI dual
address cycle (DAC). A DAC cycle consists of
breaking the 64-bit address into two 32-bit address
cycles. The first address cycle contains the lower 32-
bits of address with the byte enable/command pins
(BE[3:0]#) set to specify a DAC cycle. The second
address cycle contains the upper half of the 64-bit
address with the byte enable/command pins
specifying the cycle type.

The bridge unit provides support for upstream DAC
cycles. The secondary interface of the 80960RP
bridge performs subtractive decoding to support
DAC cycle forwarding. If no other agent claims the
transaction within the low, medium or high decode
times, the bridge will claim the transaction and
forward the transaction upstream to the primary PCI
bus. The bridge ignores all DAC transactions on the
primary interface of the bridge.

17

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

Positive Decode
I/O Base + Limit

0000H

FFFFH

P
R
I
M
A
R
Y

P
C
I

B
U
S

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

Forwarded to Sec. PCI Bus

VGA I/O Address
Decode and Forwarding

Forwarded to Primary PCI Bus

Positive Decode
VGA I/O Addresses

(3B0 - 3BBH)
Forwarded to Sec. PCI Bus

Forwarded to Primary PCI Bus

Positive Decode
Base + Limit

0000.0000H

FFFF.FFFFH

P
R
I
M
A
R
Y

P
C
I

B
U
S

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

Forwarded to Sec. PCI Bus

VGA Memory Address
Decode and Forwarding

Forwarded to Primary PCI Bus

Forwarded to Primary PCI Bus

Positive Decode
Prefetchable
Base + Limit

Forwarded to Sec. PCI Bus

Positive Decode VGA
Addresses

(A0000H - BFFFFH)
Forwarded to Sec. PCI Bus

Forwarded to Primary PCI Bus

Forwarded to Primary PCI Bus

Positive Decode
VGA I/O Addresses

(3C0 - 3DFH)
Forwarded to Sec. PCI Bus

Forwarded to Primary PCI Bus

Forwarded to Primary PCI Bus

Figure 14. VGA Compatible Address Forwarding

18

2

Bridge Queues

The i960 RP processor contains deep queues within
the PCI-to-PCI bridge. These queues improve the
system throughput by allowing transactions to
complete on the initiating bus prior to completing on
the target bus.

The bridge queues support high-performance
bandwidth on both PCI buses. The bridge queue
implementation provides a FIFO-style architecture
that allows for data streaming to and from the queue
simultaneously. This data streaming, for PCI write
transactions, allows the bridge to transfer data up to
132 Mbytes/sec rate.

The bridge unit contains six dedicated queues to
support both downstream (primary to secondary)
and upstream (secondary to primary) transactions.
These queues include:

■ 64-byte downstream data queue

■ One 32-bit downstream write cycle address queue

■ One 32-bit downstream read cycle address queue

■ 64-byte upstream data queue

■ One 32-bit upstream write cycle address queue

■ One 32-bit upstream read cycle address queue

The architecture allows the bridge to simultaneously
support transactions occurring on each PCI bus.
This implementation increases the system
throughput by allowing the bridge to claim and
complete the transactions. The architecture does not
stall the initiating PCI bus while waiting to acquire
the target PCI bus.

PCI Bridge Transactions

The bridge unit supports both delayed PCI
transactions and posted PCI transactions. These
transaction types are dependent on the cycle type
generated by the PCI master when the bridge claims
the transaction.

Delayed transactions improve the overall bus
efficiency for target PCI devices that require high
initial latency. For example, when accessing a PCI-
to-PCI bridge, the target PCI bus activity prevents a
transaction from completing. The bridge processes
all transactions as delayed transactions, except for
memory write and memory write and invalidate cycle
types. The system designer controls these two
transaction types through configuration registers as
either delayed transactions or posted transactions.

A delayed transaction consists of two parts: a
request phase and a completion phase. In the
request phase, the bridge latches the address,
command, byte enables, and data (for write
transactions only) information required to complete
the transaction. The bridge immediately signals a
retry to the initiator, freeing the PCI bus. The bridge
performs the request on the target bus on behalf of
the initiator. During read cycles the bridge stores the
returning data and the target response in the bridge
queues. During write cycles the bridge records the
target response. The completion phase waits for the
original initiator to repeat the original request in order
to pass back the data (in the case of read cycles)
and return the target response to complete the
transaction.

The bridge unit supports posted transactions for PCI
memory write or memory write and invalidate cycle
types. For posted transactions, the bridge latches
the address, command, byte enable, and data
required to complete the transaction. The bridge
signals the termination (i.e., normal termination or
disconnect) to the initiator upon filling the bridge
queues or when the initiator does not have any
additional data to transfer. This normal termination
notifies the initiator that it does not have to repeat
the transaction. The bridge initiates the transaction
on the target bus upon detecting the ownership of
the bus.

Posted transactions do not require the initiator to
repeat the request, thus providing optimized PCI bus
utilization and releasing the initiator to continue with
other PCI bus operations.

The bridge supports delayed transactions in all
directions for the following cycle types:

■ Memory Read

■ Memory Read Line

■ Memory Read Multiple

■ I/O Read

■ Configuration Read

■ Configuration Write

■ I/O Write

■ Memory Write (configurable for delayed
transactions or posted transactions)

■ Memory Write & Invalidate (configurable for
delayed transactions or posted transactions)

19

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

PCI Data Streaming

During PCI write transactions the bridge unit latches
the data as it enters the bridge. Upon receiving the
address and the first data, the bridge asserts the
request for the target bus in an attempt to acquire
the target bus prior to the filling of the bridge queues.
Upon acquiring the target bus while the initiator
sends data to the bridge, the bridge streams the
data from one PCI bus to the other without breaking
the burst transaction into multiple transactions.

PCI read transactions behave similarly. The bridge
unit latches the information from the initiator and
performs the transaction on the target bus. The

bridge reads the data from the target bus and stores
the data in the queue. The amount of data read from
the target depends on the memory read cycle type
and the cache line size value. For the memory read
multiple command, the bridge fills the queue. When
the initiator repeats the original request and the
bridge detects an exact match for the read
transaction, the bridge returns the data to the
initiator. Upon draining the first data value, the
bridge requests the target bus in an effort to stream
data across the bridge. If successful in acquiring the
target bus, the bridge can sustain the full 132
Mbyte/sec bandwidth.

20

ADDRESS TRANSLATION UNITS (ATU)
The i960® RP processor provides an interface
between both PCI buses and the 132 Mbyte/sec
processor’s local bus. This interface consists of two
Address Translation Units (ATUs) and a messaging
unit. The ATUs support both inbound and outbound
address translations. The first address translation
unit, called the primary ATU, provides direct access
between the primary PCI bus and the 80960 local
bus. The second address translation unit, called the
secondary ATU, provides direct access between the
secondary PCI bus and 80960 local bus.

The primary ATU allows PCI masters on the primary
PCI bus to initiate transaction to the 80960 local bus
and allows the 80960RP processor to initiate
transactions to the primary PCI bus. The secondary
ATU performs the same function on the secondary
PCI bus and for secondary PCI bus masters.
Inbound transactions are initiated on the PCI bus
and targeted to the 80960 local bus. Outbound
transactions initiated on the 80960 local bus are
targeted for the PCI bus.

Inbound address translation maps PCI memory
space into the memory space. This allows PCI bus

masters to directly read or write data into the
memory. In addition, the ATUs support inbound
burst data transfers from a PCI bus master up to 2
Kbytes per transaction.

The ATUs implement an address windowing scheme
to determine which addresses to claim and translate
to the appropriate bus. The address windowing
mechanism for inbound translation involves the
following steps:

■ Address detection — decode the 32-bit PCI
address and determine if the address falls within
the address window defined for the inbound ATU
by the base address register and the limit register.

■ Transaction claiming — claim the PCI transaction
by asserting P_DEVSEL# or S_DEVSEL#.

■ Address translation — translate the 32-bit PCI
address to a 32-bit 80960 local bus address.

Figure 15 shows an example of inbound address
translation.

21

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

P
R
I
M
A
R
Y

P
C
I

B
U
S

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

8
0
9
6
0

L
O
C
A
L

B
U
S

Valid Secondary
PCI Addresses

(Positive Decode)
Forwarded to Sec. PCI Bus

Primary ATU
Translation Logic
Converts Primary
PCI Address to

80960 Local Bus
Address

PCI Address Space

Valid ATU
PCI Addresses

(Positive Decode)

Figure 15. Primary ATU Inbound PCI Address Translation Example

22

2

ATU Queues

The i960 RP processor contains deep queues within
each ATU. These queues improve the system
throughput by allowing the transaction to complete
on the initiating bus prior to completion on the
target bus.

The ATU queues support high-performance
bandwidth on both the PCI bus and the 80960 local
bus. The ATU queue implementation provides a
FIFO-style architecture allowing for simultaneous
data streaming to and from the queue. For PCI write
transactions, data streaming allows the ATU to
transfer data at the 132 Mbyte/sec rate.

The ATU contains six dedicated queues to support
both inbound (PCI to 80960 local bus) and outbound
(80960RP processor to PCI) transactions. These
queues include:

■ 64-byte inbound data queue

■ 32-bit inbound write cycle address queue

■ 32-bit inbound read cycle address queue

■ 64-byte outbound data queue

■ 32-bit outbound write cycle address queue

■ 32-bit outbound read cycle address queue

The architecture allows the ATUs to simultaneously
support transactions occurring on both buses. This
implementation increases system throughput by
allowing the ATU to claim and complete the
transactions. Similarly to the bridge, this architecture
will not stall the initiating PCI bus while waiting to
acquire the target 80960 local bus.

ATU Inbound Transactions

The ATUs supports delayed and posted inbound PCI
transactions. The transaction type depends on the
cycle type generated by the PCI master when the
ATU claims the transaction.

Delayed transactions improve the overall bus
efficiency for target PCI devices that require high
initial latency. The ATUs process all transactions as
delayed transactions except PCI memory write cycle
types. The ATUs process all PCI memory write cycle
types as posted transactions. The delayed and
posted transaction types operate the same as the
bridge transactions.

Inbound ATU Data Streaming

During PCI write transactions the queues latches the
data as it enters the ATU. Upon receiving the
address and the first data, the ATU asserts the
request for the local bus in an attempt to acquire the
local bus prior to filling the ATU queues. Upon
acquiring the local bus while the initiator sends data
to the ATU, the ATU streams the data from the PCI
bus to the local bus without breaking the transaction
into multiple transactions.

PCI read transactions behave similarly. The ATUs
latch the information from the initiator and perform
the transaction on the local bus. The ATU reads the
data from the local bus and stores the data in the
queue. The amount of data read from the target
depends on the behavior of the P_FRAME# or
S_FRAME# signals. This signal provides a hint to
the ATU for prefetching data. If the master deasserts
the P_FRAME# or S_FRAME# signal on the clock
after the address cycle, the initiator is requesting a
single data value. Otherwise, the ATU fills the
queue. When the initiator repeating the original
request and the ATU detecting an exact match for
the read transaction, the ATU returns the data to the
initiator. Upon draining the first data value, the ATU
requests the local bus in an effort to stream data to
the PCI bus. If successful in acquiring the local bus,
the ATUs can sustain the full 132 Mbyte/sec
bandwidth on both the PCI bus and the 80960
local bus.

Outbound ATU Transactions

Outbound ATU transactions enable the 80960RP
processor to access the PCI buses directly. These
transactions perform address translation from the
80960 local bus to the PCI bus. Since the 80960RP
processor only supports memory transactions,
blocks of 80960 local bus addresses translate the
80960RP read and write commands into various PCI
cycle types. These include:

■ PCI memory read and write cycles

■ PCI I/O read and write cycles

■ PCI Dual Address Cycle (DAC) read and
write cycles

■ PCI configuration read and write cycles

The 80960 local bus reserves three windows for
each ATU. The memory windows generate PCI
memory cycles (PCI memory read or PCI memory
write) when accessed by the 80960RP processor.

23

i960 RP MICROPROCESSOR TECHNICAL BRIEF

3

These windows translate the 80960 local bus
address into a PCI address. If the 80960RP
processor performs a read cycle to an address in the
window, the ATU translates the local bus address
into a PCI address, generates the PCI read cycle,
and returns the data to the 80960RP processor.
When the 80960RP processor writes to the memory
window, the ATU latches the data (a maximum of 16
bytes), translates the local bus address to the PCI
address, and generates a PCI write cycle followed
by the data.

One local bus address window generates PCI I/O
read cycles and PCI I/O write cycles. The ATU
translation operates similarly to the PCI memory
windows.

The third window generates a PCI DAC cycle on the
PCI bus. A preprogrammed register contains the
value used to generate the upper portion of the 64-
bit PCI address. The ATU translates the 80960 local
bus address to form the lower portion of the PCI
address.

During any PCI read cycle the ATU places the
80960RP processor in a back-off mode of operation.
This frees the 80960 local bus for another local bus
master while the PCI read transaction completes.

ATU Direct Addressing Transactions

The outbound ATU direct addressing enables the
80960RP processor to directly access the PCI buses
without any address translation. These transactions
take the 80960RP address directly from the 80960
local bus to the PCI bus.

The outbound ATU direct addressing allocates one
window of addresses on the 80960 local bus. The
memory windows generate PCI memory cycles (PCI
memory read or PCI memory write) when accessed

by the 80960RP processor. This window behaves
similarly to the outbound address translation with the
exception of the PCI address.

The 80960RP processor controls the direct
addressing mode via control bit in the ATU
configuration registers. The programmability allows
the direct addressing to generate either primary PCI
transactions, secondary PCI transactions, or be
disabled. The direct addressing window uses the
lower 2 Gbytes of 80960 local bus addresses.

Generating PCI Configuration Cycles

The outbound ATUs provide a port programming
model for generating outbound PCI configuration
cycles. Performing an outbound configuration cycle
to either the primary or secondary PCI bus involves
up to two 80960 local bus cycles to two hardware
registers for each ATU.

The 80960RP processor must write to an outbound
configuration address register (primary or
secondary) the PCI address used during the
configuration cycle. 80960RP read or write cycles to
the outbound configuration data register (primary or
secondary) initiates the PCI transaction. A 80960RP
read to the outbound configuration data register
generates a PCI configuration read cycle type on the
PCI bus. The ATU obtains the address from the
outbound configuration address register. The ATU
returns the PCI data to the outbound configuration
data register. A 80960RP write to the outbound
configuration data register generates a PCI
configuration write cycle type on the PCI bus. The
ATU obtains the address from the outbound
configuration address register and data from the
outbound configuration data register.

Configuration cycles are non-burst and restricted to
a single PCI DWORD cycle.

24

PRIVATE PCI DEVICES
An add-in card application using an i960® RP
processor may require PCI devices to be hidden
from the host processor(s). These PCI devices
require special attention when the system designer
connects the IDSEL# signals to the 80960RP
secondary PCI bus. Hidden PCI devices, otherwise
known as private PCI devices, must not be visible to
the host processor when the BIOS software polls for
the PCI devices/cards connected to the hierarchy of
PCI buses. Otherwise, the BIOS will allocate PCI
address space for these devices.

The i960 RP processor requires total control of the
private PCI devices to implement an intelligent I/O
subsystem. From the host processor, the intelligent
I/O subsystem appears as a single PCI unit. In
reality, multiple PCI devices exist under the control
of the 80960RP processor.

The i960 RP processor supports up to 10 private
PCI devices on the secondary PCI bus. In order to
support private PCI devices, custom hardware
functions in the bridge and RP ATUs provide the
functionality to implement an intelligent I/O
subsystem.

Connecting the PCI devices IDSEL# signal to any of
the S_AD[15:11] pins creates private PCI devices.
The bridge hides an additional five PCI devices on
the secondary PCI bus by a custom hardware
mechanism built into the bridge. This mechanism
blocks the assertion of the S_AD[20:16] signals
during configuration cycles generated by the host
processor. A control register in the bridge extended
configuration space provides independent control of
signal blocking during the configuration cycles.

The outbound ATUs perform PCI configuration to the
private PCI devices. The S_AD[20:11] signals are
never blocked from an outbound ATU configuration
cycle, thus allowing the 80960RP processor to
access and control all PCI devices on the secondary
PCI bus.

Private PCI Address Space

The private PCI devices on the secondary PCI bus
require PCI address space. Special hardware
designed into the ATUs and bridge enables the
private PCI addresses. The 80960RP processor
uses the private PCI address space to communicate
with the private PCI devices.

The bridge unit, which normally performs inverse
positive decoding on the secondary PCI bus,
contains registers that positively decode addresses
and do not forward them to the primary PCI bus.
These private PCI addresses enable peer-to-peer
PCI transactions. For example, there may be two
intelligent I/O subsystems on the secondary PCI
bus. Each subsystem can contain the intelligence to
transfer data from one subsystem directly to the
second subsystem without requiring any bandwidth
from the primary PCI bus.

The secondary ATU provides the second form of
private PCI addresses on the secondary PCI bus.
The inbound ATU functions on the secondary PCI
bus claim the transactions and notify the bridge.
Therefore, the bridge does not forward the
transaction to the primary PCI bus. Figure 16 shows
an example of both private PCI address spaces.

25

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

P
R
I

M
A
R
Y

P
C
I

B
U
S

S
E
C
O
N
D
A
R
Y

P
C
I

B
U
S

8
0
9
6
0

L
O
C
A
L

B
U
S

Secondary ATU
Translation Logic

Converts Secondary
PCI Address to

80960 Local Bus
Address

Valid Secondary
PCI Addresses

(Positive Decode)
Forwarded to Sec. PCI Bus

Primary ATU
Translation Logic
Converts Primary
PCI Address to

80960 Local Bus
Address

Private
PCI Addresses

PCI Address Space

Valid ATU
PCI Addresses

(Positive Decode)

Peer-to-Peer
PCI Addresses

Secondary PCI Addresses
Blocked by the Bridge for
Peer-to-Peer Transfers

Blocked

Figure 16. Private PCI Address Space

26

2

MESSAGING UNIT
The Messaging Unit (MU) provides a mechanism to
transfer data between the PCI system and the
80960RP processor and to notify the respective
system of the arrival of new data through an
interrupt.

The MU has four distinct messaging mechanisms.
Each allows a host processor or external PCI agent
and the 80960RP processor to communicate
through message passing and interrupt generation.
The four mechanisms are:

■ Message registers

■ Doorbell registers

■ Circular queues

■ Index registers

Message Registers

The i960® RP processor sends and receives
messages via the special message registers. When
written, the message registers may generate an
interrupt to either the 80960RP processor or the PCI
interrupt signals. The host processor sends inbound
messages for the 80960RP processor and the
80960RP processor sends outbound messages for
the host processor.

When the 80960RP processor writes to an outbound
message register, the message unit may generate
an interrupt on the P_INTA#, P_INTB#, P_INTC#, or
P_INTD# interrupt pins. The ATU interrupt pin
register determines which interrupt line the message
unit generates the interrupt. When an external PCI
agent writes to an inbound message register, the
message unit may generate an interrupt to the
80960RP processor.

Doorbell Registers

There are two doorbell registers: the Inbound
Doorbell Register and the Outbound Doorbell
Register. The Inbound Doorbell Register allows
external PCI agents to generate interrupts to the
80960RP processor. The Outbound Doorbell
Register lets the 80960RP processor generate PCI
interrupts. Both Doorbell Registers hold a
combination of hardware and software generated
interrupts. They contain interrupt status from other
Messaging Unit mechanisms, and they also allow
software to set individual bits to cause an interrupt.

Circular Queues

The MU implements four circular queues. There are
two inbound queues and two outbound queues. In
this case, inbound and outbound refer to the
direction of the flow of messages. The data passed
through the queue are either free messages or
posted messages. Posted messages contain data
instructing the destination processor to perform
operations. Free messages contain data notifying
the destination processor the data operation
completed and the message is available for reuse.

The four Circular Queues pass messages in the
following manner. The MU designates one of the
inbound queues for free messages and one queue
for posted messages. Similarly, the MU designates
one of the outbound queues for free messages and
one queue for posted messages. Figure 17 shows
an overview of the Circular Queue operation.
External PCI agents access the circular queues
through two port locations in the PCI address space.
The external PCI agents directly read or write the
inbound and outbound queue ports.

27

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

Head

Inbound Free
Queue

Tail

Head

Outbound Free
Queue

Tail

P
R
I
M
A
R
Y

P
C
I

B
U
S

8
0
9
6
0

L
O
C
A
L

B
U
S

Outbound Free Message

Interrupt to 80960
RP CPU when
queue is written

Head

Outbound Post
Queue

Tail

Head

Inbound Post
Queue

Tail

Messaging Unit
Circular Queues

Inbound Posted Message

Inbound Free Message

Outbound Posted Message

Interrupt to Host
PCI CPU when
queue is written

Figure 17. Overview of Circular Queue Operation

28

2

The i960 RP processor local memory provides for
data storage in the circular queues. Each entry in the
queue is a 32-bit data value. Each read from or write
to the queue may access only one queue entry. The
queue ports support single word transactions.

Each circular queue contains a head pointer and a
tail pointer. Writes to a queue occur at the head of
the queue and reads occur from the tail. Either the
80960RP processor or the MU hardware increments
the head and tail pointers. The pointers contain
offsets into the circular queue and range from zero
to the circular queue size minus one. The pointers
increment after the queue access. Both pointers
wrap around to zero when they reach the circular
queue size.

The Messaging Unit will generate an interrupt to the
80960RP processor or generate a PCI interrupt
under certain conditions. When an external PCI
agent writes to the post queue, the MU generates an
interrupt to notify the receiver of a new posted
message.

The size of each circular queue can range from 16
Kbytes (4096 words) to 256 Kbytes (65536 words).
All four queues must be the same size and must be
contiguous. Therefore the total amount of local
memory needed by the circular queues ranges from
64 Kbytes to 1 Mbytes. A programmable MU
configuration register determines the queue size.

Index Registers

The index registers are a set of 1004 registers that,
when written to by an external PCI agent, can
generate an interrupt to the 80960RP processor.
These registers are for inbound messages only.

The i960 RP processor allocates storage for the
index registers in local memory. The index address
register contains the address of the access stored in
the index register. This register stores the address of
the index register written. This simplifies the
80960RP processor’s effort to determine which
register the external PCI agent accessed.

29

i960 RP MICROPROCESSOR TECHNICAL BRIEF

DMA CONTROLLER
The i960® RP processor contains an integrated
hardware DMA controller. This DMA controller
supplies three channels for performing high-
throughput memory transfers between the PCI
buses and the 80960 local memory. Channels 0 and
1 perform DMA transfers between the primary PCI
bus and the 80960 local memory. Channel 2
transfers blocks of data between the secondary PCI
bus and the 80960 local memory. All channels are
identical, except for channel 0 which contains
additional support for demand-mode transfers.

Each DMA channel uses direct addressing for both
the PCI bus and the 80960 local bus. The channel
supports data transfer to and from the full 64-bit
address range of the PCI bus. Both the PCI bus
interface and the 80960 local bus interface support
zero wait-state data transfers, providing 132
Mbyte/sec throughput from bus to bus.

Each DMA channel supports simultaneous read and
write transactions on the PCI bus and the 80960
local bus. This enables the DMA controller to
perform data streaming when the DMA owns both
the PCI bus and the 80960 local bus. The DMA
controller supports PCI-style burst accesses on the
80960 local bus.

Hardware Unaligned DMA Transfers

Every channel of the DMA controller contains a
hardware packing and unpacking unit. This unit
allows the DMA controller to perform unaligned DMA
transfers. The application programmer can program
any possible combination of source and destination
addresses with no performance degradation.

The packing and unpacking unit performs the data
movement and prepares the data for the correct byte
lanes on the respective bus. The packing and
unpacking unit does not require the DMA channel to
re-read the data for the next DMA transfer.

DMA Chaining Operation

The application programmer controls the DMA
channels through chain descriptors. Each chain
descriptor contains the following information:

■ Next chain descriptor address pointer

■ PCI address

■ PCI upper address (for DAC DMA transactions)

■ 80960 local bus address

■ Byte count

■ Descriptor control

The data contained in each chain descriptor
provides the control information required for the
DMA channel to perform the data transfer. Linking
multiple chain descriptors allows the system to
support, scatter and gather DMA. Creating multiple
chain descriptors enables the application to gather
non-contiguous blocks of memory. Once the DMA
performs the transfer to/from the host memory, the
data arrangement consists of a single block of
contiguous data. Figure 18 shows an example of the
DMA chaining operation.

Each descriptor contains a control value to notify the
DMA channel of specific operations. For example,
the control value specifies the PCI cycle type and
when to generate an interrupt to the 80960RP
processor. Control bits specify the interrupt
mechanism which include:

■ Continue to next chain descriptor without
generating an interrupt

■ Interrupt the 80960RP processor and continue
with the next chain descriptor

■ Interrupt on the end of the chain

■ Interrupt on error conditions

30

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

Because the DMA channels perform data transfers
that are asynchronous to the processor operation,
the application may need to append additional chain
descriptors to the end of the chain list while the DMA
channels perform data transfers. Each DMA channel
supports appending chain descriptors in real-time,
dynamic linking, without requiring the application to
stop the DMA channel. Appending chains while the
DMA channel is operating on the last descriptor or
completed the entire chain list is permissible.

DMA Channel Queues

Each DMA channel of the i960 RP processor
contains a 64-byte queue. These queues improve
the system throughput by allowing the transactions
to operate simultaneously on both the PCI bus and
the 80960 local bus.

The DMA queues support high-performance
bandwidth on both the PCI bus and the 80960 local
bus. The DMA queue implementation provides a
FIFO-style architecture that allows simultaneous
data streaming to and from the queue. This data
streaming allows each DMA channel to sustain data
transfers up to 132 Mbytes/sec.

During DMA transactions, the queues will latch the
data as it enters the DMA channel. Upon receiving
the first data, the DMA asserts the request for the
target bus in an attempt to acquire the target bus
prior to filling the DMA queue. When the DMA
channel acquires the target bus, the DMA will stream
the data between the PCI bus and the local bus
without breaking the transaction into multiple
transactions.

DMA Chain Descriptors

Descriptor Control
Byte Count

80960 Local Address
PCI Upper Address [63:32]

PCI Address [31:0]
Next Descriptor Address

Data Packet #1

Descriptor Control
Byte Count

80960 Local Address
PCI Upper Address [63:32]

PCI Address [31:0]
Next Descriptor Address

Data Packet #2

Descriptor Control
Byte Count

80960 Local Address
PCI Upper Address [63:32]

PCI Address [31:0]
Next Descriptor Address

Data Packet #n

Data Packet #1

Data Packet #2

.

.

.

Data Packet #n

Source Data
In Local Memory

Destination Data
Stored in PCI Memory

Figure 18. DMA Chaining Example

31

2

DMA Transactions

Each channel of the DMA controller has the flexibility
to generate any of the PCI bus cycle types. This
includes:

■ Memory read or memory read multiple commands

■ Memory write command

■ Memory write and invalidate command

The DMA controller provides specialized support to
ensure the Memory Write and Invalidate (MWI)
command protocol. When the application programs
the DMA channel to perform a MWI cycle, the DMA
channel ensures the cycle meets the PCI protocol.
This specialized hardware verifies the amount of
data transferred during each transaction by reading
(from the 80960 local bus) at least one cache line
prior to initiating the PCI cycle. If for some reason
the DMA channel cannot provide a full cache line,
the channel automatically converts the cycle type to
a memory write command.

The DMA controller also allows generation of dual
address cycles on the PCI bus to access the full
64-bit address space.

Demand Mode DMA Transfers

DMA channel 0 provides a two-pin interface that
supports DMA transfer to and from external devices
on the 80960 local bus. This interface consists of a
DREQ# pin that the external device asserts to signify
new data to transfer or that it has available buffers
for DMA transfers to the device. The second pin,
DACK# , notifies the device that the DMA channel
can receive additional data or it has data to send to
the device.

Demand mode DMA transfers require the external
device connected to the 80960 local bus to support
the local bus control signals. Figure 19 shows an
example of a demand mode DMA system.

Figure 19. Demand Mode DMA Example

DMA
Channel 0

P
R
I

M
A
R
Y

P
C
I

B
U
S

8
0
9
6
0

L
O
C
A
L

B
U
S

i960® RP
Processor

Peripheral Device
AD[31:0]

Control

AD[31:0] + Control

DREQ#

DACK#

WAIT#

32

i960 RP MICROPROCESSOR TECHNICAL BRIEF

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

BUS ARBITRATION SUPPORT
The i960® RP processor provides four internal
arbitration blocks as shown in Figure 3. This
arbitration logic controls the bus mastership for the
two PCI buses and the 80960 local bus. The four
arbitration units include:

1. Local bus arbiter

2. Secondary PCI bus arbiter for external secondary
PCI bus masters

3. Primary PCI bus arbiter for internal primary PCI
bus masters

4. Secondary PCI bus arbiter for internal secondary
PCI bus masters

Local Bus Arbitration Unit

The 80960 local bus arbitration unit (LBAU) supports
up to seven local bus masters. The bus masters
control the local bus when granted by the local bus
arbiter. The local bus masters include:

■ 80960RP Processor

■ DMA channel 0

■ DMA channel 1

■ DMA channel 2

■ Primary ATU (for inbound address transactions)

■ Secondary ATU (for inbound address
transactions)

■ External local bus master

The arbitration logic controls the bus mastership of
the 80960 local bus. When a bus master requests
the local bus, the local bus arbitration unit obtains
control of the 80960 local bus from the 80960RP
processor. Once the LBAU receives control, the

LBAU grants the requesting master the local bus. If
the processor requires ownership of the local bus
after granting the bus to another master, the
processor will notify the LBAU. The LBAU will place
the 80960RP processor request in the arbitration
algorithm.

The LBAU supports three priority levels of round-
robin arbitration. The three levels define the low,
medium, and high priorities. The round-robin
mechanism ensures that for each priority level there
will be a winner. Every arbitration cycle, a LBAU will
either grant the bus or promote a masters request to
the next higher priority level. The LBAU reserves
one slot on level 002 and level 012 for the device
promoted from the lower priority level. By reserving
this slot, the algorithm still guarantees fairness by
allowing lower priority requests to be promoted. The
LBAU promotes the device until it becomes the
highest priority device and is granted the bus next.
The LBAU demotes the device to its original
programmed priority after the device completes the
transaction.

The LBAU contains a programmable 12-bit counter
used to limit the length of time each bus master may
own the 80960 local bus. The counter is
programmable from the 80960RP processor. This
counter will decrement on each 80960 processor
clock. The LBAU automatically reloads the counter
after granting ownership of the 80960 local bus.
Upon reaching a zero count, the arbitration logic will
notify loss of the local bus to the existing bus master.
The bus master will gracefully complete the current
transaction. If no pending bus request exists, the
current bus master will retain ownership of the
80960 local bus and the counter will remain at a zero
count. Figure 20 shows a local bus arbitration
example.

33

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

Secondary PCI Bus Arbitration Unit

The secondary PCI bus arbitration unit (SAU)
supports six external PCI bus masters on the
secondary PCI bus and the secondary bus interface
of the 80960RP processor. The PCI local bus
specification defines the handshaking protocol when
each bus master controls the secondary PCI bus
when granted control by the SAU.

The arbitration logic supports granting control of the
secondary PCI bus prior to the existing master
completing its transaction. When a bus master
requests the secondary PCI bus, the SAU will grant
control to the requester who wins the arbitration
cycle.

The SAU supports three priority levels of round-robin
arbitration. The three levels define the low, medium,
and high priorities. The round-robin mechanism
ensures that for each priority level there will be a
winner. In every arbitration cycle, an SAU will either
grant the bus or promote the master to the next
higher priority level request. The SAU reserves one
slot on level 002 and level 012 for the device
promoted from the lower priority level. By reserving
this slot, the algorithm still guarantees fairness by
allowing lower priority requests to be promoted. The
SAU promotes the device until it becomes the
highest priority device and is granted the bus when
available. The SAU demotes the device to its
originally programmed priority after the device
completes the transaction.

The arbiter interfaces to all requesting agents on the
bus through the REQ#-GNT# protocol. A bus master

will assert it's REQ# output and wait for its GNT#
input to be asserted. The SAU can grant an agent
the bus while a previous bus owner still has control.
The SAU decides only which PCI device to assign
the bus to next. Each individual PCI device is
responsible for determining when the bus actually
becomes free and it is allowed to start its bus
access.

Primary and Secondary Internal
PCI Bus Arbiters

The 80960RP processor integrates two internal
arbitration units which control access to the internal
PCI buses within the device. The primary internal
PCI arbitration unit arbitrates for the following
internal units:

■ Primary 80960RP bridge interface

■ Primary Address Translation Unit

■ DMA channel 0

■ DMA channel 1

The secondary internal PCI arbitration unit arbitrates
for the following internal units:

■ Secondary 80960RP bridge interface

■ Secondary Address Translation Unit

■ DMA channel 2

Priority 002
Priority 012Winner

Primary ATU

Priority 012
Priority 102

Winner

Secondary ATU

External Bus
Master

DMA Channel 0

Priority 102

DMA Channel 2

DMA Channel 1 80960RP
Processor

Priority 002
Highest Priority

Priority 012
Medium Priority

Priority 102
Lowest Priority

Figure 20. Local Bus Arbitration Example

34

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

Each internal PCI arbitration unit uses a fixed round-
robin arbitration scheme with each device on a bus
having equal priority.

Each PCI interface of the processor contains a
master latency timer (MLT) for use by the internal
resources when they are acting as PCI bus masters.
Both ATUs, the DMA channels, and the bridge
interfaces use an MLT. The MLT usage, as defined
by the PCI specification, determines the minimum
period of time the master is allowed to own the PCI
bus. The internal PCI arbitration unit extends this
concept by adding all of the internal bus resources to
the arbitration equation and is capable of removing
the current bus master when its time expires.

Each internal bus master may lose its grant for either
of the two conditions:

1. If an external bus master wants the bus (external
grant inactive), or

2. An internal bus master wants the bus (internal
grant inactive while external grant still active).

The bridge configuration space and the ATU
configuration space contain independent MLT
registers. The bridge loads the MLT value into the
internal arbitration counter only when granted
ownership of the PCI bus. All other cases will load
the MLT value from the ATU configuration space.

35

i960 RP MICROPROCESSOR TECHNICAL BRIEF

INTEGRATED MEMORY CONTROLLER
The i960® RP processor integrates a memory
controller to provide a direct interface between the
processor and a local memory subsystem. The
memory controller (MC) supports connection of
DRAM, SRAM, ROM and FLASH directly to the
processor.

DRAM Control

The memory controller supports up to 256 Mbytes of
DRAM. The controller supports from one to four
banks of DRAM organized as 32-bits or 36-bits wide.
A programmable option allows non-interleaved or
two-way interleaved DRAM, depending on the
memory type used. The MC supports three different
architectures of DRAM: Fast Page-Mode (FPM),
Extended Data Out (EDO), and Burst Extended Data
Out (BEDO). The memory controller provides all of
the control signals to support interleaved Fast Page-
Mode DRAM. The memory controller provides a
programmable DRAM refresh counter to generate
the cycles necessary to refresh the charge in the
DRAM cells.

The Memory Address Bus signals (MA[11:0]), the
Row Address Strobes (RAS[3:0]#) and Column
Address Strobes (CAS[7:0]#) control both read and
write cycles. The memory controller presents the row
address and column address over the MA[11:0] bus.
The memory controller supports Fast Page-Mode
early write cycles, which asserts DWE[1:0]# for the
entire transaction.

The memory controller for DRAM provides a
programmable address windowing mechanism that
decodes local bus addresses and drives the
corresponding DRAM control signals. The memory
controller’s memory-mapped registers control the
address window. Additional memory-mapped
registers control the timing for different speed ratings
of DRAM, DRAM bank sizes, DRAM types, DRAM
initialization and DRAM organization.

The DRAM organization is programmable through
control bits in the DRAM bank control register. The
MC provides support for up to four banks of non-

interleaved DRAM. The MC supports up to two
banks of interleaved DRAM with each bank
containing one or two leaves. Figure 21 shows an
example of non-interleaved DRAM.

The memory controller provides eight CAS# signals
for the support of interleaved memory. The
CAS[3:0]# signals provide the byte selection for one
leaf, while the CAS[7:4]# signals provide it for the
second leaf. It is necessary to control external buffer
output enables during read transactions in an
interleaved memory system. The MC provides two
signals (LEAF[1:0]#) to control the multiplexing of
data from each memory leaf onto the processor
address/data bus. The system designer uses these
signals for the OE# pins of the data transceivers in
an interleaved memory array. The MC supports
widely accepted DRAM device sizes from 1 Mbit to
64 Mbit without using external logic to generate
control signals. The MC provides two identical write
enable signals (DWE[1:0]#) to control the WE# input
of DRAM devices during read and write transactions.
An example of a memory system consisting of 32-
bits of interleaved DRAM without parity is shown in
Figure 22.

Programmable Refresh Timer

The DRAM memory cell retains data in its correct
state by maintaining power and executing a RAS#
refresh cycle. The memory controller supports CAS#
before RAS# (CBR) refresh cycles, a commonly
implemented refresh mechanism. CBR refresh
requires no processor overhead and reduces logic
requirements for DRAM refresh.

The MC uses the processor input clock to derive the
time delay for CBR refresh cycles. The internal
DRAM Refresh Interval Register provides the time
delay between DRAM refresh cycles, and is
programmed in increments of this clock. The register
provides ten bits for the programmed value, which
corresponds to a time delay range of:

■ 0 to 40.92 µsec at 25 MHz

■ 0 to 34.1 µsec at 33 MHz

36

DRAM
Bank

Control

8
0
9
6
0

L
O
C
A
L

B
U
S

i960® RP Processor

1 DRAM Bank
Non-Interleaved

8 x (4M x 4)
RAS#

D[31:0]
CAS[0]#
CAS[1]#
CAS[2]#
CAS[3]#
WE#
OE#

MA[11:0]

AD[31:0]

AD[31:0] + Control

DALE[0]
DALE[1]

RAS[0]#
RAS[1]#
RAS[2]#
RAS[3]#

CAS[0]#
CAS[1]#
CAS[2]#
CAS[3]#
CAS[4]#
CAS[5]#
CAS[6]#
CAS[7]#

DWE[0]#
DWE[1]#

LEAF[0]#
LEAF[1]#

W/R#

MA[11:0]

Figure 21. Non-Interleaved DRAM Example

37

i960 RP MICROPROCESSOR TECHNICAL BRIEF

DRAM Performance

The optimized DRAM interface of the 80960RP
memory controller achieves high performance from
low-cost memory systems. The following shows the
performance achievable by implementation of
various DRAM technologies.

60 ns DRAM Interleaved & Buffered, 33 MHz

■ Read: A 1 2 D D D D D...

■ Write: A 1 D D D D D...

70 ns DRAM Non-Interleaved, 25 MHz or 33 MHz

■ Read: A 1 2 D 1 D 1D 1 D 1 D...

■ Write: A 1 2 D 1 D 1 D 1 D 1 D...

70 ns EDO DRAM Non-Interleaved, 25 MHz

■ Read: A 1 2 D D D D D...

■ Write: A 1 D D D D D...

50 ns BEDO DRAM Non-Interleaved, 33 MHz

■ Read: A 1 2 D D D D D...

■ Write: A 1 D D D D D...

8
0
9
6
0

L
O
C
A
L

B
U
S

AD[31:0] + Control

DRAM
Bank

Control

i960
® RP Processor

DALE[0]
DALE[1]

RAS[0]#
RAS[1]#
RAS[2]#
RAS[3]#

CAS[0]#
CAS[1]#
CAS[2]#
CAS[3]#
CAS[4]#
CAS[5]#
CAS[6]#
CAS[7]#

DWE[0]#
DWE[1]#

LEAF[0]#
LEAF[1]#

W/R#

MA[11:0] A[11:0] B[11:0]
LE
OE#

DRAM Odd Leaf
Interleaved
8 x (4M x 4)

RAS#

D[31:0]
CAS[0]#
CAS[1]#
CAS[2]#
CAS[3]#
WE#
OE#

MA[11:0]

B[31:0] A[31:0]
OE#
DIR

Data
Tranceiver

AD[31:0]

A[11:0] B[11:0]
LE
OE#

DRAM Even Leaf
Interleaved
8 x (4M x 4)

RAS#

D[31:0]
CAS[0]#
CAS[1]#
CAS[2]#
CAS[3]#
WE#
OE#

MA[11:0]

B[31:0] A[31:0]
OE#
DIR

Data
Tranceiver

AD[31:0]

Figure 22. Interleaved DRAM Example

38

i960 RP MICROPROCESSOR TECHNICAL BRIEF

Memory Controller Error Reporting

The MC provides two mechanisms for reporting error
conditions. The first is DRAM parity and the second
is a bus monitor used to detect invalid local bus
addresses.

Programmable Byte Parity for DRAM

The selection of parity is programmable by the
application through the internal DRAM Parity Enable
Register. On reset, the MC disables parity. When the
application enables data parity, the memory
controller generates the selected parity for each byte
written to DRAM and presents it to the parity bus
(DP[3:0]). Parity is checked on all DRAM read
accesses when enabled.

Upon detection of a parity error, the MC latches the
30-bit address of the faulty memory location and
stores the address in the Memory Error Address
Register. The MC will detect parity errors for any
local bus master. These include the primary ATU,
secondary ATU, DMA channel 0,1 or 2 and the
80960RP processor. The memory controller detects
when the 80960RP processor is the bus master,
sets the parity error status bit in the local processor
status register, and generates an NMI# interrupt.
When the processor is not the bus master, the
memory controller will notify the other bus masters of
the error condition. Those masters will latch the error
and generate an NMI# interrupt to the 80960
processor.

When the 80960RP processor detects an interrupt,
the interrupt service routine will read the NMI# latch
to determine the source of the interrupt. The
interrupt service routine can read the memory
error address register to isolate the cause of the
parity error.

Bus Monitor Support

The MC contains logic that monitors all bus
accesses to any memory region configured for
external memory control. If an external memory
controller does not assert the RDYRCV# signal to
terminate the access, the processor will stall. The
MC always enables the bus monitor. However, the

application can enable or disable the interrupt
generated to the 80960RP processor from the
memory controller. The bus monitor operates by
monitoring a combination of the internal signals. The
external memory controller has up to 127 CLKIN
periods to assert RDYRCV#. Otherwise the memory
controller assumes a bus fault condition and
terminates the transfer. The MC asserts bus fault
signal to the local bus masters or asserts to the local
processor error signal from the memory controller.

SRAM, Flash and ROM Control

The MC supports two independent banks, Memory
Bank 0 and Memory Bank 1, to connect ROM,
SRAM or Flash memory devices to the processor.
The MC supports devices organized as 8-bit or
32-bit wide memory. Each SRAM/ROM bank has a
programmable window of local bus addresses that
can be programmed to correspond to any local bus
address. Memory banks must not overlap with
reserved addresses. Each SRAM/ROM bank will
assert its respective chip enable signal (CE[1:0]#)
when the address on the local bus falls within the
programmed window for the SRAM/ROM bank. The
SRAM/ROM banks have independent control to
support different memory types in each bank. The
memory write enable signals (MWE[3:0]#) provide
the write strobes for the selected memory bank.
Connecting SRAM/ROM to the MC requires a
combination of MC signals and local bus signals.

The MC uses the MA[11:0] pins to provide a 12-bit
burst address when the memory access falls within
the address windows for both Memory Banks 0 and
1. For 32-bit wide memory, the MA[11:0] pins will
latch the address and provide an incrementing
address during burst data accesses. The MA[11:0]
will increment for burst data transfers of up to a 2
Kbyte boundary.

Eight bit wide memories have a maximum burst
count of four accesses. The BE[1:0]# pins, which
translate to A[1:0] , provide the incrementing burst
address. Figure 23 shows an example of an 8-bit
memory connected to the 80960RP processor.

39

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

During ROM, SRAM and flash memory accesses,
the MC generates the burst address bits in
conjunction with the control signals. The MC
generates the lower twelve bits of the address on the
MA[11:0] Memory Address Bus. The local bus
master generates the upper address bits on the
AD[31:14] multiplexed Address/Data bus. When
addressing 8-bit memory BE[1]# becomes A[1] and
BE[0]# becomes A[0] as shown in Figure 23. Since
the memory controller only latches A[13:2] , external
logic must use ALE to latch the upper address bit
during an address cycle. The MC provides unique
chip enable signals (CE[1:0]#) to select the device
and activate its control logic during a memory
access.

The MC provides the memory write enable signals
(MWE[3:0]#) to select the individual byte lanes
during memory write accesses. During a memory

write access the MC asserts a combination of
MWE[3:0]# and CE[1:0]# for the data cycle. The
bus master drives the W/R# signal HIGH to prevent
the device’s output from being enabled onto the
address/data bus.

The MWE[3:0]# signals control the selection of
individual byte-wide flash memory devices during
programming without the use of external logic. The
memory write enable bit allows the memory
controller to assert the MWE[3:0]# during write
cycles. The application software accesses this bit
through the Memory Bank Control Register. If the
application uses memory banks 0 or 1 for SRAM, the
memory write enable bit must be set to enable the
assertion of the MWE[3:0]# signals for memory write
transactions. Refer to Figure 24 for an example of a
32-bit flash memory system connected to the
80960RP processor.

Memory
Bank 0,1
Control

8
0
9
6
0

L
O
C
A
L

B
U
S

i960 ® RP Processor

AD[7:0]

AD[31:0] + Control

CE[1]#
CE[0]#

W/R#
MWE[0]#
MWE[1]#
MWE[2]#
MWE[3]#

BE[0]#
BE[1]#
BE[2]#
BE[3]#

MA[11:0]
ALE

CE#
OE#
WE#
A[0]
A[1]
A[13:2]
A[19:14]

8-Bit Boot Flash

A[11:0] B[11:0]
LE
OE#

AD[19:14]

Figure 23. 8-bit Memory Example

40

2

Figure 24. 32-bit SRAM/Flash Memory Example

Memory
Bank 0,1
Control

8
0
9
6
0

L
O
C
A
L

B
U
S

i960® RP Processor

AD[31:0] + Control

CE[1]#
CE[0]#

W/R#
MWE[0]#
MWE[1]#
MWE[2]#
MWE[3]#

BE[0]#
BE[1]#
BE[2]#
BE[3]#

MA[11:0]
ALE

512K x 8
FLASH

CE#
OE#
WE#

D[7:0]
A[11:0]
A[18:12]

AD[31:24]

512K x 8
FLASH

CE#
OE#
WE#

D[7:0]
A[11:0]
A[18:12]

AD[23:16]

512K x 8
FLASH

CE#
OE#
WE#

D[7:0]
A[11:0]
A[18:12]

AD[15:8]

512K x 8
FLASH

CE#
OE#
WE#

D[7:0]
A[11:0]
A[18:12]

AD[7:0]

A[11:0] B[11:0]
LE
OE#

AD[20:14]

41

i960 RP MICROPROCESSOR TECHNICAL BRIEF

FILTERING PCI INTERRUPTS
The i960® RP processor allows improved system
performance by providing the intelligence to handle
the PCI device interrupts at the subsystem level.
With the i960 RP processor, the I/O interrupt
provides:

■ Reduced upstream interrupts

■ Freedom from low-level interrupt processing by
the host CPU

■ Reduced interrupt latency

■ Efficient PCI bandwidth usage

■ Creation of an intelligent upstream I/O subsystem

The i960 RP processor design integrates hardware
to support the PCI interrupt structure. This hardware
enables the 80960RP processor to filter the PCI
interrupts and selectively perform the interrupt
processing, or to pass the interrupt upstream to the
host processor.

The interrupt hardware works in conjunction with the
80960RP processor’s integrated interrupt controller.
Figure 25 depicts the supported functions.

The PCI interrupt steering support in the i960 RP
processor allows the system designer to route the
interrupts directly to the PCI INTA#, INTB#, INTC#,
and INTD# pins without the use of any external
configuration jumpers. The software can then direct
all PCI interrupts upstream to the host processor or
to the 80960RP processor.

The 80960RP processor can generate any PCI
interrupt INTA-D#. This allows the 80960 processor
to determine exactly which PCI device on the
INTA-D# pins generated the interrupt, process the
interrupt, or forward the interrupt to the host
processor.

The 80960RP processor supports generating
interrupts upstream to the host processor via two
different methods. First, the 80960 processor
contains a hardware port that allows the 80960
software to generate an interrupt directly on any
INTA-D# pins. The second method allows the
80960RP processor to generate interrupts directly to
the host processor over the APIC bus.

I/O APIC Interface

The 80960RP processor provides a 3-wire I/O
Advance Programmable Interrupt Controller (APIC)
port. The I/O APIC interface unit utilizes the interrupt
input pins on which I/O devices inject interrupts into
the system as an edge or level. Through APIC
emulation software using the I/O APIC port, the
80960RP processor provide interrupt functionality
via the APIC bus. The I/O APIC emulation software
supports a re-direction table with an entry for each
interrupt input pin. Each entry in the re-direction
table can be individually programmed to indicate
whether an interrupt on the pin is recognized as level
sensitive; the vector and priority for the interrupt; and
which of all possible processors should service the
interrupt and how to select that processor. The
emulation software uses the information in the table
to broadcast a message to all local APIC units.

42

Interrupt Controller

XINT0#

XINT1#

XINT2#

XINT3#

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

M
U
X

M
U
X

M
U
X

M
U
X

L
A
T
C
H

L
A
T
C
H

L
A
T
C
H

80960 Outbound Doorbell Interrupt 0
80960 Outbound Doorbell Interrupt 1
80960 Outbound Doorbell Interrupt 2
80960 Outbound Doorbell Interrupt 3

INTA#/XINT0#

INTB#/XINT1#

INTC#/XINT2#

INTD#/XINT3#

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

XINT
Sel

P
_I

N
T

A

O
ut

pu
t

P
_I

N
T

B

O
ut

pu
t

P
_I

N
T

C

O
ut

pu
t

P
_I

N
T

D

O
ut

pu
t

i960® RP Processor

DMA 0 Interrupt

DMA 1 Interrupt

DMA 2 Interrupt

I2C Interrupt
APIC Interrupt

Doorbell Interrupt
Start BIST Interrupt

Bridge Error Interrupts
ATU Error Interrupts

Memory Cont. Error Interrupts
DMA Error Interrupts

Figure 25. PCI Interrupt Steering

43

i960 RP MICROPROCESSOR TECHNICAL BRIEF

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

SERIAL I 2C INTERFACE
The i960® RP processor integrates a serial I2C bus
interface unit. The I2C bus interface unit allows the
80960RP processor to serve as both a master and
slave device residing on the I2C bus. The I2C bus,
developed by Philips Corporation, consists of a two-
pin interface and capable to support frequencies up
to 400 KHz.

The I2C bus allows the i960 RP processor to
interface to other I2C peripherals and
microcontrollers for system management functions.
This serial bus defines a complete serial protocol for
passing information between agents on the bus
using only a two-pin interface. A unique 7-bit
address identifies each device on the bus and
operates as a master (transmitter) or as a slave
(receiver).

The I2C bus allows for a multi-master system, which
supports multiple devices simultaneously. The I2C
bus defines an arbitration procedure to handle this
scenario.

Some of the server management functions
performed via an I2C bus include:

■ Remote management

■ Temperature monitoring

■ Power supply monitoring

■ Fan monitoring

■ LCD display control

The 80960RP processor supports both speed
definitions for the I2C bus, including 100 KHz and
400 KHz operations. The 80960RP processor
provides the I2C clocks by dividing the processor
clock cycles with a programmable clock generator.

The I2C unit consists of a three register-interface in
addition to an interrupt mechanism which generates
an interrupt to the 80960RP processor on transmit
buffer empty and receive buffer full conditions.

44

i960 RP MICROPROCESSOR TECHNICAL BRIEF

i960® RP PROCESSOR CLOCKING
The i960® RP processor supports PCI operations
and 80960 core processor frequencies up to 33
MHz. The on-chip peripheral units support
synchronous clocking across two independent
clocking boundaries. The 80960RP processor has
two clock input pins that support:

■ Primary PCI bus

■ Secondary PCI bus, 80960 CPU, and local
memory

This synchronous mode of operation bypasses any
clocking boundaries. All units of the 80960RP
processor operate at the same frequency to reduce
data transfer latency. In addition, controlling the
80960 CPU and local memory with the secondary
PCI bus clock reduces the number of clock sources
required by the system to operate the 80960RP
processor and memory subsystem.

PCI Configuration

The i960 RP processor is a multifunction PCI device
with two PCI functions. Each function requires its
own PCI configuration space. The host processor
performs the PCI configuration from the primary PCI
bus. The host processor is also responsible for
initializing various registers within the i960 RP
processor for PCI operations. However, the
80960RP processor can initialize the configuration
registers before the host processor accesses the
80960RP processors configuration registers to
determine the system requirements. All registers
within the 80960RP processor’s configuration space
have read/write privileges from the i960 RP
processor, even if they are read only from the
PCI bus.

Access to the PCI configuration spaces requires a
combination of hardware decode logic and a
configuration cycle present on the primary PCI bus.
The PCI specification defines a primary PCI
interface pin (called IDSEL#) used to identify the
device during a PCI configuration cycle. Figure 26
shows an example connecting the IDSEL# to
P_AD[18] . The system design connects the IDSEL#
signal to any one of the P_AD[31:11] address
signals. The PCI local bus specification provides a

complete description of configuration cycles
generated on the PCI bus.

The host processor selects each individual PCI
device within the 80960RP processor by the
configuration cycle generated on the PCI bus to the
i960 RP processor. The function numbers separate
the configuration spaces within the i960 RP
processor. Function #0 controls the configuration
space of the PCI-to-PCI bridge. Function #1 controls
the configuration space for accessing the 80960RP
memory, the bus mastership portion of the Address
Translation Unit, as well as the processors DMA
controllers.

Peripheral Programming Interface

All of the i960 RP processor’s integrated peripherals
contain a memory-mapped interface for
programming. This memory-mapped interface
utilizes a small portion of the 80960 processor’s local
bus address space. The peripheral units include the
following:

■ DMA controller

■ Memory controller

■ 80960 local bus arbitration

■ Address translation units

■ Doorbell address window

■ I
2

C unit

■ I/O APIC interface unit

In addition to the peripherals, the 80960RP
processor provides accessibility to the PCI
configuration registers. The memory-mapped
interface provides the ability for the 80960RP
processor to preset specific registers prior to the
host processor’s performing PCI configuration cycles
to access the configuration space. This mechanism
allows the 80960RP processor to set the memory
limit registers in order to specify the amount of PCI
address space, the device identification registers,
and the expansion ROM registers to mention a few.

45

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

Reset Configuration Options

To ensure the 80960 processor completes the PCI
register initialization prior to the host processor
performing configuration cycles the 80960RP
processor initialization options support two modes of
processor boot modes.

The first mode holds the 80960 processor in reset
until the host processor releases it. This mode
allows the host processor (after a hardware reset on
the PCI reset pin) to download any information to the
80960RP processor memory, configuration space, or
peripheral memory-mapped registers. All units within
the 80960RP processor operate in a fully functional
mode. The reset modes only restrain the 80960RP

processor core incorporated within the 80960RP
processor.

The second mode allows the i960 RP processor to
boot, including the 80960RP processor core. This
requires the memory subsystem to contain some
form of boot ROM for the 80960 processor to
perform its initialization sequence. This special mode
restricts the host processor from performing any
configuration cycles or bridging operations by
initiating a PCI RETRY before the 80960RP
processor allows the primary PCI interface to accept
PCI cycles.

i960 ® RP Processor
P_AD[31]
P_AD[30]
P_AD[29]
P_AD[28]
P_AD[27]
P_AD[26]
P_AD[25]
P_AD[24]
P_AD[23]
P_AD[22]
P_AD[21]
P_AD[20]
P_AD[19]
P_AD[18]
P_AD[17]
P_AD[16]
P_AD[15]
P_AD[14]
P_AD[13]
P_AD[12]
P_AD[11]
P_AD[10]
P_AD[09]
P_AD[08]
P_AD[07]
P_AD[06]
P_AD[05]
P_AD[04]
P_AD[03]
P_AD[02]
P_AD[01]
P_AD[00]

P_IDSEL#

P
R
I

M
A
R
Y

P
C
I

B
U
S

AD[31]
AD[30]
AD[29]
AD[28]
AD[27]
AD[26]
AD[25]
AD[24]
AD[23]
AD[22]
AD[21]
AD[20]
AD[19]
AD[18]
AD[17]
AD[16]
AD[15]
AD[14]
AD[13]
AD[12]
AD[11]
AD[10]
AD[09]
AD[08]
AD[07]
AD[06]
AD[05]
AD[04]
AD[03]
AD[02]
AD[01]
AD[00]

Figure 26. Connecting the IDSEL# Signal Example

46

i960® RP PROCESSOR PACKAGING
The i960® RP processor requires a high pin-count
package. However, the package retains the low cost
attributes of Plastic Quad Flat Pack (PQFP)
packaging. For this reason, the Perimeter Ball Grid
Array (BGA) package meets these requirements.
The 352-BGA package provides the high pin count,
power dissipation, and low cost for the intelligent I/O
applications.

The BGA package technology uses solder balls
distributed on the bottom of the package. This
distribution provides higher lead counts in a space
smaller than a QFP. The surface tension
characteristics of the solder balls cause them to self-
align during the manufacturing process. As the
solder melts, the two surfaces—the balls and pads—
pull together. This means that component alignment
is not as critical as with PQFPs. Studies show BGA

packages placed within + 0.3048 mm align with the
target board, whereas a similar PQFP must be within
+ 0.0762 mm.

The BGA package, with a pitch of 1.27 mm between
balls, simplifies manufacturing issues compared to
the 0.65-mm fine pitch PQFP packages. In addition,
the defect rate due to bent leads becomes non-
existent. The high ball count (352 balls) does not
require large amounts of board space. The 352-BGA
package is approximately 35 x 35 mm, which is
slightly smaller than a 196-PQFP (38 x 38 mm)
package.

The i960 RP processor supports 5.0V PCI systems
and dissipates less than 3 Watts at 33 MHz.

47

i960 RP MICROPROCESSOR TECHNICAL BRIEF

i960 RP MICROPROCESSOR TECHNICAL BRIEF

COMPLETE TOOL SET FOR EMBEDDED DESIGN
The i960® RP processor operation provides a
complete solution to meet the demands of today’s
customers. There are more than 100 different
products and tools available today from the
Solutions960® program vendors to support the i960
architecture. Because the i960 RP processor
incorporates the i960 JF processor core, most
existing tools are appropriate.

State-of-the-Art Compiler Technology

 The two-pass, profile-driven compilers use profile
program information collected during the dynamic
execution of code to drive the optimization strategy
for the compiler. The goal is to recognize the run-
time behavior of the program and to optimize the
code for that behavior. To gather run-time statistics,
the compiler first instruments the program. The
programmer runs this program on the target with any
number of representative data sets. Collection of the
profile information about the program occurs during
program execution. The programmer feeds the
execution information back to the host development
system used to optimize the code during a second
pass of the compiler. Two-pass, profile-driven
compilers enable many performance enhancing
optimizations. These optimizations include inter-
module inlining; rearrangement of basic blocks;
setting branch prediction bits; the allocation of global
variables to on-chip data RAM; the refinement of
alias information; superblock formation; and many
superblock-based optimizations.

Intel provides two tool chains for the i960 product
line. The gcc960 compiler, based on the Free
Software Foundation’s GNU compiler, and the iC960
compiler based on Intel compiler technology. The
current versions of both the gcc960 compiler and the
iC960 compiler incorporate two-pass, profile-driven
optimizations.

Integrated Software Debuggers

Software debuggers give the applications
programmer the ability to probe into a system during
program execution. The i960 architecture took this
concept further by integrating trace capabilities on-
chip, providing the debugger with tracing support.
Tracing the software flow without the aid of an
external tool such as a logic analyzer or emulator
benefits the software debug cycle. Integration of the
four breakpoint registers gives the software

debugger the ability to provide hardware breakpoint
capabilities with a software package.

Intel provides a software debugger for its i960
processors. The db960 software debugger provides
the applications programmer with tracing and
breakpoint functionality. Additionally, this software
package comes in a retargetable form, thus enabling
the applications programmer to integrate this
debugger into his application.

Wide Variety of Operating Systems

Operating system (or real-time system executives)
needs vary from application to application. They vary
from high-performance, multi-tasking environments
to simple in-line code with external interrupt events.
The i960 architecture provides the system with the
capability to perform either of these application
types. The user/supervisor model, with accessibility
to the various stacks, gives operating systems the
mechanisms for the multi-tasking systems.

Emulators and Logic Analyzers

Emulators provide the support necessary for
debugging both the hardware and software
applications. These support tools provide the
hardware engineer with the capability to exercise the
system parameters: address bus, data bus and
control signals. Typically, the initial
hardware/software integration requires this support.
The i960 architecture has many emulator support
tools for all of the i960 processors.

Logic analyzers provide increased value by allowing
visibility into complex breaking conditions. In
addition, the deep trace memory of the logic
analyzer aids the applications engineer in viewing
the history of the execution flow. An important factor
of the logic analyzer lies in the fact that it is non-
intrusive. The system runs at full speed with no
performance degradation.

Evaluation Platforms

The i960 processor family contains many evaluation
platforms. They range from multi-purpose platforms
with various memory architectures to specific
applications platforms designed for a single memory
types. Each member of the i960 family provides an
evaluation platform for the early software
development prior to system hardware.

48

i960 RP MICROPROCESSOR TECHNICAL BRIEF

1

i960® Microprocessor PCI I/O Software
Development Kit

Intel i960 microprocessor PCI I/O Software
Development Kit (PCI-SDK) is a low-cost, scaleable
development kit. The PCI-SDK can improve
development time for emerging intelligent PCI I/O
applications like ATM, Caching SCSI, RAID, and
Fibre Channel.

The PCI-SDK features a software development
platform with PCI Technology’s PCI 9060 (a PCI to
i960 processor bus bridge chip), an interchangeable

Intel i960 processor module of your choice and an
optional interchangeable I/O interface target module.
The kit also includes a complete set of software
development tools and related documentation to
enable improved development time.

PCI Compliance

The i960 RP processor contains two PCI interfaces.
These interfaces are compliant with the PCI Special
Interest Group’s specifications:

■ PCI Local Bus Specification Revision 2.1

SUMMARY
The i960® RP processor exploits the advantages of
PCI architectures by providing a high-performance
processor with PCI specific integration. The i960 RP
processor architectural requirements, taken from
applications ranging from networking and storage
add-in cards to server motherboard systems,

comprise today’s intelligent PCI I/O subsystem. The
level of integration found in the i960 RP processor is
achievable using Intel’s highly advanced design and
manufacturing technology, coupled with packaging
technology exceeds other processors available for
these PCI functions today.

4950

i960 RP MICROPROCESSOR TECHNICAL BRIEF

	Cover Page
	Introduction
	Examples of Intelligent I/O Innovation
	Storage I/O Interfaces
	Network I/O Interfaces
	Emerging Technologies
	Expanding the Market for Intelligent I/O by Reducing System Costs
	Expanding Server Capabilities with an Intelligent I/O Subsystem
	Intelligent I/O Processor Requirements

	i960 ® RP PROCESSOR TECHNICAL OVERVIEW
	i960 ® RP PROCESSOR HIGHLIGHTS
	Core Architecture Performance
	Fast Call-and-Return Mechanism
	Set-Associative Cache Design
	Enhanced Bus Control Unit
	Superior Interrupt Performance
	i960 ® RP Processor Integrated Peripherals

	i960 ® RP PROCESSOR DATA FLOW REQUIREMENTS
	PCI-TO-PCI BRIDGE
	Electrically Isolated PCI Buses
	Isolated Data Flow
	i960 ® RP Processor Bridge Address Decode
	ISA Address Forwarding
	VGA Addressing and Snooping Support
	VGA-Compatible Addressing
	64-Bit Addressing with Dual Address Cycle
	Bridge Queues
	PCI Bridge Transactions
	PCI Data Streaming

	ADDRESS TRANSLATION UNITS (ATU)
	ATU Queues
	ATU Inbound Transactions
	Inbound ATU Data Streaming
	Outbound ATU Transactions
	ATU Direct Addressing Transactions
	Generating PCI Configuration Cycles

	PRIVATE PCI DEVICES
	Private PCI Address Space

	MESSAGING UNIT
	Message Registers
	Doorbell Registers
	Circular Queues
	Index Registers

	DMA CONTROLLER
	Hardware Unaligned DMA Transfers
	DMA Chaining Operation
	DMA Channel Queues
	DMA Transactions
	Demand Mode DMA Transfers

	BUS ARBITRATION SUPPORT
	Local Bus Arbitration Unit
	Secondary PCI Bus Arbitration Unit
	Primary and Secondary Internal PCI Bus Arbiters

	INTEGRATED MEMORY CONTROLLER
	DRAM Control
	Programmable Refresh Timer
	DRAM Performance
	Memory Controller Error Reporting
	Programmable Byte Parity for DRAM
	Bus Monitor Support
	SRAM, Flash and ROM Control

	FILTERING PCI INTERRUPTS
	I/O APIC Interface

	SERIAL I 2 C INTERFACE
	i960 ® RP PROCESSOR CLOCKING
	PCI Configuration
	Peripheral Programming Interface
	Reset Configuration Options

	i960 ® RP PROCESSOR PACKAGING
	COMPLETE TOOL SET FOR EMBEDDED DESIGN
	State-of-the-Art Compiler Technology
	Integrated Software Debuggers
	Wide Variety of Operating Systems
	Emulators and Logic Analyzers
	Evaluation Platforms
	i960 ® Microprocessor PCI I/O Software Development Kit
	PCI Compliance

	SUMMARY
	FIGURES
	Figure 1. Add-In Card Application
	Figure 2. Server Slot Extension Application
	Figure 3. i960 ® RP Processor Block Diagram
	Figure 4. i960 ® JF Processor Core Block Diagram
	Figure 5. i960 ® RP Processor Register Model
	Figure 6. Register Cache Example
	Figure 7. Instruction Cache Hit Rate Comparison
	Figure 8. Performance Simulation for Various Cache Sizes
	Figure 9. Application Code Density
	Figure 10. Physical and Logical Memory Control Example
	Figure 11. i960 ® RP Processor Data Flow Requirements
	Figure 12. i960 ® RP Processor Bridging Operation
	Figure 13. ISA Mode Address Forwarding
	Figure 14. VGA Compatible Address Forwarding
	Figure 15. Primary ATU Inbound PCI Address Translation Example
	Figure 16. Private PCI Address Space
	Figure 17. Overview of Circular Queue Operation
	Figure 18. DMA Chaining Operation
	Figure 19. Demand Mode DMA Example
	Figure 20. Local Bus Arbitration Example
	Figure 21. Non-Interleaved DRAM Example
	Figure 22. Interleaved DRAM Example
	Figure 23. 8-bit Memory Example
	Figure 24. 32-bit SRAM/Flash Memory Example
	Figure 25. PCI Interrupt Steering
	Figure 26. Connecting the IDSEL# Signal Example

