1960° Processor Compiler
User's Guide

Order Number: 651230-002

Revision Revision History Date
-001 Original Issue. 02/96
-002 Revised for release 5.1 01/97

In the United States, Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation

P.O. Box 7641

Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number:
1-800-548-4725
In locations outside the United States, contact your local Intel sales office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any
errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office or distributor to obtain the latest specifications before placing your order.

* Other brands and names are the property of their respective owners.

N
oty

recycled paper Copyright[] 1996, 1997. Intel Corporation. All rights reserved.

Contents

Chapter 1 The CTOOLS Compilation System

FEALUIES ... e 1-1
Compatibility and Conformance to Standards.................... 1-2
About this Manual ... 1-4

Audience DesCrPiON........ccoovieieeeeee e 1-6

Licensing and Copyrights ... 1-6

UNIX and Windows Conventions.............ccccceeevvveeenennnnn. 1-6
CUSIOMET SEIVICE.....cciiiiiiieiei e 1-7
Where Do You GO From Here?............evvvvvvvevevivinnnniiniinnnnns 1-7

Chapter 2 gcc960 Compiler Driver
Controlling the Compilation System with gcc960 2-1

Invoking the Compiler with gcc960.............cooeveviiiinnnnnn. 2-2

gcc960 Sample Command LiNesS..........cooovvvviiiiiiiiinnnnnn. 2-3

gcc960 Linker OptioNS.........ccovvviiiiiiiiiiiiiiiiieeeieeeeeeeeeeee 2-5

gcc960 and Predefined Macros.........cccevveeeiveeeiiiinneeenn. 2-6
gcc960 and File USeoooiiiiiiiiiii 2-8

INPUE FIIES ... 2-8

INCIUAE FilES ... 2-9

OULPUL FIlES .. 2-9
CGLD FHlES ..o 2-11
OCCOB0 OPLIONS ... 2-13

Option Arguments and SYNTaXcccceeeeeereiinnnnnieenns 2-15

1960 Processor Compiler User's Guide

Chapter 3

Chapter 4

iIc960 Compiler Driver

Controlling the Compilation System with ic960................... 3-1
Invoking the Compiler with iC960.............ccceeviiiinnnnnnnn. 3-2
ic960 Sample Command LiNeS.............uuvvieviiiemiiienniinnnns 3-3
IC960 Linker OPLtiONS.........vuvveeieiriiiiriiiieeiiinieeniineeeeneeinnees 3-4
ic960 and Predefined Macros.............cceevvevvieieeeeeeeeennnn. 3-6
ic960 and Environment Variables.............ccccvvvvviiiiiinnns 3-8

IC960 and File USEovviiiiiiiiiiiiiiieieeeeeeeeiee 3-11
INPUE FIlES ..o 3-11
INClUdE FilES ..cooviiiiiiiiiiiieeeeeeeeeeee e 3-11
Temporary Files.........ooo e 3-12
OULPUL FIlES ..o 3-12

IC960 OPLIONS ..ot 3-15

Option Arguments and SYNTaXccceeeeeeeeeeeeeeeeeeeeeeeeeeenne. 3-17

Program-wide Analysis and Optimization

1o o [[1[0} o 4-1
Individual and Program-wide Optimizations................... 4-1
ABOUL Profiling ..o 4-2

Creating Program-wide and Module-local Optimizations....4-2
Specifying the Program Database Directory.................. 4-2
Compiling for Program-wide Optimization with the fdb
OPUION ..t 4-3
Global Decision Making and Optimization Using the
CAM OPLION ...t 4-3
Selecting Modules for Optimization with Substitution
SPECITICALIONS ... 4-4

Contents

Profiling Your Programiiiiiieeiiiieiecee e 4-5
Compiling for Profile Instrumentation with -fprof............ 4-5
Collecting a Profile.........i, 4-5
Building Self-contained Profiles with gmpf960............... 4-6
Using Profiles During Global Decision Making and
Optimization with -gcdm,iprofccccevvvvviiiiiiiiiiieenee. 4-7
Obtaining Program Coverage Analysis with gcov960....4-7

Using make To Perform Program-wide Optimizations........ 4-7
Adapting Makefiles for Program-wide Optimization....... 4-8

Using Makefiles with Program-wide Optimizations for
Common Development Tasks

Runtime Support for Profile Collectioncccoevvvvvvvnnnnn. 4-15

Profile Initialization...............oo oo 4-15
Chapter 5 Profile Data Merging and Data Format (gmpf960)
Merging Profile Datacoooeeiiiiiiiiiiieee e 5-1
gMPFIBO0 INVOCALION.......eiieeeeeeeeee e 5-2
Profile Format Specificationccccccuvviiiiiiiriiiiiiiieeeeee. 5-4
Profile Data Structuresccccoeieiiiiiiiiiiiiens 5-4
default.pf File FOrmat.............oovvvvviiiiiiiiiiiiiiiiiiiiiiens 5-4
Creating a Runtime Report with gmpf960ccccnee 5-6
Chapter 6 gcdm Decision Maker Option
gedm OPLioN SYNTAX......ceeeiiiiiiei e 6-1
gcdm Option ArgUMENTSoooeiiiiiiiiiiiiieeeeeeeeeee e 6-2
Substitution CoNtrolScovvvvvviiiiiiiiiiiiieeeeee 6-2
Whole-program Optimization Option (Category 1)......... 6-3
Module-local Optimization Options (Category 2) 6-3
Miscellaneous Substitution Options (Category 3).......... 6-5

External Reference Controlsc.ovevevviiiiiie e, 6-7

1960 Processor Compiler User's Guide

Inline Level Control...........coevvvvvviiiiiiiiiiiiiiiiiiieeeeeeeeee 6-7
Input Profile Control............coovvvvviiiiiiiiiiiiiiiiiiiiieeeeee 6-8
Fast Memory CONtrolSuveeeveiiiieiiiiiiiiiiiiiieeeeeeeeee 6-8
Dryrun Control ..o, 6-9
Report CoNntrolsoeevvveiiiiiiiiiiiieeeeeee 6-9
Module-set Specificationceevvveveieiieeeeiiiiiiiiiiiiiiiens 6-13
Chapter 7 Language Implementation
Data Representationcccoooeeivieiiiiiiiineeeeeee e 7-1
SCAIAIS. .. 7-1
AQOrEgaLESceeiiiiie e 7-4
Other Type KeYWOrdSccoooiiieeeieeeeeeeeeeeeee e 7-14
Calling CoNVENLIONSuuiiiiiiiiiiiiiiiiiii e 7-14
DEfiNItIONS....ceiiiiiiiiiiiiiieeeeeeee e 7-15
Parameter Assignment to Registerscccccceeveeeennn. 7-17
Argument BIOCKS ... 7-17
Return Values..........cccccciii, 7-18
Compiler Implementation..............ccccvvvvieiiiimmireeeieeeeeeee 7-18
Object Module Section USe.............uvvveiiiiiiiiiiiiiiiiiiiiiiiiinnns 7-19
Pragmas........ooueiiiiieiiie e e 7-20
#pragma align [for gcc960 driver]vvvvvvvvveiiviiennnnns 7-20
#pragma align [for ic960, or for gcc960 with
IC960 OPLION] ..eeiiiiiiiiiiiiiiei ettt 7-22
BPragma CAVEuuiiieiiiieieie et e e ee e 7-26
HPragma COMPIESScvvuuieieriiieereenae e ee e e e re e 7-30
#pragma i960_align [for gcc960 and ic960]................... 7-31
#Pragma inline ... 7-31
H#Pragma iNterruptoooovviiiiiiiiiiieeeeeee e 7-32

HPIagMal ST ..o 7-34

Contents

HPragma OPLIMIZE ... 7-34
HPragma PACK.uuuueiiiiiiiiiiiiitiiii 7-35
FPragMma PUMEoeeeeiiiis e eeeeeeets e e e e e e e e e e ennnes 7-37
HPragma SECHONuuuiiiiiiiiiiiiiiiiiiiiiiaee 7-38
HPragma SYSIEMviiiiiieiiee e 7-38
Language EXIENSIONScoociiiiiiiiiiiiece e 7-39
Statements and Declarations Inside of Expressions7-40
Naming an EXpression’s TYPecccoevvveiiinniiiiiiinnnnns 7-40
Referring to a Type with typeof.............oooeeiiei 7-41
Generalized Lvalues...........ccccociiiii 7-42
Conditional Expressions with Omitted Middle
OPEraNdS.....cooeiiiiiieeee e 7-44
Arrays of Length Zero..........ccooociiiiiiiiee 7-44
Non-lvalue Arrays Can Have Subscripts........................ 7-45
Arithmetic on Pointers to void and Pointers to
FUNCHIONS ... 7-45
Non-constant Initializers ... 7-46
CoNStructor EXPreSSioNSccvvvvvviiiiiiiiiiiiiiiieeeeeeeeeeeee 7-46
Declaring Attributes of FUNCLIONS........ccoviieiiiiiiiiiieee, 7-47
Inquiring about AligNment.............cccoviiiiiiiiiiiiiiiiies 7-48
Inline Functions Are as Fast as Macros......................... 7-48
Controlling Names Used in Assembly Code................... 7-50
Specifying Registers for Local Variables 7-51
Alternate KeYWOrdsccoooooiiiiiiieieeeeeeeeee e 7-51
Inline Assembly Language.............euvveveeviiiiiiiiiiniiiiiiiiiiiines 7-52
INEFOTUCTION. ...t 7-52
ReESOUICE USAgE.......ii it 7-52
asm StatemMentsooeviiiiii e 7-53
AaSM FUNCHIONSoooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 7-70

Vii

1960 Processor Compiler User's Guide

Chapter 8 gcc960/ic960 Compatibility

char and short Parameters ... 8-1
enum Variable Byte Count.............cccccviiiiiiiiiiiiiiiiiinnns 8-1
CNAE TYPES .. 8-2
Identifying ArchiteCturesoeuvvvveeeiieiiiiiiiiiiiiieiieeee, 8-2
#pragma align.......ooooii 8-3
MIC3.0-compat OPLiON.oiiiiiie e 8-3
MIC2.0-compat OPLiON. ... 8-3
Chapter 9 Position Independence and Reentrancy
Position-independent Code and Dataccccvveeeeeennn.. 9-1
Position-independent Datacccoeeeiiiiiiiiiiinn, 9-1
Position-independent Code ..., 9-2
Example: Position-independent ROM Code.................. 9-3
Guidelines for Writing Relocatable Programs................. 9-5
Reentrant FUNCLIONS...........ooooiiiiiii 9-6
Designing Reentrant FUNCLIONScccovvvviiiiiiiiiinnnnnn. 9-6
Chapter 10 Initializing the Execution Environment
StartuP COUEoveeiiiieieeeeeeeee e 10-1
RAM-based Initializationcccvvvviiiiii, 10-4
ROM-based Initialization..........ccccccvviiiiiiiii, 10-4
Linker Configuration Files..............oooiiiiiiiiie 10-5
RAM-based Configuration File.............cccccciin. 10-6
ROM-based Configuration Fileccccccviiin. 10-6
Chapter 11 Optimization
Optimization Categories and Mechanisms............c.cccc....... 11-1
Constants and Expression Evaluation.................cccccceeennnes 11-3
Common Sub-expression Elimination.....................c...... 11-3
Constant Expression Evaluation (Constant Folding)11-4
Dead-code Elimination.................eevvvveeeeeieiieneiiiiiiiineennnns 11-5
Identity CollapSingcoevvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 11-5
Constant Propagation...............eeeveeeeeeeeeeeeiieieieeeeeeeeeeeeen 11-6

viii

Contents

Chapter 12 Caveats

Calls, Jumps, and Branchescccoooeeiiiiiiiiiiiieeeeeeeees 11-9
Branch Optimizations ... 11-9
Branch PrediCtion ... 11-10
Identification of Leaf FUNCLIONS................uvviiiiiiiiiiiiiiinnns 11-11
Inline Function EXPanSionccccceeiimmiimiiiiiiiiiiinnnns 11-11
Tail-call Eimination.............ccoooiiiiiiiiiiiieeeeeeeeee 11-12

LoOp OPtiMIZALIONSvvvviiiiiriiiiiiiiiiiiiiiieieeeees 11-14
Movement of Loop-invariant Codecccoeeeeeeeeeennn. 11-14
Induction Variable Eliminationcccccn. 11-14
LOOP UNFOIING ... 11-15

Memory OptimiZations............oooeeiiieeeeeereees 11-15
Global Alias ANalySiS............uuuuiiiiiiiiiiiiiiiiiiiies 11-15
Variable Shadowingcccovvvviiiiiiiiiiiiiiiiiiiiiiiee 11-16

REGISTEN USE ... 11-16
Local Variable Promotion ... 11-17
Register Managementccoooeeeeeieieeieeeeeeeeeeee e 11-17
Register Spilling.........oooooeiiii s 11-17

Instruction Selection and SeqUENCING............ceevvveveeeeeennnee. 11-18
Code COMPIESSION.....cevviiiiiiiiiiiiiiiieeeieeeeeee e 11-18
Code Scheduling ... 11-18
Specialized-instruction Selection.............ccovvvevviiicennnnn. 11-20

Program-level Optimization ... 11-20
Inter-module Function Inlining ... 11-20
Superblock FOrmationeeevvvvviiiieiiiiiiiiiiiiiiiiiiieee 11-21
Profile-based Branch-prediction Bit Setting................... 11-22

Aliasing ASSUMPLIONScoovuiiiiiiieeieeeeic e 12-1

Alignment ASSUMPLIONS.......uuuiuiiiiiiiiiiiiiiiiiiiaees 12-3

Volatile OBJECESovviiiiiiiiiiie e 12-4

Known Problems Using the Compiler............ccccccoiiininnnns 12-6
Type PromoOtioNcevvviiiiiiiiiiiiiiiiieinenieeieeeieeeeeeeeeees 12-6
Prototype SCOPE.....ouviiiii i 12-6

1960 Processor Compiler User's Guide

Chapter 13 Messages

Index
Figures

longjmp and Volatile Data............ccccooeeeiiieeiiiiiiiiieeeeeeee, 12-7
Incorrect debug information generated for arrays with
unspecified bounds............ccccvvvviiiiiiiiii 12-7
C Version Incompatibilitiesccccooeiiiiiiiiiiiiiiiis 12-8
String Constants Read-only...........ccoooieeiiiin 12-8
No Macro Argument Substitution in Strings................... 12-8
External Variables and Functions in Blocks................... 12-8
Combining long with typedef Nameso. 12-9
Using typedef Names in Function Parameters 12-9
Whitespace in Compound Assignment Operators......... 12-9
Flagging Unterminated Character Constants................. 12-10
Disguised varargs or stdarg Routines..........ccccccvvvvvveeen. 12-10
TroubleSNOOINGuviiiiiiiiiiii e 12-10
Undefined References..........cccccovvviiiiiiiii 12-10
C Interrupt Service Routine Failures................cccoeveeenee 12-11
Preventing Structure Padding............cccccevvvviiiiiiininnnnnn. 12-12
Breakpoints Inside Interrupt Handlers 12-15
Messages on the Standard Error Device....................... 13-2
Messages in the Listing File ..., 13-3
7-1 Natural AIgnMeNt............euviiiiiiiiiiies 7-8
7-2 User-constrained AlIgnmentccevvvvveeeveeveeeeenne. 7-9
7-3 Optimal Natural Alignment of std_struct 7-12
7-4 Backward-compatible Natural Alignment of
SEA_SIIUCT. .. 7-13
7-5 #pragma noalign Alignment of std_struct 7-13
7-6 #pragma align Alignment of std_struct 7-14

9-1 Memory for Hypothetical Position-independent

APPIICATION ... 9-4

11-1 Superblock Formation Process...........ccccccceeveieinnnnnnn. 11-21

Contents

Tables

1-1 Compiler LIMItS.....uuuiiiieieiiieeceee e 1-3
1-2 Chapter DesCriptionS..........ccooeeeeeiiiiiiiiiiiines 1-4
2-1 Linker Options Accepted by gcc960...........ccceeeeeennnn. 2-6
2-2 Intermediate Inputs and OULPULS...........cevvvvvvvrernnnnnns 2-10
2-3 gcc960 Option SUMMAIYcccoviiiiiiiiiiiiiiiiiieeeeeeeee 2-15
2-4 Mcore Supported Architectures...........cccccvvvvvvveennnnne. 2-41
3-1 Linker Options Accepted by ic960..............cceeeeeeeennn. 3-5
3-2 Intermediate Inputs and OULPULS...........ceevvvvvvrerrnnnnnns 3-13
3-3 ic960 Option SUMMANYcccvvviiiiiiiiiiiiiiiieieeeeeeeeeeee 3-17
3-4 Gcore Supported Architecures..........ccevvvveeiiieeenieeens 3-37
3-5 Stop-after Option Phases and Output....................... 3-59
6-1 gcdm Option ArgUMENTS........coovviiiiiiiiiiiiieiieeeeeeeeeeee 6-1
7-1 Scalar Data TYPES.....cccovviiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee 7-2
7-2 Example Offset Values...........cccoeeiiiiii 7-36
7-3 Return Value Class Matching..........ccccccvvvvviiiiiieennnnnne. 7-75
7-4 Argument Category to Parameter Class Matching

AN COBICION.....eeeiiiiiiiiiiiieieebebeebbbeeee bbb 7-75
7-5 C Data Types and asm Classes...........cccceeeeinnnnnnnnns 7-78
8-1 Architecture Macros and Compatibility 8-2
11-1 Optimizations and Olevel Settingscccccvvvvvvnnnns 11-2
11-2 Examples of Constant Expression Evaluation........... 11-4
11-3 Examples of Identity Collapsingcocoeveeeeeeeenenn. 11-6

Xi

The CTOOLS Compilation System

This manual provides operating instructions and other information on the
CTOOLS compilation system. This system consists of a compiler and two
drivers that provide the user interface to the compiler, gcc960 and ic960.
These two interface drivers allow backward compatibility with software
developed using GNU/960 and CTOOLS960 respectively.

Features

The compiler lets you use the following features to devafmgications:

» Use of either the gcc960 or ic960 compiler driver to invoke and
control translation and linking.

» Creation of a run-time performance profile of your application.
Optimizations based on this profile include inter-module optimizations
and preferential use of fast memory regions for variables that are
heavily used. For an overview of the program-wide optimization
process, including profile-driven optimization, see Chapter 4. For
descriptions of other optimizations, refer to Chapter 11.

» Callingfunctions written in i960 processor assembly language source
text, or including in-line assembly language in your C program.

» Stopping the compilation process to examine intermediate results after
syntax checking, preprocessing, compilation, assembly, or incremental
linking. (See Chapters 2 and 3.)

» Using a single command to translate and link modules into a complete
ROM-able or executable program. (See Chapters 2 and 3.)

11

1960 Processor Compiler User's Guide

1-2

» Using the CAVE pragma to compress functions, thus reducing code
size. During program execution, these functions are decompressed
when called. For more information on the CAVE and other pragmas,
see Chapter 7.

» Creating blended code with the newcore0-3 and-Gcore0-3
options. With these options, you can generate code that is compatible
with multiple 1960 processor types. For more information, see
Chapters 2 and 3.

Compatibility and Conformance to Standards

The compiler runs on a UNIX* or a Windows* 95/NT* host system and
generates object code for any 1960 commercial processor. The translation
and code generation phases use the instruction set for the 1960 processor
that you specify.

The compiler's implementation of C conforms to the ANSI standard for
the C language (X3.159-1989). One exception is static pointer
initialization in applications using position-independent code or data
(described in Chapter 9). Additionally, the compiler allows use of in-line
assembly language in the C source text.

The ANSI standard specifies that a conforming implementation of a C
compiler must meet minimum requirements for certain translation limits.
In all cases, the compiler exceeds ANSI limits. Table 1-1 lists the tested
levels for each translation limit and compares them to ANSI minimum
requirements. Available memory determines actual limits in a host
system.

The CTOOLS Compilation System

Table 1-1

Compiler Limits

Limit

Control structure nesting levels
Conditional compilation nesting levels
Declarator modifiers

Declaration parenthesis nesting levels
Parenthesis nesting levels

Significant characters for internal identifier
Name length for external identifier
Identifiers in a single block

Macros simultaneously defined
Parameters per function call

Characters in a logical line

Characters in a string

Bytes in an object

Include file nesting levels

Case labels in a switch

Members in one structure or union
Enumeration constants in one enumeration
Structure nesting levels

External identifiers per file

Parameters per macro

ANSI
Minimum
15

6

12

31

32

31

6

127
1024
31
509
509
32767

257
127
127
15
511
31

Tested
Minimum
128
32

32

64
128
128
33
1024
4096
128
4096
4096
65535
32
1024
512
512
64
2048
128

1-3

1960 Processor Compiler User's Guide

1-4

About this Manual

This manual contains the following chapters:

Table 1-2

Chapter Descriptions

Chapter
Number

1.

Title

The CTOOLS
Compilation
System

gcc960 Compiler
Driver

ic960 Compiler
Driver

Program-wide
Analysis and
Optimization

Profile Data
Merging and
Data Format
(gmpf960)

gcdm Decision
Maker Option

Description

Introduces the compiler and provides
information on using this manual.

Teaches you how to use the gcc960
command-line interface and provides a
complete list of command line options.

Teaches you how to use the ic960 command-
line interface and provides a complete list of
command line options.

Tells you how to use some of CTOOLS most
powerful optimization features:

¢ individual module optimizations

e program-wide optimizations

e run-time profiling

Explains how to use gmpf960 to merge the
execution profile data you collected in
Chapter 4. You also learn how to use
gmpf960 to create a report that shows how

many times each basic block was “hit” or run
during program execution.

Describes the gcdm option, which invokes the
gcdm960 global optimization decision maker
during the link process. The decision maker
then invokes the compiler and linker as
necessary to perform program-wide
optimizations.

continued [

The CTOOLS Compilation System

Table 1-2

Chapter Descriptions (continued)

Chapter
Number Title
7. Language
Implementation
8. gcc960 / ic960
Compatibility
9. Position
Independence
and Reentrancy
10. Initializing the
Execution
Environment
11. Optimization
12. Caveats
13. Messages

Description

Describes data representation, register use,
object file format use, and pragmas for
modifying code generation.

Describes the incompatibilities between ic960
and gcc960.

Provides information on writing 1960
processor applications that require position-
independent or reentrant programs.

Describes the initialization process for the
1960 processor execution environment,
including the startup assembly-language
routine, configuration files, and associated
options.

Describes the different ways in which the
compiler can optimize your program and
explains ways to control optimization.

This chapter provides useful programming
tips on:

e Aliasing assumptions

¢ Alignment assumptions

« Volatile object

¢ Known problems

e C version incompatibilities

e Troubleshooting

Describes the diagnostic messages that the
compiler produces.

1-5

1960 Processor Compiler User's Guide

1-6

Audience Description

This manual assumes that you are familiar with the i960 processor
architecture, C and assembly language programming, and your host
computer's operating system.

Licensing and Copyrights

Refer to tha960 Software Tools License Guifie licensing and copyright
statements.

UNIX and Windows Conventions

This manual tells you how to use the compiler in both UNIX and Windows

95/NT systems. This manual uses the following conventions:

« Command-lines appear without a preceding prompt.

» Paths use the UNIX forward slash tather than the Windows
backslash\() for pathnames.

« Command-line option examples use the UNIX dagipefix rather
than the Windows forward slash)(prefix.

» Environment variables are referenced using the UNIX dollar-sign
(e.g.,$1960BASE), not the Windowsocharacter.

NOTE. In UNIX, only the dash | is accepted as a prefix for a
command-line option. In Windows, both thednd the () are accepted
as a prefix for a command-line option.

The CTOOLS Compilation System 1

Customer Service

Where Do

If you need service or assistance with CTOOLS, see @etting Started
with the i960 Processor Development Tawolgnual.

You Go From Here?

If you installed the CTOOLS GNU interface, go to Chapter 2 for
information on using the gcc960 compiler driver. If you installed the
CTOOLS/960 interface, go to Chapter 3 for information on using the

ic960 compiler driver. Once you are familiar with the compiler driver
interface, you are ready to read Chapters 4 through 6, where you learn
how to use some of the more advanced features of the compilation system,
including whole program optimizations, profiling, and using the gcdm

global decision maker program.

1-7

gcc960 Compiler Driver

This chapter describes how to use the gcc960 driver program to control the
compilation system. Topics include:

* running the compilation system

» sample command lines

» predefined macros

« command line options and their modifiers

Controlling the Compilation System with gcc960

gcc960-style translation and linking requires use of the gcc960 driver,
preprocessor, compiler, assembler, and linker.

The gcc960 compiler drivepdc960.exe in Windows,gcc960 on Unix)
controls the preprocessapp.exe in Windows,cpp.960 on Unix) and

the compiler {cl.exe in Windows,cc1.960 on Unix). It can also

invoke the assembiler, linker, and gcdm960 optimization decision maker.

Command-line options and environment variables allow you to control the
compilation.

gcc960 controls preprocessing, compilation, assembly and linking.
» Filenames ending it are taken as C source to be preprocessed and

compiled.

» Filenames ending in are taken as preprocessor output to be
compiled.

» Compiler output files plus any input files with names ending iare
assembled.

* Input files with names ending i8 (uppercase) are preprocessed and
then assembled. (UNIX only.)

2-1

1960 Processor Compiler User's Guide

» The resulting object files, plus any other input files, are passed to the
linker to produce an executable.

» Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see Chapter 4.

Invoking the Compiler with gcc960

The gcc960 command-line syntax is:

gcc960 [- option ... [path /] filename ...[@ response-file]
gcc960 is the compiler driver executable filename.
option is a compiler option. Case is significant in

options and their arguments. Multiple single-
character options cannot be grouped: is
different from-d -r . When two or more
options contradict each other, the right-most
option in the command line takes precedence.
For example, the following command line sets
the value of the symbalto 132:

gcc960 -DL=80 -DL=132 proto.c

Note that the gcc960 compiler driver does not
check the command line options for validity.
Invalid options are ignored without producing a
warning message.

On UNIX, the compiler recognizes a letter
preceded by a hyphen)(as an option. In
Windows, the compiler recognizes a letter
preceded by either a hyphen pr a slash/() as
an option. For exampled specifies the
Architecture option for UNIX or Windows.
However, on a Windows system, also
specifies the architecture option.

gcc960 Compiler Driver

path

identifies the directory containing the file named
by filename . Not specifyingpath for a

filename causes gcc960 to search in the current
directory. Eachilename not in the current
directory requires a separateth specification.

NOTE. Although Windows pathnames require backslasheshis
manual shows paths using the forward slash required by UNIX (

filename

@esponse-file

is the name of a source, preprocessed source,
assembly-language, or other file (e.qg., linker
directive file) to be processed by the compilation
system. The gcc960 command line allows
specification of more than one

[path 1 filename

Open the named response file and read in its
contents as if they had been typed on the
command line. Response files are a convenient
way to store commonly-used command line
options, and a way to get around the 128-
character limit in Windows command lines.

Response files can contain comments. Lines
whose first non-whitespace charactet iare
treated as comment lines, and ignored.

gcc960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source files name@nd
t2.c and that you are generating code for the i960 CA architecture.

2-3

1960 Processor Compiler User's Guide

2-4

Preprocessing a Source File

To preprocess a source file, use the command:

gcc960 -E tl.c

-E informs the compiler to preprocess the source
file and echo the output to stdout.

Generating Assembly Code

To generate assembly code for the i960 CA architecture, use the following
command.

gcc960 -S -ACA tl.c
-S instructs the compiler to generate assembly code.

-A specifies the 1960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

gcc960 -c -g -ACA tl.c

-g instructs the compiler to generate debug
information.
-C instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executable file) for a Cyclone board with
a CA processor, use the following command.

gcc960 -ACA -Tmeycex -g -O tl.c t2.c -o test
The above command compiles the modules tl1.c and t2.c and links them

with appropriate libraries to generate an absolute module targeted for a
Cyclone i960 Cx evaluation board.

-Tmcycex instructs the compiler that you are targeting a
Cyclone i960 Cx evaluation board.

gcc960 Compiler Driver

-0 causes the compiler to perform some basic
optimizations on the generated code.

-0 instructs the compiler to name the generated
executable test.

gcc960 Linker Options

When you do not specify a target with tihrerget option, gcc960 does

not attempt to link programs for a specific target board. Unless otherwise
specified,c and.s files are compiled and/or assembled, and the
following linker command is issued:

gld960 -AKB $G960BASE/lib/crt960.0 file .o...-lgf -Ic -Im

To link for a different target, you can change the crt (startup) file and add
board and monitor support libraries.

To link for another environment, the options andnostdlib prevent
gcc960 from including the default C startup files or libraries in the link,
allowing them to be fully specified by the user. For example:

gcc960 -crt -nostdlib mycrt.o file. o.. -lc -Imylib

You can invoke gcc960 to create object files in either the b.out, COFF or
ELF object module format. The compilation system acceptscthie

option to generate COFF and thef option to generate ELF; these
options override the gcc960 driver's default format option, which is

Fbout .

For more detailed information, see the following discussions of compiler
invocation and options.

2-5

1960 Processor Compiler User's Guide

Table 2-1 lists the linker options that gcc960 passes directly to the linker.

Table 2-1 Linker Options Accepted by gcc960

Option Name Description

e Entry point defines entry point other than default for
beginning execution of program.

gcdm Decision Maker invokes gcdm960 decision maker.

I Archive file specifies an archive file as input.

L Library search adds directories to search for libraries,
configuration files, and startup object files.

r Relocation retains relocation information in the output
object file.

s Strip strips line-number entries and symbol-table
entries from the linker's COFF output file.

u Unresolved introduces an unresolved symbol, causing the

Symbol linker to search symbol tables for resolution of

the reference.

X | x Compress X removes all symbols from the output symbol
table; x removes only local symbols.

y Trace symbol traces a symbol; indicates object files where it
appears; provides other information.

z Time stamp suppresses COFF time stamp in linker output
file.

gcc960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI-standard macros and macros specific to the i960 processor
architecture. The (Undefine) option removes i960 processor-specific
macros but not ANSI-standard macros.

gcc960 Compiler Driver

The following macros are available in accordance with the ANSI standard
for C, as described in the bodk;, A Reference Manual

_DATE__ _FILE__LINE_ _TIME__ _ STDC__

The following macros are predefined by the compilation system when
invoked with the gcc960 driver program:

__GCCY60_VER is defined to a decimal number that can be used
to check the version number of the compiler.
The number is expressed in decimal as
MmmPPRMhereMis the major version number,
mms the minor version number, afPPPis an
internal version number that is used to track the
patch level. So, for example, R5.0 patch level
4032 have GCC960 VERdefined to be
5004032.

__i960 indicates the i960 processor environment. The
compiler defines_i960 automatically. This
macro can be used to identify the parts of a
program specific to the 1960 processor.

__i960 xx indicates the 1960 processor instruction set in
use. The compiler automatically defines the
~_ 1960 xx macro. Thex is SA, SB, KA, KB, CA
CF, JA, JF, JD , HA HDQ HT, orRP. Definition of
xx depends on the specific 1960 processor
instruction set specified by thie(Architecture)
option.

__PIC indicates that the generated code is position-
independent. Thepic
(Generate-for-position-independent-code) option
causes the PIC macro to be defined.

__PID indicates that the generated data is position-
independent. Thepid
(Generate-for-position-independent-data) option
causes the PID macro to be defined.

2-7

1960 Processor Compiler User's Guide

__i960_BIG_ENDIAN__ indicates that the generated code is arranged for
big-endian address space. ThgBig-endian)
option causes this macro to be defined.

__STRICT_ANSI__ indicates that C constructs not conforming to the
ANSI standard should be flagged. Tdmai
(ANSI) option causes these macros to be
defined.

__CHAR_UNSIGNED__ indicates that the plaithar type are treated like
theunsigned char type. This is the default.

gcc960 and File Use

The compiler, assembler, and linker all use filenames specified on the
gcc960 command line to find and create input and output files. In
addition, translation and linking require temporary work files.

Input Files

The gcc960 command line allows filename inputs that support
specification of assembly-language files, preprocessed source files, C
source files, object files, and libraries. The compiler driver determines the
type of each input file by the filename extension, as follows:

filename .c indicates a C source file that can contain macros
and preprocessor directives.

filename i indicates a preprocessed C source file.
filename .s indicates an assembly-language source file.
filename .S indicates an assembly-language source file that

can contain preprocessor macros and directives.

gcc960 Compiler Driver

The driver passes any other filename to the linker. The linker then
determines whether the file is an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if
you specify an assembly-languagi&fame .s) file and also specify the

S (Assembly) compile into assembly code option, gcc960 takes no action
on the assembly-language file.

Include Files

The gcc960 command line allows insertion of text from include files. The
#include preprocessor directive causes text insertion.

The |, I- and I. options affect the directories that are searched for the file
specified in the #include directive. These options are described in detail in
the Option Arguments and Syntagction. In the absence of the@ption,
gcc960 searches the current directory for #include “file” and
G960BASE/include directory for #include <file>.

Output Files

Specifying the optionss, -S, or-c causes the compilation system to
produce output of the last phase that completes for each primary input file.
Output can be preprocessed source, an assembly-language file, or an
unlinked obiject file. If no errors occur during processing, the output files
created by these options are usable as input to a future gcc960 invocation.
Table 2-2 lists the compilation phases and their inputs and outputs.

Specifying theclist option generates a listing. gcc960 produces a
separate list file for each primary C source file. The list file is named by
replacing the .c or .l extension with .L.

Specifying them option causes the preprocessor to output rules suitable
for a make tool describing the dependencies of each source file. The
clist and-M options are described in detail in the Option Arguments
and Syntax section.

2-9

1960 Processor Compiler User's Guide

2-10

Table 2-2

Intermediate Inputs and Outputs

Last Phase

Completed Option

preprocessing M E

compilation S

assembly c

linking (default)

Inputs

C source files

C source files
preprocessed files

C source files
preprocessed files
assembly files

C source files
preprocessed files
assembly files
unlinked object files
relinkable object files
libraries
configuration files

Outputs

display on standard
output

assembly-language file
listing files

unlinked object files
listing files

list files
executable file
relinkable object file

When specifying only one primary input file, théOutput) option names
a single output file. Specifying multiple primary input files, or not

specifying an output filename, causes gcc960 to use the primary input
filenames to derive corresponding default output filenames with the form

filename . e, where:

filename

is the primary input filename without its

extension.

is a single-letter extension indicating the contents

of a file, as follows:

s indicates an assembly-language file
from thes option.

0 indicates an object file from the
option.

L indicates a listing file from the
clist — option.

gcc960 Compiler Driver

.GLD Files

Unless otherwise specified, the destination directory for any output file is
the current working directory. ffiename.e already exists in the
destination directory, the compilation system overwrites the existing file.

The filenamea.out is the default for the executable COFF obiject file
from the linker, in the absence of an Output option when the compilation
proceeds all the way to the link step. For ELF files, the defaslis

and for bout files, the default lisout

The following examples illustrate the creation and use of output filename
extensions:

e The commandcc960 -c -clists proto.c protol.i
produces the object filgsoto.o andprotol.o and the listing files
proto.L andprotol.L

e The comman@dcc960 -c -0 proto_vi.o ~clist s proto.c
produces the object fil@oto_vi.o and the listing fileroto.L

 The commandcc960 -ACA -Tmcycx proto.c produces the
executable file.out .

The.GLD files provide a convenient mechanism for specifying default
options to the compiler and linker. It also provides a mechanism for
specifying the startup file and the libraries to be linked in. These files are
meant to be used with the gcc960 interface to the tools (GLD is an
acronym for gcc960 linker directive file even though it can be used to pass
options to the compiler as well).

By default, the installation program places severab files in the
directory G960BASH/lib. These files have been tailored to the
Cyclone evaluation boards. To illustrate, the santpl® file given
below is tailored for the Cyclone i960 Cx processor-based evaluation
board.

2-11

1960 Processor Compiler User's Guide

Example 2-1 Sample .gld File

gcc:-ACA

crt:%{!crt:%[~]/lib/%{mpid:%{G:crt960_e.0}%{!G:crt960_p.o}}
%{!mpid:%{G:crt960_b.0}%{!G:crt960.0}}}

1d:%{! Ttext:-Ttext 0XA0008000}%({*: -defsym
_heap_size=0x20000;_heap_base=(_end+0xf)&~0xf;_heap_end=_heap_base+_heap_size-
1;_stackbase=(_heap_end+0x40)&~0x3f -defsym fpem_CA_AC=0x100}

lib:%{!nostdlib:-Imn -IlI}

In the.GLD file, you can place any options that the tools accept on the
command line. For example, in the.D file shown in Example 2-1, you
see options for the gcc960 compiler driver and linker.

The command in thgce: section defines the architecture setting for the
gcc960 compiler driver. This setting is then used throughout the
compilation process. The options followinge: are treated in the same
fashion as if they were specified on the gcc960 invocation line.

The commands in thet: ,1d: , andlib: sections have a conditional
component built into them so that options could be included in a
conditional fashion. These sections determine the startup code, linker
options and the libraries that are passed on to the linker.

Thecrt: section is used to specify the startup code. In the example
given above, if thecrt option has not been specified on the compile
line, then the compiler driver uses the following for the startup code.

[G960BASE]/lib/crt960_e.o if both-mpid and-G options are on
[G960BASE]/lib/crt960_p.o if -mpid option is onG is off
[G960BASE]/lib/crt960_b.o if -mpid option is off andG is on
[G960BASE]/lib/crt960.0 if both-mpid and-G options are off

2-12

gcc960 Compiler Driver

Theld: section contains options that are passed to the linker. This
example includes commands to place.the section in at address
oxA0008000and defines various symbols that are used to setup the heap and
stack locationd-or more information on the linker directives used in this
sample file, see th®60 Processor Software Utilities User's Guide

Thelib: section in the above example is used to specify that the
compiler driver should pass on the optians1 and-lil to the linker

if -nostdlib option is off. This causes the linker to include the monitor
and the low-level libraries in its search path to lookup unresolved symbols.

gcc960 Options

This section describes the gcc960 compiler driver options that allow
control of various aspects of compilation:

Input processing Thec, E, n, P, Q ands are the Stop-after options.

and output They stop the translation and linking process
after the preprocessing, syntax checking,
compilation, or assembly phase. A Stop-after
option causes the compilation system to save the
intermediate output of the last phase to execute.

Thec (Keep-comments) and(Mix) options
affect the contents of the output file. The
(Output) option allows specification of the output

filename.
Specifying included Thei (Preinclude) and (Searchinclude) options
source text prepend and find include files of C source text.
Defining macros TheD (Define)andu (Undefine) options allow
specification of macros for conditional
compilation.

2-13

1960 Processor Compiler User's Guide

Control contents
of generated object
code

Assembler and
linker support

Whole-program
optimizations

Provide Information
on the compiling
process

2-14

TheA (Architecture) Fcoff | Felf (Object-
format),F (Fine-tune)f (Optimize),g (Debug),

G (Generate), and (Optimization-level) options
control the instruction set, object format, debug
information, and optimization level.

Thew(Pass) option relays options to the
preprocessor, compiler, assembler, and linker. In
addition, gcc960 recognizes some options as
linker options rather than compiler options.

Table 2-1 lists the options that are relayed to the
linker without the Pass option. For more detailed
information on linker options, see ti860
Processor Software Utilities User's Guide

Thefdb (Program Databasepyrof
(Instrumentation), angcdm (Decision Maker)
options allow for creation and use of information
necessary for advanced optimizations involving
multiple modules and optional execution profiles.
See Chapter 4 for an overview of whole-program
and profile-driven optimization.

Thew (Diagnostic) anch (ANSI) options

affect messages the compiler produces about

C syntax and semantics. ThéList) andz
(Listname) options specify the contents and
name of the listing file. The (Verbose)yv
(Version), and/960 (Version-exit) options

display information about preprocessor,
compiler, assembler, and linker options. The
Version option displays the versions of each
compilation component and the host operating
system. Thev(Warnings) option allows fine
control of the level of warnings emitted.

gcc960 Compiler Driver

Option Arguments and Syntax

Some compiler driver options take arguments. Case is significant in
options and arguments. A few options allow whitespace between the
option and its argument; this whitespace is shown in Table 2-3.

The options and arguments have default settings. In most cases, the option
is "off," that is, not in effect. Default settings of options and arguments

are summarized in Table 2-3 and further discussed in the detailed
description of the option. Some option defaults are affected by
environment variables, which are described inGletting Startednanual.

This chapter uses the following notation:

[item] Square brackets indicate that the enclosed item is

optional.

Horizontal ellipses indicate that you can use
multiple instances of the preceding item.

Table 2-3 gcc960 Option Summary

Option Name Purpose Default

Aarch Architecture Select the instruction set. AKB

ansi ANSI Detect non-ANSI source. off

C Comments Keep comments in preprocessor output. off

c Create Object Stop after creation of object file. off

clist arg ... Create listing Create a listing. off

crt Startup Do not use standard startup file. Use default

D macro Define Define macro. value=1
[=value]

darg Definitions Control macro processing. off

E Preprocess Preprocess source; terminate. Do not stop

continued [

2-15

1960 Processor Compiler User's Guide

Table 2-3 gcc960 Option Summary (continued)
Option Name Purpose Default
Fbout | Fcoff| Format Generate b.out, COFF or ELF object Fbout
Felf format.
fdb Database Build program database directory (PDB). No database
fprof Instrument Compile with instrumentation; build PDB. No instru-
mentation
f[no-]arg Fine-Tune Enable or disable an option. Varies with
option
G Big-endian Generate big-endian code. off
gllevel] Debug Include debug information in objects. No debug info
gcdm,arg... Decision-maker Invoke gcdm960 decision-maker. off
h[elp] Help Display invocation help; terminate. off
| directory Searchinclude Search directory for include files. off
-] 1. I-dash, I-dot Control include-file search order. off
ic960 iC-960 Accept iC-960 source dialect. off
imacros Macros File Specify macros file for preinclusion. off
filename
include Preinclude Prepend text to source files. off
filename
L directory Library Specify directory for library search. off
Directory
M|MD|MM| Make Generate make tool output. off
MMD
mstring Machine Machine-specific options. Varies with
option
nostdinc No Standard Exclude standard include (header) files. off

Include

continued [

gcc960 Compiler Driver

Table 2-3 gcc960 Option Summary (continued)
Option Name Purpose Default
nostdlib No Standard Excludes standard libraries. off
Libraries
O [level] Optimize Specify optimization level. 00
o filename Output Name output file. Varies with
object format
P Preprocess Preprocessor output control. off
Output
pedantic Pedantic Controls ANSI error and warning off
[-errors] generation.
S Assembly Stop after assembly-language output. off
save-temps Save Save intermediate files. Do not save
Intermediate
Tfile.gld Target Specify configuration file. off
traditional Traditional Allow traditional C. off
trigraphs Trigraphs Support ANSI trigraphs. off
U macro Undefine Undefine macro. off
\% Version Display version information. No display
v960 Version-exit Display version information and exit. off
\ Verbose Display invocation information. No display
W [no-]arg Warnings Enable/disable a warning. Varies
w No Warnings Inhibits warnings. off
Zdirectory Program Specify location of program database G960PDB
database directory (PDB). specifies PDB

2-17

1960 Processor Compiler User's Guide

2-18

A (Architecture)

Selects instruction set.

Aarchitecture
architecture is one of:

SA, SB, KA, KB, CA CF, JA, JD, JF, HA HD HT, orRP

Default

By default, the compiler uses the 1960 KB architecture.

Discussion

UsetheA (Architecture) option to specify the target instruction set. See
also themcore0 , -mcorel , -mcore2 , and-mcore3 options that let you
generate code that is compatible with multiple i960 processor types.

Note that with release 5.1 using tA&P option generates code that is
compatible with current and proposed future variations on the i960 RP
architecture.

You can use predefined macros in your source text to conditionally

compile code for the selected architecture. The compiler defines a
preprocessor macro indicating the selected architecture. The preprocessor
macro takes the form:

_ 1960 xx

XX iS SA, SB, KA, KB, CA CF, JA, JD, JF, HA HD HT,
or RP. The compiler selects the valuexaf
according to the architecture you specify.

The __i960 macro is defined for all architecture selections. Use
__i960 to identify parts of your program specific to the i960 architecture
but not necessarily specific to a particular processor.

gcc960 Compiler Driver

In addition, for compatibility with earlier releases, macros of the forms:
960 , 1960, 960 xx__and_ i960 xx__ are defined.

When you link object modules compiled with incompatible architectures,
the linker displays the following warning message:

file : architecture i960: XXincompatible with output

i960: YY

file is the first file containing incompatible
instructions the linker encounters.

XX is one of the two-letter architecture
abbreviations.

YY is one of the two-letter architecture

abbreviations.

ansi (ANSI)

Disable non-ANSI
features.

Disables features of gcc960 that are incompatible with ANSI C, such as
theasm, inline andtypeof keywords, and nonstandard macros such as
180960 . ansi also enables the ANSI trigraph feature.

See the table shown under thalitional option for a summary of the
macros defined when thesi or traditional options are used.
The alternate keywords_asm_ _, _ _inline_ _ and_ _typeof_

continue to function even if you speciysi . You would not want to use
them in an ANSI C program, of course, but it can be useful to put them in
header files that might be included in compilations done awith .

ansi does not cause non-ANSI programs to be rejected with errors. For
that, thepedantic-errors option is required in addition tosi .

2-19

1960 Processor Compiler User's Guide

2-20

The macro _STRICT_ANSI_ _ is predefined when theisi option is

used. Some header files may notice this macro and refrain from declaring
certain functions or defining certain macros that the ANSI standard doesn't
call for; this is to avoid interfering with any programs that might use these
names for other things.

C (Comments)

Keep comments.

Directs the compiler not to discard comments, and to pass them through to
the preprocessor output file. Comments in arguments of a macro call are
copied to the output before expansion of the macro call. Used with the
option.

c (Create Object)

Stop after creation of
object file.

Directs the compilation system to stop after creating the object file(s).
Object files are named by replacing, .i ,.S, or.s with.o at the end of
the input filenames. If you specify an object file as input, the compiler
does nothing with the file.

clist (Listing)

Creates a listing.

clist arg...

gcc960 Compiler Driver

Generates a listing of the types described below. The list file has the name
filename .L where filename is the name of the origiralfile. Multiple
arguments are allowedirg is one of the following letters:

s lists the primary source text, that is, source text
from files named on the command line.

i adds source text from included files to the
primary source text listing.

0 adds the assembly language generated by the
compiler to the listing file.

m adds expanded preprocessor lines to the primary
source text listing.

c adds conditionally noncompiled source text to
the primary source text listing.

crt (Startup)

Omit standard startup

file.
Do not use the standard C startup file when linking. A replacetment
file should come first in the list of object files. For all i960 processor types
except the RP, the standard startup filet&0.0 . Fori960 RP
processors, the standard startup filetig.o

D (Define)

Defines a macro.

D macro|[=value]

2-21

1960 Processor Compiler User's Guide

With no =value , definesmacro as 1. (This is exactly the samebas
macro=1.)

D macro =value

Definesmacro asvalue.

d (Definitions)

Control macro
processing.

« dD Tells the preprocessor to pass all macro definitions into the
output, in their proper sequence in the rest of the output.

« dM Tells the preprocessor to output only a list of the macro
definitions that are in effect at the end of preprocessing.

« dN Like dD except that the macro arguments and contents are
omitted. Only#define macro is included in the output.

These should be used only with, and they affect preprocessor output.

E (Preprocess)

Run only the C
preprocessor.

Directs compilation system to preprocess all the C source files specified
and send the results to standard output.

2-22

gcc960 Compiler Driver

Fbout | Fcoff | Felf (Format)

Specifies the object file
format.

Fbout

Fcoff

Felf

specifies the b.out object format. This is the
default. You can add thegoption to specify the
style of symbolic-debug symbols created. Note
that you cannot use this option with th&pP
architecture setting.

specifies the COFF object format, and causes the
assembler to be invoked as gas960c, rather than
gas960. You can add theoption to specify the
style of symbolic-debug symboils created.

specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than
gas960. If you add theoption, the DWARF

style of symbolic-debug symbols is used.

fdb (Database)

Builds optimization
database.

All modules subject to program-wide optimization must be initially
compiled with theédb option. This option causes the insertion of program
database information in the object modules, and it requires a minimum
module-local optimization level @1 (although higher module-local
optimization levels are allowed).

2-23

1960 Processor Compiler User's Guide

2-24

This option does not otherwise change the code or data generated for the
object modules. It simply makes optimization information collected
during the initial compilation available to gcdm.

Before using thélb option, you should read Chapter 4, Program-wide
Analysis and Optimization, and Chapter 6, gcdm Decision Maker Option.

If you intend to use execution profiles when optimizing your application,
you should read Chapter 5, Profile Data Merging and Data Format
(gmpfo60).

fprof (Instrument)

Instruments code for
profile creation.

This option inserts execution profile instrumentation code into the code
generated during compilation, so that when the linked program is
executed, a profile can be collected.

Before using thérof option, read Chapters 4 through 6 for general
strategies on using CTOOLS profiling and other optimization features.

This option enables thieb option, which instructs the compiler to insert
program database information into the object modules and create the
program databaserof also requires a minimum module-local
optimization level of O1 (although higher module-local optimization
levels are allowed).

When you use thiarof option, a special profiling library required for
profile collection (bgf) is linked automatically. If your target
environment does not support file 1/0, you must explicitly link an alternate
profiling library (ibg). The profiling libraries provided are described in
Chapter 2 of thé&d60 Processor Library Supplement

gcc960 Compiler Driver

Note that compiling with théorof option creates object modules useful
only for collecting a profile. If you compile withrof and later do not
want a profile, you must then use substitutions to replace every
instrumented module iprog , or you must recompile the modules without
thef prof option. See Chapter 4 for more information on this subject.

f (Fine-Tune)

Enable or disable
specific options.

In most cases, you will want to optimize code automatically by using the
variousO optimizations. (See the section on tbeoption.) In some cases,
however, you may want to enable or disable specific features for a given
optimization level. For example, at optimization le®e] you cannot

enable instruction scheduling wittthedule-insns . As with any
optimization process, you should first compile without the option and then
recompile with the desired option enabled/disabled. You can then compare
the generated assembly code and see if adding/removing the option
produced the desired result.

Before using any of these options, read chapters 4 through 6 for an
overview using the compilation system’s performance features.

f[no-Jasm Do [not] recognizeasm, inline or
typeof as a keyword. These words can
then be used as identifiers. You can use
__asm_ _,_ _inline_ _and
_ _typeof_ _ instead. This option
provides compatibility with strict ANSI
standards. See also thesi option.

2-25

1960 Processor Compiler User's Guide

f[no-]bbr

f[no-]coalesce

f[no-]coerce

f[no-]Jcond-mismatch

f[no-]Jcondxform

f[no-]constprop

2-26

Enable/disable basic block
rearrangment. This option is normally
used in a second-pass recompilation, but
it can also be used in single-pass
compilation.

Coalesces memory references into a
single larger memory reference, thus
taking better advantage of the i960
processor's burst bus. The compiler only
coalesces memory references that can be
proven to be contiguous and whose base
address can be proven to be aligned
properly. fcoalesce enables
fshadow-mem .

Enable/disable byte/short optimization.

Allow/do not allow conditional
expressions with mismatched types in
the second and third arguments of the
operator. The value of such an
expression is void.

Performs a special conditional
transformation that allows the use of the
1960 Jx, Hx and RP processors' sel<cc>,
addo<cc>, and subo<cc> instructions.
You cannot use this optimization unless
theAJx, AHx, or ARPoption is specified.

Performs constant propagation and
folding. This optimization replaces uses
of variables known to have a constant
value with the constant value, allowing
other optimizations to see these
constants and possibly generate more
optimized code.

gcc960 Compiler Driver

f[no-]Jcopyprop

f[no-]cse-follow-jumps

f[no-]cse-skip-blocks
f[no-]expensive-

optimizations

f[no-]fancy-errors

f[no-]float-store

f[no-]force-addr

f[no-]inline-functions

Performs copy propagation. This
optimization replaces uses of registers
that are destinations of register to
register copies with the source register
(when possible). This allows
unnecessary copies to be deleted later in
the compilation.

During common subexpression
elimination (CSE), scan through jump
instructions in only certain cases. This
is not as powerful as completely global
CSE, but allows for faster compilation.

Enable/disable a limited form of global
CSE.

Perform/skip a number of minor
optimizations that are relatively
expensive. This option is enabled with
optimization levelo2.

Display/do not display C source line and
caret () with error messages.

Store/do not store floating-point
variables in registers, and do not
perform common sub-expression
elimination on floating point
expressions.

Force/do not force memory address
constants to be copied into registers
before doing arithmetic on them. This
may produce better code.

Inline/do not inline all simple functions
into their callers. The compiler
heuristically decides which functions are
simple enough to be worth inlining in

2-27

1960 Processor Compiler User's Guide

2-28

this way. When all calls to a given
function are inlined, and the function is
declared static, then the function is
normally not output as assembler code in
its own right.

fint-alias-ptr indicates to the compiler that pointer
objects may be referenced as 32-bit
integers and vice versa.

fint-alias-real indicates to the compiler théat
double , andlong double objects (or
parts thereof) may be referenced as
32-bit integers and vice versa.

fint-alias-short indicates to the compiler that four-byte
integer objects may be referenced as
two-byte objects and vice versa.

The aliasing options listed above tell the compiler not to use certain kinds
of type information when disambiguating memory references, even though
ANSI section 3.3 “Disambiguation Constraints,” allows this.

The rules enforced by the aliasing options are transitive. For example,
when user code accesses partsoable objects ashort |, thenfint-
alias-real andfint-alias-short should both be used.

The rules are also applied recursivelgtacts and unions. That is to
say, wheriint-alias-ptr is in use, then a union that has a member of
pointer type is assumed to be aliased by 32-bit integersornby or
unions containing 32-bit integers.

Note that ANSI 3.3 requires the compiler to assumecthat references
alias all types, so code usinigar pointers is already correct and using
these options is not necessary.

Using all three aliasing options effectively disallows all use of type
information in memory disambiguation. This is bad both for compiler
performance and the efficiency of generated code.

gcc960 Compiler Driver

f[no-]keep-inline-
functions

f[no-]Jmarry_mem

fmix-asm

f[no-]rerun-cse-
after-loop

f[no-]sblock

fsigned-char |
fno-signed-char

f[no-]schedule-insns

Even when all calls to a given function
are inlined, a separate run-time callable
version of the function is still output.

Rejoin multi-word moves split apart by
fsplit_mem (where possible).

Intermix C code as comments within the
assembly code.

Re-run common subexpression
elimination after loop optimizations
have been performed.

Enable/disable superblock formation.
This option is normally used in a
second-pass recompilation, but it can
also be used in a single-pass
compilation.

Make the typehar be signed, like

signed char (fsigned-char) , or

make the typehar be unsigned, like
unsigned char (fno-signed-char).
fsigned-char is equivalent tono-
unsigned-char

By default,char variables are treated as
unsigned .

Attempt to reorder instructions to
eliminate execution stalls due to
required data being unavailable. This
allows other instructions to be issued
until the result of a previously issued
instruction is required.

2-29

1960 Processor Compiler User's Guide

f[no-]schedule-insns2

f[no-]shadow-globals

f[no-]shadow-mem

f[no-]space-opt

2-30

This option makes debugging more
difficult, since the code for multiple C
statements may become intermixed,
causing execution to make numerous
jumps while single-stepping.

Similar tofschedule-insns , but it
requests an additional pass of instruction
scheduling after register allocation has
been done.

Shadow memory locations with global
register variables where possible.
Memory locations that are known not to
change are temporarily allocated to
registers. This option makes debugging
more difficult, since objects allocated in
memory may not always be up-to-date.

Shadow memory locations with register
variables where possible. Memory
references whose addresses are known
to be the same are temporarily allocated
to registers. This option makes
debugging more difficult, since objects
allocated in memory may not always be
up-to-date.fshadow-mem is similar to
fshadow-globals , but its analysis is
considerably more sophisticated. In
most caseSshadow-mem allows more
optimization tharishadow-globals

but compile time is slower.

Optimize to reduce the size of the
generated code.

gcc960 Compiler Driver

f[no-]split_mem

funsigned-char |
unsigned char

f[no-]strength-reduce

fsyntax-only

f[no-]thread-jumps

f[no-Junroll-all-loops

f[no-Junroll-loops

Split all multi-word moves into
sequences of single word moves to
improve copy propagation.

Make the typehar be unsigned, like

(funsigned-char) , or make the type

char be signed, likeigned char
(fno-unsigned-char) . funsigned-
char is equivalent ténosigned-char

By default,char variables are treated as
unsigned .

Perform loop strength reduction and
eliminate induction variables. See the
Glossary for more information.

Check the syntax of C source file(s),
without generating an object file.

Test whether a jump branches to a
location where another comparison
subsumed by the first is found. If so, the
first branch is redirected to either the
destination of the second branch or to a
point immediately following it,

depending on whether the condition is
known to be true or false.

Perform the optimization of loop
unrolling on all loops. This is not
recommended as it increases code size
and usually degrades runtime
performance funroll-all-loops

enables botlstrength-reduce and
frerun-cse-after-loop

Break up a loop into several iterations of
the loop body. This typically improves
performance, since the loop's exit

2-31

1960 Processor Compiler User's Guide

2-32

f[no-]volatile

f[no-]volatile-global

f[no-]writable-strings

condition is not checked for each
iteration. In a few cases, however, the
increased code size may decrease
performance.

This option uses several decision criteria
determine how far to unroll a loop. For
example, when the loop body is small
and there are relatively few iterations, it
may choose to completely unroll the
loop. For loops with larger bodies and
more iterations, it may partially unroll
the loop and change the increment
counter accordinglyfunroll-loops

enables botlstrength-reduce and
frerun-cse-after-loop

Consider/do not consider all memory
references through pointers to be
volatile.

Consider/do not consider all references
to global variables to be volatile.

Store/do not store string constants in the
writable data segment and make them
unique. This is for compatibility with

old programs that assume they can write
into string constants.

gcc960 Compiler Driver 2

G (Big-endian)

Generate big-endian

code.
Compile for a target that uses big-endian memory. This option requires
thatFcoff orFelf be in effect. This option is also passed to
gas960c/gas960e agtt960. Whertis specified, the preprocessor
symbol__i960_BIG_ENDIAN__ is defined.

g (Debug)

Specifies debug

information.

gl level]

wherelevel specifies the amount of debug information. Note that the
meaning of level varies depending on the object format in use, as
described below.

Usinggo disables debug information. (This is the same as not using the
option.)

For b.out and COFF, debug level settingg,af1, g2, andg3 all have the
same effect: they specify “normal” debug information.

When the default object-file format (b.out) is selected, DBX-style
symbolic debug directives suitable for use only with gdb960 are output.

For ELF/DWARF, debug level settings @fg1, andg2 all have the same
effect: they specify all DWARF debug information except preprocessor
macros.

2-33

1960 Processor Compiler User's Guide

2-34

For ELF/DWARF, a debug level setting g specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

Theg (Debug) option does not inhibit optimization. When you specify the
g option but do not specify the(Optimize) option, the optimization level
defaults tooo.

Specifying an optimization level higher than can inhibit the

effectiveness of the symbolic debug information. For example, if you set

a breakpoint on a source line that has been removed during optimization,
the breakpoint is never hit. Or if you try to print the value of a variable

that has been optimized away, an erroneous value is displayed. In general,
as the optimization level increases, the reliability of the symbolic debug
information decreases.

When you are using the ELF object module formalf (), g causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more
reliable debugging under optimization. However, even with DWARF,
there are situations where debugging behavior does not agree with the
debugging behavior of unoptimized code.

gcdm, arg[,arg]... (Decision Maker)

Invoke gcdm960
optimization decision
maker.

gcdm, arg [, arg]...

The gcdm option provides a high level of automation for whole-program
or profile-driven optimization processes. The compiler driver and the
linker both use the gcdm option and its arguments.

gcc960 Compiler Driver

The gcdm option is flexible and powerful, and therefore requires a certain
level of understanding in order to use it effectively. For these reasons, it is
documented in a separate chapter (Chapter 6) in this manual. Before using
the gcdm option, you should read Chapter 4, Program-wide Analysis and
Optimization, and become familiar with the information in Chapter 5,
Profile Data Merging and Data Format (gmpf960).

| (Searchinclude)

Specifies include file
directory.

| directory

Addsdirectory to the end of the list of directories to be searched for
header files. This can be used to override a system header file,
substituting your own version, since these directories are searched before
the system header file directories. When you use more thanapt®n,

the directories are scanned in left-to-right order; the standard system
directories come after.

I- | I. (Include-dash, Include-dot)

Controls search order
and paths.

Any directories specified with options before the option are searched
only for#include "file ";they are not searched f@nclude <file >.

When additional directories are specified witbptions after the , these
directories are searched forahclude directives. (Ordinarily all
directories are searched this way.)

2-35

1960 Processor Compiler User's Guide

2-36

Thel- option inhibits the use of the current directory as the first search
directory for#include " file ". The current directory is searched for
#include " file " only when itis requested explicitly with (1 "dot"). It

is not searched automatically with. Specifying both- andi. allows

you to control which directories are searched before the current one and
which are searched after.

Ic960 (iIC-960 Compatibility)

Accept iC-960 source

Accept the same C dialect as ic960 R3.0 or later. Note that this does not
make the generated code compatible. To make the generated code
compatible, thenic3.0-compat option is necessary.

imacros (Macros File)

Specifies macros file.

imacros file

Processile as input, discarding the resulting output, before processing
the regular input file. Because the output generated ffem is

discarded, the only effect ofiacros file is to make the macros defined
in file available for use in the main input. Abyandu options on the
command line are always processed befoseros file , regardless of
the order in that they are written. All thelude andimacros options

are processed in the order in that they are writtenimAliros options

are processed before altlude options.

gcc960 Compiler Driver

include (Preinclude File)

Specifies file for
preinclusion.

include file

Processile as input before processing the regular input file. In effect,
the contents ofle are compiled first. Anyp andu options on the
command line are always processed befarede file , regardless of
the order in that they are written. All thelude andimacros options
are processed in the order in that they are writtenimAliros options

are processed before altlude options.

] (Errata)

Specifies processor
errata.

j num

Use the (Errata) option to cause the compilation system to generate code
with workarounds for specified processor erratasufargument of 1
generates code to work around the Cx processors' DMA errata.

L (Library Directory)

Specifies directory for
library search.

L directory

2-37

1960 Processor Compiler User's Guide

2-38

Addsdirectory to the list of directories to be searched for libraries. See
your utilities user's guide for a complete explanation of the directory
search order.

| (Library)

Specifies library for

| library

Search a standard list of directories for a library file named
lib library .a . The linker uses this file as if it had been specified
precisely by name.

Several standard directories are searched, plus any that you specify with

Normally the files found this way are library files — archive files whose
members are object files. The linker handles an archive file by scanning
through it for members that define symbols that so far have been
referenced but not defined. However, when the file found is an ordinary
object file, it is linked in the usual fashion. The only difference between
using an option and specifying a filename is thasearches several
directories. Under normal operation, gcc960 supplies the optionsc ,
andim to the linker. For architectures without floating-point support, the
optionih is also passed to the linker.

gcc960 Compiler Driver

M | MD | MM | MMD (Make)

Generate make tool

output.

[

MM

Tells the preprocessor to output a rule suitable
for a make tool describing the dependencies of
each source file. For each source file, the
preprocessor outputs one make rule whose target
is the object filename for that source file and
whose dependencies are all the fileslude d

in it. This rule can be a single line or can be
continued withnewline if it is long. Using this
option stops compilation after preprocessing.

Like M but the output mentions only the user-
header files included withinclude " file
System header files included witclude

<file > are omitted.

NOTE. Previous versions of this manual describedmivand vvD
options. In fact, these options function identically withittzend Mv
options respectively. To maintain compatibility with make files from
previous versions of gcc960, these options are still accepted on the

command line.

m (Machine-specific Options)

Various options.

mstring

Specifies a machine-specific option.

2-39

1960 Processor Compiler User's Guide

2-40

mabi

masm-compat

mcave

Generate 80960 ABI-conformant code. This
causes thehar type to be signed, enums to be
four bytes in size and signed, and changes
default alignment rules for structs and unions.
See Chapter 7 for more information.

Generate special Intel pseudo-operations for long
compare-and-branch operations. gas960,
gas960c, or gas960e do not require these pseudo-
ops in order to generate correct code, but the
ASM960 R3.5 or earlier assembler generates
out-of-range errors for these instructions when

this option is not used. This should not be used
with gas960, gas960c, or gas960e, because the
split compare-and-branch instructions are slower
and larger than the combined ones.

Generate all functions as CAVE secondary.
When you selecaticave, the compiler generates
special CAVE entries for all functions in the
compilation unit. This prepares the functions for
link-time compression. The cave entries
resemble the following:

.section .text

_foo:
lda L1i,reg
call __dispatcher

ret

.section cave
.word L2-L1,0

L1:
function body
L2:

gcc960 Compiler Driver

Table 2-4

mcmpbr | mno-cmpbr

mcode-align |
mno-nocode-align

mcore0 | mcorel
mcore2 |mcore3

At runtime, the dispatcher decompresses the
function bodies and transfers control to them.
This mechanism saves runtime memory.

See the discussion gfiragma cave in Chapter 7
for information on this option.

Generate/do not generate code that uses
compare-and-branch instructions whenever
possible.

Generate/do not generate alignment directives
prior to labels that are not entered from above.
mcode-align is the default when the Cx or Hx
architecture is specified.

generate code that is compatible with multiple
i960 processor types. Additionally, when you

use anmcore option, you can include another

-A switch to generate code that is optimized for a
particular architecture, but still compatible with a
group of architectures. The table below lists the
architectures that are supported by eatclore
option and theA options that you can use with
them.

Mcore Supported Architectures

Option Name

McoreO

Mcorel

Mcore2

Mcore3

Compatible Architectures Can Be Used With

Jx, Hx, RP -AJA, -AJD, -AJF , -AHA,
-AHD, -AHT, or -ARP

Kx, Sx, Cx, JX, Hx Any architecture option
except -ARP

JX, Hx -AJA, -AJD, -AJF , -AHA,
-AHD, or -AHT

Cx, JX, Hx -ACA, -ACF, -AJA, -AJD,

-AJF , -AHA, -AHD, or
-AHT

2-41

1960 Processor Compiler User's Guide

2-42

mdouble4

mlong-double4

Generate code so that the size and alignment of
double is the same a®at

Generate code so that the size and alignment of
long double isthe same a®at

NOTE. Themdouble4 andmlong-double4 options force floating-point
arguments to be passed in single-precision format. When your source
program explicitly calls functions (such sis andprintf) that require
double-precision or extended-precision arguments, the arguments passed
to these functions are incorrect.

mi960_align= n

mic-compat
mic2.0-compat

mic3.0-compat

mleaf-procedures
mno-leaf-procedures

Aligns struct data on the byte boundary that is
a multiple ofn. (Legal values are 1, 2, 4, 8, 16.)

Use ic960 R2.0's rules for size and alignment of
types. This option also causes the compiler to
use the ic960 compiler's rules for promotion of
char , unsigned char , short , andunsigned

short types at function call and return.

Use ic960 R3.0's rules for size and alignment of
types and other conventions. These are largely
the same as gcc960's, but ic960 R3.0 selects the
size ofenums based on their value. Additionally,
ic960 R3.0 assumes that type chasigged by
default, whereas gcc960 assumes itrisigned
Themic3.0-compat option emulates ic960's
behavior.

Generate/do not generate output that contains

leaf procedures: these are procedures that may be
entered with theal instruction rather than

call . The linker automatically promotesii
instructions inttal instructions when

gcc960 Compiler Driver

mlong-calls

mpic

mpid

mpid-safe

msoft-float

mstrict-align |
mno-strict-align

appropriate. This option makes debugging more
difficult. mleaf-procedures is the default at
02 or higher.

Generate all call instructions asljx instead

of calli . This is used where the distance
between the call site and the called function may
exceectallj 's range. Using this option
degrades code execution speed and increases
code size.

Generate position-independent references to any
objects in the text section. Such objects are
functions,const file-scope variables, switch
tables, and strings. Position independent code
references are made relative to the current
instruction pointer (IP).

Generate position-independent references to
objects in the bss, common, and data sections.
Such objects are narnst file-scope variables,
and strings when thi@ritable-strings

option is used. Position independent data
references are made relative to register.
Registerg12 is not used for any other purpose.

Reserve register g12 as the position independent
data bias register, but do not generate code for
position independent data.

Generates output containing library calls for
architectures without on-chip floating point
support (all except KB, SB). This is set
automatically, based on the architecture option.

This option determines whether or not the
compiler risks generating memory references
that are not provably aligned. Whemntrict-

align is disabled, the compiler occasionally

2-43

1960 Processor Compiler User's Guide

2-44

generates potentially unaligned references when
it seems advantageous to do so. When
mstrict-align is enabled, sequences of
smaller memory references are used instead of
larger ones that might not be correctly aligned.
The default is on for C-series and J-series
processors.

mstrict-ref-def Generate code so that an uninitialized file-scope
variable definition causes space to be allocated in
the.bss section instead of as@mm symbol.
This enforces a single unique definition of a

variable.
mtail-call | Generate output that converts (does not
mno-tail-call convert)call instructions immediately followed

by ret instructions to branches to the call target.
While generating faster code, this option makes
debugging more difficultmtail-call is the
default ato2 or higher.

mwait= n Specifies the expected number of wait-states for
the memory being used in the target. This can
make a difference in which optimizations are
cost-effective and in the instruction scheduling
optimization. n must be in the range 0.32.

nostdinc (No Standard Header Files)

Do not use standard
header files.

Do not search the standard system directories for header files. Only the
directories specified with options (and the current directory, when
appropriate) are searched. Usingtdinc andl- , you can eliminate all
directories from the search path except those you specify.

gcc960 Compiler Driver

nostdlib (No Standard Libraries)

Do not use standard
libraries.

Excludes standard libraries.

O (Optimize)

Specifies optimization
level.

Ol level]

Thed level] option specifies the level of optimization as described

below.

00 Turns optimization off, and additionally disables
default optimizations that may interfere with
debugging. This is the default.

ooro1 These options enable basic optimizations,

including: advanced register allocation, common
subexpression elimination, loop invariant code
motion, expression simplification and instruction
combination, jump optimization, dead-code
elimination, and i960 processor-specific
peephole optimizationO1is equivalent te.

This is the default setting when you usefttie
(Program Database) @rrof (Instrument)

option.

2-45

1960 Processor Compiler User's Guide

02

o3

04

05

2-46

This level includes the or 01 optimizations
described above, and the following additional
optimizations:

fcopyprop , fcondxform , fcse-follow-

jumps , fcse-skip-blocks , fexpensive-
optimizations , frerun-cse-after-loop ,
fschedule-insns , fschedule-insns2 ,
fshadow-globals , fstrength-reduce

Theoz2level enables strength-reduction,
combination of more than one variable value into
a single register, copy propagation, tail-call
elimination, leaf-procedure optimization, and
instruction reordering (scheduling) to make use
of the particular i960 processor's pipeline and
superscalar capabilities.

This level includes the2 optimizations
described above, and the following additional
optimizations:

fcoerce , fconstprop , finline-functions ,
fshadow-mem , funroll-loops

This level includes the3 optimizations
described above, and the following additional
optimizations:

fcoalesce , fmarry_mem , fsplit_mem

This setting specifies program-wide
optimization. Before using thes option, you
should read Chapter 4, Program-wide Analysis
and Optimization, and Chapter 6, gcdm Decision
Maker Option.

Note that theds level is not accepted directly by
the gcc960 driver. It is accepted only in the
subst argument of thgcdm option.

gcc960 Compiler Driver 2

0 (Output)

Specifies output
filename.

o filename

Specifies output filename.

P (Preprocessor Output)

Preprocessor output
control.

Inhibits generation of-lines with line-number information in the output
from the preprocessor. This is useful when running the preprocessor on
non-C code that is intended for a program that might be confused by the
#-lines.

pedantic[-errors] (Pedantic)

Controls ANSI messages

pedantic causes the compilation system to issue all the warnings
specified by ANSI C (such as when text other than a comment follows
#else or#endif) and to reject programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without
this option (though a rare few requinesi). However, without this

option, certain GNU extensions and traditional C features are supported as

well. With this option, they are rejected.

2-47

1960 Processor Compiler User's Guide

2-48

pedantic does not cause warning messages for use of the alternate
keywords whose names begin and end with(double underscore).

pedantic-errors is the same gs:=dantic , except that it causes the
compilation system to issue errors instead of warnings.

S (Assembly)

Create assembly output.

Compile into assembly code but do not assemble. The assembly output
filename is made by replacing or.i with.s at the end of the input
filename. Do nothing for assembly source files or object files specified as
input.

save-temps (Save Intermediates)

Save intermediate files.

Store the usual "temporary" intermediate files permanently; place them in
the current directory and name them based on the source file. Thus,
compilingfoo.c with -c -save-temps ~ would produce fileso.i and

foo.s , as well asoo.o .

gcc960 Compiler Driver

T (Target)
Specifiesgld file.

Tstring wherestring identifies a target-specific
configuration file,string. gld .

Causes gcc960 to configure itself for a specific target board.

traditional (Traditional)

Allow traditional C.

Attempt to support some aspects of traditional C compilers, specifically:

» All extern declarations take effect globally even when they are
written inside of a function definition. This includes implicit
declarations of functions.

* The keywordsypeof ,inline |, signed , const , andvolatile are
not recognized.

* Integer typesinsigned short andunsigned char promote to
unsigned int .

» All automatic variables not declareshister ~ are preserved by
longjmp . Ordinarily, GNU C follows ANSI C: automatic variables
not declaredolatie =~ may be clobbered.

* Inthe preprocessor, comments convert to nothing at all, rather than to
a space. This allows traditional token concatenation.

* Inthe preprocessor, macro arguments are recognized within string
constants in a macro definition (and their values are stringified,
though without additional quote marks, when they appear in such a
context). The preprocessor always considers a string constant to end
at a newline.

2-49

1960 Processor Compiler User's Guide

2-50

* The predefined macro_STDC__ is not defined when you use

traditional ,but _ _GNUC__is (since the GNU extensions that

_ _GNUC__ indicates are not affected byditional). When you
need to write header files that work differently depending on whether
traditional is in use, by testing both of these predefined macros
you can distinguish four situations: GNU C, traditional GNU C, other
ANSI C compilers, and other C compilers.

The following table summarizes the macros defined when the

traditional oransi option is used.
__STRICT_ANSI_ _ __STDC__ __GNUC__
traditional X
ansi X X X
none X X

trigraphs (Trigraphs)

Support ANSI C

Process ANSI standard trigraph sequences. These are three-character
sequences, all starting with?, that are defined by ANSI C to stand for
single characters. For exampte; stands fok, so??/n’ is a character
constant for a newline.

Theansi option also enables trigraphs.

gcc960 Compiler Driver

U (Undefine)

Undefines a
preprocessor macro.

Umacro

Undefines the named preprocessor macro.

V (Version)

Display tool version
numbers.

v (Verbose)

Display tool version
numbers and subprocess
commands.

v960 (Version, exit)

Display tool version
numbers and exit.

2-51

1960 Processor Compiler User's Guide

W (Warnings)

Enables / disables
specific warnings.

W(string]

w With no arguments, this option prints extra
warning messages for certain events, including:

longjmp() warnings

Warn when a nonvolatile automatic variable
might be changed by a call togjmp()

These warnings are possible only in an
optimizing compilation.

The compiler sees only the callsstajmp() . It
cannot know wher@ngjmp() is called; in fact

a signal handler could call it at any point in the
code. As a result, you may get a warning even
when there is in fact no problem because
longjmp() cannot actually be called at the place
that would cause a problem.

return andreturn(value)

Warn when a function can return either with or
without a value. (Falling off the end of the
function body is considered returning with a
value.)

null effect
Warn when an expression-statement contains no
side effects.

no-op comparison
Warn when an unsigned value is compared
against zero witk or <=,

2-52

gcc960 Compiler Driver

Wall

Waggregate-return

Wecast-align

Wecast-qual

between-ness comparison

Warn when a comparison like=y<=zi s used;
this is equivalent tgx<=y ? 1 : 0) <=z} ,
which is a different interpretation from that of
ordinary mathematical notation.

obsolete storage class specification

Warn when storage-class specifiers kkeic

are not first in a declaration. According to the
ANSI C standard, this usage is obsolescent.

partially bracketed initializer
Warn when an aggregate has a partially
bracketed initializer.

Enable the following warning optiong; Wchar-
subscripts , Wcomment Wformat , Wreturn-
type , Wswitch , Wtrigraphs

Wauninitialized , Wunused. There is navno-
all option.

Warn when any functions that return structures
or unions are defined or called.

Warn whenever a pointer is cast such that the
required alignment of the target is increased. For
example, warn when@ar * is cast to aimt *

on machines where integers can be accessed only
at two- or four-byte boundaries.

Warn whenever a pointer is cast so as to remove
a type qualifier from the target type. For
example, warn when@nst char * is cast to

an ordinarychar *.

2-53

1960 Processor Compiler User's Guide

Wchar-subscripts Warn when an array subscript has typer .
This is a common cause of error, as programmers
often forget that this type is signed on some
machines.

Wcomment Warn whenever a comment-start sequence
appears in a comment.

Wconversion Warn when a prototype causes a type conversion
different from what would happen to the same
argument in the absence of a prototype. This
includes conversions of fixed point to floating
and vice versa, and conversions changing the
width or signedness of a fixed point argument,
except when these are the same as the default

promotion.
Werror Make all warnings into errors.
Wrformat Check calls trintf andscanf , etc., to make

sure that the arguments supplied have types
appropriate to the specified format string.

Wid-clash- len Warn whenever two distinct identifiers match in
the firstlen characters. This may help you
prepare a program that compiles with certain
obsolete compilers. There is mo-] form of
this option.

Wimplicit Warn when a function is used without being
explicitly declared.

Wmissing-braces Warn when an initializer is not completely
enclosed within braces.

2-54

gcc960 Compiler Driver

Wmissing-prototypes

Whnested-externs

Whparentheses

Whpointer-arith

Wredundant-decls

Wreturn-type

Wswitch

Wshadow

Warn when a global function is defined without a
previous prototype declaration. This warning is
issued even when the definition itself provides a
prototype. The aim is to detect global functions
that are not declared in header files.

Warn when arxtern declaration is
encountered within a function.

Warn when parentheses are suggested around an
expression.

Warn about anything that depends on the size of
a function type or ofoid . gcc960 assigns these
types a size of 1, for convenience in calculations
with void* pointers and pointers to functions.

Warn when anything is declared more than once
in the same scope, even in cases where multiple
declaration is valid and changes nothing.

Warn whenever a function is defined whose
return-type defaults tmt . Also warn about any
return statement with no return-value in a
function whose return-type is natid .

Warn whenever awitch statement has an
enumeral type index and lacksase for one or
more of the named codes of that enumeration.

Warn whenever a local variable shadows another
local variable.

2-55

1960 Processor Compiler User's Guide

2-56

Wstrict-prototypes

Wtraditional

Wtrigraphs

Wauninitialized

Warn when a function is declared or defined
without specifying the argument types. An old-
style function definition is permitted without a
warning when it is preceded by a declaration
specifying the argument types.

Warn about certain constructs that behave
differently in traditional and ANSI C:

» Macro arguments occurring within string
constants in the macro body. These would
substitute the argument in traditional C, but
are part of the constant in ANSI C.

» A function declared external in one block
and then used after the end of the block.

* Aswitch statement has an operand of type
long .

Warn when any trigraphs are encountered
(assuming they are enabled).

An automatic variable is used without first being
initialized. These warnings are possible only in
an optimizing compilation, because they require
data flow information that is computed only
when optimizing. When no option is given,
these warnings are not generated.

These warnings occur only for variables that are
candidates for register allocation. Therefore,
they do not occur for a variable that is declared
volatile , or whose address is taken, or whose
size is other than 1, 2, 4, or 8 bytes. Also, they
do not occur for structures, unions, or arrays,
even when they are in registers.

gcc960 Compiler Driver

There may be no warning about a variable that is
used only to compute a value that itself is never
used, because such computations can be deleted
by data flow analysis before the warnings are
printed.

These warnings are optional because gcc960
cannot foresee all the reasons why the code
might be correct despite appearing to have an
error. Here is one example of how this can
happen:

{ .
int x;
switch (y)
{

case 1: x=1;
break;
case 2: X = 4;
break;
case 3: x=5;

foo (x);

}

When the value of is always 1, 2 or 3, thenis
always initialized, but gcc960 doesn’t know this.
Here is another common case:

{

int save_y;
if (change_y) save_y =y, y = new_y;

if (change_y) y = save._y;
}

2-57

1960 Processor Compiler User's Guide

2-58

Wunused

Wwrite-strings

This has no bug becausg/e_y is used only
when it is set.

Some spurious warnings can be avoided if you
declare as volatile all the functions you use that
never return.

Warn whenever a local variable is unused aside
from its declaration, and whenever a function is
declaredstatic but never defined.

Give string constants the typenst

char[length] so that copying the address of
one into a noreonst char* pointer generates a
warning.

w (Inhibit Warnings)

Inhibits all warnings.

Z (Specify PDB)

Specifies PDB directory.

Zdirectory

Specifies the name of the program database (PDB) directory.

Before using this option, you should read Chapter 4, Program-wide
Analysis and Optimization, Chapter 5, Profile Data Merging and Data
Format (gmpf960), and Chapter 6, gcdm Decision Maker Option.

1Ic960 Compiler Driver

This chapter describes how to use the ic960 driver program to control the
compilation system. This chapter also explains how to:

* invoke the compiler with the ic960 command-line options

* modify compiler operation using environment variables

« write a program that uses macros defined by the compiler

» use the ic960 driver to produce an output file

Controlling the Compilation System with ic960

iC-960-style translation and linking requires use of the ic960 driver,

preprocessor, compiler, assembler, and linker. The ic960 driver:

* invokes the preprocessor fGrsource text

» invokes the compiler toheck syntax of C source text and generate
assembly language

* manages the subsequent assembly and linking of a program

Command-line options and environment variables allow you to control the
compilation.

3-1

1960 Processor Compiler User's Guide

Invoking the Compiler with ic960

The ic960 command-line syntax is:

ic960 [- option ... [
ic960

option

path

path | filename
is the compiler driver executable filename.

is a compiler option. Case is significant in
options and their arguments.

On UNIX, the compiler driver recognizes a letter
preceded by a hyphen)(as an option. In
Windows, the driver recognizes a letter preceded
by either a hyphen § or a slash/() as an option.

For a complete description of the ic960 options,
see the ic960 Option Reference section. You can
also use linker invocation options in an ic960
command; see Table 3-1 for a summary of these
options.

identifies the directory containing the file named
by filename . Not specifyingpath for a

filename causes ic960 to search in the current
directory. Eachilename not in the current
directory requires a separate specification of
path .

manual shows paths using the forward slash required by UNIX (

[/‘ NOTE. Although Windows pathnames require backslasheshis

3-2

ic960 Compiler Driver

filename is the name of a source, assembly-language, or
object file to be processed by the compilation
system. The command line allows specification
of more than ongpath /] filename

Table 3-1 lists the linker options that ic960 passes directly to the linker.
To pass other options to the linker, use\thearg pass-through option.

Ic960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source files name@nd
t2.c and that you are generating code for the i960 CA architecture.

Preprocessing a Source File
To preprocess a source file, use the command:
ic960 -E tl.c

-E informs the compiler to preprocess the source
file and echo the output to stdout.

Generating Assembly

To generate assembly code for the i960 CA architecture, use the following
command.

ic960 -S -ACA tl.c
-S instructs the compiler to generate assembly code.

-A specifies the 1960 CA architecture.

3-3

1960 Processor Compiler User's Guide

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

ic960 -c -g -ACA tl.c

-g instructs the compiler to generate debug
information.
-C instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executable file) for a Cyclone board with
a CA processor, use the following command.

ic960 -ACA -Tcycx -g -Ol1 tl.c t2.c -o test
The above command compiles the modules tl1.c and t2.c and links them

with appropriate libraries to generate an absolute module targeted for a
Cyclone i960 Cx board.

-Teycx instructs the compiler that you are targeting a
Cyclone i960 Cx board.

-01 causes the compiler to perform some basic
optimizations on the generated code.

-0 instructs the compiler to name the generated
executable test.

iIc960 Linker Options

When you do not specify a target with thearget option, ic960 does

not attempt to link programs for a specific target board. Unless otherwise
specified,c and.s files are compiled and/or assembled, and the
following linker command is issued:

Ink960 -AKB file .o...-Iqf

ic960 Compiler Driver

Table 3-1

ic960 links in the profiling library-(gf) by default. To avoid linking in
the profiling library, invoke Ink960 directly to perform your final link.
You can also link in your own libraries (libl, lib2...) if needed.

Ink960 -AKB file .o... -llibl -llib2

You can invoke ic960 to create object files in either the COFF or ELF
object module format. The compilation system acceptsdhié option
to generate COFF and thelf option to generate ELF.

Fcoff is the default. For more detailed information, see the following
discussions of compiler invocation and options.

Linker Options Accepted by ic960

Option Name Description

I Archive file specifies an archive file as input.

X Compress removes local symbols from the output
symbol table.

L Library search adds directories to search for libraries,
configuration files, and startup object files.

m Map creates a linker memory map file.

r Relocation retains relocation information in the output
object file.

s Strip strips line-number entries and symbol-table

entries from the linker's COFF output file.

T Target specifies the file describing the target
environment.

u Undefine introduces an unresolved symbol, causing the
linker to search symbol tables for resolution of
the reference.

gcdm Decision Maker invokes gcdm960 decision maker.

For more information on the linker, see t860 Processor Software
Utilities User’'s Guide

3-5

1960 Processor Compiler User's Guide

ic960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI-standard macros and macros specific to the i960 processor
architecture. The (Undefine) option can remove i960 processor-specific
macros but not ANSI-standard macros.

The following macros are available in accordance with the ANSI standard
for C, as described in the bodk; A Reference Manual

_DATE__ _FILE_ __LINE_ _ TIME__ _ STDC__

The following macros are predefined by the compilation system when
invoked with the ic960 driver program:

__1c960 indicates the CTOOLS960 compilation system.
The compiler defines IC960 automatically,
when invoked with the ic960 driver.

__1C960_VER is defined to a decimal number that can be used
to check the version number of the compiler.
The number is expressed in decimal as
MmmPPRMhereMis the major version number,
mms the minor version number, afPPPis an
internal version number that is used to track the
patch level. So, for example, R4.5 patch level
4008 has_1Cc960 VER defined to be 4054008.

__i960 indicates the i960 processor environment. The
compiler defines_i960 automatically. This
macro can be used to identify the parts of a
program specific to the 1960 processor.

ic960 Compiler Driver

__ 1960 xx

__PIC

__PID

__i960_BIG_ENDIAN__

__STRICT_ANSI__
__STRICT_ANSI

__SIGNED_CHARS__

__CHAR_UNSIGNED__

indicates the 1960 processor instruction set in
use. The compiler automatically defines the
__ 1960 xx macro. Thex isCA CF, HA HD HT,
KA, KB, RP, SA, SB, JA, JD, orJF. Definition of
xx depends on the specific 1960 processor
instruction set specified by thie(Architecture)
option or the960ARCH environment variable.

indicates that the generated code is position-
independent. Thepc (Generate-for-position-
independent-code) option causes theliC
macro to be defined.

indicates that the generated data is position-
independent. Thepd (Generate-for-position-
independent-data) option causes thelD
macro to be defined.

indicates that the generated code is arranged for
big-endian address space. Thee

(Generate-big endian) option causes this macro
to be defined.

indicates that C constructs not conforming to the
ANSI standard should be flagged. TheANSI)
option causes these macros to be defined.

indicates that the plaithar type are treated like
thesigned char type. This is the default.

indicates that the plaithar type are treated like
theunsigned char type. Thes cu (Generate-
char-unsigned) option causes this macro to be
defined instead of SIGNED _CHARS .

3-7

1960 Processor Compiler User's Guide

ic960 and Environment Variables

Environment variables specify default directories for input files,
temporary files, libraries, the assembler, and the linker. In addition, the
I960ARCH environment variable specifies the default architecture. The
compilation system uses the following environment variables to set

defaults:

I960ARCH

I960BASE

specifies an architecture other than the 1960 KB
processor for code generation. The possible
definitions forl960ARCH areCA CF, HA HD, HT,

KA, KB, RP, SA, SB, JA, JD, orJF. TheA
(Architecture) option overrides the architecture
specified iN960ARCH. In the absence of
I960ARCH and the Architecture option, the
compiler selects the 1960 KB processor
architecture.

contains the pathname of the top-level directory
containing the files and directories needed by the
compiler. This environment variable is
necessary for every phase of compilation. The
driver uses960BASE to find the preprocessor,
compiler, assembiler, linker, and include files.

To invoke the preprocessor and compiler, the
ic960 driver looks in théb directory under
I960BASE .

To invoke the assembler and linker, the driver
looks in thebin directory under the directory
specified byl960BASE .

To find include files, the driver looks in the
include directory under the directory specified
by 1960BASE .

ic960 Compiler Driver

I960AS

1960CPP

1960CC1

1960DM

I960ERR

1960INC

The linker looks for libraries, startup modules,
and configuration files in thé directory under
the directory specified byp60BASE .

specifies a non-default pathname for the
assembler. The pathname must include the name
of the executable. In the absencegebAs ,

ic960 looks for the assemblertim under the
directory specified bye60BASE .

specifies an alternate name for the preprocessor.
The default pathname is

1960BASE/lib/cpp.960 on UNIX orcpp.exe

in Windows.

specifies an alternate name for the compiler.
The default pathname is

I960BASE/lib/cc1.960 orccl.exe In
Windows.

specifies an alternate name for the gcdm960
optimization decision maker.

The assembler, linker, and other tools can
redirect errors to the standard error stream
(stderr). To use this capability, set the
Windows environment variable60ERR to any
string, as in:

SET I1960ERR="Enable stderr"

Leavingl960ERR unset directs error output to
the standard output streamdout).

specifies a non-default pathname for the
directory containing include files. In the absence
of 1960INC , the driver looks for include files in
theinclude directory in the directory specified
underi9e0BASE .

3-9

1960 Processor Compiler User's Guide

1960LIB , I960LLIB

1960LD

1960PDB

TEMP, TMP, TMPDIR,
G960TMP

3-10

contain additional pathnames of libraries.
Definition of 1960LIB causes the linker to
search for libraries in the directory specified by
1960LIB . In the absence of60LIB |, the linker
searches thié directory in the directory
specified by960BASE . Definition ofI960LLIB
causes the linker to search the directory specified
by 1960LLIB before searching thi& directory
in the directory specified bp60BASE . For a
complete description of the search algorithm
used by the linker, see ti#60 Processor
Software Utilities User's Guide

contains an alternate pathname of the linker. The
path must include the name of the executable. In
the absence 0$60LD , ic960 looks for the linker

in thebin directory under the directory specified
by 1960BASE .

defines the location of the program database for
use with profile-driven optimizations. Thel
(Program Database) option overrides this
environment variable and allows specification of
an alternate database directory.

contain the pathname of the directory used for
compiler temporary work files. In the absence of
these variables, the compiler attempts to write
temporary work files to the current working
directory in Windows, and tomp or /usr/tmp

on Unix.

ic960 Compiler Driver

ic960 and File Use

The compiler, assembler, and linker all use filenames specified on the
ic960 command line to find and create input and output files. In addition,
translation and linking require temporary work files. Environment
variables allow specification of default directories for work files.

Input Files

The ic960 command line allows filename inputs that support specification
of assembly-language files, preprocessed source files, C source files,
object files, and libraries. The compiler driver determines the type of each
input file by the filename extension, as follows:

filename .c indicates a C source file that can contain macros
and preprocessor directives.

filename i indicates a preprocessed C source file.

filename .s indicates an assembly-language source file.

The driver passes any other filename to the linker. The linker then
determines whether the file is an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if
you specify an assembly-languagi&ifame .s) file and also specify the

S (Save assembly) stop-after option, ic960 takes no action on the
assembly-language file because processing stops after compilation and
before assembly.

Include Files

The ic960 command line allows insertion of text from include files. Both
thei (Preinclude) option and thiénclude preprocessor directive cause
text insertion.

3-11

1960 Processor Compiler User's Guide

3-12

The#include preprocessor directive causes a search of the directory or
directories indicated by the(Searchinclude) option. In the absence of
thel option, ic960 searches the current directory, the directory defined by
thel960INC environment variable, or th@s0BASE/include directory.

NOTES. The include filescache.h , dcache.h , andtimer.h used
for on-chip cache and timer control are not supported with-the>
option.

Temporary Files

The compiler, assembler, and linker automatically create and delete
temporary work files. You need not remove temporary work files unless
your host system loses power or some other abnormal termination prevents
the compilation system from cleaning up its work files.

The compiler selects a directory for temporary work files as follows:

G960TMR TEMR TMPDIR TMR .\ (Windows),/tmp (Unix), /usr/tmp
(Unix).

Output Files

Specifying a Stop-after optiom(, -Q, -E, -P, -S, or-c) causes the
compilation system to produce a separate output file representing the
output of the last phase that completes for each primary input file. An
output file can be a preprocessed source file, an assembly-language file, a
listing file, a map file, or an unlinked object file. If no errors occur during
processing, the output files created by the stop-after option are usable as
input to a future ic960 invocation. Table 3-2 lists the compilation phases
and their inputs and outputs.

Specifying thez (Listname) option allows specification of a list file
filename; ic960 places all listings in the single file specified. If you do not
usez, ic960 produces a separate list file for each primary C source file.

ic960 Compiler Driver

Each filename has the forfie .L , wherefile is the same name as the

C source file.
Table 3-2 Intermediate Inputs and Outputs

Last Phase Stop-after

Completed Option Inputs Outputs

preprocessing P, E, or C source files preprocessed files or

Q display on standard
output

syntax n C source files syntax error list

checking preprocessed files listing files

compilation S C source files assembly-language file
preprocessed files listing files

assembly c C source files unlinked object files
preprocessed files listing files
assembly files

linking (default) C source files list files
preprocessed files executable file
assembly files map file

unlinked object files relinkable object file
relinkable object files

libraries

configuration files

3-13

1960 Processor Compiler User's Guide

When specifying only one primary input file, théOutput) option names

a single output file besides the listing file. Specifying multiple primary
input files, or not specifying an output filename, causes ic960 to use the
primary input filenames to derive corresponding default output filenames
with the formfilename . e, where:

filename is the primary input filename without its
extension.
e is a single-letter extension indicating the contents

of a file, as follows:

[indicates a preprocessed file from the
P (Preprocess-files) stop-after option.

s indicates an assembly-language file
from thes (Save assembly) stop-after
option.

0 indicates an object file from the
(Create-object) stop-after option.

L indicates a listing file from the

z (List) option.

Unless otherwise specified, the destination directory for any output file is
the current working directory. ffiename.e already exists in the
destination directory, the compilation system overwrites the existing file.

The filenamea.out is the default for the executable COFF obiject file
from the linker, produced in the absence of the stop-after options and the
Output option. For ELF files, the defaulteisut .

Creating a linker configuration file containing information for preparing

an absolutely relocated module, a module for incremental linking, or code
ready for programming into read-only memory (ROM) allows for
additional file types. For more information on linker configuration, see
thei960 Processor Software Utilities User's Guide

3-14

ic960 Compiler Driver

The following examples illustrate the creation and use of output filename
extensions:

e The command960 -c -zs proto.c protol.i produces the
object filesproto.o andprotol.o and the listing filegroto.L and
protol.L

e The comman960 -c -oproto_vi.o -zS proto.c
produces the object fil@oto.o and the listing fileroto.L

« The command960 -ACA -Tcycx proto.c produces the
executable filev.out .

iIc960 Options

This section describes the ic960 compiler driver options that allow control
of various aspects of compilation:

Input processing Thec, E, n, P, Q ands are the Stop-after options.

and output They stop the translation and linking process
after the preprocessing, syntax checking,
compilation, or assembly phase. A Stop-after
option causes the compilation system to save the
intermediate output of the last phase to execute.
Thec (Keep-comments) and(Mix) options
affect the contents of the output file. Tihe
(Output) option allows specification of the output

filename.
Specifying included Thei (Preinclude) and (Searchinclude) options
source text prepend and find include files of C source text.
Defining macros TheD (Define)andu (Undefine) options allow
specification of macros for conditional
compilation.

3-15

1960 Processor Compiler User's Guide

Control contents
of generated object
code

Assembler and
linker support

Whole-program
optimizations

Provide Information
on the compiling
process

3-16

TheA (Architecture) Fcoff | Felf (Object-
format),F (Fine-tune)f (Optimize),g (Debug),

G (Generate), and (Optimization-level) options
control the instruction set, object format, debug
information, and optimization level.

Thew(Pass) option relays options to the
preprocessor, compiler, assembler, and linker. In
addition, ic960 recognizes some options as linker
options rather than compiler options. Table 3-1
lists the options that are relayed to the linker
without the Pass option. For more detailed
information on linker options, see ti860
Processor Software Utilities User's Guide

Thefdb (Program Databasepyrof
(Instrumentation), angcdm (Decision Maker)
options allow for creation and use of information
necessary for advanced optimizations involving
multiple modules and optional execution profiles.
See Chapter 4 for an overview of whole-program
and profile-driven optimization.

Thew (Diagnostic) anch (ANSI) options

affect messages the compiler produces about
C syntax and semantics. ThéList) andz
(Listname) options specify the contents and
name of the listing file. The (Verbose)y
(Version), and/960 (Version-exit) options
display information about preprocessor,
compiler, assembler, and linker options. The
Version option displays the versions of each
compilation component and the host operating
system. Thev(Warnings) option allows fine
control of the level of warnings emitted.

ic960 Compiler Driver

Option Arguments and Syntax

Some compiler driver options take arguments. Whitespace is optional
between an option and its argument. Case is significant in options and
arguments.

The options and arguments have default settings. In most cases, the option
is "off," that is, not in effect. Default settings of options and arguments

are summarized in Table 3-3 and further discussed in the detailed
description of the option. Some option defaults are affected by
environment variables, as noted in the option descriptions.

This chapter uses the following notation:

[item] Square brackets indicate that the enclosed item is
optional.

Horizontal ellipses indicate that you can use
multiple instances of the preceding item.

If two or more options contradict each other, the right-most option in the
command line takes precedence. For example, the following command
line sets the value of the symhoto 132:

ic960 -DL=80 -DL=132 proto.c

Table 3-3 ic960 Option Summary

Option Name Purpose Default

A arch Architecture Select the instruction set. AKB

a ANSI Warn about non-ANSI source. Do not warn

b size Limit- Limit optimization of functions with b 2500
optimizations more than size asm instructions.

C Keep- Keep comments in preprocessor output. Strip comments
comments

continued [

3-17

1960 Processor Compiler User's Guide

Table 3-3 ic960 Option Summary (continued)
Option Name Purpose Default
c Create-object Stop after creation of object file. Do not stop
D symbol Define Define symbol. symbol=1
[=value]
E Preprocess - Write preprocessed source to stdout; Do not stop
stdout terminate.
Fcoff | Felf Object-format ~ Generate COFF or ELF object format. Fcoff
fdb Database Build program database (PDB). No database
fprof Instrument Compile with instrumentation; build PDB. No instrument-
ation
F [nolarg Fine-tune Adjust optimizations.
f [noJarg Additional fine- Enable or disable an optimization.
tune
G arg [,arg]... Generate Control code generation options. G cs,dc
g [level] Debug Include debug information in objects. No debug info
gcdm Decision-maker Invoke gcdm960 decision-maker. Do not invoke
gcdm960
h Help Display invocation help; terminate. No help text
| dir Searchinclude Search dirfor include files.
i filename Preinclude Prepend text to source files.
J arg [,arg]... Miscellaneous Selects miscellaneous controls. J nogd
j num Errata Specify processor errata.
M Mix Mix C text with assembly output. No C text
n Syntax only Check syntax; list errors; terminate. Do not stop
O level Optimize Specify optimization level (0, 1, 2, or5). 01
o filename Output Name output file. filename=a.out
P Preprocess - Write preprocessed source text to files; Do not stop
file terminate.
continued [

3-18

ic960 Compiler Driver

Table 3-3 ic960 Option Summary (continued)

Option Name Purpose Default

Q Dependencies Print include-file dependencies; No print

terminate.

S Save-assembly Save assembly-language output. Do not save

U symbol Undefine Undefine symbol.

\% Version Display version information. No display

v960 Version-exit Display version information and exit.

\ Verbose Display invocation information. No display

W phase Pass Pass arguments to preprocessor,

arg [,arg]... compiler, assembler, or linker.
W [no-]arg Warnings Enable/disable a warning.
w level Diagnostic- Control diagnostic messages. level=1
level
Y d,dirname Program Specify location of program database. 1960PDB
database specifies

location

Z filename Listname Name listing file. Compiler
generates
name

z arg List Produce listing file. No listing

A (Architecture)

Selects the instruction

set.

Aarchitecture

architecture

is one of:

SA, SB, KA, KB, CA CF, JA, JD, JF, HA HD HT, OrRP

3-19

1960 Processor Compiler User's Guide

3-20

Default

By default, the compiler uses the i960 KB architecture. I3¢8\RCH
environment variable can override the default architecture.

Discussion

UsetheA (Architecture) option to specify the target instruction set. This
option overrides the environment varialle0ARCH. See also the

-Gcore0 , -Gceorel , -Gceore2 , and-Geore3 options that let you generate
code that is compatible with multiple i960 processor types.

NOTES. Also, with release 5.1 using th&rP option generates code
that is compatible with current and proposed future variations on the 1960
RP architecture.

You can use predefined macros in your source text to conditionally

compile code for the selected architecture. The compiler defines a
preprocessor macro indicating the selected architecture. The preprocessor
macro takes the form:

__ 1960 xx

XX iS CA CF, KA, KB, RP, SA, SB, HA HD, HT, JA, JD,
orJF. The compiler selects the valuexaf
according to the architecture you specify.

In addition to__i960 xx, the__i960 macro is defined for all architecture
selections. Use 960 to identify parts of your program specific to the
i960 architecture but not necessarily specific to a particular processor.

In addition, for compatibility with earlier releases, macros of the forms:
960 , 1960, 960 xx__and_ i960_ xx__ are defined.

If you link object modules compiled with incompatible architectures, the
linker displays the following warning message:

ic960 Compiler Driver

file : architecture i960: XXincompatible with output

i960: YY

file is the first file containing incompatible
instructions the linker encounters.

XX is one of the two-letter architecture
abbreviations.

YY is one of the two-letter architecture
abbreviations.

Example

The following example selects the i960 KA instruction set:
ic960 -AKA proto.c

a (ANSI)

Flags non-standard
constructs.

Default

The compiler accepts constructs that are legal under Kernighan and
Ritchie's definition of the C language but that do not comply with the
ANSI standard.

Discussion

Use the ANSI option to flag old-style C constructs that are legal according
to Kernighan and Ritchie's definition TheC ProgrammingLanguage

but are not legal according to the ANSI standard. When the ANSI option
is in effect, the compiler prints warning messages for each occurrence.

3-21

1960 Processor Compiler User's Guide

3-22

NOTE. When this option is in effect, if your program contains in-line
assembly-language{m) statements, the compiler treats the statement as
a regular function call and produces code for the call. For example, if
your program contains the following line:
asm("flushreg");
The compiler produces the following code:

callj _asm
LFCO0.$:

asciz "flushreg"

The linker may then generate an error for an undefined extern for the
_asm call.

To useasm statements and functions with theption, use the _asm
keyword.

Specifying thea (ANSI) option can override the (Diagnostic-level)
option, as follows:

-a -w2 has the same effect as -w1; that is, errors and
major warnings appeatr.

-a -wl errors and major warnings appear.

-a -w0 errors and all warnings appear.

Example

The following example causes the compiler to issue an error message
when it encounters a non-standard C construct. Becausew{@neate-
object) option, the compiler stops after creating an object file:

ic960 -c -a proto.c

ic960 Compiler Driver

Related Topic

w(Warnings) w(Diagnostic-level)

b (Limit-optimizations)

Limits optimizations.

bsize

size is a positive decimal integer.

Default

Having more than 2500 intermediate language statements in a function
causes the compiler to disable some global optimizations.
Discussion

As function size increases, the compiler slows. @Tfiamit-
optimizations) option allows you to alter the threshold at which
optimizations are scaled back when functions are too large to compile
quickly.

Example

In the following example, thie (Limit-optimizations) option forces
suppression of global optimization for functionsinto.c larger than
2000 intermediate language statements.

ic960 -b2000 -S proto.c

Related Topic
O (Optimize)

3-23

1960 Processor Compiler User's Guide

3-24

C (Keep-comments)

Keeps comments in
preprocessor output.

-E-C
-P-C

Default

All comments are stripped away.

Discussion

Use theC (Keep-comments) option to preserve comments normally

stripped by the preprocessor. This option modifieEtapdr Stopafter
options. Using the (Keep-comments) option alone neither generates a
preprocessor listing nor stops the processing after the preprocessor phase.

Example

The following example uses tlig(Keep-comments) option to modify the

P (Preprocess - file) option. The output is a newly created file named
proto.i , containing the comments as they appear in the original C source
text.

ic960 -P -C proto.c

Related Topics

E (Preprocess - stdout) P (Preprocess - file)

ic960 Compiler Driver

c (Create-object)

Create object file;
terminate.

Default

Create an executable file after the link phase of the compilation process.

Discussion

If you specifyc (Create-object) the compilation process terminates after
the assembler generates an object file. If you do not specify(thetput)
option, the compiler writes the object fileftename .o , where

filename is the source filename.

Examples

1. The following example produces the objectfilgo.o but no
executable file:
ic960 -c proto.c

2. The following example produces the object fieso.o ,tl.0 , and
protol.o in the current directory but creates no executable file:

ic960 -c proto.c t1.s protol.i

Related Topics
o (Output) Stop-after options

3-25

1960 Processor Compiler User's Guide

3-26

D (Define)

Define a symbol.

D symbol [= value]

symbol is a symbolic name.
value is a value. The value can be any string.
Default

If you definesymbol without specifyingvalue , the preprocessor assigns
the value 1 taymbol .

Discussion

Use theD (Define) option to create a symbol with a giveine . You can
use thed (Define) option more than once in an invocation.

You can use the (Define) option with conditional compilation to create
macros to select source text during preprocessing. A macro defined in the
invocation command remains in effect for each module compiled, unless
you remove the macro with thendef preprocessor directive or the
(Undefine) option. The compilation system processes all thindefine)
options in a command-line only after processing alltfefine) options.

For more information on C preprocessor macrosCsee Reference
Manual

Example

The following example invokes the preprocessor WitloNGPATHsO that
PATHLENGTHSs defined with the value 128 in the source file. Since the
macroLONGPATHSs defined without a value, it defaults to 1:

ic960 -c -D LONGPATH proto.c

ic960 Compiler Driver

The source text is:

#ifdef LONGPATH

#define PATHLENGTH 128
#else

#define PATHLENGTH 45
#endif

Related Topics

#define U (Undefine)
#undef

E (Preprocess - stdout)

Preprocess; write output
to screen; terminate.

Default

After the link phase of the compilation process is complete, an executable
file is produced.

Discussion

If you specifyE, the compilation process terminates after preprocessing
and the compiler writes preprocessor output with line number directives to
standard output.

3-27

3 1960 Processor Compiler User's Guide

Example

The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:

ic960 -E proto.c

Related Topic

Stop-after options

Fcoff | Felf (Format)

Specifies object format.

Fcoff specifies the COFF object format, and causes the
assembler to be invoked as asm960. You can add
theg option to specify the style of symbolic-
debug symbols created.

Felf specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than
asm960. If you add theoption, the DWARF
style of symbolic-debug symbols is used.

/K NOTE. Unlike gcc960, ic960 does not support the b.out object module
| format.

3-28

ic960 Compiler Driver

F (Fine-tune)

Adjust optimizations.

F arg|, arg]...
arg is any of:

ai | noai

ca | noca

cb | nocb

Ip | nolp

pf | nopf

sa | nosa

enables/disables procedure in-lining using
heuristics at optimization level 2.

enables/disables code alignment; generate (do
not generate) alignment directives prior to labels
that are not entered from above.

enables/disables use of compare and branch
instructions.

enables/disable code generation of functions
using thebal calling sequence at optimization
level 1 or 2nolp is the default at optimization
level 1, andp is the default at optimization
level 2.

This option is obsolete. It is recognized but has
no effect.

determines whether or not the compiler risks
generating memory references that are not
provably aligned. Ifnosa is selected, the
compiler occasionally generates potentially
unaligned references when it seems
advantageous to do so. Whesa is enabled,
sequences of smaller memory references are
used instead of larger ones that might not be
correctly aligned.

3-29

1960 Processor Compiler User's Guide

3-30

sb | nosh enables/disables superblock formation.
Suppressing this optimization may reduce your
application's code size.

tce | notce enables/disables conversion of tail calls into
branch instructions at optimization level 1 or 2.
notce is the default at optimization level 1, and
tce is the default at optimization level 2.

Default

The set of optimizations performed is determined by the argument of the
(Optimize) option.

Discussion

Use ther (Fine-tune) option to fine-tune how your code is optimized. For
general purposes, the optimization level specified witrotf@ptimize)

option is sufficient. The optimizations performed at each level balance
considerations of code quality, ease of debugging, and compilation time.
However, circumstances can call for use of, or disabling of, some specific
optimizations.

Example

To disable heuristic function in-lining and leaf procedure generation when
compiling at optimization level 2, enter the following:

ic960 -F noai,nolp -O2 proto.c

ic960 Compiler Driver

fdb (Database)

Builds optimization
database.

All modules subject to program-wide optimization must be initially
compiled with thedb option. This option causes the insertion of program
database information in the object modules, and it implies a minimum
module-local optimization level @1 (although higher module-local
optimization levels are allowed).

This option does not otherwise change the code or data generated for the
object modules in any way. It simply makes information collected during
initial module compilation available to the global decision maker (gcdm).
Before using thédb option, you should read Chapter 4, Program-wide
Analysis and Optimization, and Chapter 6, gcdm Decision Maker Option.

If you intend to use execution profiles when optimizing your application,
you should read Chapter 5, Profile Data Merging and Data Format
(gmpfo60).

fprof (Instrument)

Instruments code for
profile creation.

This compiler driver option inserts execution profile instrumentation code
into the generated code during compilation, so that when the linked
program is executed, a profile can be collected.

3-31

1960 Processor Compiler User's Guide

3-32

This option implies thé&b option (described previously) that causes the
insertion of program database information in the object modules and the
creation of the program database. Sipeg impliesfdb , forof also
implies a minimum module-local optimization level of O1 (although high
module-local optimization levels are allowed).

When you compile with thiprof option, a special profiling library
required for profile collectionifgf) is linked automatically. If your
target environment does not support file 1/0O, you must explicitly link an
alternate profiling librarylpg). The profiling libraries provided are
identified in Chapter 2 of th®60 Processor Library Supplement

Note that when thgrof option is used in this manner, the generated
object module contains code is unsuitable for linking into programs that
are not supposed to collect profile information. To solve this problem, and
avoid having inappropriate instrumentation in widely-used library modules
for example, usefprof with thegcdm,subst option instead.

Before using thérof option, you should read Chapter 4, Program-wide
Analysis and Optimization, Chapter 5, Profile Data Merging and Data
Format (gmpf960), and Chapter 6, gcdm Decision Maker Option.

f (Additional Fine-tune)

Additional optimization
adjustments.

f [no-] arg

arg is any one of the optimizations listed below. This option takes only
one argument; use a separatgption to enable/disable an optimization.

Thef [no-] arg option is supported to allow access to optimization
controls that are supported by the gcc960 compiler driver.

ic960 Compiler Driver

Note that most of these options are controlled automatically by the various
Ooptimization levels. Therefore, some of them may be ignored for certain
compilations. For example, at optimization le®@e] you cannot enable
instruction scheduling withschedule-insns . To check whether one of

these options has the desired effect, compare the generated assembly code

with and without the option.

bbr

coalesce

coerce

cond-mismatch

condxform

constprop

copyprop
cse-follow-jumps
cse-skip-blocks
expensive-optimizations

float-store

Enable basic block rearrangement.

Coalesce adjacent memory references
into a single reference of a larger size, to
take advantage of the processor’s burst
bus. Only memory references that can

be proven to be contiguous and whose
base address can be proven to be aligned
properly are coalesced. This option
impliesfshadow-mem .

Enable byte/short optimization.

Allow type mismatch in operands of the
7. operator.

Enable 80960 conditional instructions.

Enable constant propagation and
folding.

Enable copy propagation.

Enable a limited form of global CSE.
Enable a limited form of global CSE.
Enable some minor optimizations.

Do not store floating-point variables in
registers, and do not perform common
sub-expression elimination on floating-
point expressions.

3-33

1960 Processor Compiler User's Guide

3-34

force-addr

fint-alias-ptr

fint-alias-real

fint-alias-short

Place address constants in registers
before use.

Indicates to the compiler that pointer
objects may be referenced as 32-bit
integers and vice versa.

Indicates to the compiler thadat
double , andlong double objects (or
parts thereof) may be referenced as
32-bit integers and vice versa.

Indicates to the compiler that four-byte
integer objects may be referenced as
two-byte integer objects and vice versa.

The aliasing options listed above tell the
compiler not to use certain kinds of type
information when disambiguating
memory references, even though it could
do so according to ANSI section 3.3
(disambiguation constraints).

The rules enforced by the aliasing
options are transitive. For example, if
user code accesses partsiafble
objects ashort , thenfint-alias-

real andfint-alias-short should
both be used.

The rules are also applied recursively to
structs and unions. That is to say, if
fint-alias-ptr is in use, then a union
that has a member of pointer type is
assumed to be aliased by 32-bit integers
or by structures or unions containing
32-bit integers.

ic960 Compiler Driver

keep-inline-functions

marry_mem

rerun-cse-after-loop

shlock

schedule-insns

schedule-insns2

shadow-globals

shadow-mem

space-opt

Note that ANSI 3.3 requires the
compiler to assume thaitar references
alias all types, so code usinigar
pointers for this sort of thing is already
correct and using these options is not
necessary.

Using all three aliasing options
effectively disallows all use of type
information in memory disambiguation.
This is bad both for compiler
performance and the efficiency of
generated code.

Emit out-of-line code for inlined
functions

Rejoin multi-word moves split by
fsplit_mem

Reiterate CSE after loop optimization.

Enable/disable superblock formation.
This option is normally used in a
second-pass recompilation, but it can
also be used in a single-pass
compilation.

Perform pre-register-allocation
scheduling.

Perform post-register-allocation
scheduling.

Shadow memory locations in registers.

Like shadow-globals , but more
thorough.

Optimize for code size.

3-35

1960 Processor Compiler User's Guide

3-36

split_mem Split multi-word moves for copy
propagation.

strength-reduce Enable loop strength reduction.

thread-jumps Enable an advanced branch
optimization.

unroll-all-loops Unroll all loops.

unroll-loops Unroll loops where deemed beneficial.

volatile Treat indirect memory references as
volatile.

volatile-global Treat all memory references as volatile.

writable-strings Place string literals indata section.

Default

The set of optimizations performed is determined by the argument of the
O (Optimize) option.

G (Generate)

Select code generation
options.

G arg|, arg]...
arg is one of the following:

abi Generate 80960 ABI-conformant code. This
causes thehar type to be signed, enums to be
four bytes in size and signed, and changes
default alignment rules for structs and unions.
See Chapter 7 for more information.

ic960 Compiler Driver

Table 3-4

ac=n

bc

be

cave

core0 |corel |
core2 |core3 |

Gcore Supported Ar

Aligns struct

data types on the byte boundary

specified byn. ncanbe 1, 2, 4, 8, or 16.

Generates code that is backward-compatible with
releases of ic960 before Release 3.0.

Generates objects that execute in a big-endian

memory environment.

Generate all functions as CAVE secondary

functions.

generate code that is compatible with multiple
1960 processor types. Additionally, when you

use aGcore

option, you can include another

-A switch to generate code that is optimized for a
particular architecture, but still compatible with a
group of architectures. The table below lists the
architectures that are supported bgeore

option and theA options that you can use with

them.

chitecures

Option Name

Compatible Architectures

Can Be Used With

Gcore0 Jx, Hx, RP -AJA |, -AJD, -AJF, -
AHA -AHD , -AHT,
or -ARP

Gcorel KX, Sx, Cx, Jx, Hx Any architecture
option except -ARP

Gcore2 Jx, Hx -AJA, -AJD, -AJF, -
AHA -AHD , or -AHT

Gceore3 Cx, Jx, Hx -ACA, -ACF, -AJA, -
AJD, -AJF , -AHA,
-AHD, or -AHT

cs Orcu Treatschar data types asgned orunsigned ,

respectively.cs is the default.

3-37

1960 Processor Compiler User's Guide

dc Specifies the relaxed ref-def external linkage
model. This is the default.

ds Specifies the strict ref-def external linkage
model.

pc Generates position-independent code.

pd Generates position-independent data.

pr Reserves registen2 containing the position-

independent data (PID) bias value.

wait= n Specifies wait-state for memory accessess in
the range 0 through 32, inclusive.

XC Specifies that all external calls in the module use
the extended-call mechanism.

Discussion

You can select multiple arguments either by specifying all of them,
separated by commas, as the argument of a sin@enerate) option, or
by specifying each as the argument of a separéBenerate) option. If
you specify conflicting arguments, the last one takes precedence.

Alignment Argument (ac): If you selectic=n, the compiler aligns
struct data types on-byte boundaries. This is equivalent to an initial
#pragma align(n) and does not override any subsequ@ntgma

align(n) directives. Alignment values can only be2, 4, 8, or 16.
Chapter 10 describes alignment in more detail.

Backward-compatible Argument (bc): If you selecbc, the compiler
generates object modules that can be linked with object modules translated
by ic960 Release 2.0. This option resolves the following compatibility
issues:

* The default alignment of individuairuct data types for ic960
Release 2.0 can differ from the default structure alignment for Release
3.0 and later releases. The Release 3.0 ic960 derives the default
alignment of astruct data type from its size, by rounding up from

3-38

ic960 Compiler Driver

the size to the next power of 2 (to a maximum of 16). In code
translated by ic960 releases before 3.0, the alignment efrtlhe
defaults to the alignment of the largest member oftinet . You
must compile all modules of a program with the same alignment.

» For enum data types, the compiler selects a basic integral
representation type, choosing the narrowest type capable of
representing all of the enumeration values. The compiler can
represent thenum type assigned char , unsigned char , short
unsigned short , orint , depending upon the range of enumeration
values. Before Release 3.0, the compiler used only signed types to
representnum data types. For example, a maximum enumeration
value between 128 and 255 inclusive, now represented as an
unsigned char , was represented aslart in Release 2.0.

» The values of upper, unused bits of prototyped parameters and return
values smaller than 32 bits for ic960 Release 2.0 can differ from the
corresponding bit values for Releases 3.0 and later. The calling
convention for Release 3.0 does not extend the unused bits. The
called function must extend into the unused bits of prototyped
parameters and the function using a return value must extend into
unused bits of the return value. In code translated by ic960 releases
that preceded 3.0, the calling conventions extend into unused bits
when passing prototyped parameters and returning values smaller than
32 bits.

With this release of the compiler, the recipient of a narrow integral
value must assume that the high-order bits of the register containing
the value do not contain the appropriate zero- or sign-extension of the
value passed. It is the recipient function's responsibility to clean the
upper bits of a parameter or return value if necessary. Using the
Backward Compatibleb¢) argument causes the compiler to use the
rules of prior releases. Before this release of the compiler, narrow
integral values were always sign- or zero-extended by the originator.

* The Release 2.0 compiler, when used to compile for an i960 KB or SB
processor, returrisng double (80-bit) floating-point numbers in the
fpo floating-point register.

3-39

1960 Processor Compiler User's Guide

* The Release 3.0 compiler, when used to compile for any i960
processor, returnsng double floating-point numbers in thgo, g1,
andg2 global registers. When Release 3.0 is used to compile for a
processor without a floating-point unit (e.g., the KA, SA, CA, or CF
processor), the compiler generates calls to the accelerated floating-
point library (“libh”). (Release 2.0 generated calls to the FPAL
floating-point-arithmetic library, but FPAL is no longer supported.)
You must recompile any KA, SA, CA, or CF module that was
compiled with ic960 R2.0 floating-point operations.

Big-endian Argument (be): If you selecbe, you inform the compiler

that the memory system of the entire program is in big-endian format.
Only the 1960 Cx, Hx, and Jx processors support big- and little-endian
format. Do not use this argument with other i960 architectures.

The compiler automatically passes thé@Generate big-endian) option to
the assembler or linker if they are to be run.

Big Compression Assisted Virtual Execution (CAVE): If you
selectcave , the compiler generates special CAVE entries for all functions
in the compilation unit. This prepares the functions for link-time
compression. The CAVE entries resemble the following:

.section .text

_foo:
lda Li,reg
call __dispatcher

ret

.section cave
.word L2-L1,0

L1:
function body
L2:

At runtime, the dispatcher decompresses the function bodies and transfers
control to them. This mechanism saves runtime memory. (See the
discussion offpragma cave in Chapter 7 for more information.)

3-40

ic960 Compiler Driver

Signed and Unsigned Character Arguments (cs and cu): If you
selectcs, declarations ofhar are treated asgned char . (This is the
default.)

If you selectcu, declarations ofhar are treated asisigned char .

Relaxed and Strict Linkage Definition Arguments (dc and ds): In

the default relaxed ref-def external linkage model (i.e.dthargument),
any variable declared with thetern keyword is a reference to a

variable and does not define storage. Somewhere in all the modules, a
definition at file-scope must exist. You can have multiple definitions. All
definitions are combined into a single storage location by the linker.
Storage is allocated for initialized variables in thea section with the
appropriate initializer. Uninitialized definitions are allocated to the
common sections using themm assembly language directive. At link
time one of the following happens:

« If avariable is defined with an initializer in one module, and without
an initializer in all other modules, the linker allocates space for the
object in thedata section.

» If no definitions of a variable are initialized, all common references
are combined and allocated to thes section. With the relaxed
ref-def model, you cannot relocate uninitialized variables to named
sections at specific memory locations using the linker configuration
language.

In the strict ref-def model (i.e., using the argument), only one definition
is allowed and all others must be declared with the keywasdh . You
cannot have more than one definition of an object with external linkage.
Storage is allocated to uninitialized file-scope variables inttlze

section. Initialized variables are allocated in thea section with the
appropriate initializer. Using the strict ref-def model, you can relocate
uninitialized variables to named sections at specific memory locations
using the linker configuration language. For more detailed information
about using the linker, see tl960 Processor Software Ultilities User's
Guide

3-41

1960 Processor Compiler User's Guide

3-42

Position Independence Arguments (pc, pd, and pr): If you select
pc, the compiler generates position-independent code and predefines the
__PIC macro.

NOTE. Applications built using thec option cannot be linked with
assembly sources that contaiilx or balx instructions, since these
instructions are not position-independent.

If you selectod, the compiler generates position-independent data and
predefines the PID macro. Registerl2 contains the bias value for the
data sections; its contents cannot be modified, even during the saving or
restoring process.

If you selector , the compiler reserves registar. Use this option for
position-dependent modules to be combined with position-independent
data modules. Chapter 7 describes position-independent code and data.

Extended Call Argument (xc): Use the Extended Call argument when
your code calls external functions outside the range afdthe or bal
opcodes. When you use this argument, the compiler emitaitke
pseudo-opcode, which the linker translates to either of the MEM format
opcodesallx orbalx . The linker decides which translation to perform
based on the symbol table entry for the defined function. The extended
call opcodes can address the entifeatidress range. The extended call
instructions occupy two words of code space. The single word CTRL
formatcall instructions occupy one word.

The compiler emits the CTRL formadllj pseudo-opcode when calling
any function defined outside the current compilation module.

ic960 Compiler Driver

Examples

1. The following example aligns structures on 8-byte boundaries:
ic960 -Gac=8 proto.c

2. The following example generates a module that can be linked with
code resulting from an ic960 Release 2.0 translation:
ic960 -Gbc proto.c

3. The following example generates code in which variables declared as
char are treated asisigned char :
ic960 -Gcu proto.c

4. The following example generates position-independent code and data:
ic960 -Gpc,pd proto.c

Related Topics

A (Architecture) __PIC #pragma align
I960ARCH __PID #pragma i960_align
__ 1960 xx

g (Debug)

Include debug
information in object
module.

gl level]

wherelevel specifies the amount of debug information. Note that the
meaning of level varies depending on the object format in use, as
described below.

Usinggo disables debug information. (This is the same as not using the
g option.)

3-43

1960 Processor Compiler User's Guide

3-44

For COFF, debug level settingsmfgl, g2, andgs all have the same
effect: they specify “normal” debug information.

For ELF/DWARF, debug level settings @fg1, andg2 all have the same
effect: they specify all DWARF debug information except preprocessor
macros. A debug level setting ¢f specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

Theg (Debug) option does not inhibit optimization. If you specifyghe
option but do not specify the(Optimize) option, the optimization level
defaults tooo.

Specifying an optimization level higher than can inhibit the

effectiveness of the symbolic debug information. For example, if you set

a breakpoint on a source line for which the code has been optimized away,
the breakpoint is never hit. Or if you try to print the value of a variable

that has been optimized away, an erroneous value are displayed. In
general, as the optimization level increases, the reliability of the symbolic
debug information decreases.

If you are using the ELF object module fornvadl{), theng causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more
reliable debugging under optimization. However, even with DWARF,
there are situations where debugging behavior does not agree with the
debugging behavior of unoptimized code.

gcdm (Decision Maker)

Invoke gcdm960
decision-maker.

gcdm, arg [, arg]...

ic960 Compiler Driver

Thegcdm option provides a high level of automation for the whole-
program or profile-driven optimization process. The compiler driver and
the linker both use thgedm option and its arguments.

Thegcdm option is flexible and powerful, and therefore requires a certain
level of understanding in order to use it effectively. For these reasons, it is
documented in a separate chapter (Chapter 6) in this manual.

Before using thgcdm option, you should read Chapter 4, Program-wide
Analysis and Optimization, and become familiar with the information in
Chapter 5, Profile Data Merging and Data Format (gmpf960).

h (Help)

Display invocation help;
terminate.

Discussion

This option causes the compiler to display brief descriptions of each
option on the standard output device and then terminate.

| (Searchinclude)

Search alternate
#include directory.

| dir

dir is a directory containing files to be included.

3-45

1960 Processor Compiler User's Guide

3-46

Default

If you usetinclude " filename " to specify a filename that is not an

absolute pathname, the compiler searches directories in the following

order:

1. the directory containing the primary C source file (the primary
directory).

2. if1960INC is defined, the directory specified ®g0INC .

3. if1960INC is not defined, theclude directory located under the
directory specified bye60BASE .

For afilename included with#include <filename >, the compiler

searches directories in the following order:

1. if1960INC is defined, the directory specified BB0INC .

2. if1960INC is not defined, theclude directory located under the
directory specified bye60BASE .

Discussion

Usel (Searchinclude) to specify additional directories for the
preprocessor to search to find files specified withiude . The
preprocessor searches Searchinclude directories before the directory
specified byi960INC 0rI1960BASE . If you use quotation marks
(#include " filename "), the preprocessor searches the primary
directory first. If you use angle bracketénClude <filename >), the
preprocessor does not search the primary directory.

Examples

1. Inthe following example, the preprocessor searches:
O Jusr/home/src (the directory containingroto.c)
O /usr/home/include (the Searchinclude directory)
O /usr/nomeltestinclude (the directory specified bp60INC)
The environment variable definitions are:
0 1960BASE is set tQusr/local/i960
0 1960INC is set tdusr/homef/testinclude

ic960 Compiler Driver

The command-line is:
[0 ic960 -I /usr/home/include /usr/home/src/proto.c
The source text contains:
[0 #include "proto.h"
2. In the following example, the preprocessor searches:
O /usr/home/include (the Searchinclude directory)
O /usr/local/i960 (the directory specified bp60BASE)
Thel960BASE environment variable is set i@sr/local/i960
The command-line is:
[0 ic960 -I /usr/home/include /usr/home/src/proto.c
The source text contains:
[0 #include <proto.h>
If the preprocessor does not findto.h , for either of these examples,
the compiler displays the following error message:

ic960 ERROR: "/usr/home/src/proto.c”, line 1 -- proto.h:
No such file or directory

Related Topics

#include 1960INC Stop-after options
I960BASE i (Preinclude)

I (Preinclude)

Prepend text file to
primary source files.

i filename

filename is the name of a C source text file.

3-47

1960 Processor Compiler User's Guide

3-48

Discussion

Use the (Preinclude) option to prepend the text of a C source file or
include file to each C source file specified on the command line. This
option has the same effect as placingtianude directive at line zero of
each C source file.

The compiler searches fékname in the same way as for a file
specified with#include using quotation marks. For a description of
include-file searching rules, see th€Searchinclude) option description.
The compiler issues an error if the file is not found.

Example

The following example prepends the filebals.n to the fileproto.c
ic960 -i globals.h proto.c

Related Topics

#include 1960INC Stop-after options
I960BASE | (Searchinclude)

J (Miscellaneous)

Selects miscellaneous

controls.

J arg|[, arg]...

ic960 Compiler Driver

Discussion

Use thel (Miscellaneous) option to specify miscellaneous controls. Two
such controls argd (issue gcc960-style diagnostics) andd (issue
ic960-style diagnostics). gcc960-style diagnostics are more compact, and
do not include column position indicators.

Default

nogd (issue ic960-style diagnostics).

] (Errata)

Specifies processor
errata.

i num Discussion

Use the (Errata) option to cause the compilation system to generate code
with workarounds for specified processor erratasufargument of 1
generates code to work around the Cx processors' DMA errata.

3-49

1960 Processor Compiler User's Guide

3-50

M (Mix)

Mixes C source text with
assembly language
output.

-S-M

Default

Assembly language output does not contain interleaved C source as
comments.

Discussion

Use thevi(Mix) option to modify thes (Save-assembly) option to put C
source text as comments into the assembly language output file. Using the
M(Mix) option without thes (Save-assembly) option has no effect.

Note that if you use the (Optimize) option with the1(Mix) option, the C
source text comments can be mismatched to the assembly language text,
since optimization can reorder and eliminate assembly language
instructions.

Example

The following example produces the assembly languagerfile s
containing C source text as comments:

ic960 -S -M proto.c

Related Topics

O (Optimize) S (Save-assembly)

ic960 Compiler Driver 3

n (Check-syntax)

Check syntax;
terminate.

Default

After the link phase of the compilation process is complete, an executable
file is produced.

Discussion

If you specifyn (Check Syntax Only) the compilation process terminates
after performing syntax and semantic checking. The compiler generates
diagnostic messages but produces no output.

Example

The following example runs a syntax check only on thefie.c
generating no output file:

ic960 -n proto.c

O (Optimize)

Optimize.

Ollevel]

Thed level] option specifies the level of optimization as described
below.

3-51

1960 Processor Compiler User's Guide

0]0)

o1

02

05

3-52

Disables optimizations, including those that may
interfere with debugging. This is the
optimization level if you use the (Debug)

option.

Enables basic optimizations, including: advanced
register allocation, common subexpression
elimination, loop invariant code motion,
expression simplification and instruction
combination, jump optimization, dead-code
elimination, and i960 processor-specific
peephole optimization. This is the default setting
if you do not use thg (Debug) option or when

you use thedb (Program Database) airof
(Instrument) options.

This level includes the1 optimizations
described above, tail-call elimination, leaf-
procedure optimization, and the following
optimizations:

fcoalesce , fcoerce ,fcondxform
fconstprop , fcopyprop , fcse-follow-

jumps , fcse-skip-blocks , fexpensive-
optimizations , finline-functions ,
fmarry_mem , frerun-cse-after-loop ,
fschedule-insns , fschedule-insns2 ,
fshadow-globals , fshadow-mem ,
fsplit_mem , fstrength-reduce , funroll-
loops .

This setting specifies program-wide
optimization. Before using thes option, you
should read Chapter 4, Program-wide Analysis
and Optimization, and Chapter 6, gcdm Decision
Maker Option.

ic960 Compiler Driver

Note that theds level is not accepted directly by
the ic960 driver. It is accepted only in theést
argument of thecdm option.

0 (Output)
Name output file.
o filename
filename is the name of the file to receive the final output
of the compilation.
Default

If the linker is to be invoked, the default name of the linker's output is

a.out for COFF anck.out for ELF. Otherwise, each output filename is
determined by replacing the filename extension of each input file. Output
filenames' extensions depend on the Stop-after option in effect, as follows:
e P (Preprocess-file): filename i

e S (Save-assembly): filename s

* ¢ (Create-object): filename .o

Discussion

Use theo (Output) option to direct the final output of a compiler

invocation to a specific file. The final output can be any of the following:

* ForE, Q andn, the output goes tadout .

» If you specify ther (Preprocess - file) option, the final output is the
result of preprocessing.

« If you specify thes (Save-assembly) option, the final output is the
assembly language text generated by the compiler.

3-53

1960 Processor Compiler User's Guide

» If you specify the: (Create-object) option, the final output is the
object module generated by the assembler.
» Otherwise, the final output is the result of linking.

The compiler issues an error message if you use (@aitput) option and
do not invoke the linker when processing more than one input file.

Related Topic

Stop-after options

P (Preprocess-file)

Preprocess; write output
to file; terminate.

Default

After the link phase of the compilation process is complete, the
compilation system produces an executable file.

Discussion

If you specify ther, (Preprocess-file) option, the compilation process
terminates after preprocessing and the compiler writes preprocessor output
without line number directives to a file. If you do not specify a filename
with theo (Output) option, the file islename .i , wherefilename is the
source filename without its extension.

3-54

ic960 Compiler Driver

Example

The following example puts the preprocessed sourcedarc in the
file proto.i and the preprocessed sourcefdiorol.c in the file
protol.i

ic960 -P proto.c protol.c

Related Topics
o (Output) Stop-after options

Q (Dependencies)

Print include-file
dependencies;
terminate.

Q

Discussion

If you specifyQ (Dependencies), the compilation process terminates after
preprocessing and the compiler writes a list of dependency lines to
standard output. The dependency lines take the dofemt : subfile
whereobject is an object filename derived from the name of a primary C
source file andubfile is the name of a file needed to create the object
file. The preprocessor generates one line for eagiie on which the
object file depends, including the primary C source file. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

3-55

1960 Processor Compiler User's Guide

3-56

Example

The following example generates a file dependency lisitfor.c . File
dtest.c includes filesiinc.h , d2.h , andd3.h , as follows:

#include "dinc.h"
#include "d2.h"
#include "d3.h"

File dinc.h includes filedad.h , as follows:
#include "dad.h"

The filesd2.n andd3.h do not include any files. The following
command compilestest.c with Q resulting in file dependency lines:

ic960 -Q dtest.c
dtest.o: dtest.c
dtest.o: dinc.h
dtest.o: dad.h
dtest.o: d2.h
dtest.o: d3.h

Related Topics

#include o (Output) Stop-after options

S (Save-assembly)

Compile; save assembly
language output;
terminate.

ic960 Compiler Driver

Default

After the link phase of the compilation process is complete, the compiler
produces an executable COFF file. (Assembly language output is not
saved.)

Discussion

If you specifys (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to a file. If
you do not specify a filename with thgOutput) option, the compiler

writes the assembly language outpuiitmame .s , wherefilename is

the source filename without its extension.

Use thevi(Mix) option to create a mixture of assembly language source
code and corresponding C source code.

Examples

1. The following example creates the assembly language output from
proto.c into proto.s

ic960 -S proto.c

2. The following example creatpsto.s , the assembly language file
for proto.c , andtl.s , the assembly language file farc , in the
current directory:

ic960 -S proto.c -tl.c

Related Topics
M (Mix) o (Output)

3-57

1960 Processor Compiler User's Guide

Stop-after Options (N | Q| P|E| S|)

Stop after the specified
compilation phase.

n|QIPIE[S]|c

Default

After the link phase of the compilation process is complete, the
compilation system produces an executable file.

You can use the (Output) option to specify a name for the executable
file. The default output filename ésout (COFF) ore.out (ELF).

Discussion

Use one of the Stop-after options to halt the compilation process before
linking and to write the intermediate output to a file or standard output.
You can also use the(Output) option to specify a filename for the output
file.

Table 3-3 summarizes the processing and output other than listing the files
that result from each Stop-after option.

If you specifyn (Syntax-checking), the compilation process terminates
after syntax and semantic checking are performed. The compiler
generates diagnostic messages but produces no output.

If you specifyQ (Dependencies), the compilation process terminates after
preprocessing and the compiler writes a list of dependency lines to
standard output. The dependency lines take the dofemt : subfile
whereobject is an object filename derived from the name of a primary C
source file andubfile is the name of a file needed to create the object
file. The preprocessor generates one line for eagiie on which the

3-58

ic960 Compiler Driver

object file depends, including the primary C source file. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

Table 3-5 Stop-after Option Phases and Output

Name Option Processing Phases Output

Syntax-check n preprocessing, syntax- a list of diagnostic messages,
checking written to standard error

Dependencies Q preprocessing a list of file-dependence lines,

Preprocess -
stdout

Preprocess -
file

Save-
assembly

Create-object

written to standard output

E preprocessing preprocessed source text with line
number directives, written to
standard output

P preprocessing preprocessed source text without
line number directives, written to
files

S preprocessing, compilation assembly language, written to files

(9]

preprocessing, compilation, object modules, written to files
and assembly

If you specifyE (Preprocess - stdout), the compilation process terminates
after preprocessing and the compiler writes preprocessor output with line
number directives to standard output. Bh@®utput) option does not

affect output front.

If you specifyP (Preprocess - file) the compilation process terminates
after preprocessing and the compiler writes preprocessor output without
line number directives to a file. If you do not specify a filename with the
o (Output) option, the compiler writes preprocessor output to

filename .i , wherefilename is the source filename without its
extension.

3-59

1960 Processor Compiler User's Guide

3-60

If you specifys (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to a file. If
you do not specify a filename with thgOutput) option, the compiler

writes the assembly language outpuiitmame .s , wherefilename is

the source filename without its extension. If you also specifyi{ihix)
option, the assembly language output file also contains interleaved C
source lines.

If you specifyc (Create-object), the compilation process terminates after
the assembler generates an object file. If you do not specify the Output
option, the compiler writes the object fileftename .o, where

filename is the source filename without its extension.

Examples

1. The following example puts the preprocessed sourgedarc in
the fileproto.i and the preprocessed sourcefdiorol.c in the file
protol.i

ic960 -P proto.c protol.c

2. The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:
ic960 -E proto.c

3. The following example runs a syntax check only on theffile.c ,
generating no output file:
ic960 -n proto.c

4. The following example puts the assembly language output from
proto.c into proto.s
ic960 -S proto.c

5. The following example putsoto.s , the assembly language file for
proto.c , andtl.s , the assembly language file farc , in the
current directory:

ic960 -S proto.c -tl.c

ic960 Compiler Driver

6. The following example produces the objectfileo.o0 but no
executable file:

ic960 -c proto.c

7. The following example produces the object fieso.o ,tl.0 , and
protol.o in the current directory but creates no executable file:

ic960 -c proto.c t1.s protol.i

8. The following example lists file dependenciesdiest.c
Thedtest.c file includes thelinc.h ,d2.h , andd3.h files, as
follows:

#include "dinc.h"

#include "d2.h"

#include "d3.h"

Thedinc.h file includes thelad.h file, as#include "dad.h"

Thed2.h andd3.h files do not include any files. The following
command compilestest.c with -Q, resulting in the following lines:
ic960 -Q dtest.c

dtest.o: dtest.c

dtest.o: dinc.h

dtest.o: dad.h

dtest.o: d2.h
dtest.o: d3.h

Related Topics

C (Keep-comments) o (Output) z (List)
M (Mix) V (Verbose)

3-61

1960 Processor Compiler User's Guide

U (Undefine)

Undefine symbol.

U symbol

symbol is a symbolic name.

Default

No symbols are undefined.

Discussion

Use theu (Undefine) option to remove preprocessor macro symbols.

Examples of symbols you can undefine include:

e the 1C960, i960 and_i960 xx macros, wherex is CA CF, KA,
KB, SA, SB, JA, JD, or JF

e the_ PIC and__PID macros

» symbols you have defined on the command line

» the symbol for big-endian code generatiorig60_BIG_ENDIAN

The compiler processes all th€Undefine) options in a command line
only after processing all the(Define) options.

You cannot undefine or redefine the following predefined ANSI macros:

__DATE__ is the calendar date of the translation.

__FILE__ is the name of the current source file.

__LINE__ is the line number of the current source program
line.

__TIME__ is the calendar time of the translation.

__STDC__ indicates that the compiler conforms to ANSI C.

3-62

ic960 Compiler Driver

Example

The following examples both undefine the symbab60KA :

ic960 -AKA -U__i960KA proto.c
ic960 -AKA -U__i960KA -D__i960KA=2 proto.c

Related Topics

A (Architecture) __ 1960 xx __PIC
D (Define) __ 1960 __PID
#define #undef

V (Version)

Display version
information.

\Y

Default

The compiler does not display version information.

Discussion

Use thev (Version) option to display to standard error the name and
version, as shown below.

ic960 Version X.y . nnnn
X.y identifies the major release of the compiler
nnnn identifies the product's patch level

Version information differs for each host system and for each release.

3-63

1960 Processor Compiler User's Guide

Related Topic

v (Verbose)

v (Verbose)

Display invocation
information.

Default

The compilation system does not display individual phase invocation
information.

Discussion

Use thev (Verbose) option to display the standard errors from invocations
of the driver program, preprocessor, compiler, assembler, and linker.
These invocations are command lines generated by the driver program
from the files andv(Pass) options you specify in the60 command.

For example, if you specify the(Verbose) option, the driver program
passes it to the linker, even if you do not specifically useass)

option. The linker displays on standard output the files linked according to
the following categories:

* input object files

« startup file

» high-level libraries

* low-level libraries

3-64

ic960 Compiler Driver

Example

The following command-line requests verbose invocation information:
ic960 -v -T cycx -ACA -o hello.out hello.c

Related Topics

I960AS 1960LD w(Pass)
I960BASE Stop-after options V (Version)

v960 (Version, terminate)

Display version
information and
terminate.

v960

Default

The compilation system does not display version information.

Discussion

Use thev960 (Version, terminate) option to display version information.
This is the only thing the driver program does before terminating.

3-65

1960 Processor Compiler User's Guide

3-66

W (Pass)

Pass arguments to

phases.

W phase, arg [, arg]. ..

phase is a letter identifying the phase to receive the
arguments, as follows:

a indicates the assembler.

c indicates the compiler.

| indicates the linker.

P indicates the preprocessor.

arg is a string to be passed to and interpreted by the
phase. Eachrg is passed as a separate
argument. If ararg string contains whitespace,
you must enclose the string in quotation marks.

Discussion

Use thew(Pass) option to specify options for the preprocessor, compiler,
assembler, or linker. The driver program does not interpret the argument
strings; only the receiving phase interprets them.

Related Topic

Stop-after options

ic960 Compiler Driver

W (Warnings)

Enable or disable a
warning.

W [no-] arg

Thew [no-] arg option allows more fine-grained control over diagnostics

thanw level

arg is any of:

aggregate-return

all

cast-align

cast-qual
char-subscripts
comment

conversion

error

format

id-clash- n

implicit

missing-braces

warn if any functions return structures or unions.

enable several useful warnings. Hasmm-all
form.

warn if a pointer cast may not have the required
alignment.

warn if a pointer cast removes a type qualifier.
warn if an array variable has typear .
warn whenever- occurs in a comment.

warn if a prototyped parameter causes a different
conversion from the conversion that would take
place if the parameter were not prototyped.

treat all warnings as errors.

check arguments gfintf -family arguments at
compile time.

warn if two identifiers match in the first
characters.

warn if a function is used before it is declared.

warn if an aggregate initializer is not fully
enclosed in braces.

3-67

1960 Processor Compiler User's Guide

missing-prototypes

nested-externs

parentheses

pointer-arith

redundant-decls

return-type

shadow

strict-prototypes

switch

traditional

trigraphs

uninitialized

unused

write-strings

3-68

warn if a function is defined before it is
prototyped.

warn if anextern declaration is detected inside
a function.

warn if parentheses are suggested around an
expression.

warn if the size a function type or typ&d is
used.

warn if an object is declared twice in the same
scope.

warn if any function implicitly returnst , and
if any non-void function does not return a value.

warn if a local variable shadows another local
variable.

warn if a function is declared without a
prototype.

warn if a switch statement on an enumeration
type does not have a case for each enumerator.

warn about contructs that behave diffferently in
traditional C and ANSI C.

warn if any trigraphs are detected.

warn if use of an uninitialized local variable is
detected.

warn about objects that are never used.

warn if string constants are used in a writable
context.

ic960 Compiler Driver

w (Diagnostic-level)

Controls listing or
display of diagnostic

messages.
w level
level is the level of diagnostic messages to be listed or
displayed; can be, 1, or2.
Default
The compiler displays error and major warning messages; thazeis,
is1.
Discussion

Use thew (Diagnostic-level) option to suppress the warning messages that
highlight legal but questionable uses of C. Unlike errors, uses of C that
result in warning messages do not prevent the compiler from completing
the translation and linking process.

To choose the level of diagnostic messages, use one of the following for
thelevel argument:

0 to enable all warning and error messages

1 to enable major warning and error messages,
suppressing only minor warning messages

2 to enable only error messages, suppressing
warning messages

Thea (ANSI) option always overrides the2 option, forcing the compiler
to list or display warning messages.

3-69

1960 Processor Compiler User's Guide

3-70

Thew(Warnings) option can be used to enable/disable specific warnings
that would otherwise fall under the control of théDiagnostic-level)

option.

Example

The following example displays warning and error diagnostic messages:
ic960 -c -w1l proto.c

Related Topics
a (ANSI) Stop-after options w(Warnings)

Yd (Program database)

Specifies location of
program database.

Yd, PDB_directory

PDB_directory specifies the directory containing the program
database (PDB).

Default

The environment variable6oPDB specifies the location of the program
database.

ic960 Compiler Driver

Discussion

When linking an instrumented program to generate profile information,
during the Decision-making step, and during Profile-driven
Recompilation, the location of the program database (PDB) must be
specified. You can use thel (Program database) option to override
1960PDB or to indicate where the PDB is locateth#0PDB is not

defined.

The PDB is a directory that the compilation system uses to store various
files that it generates to contain information about the profile-driven
compilation of a program. It must be specified either via the

Yd, PDB_directory option, or with the960PDB environment variable.

Z (Listname)

Names listing file.

Z filename

filename is the name of the listing file to be created.

Default

The compiler generates listing filenames from the primary source
filenames.

Discussion

Use thez (Listname) option to name the listing file. If you specify more
than one source file on the command line, the compiler concatenates the
listings for all the source text files into the singlename listing file.

Using thez (Listname) option without the (List) option generates a

listing file containing only primary source text.

3-71

1960 Processor Compiler User's Guide

3-72

Example

The following example produces the listing fite.t containing a
source text listing for the filgroto.c

ic960 -c -Z list.t proto.c

Related Topics

Stop-after options z (List)

z (List)

Produce listing file.

z arg ...

arg is one of the following:

S

lists the primary source text, that is, source
text from files named on the command line.

adds included source text to the primary
source text listing.

adds the assembly language generated by
the compiler to the listing file.

adds expanded preprocessor lines to the
primary source text listing.

adds conditionally noncompiled source text
to the primary source text listing.

ic960 Compiler Driver

Default

The compiler does not produce any listing files.

Discussion

Use thez (List) option to generate a listing file for each primary source
file and to specify the listing file contents. Tirg applies to all listing

files produced. A listing file contains, at a minimum, the source text from
the primary source file and diagnostic messages according to the
diagnostic level. You can add other listing information by specifying one
or morearg arguments instead of or in additionstoUsing the , o, m or

¢ argument implies the argument.

Unless you specifically name the listing filename withzlgistname)
option, the compiler derives a listing filename from each primary source
filename, as follows:

base. L

base is a primary source filename, without its
extension.

Example

The following example produces the listing filenplex.L. and object file
complex.o in the current working directory for the source file

/complex.c . The listing file contains primary source listing, included
source text, assembly language, source text that is conditionally compiled
out, and expanded macros.

ic960 -c -z cosmi /complex.c

3-73

1960 Processor Compiler User's Guide

Include Line

Level Number Source Lines

Command line (ic960): ic960 -c -z cosmi complex.c

Command line (ccl): /ffs/pl/dev/src/gcc960/time.sund/ccl
.960 -ic960 -ffancy-errors -sinfo /usr/tmp/ica29412.sin -fno-builtin
-quiet -Fcoff -mkb -mic3.0-compat -fsigned-char -w1 -O1 -fno-inline-functions
-clist siomc -demd "ic960 -c -z cosmi complex.c" -dumpbase complex
-outz complex.L -tmpz /usr/tmp/ica29412.1tm /usr/tmp/ica29412.i -0
Jusr/tmpl/ica29412.s

file "complex.c"

gcc2_compiled.:

___gnu_compiled_c:

o
*

1 #include "complex.h"

1

2 /* Define a struct for complex numbers
with some macros */

=
*

#if ldefined(complex_h)

struct complex {
double x;
double i;

10 K

12 #define INIT_COMPLEX(num, real, imag) \
num.x =real; num.i =imag;

14

15 #define ADD_COMPLEX(res, opl, op2)\
16 res.x =opl.x+op2.x; \

17 res.i=opl.i+op2.i;

18

19 #endif /* !defined(complex_h) */

2

3 extern void write_complex(struct complex num);
4

5 main()

6 {

OO0 00O RRPRRRRERREPRPRRERRRERPRRRERRERELRLER
=
w

3-74

ic960 Compiler Driver

text
.align 4
.def _main; .val _main; .scl 2; .type 0x40; .endef
.globl _main

Function 'main’
Registers used: g0 g1 g2 g3 g4 g5 g6 g7 fp r4*
5% r6* r7*
_main:
Ida 48(sp),sp
#Prologue stats:
Total Frame Size: 48 bytes
Local Variable Size: 48 bytes
Register Save Size: 0 regs, 0 bytes
#End Prologue#
0 7 register struct complex x,y,z;
8
0 9 INIT_COMPLEX (x, 10.31, 4.25);
+++++ Xx.x= 10.31; x.i= 4.25;;

o

lda 1.03100000000000004974€e1,r4
Ida 0x51eb851f,r4

Ida 0x40249eb8,r5

movl r4,r6

st r6,64(fp)

lda 4.25000000000000000000€0,r4
mov 0,r4

Ida 0x40110000,r5

mov | r4,r6

stl r6,72(fp)

0 10 INIT_COMPLEX (y, 7.14, 5.23);
+++++ y x= 7.14; y.i= 523;;

#lda 7.13999999999999968026€0,r4
Ida 0x28f5c28f,r4

Ida 0x401c8f5¢,r5

mov | r4,r6

stl r6,80(fp)

#lda 5.23000000000000042633€0,r4
Ida Oxleb851lec,r4

Ida 0x4014eb85,r5

mov | r4,r6

stl r6,88(fp)

3-75

1960 Processor Compiler User's Guide

0 11 ADD_COMPLEX (z, X, y);

+H++t Z X = X X+H Y X Z0= Xty

0 12
lda 1.74499999999999992895e1,r4
Ida 0x33333333,r4
Ida 0x40317333,r5
mov | r4,r6
stl r6,96(fp)
lda 9.48000000000000042633€e0,r4
Ida 0x8f5c28f6,r4
Ida 0x4022f5¢2,r5
movl r4,r6
stl r6,104(fp)

0 13 write_complex (z);
Idg 96(fp),g0
callj _write_complex
0 14}
#EPILOGUE:
ret
.def _main; .val .; .scl -1; .endef

The listing file includes information about the compilation. The heading
line at the beginning of the listing contains the name and version of the
compiler, the printing date of the listing, and the name of the primary
source file. The next two lines of text describe the format of the listing.
The remainder of the file contains the listing. The compiler does not
paginate the listing and does not wrap long lines.

The format of the source text listing is as follows:

include-nesting-level line-number source-line

include-nesting-level determines the depth of the file in the
include file nesting hierarchy. Since
lines from the primary source file are
always at level 0, if you do not list
included source text, all source lines in
the listing are at level 0. An asterish (
following the include nesting level
indicates the first line of a file.

3-76

ic960 Compiler Driver

line-number is the location of a line relative to the
beginning of the file containing that line.

source-line is a line of source text.
A line with an expanded macro appears after the corresponding source
line in the following format:

source-line

+++++ macro-expanded-line

macro-expanded-line is the source line containing the

expansion of the macro.
The assembly language in the listing is similar to but not necessarily
identical to the intermediate assembly language form of the program
resulting from ars (Save-assembly) option. The compiler can add
symbolic names that improve readability of the listing but are not accepted
by the assembler.

Related Topics

Stop-after options w (Diagnostic-level) z (Listname)

3-77

Program-wide Analysis
and Optimization

Introduction

This chapter teaches you how to use some of CTOOLS most powerful
optimization features:

* individual module optimizations

e program-wide optimizations

e run-time profiling

To use the first two features you are going to:

1. Create a program database.

2. Specify which modules you want optimized.
3. Recompile your program using théb option.

After these basic optimizations, you use profiling to gather information
about the runtime characteristic of your program and then optimize
performance based on that information.

The sections that follow describe the types of optimizations used in
program optimization.

Individual and Program-wide Optimizations

The compiler can perform sophisticated inter-module optimizations, such
as replacing function calls with expanded function bodies when the
function call sites and function bodies are in different object modules.
These are called program-wide optimizations because the compiler
collects information from multiple source modules before it makes final

4-1

1960 Processor Compiler User's Guide

4-2

optimization decisions. Throughout this chapter, standardr{oe-
program-wide) optimizations are referred to as module-local
optimizations.

About Profiling

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution
profile can be used by the global decision making and optimization phase
to improve the performance of the final optimized program. The profile
can also provide input to the global coverage analyzer tool (gcov960),
which gives users information about the runtime behavior of the program
at the source-code level.

Creating Program-wide and Module-local Optimizations

Program-wide optimizations are enabled by options that tell the compiler

to:

1. Build a program database during the compilation phase.

2. Invoke a global decision making and optimization step during the
linking phase.

3. Automatically substitute the resulting optimized modules into the final
program during the linking phase.

Specifying the Program Database Directory

The program database directory (PDd)he repository for all program-
wide optimization information about a particular program. When using
program-wide optimizations, you must specify the correct PDB to all
compilation tools involved in building the program. You initially create
the PDB, but the files within this directory are automatically managed by
the various pieces of the program-wide optimization system. Once this is
done, you do not change the files in the PDB.

Program-wide Analysis and Optimization I

The PDB can be specified by setting the environment var&zdgerps
(gcc960 driver) ore0PDB (ic960 driver)to the correct location. You
can also specify the PDB at compiler invocation time withzthie
(gcc960) orvd, dir (ic960) option, as shown in the examples below.

gcc960 -Zmypdb foo.o
ic960 -Yd,mypdb foo.o

Compiling for Program-wide Optimization with the
fdb Option

All modules subject to program-wide optimization must be initially
compiled with theédb option (described in Chapter 2, gcc960 Driver and
Chapter 3, ic960 Driver). Using this option causes the insertion of
program database information in the object modules, and it implies a
minimum module-local optimization level ofi (although higher module-
local optimization levels are allowed).

Compiling with thefdb option does not change the code or data generated
for the object modules in any way; this option simply makes information
collected during the initial compilation of the modules available to the
global decision making and optimization step.

Global Decision Making and Optimization Using the
gcdm Option

The tool that performs the global decision making and optimization step is

called gcdm960. gcdm960 is invoked from within the linker when the

gcdm option is used. You can also use gheém option in the compiler

driver (gcc960 or ic960) to pass this option to the linker. Usingdive

option causes gcdm960 to:

« automatically build and manage optimized object modules in the PDB

« arrange with the linker for optimized object modules from the PDB to
be automatically substituted for some or all of the original object
modules in the final program.

4-3

1960 Processor Compiler User's Guide

You can use multiplgcdm options in a linker or compiler invocation
command, and eacfedm option can have multiple comma-separated
arguments. (Thegcdm option and its arguments are fully described in
Chapter 6, gcdm Decision Maker Option, in this manual.)

Selecting Modules for Optimization with
Substitution Specifications

You tell gcdm960 which object modules to optimize and how to optimize
them with substitution specifications. Substitutions are specified by
arguments to thgcdm option in the linker or compiler invocation.

The term “substitution” reflects the fact that the linker replaces your
files with optimized versions maintained in the PDB. Such file from
the PDB is called a “substitution module.”

The example below illustrates the basic idea of substitution: It depicts an
ic960 invocation command that uses ghem option and therd andfdb
options to accomplish program-wide optimization (without profiling) for a
simple program.
ic960 -o prog -Ttarg -Yd,./pdb -gcdm,subst=+05 -fdb fee.c

foo.c

(-Ttarg specifies the linker directive file for the target execution
environment.)

The command accomplishes the following steps:

1. fee.c andfoo.c are compiled withidb , which inserts program
database information intee.o andfoo.o .

2. The program is then linked to foprog , at which time gcdm960 is
invoked with-Yd,./pdb -gcdm,subst=+05

3. fee.o andfoo.o are replaced iprog with versions from/pdb
built at levelos optimization (that is, built with program-wide
optimizations).

Program-wide Analysis and Optimization

fa

NOTE. The optimized replacements fes.o andfoo.o are presentin
the linked program but never appear in the current working directory.

Profiling Your Program

Compiling for Profile Instrumentation with -fprof

As mentioned above, information on the runtime behavior of the program
can be used by the compilation system during the global decision making
and optimization step. To instrument a program, usétbie option in
addition tofdb when compiling:

ic960 -Yd,mypdb -fdb -fprof -c foo.c

See Chapters 2 and 3 for more onfthef option. This command causes
profile instrumentation to be inserted iritw.o so that when the linked
program is executed, a profile can be collected. Using runtime profiles to
influence the final optimization of your program requires you to build the
program twice: once to insert the instrumentation, as described here, and
then again so that the compilation system can substitute modules that are
recompiled with optimizations appropriate to their runtime behavior.

Collecting a Profile

If a program that contains one or more modules compilediwith is
linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. This is a “raw” profile containing
program counters that log how many times various statements in the
source program have been executed.

If you are not using the standard libraries, you must insert a call to a
routine that creates thmofile in an appropriate point in the program
source code. For instructions on this step, see the section titled Runtime
Support for Profile Collection (page 4-15).

1960 Processor Compiler User's Guide

Building Self-contained Profiles with gmpf960

A “raw” profile contains program counters, which count how many times
various statements in the source program have been executed.
Information in the PDB is needed to correlate these program counters with
the source program.

A raw profile (that is, a profile simply collected as described previously)
has a very short useful life. When changes are made in your source code,
any raw profiles previously obtained for that program are no longer
accepted by the global decision making and optimization step.

A “self-contained” profile captures the program structure from the PDB

and associates it with the program counters from the raw profile. When
changes are subsequently made to the source program, the global decision
making step interpolates or “stretches” the counters in the self-contained
profile to fit the changed program.

A self-contained profile can be continually used to optimize the program it
was collected for, even after days, weeks, or perhaps months worth of
changes to the program. This frees you from having to collect a new
profile every time the program changes, while still allowing profile-
directed optimizations. Depending upon the nature and quantity of
changes to the program, the accuracy of the profile gradually degrades
over time as more interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always
create a self-contained profile immediately after the raw profile is
collected.

To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file, as shown in this
example:

gmpf960 -Z mypdb -spf pfile2.spf pfilel.pf
This command creates a self-contained profile2.spf from the raw

profile pfilel.pf . The raw profilefilel.pf was created by executing
the instrumented program that was linked usiggdb as the program

Program-wide Analysis and Optimization I

database directory. The and.spf filename extensions for the profile
files in this example are arbitrary; the different types of profiles are
recognized by their contents, not by their filename extensions.

After a self-contained profile reated, you can specify it for the global
decision making and optimization step usingdtén,iprof=file
syntax as described in the next section

Using Profiles During Global Decision Making and
Optimization with -gcdm,iprof
To supply gorofile file pfile to the global decision making and

optimization step, simply add the following option and argument to the
compiler or linker invocation command:

gcdm,iprof=pfile

This is in addition to thgcdm,subst option. Theprof argument can
specify either raw profiles or self-contained profiles.

Obtaining Program Coverage Analysis with

gcov9oe0

You can use both profile typas input to the gcov96tbverage analyzer
tool, as follows:

gcov960 -cm -Z ./pdb -iprof pfile.pf fee.c foo.c

This command produces a coverage report in theffitesov and
foo.cov , using the profilefile.pf

Using make To Perform Program-wide Optimizations

Since the program-building tool "make" is so widely used, the program-
wide optimization features are designed to work well with it. However,
you need not use the make tool to effectively use program-wide
optimizations. If you do not use the make tool, you can skip this section.

1960 Processor Compiler User's Guide

Below is an example of a makefile (whesey is set appropriately):

SUBST=
PROF=
MODULES=*:*

OPT=-fdb "-gcdm,subst=$(MODULES)+$(SUBST),iprof=$(PROF)"
FLAGS=-Ttarg $(OPT)

OBJECTS=fee.o foo.0 main.o

prog: $(OBJECTS) force
ic960 -0 prog $(FLAGS) $(OBJECTS)

.C.0:
ic960 -c $(FLAGS) $<

$(OBJIECTS): makefile

force:

While primitive, this makefile can be used to exercise several significant
capabilities of the program-wide optimization system. Refer to this
example as you read the following sections; the example and discussion
can help you determine the changes that must be made to your own
makefiles(if any) to perform program-wide optimizations.

Adapting Makefiles for Program-wide Optimization

This section discusses the example makefile and how the program-wide
optimization interface is expected to mesh with your current usage of
optimization and debug options.

Specifying the PDB in the Makefile

In an ic960 or gcc960 development environment, you typically specify the
PDB by setting thd960PDB or G960PDBenvironment variable outside of
any makefile, rather than changing makefiles to specify the PDB to every
tool invocation. The example makefile assumes thaPbig is specified
outside of the makefile in this manner.

Program-wide Analysis and Optimization

The appropriate location for the PDB directory is probably in the directory
where the makefile compiles and links the object modules. For example,
the UNIX and Windows statements below are suitable for many users.

setenv 1960PDB ./pdb (UNIX)
set 1960PDB ./pdb (Windows)

Replacing Optimization Options with ~ fdb and gcdm

Except for the definition of thePTmacro, the example is typical of

simple makefiles that use ordinary optimizations. From the point of view
of the makefile and/or the build system, thie option combined with one
or moregcdm options is often a direct replacement for ordinary
optimization options such &g because the compilation tools that accept
ordinary optimization options also accept program-wide optimization
options.

Programs linked by direct invocation of the linker are exceptions to this
general rule. In such a case, thiem option must be added to the linker
invocation.

Using Linker Invocations with gcdm for Automatic
Management of Object Files at Link Time

The example makefile always produces a program load module with the
same name. Since the options provided when the make tool is invoked
affect the linked program when there have been no apparent changes to
the source or object files, the makefile uses an artificied dependence

to guarantee that the program is linked at every invocation of make. This
is a common practice, and keeps the makefile simple.

You could instead write the makefile so that different options to the link
step produce program load modules with different names. The artificial
force dependency could then be removed, perhaps saving an occasional
unnecessary linker invocation. However, in the program-wide
optimization system there is no more reason to try to eliminate extra linker
invocations than there would be in an ordinary system. In fact, the
development environment can often be simplified by forcing linker
invocations (as in the example makefile) for the following reasons:

1960 Processor Compiler User's Guide

4-10

» The global decision-making and optimization step manages the results
of previous work in the PDBo that all previously generated modules
are reused whenever possible. The system keeps multiple sets
(currently, two) of the most recently used substitution modultse
PDB, indexed by the substitutions that generated them. The makefile
is not aware of this management task, and is simpler as a result.

« Even though program-wide optimizations can potentially trigger large
guantities of compilation and optimization work at link time, the
majority of this work usually occurs only the first time the program is
linked with a particular set of substitutions, or on the first link after
major changes are made to the program.

* The automatic management of substitution modules (defined in the
Selecting Modules for Optimization with Substitution Specifications
section) greatly simplifies some development tasks that are difficult
for users in an ordinary environment, such as maintaining both debug
and optimized versions of the object modules for a program. Given
modules already compiled with théy option, users can have
alternate program load module versions built efficiently by simply
invoking the linker with appropriatgcdm,subst options.

See the next section for examples of using the sample makefile to
automate program-wide optimizations.

Using Makefiles with Program-wide Optimizations
for Common Development Tasks

Building an Optimized Program without Profiling

Using the example makefile, if you want to obtain a program built with
program-wide optimizations, pass the options you want throughutheT
macro when invoking the make tool. For example, if you want level
optimization, use:

make SUBST=05

Program-wide Analysis and Optimization

This causes the object modules in the program to be compiled and then
linked with the options in theLAGSmacro. The make tool then issues the
following commands:
ic960 -c -Ttarg -fdb -gcdm,subst=*:*+05,iprof= fee.c
ic960 -c -Ttarg -fdb -gcdm,subst=*:*+05,iprof= foo.c
ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*+05,iprof=

fee.o foo.o

The link command causes substitutiondulesat optimization leveb5 to
be built in the PDB to replace the original moduteso andfoo.o in

the program load modufeog . Theiprof= option without a filename
indicates that you are not using a prqfildnich is the default behavior.

Building for Debugging without Program-wide Optimizations

If logic problems exist in the program, you can build a debug version of
prog by invoking the make tool with:

make SUBST=g+00

This causes the make tool to issue only the following link command
(assuming the sources haven't changed):

ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*+g+00,iprof=
fee.o foo.o

The link command causes substitutroonduleswith no optimization and
full debug information to be built in the PDB to replace the original
modulesiee.o andfoo.o in the program load moduteog .

After debugging the problem and then fixing it by changing one of the
source files, you can reissue theke SUBST=05command to get another
program-wide optimized version pfog . Invoking the make tool
recompiles the changed source file and then links the program witis the
substitutionspecification, as before. This causes the global decision
making and optimization step to recompile the previnisubstitution
modules as needed in the PDB, and those modules are then used in the
program load modulgrog .

4-11

1960 Processor Compiler User's Guide

4-12

Building an Instrumented Program

You can create a profile-instrumented program either of two ways:
compile source modules with therof option, or link object modules
using a-gcdm,subst=+fprof substitution.

* When compiling withfprof , the object files generated in your
working directory contain profile-instrumented code.

* When compiling withgcdm,subst=+fprof , the profile-
instrumented object files reside in the PDB, not in your work space.

These approaches both yield the same instrumented versian of
However, compiling with thérof option creates object modules useful
only for collecting a profile. If you compile with thegrof option and do
not want a profile, you must then use substitutions to replace every
instrumented module iprog , or you must recompile the modules without
thef prof option.

Linking Using an +fprof Substitution

The example makefile requires no changes to accommodate this method;
just use:

make SUBST=fprof

No files are recompiled unless source files have changed; only the
following link command is issued:

ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*+fprof,iprof=
fee.o foo.o

This command causes substitution modules with profile instrumentation to
be compiled in the PDB to replace the original modi#des andfoo.o
in the linked programrog .

NOTE. Profiles collected withfprof substitutions must be made into
self-contained profiles before linking.

Program-wide Analysis and Optimization

Compiling Using the fprof Option
To use theprof compiler option to create an instrumented load module:
1. Edit the makefile to addporof toFLAGS
2. Invoke the make tool without any substitutions, as follows:
make SUBST=
Since the object files depend on the makefile, and the makefile is
edited, the make tool recompiles the modules before linking them:
ic960 -c -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof= fee.c
ic960 -c -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof= foo.c

ic960 -o prog -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
fee.o foo.o

Since the substitution option list is empty, there are no substitutions, and
the instrumented modules from the current working directory are linked.

Note that when you use theof option in this manner, the generated
object module contains code that is unsuitable for linking into programs
that are not intended to collect profile information. To solve this problem,
you can usefprof with gcdm,subst instead of usingprof when
compiling.

Building an Optimized Program with Profiling

Assuming you have collected a profile namedy.pf by executing the
instrumented version @fog , you can then use it for program-wide
optimizations by invoking the make tool as follows:

make SUBST=05 PROF=prog.pf

prog.pf can be either a raw profile or a self-contained profile. If
prog.pf is a self-contained profile, you can continue to use it as shown
above, even if changes are made to the program.

4-13

1960 Processor Compiler User's Guide

4-14

Profiling a Program in Pieces

Suppose that the target execution environment is memory limited so that
fee.o andfoo.o cannot both be instrumented for profiling at the same
time. You can use substitutions to make partially instrumented versions of
prog , and then create self-containgwfiles for each piece, as follows:

make SUBST=fprof MODULES=":fe*"

Executeprog to obtain raw profilalefault.pf
gmpf960 -spf fel.spf default.pf
make SUBST=fprof MODULES=":fo*"

Executeprog to obtain a new raw profiléefault.pf

gmpf960 -spf fol.spf default.pf

Note that neither of the invocations of the make tool causes compilations;
the make tool simply issues a link command in each case. Each link
command constructs a versionpodg that has a limited set of
instrumented modules:
ic960 -o prog -Ttarg -fdb -fprof

-gcdm,subst=:fe*+, iprof= fee.o foo.0
ic960 -o prog -Ttarg -fdb -fprof -gcdm,subst=:fo*+,

iprof= fee.o foo.o

Note also that although the example contains only two modules, the strings
that select the modules for partial prograstrumentation use a general
regular expression mechanism. Such strings can select any possible subset
of the modules in a program for any substitution. This mechanism is
discussed in detail with thedm,subst option in Chapter 6 of this

manual.

After creating the self-contained profiles.spf andfol.spf , use
gmpf960 to create a single merged self-contained profile:

gmpf960 -spf prog.spf fel.spf fol.spf

The finalprog.spf is identical to a profile obtained by instrumenting the
entire program at once. Now issue tiwke command to get program-
wide optimizations guided hyog.spf

Program-wide Analysis and Optimization

make SUBST=05 PROF=prog.spf

Again, the make tool performs no compilations. The following link
command is issued:

ic960 -o prog -Ttarg -fdb -gcdm,subst=*:* +O5,
iprof=prog.spf fee.o foo.0

This causes substitutionodules at optimization levels to be built
(guided by the profile iprog.spf) to replace the original modulés:.o
andfoo.o in the program load modufeog .

Runtime Support for Profile Collection

When you link your instrumented program with the standard libraries and
startup code, when your program exits, a raw profile nataedit.pf

is automatically produced in the current directory. The format of this file
is described in Chapter 5, Profile Data Merging and Data Format
(gmpfo60).

When you are not using the standard libraries, you must provide code to
initialize the profile counters and to dump the counters in the required
format, as described below.

Profile Initialization

Your startup code must call a profile initialization routine before calling
main. The address of the default initialization routine is held in the
predefined variable profile_init_ptr . Here is an example of a call
to the default initialization routine:

.comm __profile_init_ptr

Id __profile_init_ptr, r6

cmpobe 0, r6, Of

Ida 0(ip), g0

lda gl

subo g1, g0, g0

addo go, r6, r6 # adjust for PIC
callx (r6)

0:

4-15

Profile Data Merging and
Data Format (gmpf960)

This chapter explains how to use gmpf960 to merge the execution profile
data you learned how to collect in Chapter 4. You also learn how to use
gmpf960 to create a report that shows how many times each basic block
was “hit” or run during program execution.

Merging Profile Data

The gmpf960 utility combines the execution profiles created while
executing an instrumented program. Once the profiles are merged, the
gcdm960 utility uses the merged profile information to analyze the
program's run-time characteristics and make decisions about possible
program-level optimizations. For more information about gcdm960, see
Chapter 6.

You can merge any mixture of the raw or self-contained profiles (see
Chapter 4). The merged profile is normally a self-contained profile,
although you can merge raw profiles into a single raw profile.

If the execution environment supports a file system, and the application
uses the supplied libraries, then the process of gathering and formatting
the data is automatic. When your instrumented program terminates, the
profile data filedefault.pf is automatically written.

5-1

1960 Processor Compiler User's Guide

gmpf960 Invocation

The profile-merge utility recognizes a letter preceded by a hyplenon
Windows hosts only, a slash as an option. For example, specifies
the Oultfile option on all hosts; is also accepted on Windows hosts.
gmpf960 uses the syntax:

gmpf960 [- option ... {-spf | 0 outfile '} infile

[infile ...

An option is one of:
h displays a list of invocation options.

rprofile indicates how many times the counters for each
basic block were incremented, for those blocks
that were hit. This information is written to

stdout
t specifies that all input files are in text format.
v960 displays version information and exits.
Z pdb_dir specifies the program database directory. If the

merged output or any of the inputs is a self-
contained profile, you must specify the PDB with
theZ option or via thes960PDBOr 1960PDB
environment variable.

spf outfile causes a self-contained profile to be produced as
output. This is the preferred usage of gmpf960.

o outfile specifies the output file. If a file with that name
already exists, it is overwritten. You can even
use the the name of one of the input files.
Whitespace is optional between the option and
argument. Note that this option is supported only
for merging raw profiles into another raw profile.

Profile Data Merging and Data Format (gmpf960)

infile specifies an input file. You can specify multiple
input filenames; gmpfo960 processes them
sequentially. Input files can be the results of a
program execution or a previous merging of
profiles.

Discussion

The gmpf960 utility merges the execution profiles inr@lle files and
stores the resulting profile wutfile . Input files can be either the output
from a previous invocation of gmpf960, or theault. pf profiles

created automatically when you run your instrumented program.

NOTE. The tools that accept profiles generally accept multiple profiles
and merge them in the same manner as gmpf960. However, gmpf960 is
the only tool that actually produces profiles, and in particular, is the only
tool that can produce a self-contained profile by conversion from a raw
profile. The other tools always perform the merge internally and discard
the merged profile after processing.

Thet option is useful if your execution environment does not support
automatic creation of th&fault.pf profile file. Uset if your input
files are in the text format described below.

If thet option is not specified, the input files are assumed to be in their
default binary format. Input files can be either the output from a previous
invocation of gmpf960, or théefault.pf profiles created automatically
when you run your instrumented application.

Example

The following command reads and processes.pf , run2.pf
run3.pf and merges the results into the self-contained prafiten.spf .

gmpf960 -spf summ.spf runl.pf run2.pf run3.pf

1960 Processor Compiler User's Guide

Profile Format Specification

Normally, the raw profile filalefault.pf is created automatically when
your application callsxit . Alternatively, the gdb960 debugger supports
aprofile put command that you can use to extract the profile data from
target memory and write it téefault.pf in the appropriate format.

If your execution environment does not support automatic generation of
default.pf , you must manually extract the profile data from your
system's memory and write it to a file in a format recognized by gmpf960.

The remainder of this section describes where the profile data resides in
target memory, and the file formats recognized by gmpf960.

Profile Data Structures

When you build an instrumented application, a supporting C data structure
is automatically linked with your application. This data structure is used
to record your application's runtime behavior, or "profile."

The profile data is maintained in an arrayodigned long integers,

called__profile_data_start . The size of the array, in bytes, is given
by the symbol profile_data_length . __ profile_data_length is
always a multiple of 4, and the number of elements in
__profile_data_start is given by (_profile_data_length / 4).

default.pf File Format

The file default.pf is a binary file containing the value of
__profile_data_length , followed by elements of

__profile_data_start . Each value is stored in the file as a 4-byte

two's complement unsigned integer. Furthermore, each value is stored in
little-endian byte order, regardless of the endianness of your target
memory and of your host system.

Profile Data Merging and Data Format (gmpf960)

For example, assume thatprofile_data_length has the value 12 (12
bytes is three 4-byte words), and thatrofile_data_start contains

the values 0x000090A4, 0x000000C7, and 0x0O0008FDD. Then the binary
format of file default.pf (printed as hexadecimal words) would be:

0000000C
000090A4
000000C7
00008FDD

Depending on the tools available, you may find it difficult to create the
binary format required idefault.pf . To circumvent this step, you can
write the profile data to a file in text format, and then use gmpf960 to
translate the file into binary format.

The text file format consists of the value obrofile_data_length ,
followed by the values in _profile_data_start . The numbers must
appear in the file as decimal, and must be separated by whitespace.

For example, assume thatprofile_data_length has the value 20 (20
bytes is five 4-byte words), and thafprofile_data_start contains

the values 20, 15, 100, 2, and 63. If you use a text editor to create the text
format ofdefault.pf , it would be:

20
2015 100
263

Note that there is no requirement as to the number of entries per line. The
format definition of the text file simply requires that the numbers are
separated by whitespace.

1960 Processor Compiler User's Guide

Example

Assume that you have a text-format profile in fiteault.txt and a
binary-format profile in filedefault.pf . The following invocations of
gmpf960 merge these two profiles, writing the results in the binary-format
file default.sum

gmpf960 default.txt -o default.tmp
gmpf960 default.pf default.tmp -spf default.sum

Any mixing of text, raw profile or self-contained profiles is allowed.

Creating a Runtime Report with gmpf960

You can also use gmpf960 to create a report that shows how many times
the counters for each basic block were incremented. The examples given
below assume that you compile and execute the following source file with
the -fprof option to gather a runtime profile.

Example 5-1 C Code

/* Source File - t.c */
inti, j;
main()
{
for (i=0;i<10;i++)

j+=i

return j;

To compile the above source file you can use the following command:
gcc960 -Fcoff -fprof -Tmceycx t.c -Z pdb

Profile Data Merging and Data Format (gmpf960)

The generated executable fleut can be downloaded to a Cyclone
i960 Cx processor-based evaluation board and executed using the
following command

mondb -ser a.out

This execution generates ttefault. pf file which contains the
runtime
profile for the above execution. You can use eitheffile option in

gmpf960 or the gcov960 coverage analyzer to get the coverage results
after running the program.

Using gmpf960
The command:
gmpf960 -spf foo.spf -rprofile -Z pdb default.pf

generates the following output:

Example 5-2 gmpf -rprofile Sample Output

Profile counts for module t.c=main$

Function name

Line# Block# Times hit From

main
main
main
main
main

main

| 4] O] 1|1 raw inputs
| 5] O 1] 1 raw inputs
| 5| 3] 11 | 1 raw inputs
| 5| 2] 10 | 1 raw inputs
| 6] 1] 10 | 1 raw inputs
| 8] 4] 1| 1raw inputs

Notice that the in the example above, the expressions inrtheloop and
the expression+=i are the only ones with multiple hits. The gcov960
sample output below provides you with the same information, however,
the number of hits for each statement is recorded to the left of the line.

5-7

1960 Processor Compiler User's Guide

5-8

Using gcov960

The command:
gcov9e0 -rl -Z pdb

generates the following output:

Example 5-3 gcov960 Sample Output

inti, j;

main()
1->{
11110-> for(i=0;i<10;i++)
10 -> j+=1;

1-> returnj;

}

Number of Blocks: 5

Number of Blocks Executed: 5

Number of Blocks Never Executed: 0
Percentage of Blocks in Source File that were executed: 100.00%

Program database:
Program profile: default.pf

See tha960 Processor Software Utilities User’s Guifite more
information on gcov960.

gcdm Decision Maker Option

This chapter describes thedm option, which invokes the gcdm960 global
optimization decision maker during the link process. The decision maker
then invokes the compiler and linker as necessary to perform program-
wide optimizations. For an overview of how to use this option, see
Chapter 4, Program-wide Analysis and Optimization.

gcdm Option Syntax

Table 6-1

Thegcdm option has the following syntax:

{ - | [/ }gcdm, argument [, argument]...

As with other options, you can use thdelimiter only in Windows. The
gcdm optionarguments and the sections that describe them are listed in
Table 6-1.

gcdm Option Arguments

Section
gcdm Option Arguments Description Titles
 subst={module-set}{option- Controls which modules Substitution

list} are substituted. Controls

* nosubst=module-set

¢ [no]ref=module-set Specifies whether External
functions or data defined Reference
in objects reside outside Controls
the current module set
presented to the linker.

continued [

6-1

1960 Processor Compiler User's Guide

Table 6-1 gcdm Option Arguments (continued)

gcdm Option Arguments

« inline=n

.

iprof=file

.

sram=start, end[,start,

end]...

.

m=start, len[,start, len]...

Description

Sets the level of inlining
used by the compiler.
Causes profile
information to be used
in program-wide
optimizations.

Specifies fast memory
regions (e.g., SRAM) to
use for heavily
referenced variables.

Section Titles

Inlining Level
Control

Input Profile
Control

Fast Memory
Controls

e dryrun Writes a list of the Dryrun Control
current subst
commands to a text file.

« dec=file Options for creating Report

e rsummary gcdm reports. Controls

* rdecisions

« rcall-graph

* rreverse

« rprofile

« rvariables

gcdm Option Arguments

Substitution Controls

The substitution controls allow you to substitute optimized modules into
your application (usingcdm,subst), and to suppress unintended
substitutions (usingcdm,nosubst). When a given object module is

named in multipleubst ornosubst options, the lastubst ornosubst

that names the module applies. The substitution controls also allow fine
control of how affected modules are optimized. The following subsections

gcdm Decision Maker Option

describe substitution and substitution suppression. Detailed information
on controlling optimizations is presented in the discussiamafn-
list in the next subsection.

Substitution Specifications

subst={ module-set }{ option-list }

In the linked programycdm,subst={ module-set }{ option-list }
causes substitution of modules optimized according togie-ist

for all of the modules imodule-set . Note that no space is allowed
betweenmodule-set andoption-list

A module-set specification is a string supplied by the user that names the
modules to be affected by thedm option. For a description of how to
specify amodule-set , see the Module-set Specification section at the end
of this chapter.

An option-list can consist of one or more of the substitution options
discussed in three categories below. Note that the first two categories are
mutually exclusive; you can use substitution options from the third
category with those from either of the first two categories. (For example,
the+05 control is incompatible in a substitution with thigrof control.)

An option list can also consists of a singlespecifying no substitution.

Whole-program Optimization Option (Category 1)
+05

This option selects program-widgtimizations, including global function
inlining, superblock formation, and global alias analysis. This option is
not allowed in arvption-list with module-local (Category 2) options.

Module-local Optimization Options (Category 2)
+fprof +O0 +O1 +02 +0O3 +04

These module-local substitution options correspond to the gcc960 and
ic960 drivers-fprof (Instrument) ando n (Optimize) options described
in Chapters 2 and 3. (The compilation system interpretsthe

6-3

1960 Processor Compiler User's Guide

arguments correctly, based on which compiler driver you are using.) The
module-local substitution options are not allowed irvawvon-list with
whole-program optimization (Category 1) options.

+fprof causes generation of profile instrumentation, as
described for thefprof compiler option (in
Chapters 2 and 3). When thigrof
substitution option is used (instead of tipeof
compiler driver option), only the substitution
modules in the PDB contain the actual
instrumented code. This is useful in some cases.
For example, a library compiled withib but
without-fprof s suitable both for users who do
not want to use program-wide optimizations, and
for those who do, as follows:

» All program database information required
to support program-wide optimizations is
present in the library, since it is compiled
with -fdb .

* To collect a full program profile (including
the library) for use with program-wide
optimizations, a substitution such as
-gcdm,subst=*:*+fprof generates a
program that is appropriately instrumented.

* If you do not use program-wide
optimizations (that is, you do not use
gcdm,subst options), there is no extra
runtime overhead, and the program can be
optimized to any module-local
optimization level higher than -O0.

+00 +01 +02 +03 +04 allow substitutions of modules with various
levels of module-local optimization. (The
compilation system interprets then arguments

gcdm Decision Maker Option

correctly, based on which compiler driver you
are using.) These are typically used for the
following purposes:

* to substitute a few non-optimized modules
into a program built with program-wide
optimizations in order to help debug it.

* to specify a module-local optimization
level other than O1 with a +fprof
substitution.

Miscellaneous Substitution Options (Category 3)
+g +asm_pp+ prog +clist+ arg +f string

These can be used with either the whole-program or module-local
substitution options in Categories 2 and 3, above.

+g enables debug information generation for
substitution modules.

+asm_pp+prog causegrog to be invokedafter the assembly
code for a substitution module is generated, with
the name of the file containing the substitution
assembly code as its third argument. (The first
two arguments are ignored.) This allows the
post-processing of substitution assembly code by
user-supplied tools.

+clist+ arg generates a listing containing assembly code
and/or preprocessed source code of each module
selected by the substitution into a file named
namel in the current working directory, where
nameis the base filename of the object module
being substitutedarg is a string consisting of
s, o or both Thes character causes inclusion
of the substitution module’s pre-processed
source code in the listing. Thecharacter
causes inclusion of the substitution module’s

6-5

1960 Processor Compiler User's Guide

6-6

+f string

assembly code in the listing. In order for
preprocessed source code to be displayed in
listings generated byist substitutions, the
modules must either have been originally
compiled with the ic960 driver or compiled
with the gcc960 driver using thiency-

errors (1c960) orfmix-asm (gcc960) option.

The+f string substitution options listed below
apply the corresponding individual string
optimization options discussed in Chapter 2,
gcc960 Compiler Driver and Chapter 3, ic960
Compiler Driver. Thewo form of these options
(e.g.,+fno-unroll-loops) is also accepted.
+fbbr, +fcoalesce

+fcondxform, +fconstprop

+fcopyprop, +fcse-follow-jumps

+fcse-skip-blocks, +fdead-elim

+fexpensive-optimizations, +ffunction-cse

+fmarry_mem, +fpeephole

+frerun-cse-after-loop, +fsblock

+fsched-sblock, +fschedule-insns

+fschedule-insns2, +fshadow-globals

+fshadow-mem, +fspace-opt

+fsplit_mem, +fstrength-reduce

+fthread-jumps, +funroll-all-loops

+funroll-loops

These options automatically default
appropriately based on the selected optimization
level.

gcdm Decision Maker Option

Substitution Suppression
e nosubst= module-set

Thenosubst= module-set argument suppresses substitution for the
named modules. This is equivalenttost= module-set + (the option-

list consists only of a character).nosubst is typically used to exclude
a subset of modules from a previcusst .

For example, thgcdm option and argument:
-gcdm,subst=*:*+05,nosubst=:intr_handler

would substitute all modules exceqt_handler

External Reference Controls

. ref= module-set
. noref= module-set

These reference controls cause gcdnt®&®sume/not assume that
functions or data defined in the objects namecdhbyule-set are

referenced outside the set of object files presented to the linker. You
would normally useef to keep the global decision making and
optimization step from discarding modules that appear to be unused. The
lastref ornoref to name a given module appliesaref is typically

used to exclude a subset of modules from a previous The default is

noref .

Inline Level Control
. inline= n

This gcdm option argument controls how aggressively global inlining
decisions are made: defaults t@, andn must be less than or equakto

The higher the argument, the more aggressive the inlining, and the larger
your program may become. Note that inlining must be enabled-(%.,
control is used) for this control to have any effect.

6-7

1960 Processor Compiler User's Guide

6-8

Input Profile Control
e iprof=file

This control causes the profile informationfia to be incorporated into
program-wide optimization decisionsle is a raw profile or a self-
contained profile.

See Chapter 4 for a discussion of profiles.

Fast Memory Controls
sram= hexstart,hexend[,hexstart,hexend]...

m=hexstart,hexlen[,hexstart,hexlen]...

The compilation system optimizes software to exploit on-chip cache and
data RAM areas when you specify the architecture withatheoption.

This optimization attempts to place the most heavily accessed data and
variables in fast RAM. Thgcdm option lets you identify other SRAM
areas that are available in a system.

Memory regions have an implicit order ranking with respect to the
optimization tools; the left-most region specified is assumed to be the most
desirable. Thus, the tools attempt to place the most heavily referenced
variables into the first memory region specified. When that region is full,
the tools begin placing variables into the second region specified.

For example, the contral=0x210,0x3F0 places the most heavily
referenced variables in an SRAM address beginnixzito. Ox3F0
specifies the length of the memory range to be used for this purpose.

Using thesram=0x100,0x3ff control indicates to the system that the
memory rangex100-0Ox3ff is available for data placement.

See your processor manual for information on memory region allocations.

gcdm Decision Maker Option

Dryrun Control

dryrun

Thedryrun argument echoes the commands that would be executed to
implement all specifiedubst options into the report file, without actually
doing the optimization work.

Report Controls

Thegcdm option arguments listed here allow for creation of various
optimization reports and creating and naming a report file.

dec=file

Causeghe optimization decisions report to be sent/¢o , instead of to
stdout (which is where reports appear by default).

dryrun

Echoes the commands that would be executed to implement all specified
subst options into the report file, without actually doing the optimization
work.

rsummary

Prints a summary of program-wide optimization decisions to the report
file.

This is a typicatsummary report:

Initial linked text size was 20720 bytes.

About 21760 bytes are assumed available for the final
text section.

0 variables were allocated to fast memory.

2 function call sites were inlined.

The first line shows the size of the application’s text section before
program-wide optimization.

The second line shows the decision maker’s goal for the final size of the
application’s text section after program-wide optimization.

6-9

1960 Processor Compiler User's Guide

6-10

The third line shows that no variables were allocated into high-speed
memory.

The fourth line shows that two call sites were inlined.

rdecisions

Creates a report that includes the initial and goal text sizes as described
above, as well as a list of variables allocated to fast memory, a list of the
estimated sizes of all functions before and after program-wide
optimization, and a list of inlined call sites.

Thelnlined arcs section of the report lists call sites selected for

inlining:

» Thecaller field is the function containing the call site that is inlined.

» Thecallee field is the function being called at the inline site.

 Thesite fieldis a numbering of the call site in the calling function.
The first call in the calling function is site 1, the next call is site 2, and
so on. This field is useful for distinguishing between call sites when
the a function makes multiple calls to the same function.

» ThePercent field is the percent of all dynamic calls for which this
call site is responsible.

» TheHeight field is the height in the call tree of the called function.

rcall-graph

Creates a call graph report showing the dynamic behavior of the program.

e TheFunction Callee field lists the arcs in the call-graph. The
format is:
Func
Calleel

Callee2
Callee3

In this listing Func is the calling function.callee 1, Callee 2, and

Callee 3 are the functions that are called from functiomc. A ? in the

callee field indicates that this call site is a call through a pointer. In this
case the compiler does not know what function is called from this call site.

gcdm Decision Maker Option

Thesite field is the call site number of the call to this function.
Each call site in a function is assigned a number starting with 1.
 Thecount field has two meanings. When applied to a calling
function the count is the number of times this function was called
during all profiled executions. When applied to a called function
the count is the number of times this particular function was
called from this specific call site during all profiled executions.
 ThePercent field is the percentage of the total number of
profiled dynamic calls that thiSount accounts for.
 Thesize field is relevant only for called functions; the value
shown is the number of intermediate language statements in the
function before program-wide optimization.
» For callees, theeg field indicates how many registers were
needed to generate code for the function. For callergethe
field indicates how many registers were used across the particular
call site.
 Thelnline field is relevant only for called functions; a value of
0 indicates that a called function was never inlined, and a value of
1 indicates it was inlined one or more times.

NOTE. Functions that were not instrumented appear in the call graph
only if they are referenced by some function that was instrumented.

rreverse

Prints a reversed call graph to the report file. This control changes the
format of reports generated by thell-graph control. When you use
rreverse , the call graph report lists all the sites where a function is called
from, rather than listing the call sites of each function. In other words,
rather than listing each caller followed by its callees, the report lists each
callee followed by its callers.

rclosure
This control reports the transitive closure of all possible callee functions.

6-11

1960 Processor Compiler User's Guide

rprofile

Prints the profile counts for the basic blocks that were hit to the report file.
* TheLine# field is the line number within the file.
» TheBlock# field is the basic block that corresponds to this line

number.

e TheTimes hit field is the number of times that this line of code was
executed.

e TheFrom field indicates how the value in thénes hit field was
obtained.

For values that were completely estimated by the decision maker, the field
contains “guess.”

For values obtained from profiles that were not subject to interpolation,
this field contains: Raw inputs , wheren is the number of profile files
used to obtain the value.

For values obtained from interpolated profiles, this field contains

Stretched inputs , wheren is the number of profile files used to obtain

the value.

rvariables

Lists the variables allocated to fast memory withor -sram to the report

file.

e Thevariable field is the name of the variable to be allocated to fast
memory.

 Thesize field is the size of the variable in bytes.

e TheUsage Count field is the number of times this variable was
accessed during execution of the program.

« TheAddress field is the variable's address in fast memory.

6-12

gcdm Decision Maker Option

Module-set Specification

A module-set specification (used in substitution controls and external
reference controls, described earlier in this chapter) selects a subset of
zero or more modules from the set consisting of all eligible modules in the
program. A module-set specification has the format:

[archive]| : module

The following rules govern module-set selection.

1. The set of eligible modules are those linked into the program that were
compiled with thefdb compiler driver option (described in Chapters
2 and 3 of this manual).

2. When either of the charactersr + appears twice in succession, that
character is quoted and the meaning is a singler character.

* When a module-set contains an unquotetharacter, it is interpreted
as a pair of regular expression strings in the style of the UNIX Bourne
shell, with the string to the left of thematching object file archives
and the string to the right of thematching individual object files.
For example:
e ** matches all eligible modules
. * matches only eligible modules not linked in from libraries
* ab.o matches.o from librarya, provided the module is

eligible

3. When a module-set contains no unquotetiaracters, it is assumed
to be the name of a function or variable in the program. In this case,
the module-set refers to the object file that contains the definition of
the variable or the body of the function, provided the module
containing the variable definition or function body is eligible.

4. When a module-set is empty (that is, no characters occur between the
option and the: character) the module-set defaults*to which refers
to all eligible modules in the program not linked in from libraries.

6-13

Language Implementation

This chapter describes data representation, register use, object file format
use, and pragmas for modifying code generation.

Data Representation

This section describes the scalar and aggregate data types recognized by
the compiler, the format and alignment of each type in memory, and the
range of values each type can take. For information on ANSI C data
types, se€: A Reference Manual

The 1960 processors use a little-endian byte ordering, such that the address
of a 4-byte (32-bit) variable is the address of the low-order byte of the
variable. The i960 Cx, Hx, and Jx processors also support big-endian
addressable memory, such that the address of a 4-byte (32-bit) variable is
the address of the high-order byte of the variable.

Scalars

A scalar data type holds a single value, such as the integer value 42 or the
bit string10011 Table 7-1 lists scalar data types for the 1960 processor.

7-1

1960 Processor Compiler User's Guide

7-2

Table 7-1

Scalar Data Types

Size

Data Type (bytes)
unsigned char 1
[signed] char 1
unsigned short 2
[signed] short 2
unsigned int 4
[signed] int 4
unsigned long 4
[signed] long 4

float 4
double 8

long double 16

bit field! 1to 32

(unsigned value) bits

Format
ordinal

2's-complement
integer
ordinal

2's-complement
integer
ordinal

2's-complement
integer
ordinal

2's-complement
integer
single-precision
floating-point

double-precision
floating-point

extended-precision

floating-point

ordinal

Range
0 to 255
-128 to 127

0 to 65535
-32768 to 32767

0 to 4,294,967,295

-2,147,483,648 to
2,147,483,647

0 to 4,294,967,295

-2,147,483,648 to
2,147,483,647

1.17549435*10738 to
3.40282347*10%8
(approximate absolute
value)

2.2250738585072* 107308
to 1.7976931348623*
10398 (approximate
absolute value)
3.362103143112094*10°4
932 tg
1.189731495357231*10%°
32 (approximate absolute
value)

0 to 251761 (Size is the
number of bits in the bit
field.)

1 Bitfields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not

be a multiple of 8 bits (1 byte).

continued [

Language Implementation

Table 7-1

Scalar Data Types (continued)

Size
Data Type (bytes) Format Range
bit field! 1t032 2's complementinteger -2Sizé1 g 2(size-1).1
(signed value) bits (Size is the number
of bits in the bit field.)
pointer 4 address -
enum? 1,2,0r4 2'scomplementinteger varies

or ordinal

Bit fields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

Compiler options€.g, gcc960’sno-]Jsigned-char or
f[no-Junsigned-char ; iIc960’sGes or Geu) set thechar declaration
default tosigned char orunsigned char . Wide characters (character
constants prefixed with ar are syntactically supported but semantically
identical to other character constants. Note that with gca260 defaults
to unsigned , whereas ic960 defaults tasigned .

The approximate rangesiafat , double , andlong double data types
appear in Table 7-1.

NOTE. The compiler does not support the 64-bit long-ordinal and long-
integer data types available for the assembler and the i960 architecture.

On architectures with an internal floating-point unit (80960KB/SB), the
compiler uses 32-bit and 64-bit general registers for intermediate results
when performing calculations witlvat anddouble data types.
Therefore, the accuracy of these data types is limited to 32 bits and 64
bits, respectively. The compiler does use the internal floating-point
registers {po0 -fp3) when performing calculations witbng double data
types, yielding IEEE-754 accuracies at the expense of execution speed
and code size.

7-3

1960 Processor Compiler User's Guide

The alignment of a scalar data type is equal to its size. Although the
extended-precision floating-point representatiofwiof double requires

only 10 bytes (80 bits), the natural architectural alignmeningf double

is 16 bytes. Therefore, to accommodate the semantic requirements of the
Csizeof operator, the size oflang double is 16 bytes.

The following scalar alignments apply to individual scalars and to scalars
that are elements of an array or members of a structure or union:

char is aligned on a 1-byte boundary.
short is aligned on a 2-byte boundary.
int is aligned on a 4-byte boundary.
pointer is aligned on a 4-byte boundary.
float is aligned on a 4-byte boundary.
double is aligned on an 8-byte boundary.
long double is aligned on a 16-byte boundary.
Aggregates

An aggregate data type consists of one or more scalar data type objects.
You can declare the following aggregate data types:

array consists of one or more elements of a single data
type placed in contiguous locations from first to
last.

struct is a structure containing one or more scalar or

aggregate data types. The members are allocated
in the order they appear in the definition but do
not always occupy contiguous locations.

union is a single location that can contain any of a
specified set of scalar or aggregate data types.

Language Implementation

Structure Alignment

The alignment of a structure affects how much space the structure
occupies and how efficiently the processor can address the structure
members. A compiler option (for gcc96M960_align ; for ic960,Gac)
allows selection of any of the following alignment options for structures:

Optimal natural is the default alignment. For structures smaller

alignment than 16 bytes, this alignment is the size of the
structure rounded up to the nearest power of 2.
The compiler aligns structures of 16 bytes or
larger on 16-byte boundaries. Optimal natural
alignment produces the most efficient code for
assigning values to structures and for passing
structures as arguments.

Backward-compatible aligns a structure according to the greatest

natural alignment alignment requirement of any member of the
structure. This alignment provides higher data
density than optimal natural alignment and
produces code and data compatible with that
generated by ic960 releases before Release 3.0.

ABI-compatible aligns a structure or union to the maximum
alignment of the following:

the greatest alignment requirement of any
members of the structure; or

2 if the structure’s size is 2 and 4 if the
structure’s size is 3 or larger.

User-constrained aligns a structure according to any legal value

alignment you specify. A compiler option (for gcc960,
mi960_align ; for ic960,Gac) or #pragma
i960_align allows specification of alignments
of 1, 2, 4, 8, and 16. Alignments can also be
specified usingtpragma align , described in this
chapter.

7-5

1960 Processor Compiler User's Guide

7-6

Structure alignment can result in unused space, called padding, between
members of the structure and between the last member and the end of the
space occupied by the structure. The padding at the end of the structure is
called tail padding. Because of differences in padding under different
alignments, changing the alignment can change both the size of the
structure and the offsets of members relative to the beginning of the
structure.

The offset of a structure member from the beginning of the structure is as
follows:

» Under both forms of natural alignment, the offset of a structure
member is a multiple of the member's natural alignment. For
example, since short aligns on a 2-byte boundary, the offset of a
short member from the beginning of a structure is a multiple of
2 bytes.

» Under user-constrained alignment, the offset of a structure member is
a multiple of the lesser of the member's alignment or the alignment
constraint you specify.

* For example, in a 1-byte alignmenbélign), the offset of ahort
member is not necessarily even.

The rules for structure member natural alignment are:

Scalar types align according to their natural architectural
alignment. For example,saort data type
aligns on a 2-byte boundary.

Array types align according to the alignment of the array
elements. For example, an arrayiefrt data
type aligns on a 2-byte boundary.

Language Implementation

Union types align according to the greatest alignment
requirement of any member of the union. In the
example belowyn1 aligns on a 4-byte boundary
since the alignment af, the largest element,

is 4:
union unl {
short a; /* 2 bytes */
char b; /* 1 byte */
intc; /* 4 bytes */
X
Structure types align according to the alignment of the member

types either natural or user-constrained.

Specifying optimal or backward-compatible natural alignment changes the
size of a structure. Natural alignments differ only in tail padding.

Member offsets, and therefore the padding between members, are the
same under optimal natural alignment as under backward-compatible
natural alignment. For example, the following structure occupies memory
as shown in Figure 7-1 under either optimal or backward-compatible
natural alignment:

struct strcl

{
char a; /* occupies byte 0 */
short b; /* occupies bytes2and 3 */
char c; /* occupies byte 4 */
int d; /* occupies bytes 8 through 11 */
¥

Under optimal natural alignment, the size and alignment cftthe
type are both 16. Under backward-compatible natural alignment, the size
is 12 and the alignment is 4.

7-7

1960 Processor Compiler User's Guide

Figure 7-1 Natural Alignment

7 07 07 07 0
T T T T T T T T T T T T T T[T T T T T T T T T T T T 171
b XXXX a Byte 0
XXXXXXXX c 4
d 8

0sD829

Specifying a user-constrained alignment changes both the tail padding and
the padding between structure members, which can also affect the
structure size. A user-constrained alignment smaller than the natural
alignment of a structure can result in a more tightly packed structure,
saving space but slowing execution.

The example in Figure 7-2 compares the layouts in memory of the
following structure under two different user-constrained alignments:

struct strcl /* Alignmentis 2: Alignmentis 1. */

{ * */
char a; /* byte 0 byte O */
shortb; /* bytes2and3 bytesland?2 */
char c; /* byte 4 byte 5 */

int d; /* bytes 6 through 9 bytes 4 through 7 */
h

7-8

Language Implementation

Figure 7-2 User-constrained Alignment

Alignment is 2; Size is 10

7 07 07 07 0
T T T T 1T 1T T
b XXXX a Byte 0
d XXXX c 4
d 8

Alignment is 1; Size is 8
7 0 7 07 07 0

c b a Byte O

0OsSD830

A user-constrained alignment larger than the natural alignment aligns the
structure on the natural-alignment boundaries. User-constrained
alignment can increase the amount of tail padding relative to natural
alignment but does not increase the padding between members of a
structure. For example, specifying an alignmeniteofor strc1 aligns

the structure as in Figure 7-1.

When astruct has a member that is alsetaict , the alignments of the
member type and of the container need not be the same. For example:

struct NATURAL
{

char cl1;
short s;
char c2;

}

struct CONSTRAINED_1
{

char c;
struct NATURAL n;

7-9

1960 Processor Compiler User's Guide

7-10

If struct NATURAL has natural alignment, one byte of padding appears
between the membets ands. Under optimal natural alignment, the size
is 8 and the alignment is 8. Under backward compatible natural
alignment, the size is 6 and the alignment is 2trdft

CONSTRAINED_1as a user-constrained alignment of one, no padding
appears between memberandn, nor does any padding follow the
membem. However, all of the padding mentioned previously as part of
struct NATURALstill appears in memberof struct CONSTRAINED_1

Bit Field Alignment

Every bit field lies entirely within some bit-field container that has the
same size and alignment asi@n ; that is, the container alignment is the
smaller of 4 or a user specified alignment. A bit field can cross byte
boundaries but cannot cross a container boundary.

Alignment of an individual bit field is necessary when the bit field,
unaligned, overruns the end of the container in which it starts. A bit-field
size of zero also forces bit-field alignment. The alignment of a bit field
and the position of the bit field within a structure are determined as
follows:

» The byte position of a bit field within a container is the current byte
offset in the structure modulo the container alignment. This value is
the byte offset relative to the most recent container alignment
boundary. For example, if the container alignment is 1, the byte
position is always zero. If the container alignment is 4, the byte
position can be 0, 1, 2, or 3.

* The bit position of the bit field is the number of bits already allocated
in the current byte, plus eight times the container byte position. This
value is the bit offset, in the range 0 to 31, relative to the most recent
container alignment boundary.

Language Implementation

« If the value of the container bit position plus the size in bits of the new
bit field is greater than 32 or if the size of the new bit field is zero, the
compiler inserts padding to align the bit field on the next container
alignment boundary. Bit-field alignment can result in padding of up to
31 bits. If the bit-field size is non-zero and the bit field fits entirely
within the current container, the compiler does not insert padding to
align the bit field.

» For big-endian, the bit position within the container is 31 minus the
above-calculated bit position.

Examples

These examples show how different alignment pragmas alter the
alignment of the components of a structure. The structure is declared as
follows:

struct std_struct
{
unsigned char mila;
unsigned char m1lb;
int m4a;
unsigned short m2a;
unsigned mbit5:5;
unsigned mbit7:7;
unsigned mbit6:6;
double m8a;

h

7-11

1960 Processor Compiler User's Guide

Figure 7-3 shows the optimal natural alignment of the structure, without
any alignment pragma.

Figure 7-3 Optimal Natural Alignment of std_struct

7 07 07 07 0
T T T T T T T 1T 1T 1T T T T T T 1T T T T T 11 T T T T 11
XXXXXXXX XXXXXXXX milb mila Byte 0
méa 4
XXXX mbit7 mbit5 m2a 8
XXXXXXXX XXXXXXXX XXXXXXXX XX mbit6 12
m8a 16
m8a (continued) 20
24
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
28

0OSD401

Figure 7-4 shows the backward-compatible natural alignment of the
structure, without any alignment pragma but with the appropriate compiler
option for backward compatibility specified (for gcc96{;-compat ; for
ic960,Gbc).

7-12

Language Implementation

Figure 7-4 Backward-compatible Natural Alignment of std_struct
7 07 07 07
T T T T T T T T T T T T T T [T T T T T T T] T]
XXXXXXXX XXXXXXXX mlb mla Byte 0
méa 4
XXXX mbit7 mbit5 m2a 8
XXXXXXXX XXXXXXXX XXXXXXXX XX mbit6 12
m8a 16
m8a (continued) 20
OSD831
Figure 7-5 showstd_struct aligned on 1-byte boundaries, with the
following alignment pragma:
#pragma noalign (std_struct)
Figure 7-5 #pragma noalign Alignment of std_struct
7 07 07 07
T T 1T 1T 1T T T T 1T T T 1T T T T [T T T T T T 7171 T
méa mlb mla Byte O
m2a m4a (continued) 4
m8a XXXXXX mbit6 mbit7 mbit5 8
m8a (continued) 12
m8a (continued) 16

0OSD402

7-13

1960 Processor Compiler User's Guide

Figure 7-6 showstd_struct , aligned on 2-byte boundaries, as follows:

#pragma i960_align (std_struct = 2)

Figure 7-6 #pragma align Alignment of std_struct
7 0 7 07 07 0
T T T T T T T T T T T T T T T T T T
m4a mlb mla Byte O
m2a m4a (continued) 4
XXXXXXXXXXXXXX mbit6 mbit7 mbit5 8
m8a 12
m8a (continued) 16

0sD1887

Other Type Keywords

Thevoid data type is neither a scalar nor an aggregate.vditseas the
return type of a function, to indicate that the function does not return a
value. Useoid * as a pointer to an unspecified data type.

Theconst andvolatile type qualifiers do not define data types. Rather,
they associate attributes with other types. tdset to specify that an
object is a constant and is not to be changed.vbisgle to specify

that an object may change in ways unknown to the compiler.
Optimization is inhibited onolatile ~ objects. Inhibition of optimization

is necessary for objects such as memory mapped I/O registers or data
accessed by interrupt functions.

Calling Conventions

This section describes the standard i960 processor function calling
convention and describes how the compiler generates code to conform to
this calling convention.

Language Implementation

The standard 1960 processor calling convention places an absolute
minimum overhead on simple, commonly called functions with few
parameters. This is done by passing information between the calling
function and the called function in the 1960 architecture's global registers
as much as possible.

Definitions

call-preserved register The register must have the same value
upon exit from a function as it did upon
entry to the function.

call-scratch register The register may have a different value

upon exit from a function than it did
upon entry to the function.

The following list summarizes usage of the global registertsirough
g15 and the floating-point registeiis -fp3 .

g0...97 These eight registers pass parameters into the
called function from the calling function. If the
return value of the function is four words or less
in size, then the return value is passed back to the
calling function in registerso throughg3. If the
function returns a long double and generates
code for the KB or SB processor and
compatibility with ic960 R2.0 is requested, then
registergy0 throughg7 are call-scratch registers.

g8...911 These four registers may be used for parameter
passing in addition tgo throughg7. If a
parameter or a piece of a parameter is passed in
one of these registers, that register is considered
a call-scratch register. That register is
considered a call-preserved register otherwise. If
the called function can not be sure that a register
has had a parameter passed in it, then the register
must be considered a call-preserved register.

7-15

1960 Processor Compiler User's Guide

7-16

gl12

g13

gl4

g15

fp0 , fpl ,
fp2 , fp3

AC

gl2 is used as the PID bias register if generating
code for position independent data (PIR).2 is
a call-preserved register.

If the called function returns a struct or union
larger than four words, then the calling function
passes a pointer to the space allocated for the
return value iy13. g13 is a call-scratch
register.

If the function requires an argument block, this
register contains a pointer to the argument block;
otherwise it contains zero. dfi4 contains zero
upon entry, then it must contain zero upon exit. If
gl4 contains a pointer to an argument block
upon function entry, thegmi4 is considered a
call-scratch register.

g1l4 may also be used to hold the return address
when a function is called using a BAL
instruction. In this cas@14 must contain zero
upon return from the function. This dual usage
of g14 means that a function that requires an
argument block cannot be entered using a BAL
instruction.

g15 is defined by the i960 architecture as the
frame pointer (FP).

If the function returns a long double and
generates code for the KB or SB processor and
compatibility with ic960 R2.0 is requested, then
fp0 contains the return value of the function.
fp0-fp3 are considered call-scratch registers.

The arithmetic controlAC) register is a call-
scratch register. The condition codes are not
preserved across a function call.

Language Implementation

The 16 local registersq(throughr15) are 32-bit registers that provide a
separate set of registers for each active function. Each time a function is
called, the processor automatically sets up a new set of local registers for
that function and saves the local registers for the calling function.

The particular use of each local register is:

e 10 contains the previous frame pointgip()

e 1 contains the stack pointesp()

LI contains the return instruction pointep ()
e 13..r15 are general-purpose registers

Parameter Assignment to Registers

Parameters are passed in ascending-numbered registers, starting, with

in the order the parameters appear (left-to-right) in the actual call. Both
scalar and small aggregate (4 words or less) parameters are passed in
registers.

The size of a parameter's data type determines the number of registers the
parameter occupies. A parameter with a type size of one word or less
occupies one register. A parameter with a type size of two words or less
occupies two registers, and so on up to four words and four registers.

A parameter's type also determines in which register it must start. If the
type's alignment is 4 bytes or less then the parameter may be passed
starting in any register. If the type's alignment is 8 bytes then the
parameter must be passed starting in an even numbered register. If the
type's alignment is 16 bytes then the parameter must be passed starting in
g0, g4, org8. Any gaps left in the parameter registers due to alignment
are not filled by following parameters.

Argument Blocks

An argument block is used to pass parameters when the parameters cannot
be passed in registers. This can occur either because there are not enough
registers left to pass the parameter, or when the parameter is too large
(greater than 4 words) to pass in registers. As soon as a parameter is
passed in an argument block, all further parameters get passed in the

7-17

1960 Processor Compiler User's Guide

7-18

argument block. The calling function is responsible for the creation of an
argument block if one is needed. When an argument block is created it
must contain enough space at the beginning to store all the possible
parameter register®-g11. Thus the first 48 bytes of an argument block
are reserved for storing these registers. The first parameter passed in the
argument block starts at an address 48 bytes above the base of the
argument block.

Return Values

All return values four or fewer words in length are returned in registers
g0-g3. For return values larger than four words the calling function must
pass a pointer to a memory area to store the return value. This value is
passed in registen3. The called function returns such a value by
copying the value into the memory area pointed toisy

ic960 R4.5 implements a special return mechanism for functions returning
long double, when generating code for ic960 R2.0 compatibility, and for a
processor with on-chip floating-point support. In such a case the return
value is returned in thigo register.

Compiler Implementation

For compatibility with past implementations, the compiler allows some
leniency in the implementation of the standard calling convention.

The compiler is more relaxed about the call-preserved statigsgifl

across a function call. At a function call, the compiler assumes that the
called function may changg-g11 if any parameters are passed in an
argument block, or if any parameters were passed in any of the registers
g8-gl1. However, the compiler properly implements the calling
convention on the called function side, preservigigy11 as necessary to
satisfy the calling convention.

Language Implementation

Object Module Section Use

The compiler generates assembly language that uses the following object
file format sections to allocate storage for code and data:

text The compiler places all assembly language
instructions and constant data in tleet
section. Constant data includes initialized
variables with theonst type qualifier, as well
as string and floating-point literals.

.data The compiler places any initialized data in the
.data section. Initialized data includes any
statically allocated variables that you declare
with an initialization list.

bss The compiler locates uninitialized data in the
.bss section as follows:

Uninitialized static variables go directly into
.bss .

Uninitialized external variables are defined with
the.comm directive. If the command line
specifies the relaxed ref-def linkage (gcc960’s
mno-strict-ref-def option or ic960’'s5dc
option), the linker places these variables in
.data if an initializing definition exists in
another module. Otherwise, the linker places
these variables imss . If the command line
specifies strict ref-def linkage (gcc960’s
mstrict-ref-def option or ic960’'s5ds

option), all uninitialized static variables are
placed directly in theoss section.

7-19

1960 Processor Compiler User's Guide

7-20

L)

Pragmas

For more discussion of object module formats, refer ta9®@ Processor
Software Utilities User's Guide

NOTE. The compiler does not allocate storage in any section for
variables declared asxtern . Storage is allocated in the module
defining the variable.

Pragmas can supply implementation-defined information to the compiler.
This section describes the supported pragmas in alphabetical order. For
information about pragma syntax and pragmas in generdl:ske
Reference Manual

#pragma align [for gcc960 driver]
#pragma align n

n specifies the alignment value in bytes. Any of
the following values are vali@, 1, 2, 4, 8, 16.

NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

The#pragma align n feature sets the maximum formal alignment
requirement for structs/unions tdoytes. n must be 0, 1, 2, 4, 8, or 16;
other values are ignored. 0 instructs the compiler to revert to the
maximum alignment in use before the lgstigma align . n=16 is the
default whemmic-compat is not enabledn=1 is the default under
mic-compat .

Language Implementation

To get the alignment for a struct or uniom, given#pragma align n:
» let mbe the largest alignment of all members:of

* lets beu's unpadded size rounded up to the next power of 2.
e thenalign(u) = max (m, min (n, s))

Thus, a structure can never be given an alignment requirement that is less
than the largest alignment required for any of its membgrsyma

align can be used only to limit the amount of extra padding added to
improve the alignment of the entire structure. Note that restricting
structure alignment padding can affect the size and performance of the
generated code.

The following examples show howpragma align can affect the
allocation of structs.

struct sO{ struct s1{ struct s2{
char x[9]; char x[8]; chary;
} struct sO z; short z;
}; short zz;

¥

#pragma: size: size: size:

align 1 9 17 6

align 2 10 18 6

align 4 12 20 8

align 8 16 24 8

align 16 16 32 8

#pragma align does not restrict the alignment of individualic

extern , orauto variable allocations that happen to be structures. The
compiler aligns each separate memory variable allocation based strictly on
the size of the allocation, without regard to the formal alignment
requirement of the variable's type.

7-21

1960 Processor Compiler User's Guide

7-22

#pragma align [for ic960, or for gcc960 with ic960 option]

#pragma align [[(] size [)]]

#pragma align [(] identifier [= size][,---1D]

#pragma noalign [[(] identifier [,---1D11

size specifies the alignment value in bytes. Any of
the following values are valid;, 2, 4, 8, or16.

identifier specifies the structure tag usedsimct type
specifiers, as described @1 A Reference
Manual

NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

Specifies alignment values for structures and unions.

Default

The default is optimal natural alignment.

Discussion

Use#pragma align to align structure members using the natural
alignment value or a specified alignment size. #segma noalign to
specify byte alignment only#pragma noalign is equivalent tespragma
align with a size ofi.. Thealign andnoalign pragmas specify
alignment values fastruct types.

The alignment pragma applies to the whole structure; you cannot specify
differing alignments for individual structure members. If you do not
specifysize , the compiler uses natural alignment.

Since the scope of an alignment pragma is all subsequent source text,
nesting declarative scopes does not affect an existing alignment.
However, you can place an alignment pragma within a structure
declaration, so that the pragma affects any subsequent nested or top-level
structure declaration.

Language Implementation

The compiler aligns atruct type at the opening brace that brackets the
struct declaration list, according to the following rules:

Rule 1 If thestruct type has a tag and the tag identifier has appeared
in an alignment pragma, the alignment is specified by the most
recent alignment pragma for the tag identifier.

Rule 2 If thestruct type has no tag and theuct declaration list
is nested within anotherruct declaration list, the alignment
is the same as that of the immediately enclosingt type.

Rule 3 For any other situation, the alignment is specified by the most
recent alignment pragma with no tag identifier.

The compiler generates warnings for the following condition:

* When an alignment pragma redefines the alignment for a specific
structure tag name:

#pragma align xyz=4
#pragma noalign xyz

Examples

The following examples show different ways nested structures can be
aligned:

#pragma noalign (outerl) /* Both outerl and innerl are */
#pragma noalign (innerl) /* packed (aligned on */
struct outerl { /* 1-byte boundaries). */
struct innerl {
short s1;
char c1;
} sil;
inti2;
¥

#pragma noalign (outer2) /* outer2 is packed. */

struct outer2 {

struct inner2 {/* Since the inner structure has a tag */

short s2; /* (inner2) but no alignment specified,*/

char c2; /* alignment of inner2 uses the default*/
} sil; /* alignment. The short s2 aligns on */

7-23

1960 Processor Compiler User's Guide

7-24

/* 2-byte boundaries and is the largest*/
/* member of inner2; thus the default */
/* alignment of inner2 is 2. */
inti2;
X

#pragma noalign (outer3) /* outer3 is packed. */
struct outer3 {
struct { /* Since the inner structure has no tag, it*/
short s; /*is aligned the same as the immediately */
char c; /* enclosing structure, outer3. Thus both */
}sil; /* structures are packed. */

inti2;
¥

The following example shows nested unnamed structure definitions and
alignment pragmas:

#pragma align my_structure = 16

struct my_structure /* 16-byte alignment */
{
char f1;
struct /* 16-byte alignment */
{
int ff2;
}f2;
h
#pragma align my_structure2 = 16
struct my_structure? [* 16-byte alignment */
{
char f1;
#pragma align 4
struct /* 16-byte alignment */
{
int ff2;
}H2;
h

/* If no more alignment pragmas appear, any subsequent
* structs have 4-byte alignment.
*/

Language Implementation

The following example shows alignment of a structure using the structure
tagidentifier

#pragma align my_structure

struct my_structure /* natural alignment */
{
char f1;
h
#pragma noalign my_structure2
struct my_structure2 /* no alignment; i.e. */
{ /* 1-byte alignment */
char f1;
¥
#pragma align my_structure3 = 16
struct my_structure3 [* 16-byte alignment */
{
char f1;
¥

The following example shows alignment of structures without
identifier specification:

#pragma align
struct my_structure /* natural alignment */
{
char f1;
h
#pragma noalign
struct my_structure2 /* no alignment */
{
char f1;
h
#pragma align 16
struct my_structure3 [* 16-byte alignment */

{
char f1;
%

7-25

1960 Processor Compiler User's Guide

7-26

#pragma cave

#pragma cave [[(] function [...] D]]

function specifies function(s) for the compiler to prepare
for compression. If no function is specified, the
pragma applies to all functions defined following
the pragma.

Prepares code for link-time compression and runtime decompression.

Default

The compiler does not prepare code for compression.

Overview

Compression assisted virtual execution (CAVE) reduces the physical
memory requirements of ROM-based applications through link-time
compression and on-demand runtime decompression of user-specified
functions. The compiler, linker, runtime dispatcher, and compression and
decompression routines cooperate to provide this feature. Code is typically
compressed by a ratio between 1.5 and 1.7. Runtime decompression speed
is about 30 clock cycles per byte of compressed code.

When the CAVE mechanism is used, either thropigbma cave or the
corresponding compiler driver options, selected functions in the
application are designated to be secondary functions. All other functions
are termed primary functions. The primary set should contain
performance-critical functions, which are not to be affected by the CAVE
mechanisms; the secondary set is subject to compression. Secondary
functions are compressed by the linker and reside in memory in
compressed form. At runtime, calls to secondary functions are intercepted
by the CAVE dispatcher and the functions are decompressed if necessary.

Language Implementation

Selecting Functions for Compression

The gcc960ncave option, the ic96@cave option, or#pragma cave are
used to designate the specified functions as secondary. You can use
runtime profile information generated by gcov960 to aid in selecting the
set of secondary functions.

Linking

The compiler places secondary function bodies within special CAVE
sections (namechve) in each generated object file. The linker combines
all input CAVE sections into one output CAVE section. Due to
interdependencies between data or function addresses within compressed
secondary functions and their compressed representations, address
assignment must be done prior to compressing the secondary functions.

As a result, a gap is formed between the compressed CAVE section and
the section that follows, as shown below.

Before Linking After Linking

.text section .text section

compressed cave

uncompressed section
cave section gap in
memory

.data section

.data section

heap

heap

stack

stack

To utilize the compression savings the developer must use linker options
or directives to position the CAVE section last in read-only memory.

7-27

1960 Processor Compiler User's Guide

7-28

Runtime Decompression

During program execution secondary functions reside in memory in
compressed form. Every call to a secondary function is intercepted at
runtime by a special dispatcher routine. The dispatch routine is contained
in thelibc library supplied with the tools. To ensure interception of all
secondary functions, including invocations through indirect calls or
interrupts, the compiler generates interceptor enimiéise.text section,
preceding the function bodies in ttave section as follows:

.section .text

_foo:
lda Li,reg
call __ dispatcher

ret

.section cave
.word L2-L1,0
L1:

function body
L2:

Here the locatiom1 of the secondary function body is passed to the
dispatcher. The word preceding the function body is set by the assembler
to indicate the uncompressed size.

The dispatcher performs the following steps:

1. Allocates a decompression buffer on the current runtime stack.
2. Saves the caller’s context.

3. Performs decompression.

4. Restores the caller’'s context.

5. Invalidates the instruction cache.

6. Calls the decompressed secondary function.

The dispatcher prevents the runtime stack from being overrun by a long
chain of recursive invocations by reusing the functions that are already
active on the stack. The interceptor’s invocation of the dispatcher pushes
a unique return address on the runtime stack. The return address is then

Language Implementation

used by the dispatcher to search the stack for the existing recursive
activation. If found, the function is called immediately.

The dispatcher decompresses and executes secondary functions on the
current runtime stack. Allocation and freeing of decompression memory
is performed automatically through the call and return mechanism.

You must allocate more stack when using CAVE. The maximum
additional runtime stack requirement is the total size of all secondary
functions that may be active simultaneously.

Special Code Generation for Secondary Functions

When a decompressed secondary function is loaded on the runtime stack,
its runtime location is different from the link-time one. Absolute intra-
function and IP-relative inter-function references are invalid. These types
of reference are not used during code generation for CAVE functions.

Since taking the address of a label is illegal in C, intra-function absolute
references can be generated only in a jump-table implementation of the
switch statement. Restricting teeitch statement implementation in
secondary functions to compare-and-branch instructions eliminates
absolute intra-function references.

The IP-relative inter-function references are avoided in secondary
functions by generating the 8096&4Ix instruction instead of theall
instruction. Theallx instruction transfers control to absolute rather than
IP-relative locations.

Debugging CAVE Functions

CAVE functions are decompressed and executed on the runtime stack.
The source-level debug information cannot be properly maintained in the
current implementation. Consequently, secondary functions can be
debugged only at the machine level. To debug:

1. Set a breakpoint on a CAVE function. Execution breaks on the first
interceptor instructionida L1, reg).

2. Step into the dispatcher.

3. Display the disassembled instructions of the dispatcher.

7-29

1960 Processor Compiler User's Guide

7-30

4. The last two instructions in the dispatcher are:
callx 80(r10)
ret

5. callx is a call to a decompressed secondary function. Set a
breakpoint ortallx and step into the function.

6. Continue debugging the function on the machine level.

#pragma compress

#pragma compress [[(] function [,...] D]1]
#pragma nocompress [[(] function [,...] D11
function specifies the function for the compiler to

compress or not compress.

Controls the replacement of RISC instructions with CISC instructions.

Default

The compiler does not usually generate compressed (microcoded CISC)
instructions, but the code produced may still use complex addressing
modes for memory accesses. The compiler may generate single-line
instructions (e.ggmpoble) for two-line compare-and-branch instructions
(e.g.,cmpo andble) but does not always do so.

Discussion

Thecompress andnocompress pragmas control the replacement of RISC
instructions with CISC instructions.

If code size is of primary importance, usenpress to replace RISC
instructions with CISC instructions, thereby compressing the code size.
Generated instructions use complex addressing modes. dMhpiess

is in effect, the compiler also generates single-line instructions for
compare-and-branch instructions when possible.

Usenocompress to use RISC instructions, increasing the number of
instructions but producing code that may run faster when instructions are
found in the instruction cache. Generated instructions do not use complex

Language Implementation

addressing modes. Single-line instructions for compare-and-branch
instructions are not generated.

In addition,#pragma compress disables some optimizations that increase
code size greatly: automatic function inlining and loop unrolling.

If you do not specifyunction , the code compression pragma applies to
all functions following the pragma. The compiler takes no action and
issues no warning when the function name is specified but not found.

#pragma i960_align [for gcc960 and ic960]

#pragma i960_align [[(] size [)]]

#pragma i960_align [(] identifier [= size][,---1D]

#pragma noi960_align [[(] identifier [,---1D11

size specifies the alignment value in bytes. Any of
the following values are valid;, 2, 4, 8, or16.

identifier specifies the structure tag usedstimct type
specifiers, as described @1 A Reference
Manual

Discussion

See the discussion pfagma align (for ic960, or for gcc960 with the
ic960 option).

#pragma inline

#pragma inline [[(] function [...]D]]
#pragma noinline [[(] function [...]D]]
function specifies the function for the compiler to expand

or not to expand inline. If no function is
specified, the pragma applies to all functions
defined following the pragma.

Controls replacement of a function call with the function body.

7-31

1960 Processor Compiler User's Guide

7-32

Default

The compiler does not replace the function call with the function's body.
The#pragma inline has effect at optimization level 1 and higher.
Chapter 11 describes optimization levels in more detail.

Discussion

Use#pragma inline to replace a function call with the function body
expanded at the place of the function call. Expanding a function inline
increases the code size but decreases the execution time.

Note that a function that accepts a variable number of arguments cannot
be expanded inline.

#pragma interrupt

#pragma interrupt [[(] function [,...] D11
#pragma nointerrupt [[(] function [,...] D]1]
function specifies the interrupt handler.

Specifies an interrupt handler.

Default

A function is not an interrupt handler.

Discussion

Use#pragma interrupt to declare a function as an interrupt handler.
Theinterrupt ~ pragma must precede the function definition. If no
function is specified, the pragma applies to all functions defined following
the pragma.

For interrupt handlers, the compiler tries to use global and floating-point
registers only for a call. If the function uses any global or floating-point
registers, the compiler preserves the registers. For any call, the compiler
saves all registers excegt throughg11. A register in the ranggs
throughg11 is saved only if it may be changed in the called function.

Language Implementation

The compiler stores saved registers in contiguous locations, starting at
offsetox40 from the frame pointer, as follows:

e g0 atox40(fp)

* g4 atox50(fp)

* g8 atoxe0(fp)

e fp atox7c(fp)

In processors with on-chip floating-point support, the compiler saves
floating-point register§0 throughfp3 starting abxso(fp)

An interrupt handler must not have parameters or return a value.

volatile int ready=0
int poll()
{
while (Iready)

} return ready;

#pragma interrupt(foo)
void foo(void)

{
}

ready=1,;

NOTE. If an interrupt function accesses variables that are also accessed
by the program, those variables should be declatgalile . If ready

is not declared volatile, the optimizer may think thatly is always zero

in functionpoll and may create an infinite loop by removing the test for
(‘ready).

Note thatoragma interrupt ~ andpragma isr (described below) differ
only in where the registers are saved. fragma interrupt , the
registers are saved at known offsets. gragma isr , the compiler makes
a context-specific choice of where to save the registers.

7-33

1960 Processor Compiler User's Guide

7-34

#pragma isr

Specifies routines to be compiled as interrupt service routisiess]. The
syntax is:

#pragma isr [(] function_name [[,] function_name]...])]

When a routine specified as an interrupt service routine is compiled, the
compiler generates code so that regisiersi5 have the same values on
exit that they had when entering the function. In addition, the code
generated for the routine makes no assumptions about registeralue

on entry. By guaranteeing these registers' values and not assimitay

be zero#pragma isr ensures that the routine's address can be placed
directly in the interrupt vector table, and the state of the processor are the
same at routine exit as it was at routine entry.

#pragma optimize

#pragma optimize [(] [identifier =]" string "[]
[identifier =" string "]... D]

Enables or disables optimizations. If specified, the identifier denotes a
function with which thetpragma optimize string is to be associated.

The string is a comma-separated list of optimizations to enable or disable.
Currently recognized optimizations are:

tce enable tail-call-elimination optimization
notce disable tail-call-elimination optimization
Ip enable leaf-procedures optimization
nolp disable leaf-procedures optimization

If no function is specified then this pragma applies to the rest of the file.

Any optimizations other than those recognized above are ignored.

Language Implementation

#pragma pack
#pragma pack n

When used without an alignment pragma or option, this pragma has the
same effect for both the gcc960 driver and the ic960 drivegsiticts the
maximum alignment value that is honored for structure members to
bytes. A value of 0 tells the compiler to revert to the maximum field
alignment in use before the lagtagma pack . Before the first{pragma

pack is encounteredi=16.

NOTE. The ic960 driver'sragma align and the gcc960 and ic960
drivers’ pragma i960_align overridepragma pack . The interaction of
pragma pack and the gcc960 driverigragma align is described
below.

Using #pragma pack with gcc960’s #pragma align

When a member alignment requirement would exeeeds used instead

— both for assigning the member's offset within its structure, and for
determining the member's contribution to the structure's formal alignment
requirement. It does not, however, restrict the overall formal alignment
calculation for structures described for gcc96@sgma align . To

limit a structure's formal alignment requirement (presumably to limit extra
padding at the end) you must use gcc960tagma align in addition to
#pragma pack .

For example:

#pragma pack 2
struct s{

char a;

int b;

¥

7-35

1960 Processor Compiler User's Guide

7-36

Table 7-2

s.b would be placed at offset 2 from the base;afizeof(struct s)
would be 6 under gcc960isic-compat (#pragma align 1) and 8 under
default alignment#pragma align 16). The formal alignment
requirement oftruct s would be 2 undenic-compat and 8 under
default alignment.

The examples in the tables below all use the following sample structure:

typedef struct {
char mi;
short m2;
double m3;
char m4;
int mb5;

} s0;

Example Offset Values

Normal i960 gcc960 Driver's gcc960 Driver's
Rules #pragma pack 4 #pragma pack 2
offset_of(s0, m1) 0x0 0x0 0x0
offset_of(s0, m2) 0x2 0x2 0x2
offset_of(s0, m3) 0x8 Ox4 Ox4
offset_of(s0, m4) 0x10 Oxc Oxc
offset_of(s0, m5) 0x14 0x10 Oxe
sizeof(s0) 0x20 0x20 0x20
#pragma pack 4 #pragma pack 2
#pragma pack 1 #pragma align 4 #pragma align 2
offset_of(s0, m1) 0x0 0x0 0x0
offset_of(s0, m2) 0x1 0x2 0x2
offset_of(s0, m3) 0x3 Ox4 Ox4
offset_of(s0, m4) 0Oxb Oxc Oxc
offset_of(s0, m5) Oxc 0x10 Oxe
sizeof(s0) 0x10 0x14 0x12

Language Implementation

#pragma pure

Specifies that a function has no effects other than returning a computed
value and that it does so based solely on its input parameters.

#pragma [no]pure [(function [,...])1]

function identifies the specific function to which the
pragma applies. lunction is missing, the
effect of the pragma is applied to all functions
called in the compilation module following the
pragma. If a function name is specified, the
pragma must be placed before the function
definition.

Default

The compiler assumes functions are not pure and does not perform
optimizations possible with pure functions.

Discussion

pragma pure informs the compiler that a named function has no effects

other than returning a computed value and that it does so based solely on

its input parameters. Specifically, the compiler assumes the following

about the function:

* No /O is performed.

* No global variables or memory locations are read or modified.

* No modifications of registers occur, except those explicitly defined by
the calling sequence.

This knowledge enables the compiler to perform optimizations around
function calls, optimizations it could not perform without this knowledge.
If a function is “pure”, then the compiler can perform (around that
function call) constant propagation, common subexpression elimination,
global-variable migration, and dead-code elimination.

7-37

1960 Processor Compiler User's Guide

#pragma section

Allows COFF or ELF section naming.

#pragma section [string]
string is alphanumeric characters a-z, A-Z, 0-9.
Discussion

This pragma causes all text, data and bss sections the compiler emits to be
suffixed withstring . For COFF the string must be three characters or
less in length. For ELF, the string can be any length.

Using#pragma section ~ withoutstring sets the suffix back to null (the
default).

This pragma is not supported for the b.out object format.

#pragma system

Specifies a system function.

#pragma system [[(] function [= index]1[,...] D]1]

#pragma nosystem [[(] function [= index]1[,...] D]]

function specifies the system function.

index specifies the index into the system procedure
table.

Discussion

If no function is specified, the pragma applies to all functions defined or
called following the pragma. Useagma system to specify a function to
be called from the system procedure table. The compiler generates a
callix instruction for the system function call, which the linker replaces
with the following:

lda index , 913
calls g13

7-38

Language Implementation

index is the index of the system function in the system
procedure table and is available to the linker
through the symbol table entry for the function.
This value must be in the rangeo 259.

For information on theallix ~ andcalls instructions and the system
function table, refer to th®60 Processor Assembler User's Guide

You must associate a single system procedure table index with each
system function before the final link of your program. The linker
generates an error message for any system function that has no index or
multiple conflicting indexes.

You can make this association in either or both of the following ways, if
the defined index is consistent across all definitions:

» Specifypragma system at both the definition and the calling of the
function. The compiler then generates the appropriate symbol table
information, including the index.

» Use thesysproc assembler directive to associate a system function
name with an index.

Since registeg13 is used for the system function index, a system function
cannot return a value larger than four words. Refer t®8&Processor
Software Utilities User's Guid®r more information.

Language Extensions

GNU C provides several language features not found in ANSI standard C.
(Thepedantic option directs gcc960 to print a warning message if any of
these features is used.) To test for the availability of these features in
conditional compilation, check for a predefined macreNUC__, which

is automatically defined under gcc960 (but not under ic960).

7-39

1960 Processor Compiler User's Guide

Statements and Declarations Inside of Expressions

A compound statement in parentheses can appear inside an expression.
This allows you to declare variables within an expression. For example:
{inty = foo (); int z;

if(y>0)z=y;

elsez=-y;

z;})
is a valid (though slightly more complex than necessary) expression for
the absolute value &fo()

This feature is especially useful in making macro definitions "safe" (so
that they evaluate each operand exactly once). For example, the
"maximum" function is commonly defined as a macro in standard C as
follows:

#define max(a,b) ((@) > (b) ? (a) : (b))
But this definition computes eitheror b twice, with bad results if the

operand has side effects. If you know the type of the operands (you can
assument), you can define the macro safely as follows:

#define maxint(a,b) \
{int_a=(), _b=(b); _a>_b? _a: _b;})

Embedded statements are not allowed in constant expressions, such as the
value of an enumeration constant, the width of a bit field, or the initial
value of a static variable.

Naming an Expression’s Type

You can give a name to the type of an expression usimpgdef
declaration with an initializer. Here is how to defingne as a type name
for the type ofexp:

typedef name= exp;

7-40

Language Implementation

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
"maximum" macro that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \
_ta_a=();_tb_b=(b); \
_a> _b? _a: b}

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substitutedfandb.

Referring to a Type with typeof

Another way to refer to the type of an expression is witkof . The
syntax of using of this keyword looks likeeof , but the construct acts
semantically like a type name defined withedef

There are two ways of writing the argumentyigof : with an
expression or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes thatis an array of functions; the type described is that of
the values of the functions.

Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointersito.

If you are writing a header file that must work when included in ANSI C
programs, write _typeof _ instead ofypeof .

7-41

1960 Processor Compiler User's Guide

7-42

A typeof construct can be used anywhere a typedef name could be used.
For example, you can use it in a declaration, in a cast, or insitheaf
or typeof

» This declares with the type of what points to:
typeof (*x) y;
e This declares as an array of such values:
typeof (*x) y[4];
» This declares as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];
To see the meaning of the declaration usipgof , and why it might be a
useful way to write, try rewriting it with these macros:
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus,array (pointer (char), 4) is the type of arrays of 4 pointers to
char .

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as
Ivalues provided their operands are Ivalues. This means that you can take
their addresses or store values into them.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b) +=5

a, (b +=5)

Language Implementation

Similarly, the address of the compound expression can be taken. These
two expressions are equivalent:

&(a, b)
a, &b

A conditional expression is a valid Ivalue if its type is not void and the true
and false branches are both valid lvalues. For example, these two
expressions are equivalent:

(@?b:c)=5

(@a?b=5:(c=5))

A cast is a valid Ivalue if its operand is valid. Taking the address of the
cast is the same as taking the address without a cast, except for the type of
the result. For example, these two expressions are equivalent (but the
second may be valid when the typeaafoes not permit a castita *):

&(int *)a

(int **)&a

A simple assignment whose left-hand side is a cast works by converting
the right-hand side first to the specified type, then to the type of the inner
left-hand side expression. After this is stored, the value is converted back
to the specified type to become the value of the assignment. Thussf
typechar *, the following two expressions are equivalent:

(int)a=5

(int)(a = (char *)5)

An assignment-with-arithmetic operation such-aspplied to a cast
performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case. Therefore, these two expressions are
equivalent:

(int)a +=5

(int)(a = (char *) ((int)a + 5))

7-43

1960 Processor Compiler User's Guide

7-44

Conditional Expressions with Omitted Middle
Operands

The middle operand in a conditional expression may be omitted. Then if
the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression:
X?:y
has the value of if that is nonzero; otherwise, the valueyof

This example is perfectly equivalent to:
X?X:y

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful is when the first operand does, or may (if
it is a macro argument), contain a side effect. Then repeating the operand
in the middle would perform the side effect twice. Omitting the middle
operand uses the value already computed without the undesirable effects
of recomputing it.

Arrays of Length Zero

Zero-length arrays are allowed. They are very useful as the last element
of a structure that is really a header for a variable-length object:

struct line {
int length;
char contents|[0];

¥
{

struct line *thisline
= (struct line *) malloc \
(sizeof (struct line) + this_length);
thisline->length = this_length;
}

Language Implementation

In standard C, you would have to giwatents a length of 1, which
means either you waste space or complicate the argumealido .

Non-lvalue Arrays Can Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the
unary& operator is not. For example, this is valid though not valid in
some other C dialects:

struct foo {int a[4];};
struct foo f();

bar (int index)

{

return f().a[index];

}

Arithmetic on Pointers to void and Pointers to
Functions

Addition and subtraction operations are supported on pointesgitoand
on pointers to functions. This is done by treating the sizev@fia or of a
function as 1.

A consequence of this is thateof is also allowed omoid and on
function types, and returns 1.

The Whpointer-arith option requests a warning if these extensions are
used.

7-45

1960 Processor Compiler User's Guide

7-46

Non-constant Initializers

The elements of an aggregate initializer for an automatic variable are not
required to be constant expressions. Here is an example of an initializer
with run-time varying elements:

foo (float f, float g)

{
float beat_freqs[2] = { f-g, f+g };

Constructor Expressions

Constructor expressions are supported. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the
cast, containing the elements specified in the initializer. The type must be
a structure, union or array type.

Assume thastruct foo andstructure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructingtauct foo with a constructor:

structure = ((struct foo) {x + vy, 'a’, 0});

This is equivalent to writing the following:
{

struct foo temp ={x + vy, 'a’, 0};

structure = temp;
}
You can also construct an array. If all the elements of the constructor are
(made up of) simple constant expressions, suitable for use in initializers,
then the constructor is a Ivalue and can be coerced to a pointer to its first
element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Language Implementation

Array constructors whose elements are not simple constants are not very
useful because the constructor is not an Ivalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower thansaitch ~statement, while the latter does

the same thing an ordinary C initializer would do.

output = ((int[]) { 2, x, 28 }) [input];

Declaring Attributes of Functions

You can declare certain things about functions called in your program that
help the compiler optimize function calls.

A few functions, such asbort andexit , cannot return. These functions
should be declareglatie . For example:

extern volatile void abort ();

tells the compiler that it can assume thtatrt does not return. This
makes slightly better code, but more importantly it helps avoid spurious
warnings of uninitialized variables.

Many functions do not examine any values except their arguments, and
have no effects except the return value. Such a function can be subject to
common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be dedared.

For example:

extern const void square ();

says that the hypothetical functiefuare is safe to call fewer times than
the program says. A function should not be declasest unless:

* nol/Ois performed.

* no non-local variables are read or modified either directly or via
pointers passed into the function.

7-47

1960 Processor Compiler User's Guide

7-48

Inquiring about Alignment

The keyword _alignof _ allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its syntax
is just likesizeof

For example, the target machine requireswle value to be aligned on
an 8-byte boundary, thenalignof _ (double) is 8. This is true on the
i960 processor.

When the operand of alignof __is a Ivalue rather than a type, the
value is the largest alignment that the Ivalue is known to have. It may
have this alignment as a result of its data type, or because it is part of a
structure and inherits alignment from that structure. For example, after
this declaration:

struct foo { int x; char y; } fool;

the value of alignof (fool.yy) is 4, the same asalignof
(int), even though the data typefofl.y does not itself demand any
alignment.

Inline Functions Are as Fast as Macros

By declaring a functiomline , you can direct the compiler to integrate
that function's code into the code for its callers. This makes execution
faster by eliminating the function-call overhead; in addition, if any of the
actual argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s code
needs to be included.

To declare a function inline, use théne keyword in its declaration.
For gcc960, use eithetine or__inline . For ic960, use inline
For example:
inline int
inc (int *a)
{
(*a)++;

}

Language Implementation

(If you are writing a header file to be included in ANSI C programs, write
__inline__ instead ofnline . See the Alternate Keywords section.)

You can also make all "simple enough" functions inline with the option
finline-functions . Note that certain usages in a function definition
can make it unsuitable for inline substitution.

When a function isiline , if all calls to the function are integrated into

the callers, and the function’s address is never used, then the function’s
own assembler code is never referenced. In this case, the compiler does
not actually output assembler code for the function, unless you specify the
optionfkeep-inline-functions . If there is a nonintegrated call, then

the function is compiled to assembler code as usual. The function must
also be compiled as usual if the program refers to its address, because that
reference can not be inlined.

Except when doing two-pass compilation, if an inline function is not

static , then the compiler must assume that there may be calls from other
source files; since a global symbol can be defined only once in any
program, the function must not be defined in the other source files, so the
calls therein cannot be integrated. Therefore, asmia- inline

function is always compiled on its own in the usual fashion.

If you specify bothnline andextern in the function definition, then the
definition is used only for inlining. In no case is the function compiled on
its own, not even if you refer to its address explicitly. Such an address
becomes an external reference, as if you had only declared the function,
and had not defined it.

This combination ofline andextern has almost the effect of a macro.
The way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lackifige and

7-49

1960 Processor Compiler User's Guide

7-50

extern) in a library file. The definition in the header file causes most
calls to the function to be inlined. If any uses of the function remain, they
refer to the single copy in the library.

NOTE. Function inlining occurs only at optimization lewsl or higher.
Inline functions are not inlined ato. Inlining can be enabled with
finline-functions ato1, and it occurs automatically at2.

Controlling Names Used in Assembly Code

You can specify the name to be used in the assembler code fora C
function or variable by writing thesm (or __asm__) keyword after the
declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variablén the
assembler code should bgfoo rather than the usuaioo .

On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the linker
that do not start with an underscore.

You cannot usesm in this way in a function definition; but you can get
the same effect by writing a declaration for the function before its
definition and puttingism there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

Language Implementation

It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols. Also, you must not use a
register name; that would produce completely invalid assembler code.

Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("r5");
r5 is the name of the register that should be used.

Defining such a register variable does not reserve the register; it remains
available for other uses in places where flow control determines the
variable's value is not live. However, excessive use of this feature may
leave the compiler too few available registers to compile certain functions.

Alternate Keywords

The optiontraditional disables certain keywords)si disables certain
others. This causes trouble when you want to use GNU C extensions, or
ANSI C features, in a general-purpose header file that should be usable by
all programs, including ANSI C programs and traditional ones. The
keywordsasm, typeof andinline cannot be used since they won't work

in a program compiled withnsi , while the keywordsonst , volatile

signed , typeof andinline won’t work in a program compiled with
traditional

The way to solve these problems is to putit the beginning and end of
each problematical keyword. For example, usesm__ instead ofsm,
__const__instead ofonst , and__inline__ instead ofnline

Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:

#ifndef __ GNUC__
#define __asm__ asm
#endif

7-51

1960 Processor Compiler User's Guide

7-52

Inline Assembly Language

Introduction

Two distinct styles of inline assembly language are supported by the
compilation system: asm statements and asm functions. The

recommended way to use inline assembly language is asm statements; asm
functions are supported for compatibility with previous CTOOLS960
releases.

Resource Usage

The compiler makes assumptions about the machine resources: registers
and memory. It manages access to these resources based on the C
program, and its knowledge of the code it is generating, and inline
assembly language can violate these assumptions.

Both styles of inline assembly language provide the programmer with
ways to communicate the usage/modification of machine resources. Inline
assembly code that uses/modifies such machine resources without
informing the compiler may cause incorrect code to be generated by the
compiler.

Before and after each call to a C function, the compiler generates
instructions to preserve resources for the calling function while the called
function executes. For example, any general purpose registers that might
be updated by the called function must be saved on the stack before and
after each function call. The term for this resource management is "the
calling convention."

The calling convention for a call to aam function differs from that of a

call to a C function. In particular, the compiler assumes by default that the
only resources used by asm function are its parameters, local

temporaries, and the return value. The compiler must be explicitly
informed about other resources that can be used bythiinction. The
compiler does not manipulate assembly language withirfunctions. It

relies on the assembler to check the assembly language. The result is that

Language Implementation

the compiler treats the body of asm function as text. The compiler

parses the text for symbolic names (parameters, local temporaries, and
labels). However, the compiler does not recognize function calls, memory
references, or explicit register usage withindke function text.

asm Statements

You can use aasm statement to pass an assembler instruction through the
compiler, and you can specify the instruction's operands using C
expressions. Typicallysm is used to gain access to machine instructions
that have no corresponding C paradigm.

asm statements are somewhat similar to function calls; both use parameter
mechanisms to help describe the statements' inputsmlstatements,
however, an extensive mechanism is also provided for describing the
asm's effects; the compiler can then assume that an asm has no effects or
inputs that are not explicitly stated. In contrast, a function call is assumed
to read or write all program variables unless proven otherwise. No such
assumption is made for asm statements.

NOTE. The compiler assumes that the inserted assembly instructions can
only be executed immediately after the statement that precedes them, and
that after the inserted assembly instructions have been executed, program
execution resumes at the statement immediately following them.

Syntax Examples

The following brief syntax examples are provided here for reference when
studying the detailed grammar below. The effects and components of
each specific example are discussed in detail in the Examples section
below.

7-53

1960 Processor Compiler User's Guide

7-54

Example 1: sfl1 (Simple)

asm volatile ("mov 0,sf1");

Example 2: sf1 (Complex)
asm volatile ("mov sf1,%0; mov %1,sf1":
"=&d" (old_mask) : "dI" (new_mask));
Example 3: emul
asm("emul %1,%2,%0" : "=t" (temp) : "dI" (in1), "dI" (in2));

Example 4: synmovq

__asm___volatile ("synmovq %2,%3" : "=m"(*|AC_dst)
:"'m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p)); }

Example 5: attadd

asm__ _ volatile_ ("atadd 9%4,%2,%1" : "=m"(*p),"=d"(wtmp)
i (val),"m" (p),"d"(p));

Example 6: modpc

asm__ _ volatile_ ("modpc %1,%1,%0" : "=d"(new_pc)
: "dI"(mask),"0"(new_pc)));

asm Statement Syntax

asm statements have the following syntax:

asm [volatile] (asm-template [asm-interface]);
asm-template A C language ASCII string containing
Zero or moresubstitution-
directives
substitution-directive %d where no white space follows the

andd is a decimal digit.

asm-interface :[out-list][:[in-
list][:clobber-list]]

out-list output-spec [,out-list]...

in-list input-spec [,in-list]...

Language Implementation

clobber-list clobber-spec [,clobber-list]...
output-spec "=constraint" (C language object)
input-spec "constraint" (C language

expression)

clobber-spec "regname”

NOTE. The keywords asm and__volatile can be used in place of
asm andvolatile

asm Syntax Explanations

asm Keyword

asm statements begin with the keywasch. Alternatively, the keyword
__asm can be used to ensure ANSI C compliance.

volatile

If the optional keywordolatile is given, the asm is volatile. Two

volatile asm statements are never moved past each other by optimizations,
and a reference to a volatile variable is not moved relative to a volatile
asm. The alternate keywordvolatile can be used to ensure ANSI C
compliance.

asm-template

asm-template A C language ASCII string containing zero or
more substitution-directives

Theasm-template is a C language ASCII string that specifies how to
output the assembly code for an instruction. Most of the template is a
fixed string; everything but theubstitution-directives (if there are
any) is passed through to the assembler. Substitution directive syntax is
explained below.

7-55

1960 Processor Compiler User's Guide

7-56

Generally, this fixed string is the body of the desired assembler
instruction. This can be any instruction valid for the current i960
architecture.

NOTE. The validity of the assembly code is not checked by the compiler.

substitution-directive

substitution-directive %dwhere no white space follows the
andd is a decimal digit.

The charactewoccurring in theasm-template specifies where to
substitute operands into the assembly instruction. %dfoowed by a
digit n says to insert operandat that point in the string. Operands are
specified in the asm@utput-specs andinput-specs . Operands are
numbered 0 through 9. No more than 10 operands can be specified.

asm-interface
asm-interface [out-list 1[:[in-list][: clobber-list 1

The asm interface consists of three parts: an optiemak: , an
optionalin-list ~ , and an optionatiobber-list . These are separated

by colon characters). See the preceding discussion of Resource Usage
for background information on them-interface ~ specification.

: (colon)

The colon (:) character is used to separatexthést andin-list
Another colon is used to separate th@ber-list if one is used. If the
out-list is missing, but am-/ist is given, the input list must be
preceded by two colons () to take the place of the missingt-/ist

out-list
out-list output-spec [, out-list 1.

An out-list ~ consists of one or mokeitput-specs separated by
commas. For the purposes of substitution inathe-template , each

Language Implementation

output-spec is numbered. The first operand in the-iist is
numbered 0, the second is 1, and so on. Numbering is continuous through

theout-list , and into then-list . The total number of operands is
limited to 10 (i.e., 0-9). Sewubstitution-directives above.

in-list

in-list input-spec [, in-list 1.

Similar to anout-list , anin-list consists of one or moreout-

specs separated by commas. For the purposes of substitution in the
asm-template , eachinput-spec is numbered, with the numbers
continuing from those in theut-list

clobber-list
clobber-list clobber-spec [, clobber-list]...

A clobber-list tells the compiler that the asm uses or changes a real
machine register that is either coded directly into the asm or is changed
implicitly by the assembly instruction. Th&bber-list is a comma-
separated list oflobber-specs

output-spec
output-spec "= constraint " (C language object)

Theoutput-specs tell the compiler about objects whose values can be
written by the inserted assembly instruction. In order to more fully
describe the output effects of the asm, you camdigtit-specs that are
not actually referenced in them-template . See theynmovg and

attadd examples below for specific examples of this.

input-spec
input-spec "constraint " (C language expression)

Theinput-specs tell the compiler about expressions whose values may
be needed by the inserted assembly instruction. In order to more fully
describe the input requirements of the asm, you campigtspecs that
are not actually referenced in then-template . See theynmovg and
attadd examples below for examples of this.

7-57

1960 Processor Compiler User's Guide

7-58

clobber-spec
clobber-spec " regname”

Eachclobber-spec specifies the name of a single machine register that
is "clobbered."

Resources that cannot be clobbered are:

fp (the frame pointer)
sp (the stack pointer)
r0,rl,r2 (reserved)

gl4

C language object

This can be any assignable C language Ivalue. Typically this is just a
variable name. AClanguage object must be of a type that matches its
correspondingonstraint . A Clanguage object used in an

output-spec must be of a type such that it can be assigned into. Object
types must be the same size that theistraints ~ would match. For
example, the C typet is 32 bits; so is a global register. This would

cause no mismatch. An integer type would not match a quad-word,
however. If the object type andnstraint do not match, the compiler
attempts to add code to fix the mismatch, but in general it is better practice
to avoid mismatches in the first place.

C language expression

This can be any legal C language expression. A<ifa@yuage object
above, aClanguage expression must match its corresponding
constraint . Unlike acClanguage object used inoutput-specs , a
Clanguage expression used innput-specs does not need to be
assignable.

constraint

EachClanguage object or Clanguage expression can have an
associatedonstraint . Theconstraint is a string that tells the
compiler what its associated operand must look like in order for the
asm-template to generate a legal assembly instruction.

Language Implementation

A constraint consists of one or more of the characters listed below.
The compiler generates code if necessary to make thguage

object orexpression match one of theonstraint characters. The
associated operand is an integer literal or a machine register or an
assembly label that is put in place of a substitution directive.

In general, it is better to write the asm such that the compiler does not
need to generate extra code to makematraint match. An operand
can contain an emptynstraint string if it is not used in the
asm-template

The validconstraint ~ characters are as follows:

= Specifies that the operand is assigned into. All
output-spec constraints must start with this
character.

& Unless an output operand uses the
& constraint , the compiler may allocate it in
the same register as an unrelated input operand,
on the assumption that the inputs are consumed
before the outputs are produced. If the
assembler code consists of more than one
instruction, this assumption may be false. In this
case, you should use theonstraint ~ for each
output operand that may not overlap an input.

d Allows any local or global word register.
r Allows any local or global word register.

| Allows any local register (r3-r15).

b Allows any global register (g0-g15).
t Allows any two-word register.
q Allows any quad-word register.

7-59

1960 Processor Compiler User's Guide

7-60

0-9

Allows any floating-point register fp0 through
fp3. Thisconstraint is only valid for the 1960
KB and i960 SB processors and only then if the
gcc960msoft-float option is not used.

Allows any memory operand.

Allows a constant in the range 0 through 31.
This is the allowable range for a literal value in
most instructions for the i960 processor.

Allows a known 32-bit constant.

Allows a 32-bit constant including a constant
address.

Allows a floating-point constant of 0.0.
Allows a floating-point constant of 1.0.
Allows a floating point constant with any value.

This is a matchingonstraint . An operand

that matches operamd(0-9) is allowed. If

used, this must be the only character in the
constraint . The specified operand must be an
output-spec , and theconstraint ~ in which the
matchingconstraint ~ appears must be an
input-spec . Theasm-template should not

refer to this operand, only to the operand
specified. This constraint is often used to ensure
that an input operand and an output operand are
in the same register. Generally, this is
unnecessary on the i960 architecture.

Language Implementation

Detailed Examples

Example 1: sfl.c (Simple)

The following example refers to the short C program shown in
Example 7-1 below. The asm instruction is shown in bold.

Example 7-1 sfl.c (Simple)

/* Clears interrupt mask in sfl for i960 CA processor */
void clear_interrupt_mask()

{
}

asm volatile ("mov 0,sf1");

Consider the line containing the asm:

asm volatile ("mov 0,sf1");

e "mov 0,sf1" is theasm-template . It contains nGubstitution-
directives , and the asm has mot-list ~ orin-list . It simply

writes a zero into registerl . If sf1 contains all zeros, all interrupts
exceptnmi are disabled.

Note that this asm can be coded without the input or output operands
because it neither uses nor affects any object or resources that the
compiler knows about.

7-61

1960 Processor Compiler User's Guide

7-62

Example 2: sfl.c (Complex)

The following example refers to the short C program shown in
Example 7-2. The asm containing #ie instruction is shown in bold.

Example 7-2 sfl.c (Complex)

/*

* Changes interrupt mask, and returns old interrupt mask
* for i960 CA microprocessor. lllustrates & constraint.

*/

int change_interrupt_mask(int new_mask)

{
int old_mask;
asm volatile ("mov sf1,%0; mov %1,sf1":
"=&d" (old_mask) : "dI" (new_mask));
return old_mask;
}

Consider the line containing the asm:

asm volatile ("mov sf1,%0; mov %1,sf1":

"=&d" (old_mask) : "dI" (new_mask));

* "mov sf1,%0; mov %1,sf1" is theasm-template . The
asm-template actually contains twenov instructions. The first
writes the contents of registeil. onto operand (b(d_mask) and the
second writes operand de(v_mask) into registesfl .

e "=&d" (old_mask) is the onlyoutput-spec . Itis the first operand
(operand 0). The=&d" is theconstraint . The= says that this
operand must be assignable. Ehells gcc960 not to allocate this
output in the same register as an input operand. This is nhecessary
because the firstov creates output before the secomd has used its
input. Thed indicates that this operand must go in a word register. If
old_mask is not a word register, the compiler generates code
following the asm to copy the word register it chose for this output
operand intwld_mask .

Language Implementation

e "dl" (new_mask) is the onlyinput-spec . Itis operand 1. Theil'"
constraint indicates that operand 1 must be in a word register, or be
a constant from 0 to 31. The compiler generates extra code as
necessary to make surew_mask matches one of thenstraints
before the asm is generated.

Example 3: emul.c

The example refers to Example 7-3 below. The asm containirgnthe
instruction is shown in bold.

Example 7-3 emul.c

typedef struct

{
unsigned int 1032;
int hi32;

} int64;

typedef int int32;

static inline
int64 asm_emul(int32 inl, int32 in2)
{
int64 temp;
asm("emul %1,%2,%0" 2 "=t" (temp)
2dl" (in2), "dI" (in2));
return temp;
}
int32 mul32_check_overflow(int32 a, int32 b)
{
int64 t;
t =asm_emul(a, b);
if ((t.1032 & 0x80000000) != 0)

{
if (t.hi32 == -1) /*upper32 matches lower32 sign bit*/

continued [

7-63

1960 Processor Compiler User's Guide

7-64

Example 7-3 emul.c (continued)

return t.1032;
else

if (t.hi32 == 0) /*upper32 matches lower32 sign bit */
return t.1032;
}
overflow_error("32 bit multiply overflowed");
return t.1032;

Consider the line containing the asm:

asm("emul %1,%2,%0" : "=t" (temp) : "dI" (in1), "dI" (in2));

"emul %1,%2,%0" is theasm-template . Theemul instruction takes
three argumentssrcl , src2 , anddst . These values are provided by
the out-list andin-list

"=t" (temp) is the onlyoutput-spec . Itis the first operand, i.e.,
operand 0. The=t" constraint indicates that this operand must go
in a double word register in order for then-template to generate a
legal instruction.

"di" (inl) is the firstinput-spec . Itis operand 1. Thell"

constraint indicates that operand 1 must be in a word register, or be
a constant from O to 31 for them-template to generate a legal
instruction. The compiler generates the extra code as necessary to
make sure the value oft matches one of thenstraints ~ before

the asm is generated.

"di" (in2) is the secondput-spec . Itis operand 2. Again the

"di" constraint indicates that operand 1 must be in a word register,
or be a constant from 0 to 31. As before, the compiler makes sure that
the operand matches one of thestraints before generating the

asm. In this examplesmp is declared as a local variable, and its type
(int64) has the necessary size (8 bytes) and alignment (8 bytes) to go

Language Implementation

into a two-word register. Similarlyy1 andin2 must match at least
one of theirconstraints ~ because their size and alignment is the
same as that required for a value in a word register.

Compile this example using:
gcc960 -S -0O2 emul.c

r/‘ NOTE. That no extra code is generated to set up operands fenthe

asm.

Example 4: synmovq.c

The following example refers to the short C program shown in
Example 7-4 below. The asm containing ¢hemovqg instruction is
shown in bold.

Example 7-4 synmovq.c

struct IAC_record {
unsigned short field2;
unsigned char fieldl,;
unsigned char message_type;
unsigned long field3;
unsigned long field4;
unsigned long field5;

X

struct IAC_record Cent_IAC_Space ={ 0,0x60,0x40,0,0,0 };
static __inline__ void
post_interrupt(struct IAC_record *IAC_p)

{
struct IAC_record *IAC_dst = (struct IAC_record *)OxFF000010;

__asm__ volatile ("synmovq %2,%3" : "=m"(*IAC_dst)
:"'m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p)); }

7-65

1960 Processor Compiler User's Guide

7-66

Consider the lines containing the asm:
__asm___volatile ("synmovq %2,%3" : "=m"(*IAC_dst)
"'m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p));}

e "synmovq %2,%3" is theasm-template . synmovq writes four
words into reserved memory on the i960 KB processor, and then sends
a message to the 1960 processor telling it to do a software interrupt.
synmovq takes two arguments;c anddst , wheresrc is the location
to copy from, andist is the location to copy to. These values are
provided by theout-list ~ andin-list

e "=m" (*IAC_dst) is the onlyoutput-spec . Itis the first operand,
i.e., operand 0. Them" constraint indicates that any memory
operand can be used.

e 'm" (*IAC_p) Is the firstinput-spec . Itis the second operand,

i.e., operand 1. Again, any memory operand can be used.

e "d" (IAC_dst) is the secondhput-spec . Itis the third operand,
i.e., operand 2. The" constraint indicates that any global or
local word register or a constant from 0 to 31 may be used. This
register is only read, not written, so it acts as its own input.

e "d" (IAC_p) isthe thirdinput-spec . Itis the fourth operand,

i.e., operand 3. Again, any global or word register may be used.

NOTE. In this example, four operands were specified, although the
asm-template required only two. The additional operands

(in this instance, operands 0 and 1) tell the compiler about objects
whose values may be changed by the asm statement or whose value the
asm statement may need. In this case, the asm modifies memory, which
may affect optimizations the compiler performs at runtime. The only
actual output from the asm is the memory written.

Language Implementation

Example 5: atadd.c

The following example refers to the short C program shown in
Example 7-5 below. The asm containing dheid instruction is shown
in bold.

Example 7-5 atadd.c

static inline
int atadd(p, val)
volatile int *p;

int val;
{
int wtmp;
__asm____ volatile_ ("atadd %4,%2,%1" : "=m"(*p),"=d"(wtmp)
di"(val),"m” (*p),"d"(p));
return wtmp;
}

volatile int critical_var;
int other_var;

int add_crit()

{
atadd(&critical_var, 1);
if (atadd(&critical_var, 2) I=1)
atadd(&other_var, 1);
}

Consider the lines containing the asm:

__asm__ _ volatile__ ("atadd %4,%2,%1" : "=m"(*p),"=d"(wtmp)

2rdi(val),"m” (*p),"d"(p));

e atadd %4,%2,%1" is theasm-template . atadd adds to memory
and locks the bus until it is finished. This feature is used by multi-
processor systemsitadd takes three arguments. These values are
provided by theout-list ~ andin-list

e "=m" (*p) is the firstoutput-spec . Itis the first operand,

i.e., operand 0. Them" constraint indicates that any memory
operand can be used.

7-67

1960 Processor Compiler User's Guide

e "=d" (wtmp) is the secondutput-spec . Itis the second operand,
i.e., operand 1. The" constraint indicates that any global or
word register can be used.

e dI" (val) is the firstinput-spec . Itis the third operand,

i.e., operand 2. Thel" constraint indicates that any global or
word register containing a constant in the range 0 through 31 can be
used.

« "'m" (*p) is the secondhput-spec . Itis the fourth operand,

i.e., operand 3. Again, any memory operand may be used.

e "d" (p) isthe thirdinput-spec . Itis the fifth operand, i.e.,

operand 4. Again, any global or word register may be used.

7 NOTE. Again, this example specifies five operands, though the
& asm-template requires only three. The additional operands tell the

compiler about objects whose values may be changed by the asm
statement or whose value the asm statement may need.

Example 6: modpc.c

The following example refers to the short C program shown in
Example 7-6 below. The asm containing tl@ipc instruction is shown
in bold.

Example 7-6 atadd.c

extern inline unsigned
modpc (unsigned new_pc, unsigned mask)

{
int wtmp;
__asm__ __ volatile__("modpc %1,%1,%0" : "=d"(new_pc), :
"dI"(mask),"0" (new_pc));
return new_pc;
}

continued [

7-68

Language Implementation

Example 7-6 atadd.c (continued)

unsigned cur_pc;

cur_pc = modpc(0, 0); /* just read the pc */
if ((cur_pc & 0x2) '=0)

/* we're in supervisor mode, so we can change it */
unsigned priority = ((cur_pc >> 16) & Ox1f) + n;
unsigned priority_mask = Ox1f << 16;

if (priority > 31)

priority = 31;

cur_pc &= ~priority_mask;
cur_pc |= priority << 16;

modpc(cur_pc, priority_mask);

int
raise_priority int(n)
{
{
return 1;
}
return O;
}

Consider the lines containing the asm:

__asm__ _ volatile__("modpc %1,%1,%0" : "=d"(new_pc), :
"dI"(mask),"0" (new_pc));

"modpc %1,%1,%0" is theasm-template . Themodpc instruction
reads and modifies the 1960 architecture's process control register.
The instruction takes three arguments.

"=d"(new_pc) is the onlyoutput-spec . Itis the first operand, i.e.,
operand 0. The=d" constraint indicates that this is an output
operand, and that any global or local word register can be used.
"di"(mask) is the firstinput-spec . Itis operand 1. Thell"
constraint indicates that the operand must be a word register, or be
a constant in the range 0 through 31. Note that operand 1 is
referenced twice in thesm-template because theodpc instruction
requires the same input operand in two places.

7-69

1960 Processor Compiler User's Guide

7-70

e "0" (new_pc) Iisthe secondput-spec . Itis operand 2. The"
constraint indicates that this operand and operand 0 must be allocated
to the same register. This is required because iastheemplate
this register is both a source and a destination. Note that operand 2 is
not referenced in thesm-template , but that the reference to operand
0 is also the use of operand 2 as specified byotheonstraint.

Note that this example shows how the 0-9 constraint is used to match an
input to an output operand when a src/dst operand is neededdm-an
template . This example also shows that input-only operands (such as
mask) can be freely referenced multiple times inaam-template

without needing to be specified multiple times in thést

If you are writing a header file that should be includable in ANSI C
programs, use asm__ instead ohism and__volatile instead of
volatile . See the Alternate Keywords section for more information.

asm Functions

An asm function definition is a special form of a prototyped function
definition. The keyworcsm preceding the return-type specifier identifies
anasm function definition. Arasm function definition can occur

anywhere a C function definition can occur. However, the definition of an
asm function must precede any call to it.

NOTE. Anasm statement oasm function should not issue an assembler
directive that changes the object module section to something other than
text . The compiler assumes then statement leaves the assembler in
the.text section.

When processing arsm function call, the compiler generates additional
instructions for loading registers, for other operations needed to pass
parameters, and for acceptance of a return value. A calladeran

function is not a true function call, however, because the compiler expands
the assembly-language body of the function inline.

Language Implementation

An asm function definition can contain one or more templates. The
compiler selects a template for expansion based on the values and data
types of arguments you specify and based on use of any return value in the
function call. Use of any C expression as an argument4denafunction

is legal.

Also, any of the following are legal within aam function:
e trigraphs

» spliced lines (backslash-newline pairs)

e C-style comments{ . .*/)

e macros and preprocessor directives

asm Function Definition Syntax

The declaration syntax fasm functions and parameters is the same as
standard C function syntax. The following is an informal definitioasof
function syntax:

asm return-type name (parameter-declarations)

{

% control-line

template

[.]

}

return-type is the data type returned by then
function.

name is the identifier used to invoke them
function.

parameter-declarations defines the data types and names of the

asm parameters.

control-line introduces eackemplate , defines the
parameter and return value classes, and
specifies any calling-convention or non-
asm processing.

template is zero or more lines of text for
processing by the assembler.

7-71

1960 Processor Compiler User's Guide

7-72

The following restrictions apply tesm parameter lists:
e Anasmfunction cannot be stdarg function; that is, aasm
parameter list cannot contain an ellipsis (.).
» Each declaration in axsm parameter list must include an identifier.
* The data type of argsm parameter cannot be larger than 16 bytes.
* The data type of assm function return value cannot be larger than 16
bytes.
An asm function can contain zero or more expansion cases, each of which
starts on a new line and consists of a control line (startingivitbllowed
by a template. A control line can contain zero or more controls and can be
continued to the next line with a backslash immediately before the newline
character. A control can be any of the following:

» aparameter-declaration list to specify return valuesorparameter

classes.

e thecall orerror keyword to cause an action other tham
in-lining.

* alabel declaration to declare a label local to #ken function.

» theuse orspillall keyword to preserve registers and variables.

» thepure keyword to indicate that thesm function has no side effects.

An asm parameter declaration in a control line specifies the classes for any
parameters or return value. The keywerdrn is a special parameter
identifier, denoting the return value and specifying its class. A control line
can also contain declarations for local temporary variables.

Thetemplate can be any text. The compiler performs some
preprocessing on the template text, but the assembly-language syntax
checking is done by the assembler.

Template Selection

When the compiler encounters a call toaam function, the compiler

selects a template for expansion by comparing the call context with each

control line in the function definition. The call context includes:

» the category (value, data type, and location) of each argument in the
call.

* aboolean that shows whether the function uses the returned value.

Language Implementation

Selection Criteria and Coercion

If a control line contains agrror orcall control and no parameter
declarations, the control line unconditionally matches any call.

If a control line contains any parameter declarations or does not contain an
error orcall control, the control line matches a call only when the
argument categories match the parameter declarations in the control line.

If anerror orcall control line contains parameter declarations, the
compiler generates the message or function call only if the parameter
classes match the call context.

The compiler processesm functions by doing the following:

» Checking theasm function for correct syntax and semantics. If any of
the following control lines are present, the compiler reports an error:
O error orcall with any other controlspillall , use, Orlabel)

O anerror control line with more than one line of template text
O acall control line with any template text

* Reporting an error, if asrror orcall control line without
parameter declarations is not the last control line irn¢hefunction
definition.

» Ensuring that all control lines contain either parameter declarations or
an unconditionally matching control by adding default parameter
declarations for all parameters declared in the function prototype to
any control line that does not already containr , call , or
parameter declarations. This action includes adding parameter
declarations to a control line containiggllall , use, Orlabel
controls but no parameter declarations. Default parameter
declarations usenpreg class foreturn andreglit class for
parameters.

7-73

1960 Processor Compiler User's Guide

» Ensuring that the last control line unconditionally matches any call
context. Unless the final control line in then function definition
contains nothing but asror orcall control, the compiler adds a
final control line containing aall control, as follows:

%call function ;

* The defaultunction for acall control is an external function of the
same name as them function. The last control line is the only one
that unconditionally matches any call context.

« Comparing the call context to each control line, in sequence from
beginning to end of thesm function definition. The compiler
expands the template of the first control line that exactly matches the
call context. Tables 7-3 and 7-4 show how the call context and
parameter classes can match.

* If no control line exactly matches the call context, attempting to
coerce the call context into one of the control lines, starting at the end
of theasm function and working back to the beginning.

O Aldconst instruction coerces a constant argument into a
register.

O A movr instruction coerces a floating-point literal argument into a
register.

O A|d instruction coerces a memory argument into a register.

O A movinstruction coerces a general-register argument into a
temporary variable.

O A movr, movrl , ormovre instruction coerces an argument that is
not a floating-point register or literal into a floating-point register
and coerces an argument that is a floating-point register or literal
into a general register.

» Expanding the last control line if no control line exactly matches the
call context and the call context cannot be coerced into the last
conditional control line.

7-74

Language Implementation

Table 7-3 Return Value Class Matching 1!
Return Value Use Return Class void ftmpreg tmpreg
not used . . .
used - . .
1 Abullet (*) indicates a match. A hyphen (-) indicates no match.
Table 7-4 Argument Category to Parameter Class Matching and Coercion 1

Argument Parameter Class

Category const ftmpreg freglit tmpreg reglit
Integer Constant . Idconst, Idconst, Idconst .
(0-31) movr movr

Other Integer . Idconst, Idconst, Idconst Idconst
Constant movr movr

Floating Constant e movr . movr movr
(0.0 or 1.0)

Other Floating - Idconst, Idconst, Idconst Idconst
Constant movr movr

General-register - movr movr mov .
Variable

Memaory - Id, movr Id, movr Id Id
General-register - movr movr . .
Temporary

Floating Register - . . movr movr
Temporary

1 Abullet (*) indicates a match with no coercion needed. A hyphen (-) indicates no match and no
coercion possible. A movr instruction for coercion indicates that movr, movrl, or movre can be
used.

7-75

1960 Processor Compiler User's Guide

7-76

Parameter Classes

An asm parameter or return class can be any of the following:

tmpreg

ftmpreg

reglit

places the parameter in a general-purpose
register, of the compiler's choice, that then
function can modify. For anpreg parameter
longer than one word, specify the number of
registers needed in parentheses aftereg .

For exampleimpreg(3) allocates three
consecutive registers. ttfipreg is specified
without a number of registers, the default is
tmpreg(1)

A tmpreg return value also occupies the
specified number of registers. If no class is
specified forreturn , the default ismpreg(n),
wheren is the size from to 4 needed to contain
the return value.

The maximum number of parameters that can be
placed in registers is 10.

places the parameter in a floating-point register,
of the compiler's choice, that them function

can modify. You can usenpreg only on
processors with on-chip floating-point support.
When used to declareturn , ftmpreg places

the return value in a floating-point register.

places the parameter in a general-purpose
register, of the compiler's choice. Tden
function must not modify the register.

If the parameter is a literal, it can be used as is.
Thus, the asm body should use the parameter
only in an assembly language context that allows
a literal.

Language Implementation

freglit

const

void

For areglit ~ parameter longer than one word,
specify the number of registers needed in
parentheses aftesglit . For example,

reglit(3) allocates three consecutive registers.
If reglit is specified without a number of
registers, the default isglit(1)

A reglit return value also occupies the
specified number of registers. The declaration
reglit return is equivalent tampreg return

places the parameter in a floating-point register
of the compiler's choice. Tham function must
not modify the register. You can useglit

only on processors with on-chip floating-point
support. When used to declaseurn

freglit ~ places the return value in a floating-
point register. The declaratidrglit return

is equivalent tatmpreg return

indicates a constant expression. Thiest
keyword can be followed by:

(signed-integer), specifying the indicated
integer value.

(signed-integer-low . signed-integer-
high), specifying an integer value in the
indicated range.

(0.0 : 1.0) , specifying a floating-point value of
0.0 or1.0. Only useconst to declare
parameters, notturn

indicates that the return value is not used. Use
void to declare onlyeturn , not a parameter.

7-77

1960 Processor Compiler User's Guide

Declarations must be consistent betweeratihefunction prototype and

the control line. If thesm class of a parameter or return register does not
match the declared C parameter or return type, the compiler issues a
warning message. Table 7-5 lists the matching data types and classes.

Table 7-5 C Data Types and asm Classes

Class Designations Data Types
reglit, tmpreg, reglit(1), any integer type; any pointer type; float; struct, or
tmpreg(1) union types of 1 to 4 bytes
reglit(2), tmpreg(2) double; struct, or union types of 5 to 8 bytes
reglit(3), tmpreg(3) long double; struct, or union types of 7 to 12 bytes
reglit(4), tmpreg(4) struct or union types of 13 to 16 bytes
freglit, ftmpreg float, double, or long double
[NOTE. Avoid writing a parameter declaration that can never match any
R call context. Such a declaration creates a pocket of unreachable code.

For example, unreachable code results from declaring a parameter in an
asm function prototype as an integer C type and declaring the
corresponding parameter in the control linefaspreg or freglit

class. The control line parameter declaration then matches only a
floating-point data type argument, but the parameter can accept only an
integer argument. Similarly, when specifying an integer return type in a
function prototype, anseturn declaration specified in the control line

must also be integer. The compiler recognizes when the parameters in the
function prototype and the control line are mismatched and issues a
message.

7-78

Language Implementation

Argument Categories
An argument category can be any of the following:

General-register is a register-resident value (eggister

variable variable). Depending on the level of
optimization, this category can include a more
complex expression. During compilation, the
expression must evaluate to a register-resident
variable that is one of the operands in the
expression. For example, the expressiciis
andx*yly both evaluate te.

Memory is a memory-resident value.
General-register- indicates an expression that the compiler cannot
temporary evaluate to a single variable or constant. This

category includes most expressions containing an
operator. A common exception is an expression
in which the top-level operator implies

indirection (thatis¥,[], or->). Such an
expression falls into the memory category.
Depending on the optimization level, the
general-register-temporary category can include
an expression in which the top-level operator is
an assignment to a register-resident variable.
Floating-point values can also fall into this

category.
Floating-point- indicates a floating-point expression that can be
register-temporary classified more efficiently into a floating-point

register than into a general register. This
category is available only on processors with
on-chip floating-point support.

Integer constant is a constant integer value. Depending on the
level of optimization, this category can include
an expression containing variable operands, if
the compiler can evaluate the expression to a

7-79

1960 Processor Compiler User's Guide

7-80

constant. For example, the expressiorsx |,
x-7 , andx can evaluate to constants during
compilation if the value of is a known value at

compile time.
Floating-point is a constant floating-point value. The rules for
constant classifying arguments as floating-point constants

exactly parallel the rules for classifying
arguments as integer constants.

Template Expansion

Once the compiler selects an expansion case, one of the following
sequences occurs:

If the control line contains theror control, the compiler reports an
error, using the first line following theror control line as the text
of the error message. For example, invoking the followimng
function asraps(1) prints the messagesached trapl :

asm int traps (int i)

{

% const(1) i; error;

Reached trapl

% const(2) i; error;

Reached trap2

% error;

Reached traps without 1 or 2

}

More than one line of template text following@ror control line
results in a compiler syntax error.

If the control line contains theall control, the compiler generates a
call to an external function using th&l assembly-language
instruction. You can specify the name of the external function, as in
the following example:

%call my_alt_afn;

Language Implementation

» If you do not specify a name in th&ll control, the compiler uses the
name of thessm function. For example, calling the following as
select(3) results in a call to an external function nameedct

asm int select (int i)

{
% const(-2:2) i;

% call select;
}

* Any lines of template text following@ll control line result in a
compiler error.

» If the control line does not contaiall orerror , the compiler
inserts the selected template in the assembly-language output in place
of theasm function call.

Declarations

The control line can declare the following:
e parameters, including return

* local temporary variables

* labels

Parameter declarations and local temporary declarations are syntactically

identical. If the declared name is the same as a parameter declared in the
function prototype, a parameter is declared. Otherwise, the declaration is

of a local temporary variable.

In the template text, the compiler replaces the name of any declared
parameter with the corresponding register or literal argument. The
return keyword becomes the name of the register in which the return
value of theasm function is expected. The compiler replaces the name of
any local variable with the name of an available register.

You can use &glit ortmpreg class parameter or local variable as an
integer aggregate containing up to four general-purpose registers, as
declared on the control line. To select a register, specify an integer in

7-81

1960 Processor Compiler User's Guide

7-82

parentheses after the identifier. For examiptey(0) selects the first
register oftmp . If itmp is declared on the control lineiasp(4)
specifyitmp(3) to select the fourth register allocatediforp .

NOTE. If a template uses a label, multiple expansions of that template

can result in more than one label with the same name, causing ambiguous
branch or jump destinations. To avoid this ambiguity, usétie

control to declare the label in the control line. The compiler then
generates a unique name for each declared label every time the expansion
case is selected.

Preserving Register and Memory Values

The followingasm controls enable the compiler to preserve function
resource requirements:

use declares that certain registers can be read and/or
modified by the template. You can specify any
of registersyo throughg13, r3 throughr1s , and
fpo throughfp3 , when present, as arguments to
theuse control. For example, the following
control line preserves registeys throughgs,
r3, andril :

% use g5, g6, g7, g8, r3, rll;

If any of the registersfp , sp, rip , g14, orfp
are specified in ase control, the compiler
issues an error message.

spillall declares that some memory locations used
outside of thessm function can be modified or
used by the template. The compiler forces
synchronization of load and store operations at
the function call; that is, no load or store
operation moves past the call ofam function
containing thespillall control.

Language Implementation

pure declares that the namesim function has no
effect other than returning a computed value.
Specifically, no 1/O is performed, no global
variables or memory locations are read or
moadified, and no modifications of registers
occur, except those explicitly defined by the
calling sequence. Whenre is used, the
compiler can perform optimizations before and
after each function call, becaysee guarantees
theasm function has no effect other than
returning the computed value. If a function is
pure , the compiler can perform additional
optimizations across the function call.

NOTE. If none of the above controls appear in text to direct preservation

of resources, the compiler makes the following assumptions:

e The only registers used by asm function are those implicitly assigned
by the compiler for parameters, local temporaries, and the return
value.

« Theasm function does not reference any non-volatile memory locations.

« Theasm function can have other side effects, such as performing I/0.

Examples and Hints

You can define control lines in a sequence that selects the expansion case
based on the strictest comparison first, relaxing the matching criteria as
earlier expansion cases are rejected, as follows:
1. const andvoid return parameters.
2. ftmpreg andfreglit parameters; for example, to matciyg

double arguments.
3. tmpreg andreglit parameters; for example, to mateteger

float , anddouble arguments.

7-83

1960 Processor Compiler User's Guide

7-84

Sequential Template Expansion. The following is a C language program
that uses aasm function with two expansion templates:

#define status_reg OXFEOOFFO0O
asm int poll(void)
{
% void return; tmpreg t; spillall;
Id status_reg, t; #first template
% reglit return; spillall;/* return the current status */
Id status_reg, return; #second template
% error,
}
#define DEVICE_READY 0x00000001
main()
{
extern void service_device();
poll(); /*clear status bits*/
while (1) {
if (poll() & DEVICE_READY)
service_device();
}
}

The first call ofpoll does not use the return value and therefore matches
thevoid return control line, expanding the first template. The second
call uses the return value and therefore matchesntheg return

control, expanding the second template.

In this example, loading the status register also clears the status, so the
poll function can be used just to clear the status if the function return
value is ignored. However, when the return value is ignored, the program
must still allocate a register into which it can load the temporary value.

Language Implementation

Compiling this program produces assembly language similar to the
following:

__main:
Id OXxFEOOFFOO0 , g4; #first template
L5:
Id OxFEOOFFOO , g4; #second template
bbc 0,g4,L5
callj _service_device

b L5

IAC Breakpoint. The following example shows asm block that sends an
inter-agent communication (IAC) breakpoint to the processor. For
information on the IAC structure, see the 1960 KB processor manual.

struct message {
unsigned short field2;
unsigned char fieldl;
unsigned char message_type;
unsigned int field3;
unsigned int field4;
unsigned int field5;

}iac_struct;

/*

* This routine issues an IAC message to the local

* processor where the program resides. It accepts

* a pointer to a preformed IAC message as input and

* uses the synmovq instruction to send the IAC to the

* processor.

*/

asm void send_iac(struct message *base_msg)

{

%void return; reglit base_msg; tmpreg myreg; spillall;
Ida 0xff000010, myreg /* load local IAC address */
synmovqg myreg, base_msg [* issue IAC message */

%error;

Incorrect C call to send_iac

}
/*

7-85

1960 Processor Compiler User's Guide

7-86

* Send a breakpoint IAC to the processor. The

* address is supplied by the routine that calls

* set_bp. Do not forget to enable breakpoints in the
* trace control. Fields 1, 2, and 5 are not used.

*/

void set_bp(unsigned int addrl, unsigned int addr2)
{

iac_struct.message_type = 0x8f;
iac_struct.field3 = addri;
iac_struct.field4 = addrz;
send_iac(&iac_struct);

}

In this example, the first line§m void send_iac(struct message
*base_msg)) declares that the function does not return a value and the
base_msg argument is a pointer to a structure of typasage.

The second and eighth lines contain braces. These lines begin and end the
function definition, which contains two expansion definitions.

The third line is a control line containing three parameter declarations, as
follows:

%void return; reglit base_msg; tmpreg myreg; spillall;

Thevoid return; declares that no value is returned by #iis function.
Thereglit base_msg; declares that thease_msg parameter matches
either a literal or a register argument. Thereg myreg; declares that
themyreg local variable is a temporary register. Ehéall control
informs the optimizer that this template references memory.

The fourth and fifth lines load the IAC address into a temporary register
and issue an IAC message.

The sixth line is a control line containing theor control and the
seventh line is the text of tkeor message.

If the compiler cannot coerce the call arguments into the previous
expansion definition (the declarations in the third line), the compiler
displays the following error message and aborts the compilation:

Incorrect C call to send_iac

gcc960 / 1c960 Compatibility

This chapter describes the incompatibilities between ic960 and gcc960,
and between the current release of gcc960 and other releases of ic960.

char and short Parameters

The ic960 R3.0 compiler expectsar andshort parameters and return
values to be clean upon entry to and exit from procedures. Since these
types are passed and returned in registers, this means that, in the case of
signed types, the sign bit must be extended, and in the casaigfied

types, the high-order bits of the register must be zero. By default, gcc960
(and ic960 R4.5 and later) does not expect these values to be clean, and
generates appropriate operations to sign- or zero-extend these values on
entry to or exit from a procedure. This applies only to ANSI-compliant
programs that specify the type of parameters at declaration time in the
function prototype.

gcc960 emulates ic960 R3.0's behavior ifithes.0-compat or
mic2.0-compat ~ options (see below) are selected.

enum Variable Byte Count

The ic960 R3.0 compiler createsum variables with only enough bytes of
precision to hold the requested enumeration. gcc960 always generates
4-byteenum variables. gcc960 emulates ic960's behavior if the
mic3.0-compat option is selected. Agnum variable compatible with
ic960 releases prior to R3.0 can be achieved usingitlzed-compat

option.

8-1

1960 Processor Compiler User's Guide

Table 8-1

char Types

The ic960 compiler (all releases) treats defaudt types asigned
whereas gcc960 treats themuasigned . gcc960 emulates ic960's
behavior if themic3.0-compat ormic2.0-compat options (see below)
are selected, or if theigned-char ~ option is selected. The preprocessor
symbol__CHAR_UNSIGNED_is set appropriately to allow programs to
determine which model is in use.

Identifying Architectures

The traditions for architecture-identifying preprocessor macro definitions
are somewhat different between ic960 and gcc960. Both interfaces define
the macros 960 , 960 xx, and_i960 , wherexx is the architecture

(e.g., CA for the i960 CA processor, as selected bytheption). These

are the recommended macros for testing for the 1960 processor
architecture.

For compatibility reasons, the compilation system also defines additional
variations on these macros, as shown in Table 8-1.

Architecture Macros and Compatibility

gcc960 ic960
__i960__ X -
_i960xx - X
1960 _xx__ X -
__1960xx__ X -

gcc960 / ic960 Compatibility

#pragma align

ic960 and gcc960 both implement@agma align directive. They

interpret the pragma differently, and the results (changes in the alignment
of members of structures) are not compatible. In the absence of this
pragma, ic960 and gcc960 structures should be compatibly aligned.
pragma i960_align is provided for compatibility with ic960isagma

align , and behaves the same for both compiler interfaces.

mic3.0-compat Option

The gcc960nic3.0-compat option selects the appropriate behavior for
enum variables, selects defaudltined char variables, and selects clean
linkage (described above) foifiar andshort parameters and return
values.

mic2.0-compat Option

The gcc960nic2.0-compat option selects the same behaviors as
mic3.0-compat , except that the behavior for theum variable is subtly
different and the alignment rules for structure elements are changed to be
compatible with this (now obsolete) release of ic960. niheompat

option supported in gcc960 R1.2 and R1.2.1 is now synonymous with
mic2.0-compat

8-3

Position Independence
and Reentrancy

This chapter describes reentrancy and position-independence. Use it for
writing 1960 processor applications that require position-independent or
reentrant programs. Position independence enables relocation of both the
text and.data sections. The following sections describe position
independence, position-independent addressing modes, and reentrancy.

Position-independent Code and Data

Position independence refers to an application that can be relocated when
loaded. The application can be loaded at various addresses, but the code
and data do not move during execution. This feature enables creation of
programs for specific EPROMSs used in a system.

The ic960 driver’'ss option with its argumentsc, pd andpr , or the
gcc960 driver'snpic , mpid andmpid-safe options, control generation of
position-independent code and data. For more information about
command-line options, see Chapters 2 (gcc960) and 3 (ic960).

Position-independent Data

When the position-independent data option is specified, references to
variables in the program are made relativeito. Initialization code for a
program must supply a data address bias in the position-independent data
bias registerd12). For all accesses to statically allocated variables, the
value ing12 is used to calculate the effective address. Regjstemust

be read-only for the entire program.

9-1

1960 Processor Compiler User's Guide

9-2

For example, suppose objestis in the.data or the.bss section.
Normally, the compiler generates an address of the object with an absolute
addressing mode:

lda _x, g0

When you compile your program with position-independent data, the
compiler generates this instruction to take the address:of

Ida _x(g12), gO

NOTE. If PID is specified, the value &2 must be correctly computed
and stored by user-provided startup code.

Position-independent Code

When the position-independent code option is specified, the compiler
computes effective addresses by biasing them based upon the instruction
pointer (p).

Suppose objectx is in the.text section. The compiler generates a code
bias address into a register at the beginning of any function that needs a
direct address in thesxt section. It does this via a code sequence
similar to this:

Ida O(ip), r3

lda. ,r4
subo r4, r3, r3

which leaves the bias in . Then the compiler uses to bias the
reference tox as:

Ida _x (r3), r4

Position Independence and Reentrancy

The first three instructions compute the difference between the link time
address and load time address of.tlve section.

For example, if the code section links to begin at address zero, the
subtraction result is the address at which the code section was actually
loaded. Even if the code section links to begin at some other address, the
subtraction result is still the correct value for biasing pointers into the code
section.

Example: Position-independent ROM Code

Imagine designing two circuit boards for use in a new laser printer. ROM
chips on these boards contain type fonts and graphic elements. To provide
alternative printing capabilities, either board inserts into an optional slot in
the printer chassis. Memory allocated for each board is:

board 1 20000 - 3ffff
board 2 40000 - 5ffff

Although ROM and RAM for each board have different load addresses,
the controlling software for the printer must work correctly with either
board in use. In the printer, kernel ROM and RAM are at fixed addresses
in low memory. A large memory space is set aside for the kernel's ROM
and RAM.

Compiling the ROM code with the PID option and placing the correct bias
values ing12 makes the optional ROMs relocatable.

9-3

1960 Processor Compiler User's Guide

Figure 9-1 shows memory allocation for board 1. When the code
executes, the ROM code for either board loads at the correct address.

Memory for Hypothetical Position-independent Application

Figure 9-1
Top of Memory
Slot for Card 2
64 MB
Slot for Card 1
48 MB
Top of RAM
Frame Buffer
Slot RAM
gl12
Kernel RAM (data)
16 MB
Kernel ROM (code)
0

0OsD1678

9-4

Position Independence and Reentrancy

Guidelines for Writing Relocatable Programs

A program can contain position-independent code (PIC),
position-independent data (PID), or both. Be aware of the following
restrictions:

» Use position-independence only where necessary, because a program
containing position-independent code may execute more slowly than
one without.

» Position-independent programs cannot be relocated during execution.

For all i960 processors, the address space is flat (unsegmented) and

byte-addressable. Addresses run contiguously from &+b. 2Programs

can allocate space for data, instructions, and stack anywhere within the flat

address space. However, the following restrictions apply:

» Instructions must be aligned on word boundaries.

* Addresse$F000000H throughFFFFFFFFHIN the upper 16 megabytes
of the address space are reserved for specific functions. Check with
your system hardware designer to determine the effects of use of the
addresses in this range.

» On C-series and J-series processors, the lower 1 kilobyte of address
space (addressesooH througho3FFH) is reserved for accessing
internal memory (RAM). On H-series processors, the lower 2 KB is
internal memory. Instruction fetch operations from this address range
are not allowed.

+ The.data and.bss sections must be relocated as a unit.

Because biasing occurs during code execution, the compiler does not
support static initialization of pointers with the address of a position-
independent object. The compiler generates a warning in these cases.

For example, the following program has two pointerandg, whose

initial values might not be correct when position-independence is used.
static int i;

static int *p = &i;

static int *q = 0;

static int *r = (int *) Ox7fff0000;

int f();

int (*g) () = f;

9-5

1960 Processor Compiler User's Guide

9-6

In the compiler's outpup, contains the unbiased address adndg

contains the unbiased address$ ofTo use the initialized org, a

program must perform the correct biasing of values before the point where
the program uses the pointers.

Reentrant Functions

Reentrant functions can suspend execution, and later resume execution
from the same state at which the suspension took place. Current state data
must be preserved while a reentrant function is suspended.

A reentrant function can be active in several different places, in any of the

following ways:

* a multi-tasking situation with two or more threads executing in the
same memory space; for example, an interrupt handler

» atime-sliced environment in which two or more processes are
executing, with one process active and all others suspended at any
given time

» arecursive function, with any one instance of a function active while
all duplicate instances of the function are suspended

For a function to be reentrant, it must not:

* modify memory or registers in use by a concurrent or suspended
function

« reference shared variable data

e call a non-reentrant function

Designing Reentrant Functions

Since the compiler cannot determine data use across modules, the
compiler does not issue any warnings for potentially non-reentrant code
sequences. For more information about library reentrancy, refer to the
1960 Processor Library Supplement

Initializing the
Execution Environment

This chapter describes the initialization process for the 1960 processor
execution environment, including the startup assembly-language routine,
configuration files, and associated options.

Startup Code

The startup routine is a module that initializes the processor and library,
then invokes the user's program. In addition to processor initialization, the
startup routine performs some initialization specific to random-access
memory (RAM-based) or read-only memory (ROM-based) target
environments. Since RAM-based applications typically operate under a
system monitor and load to the correct addresses after powering up the
board, the startup routine must initialize system monitor requirements but
need not boot-load the program. For a ROM-based application, the startup
routine must:

» Put the initialization boot record for the 1960 processor in place.

» Configure system data structures correctly.

* Make initialized data available in the RAM address space.

For any program, the startup routine must initialize the i960 processor

registers as follows:

» Provide a global entry point callecirt . This symbol is the entry
point for debug monitors.

» Initialize the frame pointer and stack pointer to the correct value.

» Initialize g14 to zero, as required by the 1960 processor calling
convention.

* Fill the uninitialized.bss data sections with zeros.

10-1

1960 Processor Compiler User's Guide

10-2

Set the arithmetic controls (AC) registerot®B001000 . For library
functions to execute correctly, the rounding mode bits of the AC must
be set to round-to-nearest, the floating-point normalizing bit must be
set, and the following faults must be masked:

O integer overflow

O floating-point overflow

O floating-point underflow

O floating-point inexact

Since the 1960 C-series and J-series processors' AC register does not
allow setting of floating-point bits, useetac in the setup. The

_setac and_getac routines are independent of architecture and
work correctly for all i960 architectures. Startup routines for KA, KB,
SA, and SB processors can also userthéac instruction as an
alternative.

When writing code to initialize the C runtime environment, you must
address the following issues:

The startup code provides the bias value for position-independent data
sections. If the program contains position-independent data (PID),
startup code must initialize registgi2 to the data-address bias. The
gl12 register is the data address bias register. The compiler generates
references to statically allocated variables relativgito The

contents ofj12 must be divisible by 16 (i.e., the address must be on a
guad-word boundary). After initialization12 must be considered
read-only; user code should not modify it.

If the gcc960 command line specifiesid or the ic960 command line
contains the Generate option with the PID argumenpd), the

compiler does not usgi2 as a general purpose register. However, it
does use@12 to offset static variables, as explained above.

If the target environment includes the MON960 monitor, startup must
provide a global entry point calletart , used by debug monitors as the
entry point to the new program. Startup code must call init to
perform all initializations specific to the processor and to the board.

Initializing the Execution Environment

Initializations differ for each processor and board. For example, some
board-specific startup routines initializem_endin the linker
configuration file instead of in LL init . Each board-specific low-level
library included with the assembler contains an appropriate init

See the startup filet960.s under thesrc/lib/libll/common
directory for an example.

If a program uses the C runtime library, startup code must call
__HL_init to ensure correct operation of all library functions,
including any 1/O routines such psntf

The HL_init function calls the exit_init , _stdio_init , and
_thread_init routines to allocate memory for library data structures
and to open standard devices. These routines require definition of
sbrk andopen in the board-specific low-level library. The

__HL_init function is in the architecture-specific high-levigt.a

library. For more information about high-level libraries, refer to the
1960 Processor Library Supplement

If performing profile-driven optimizations, the startup routine must
call a profile initialization routine before calling any instrumented
functions.

The startup routine also calls an executing prograuats function,
passing parametersi@in if necessary. The startup routine also
performs cleanup afterain returns, usually by callingxit . If the
target environment supports program command-line arguments such
asargc andargv , call__arg init to initialize such variables
immediately before calling the programin function. The

_arg_init function is found in the MON960 low-level library. This
function is described in thebrary Supplement

The linker combines the startup routine with other object modules.
Normally, a configuration file provides the name of the startup file.
To override the startup file named in the configuration, use the linker
C (Startup) option. For more information on passing options to the
linker from the compiler invocation command line, see Chapter 2
(gcc960) or 3 (ic960).

10-3

1960 Processor Compiler User's Guide

RAM-based Initialization

Thelib/cycx.ld configuration file links thert960.0 startup file to run
a program under the MON960 monitor.

ROM-based Initialization

ROM-based startup routines must ensure that all the variable data is in

RAM. The routines must do the following:

» Physically move any system data structures that the program modifies;
move the structures to the RAM address space.

* Move the initialized variable data from ROM to theta section.

» Restart the processor, using the IAC (inter-agent communication) for
KA, KB, SA, andsB architectures, or using tkesctl instruction for
the Cx, Hx andJx architectures.

A startup routine performs the following operations to create a ROM-

based application:

» Create an initialization boot record as a separately translated module.

» Create architecture-specific data structures.

» Initialize any necessary board-specific memory subsystems in either
themain or the startup routine of your program

Use the linker to locate the initialization boot record, system data
structures, and program code in the appropriate memory location for the
architecture and board configuration, as follows:

 Puttext code sections in the ROM address range

e Put.data and.bss datain the RAM address range

Use the linker to define variables used symbolically in the startup routine.
The linker automatically generates symbols nam@gection for the
beginning and _Esection for the end of each section of your program.

10-4

Initializing the Execution Environment

The linker can generate the following symbols for the startup routine:

__Bdata is the starting address of RAM data
__Edata is the end of thedata section

__ Btext is the starting address of thext section
__Etext is the end of theext section

__Ebss is the end of thenss section

It is also possible to explicitly define variables in the configuration file.
Supplied configuration files contain definitions of the following:

user_stack is the starting address of the user stack
supervisor_stack is the starting address of the supervisor stack
interrupt_stack is the starting address of the interrupt stack

After linking, you can use theove command of the rom960 utility to

modify object module section headers and to place named data sections at
specified addresses or locations. This command should be used to
temporarily move the data sections into the ROM address space, usually
immediately after theext section, and does not change the relocation
information contained in the section to be moved. The startup routine then
must copy the data to the RAM area specified by the linker.

Linker Configuration Files

A linker configuration file is a linker script that provides information to

the linker about the intended execution environment. Several linker
configuration files are provided, and each contains linker options to create
a complete and unique execution environment. Usg {fiarget) linker

option to specify the configuration file. For more detail onTtlj€arget)
option, see th®60 Processor Software Utilities User's Guide

10-5

1960 Processor Compiler User's Guide

10-6

RAM-based Configuration File

The commands passed to the linker define the memory layout and location
of the linked program. Configuration information used by the linker
includes:

* memory layout

» linker controls

e startup routine

* high-level libraries

* low-level libraries

» floating-point support

ROM-based Configuration File

The optional ROM-builder section of a configuration file contains
commands to be passed to the rom960 utility. rom960 commands must
begin with the#* characters in columns 1 and 2. T®@0 Processor
Software Utilities User's Guiderovides explanations and examples of
rom960 commands in a configuration file.

Optimization

Readable and maintainable source text is not always organized for
efficient execution. The compiler can optimize the arrangement of
instructions and data use for faster execution and smaller memory
requirements. This chapter describes the different ways in which the
compiler can optimize your program and explains ways to control
optimization.

Optimization Categories and Mechanisms

Compiler optimizations affect these aspects of your program:
» constants and expression evaluation

« calls, jumps, and branches

* loop optimizations

* memory optimizations

e register use

» instruction selection and sequencing

Some optimizations are independent of the i960 architecture and others
take specific advantage of the i960 processor instruction set and registers.
Program-level optimizations are also available when profile data exists for
the program.

111

1960 Processor Compiler User's Guide

11-2

Table 11-1 Optimizations and O /level Settings
Optimization ic960 gcc960
Register management any level any level

Branch prediction

Code compression
Constant-expression evaluation
Identity collapsing

Branch optimization

Char/short cleaning reduction
Dead-code elimination
Leaf-function identification
Local CSE elimination
Local-variable promotion
Loop-invariant code motion
Specialized-instruction selection
Tail-call elimination

Conditional transformation
Global alias analysis

Induction variable elimination
Instruction scheduling
Constant propagation

Loop unrolling

Memory access coalescing

Variable shadowing

Allocation of variables to fast memory
Inter-module, inline function expansion

Profile-based branch prediction bits setting

Basic block rearrangement

Superblock optimizations

W W W W W N N NMNDNMNDNMNDNDMNDNMNMNDMNMNMNNMNPFEPF PP PFPDNPPRP P OO O O

aa o o g g W W wWw wWw NN OO DNDNPEFE P P RFPEPDNPRPRE PR PR OO o o

Optimization

Constants and Expression Evaluation

The compiler can simplify some arithmetic and boolean calculations
involving repeating expressions, constants, or operational identities.
Optimizations involving such simplifications are:

e common sub-expression elimination

e constant expression evaluation

» constant propagation

* identity collapsing

Each is explained in one of the following sections.

NOTE. The following source examples are for illustration only. The
compiler performs its transformations on an internal representation, not
at the source level.

Common Sub-expression Elimination

Common sub-expression elimination detects and combines redundant
computations within an expression. For example, this line of source text
contains the sub-expressigh] * y[bj[c] three times:

i = (x[a] * y[b][c]) + (x[a] * y[b][c]) + (x[a] * y[b][c]);

Instead of calculating[a] * y[b][c] three different times, the compiler
rewrites the expression to perform the calculation once and store the result
for reuse:

temp = x[a] * y[b][c];

i = (temp) + (temp) + (temp);

The compiler eliminates common sub-expressions on the results of
floating-point operations and on integer operations. In some cases the
compiler can perform this optimization for common sub-expressions
separated by branch instructions.

This optimization is performed by tlog(Optimize) compiler option at
level1 (01) and higher.

11-3

1960 Processor Compiler User's Guide

11-4

Table 11-2

Constant Expression Evaluation (Constant Folding)

A constant expression contains only constant operands and simple
arithmetic operators. Instead of storing the numbers and operators for
computation when the program executes, the compiler evaluates the
constant expression and uses the result. Constant folding is another name
for this optimization.

The examples in Table 11-2 show the effects of constant expression
evaluation. The variablesande are affected by bit-shift operations but
are still subject to constant expression evaluation.

Examples of Constant Expression Evaluation

Original Source Text Replacement
a=1+2; a=3;
b=3-4; b=-1;
c=5*6; c=30;
d=Q2<<1+1 d=5;
e=(12>>2)+2; e=5;
f=1.2+3.8; f=5.0;

g =10.0 * 0.5; g=5.0;
h=i+2+5; h=i+7

Any of the following data types can be operands subject to constant
expression evaluation:

* integers
» floating-point numbers
e pointers

Optimization

Dead-code Elimination

The compiler eliminates two kinds of dead code:

unused when code generates a value that is not used
subsequently in the program or in its output.

unreachable when the control flow of the program can never
execute the instructions.

Unused code operations can arise from several sources, including:

» Naive code generation can produce operations that are useless in some
contexts as part of a generic translation.

» Other optimizations, such as common sub-expression elimination, can
make some operations useless.

» Conditional compilation or other code improvements can eliminate the
uses of the results of an operation.

By analyzing a program, the compiler can detect and remove useless
operations from generated code.

Commonly, instructions become unreachable when function inlining
substitutes constants for variables or when the preprocessor substitutes
constants for preprocessor symbols. By analyzing the control flow in a
program, the compiler can detect many (though not all) instances of
unreachable instructions and remove them from the generated code.

Identity Collapsing

The compiler recognizes instances of arithmetic operations in which an
identity constant is one of the operands. For an identity constant, the result
of the operation is the same as one of the operands. The examples in
Table 11-3 demonstrate identity collapsing.

11-5

1960 Processor Compiler User's Guide

11-6

Table 11-3

Examples of Identity Collapsing

Original Replacement
a+0 a
a*l a
a*o 0
X <<0 X
0>>y 0

Constant Propagation

Programs often contain computations that produce the same value each
time the program is executed. Constant propagation involves tracking
constant values through the computations in a program. In arithmetic or
conditional operations, the compiler can sometimes eliminate less efficient
memory or register instructions, replacing them with an instruction
sequence that uses constant values. The compiler performs the following
types of instruction replacement:

An integer arithmetic instruction that always produces the same
constant value result is replaced by a single instruction (commonly
lda ormov) that copies the constant value into the destination register
of the original instruction. For example, this program fragment uses
anaddo to put the sum of and4 into g4:

mov 2, g2

mov 4, g3

addo g2, 93, g4
After constant propagation, the code contains these optimized
instructions:

mov 2, g2

mov 4, g3

mov 6, g4
Dead code elimination deletes the first two now-unused
instructions.

Optimization

* A conditional branch instruction for which the condition is known is
deleted. For example, this program fragmentsetgual toy+z if 2
and4 are equal, which is never true:

a=2; b=4;

if (a==b)
X=y+z;
else
X=y-z;
» After constant propagation, the code contains these optimized
instructions:

a=2; b=4;

it)
X=y+z;
else
X=y-z;
» Dead-code elimination further reduces the instruction sequence by
removing the test and unreachable "then" part, leaving:
a=2; b=4;
X=y-z
» A conditional branch instruction for which the condition is found to
always be true is changed to an unconditional branch. For example,
this program fragment branches.toif 2 is less than or equal tQ
which is always true:

Before After

mov 2, g2

mov 4, g3

cmpi 92,03

ble L1

addi 04, g5, g6

b L2
L1:

subi g4, g5, g6 subi g4, g5, g6
L2: L2:

11-7

1960 Processor Compiler User's Guide

11-8

A load operation from a memory location found to contain a constant
value is replaced by a copy of the constant value into the destination
register of the original instruction. For example, the following
program fragment loads the constant valdeom the memory

location i intog3:

lda 5, g2
st g2, i
ld _i,g3
st g3,]

After constant propagation, the code contains these optimized
instructions:

lda 5, g2

st g2, i

Ida 5, g3

st g3,]

Complex memory-addressing modes are sometimes reduced to less
complex addressing modes when registers that are components of a
memory reference contain constant integer values. For example, this
code fragment contains a complex memory-addressing mode in the
third instruction:

mov 2, g2

lda _i, g3

Id 10(g3)[g2*4],94

After constant propagation, the code contains these optimized
instructions:

mov 2, g2
lda _i, g3
Id 18(g3),04

Optimization 1 1

Calls, Jumps, and Branches

For some branches or function calls, the compiler can replace the original
instructions with more efficient instructions to lower execution time or
with fewer instructions to reduce program size. Optimizations that
perform such restructuring include:

» branch optimization

« branch prediction for i960 Cx and Hx processors

» leaf-function identification

» inline function expansion

» tail-call elimination

Branch Optimizations

Branch optimizations streamline the flow of program control by
performing the following actions:

» collapsing branch chains

« eliminating branch-to-next-line sequences

» eliminating branch-around-branch sequences

The following program fragments show branch optimizations.

» This program fragment contains a branch directly to another branch
instruction. It doesn't matter whether the branch is conditional or
unconditional. After branch optimization, the branch chain is
collapsed to a single branch.

Before After
cmpi gl,g2 cmpi 91,902
bl L1 bl L2
L1 L1

b L2 b L2

The final branch might be eliminated by the dead code optimization.

11-9

1960 Processor Compiler User's Guide

11-10

» This program fragment contains an unconditional branch to the label
directly following the branch. After branch optimization, the branch-
to-next-line sequence is eliminated:

Before After

b .L1 L1
L1

* In the next program fragment, an unconditional branch follows a
conditional branch. The compiler optimizes this branch sequence by
removing the unconditional branch and reversing the test on the
conditional branch.

Before After
cmpi gl,g2 cmpi 91,02
be L1 bne L2
b.L2 .L1:

L1

Branch Prediction

The 1960 Cx and Hx processors provide a branch-prediction bit in
conditional branch instructions. If the prediction is correct, the branch

takes no cycles to execute; otherwise, the branch takes one or more cycles.
For further information on execution speed during branch prediction, refer
to thei960 Cx Microprocessor User's Manual

If not profiling, the compiler uses these heuristics to set the branch-

prediction bit:

» For backward branches (likely a loop), the compiler predicts that the
branch is taken so that the loop is executed more than once.

» For forward branches (conditional operations such asen
statements), the compiler predicts that the branch is not taken.

During profile-driven compilation, each branch's observed behavior is
used to set the prediction bit.

Optimization 1 1

Identification of Leaf Functions

The compiler identifies functions that can be called with branch-and-link
instruction sequences. The compiler then generates the correct function
prologue, epilogue, and symbol table information for the assembler.
When this function is called, the compiler generatesdhie pseudo-
instruction. The linker optimizes the call to use branch-and-link
instruction sequences. A function called with branch-and-link instruction
sequences does not allocate a new stack frame, does not create a new
register frame, and thus executes faster than a function invoked with a
call instruction.

Neither the compiler nor the linker can absolutely identify a function
called indirectly through a function pointer as a leaf function. Therefore,
the compiler does not optimize such indirectly called functions to branch-
and-link instruction sequences.

For an explanation of the two entry points generated for leaf procedures,
see tha960 Processor Assembler User's Guatel the960 Processor
Software Utilities User's Guide

Inline Function Expansion

Using calls to a function within a program usually takes less space but
requires longer execution time than repeating the function body each time
it is needed. Inline function expansion replaces a function call with the
called function body expanded in place. The inlining optimization
increases speed by eliminating call overhead and creates opportunities for
further optimization.

The compiler provides user-controllable inlining using pragme

and with the _inline storage class. Additionally, at ic960 optimization
level 2, or gcc960 optimization level 3, the compiler performs more
automatic procedure inlining, based on heuristics.

11-11

1960 Processor Compiler User's Guide

11-12

In the following example, thewvap function switches two numbers. The
source text contains a function call:

void swap(x,y) /* function body */
int *x, *y;
{
int temp;
temp = *x; *x = *y; *y = temp;

}

main()

{

if (a > b) swap(&a, &b); /* function call */
printf("The smaller number is %d\n",a);

After inline function expansion, the function body replaces the call:

main()

{

if (2> b)
{
int temp;
temp =a; a=b; b =temp;

}

printf("The smaller number is %d\n",a);

}...

Tail-call Elimination

When a call directly precedes a return from a function, optimization can
sometimes replace the call with an unconditional branch to the called
function. This replacement saves execution time since a branch executes
faster than a call.

Optimization 1 1

For example, the following algorithm for Ackermann's function uses tail
calls:

/* Ackermann's function with tail recursion */
int ack(int m,int n)
{
if (m == 0)
return n+1;
else
if (n==0)
return ack(m-1,1);
else
return ack(m-1,ack(m,n-1));

}
Tail-call recursion elimination produces the following:

/* Ackermann's function with tail recursion eliminated */
int ack(int m,int n)

{
label:
if (m==0)
return n+1;
else
if (n==0)
{
n=1;
m--;
goto label;
}
else
n = ack(m,n-1);
m--;
goto label;
}
}

11-13

1960 Processor Compiler User's Guide

11-14

Here is C code to illustrate a simple tail recursion.

print_bool (int v)
{
if (v==0)
printf ("FALSE");
else
printf ("TRUE");
return;

}
Here is the generated assembly code.

cmpibne 0,00,L4

lda LCO0,g0

b _printf
L4:

lda LC1,g0

b _printf

Loop Optimizations

Movement of Loop-invariant Code

Loops are the bodies ab, while , andfor statements. The loop-
invariant code optimization identifies computations that do not change
within a loop (loop-invariant code) and moves them to a point before the

entry to the loop.

Induction Variable Elimination

Loops that traverse arrays occur in many programs. To compute the
address for references in these arrays the compiler must multiply the array

subscript by the size of an array element.

Optimization 1 1

Multiplication is a time-consuming operation. To generate faster code, the
compiler can sometimes replace the multiply operation with an add
operation.

These methods improve the performance of the code whenever a value
computed in a loop is a linear function of a loop iteration variable.
Indexing arrays is the most common case.

Loop Unrolling

When the number of times a loop executes can be determined either at
compile time, or prior to executing the loop at run time, then this
optimization may be performed. Loop unrolling involves duplicating the
body of a loop 1 or more times, and changing the loop conditions so that
the same number of executions of the loop body occur. This optimization

is chosen based on many factors. Two such factors are the size of the loop
body and the complexity of the loop termination condition.

Memory Optimizations

Global Alias Analysis

The compiler gathers information about the interaction between loads and
stores in the program. With this information, the compiler can remove
some of the redundant load-store operations. Assignments into an array
are one applicable case.

Two names are aliases when they both reference the same memory
location. Without tracing the relationships of values and names, the
compiler must treat any value stored through a pointer, called an indirect
store, as if it affected any memory location.

11-15

1960 Processor Compiler User's Guide

Variable Shadowing

The compiler may place a memory object in a register throughout a
single-entry, single-exit region (such as a loop) when it can determine that
the following are all true:

» There are no references to memory within the region that could
overlap the candidate memory object.

» The address of the candidate is a compile-time constant, or it is
constant throughout the single-entry, single-exit region and a
reference to the object's address is guaranteed to happen at least once
whenever the code for the region is executed.

» There are no calls within the region.

In the following example, global migration cauget® be loaded once at

the beginning of the loop and stored once at the exit point.

static int*p;

while (*p '="\0")

p++;

Without this optimization, the program loads and stpreace for each
iteration of the loop.

Register Use

The compiler can use registers to speed up data access. Register
optimizations are as follows:

* local variable promotion

* register management

* register spilling

11-16

Optimization

Local Variable Promotion

The compiler promotes a local variable to a register location when the
variable's address is not taken and its storage clas®isor register

Local variables stay in their register location through the life of the
function. Optimization leved suppresses local variable promotion and
assigns all variables withuto storage class to stack locations.

Register Management

The register allocator phase of the compiler assigns all register operands to
the physical registers. For the KB/SB processors, the physical registers
available for assignment include the four floating-point registers. For all
i960 processors, the physical general-purpose registers available for
assignment includes throughr15s , go throughgi1, andg13. You must

specify the compiler option for position-independent data (gcc9G0is

or mpid-safe option or ic960’'SGpd or Gpr option) to makey12

unavailable for assignment. Due to the standard calling conventions,

is not available for register-operand assignment.

Register Spilling

Portions of the compiler that run before register allocation can produce
code that needs more physical registers than are available in the processor.
The register allocator must fit each function's arbitrarily large burden of
register demands into the physical registers implemented in the hardware.
To allocate available registers, the compiler must reuse each physical
register many times.

When the physical registers cannot meet the demands of a particular
function, the register allocator must insert a sequence of instructions,
known as spill code, to transfer long-lived values from some of the
registers in order to free the registers for more immediate demands.

11-17

11

1960 Processor Compiler User's Guide

11-18

Instruction

Selection and Sequencing

In addition to other optimizations, the compiler can reduce or eliminate
instructions that have become redundant or useless. The compiler can also
eliminate less efficient instructions or replace them with instruction
sequences and addressing modes that take advantage of i960 processor
features. These instruction optimizations include:

» code compression
» code scheduling
» specialized instruction selection

Code Compression

The 1960 architecture provides complex addressing-mode instructions that
enable denser code generation. By default, the compiler tries to pick
addressing modes to maximize run-time performance, generally using a
mix of complex and simple addressing modes. You can control this
optimization with#pragma compress , as described in Chapter 7.

Code Scheduling

In code scheduling, the compiler modifies the sequence of instructions to
increase parallel execution. Although the effect of the code does not
change, code scheduling can often improve code performance.

Since different members of the i960 family of processors provide varying
levels of hardware parallelism, the compiler orders the instructions
differently according to the specific processor for which code is being
generated.

Optimization

For example, on the i960 KA, KB, SA, and SB processors, the execution
of a memory operation can overlap the execution of an arithmetic
instruction, provided the memory operation occurs in the instruction
stream first. The following code computes the expregsios) + c with
these instructions:

Id b, r4

muli r4, 13, r4

Id c, 15

addi r5, r4, r4

To optimize this computation, the compiler moves the instruction that
fetches the value af ahead of the multiply instruction:

Id b, r4

Id c, 15

muli r4, 13, r4

addi r5, r4, r4

When this rearranged code executes, part of the instrugtion r5
executes in parallel with the multiplication. The instructibrb, r4
also executes partly in parallel with the instructibne, r5

The same sort of rearrangement can improve performance on the CA and
CF processors, but more parallelism is possible because the CA and CF
can issue multiple instructions at one time and can execute more
instruction categories in parallel than the KA or KB.

For example, on the CA and CF processors, the compiler can also
substitute one instruction for another that has the same effect but executes
in a different internal unit of the processor. The most common examples
of such substitution are conversionsrafv instructions tada

instructions, and vice versa.

11-19

1960 Processor Compiler User's Guide

11-20

Specialized-instruction Selection

A number of 1960 processor instructions can help optimize code in special
situations. The special code sequences recognized by the compiler, and
the replacements used are as follows:

» A bitwiseor instruction for which one of the operands is a constant
with value2”, for somen, can becomeetbit

» A bitwiseand instruction for which one of the operands is a constant
with value~(27), for somen, can becomelrbit

The 1960 processor has a complete set of bitwise-boolean instructions.
The compiler takes advantage of this in translating expressions involving
bitwise-boolean operations in which the operands or the results are
negated. For example, the operations in the expresgiofib) become a
singlenand instruction. Similarly(a| ~b) can use anrnot instruction.

Multiplication of an integer or unsigned integer by a constant power of 2
becomes a left-shift operation. Similarly, division of an integer or
unsigned integer by a constant that is a power of 2 becomes a right-shift
operation.

Program-level Optimization

After program development is complete, it is possible to use the compiler's
profile-driven optimizations to achieve the highest level of program
optimization, based on the program's execution-time profile.

Inter-module Function Inlining

Given program profile data describing the typical behavior of the program,
the compiler knows what functions the program calls, from which call
sites, and how many times calls are made. Intelligent decisions can be
made about which functions to inline at which specific call sites. If a

Optimization

Figure 11-1

function is called from multiple sites, it is better to inline the function at
frequently executed call sites. The inlining decisions are made by the
gcdm960 program during the profiling decision-making step. After the
decisions have been made, the compiler performs the inlining during
profile-driven recompilation.

Superblock Formation

A superblock is a group of basic blocks that tend to execute in sequence (a
path) and can be entered only from their initial block. A superblock loop

is a superblock whose first block is the header of a loop, and for which
execution flow out of the last block usually goes to the first block. In

other words, a superblock loop is a heavily iterated loop where a single
path through the loop is taken quite frequently.

These concepts are illustrated in the following figure:

Superblock Formation Process

]
!

o
v

Trace ABD Superblock ABD Superblock Loop ABD

0SD1635

11-21

11

1960 Processor Compiler User's Guide

11-22

The left diagram shows that patfil80D is heavily traveled and would
thus be detected as a superblock candidate. To form a superblock from
this candidate, it is necessary to remove the arbCThis is done as
shown in the middle diagram. Block D is duplicated, and block C is
altered to flow to D'. The dashed arc from block B to block D indicates
that it is likely that these two blocks will be merged into a single block.
This merging increases the scope of the local optimizer and of the
scheduler, optimizations that work on a single block at a time. The
superblock loop containing only blocks A, B, and D is formed in the
diagram on the right. An empty header block, H, has been created, and
the original single loop in the middle diagram now becomes two loops, a
nested superblock loop headed by A, and an outer loop headed by H.

The fundamental advantage that superblock formation yields is the
removal of data dependencies. In the diagram on the left, any data
moadifications in block C must be considered when optimizing the loop.
These modifications often have a negative effect, inhibiting the classic
loop optimizations. For example, if block C contains a procedure call, it
appears to modify all memory variables. Optimizations involving memory
references are inhibited in this case. In the diagram on the right, data
madifications in block C do not effect loop optimizations in the superblock
loop ABD.

Profile-based Branch-prediction Bit Setting

Without program profile data, the compiler uses a fixed rule for setting the
branch-prediction bits for the processor.

With program profile data, the branch-prediction bits are set based on that
profile data. This setting is better for a given program.

Caveats

This chapter provides useful programming tips on:

Aliasing assumptions
Alignment assumptions
Volatile object

Known problems

C version incompatibilities
Troubleshooting

Aliasing Assumptions

Some compiler optimizations (for exampiehadow-mem) use type
information as the basis for several assumptions. These assumptions
exclude some pairs of memory references as possible alias candidates.

If your program violates these assumptions, the compiler may generate
code that does not function as you intended.

Here are the rules the compiler uses:

character (i.eghar , unsigned char , signed char)
Ivalues can access all objects, regardless of type.
ordinal (e.g.jnt ,short ,long , enum) Ivalues can
access only ordinal objects of the same size
(regardless of sign) or character objects.
real (e.g.float , double ,long double) lvalues can

access only real objects of the same size, or
character objects.

12-1

1960 Processor Compiler User's Guide

12-2

pointer Ivalues can access only objects of pointer type
(regardless of the types pointed to) or character
objects.

structure Ivalues can access only the objects that can be

accessed by the members of the structure, or
struct objects of the same size, or character
objects.

union Ivalues can access only the objects that can be
accessed by the members of the union, or union
objects of the same size, or character objects.

These rules are not as strict as those allowed by the relevant portion of the
ANSI standard (section 3.3), but they are still aggressive enough to cause
some problems with code developed for some compilers.

Thefint-alias-ptr , fint-alias-real , andfint-alias-short
compiler options relax these restrictions. See the gcc960 (Chapter 2) or
ic960 (Chapter 3) compiler driver description for more information.

To make use of the higher optimization levels, you should examine your
code carefully and ensure that these rules are not violated.

Consider this code fragment:

double *pq, *pr, *ps;
int* pi, *pj;

*pg = *pr;

*pi = *pj;

*ps = 7\'pr7

Caveats 1 2

The compiler might conclude that the valuef is unaffected by the
assignment tepi , because double objects cannot legally be referenced by
int lvalues.

It might then use this conclusion to rewrite the above code as follows:

register double t = *pr;

pa=t

*pi = *pj;

*ps = t;
This is fine as long api really doesn’t overlappr , but if your program
does something like:

double d;

pi = (int *) &d;

pr = &d;
before it executes the second fragment, the wrong value would get stored
in *ps .

Alignment Assumptions

The compiler sometimes uses pointer type information when deciding
whether or not memory references are properly aligned for some
optimizations.

Thus, the compiler assumes that all pointer expressions are aligned as their
pointed-to types would indicate. For exampléguble *) e) is treated
as an assertion that the low 3 bite alreo.

The compiler also infers more stringent alignment for individual variables
than would be indicated by their types alone, since it assumes that the
allocation is aligned according to the compiler's rules.

So, if your program defines global variables in assembly code that are
referenced by C routines, or if it has its own memory managgr (

malloc), the allocations must be aligned according to the compiler's rules
or unaligned references may result.

12-3

1960 Processor Compiler User's Guide

Here is an example of how these assumptions are used:

#include <string.h>

struct {
int s1;
int s2;
int s3;
}*s; /¥ (1) *s is assumed to be 16 byte aligned
*

extern char mybuf[23];
/* (2) mybuf is assumed to be 16 byte aligned */

memcpy (mybuf, s, sizeof (*s));

The compiler would generate:

Idt (s), r
stt r, mybuf

in lieu of the call tonemcpy, the memory references would be unaligned
should the assumptions mentioned above prove false.

Volatile Objects

The compiler aggressively attempts to remove redundant memory
references (both loads and stores), and it attempts function inlining across
multiple .c files. If your program expects actual memory references to be
made at certain points in the program, you must make those references
volatile. Volatile objects are guaranteed to be updated at certain sequence
points in the program (e.g., between semicol@gsj| , ?: , and before

calls).

12-4

Caveats 1 2

Volatile objects are also presumed to have been changed in unknowable
ways between such points.

Here is an example of a program that fails because of a memory reference
that needs to be made volatile:

fiddle.c:
#define MY_PORT *((int *) 0x10000)

int read_my_port ()
{return MY_PORT;

}
faddle.c:

while (read_my_port() == 0)
/* do nothing */;

ok_go_do_something ();

This program is incorrect, but it functions as intended when compiled with
compilers that do not attempt inlining acrossfiles.

When these two files are compiled with global inlining, the compiler
translates the program to:

(1) while (MY_PORT == 0)

/* do nothing */;

ok_go_do_something ();
And, sincevY_PORTappears to be loop invariant (because it isn't volatile),
we then get:

(2) t=MY_PORT;
while (t == 0)

which loops forever if the first value read fronx1000 iso.

12-5

1960 Processor Compiler User's Guide

12-6

All that is needed here is to make PORWVolatile, as follows:
#define MY_PORT *((volatile int *) 0x10000)

This suppresses (2), 8 _PORTmMust be considered to have changed
between iterations of the loop.

Known Problems Using the Compiler

Here are some of the things that have caused trouble for people using the
compiler.

Type Promotion

Users often think it is a bug when the compiler reports an error for code
like this:

int foo (short);

int foo (X)
short x;

{-}

The error message is correct: this code really is erroneous, because the
old-style non-prototype definition passes subword integers in their
promoted types. In other words, the argument is reallytannot a

short . The correct prototype is this:

int foo (int);

Prototype Scope

Users often think it is a bug when the compiler reports an error for code
like this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)

{.}

Caveats

This code really is erroneous, because the scope efrthe mumble
prototype is limited to the argument list containing it. It does not refer to
thestruct mumble defined with file scope immediately below — they are
two unrelated types with similar names in different scopes.

But in the definition ofoo , the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype do not
match, and you get an error.

longjmp and Volatile Data

If you uselongjmp , beware of automatic variables. ANSI C says that
automatic variables that are not declargdtile =~ have undefined values
after alongjmp . And this is all the compiler promises to do, because it is
very difficult to restore register variables correctly, and one of the
compiler's features is that it can put variables in registers without being
asked.

Incorrect debug information generated for arrays
with unspecified bounds

Consider the following example

int arr[];

The compiler generates debug information for the above declaration as if
arr were an array of 1 integer. As a result, when you pgpa arr
in gdb960 the type cfir is displayed asit [1]

12-7

1960 Processor Compiler User's Guide

12-8

C Version Incompatibilities

There are several noteworthy incompatibilities between Intel C for the
80960 architecture and some (non-ANSI) versions of C.

String Constants Read-only

The compiler normally makes string constants read-only. If several
identical-looking string constants are used, the compiler stores only one
copy of the string.

If this is a problem for your application, the best solution is to change the
program to usehar -array variables with initialization strings for these
purposes instead of string constants. But if this is not possible, you can
use théwritable-strings flag, which directs the compiler to handle
string constants the same way most C compilerstealitional also

has this effect, among others.

No Macro Argument Substitution in Strings

The compiler does not substitute macro arguments when they appear
inside of string constants. For example, the following macro:

#define foo(a) "a"
produces output” regardless of what the argumeris.

Theftraditional option directs the compiler to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

External Variables and Functions in Blocks

Declarations of external variables and functions within a block apply only
to the block containing the declaration. In other words, they have the
same scope as any other declaration in the same place.

Caveats

In some other C compilers, artern declaration affects all the rest of
the file even if it happens within a block.

Theftraditional option directs the compiler to treat attern
declarations as global, like traditional compilers.

Combining long with typedef Names

In traditional C, you can combineng , etc., with a typedef name, as
shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowedong and other type modifiers require an
explicitint . Because this criterion is expressed by grammar rules rather
than C codeftraditional cannot alter it.

Using typedef Names in Function Parameters

Some C compilers allow typedef names to be used as function parameters.
Because this criterion is expressed by grammar rules rather than C code,
ftraditional cannot alter it.

Whitespace in Compound Assignment Operators

Some C compilers allow whitespace in the middle of compound
assignment operators such+as The CTOOLS960 and GNU/960

compiler , following the ANSI standard, does not allow this. Because this
criterion is expressed by grammar rules rather than C code,

ftraditional cannot alter it.

12-9

1960 Processor Compiler User's Guide

12-10

Flagging Unterminated Character Constants

The compiler flags unterminated character constants inside of
preprocessor conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if these
comments contain apostrophes, the compiler will probably report an error.
For example, this code produces an error:

#if 0

You can't expect this to work.

#endif

The best solution to such a problem is to put the text into an actual C
comment delimited by...*/ . However ftraditional suppresses
these error messages.

Disguised varargs or stdarg Routines

Disguisedvarargs routines (those that do not useargs.h or
stdarg.h but that increment through a pointer assigned from the address
of an argument) do not work.

Troubleshooting

Undefined References

When trying to compile a prograra user may get error messages similar
to the following:

crt960.0: undefined reference to ‘heap_size’

crt960.0: undefined reference to *__setac’

crt960.0: undefined reference to ‘__LL_init’
_filbuf.c:47: (_filbuf): undefined reference to ‘_read’
exit.c:31: (_exit_init): undefined reference to

‘' _exit_create’

exit.c:39: (exit): undefined reference to ‘__exit_ptr’
fflush.c:38: (fflush): undefined reference to ‘_write’
_flsbuf.c:105: (_flsbuf): undefined reference to ‘_write’

Caveats

fclose.c:43: (fclose): undefined reference to ‘_close’
malloc.c:82: (malloc): undefined reference to ‘_sbrk’
malloc.c:60: (malloc): undefined reference to ‘_brk’

Problem:

When invoked withycc960 -ACA -o filename filename .c , the
compilation system tries to construct a b.out format executable file, fully
linked. A fully linked file implies a C-runtime startup file and several
runtime libraries. If the proper library list (in the proper order) is not
added to the invocation command, the error messages listed above may
result.

Solution:

The preferred method of creating fully linked executables is to use the
target configuration files, e.qy¢c960 -o filename filename .c -T arg .
The-T arg option instructs the compiler to parse the file

$G960BASE/lib/ arg .gld , which contains definitions for the i960
architecture flag, C-runtime filename, library lists, and section load
addresses. Target configuration files are supplied for all the 1960
processor evaluation boards, and adding your own description file is as
easy as renaming and modifying an existing description file. Do not
confuse gcc960's option with ic960’s and gld960'F option.

C Interrupt Service Routine Failures

An application that uses interrupts extensively may have hand-built
assembler wrappers for each interrupt type, with each wrapper calling
specific C interrupt service routines. Some of the C interrupt service
routines may fail in mysterious ways, often in an operation fault.

Problem:

The C function calling convention requires that the i960 processor register
g14 contain the value zero for all functions that take fewer than 14 words
of parameters and are non-leaf procedures. Because of this, for most
functions, the compiler assumgs! to contain zero, and uses that register

12-11

1960 Processor Compiler User's Guide

12-12

as a zero constant. If your application happens to be interruptediwith
containing a non-zero value, then your C interrupt service routine is called
with g14 containing a non-zero, but used as a zero constant.

Solution:

When calling any C function from assembly source, alwayser@rior

to the function call. Also, be sure to save all global registers prior to
calling your C function, and restore those registers prior to returning from
the interrupted state.

Preventing Structure Padding

You may be using an i960 processor to communicate with another
processor. The communication involves passing structures between the
two processors. The Intel compiler pads the structures, but the compiler
for your other processor does not, causing passed structure members to
contain incorrect values. It is necessary to prevent the Intel compiler from
padding your structures and unions.

Problem:

The Intel compiler uses fairly strict data-type alignment rules, which take
advantage of the 1960 processor features supporting memory references.
This increases the performance of programs running on the i960
processor, but makes it more difficult to interface through structs/unions to
other processor types or to read binary data from a file.

Solution:

gcc960’s#pragma align lets you control the compiler's alignment rules
for aggregate data types on a per-definition basis, and therefore control the
padding added to the end of structures and unions.

In this casegpragma align 1 could be added to your code before the
structure definition to remove trailing structure pads and properly match
structure memberstpragma align 0 could then be added after the
structure definition to return to normal alignment rules, thereby reducing
its impact on the performance of the entire program.

Caveats 1 2

However #pragma align has limitations. Although it can be used to
restrict the padding of aggregate data types (and arrays of those types) it
does not change the alignment rules for individual structure members. For
information on alignment rules for structure members, see the discussion
of pragma pack in this manual.

Consider the following example:

struct test {
char first;
int second;
short third;

h

If you compiled the above structure without modification, the structure
size would be 16 bytes. If you definedgma align 1 before the

structure definition, the structure size would be 12 bytes - four pad bytes
removed. In both cases, however, the position of the elements would not
have changed, with element "first" at address offset zero, element
"second" at address offset 4, and element "third" at address offset 8. This
element placement effectively creates three pad bytes between the first
and second structure elements.

To work around the limitations of intra-structure padding, consider the
case where the above structure must be read in from a binary file written
by a processor/tool pair that inserted zero (intra-struct) pad bytes.

The following code demonstrates one way to perform that function:

#include <unalign.h>

/* The following structure is what gcc960 compiles.

* The buffer, when filled, contains the same

* structure in packed format - all pad bytes removed. */

struct test {
char first;
int second;
short third;
} 960_struct;

unsigned char packed[7];
/* sum of 960_struct element sizes */

12-13

1960 Processor Compiler User's Guide

12-14

/* Read binary data from a file and copy into a
* structure that has different alignment rules. */

main()

{

int fdesc;
unsigned char *ptr;

/* Assume file opened and ready for reading...
* Then read one struct’s worth of bytes. */

if (read(fdesc, packed, 7) 1= 7) {
/* Handle read error. */

}

/* Fill up structure. Done. */

ptr = packed;

960_struct.first = *(char *)ptr;

ptr += sizeof(960_struct.first);

960_struct.second = GET_UNALIGNED(ptr,int);
[* *(int *)ptr; */

ptr += sizeof(960_struct.second);

960_struct.third = GET_UNALIGNED(ptr,short);
[* *(short *)ptr; */

}

Although the code shown above is expensive in terms of performance,
using#pragma align also has a significant performance penalty. To get
the best performance, use the default alignment rules and use pragmas
only where absolutely necessary. See the discussions of gcpeg@ia
align andpragma pack in this manual for a detailed discussion of
alignment.

Caveats 1 2

Breakpoints Inside Interrupt Handlers

If your application uses interrupts extensively, when debugging interrupt
handlers with gdb960, breakpoints set inside the handlers may not work
and may result in operation faults.

Problem:

When the i960 processor invokes an interrupt handler, it first disables
tracing by saving, then clearing, the state of the trace-enable bit and the
trace-fault-pending flag. On return from the interrupt handler, the
processor restores the process-controls register to its state prior to the
interrupt. This restores the state of the trace-enable bit and the
trace-fault-pending flag; therefore, standard interrupt handlers cannot
contain breakpoints.

Solution:

To set breakpoints inside an interrupt handler, you can modify that
handler, probably in the assembler wrapper, adding code to change the
state of the trace-enable bit.

12-15

Messages

This chapter describes the diagnostic messages that the compiler produces
when invoked with the ic960 driver, or with the gcc960 driver and the
ffancy-errors option. (Invoking the compiler witiz960 -Jgd

produces the corresponding gcc960-style message format and output.)

On UNIX systems, the compiler displays error messages, along with the
erroneous source line, on the standard error device. In Windows systems,
messages appear on the standard output device. HowevedEiRR is
defined, messages appear on the standard error device. To display or
suppress warning messages, usentfigiagnostic-level) compiler option.
Additionally, then (Help),v (Verbose), and (Version) options display

more information about the compiler, assembler, and linker invocations
and about the host system.

Diagnostic messages provide syntactic and semantic information about
source text. Syntactic information can include, for example, syntax errors
and use of non-ANSI C. Semantic information includes, for example,
unreachable code. If a source listing is requested, the compiler puts
diagnostic messages in the program listing, as well as displaying them to
the standard error device.

Several levels of diagnostic messages can occur:

Command-line report improper command-line options or
diagnostics arguments.
Warning messages report legal but questionable use of C. The

compiler displays some warnings by default. To
suppress all warning messages, set the diagnostic
level to2. To enable all warning messages, set

13-1

1960 Processor Compiler User's Guide

13-2

the diagnostic level to. Warnings do not stop
translation and linking, nor do they interfere with
any output files.

Error messages report syntactic or semantic misuse of C. The
compiler always displays error messages. Errors
do not stop translation but do suppress object
code for the module containing the error. Errors
also prevent linking.

Catastrophic error report occurrences of#tieor macro,

messages unrecognized command-line options, and file
input/output errors. Catastrophic error
conditions stop translation and linking. If a
catastrophic error ends compilation, the compiler
displays a termination message on the standard
error device.

Internal error If a compilation produces any internal errors,
messages contact Customer Support.

Messages on the Standard Error Device

Command-line messages appear on the standard error device in this form:
ic960 [ERROR | WARNING]: message

Other diagnostic messages appear on the standard error device in this
form:

source-line
diagnostic-pointer
diagnostic-message

source-line is the line containing the error being reported.

diagnostic-pointer is a caret”() located below the beginning of the
token that the diagnostic refers to.

Messages

diagnostic-message has this form:

ic960 level filename | line Inn , -- message

level is the type of diagnostic messag&iRNING
ERRORCATASTROPHIERROR Or INTERNAL
ERROR

filename names the source file currently being processed.

Inn is the line number, if available, where the

compilation system detects the condition.
message explains the diagnostic.

Thesource-line anddiagnostic-pointer may be absent for those
messages that are not associated with any particular source code line.

The diagnostic-pointer may be absent when theurce-line is
present if the precise column for the error is not available.

Messages in the Listing File

In a source listing, diagnostic lines follow the erroneous source lines. The
diagnostic lines in a source listing have this form:
>>>>> source-line

>>>>> djagnostic-pointer
>>>>> djagnostic-message

source-line is the line containing the error being reported.

diagnostic-pointer is a caret”() located below the beginning of the
token that the diagnostic refers to.

diagnostic-message has this form:

ic960 level filename | line Inn , -- message

level is the type of diagnostic messag&iRNING
ERRORCATASTROPHIERROROr INTERNAL
ERROR

filename names the source file currently being processed.

13-3

1960 Processor Compiler User's Guide

Inn is the line number, if available, where the
compilation system detects the condition.

message explains the diagnostic.

Thesource-line anddiagnostic-pointer may be absent for those

messages that are not associated with any particular source code line.

The diagnostic-pointer may be absent when theurce-line is
present if the precise column for the error is not available.

If source-line is shown, and the error being reported starts and ends on
that line, the filename and line number does not appear in the diagnostic
message. This is an example of a listing file containing diagnostic
messages:

ic960 5.0, Tue Nov 9 08:45:17 PST 1995 "ex_err.c"

Include Line
Level Number Source-lines

0* 1 #include "ex_err.h"

>>>>> struct foo bar {

>>>>>

>>>>> ic960 ERROR: "ex_err.h", line 2 -- syntax error before '{'
main ()
{

struct foo bar;
bar.x=3;

OO OOoOo

2
3
4
5
6

>>>>> bar.x=3;
>>>>> AN
>>>>> ic960 ERROR: invalid use of undefined type 'struct foo'

0o 7}

13-4

Glossary

arithmetic control (AC)
register

basic block

calling convention

command-option file

common subexpression
elimination (CSE)
conditional compilation

constant folding

constant propagation

For processors with on-chip floating-point support, the
register that contains the floating-point exception flags,
floating-point exception masks, and rounding-mode bits.
For processors without on-chip floating-point support, the
AC register is implemented as a predefined variable
(foem_CA_AC).

An assembly language sequence of code that has one entry
point and one exit point.

The rules that specify the use of registers and the stack for
parameter passing and return values in function calls.

DOS command-line file, containing command-line options,
input filenames, and comments, to be specified on the
command line.

Avoid recomputing an expression if the compiler can reuse
a previously computed value of the same expression.

Compiling only part of the source code, depending on the
preprocessor's evaluation of conditions you specify.

Deducing at compile time that the value of an expression is
a constant and using the constant in place of the
expression.

Replacing use of variables known to have a constant value
with the constant value.

Glossary-1

1960 Compiler User's Guide

Glossary-2

dead function

execution environment

floating-point registers

gcdm960

global registers

gmpf960

inline assembly
language

inline function
expansion

instruction set

instrument

instrumented program

interrupt handler

A function which cannot be referenced during the profile
recompilation step. If a function has been in-lined at all
known call sites, or if the function is never referenced, then
the function is dead.

The hardware and software of the system on which your
program executes.

Registersp0 throughfp3 , available on processors with
on-chip floating-point support.

The decision-making tool that analyzes profile data to
make optimization decisions.

Registerg0 throughgi1s.

The utility that merges execution profiles for use by
gcdm960.

Assembly-language statements or functions in the C source
text.

Replacing a function call with the instructions that
comprise the function, rather than calling the function.

The set of all possible executable instructions.

Insert new code into an existing program so that execution
data is recorded at runtime.

A program that has had record keeping code inserted to
allow creation of a run-time profile of the program's
execution.

A function to be called when an interrupt occurs.

Glossary

leaf function

macro

object module

padding

preprocessor file

primary source file

primary source text

profile-based

profile data

static profile data

A function that is called with a branch-and-link instruction
sequence.

An identifier that the preprocessor replaces with C source
text that you specify.

The formatted object code resulting from compilation and
assembly.

Interleaving unused bytes between struct/union members
and at the tail of structs/unions to ensure that struct/union
members are properly aligned.

A text file generated by the compiler, containing the
intermediate source code after macro expansion, file
inclusion, and conditional compilation.

A file that contains C source text, hasg afilename
extension, and is specified as an input file on the command
line.

The contents of the primary source file, without any text
from include files.

Optimizations that depend on profile information gathered
by execution of an instrumented program. The term is
interchangeable with profile-driven.

Both static and dynamic program level data.

Information that the compiler derives at compile time
about the program (e.g., which functions are defined in a
module, which functions are called from within a specific
function, which variables are defined in a module, which
variables have had their addresses used).

Glossary-3

i960 Compiler User's Guide

strength reduction An optimization that substitutes expensive operations such
as multiplications with low-cost operations such as
addition or subtraction. Strength reduction also eliminates
unnecessary induction variables. For example, consider the
following C code fragment:

intv, a[10], j, t4, t5;

do {

i=i-1

t4=4*j;

t5 = a[t4];

} while (t5>v);

Note that the values pfandt4 remain in lock-step; every
time the value of decreases by 1, thattwef decreases by
4. Such identifiers are called induction variables. When
there are two or more induction variables in the loop, it
may be possible to get rid of all but one. For example, the
compiler might optimize the loop above to:

t4=4%j

do {

t4=1t4 - 4

t5 = a[t4];

} while (t5>v);

Note that, the above optimization gets rid of the induction

variablej and reduces an expensive multiply operation
with a subtract operation (i.e., performs strength

reduction).

tail call A call that immediately precedes the return to the calling
function.

unreachable code Code that can never execute because the flow-of-control
bypasses it.

Glossary-4

Index

A

a (ANSI) ic960 option, 3-21
A (Architecture)
gcc960 option, 2-18
ic960 option, 3-19

Additional Fine-tune (f) ic960 option, 3-32

aggregates
alignment, 7-4, 7-14
data types, 7-4
aliasing rules, 12-1
alignment
aggregates, 7-4
assumptions, 12-3
bit field, 7-10
inquiries, 7-48
long double, 7-4
natural, 7-7
padding, 7-6
pragma examples, 7-11
scalars, 7-4
sizeof, 7-4
structures, 7-5, 7-7
alternate keywords, 7-51
ANSI (a) ic960 option, 3-21

ansi (ANSI) gcc960 option, 2-19

Architecture (A)
gcc960 option, 2-18
ic960 option, 3-19

architecture macros, and compatibility, 8-2
architecture-specific optimization, 11-1

argument block

passing parameters in, 7-17

registers, 7-17

argument category, general-register variable,

7-79
arithmetic on pointers, 7-45
arrays of length zero, 7-44
arrays, alignment, 7-4
asm function
argument category, 7-79
template expansion, 7-72

asm function definition syntax, 7-71

asm statements, 7-53

Assembly (S) gcc960 option, 2-48

assembly output, saving, 3-56

B

b (Limit-optimizations) ic960 option, 3-23

backslash (\) character, 1-6

Big-endian (G) gcc960 option, 2-33

bit field alignment, 7-10

branch prediction, 11-10, 11-22

Index-1

i960 Processor Compiler User's Guide

C constant expression evaluation (folding), 11-4
C (Comments) gcc960 option, 2-20 constructor expressions, 7-46

¢ (Create Object) gcc960 option, 2-20 conventions, Windows and UNIX, 1-6

¢ (Create-object) ic960 option, 3-25, 3-58 Create Object (c) gcc960 option, 2-20

Create-object (c¢) ic960 option, 3-25, 3-58
crt (Startup) gcc960 option, 2-21
customer service, 1-7

C (Keep-comments) ic960 option, 3-24

C runtime environment initialization, 10-2

calling conventions, 7-14
implementation, 7-18

register preservation, 7-18 D
call-preserved registers, 7-15 m
call-scratch registers, 7-15 gcc960 option, 2-21
CAVE (Compression Assisted Virtual ic960 option, 3-26

Execution), 7-26

d (Definitions) gcc960 option, 2-22
char parameters, 8-1

data types
char types, 8-2

) aggregate, 7-1
character constants, unterminated, 12-10)
. L) aggregates, listed, 7-4

clist (Listing) gcc960 option, 2-20

clrbit, 11-20
code compression, pragma, 7-30

scalars, 7-1
void, 7-14
Database (fdb)
gcc960 option, 2-23
ic960 option, 3-31
dead code elimination, 11-5
Debug (9)
gcc960 option, 2-33
ic960 option, 3-43
Decision Maker (gcdm)

code scheduling, 11-18
COFF sections, 7-19
Comments (C) gcc960 option, 2-20
compatibility, 1-2

between ic960 releases, 7-6

of gcc960 and ic960, 8-1-8-3
compilation phases, 2-10, 3-13

Compression Assisted Virtual Execution)
(CAVE), 7-26 gcc960 option, 2-34

ic960 option, 3-44
declaring attributes of functions, 7-47
conditional expressions with omitted middle Define (D)
operands, 7-44 gcc960 option, 2-21
ic960 option, 3-26

compression pragma, 11-18
conditional branch instruction, 11-7

Index-2

Index

Definitions (d) gcc960 option, 2-22
Dependencies (Q) ic960 option, 3-55, 3-58
diagnostic messages, 13-1-13-4
Diagnostic-level (w) ic960 option, 3-69
dryrun control (gcdm option), 6-9

E
E (Preprocess - stdout) ic960 option, 3-27,
3-58
E (Preprocess) gcc960 option, 2-22
entry point, 10-2
enum variable byte size, 8-1
environment variables, 3-8
1960ARCH, 3-20
Errata (j)
gcc960 option, 2-37
ic960 option, 3-49
examples
alignment pragma, 7-23
IAC breakpoint, 7-85
position-independent ROM code, 9-3
external reference controls (gcdm option), 6-7

external variables and functions in
blocks, 12-8

F

f (Additional Fine-tune) ic960 option, 3-32
f (Fine-tune)

gcc960 option, 2-25

ic960 option, 3-29
F (Format) gcc960 option, 2-23

F[no-]Jai ic960 option, 3-29
f[no-]Jasm gcc960 option, 2-25
f[no-]bbr

gcc960 option, 2-26

ic960 option, 3-33
F[no-]cb ic960 option, 3-29
flno-]Jcoalesce

gcc960 option, 2-26

ic960 option, 3-33
f[no-]coerce

gcc960 option, 2-26

ic960 option, 3-33
f[no-Jcond-mismatch

gcc960 option, 2-26

ic960 option, 3-33
flno-]Jcondxform

gcc960 option, 2-26

ic960 option, 3-33
f[no-Jconstprop gcc960 option, 2-26
f[no-]Jcopyprop

gcc960 option, 2-27

ic960 option, 3-33
flno-]cse-follow-jumps

gcc960 option, 2-27

ic960 option, 3-33
flno-]cse-skip-blocks

gcc960 option, 2-27

ic960 option, 3-33
f[no-]Jexpensive-optimizations

gcc960 option, 2-27

ic960 option, 3-33
f[no-Jfancy-errors gcc960 option, 2-27

Index-3

i960 Processor Compiler User's Guide

f[no-]float-store f[no-]shadow-globals
gcc960 option, 2-27 gcc960 option, 2-30
ic960 option, 3-33 ic960 option, 3-35
f[no-]force-addr fl[no-]shadow-mem
gcc960 option, 2-27 gcc960 option, 2-30
ic960 option, 3-34 ic960 option, 3-35
f[no-Jinline-functions gcc960 option, 2-27 f[no-]signed-char gcc960 option, 2-29
f[no-]keep-inline-functions f[no-]space-opt
gcc960 option, 2-29 gcc960 option, 2-30
ic960 option, 3-35 ic960 option, 3-35
F[no-]Ip ic960 option, 3-29 flno-]split_mem
flno-Jmarry_mem gcc960 option, 2-31
gcc960 option, 2-29 ic960 option, 3-36
ic960 option, 3-35 flno-]strength-reduce
flno-]Jmix-asm gcc960 option, 2-29 gcc960 option, 2-31
flno-Jonstprop ic960 option, 3-33 ic960 option, 3-36
F[no-]pf ic960 option, 3-29 F[no-]Jtce ic960 option, 3-30
flno-Jrerun-cse-after-loop f[no-]thread-jumps
gcc960 option, 2-29 gcc960 option, 2-31
ic960 option, 3-35 ic960 option, 3-36
F[no-]sa ic960 option, 3-29 f[no-]unroll-all-loops
F[no-]sb ic960 option, 3-30 gcc960 option, 2-31
flno-]sblock ic960 option, 3-36
gcc960 option, 2-29 fl[no-Junroll-loops
ic960 option, 3-35 gcc960 option, 2-31
fl[no-]schedule-insns ic960 option, 3-36
gcc960 option, 2-29 f[no-Junsigned-char gcc960 option, 2-31
ic960 option, 3-35 fl[no-]volatile
flno-]schedule-insns2 gcc960 option, 2-32
gcc960 option, 2-30 ic960 option, 3-36

ic960 option, 3-35

Index-4

Index

f[no-]volatile-global
gcc960 option, 2-32
ic960 option, 3-36
f[no-Jwritable-strings
gcc960 option, 2-32
ic960 option, 3-36
fast memory controls (gcdm option), 6-8
Fbout gcc960 option, 2-23
Fcoff
gcc960 option, 2-23
ic960 option, 3-28
fdb (Database)
gcc960 option, 2-23
ic960 option, 3-31
Felf
gcc960 option, 2-23
ic960 option, 3-28
Fine-tune (f)
gcc960 option, 2-25
ic960 option, 3-29
fint-alias-ptr
gcc960 option, 2-28
ic960 option, 3-34
fint-alias-real
gcc960 option, 2-28
ic960 option, 3-34
fint-alias-short
gcc960 option, 2-28
ic960 option, 3-34
Format (F) gcc960 option, 2-23
Format (Fcoff | Felf) ic960 option, 3-28

fprof (Instrument)
gcc960 option, 2-24
ic960 option, 3-31
fsyntax-only gcc960 option, 2-31
function inlining optimization, 11-20
functions, reentrant design guidelines, 9-6

G

G (Big-endian) gcc960 option, 2-33

g (Debug)
gcc960 option, 2-33
ic960 option, 3-43
G (Generate) ic960 option, 3-36
gl2, offset bias, 9-1
Gabi ic960 option, 3-36
Gac ic960 option, 3-37
Gbc ic960 option, 3-37
Gbe ic960 option, 3-37
Gcave ic960 option, 3-37
gcdm (Decision Maker)
gcc960 option, 2-34
gcc960/ic960 option, 6-1-6-13
ic960 option, 3-44
Gcs ic960 option, 3-37
Gcu ic960 option, 3-37
Gdc ic960 option, 3-38
Gds ic960 option, 3-38
Generate (G) ic960 option, 3-36

generate option, position-independent data,

11-17

Index-5

1960 Processor Compiler User's Guide

Index-6

gld files, described, 2-11

global alias analysis optimization, 11-15

gmpf960 profile merger, 5-1-5-8

gmpf960 profile merger invocation command
and options, 5-2

Gpc ic960 option, 3-38
Gpd ic960 option, 3-38
Gpr ic960 option, 3-38
Gwait ic960 option, 3-38
Gxc ic960 option, 3-38

H

h (Help) ic960 option, 3-45

Help (h) ic960 option, 3-45
hyphen (-) character, 1-6

i (Preinclude) ic960 option, 3-47

| (Searchinclude)
gcc960 option, 2-35
ic960 option, 3-45
I- | I. (Include-dash, Include-dot) gcc960
option, 2-35
IAC breakpoint example, 7-85
ic960 (iC-960 compatibility) gcc960 option,
2-36
identity constant
definition, 11-5
optimization of, 11-5
imacros (Macros File) gcc960 option, 2-36
include (Preinclude File) gcc960 option, 2-37

Include-dash, Include-dot (I- | I.) gcc960
option, 2-35

induction variable elimination optimization,
11-14

Inhibit Warnings (w) gcc960 option, 2-58
initialization, 10-1
C runtime environment, 10-2
initializers, non-constant, 7-46
in-line function expansion, 7-32
optimization, 11-11
inline functions, 7-48
inline level control (gcdm option), 6-7
input profile control (gcdm option), 6-8
instruction pointer (ip), 9-2
instruction selection, 11-20
Instrument (fprof)
gcc960 option, 2-24
ic960 option, 3-31
interrupt handlers, troubleshooting, 12-15
interrupt handling, reentrancy, 9-6

interrupt service routines, troubleshooting,
12-11

J-K

j (Errata)

gcc960 option, 2-37

ic960 option, 3-49
J (Miscellaneous) ic960 option, 3-48
Keep-comments (C) ic960 option, 3-24
keywords, alternate, 7-51

Index

L

L (Library Directory) gcc960 option, 2-37
| (Library) gcc960 option, 2-38
Library (I) gcc960 option, 2-38
Library Directory (L) gcc960 option, 2-37
Limit-optimizations (b) ic960 option, 3-23
limits
compiler, 1-3
linker
configuration files, 10-4, 10-5, 10-6
defining symbols, 10-4
directive files, sample, 2-12
locating code and data, 10-4
optimization, 11-11
options, 3-4
options accepted by gcc960, 2-6
Listing (clist) gcc960 option, 2-20
listing files, contents, 3-72
local variable optimization, 11-16
long double, alignment, 7-4
longjmp and volatile data, 12-7
loop unrolling optimization, 11-15
loop-invariant code optimization, 11-14
Ivalues, generalized, 7-42

M

m (Machine-specific) gcc960 options, 2-39
M (Mix) ic960 option, 3-50

M | MD | MM | MMD (Make) gcc960 option,
2-39

m[no-]Jcmpbr gcc960 option, 2-41

m[no-]code-align gcc960 option, 2-41

m[no]leaf-procedures gcc960 option, 2-42

m[no-]strict-align gcc960 option, 2-43

mabi gcc960 option, 2-39

Machine-specific (m) options, 2-39

macro argument substitution in strings, 12-8

macros, predefined, 2-6, 3-6

Macros File (imacros) gcc960 option, 2-36

macros, undefining, 3-61

Make (M | MD | MM | MMD) gcc960 option,
2-39

masm-compat gcc960 option, 2-40

mcave gcc960 option, 2-40

mcore0-3 gcc960 option, 2-40, 3-37

mdouble4 gcc960 option, 2-42

memory, address restrictions, 9-5

merging profile data using gmpf960, 5-1-5-8

messages, 13-1-13-4

messages, controlling, 3-69

mi960_align gcc960 option, 2-42

mic2.0-compat gcc960 option, 2-42, 8-3

mic3.0-compat gcc960 option, 2-42, 8-3

mic-compat gcc960 option, 2-42

Miscellaneous (J) ic960 option, 3-48

Mix (M) ic960 option, 3-50

mlong-calls gcc960 option, 2-43

mlong-double4 gcc960 option, 2-42

module-set specification (gcdm option), 6-13

mpic gcc960 option, 2-43

mpid gcc960 option, 2-43

Index-7

i960 Processor Compiler User's Guide

Index-8

mpid-safe gcc960 option, 2-43
msoft-float gcc960 option, 2-43
mstrict-ref-def gcc960 option, 2-44
multi-tasking, 9-6

mwait gcc960 option, 2-44

N

n (Syntax-check) ic960 option, 3-51, 3-58

names, controlling use in assembly code, 7-50
naming an expression's type, 7-40

No Standard Header Files (nostdinc) gcc960
option, 2-44

No Standard Libraries (nostdlib) gcc960
option, 2-45

@]

O (Optimize)

gcc960 option, 2-45
ic960 option, 3-51
o (Output)
gcc960 option, 2-47
ic960 option, 3-53
offset bias in g12, 9-1
optimization
branch chain, 11-9
branch prediction, 11-11
branch-and-link, 11-11
categories and mechanisms, 11-1
code compression, 7-30
common subexpressions, 11-3
conditional branch, 11-7

constant expression evaluation (folding),
11-4

constant expressions, 11-3
constant propagation, 11-5

dead code elimination, 11-5
fine-tuning, 3-29

function inlining, 11-20

global alias analysis, 11-15

identity collapsing, 11-5

induction variable elimination, 11-14
in-line function expansion, 7-32, 11-11
load operation, 11-8

local variables, 11-16

loop unrolling, 11-15

loop-invariant code, 11-14

options, 11-1

program-level, 11-20

specialized instructions, 11-22

spill area, 11-17

superblock formation, 11-21

tail calls and recursion, 11-12
variable shadowing, 11-16

optimization, overview, 4-1-4-15
Optimize (O)

gcc960 option, 2-45
ic960 option, 3-51

options

linker, 3-4

gcc960 compiler driver, summary list,
2-15

ic960 compiler driver, summary list, 3-17
Stop-after (n, Q, P, E, S, C), list, 3-59

Index

Output (0)
gcc960 option, 2-47
ic960 option, 3-53
output files, 2-9, 3-12

P

P (Preprocess - file) ic960 option, 3-54, 3-58
P (Preprocessor Output) gcc960 option, 2-47
padding, alignment, 7-6
parameter assignment, registers, 7-17
parameter passing

argument block, 7-17

registers, 7-15, 7-17

registers cannot be used, 7-17
Pass (W) ic960 option, 3-66

Pedantic (pedantic[-errors]) gcc960 option,
2-47

position independence, 9-1

addressing, 9-2, 9-5

register use, 9-1

registers, 7-15, 9-2

ROM code example, 9-3

writing relocatable programs, 9-5
position-independent code option, 9-2
position-independent data option, 9-1
pragma

align, 7-20, 7-22, 8-3

alignment examples, 7-11

cave, 7-26

compress, 7-30

compression, 11-18

i960_align, 7-31, 8-3
inline, 7-31
interrupt, 7-32
isr, 7-34
optimize, 7-34
pack, 7-35
pure, 7-37
section, 7-38
system, 7-38
predefined macros, 2-6, 3-6
Preinclude (i) ic960 option, 3-47
Preinclude File (include) gcc960 option, 2-37
Preprocess - file (P) ic960 option, 3-54, 3-58

Preprocess - stdout (E) ic960 option, 3-27,
3-58

Preprocess (E) gcc960 option, 2-22
Preprocessor Output (P) gcc960 option, 2-47
profile format specification, 5-4

profile merger utility, 5-1-5-8

profiling, 4-1-4-15

Program database (Yd) ic960 option, 3-70
program-level optimization, 11-20
program-wide optimization, 4-1-4-15

Q-R

Q (Dependencies) ic960 option, 3-55, 3-58

RAM, startup routine, 10-4

recursion, 9-6, 11-12

reentrancy, 9-6

reentrant functions, design guidelines, 9-6
referring to a type with typeof, 7-41

Index-9

i960 Processor Compiler User's Guide

Index-10

register spilling, 11-17
registers

address base for position independence,
9-5, 9-6

call-preserved, 7-15

call-scratch, 7-15

global, 7-15

optimization, 11-17

parameter assignment, 7-17

passing parameters, 7-15, 7-17

return values, 7-18

usage summary, 7-15

used for load and store, 9-2
registers, specifying for local variables, 7-51
relocatable programs, 9-5
report controls (gcdm option), 6-9
return values, registers, 7-15, 7-18
ROM, startup routine requirements, 10-4
routines, __LL_init, startup, 10-2

S

S (Assembly) gcc960 option, 2-48

S (Save-assembly) ic960 option, 3-56, 3-58
Save-assembly (S) ic960 option, 3-56, 3-58

save-temps (Save Intermediates) gcc960
option, 2-48

scalar alignments, listed, 7-4
scalars, data types, 7-1
Searchinclude (1)
gcc960 option, 2-35
ic960 option, 3-45

setbit, 11-20

short parameters, 8-1

sizeof, alignment, 7-4

slash (/) character, 1-6

specialized instructions optimization, 11-22

Specify PDB (Z) gcc960 option, 2-58

Startup (crt) gcc960 option, 2-21

startup code, 10-1

startup code, required calls, 10-2

startup routine requirements for ROM-based
initialization, 10-4

statements and declarations in expressions,
7-40

Stop-after (n, Q, P, E, S, c) ic960 options,
3-25, 3-27, 3-51, 3-54, 3-55, 3-56, 3-58

string constants, read-only, 12-8
struct, alignment, 7-4
structure padding, troubleshooting, 12-12
structures

alignment, 7-5, 7-7

alignment example, 7-23

alignment padding, 7-21
sub-expression elimination, 11-3
subscripting, on non-lvalue arrays, 7-45
substitution controls (gcdm option), 6-2—-6-7
superblock formation optimization, 11-21
symbols, defined by linker, 10-4
symbols, undefining, 3-61
Syntax-check (n) ic960 option, 3-51, 3-58
system data structures, 10-4

Index

T

T (Target) gcc960 option, 2-49
traditional (Traditional) gcc960 option, 2-49
Trigraphs (trigraphs) gcc960 option, 2-50
troubleshooting, 12-10
two-pass optimization, 4-1-4-15
type promotion, 12-6
typedef names
as function parameters, 12-9
combining with long, 12-9

U

U (Undefine)

gcc960 option, 2-51

ic960 option, 3-61
unaligned references, preventing, 12-3
Undefine (V)

gcc960 option, 2-51

ic960 option, 3-61
undefined references, troubleshooting, 12-10
unions, alignment, 7-4
UNIX conventions, 1-6

\%

v (Verbose)
gcc960 option, 2-51
ic960 option, 3-64
V (Version)
gcc960 option, 2-51
ic960 option, 3-63

v960 (Version, exit)

gcc960 option, 2-51

ic960 option, 3-65
varargs routines, disguised, 12-10
variable shadowing optimization, 11-16
Version, terminate (v960) ic960 option, 3-65
versions, ic960

compatibility, 7-6
volatile objects, 12-4

W

w (Diagnostic-level) ic960 option, 3-69

w (Inhibit Warnings) gcc960 option, 2-58
W (Warnings)

gcc960 option, 2-52

ic960 option, 3-67
WI[no-]aggregate-return ic960 option, 3-67
W/[no-]cast-align ic960 option, 3-67
WI[no-]cast-qual ic960 option, 3-67
WI[no-]char-subscripts ic960 option, 3-67
WI[no-Jcomment ic960 option, 3-67
WI[no-]conversion ic960 option, 3-67
WI[no-]error ic960 option, 3-67
WI[no-]format ic960 option, 3-67
WI[no-]id-clash ic960 option, 3-67
W/[no-]implicit ic960 option, 3-67
WI[no-]missing-braces ic960 option, 3-67
W[no-]missing-prototypes ic960 option, 3-68
WI[no-]nested-externs ic960 option, 3-68
WI[no-]parentheses ic960 option, 3-68
WI[no-]pointer-arith ic960 option, 3-68
WI[no-]Jredundant-decls ic960 option, 3-68

Index-11

i960 Processor Compiler User's Guide

Index-12

WI[no-]return-type ic960 option, 3-68
WI[no-]shadow ic960 option, 3-68
WI[no-]strict-prototypes ic960 option, 3-68
WI[no-]switch ic960 option, 3-68
WI[no-]traditional ic960 option, 3-68
WI[no-]trigraphs ic960 option, 3-68
W/[no-]uninitialized ic960 option, 3-68
WI[no-]Junused ic960 option, 3-68
W[no-]write-strings ic960 option, 3-68
Waggregate-return gcc960 option, 2-53
Wall

gcc960 option, 2-53

ic960 option, 3-67
Warnings (W)

gcc960 option, 2-52

ic960 option, 3-67
Wecast-align gcc960 option, 2-53
Wecast-qual gcc960 option, 2-53
Wechar-subscripts gcc960 option, 2-54
Wcomment gcc960 option, 2-54
Wconversion gcc960 option, 2-54
Werror gcc960 option, 2-54
Wformat gcc960 option, 2-54

whitespace in compound assignment operators,

12-9

Wid-clash-len gcc960 option, 2-54
Wimplicit gcc960 option, 2-54
Windows conventions, 1-6
Wmissing-braces gcc960 option, 2-54
Wmissing-prototypes gcc960 option, 2-55
Whested-externs gcc960 option, 2-55
work files, 3-12

Woparentheses gcc960 option, 2-55
Wopointer-arith gcc960 option, 2-55
Wredundant-decls gcc960 option, 2-55
Wreturn-type gcc960 option, 2-55
Wshadow gcc960 option, 2-55
Wstrict-prototypes gcc960 option, 2-56
Wswitch gcc960 option, 2-55
Witraditional gcc960 option, 2-56
Wtrigraphs gcc960 option, 2-56
Wouninitialized gcc960 option, 2-56
Wunused gcc960 option, 2-58
Whwrite-strings gcc960 option, 2-58

Y-Z

Yd (Program database) ic960 option, 3-70

Z (Specify PDB) gcc960 option, 2-58

	i960® Processor Compiler User's Guide
	Disclaimer
	Contents
	Chapter 1 The CTOOLS Compilation System
	Features
	Compatibility and Conformance to Standards
	About this Manual
	Audience Description
	Licensing and Copyrights
	UNIX and Windows Conventions

	Customer Service
	Where Do You Go From Here?

	Chapter 2 gcc960 Compiler Driver
	Controlling the Compilation System with gcc960
	Invoking the Compiler with gcc960
	gcc960 Sample Command Lines
	gcc960 Linker Options
	gcc960 and Predefined Macros

	gcc960 and File Use
	Input Files
	Include Files
	Output Files

	.GLD Files
	gcc960 Options
	Option Arguments and Syntax

	Chapter 3 ic960 Compiler Driver
	Controlling the Compilation System with ic960
	Invoking the Compiler with ic960
	ic960 Sample Command Lines
	ic960 Linker Options
	ic960 and Predefined Macros
	ic960 and Environment Variables

	ic960 and File Use
	Input Files
	Include Files
	Temporary Files
	Output Files

	ic960 Options
	Option Arguments and Syntax

	Chapter 4 Program-wide Analysis and Optimization
	Introduction
	Individual and Program-wide Optimizations
	About Profiling

	Creating Program-wide and Module-local Optimizations
	Specifying the Program Database Directory
	Compiling for Program-wide Optimization with the fdb Option
	Global Decision Making and Optimization Using the gcdm Option
	Selecting Modules for Optimization with Substitution Specifications

	Profiling Your Program
	Compiling for Profile Instrumentation with -fprof
	Collecting a Profile
	Building Self-contained Profiles with gmpf960
	Using Profiles During Global Decision Making and Optimization with -gcdm,iprof
	Obtaining Program Coverage Analysis with gcov960

	Using make To Perform Program-wide Optimizations
	Adapting Makefiles for Program-wide Optimization
	Using Makefiles with Program-wide Optimizations for Common Development Tasks

	Runtime Support for Profile Collection
	Profile Initialization

	Chapter 5 Profile Data Merging and Data Format (gmpf960)
	Merging Profile Data
	gmpf960 Invocation
	Profile Format Specification
	Profile Data Structures
	default.pf File Format

	Creating a Runtime Report with gmpf960

	Chapter 6 gcdm Decision Maker Option
	gcdm Option Syntax
	gcdm Option Arguments
	Substitution Controls
	Whole-program Optimization Option (Category 1)
	Module-local Optimization Options (Category 2)
	Miscellaneous Substitution Options (Category 3)
	External Reference Controls
	Inline Level Control
	Input Profile Control
	Fast Memory Controls
	Dryrun Control
	Report Controls

	Module-set Specification

	Chapter 7 Language Implementation
	Data Representation
	Scalars
	Aggregates
	Other Type Keywords

	Calling Conventions
	Definitions
	Parameter Assignment to Registers
	Argument Blocks
	Return Values
	Compiler Implementation

	Object Module Section Use
	Pragmas
	#pragma align [for gcc960 driver]
	#pragma align [for ic960, or for gcc960 with ic960 option]
	#pragma cave
	#pragma compress
	#pragma i960_align [for gcc960 and ic960]
	#pragma inline
	#pragma interrupt
	#pragma isr
	#pragma optimize
	#pragma pack
	#pragma pure
	#pragma section
	#pragma system

	Language Extensions
	Statements and Declarations Inside of Expressions
	Naming an Expression’s Type
	Referring to a Type with typeof
	Generalized Lvalues
	Conditional Expressions with Omitted Middle Operands
	Arrays of Length Zero
	Non-lvalue Arrays Can Have Subscripts
	Arithmetic on Pointers to void and Pointers to Functions
	Non-constant Initializers
	Constructor Expressions
	Declaring Attributes of Functions
	Inquiring about Alignment
	Inline Functions Are as Fast as Macros
	Controlling Names Used in Assembly Code
	Specifying Registers for Local Variables
	Alternate Keywords

	Inline Assembly Language
	Introduction
	Resource Usage
	asm Statements
	asm Functions

	Chapter 8 gcc960 / ic960 Compatibility
	char and short Parameters
	enum Variable Byte Count
	char Types
	Identifying Architectures
	#pragma align
	mic3.0-compat Option
	mic2.0-compat Option

	Chapter 9 Position Independence and Reentrancy
	Position-independent Code and Data
	Position-independent Data
	Position-independent Code
	Example: Position-independent ROM Code
	Guidelines for Writing Relocatable Programs

	Reentrant Functions
	Designing Reentrant Functions

	Chapter 10 Initializing the Execution Environment
	Startup Code
	RAM-based Initialization
	ROM-based Initialization

	Linker Configuration Files
	RAM-based Configuration File
	ROM-based Configuration File

	Chapter 11 Optimization
	Optimization Categories and Mechanisms
	Constants and Expression Evaluation
	Common Sub-expression Elimination
	Constant Expression Evaluation (Constant Folding)
	Dead-code Elimination
	Identity Collapsing
	Constant Propagation

	Calls, Jumps, and Branches
	Branch Optimizations
	Branch Prediction
	Identification of Leaf Functions
	Inline Function Expansion
	Tail-call Elimination

	Loop Optimizations
	Movement of Loop-invariant Code
	Induction Variable Elimination
	Loop Unrolling

	Memory Optimizations
	Global Alias Analysis
	Variable Shadowing

	Register Use
	Local Variable Promotion
	Register Management
	Register Spilling

	Instruction Selection and Sequencing
	Code Compression
	Code Scheduling
	Specialized-instruction Selection

	Program-level Optimization
	Inter-module Function Inlining
	Superblock Formation
	Profile-based Branch-prediction Bit Setting

	Chapter 12 Caveats
	Aliasing Assumptions
	Alignment Assumptions
	Volatile Objects
	Known Problems Using the Compiler
	Type Promotion
	Prototype Scope
	longjmp and Volatile Data
	Incorrect debug information generated for arrays with unspecified bounds

	C Version Incompatibilities
	String Constants Read-only
	No Macro Argument Substitution in Strings
	External Variables and Functions in Blocks
	Combining long with typedef Names
	Using typedef Names in Function Parameters
	Whitespace in Compound Assignment Operators
	Flagging Unterminated Character Constants
	Disguised varargs or stdarg Routines

	Troubleshooting
	Undefined References
	C Interrupt Service Routine Failures
	Preventing Structure Padding
	Breakpoints Inside Interrupt Handlers

	Chapter 13 Messages
	Messages on the Standard Error Device
	Messages in the Listing File

	Glossary
	Index

