
i960 Processor
Software Utilities
User’s Guide
Order Number: 485277-005

Revision Revision History Date

-001 Original Issue. 12/92

-002 Minor corrections. 09/93

-003 Revised for CTOOLS960 R4.5 and GNU/960 R2.4. 05/94

-004 Revised for R5.0. 02/96

-005 Revised for R5.1. 01/97

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any
errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

* Other brands and names are the property of their respective owners.

printed on
recycled paper Copyright  1992-1994, 1996, 1997. Intel Corporation. All rights reserved.

Contents

iii

Chapter 1 Overview
Software Utilities and Related Tools1-1

Compatibility ..1-3
Compatibility Invocation Names1-3

DOS No Longer Supported as a Host................................1-4
Invocation Command-line ..1-4

Invocation Names..1-4
Options, Arguments and Modifiers1-5
File System Dependencies..1-5

Chapter 2 Archiver (arc960, gar960)
Invocation...2-1

Option and Modifier Arguments.....................................2-3
Specifying the Object Module Format............................2-4
Temporary Directory..2-5

Option and Modifier Reference ..2-5

Chapter 3 COFF/ELF/b.out Converter (cof960/objcopy)
Invocation...3-2
Output File Specification ..3-3

Chapter 4 COFF to IEEE-695 Converter (cvt960)
Invocation...4-1
Limitations..4-3

Position-independent Code, Data, and Symbols...........4-3
Archives and Relocatable Objects.................................4-3
Unreferenced Types..4-3

i960 Processor Software Utilities User's Guide

iv

Global Uninitialized Symbols ...4-3
Compilation/Assembly Information4-4
COFF Line Numbers..4-4
COFF Symbol Translation ...4-5

IEEE-695 Built-in Types ...4-5
IEEE-695 Converter Warning Messages............................4-8

Chapter 5 Coverage Analyzer (gcov960)
Invocation...5-1
Invocation...6-1

Chapter 6 Dumper/Disassembler (dmp960, gdmp960)
Dumping Absolute Symbols ...6-5
Archive Support..6-11

Displaying Archive Structure Information.......................6-12
Dumping the Contents of Archive Members6-14

Chapter 7 Linker (lnk960, gld960)
Overview ..7-1
Understanding Memory Blocks and Sections.....................7-2

ELF/DWARF Sections ...7-4
Named BSS Sections ..7-4

Working with Linker Directive Files.....................................7-4
Linker Invocation ..7-6

Specifying Object Files ..7-11
Specifying Libraries ...7-12
Specifying Linker-directive Files7-12
Naming the Output File..7-13
Incremental Linking ...7-13

Object Module Format Compatibilities................................7-14
Link-time Optimization..7-16

Using calljx with the i960 RP Processor7-19
Binding Profile Counters to Non-Standard Sections...........7-19

Contents

v

Environment Variables ...7-20
Library Naming Conventions and Search Order.................7-21

Library Search Order When i960 RP
Architecture Is Selected...7-24

Linker Options Reference ..7-24

Chapter 8 Macro Processor (mpp960)
mpp960 Message Prefixes...8-1
Invoking mpp960..8-2
Lexical and Syntactic Conventions8-5

Names ...8-5
Quoted Strings ..8-5
Other Tokens...8-6
Comments ...8-6

How to Invoke Macros..8-6
Macro Invocation ...8-6
Macro Arguments ..8-7
Quoting Macro Arguments...8-7
Macro Expansion...8-8

How to Define New Macros..8-8
Defining a Macro ...8-8
Arguments to Macros ..8-9
Special Arguments to Macros..8-10
Deleting a Macro ...8-11
Renaming Macros ...8-12
Temporarily Redefining Macros.....................................8-13
Indirect Call of Macros...8-13
Indirect Call of Built-ins..8-14

Conditionals, Loops and Recursion8-14
Testing Macro Definitions ..8-14
Comparing Strings...8-15
Loops and Recursion ..8-16

i960 Processor Software Utilities User's Guide

vi

How to Debug Macros and Input..8-16
Displaying Macro Definitions..8-16
Tracing Macro Calls...8-17
Controlling Debugging Output8-18
Saving Debugging Output ...8-19

Input Control...8-19
Deleting Whitespace in Input ...8-19
Changing the Quote Characters....................................8-20
Changing Comment Delimiters8-21
Saving Input ..8-22

File Inclusion ..8-22
Including Named Files ...8-22
Searching for Include Files ..8-23

Diverting and Undiverting Output8-23
Diverting Output...8-24
Undiverting Output...8-25
Diversion Numbers ..8-26
Discarding Diverted Text ...8-26

Macros for Text Handling ...8-26
Calculating Length Of Strings..8-26
Searching For Substrings ..8-27
Searching for Regular Expressions8-27
Extracting Substrings...8-28
Translating Characters ..8-28
Substituting Text by Regular Expression.......................8-28
Formatted Output ..8-29

Macros for Doing Arithmetic ...8-30
Decrement and Increment Operators8-30
Evaluating Integer Expressions8-30

Running Host Commands ..8-31
Executing Simple Commands..8-31

Contents

vii

Reading the Output of UNIX Commands.......................8-32
Exit Codes ...8-32
Making Names for Temporary Files...............................8-32

Printing Error Messages...8-33
Exiting from mpp960 ..8-34
Compatibility with Other Macro Processors........................8-34

Extensions in mpp960 ...8-34
Facilities in UNIX System V m4 not in mpp9608-36

Chapter 9 Munger (gmung960)

Chapter 10 Name Lister (gnm960, nam960)

Chapter 11 ROM Image Builder (grom960)
Invocation...11-1
Using grom960...11-3
Creating Binary Images..11-4
Converting the Image to Hex Files.....................................11-4

Chapter 12 ROM Image Builder (rom960)
Rommer Invocation ..12-3
Directive Files...12-3
Directive Reference..12-6

Chapter 13 Section-size Printer (gsize960, siz960)
Invocation...13-1

Chapter 14 Statistical Profiler (ghist960)
Invocation...14-2

Appendix A Linker Command Language
Introduction ..A-1
Expressions and Operators..A-2
Linker Directives Reference ...A-4

MEMORY: Configuring Memory RegionsA-5
Default Linker Allocation..A-7

i960 Processor Software Utilities User's Guide

viii

SECTIONS: Defining Output Sections...........................A-8
FORCE_COMMON_ALLOCATION: Allocating
Space for Common Symbols ...A-25
DEFINED: Finding Symbols..A-25
ADDR, ALIGN, NEXT: Finding Addresses....................A-25
SIZEOF: Finding Section SizesA-27
STARTUP: Specifying a Startup FileA-27
ENTRY: Defining the Entry Point..................................A-28
PRE_HLL(): Specifying Libraries to be
Processed Before the High-level Libraries.....................A-28
HLL: Specifying High-level LibrariesA-29
SYSLIB: Specifying Low-level Libraries........................A-31
[NO]FLOAT: Supporting Floating-point OperationsA-31
SEARCH_DIR: Extending the Search Path..................A-32
INCLUDE: Including Additional Directive Files..............A-32
TARGET: Using the Search Path for Directive Files.....A-33
CHECKSUM: Preparing for the Bus Confidence Test ..A-33
OUTPUT: Naming the Output FileA-34

Linker Directive Files ..A-35

Appendix B Finding Information in Object Files
Using the Common Object File Library: COFLB-1

Extracting File Header InformationB-2
Function Reference ...B-3

Appendix C Common Object File Format (COFF) and
 Common Archive File Format (CAFF)
Characteristics of COFF...C-1
Definitions and Conventions...C-2

Sections...C-2
Physical and Virtual Address ...C-3

File Header...C-3
File Header Declaration ...C-4

Contents

ix

File Header Flags ..C-5
File Type Numbers ..C-6
Execution File Header DeclarationC-7

Section Headers ..C-7
Section Header Declaration...C-8
Section Header Flags..C-9
Sections...C-11

Relocation ..C-11
Relocation Entry Declaration ...C-12
Direct Relocation ...C-13
IP-relative Relocation ..C-13

Line Number Entry ...C-14
Symbol Table ...C-15

Symbol Table Entries ..C-16
Structure for Symbol Table Entries................................C-17
Symbols and Inner Blocks .bb/.ebC-18
Symbols and Functions .bf/.ef, .targetC-20
Special Symbols..C-20
Symbol Name..C-22
Storage Classes ..C-23
Storage Classes for Special Symbols............................C-25
Call Optimization ...C-25
Symbol Value Field..C-26
Section Number Field ..C-27
Section Numbers and Storage Classes.........................C-28
Type Entry ...C-30
Type Entries and Storage ClassesC-32

Auxiliary Table Entries ...C-33
Filenames..C-35
Sections...C-35
Tag Names..C-36

i960 Processor Software Utilities User's Guide

x

End of Structure...C-36
Functions...C-36
Arrays ..C-37
End of Blocks and Functions ...C-38
Beginning of Blocks and Functions................................C-38
Names Related to Structures, Unions, and
Enumerations ..C-38
Auxiliary Entry Declaration...C-39

String Table..C-41
Access Routines ..C-42
Archive Library Format ...C-42
The Archive Identification String...C-43
Archive Members ...C-44
The Symbol Table ..C-47

Appendix D HP/MRI IEEE 695 Object File Format
Terminology ...D-2

Nomenclature ..D-3
Number Format..D-3
Name Format...D-3
Information Variables...D-4
Line Numbers ..D-5
Types...D-5

Object File Components...D-10
Header Part ...D-11
AD Extension Part ...D-14
Environmental Part ..D-15
External Part..D-17
Section Part ...D-18
Debug Information Part ...D-19
Data Part ...D-30
Trailer Part...D-32

Contents

xi

HP/MPI IEEE-695 Format Object File SemanticsD-32
AD Extension Part and Environment Part......................D-33
Public/External Part ...D-33
Section Part...D-33
Debug Part ..D-34
BB1 Block..D-34
BB3 Block..D-34
BB4 and BB6 Blocks ...D-35
BB5 and BB10 Blocks ...D-35

Miscellaneous Records ..D-37
Module Miscellaneous Records.....................................D-38
Variable Miscellaneous RecordsD-38
Procedure Miscellaneous RecordsD-39
General Syntax Rules..D-39
Parameters In Miscellaneous RecordsD-39
Optional Parameter Fields...D-42
Codes for Miscellaneous RecordsD-43
Policies for Adding and Modifying Miscellaneous
Records ...D-43
Policies for Generating and Reading Miscellaneous
Records ...D-44

Index

Examples
C-1 File Header Declaration...C-5
C-2 Section Header DeclarationC-9
C-3 Relocation Entry Declaration.....................................C-12
C-4 Line Number Grouping ..C-14
C-5 Line Number Entry DeclarationC-15
C-6 COFF Symbol Table..C-16
C-7 Symbol Table Entry DeclarationC-17
C-8 Nested Blocks ...C-19

i960 Processor Software Utilities User's Guide

xii

C-9 Example of a Symbol Table.......................................C-19
C-10 Auxiliary Symbol Table Entry.....................................C-39
C-11 Archive Member Headers ..C-45

Figures
2-1 Archive Member Replace and Update Operations2-6
7-1 C Program Storage..7-3
12-1 rom960 Rommer Operations12-1
12-2 Data Placement in Memory Image12-2
12-3 Dimensions of a Memory Image12-20
12-4 split Command Example..12-23
C-1 Object File Format ...C-2
C-2 Flag Field Values...C-10
C-3 String Table ...C-42
C-4 An Archive Library ...C-43
C-5 An Archive Member ...C-44
C-6 The Archive Symbol Table ..C-48

Tables
1-1 i960 Processor Software Utilities...............................1-2
1-2 Invocation Names for Backwards Compatibility.........1-3
2-1 Archiver Options..2-2
2-2 Archiver Option Modifiers ..2-3
2-3 Verbose Modifier Information Display........................2-19
3-1 cof960 / objcopy Options...3-2
4-1 cvt960 Options ..4-2
4-2 Mappings Between COFF and IEEE-695

Built-in Types...4-6
5-1 gcov960 Controls ..5-2
5-2 gcov960 Options ...5-3
6-1 dmp960/gdmp960 Options ..6-2
7-1 Linker Options ...7-7
7-2 Branch-and-link and System-call Optimization7-17

Contents

xiii

7-3 Supported Input/Output Architecture Combinations..7-26
9-1 gmung960 Options..9-2
10-1 gnm960/nam960 Options..10-3
10-2 Section Codes...10-4
11-1 grom960 Options...11-2
11-2 Section Specifications ...11-3
12-1 rom960 Directives ...12-4
13-1 gsize960/siz960 Options ...13-2
14-1 ghist960 Options ...14-3
14-2 ghist960 Buckets...14-4
15-1 str960/gstrip960 Options ...15-2
A-1 Order of Precedence for Operators...........................A-2
A-2 Linker Directives..A-4
A-3 Memory and Section AttributesA-7
A-4 SECTION Keywords..A-10
A-5 COFF Binary Representation of NOLOAD,

DSECT, COPY Sections ...A-23
A-6 ELF Binary Representation of NOLOAD,

DSECT, COPY Sections ...A-24
B-1 Common Object File Library (COFL) Functions.........B-1
B-2 Common Object File Interface MacrosB-3
C-1 File Header Contents ..C-4
C-2 File Header Flags..C-5
C-3 Architecture Types of File Header FlagsC-6
C-4 Standard Output (a.out) File HeaderC-7
C-5 Section Header Contents ..C-8
C-6 Section Header Flags..C-10
C-7 Relocation Entry Format..C-11
C-8 Relocation Types ..C-12
C-9 Symbol Table Entry Format.......................................C-17
C-10 Special Symbols in the Symbol TableC-21

i960 Processor Software Utilities User's Guide

xiv

C-11 Symbol Name Field ...C-23
C-12 Storage Classes ..C-23
C-13 Restricted Storage ClassesC-25
C-14 Symbol Value Field ...C-26
C-15 Section Number Field ..C-28
C-16 Section Number and Storage ClassC-29
C-17 Fundamental Types...C-31
C-18 Derived Types Field Values.......................................C-31
C-19 Type Entries by Storage ClassC-32
C-20 Auxiliary Symbol Table Entries..................................C-34
C-21 Format for Auxiliary Table EntriesC-35
C-22 Tag Name Entries ...C-36
C-23 Table Entries for End of StructureC-36
C-24 Table Entries for Function ...C-37
C-25 Table Entries for Array...C-37
C-26 End of Block and Function EntriesC-38
C-27 Beginning of Block and Function Entries...................C-38
C-28 Entries for Structures, Unions, and Enumerations.....C-39
C-29 Size and Contents of Archive Member Headers........C-46
D-1 Initial Bytes of IEEE Elements...................................D-2
D-2 HP/MRI IEEE-695 Object-file Representation of

High-level Types..D-5
D-3 HP/MRI IEEE-695 Object-file Built-in Types..............D-8
D-4 Processor Names..D-12
D-5 Attribute Definitions for the AD Extension PartD-15
D-6 Attribute Definitions for the Environmental Part.........D-16
D-7 Attribute Definitions for the External PartD-18
D-8 Summary of Permitted Block NestingD-22
D-9 Attribute Numbers, Blocks, and DescriptionsD-27
D-10 Miscellaneous Record Codes....................................D-46

Overview

1-1

1
This chapter introduces the i960 processor software utilities and their
documentation. It also describes the conventions used throughout this
manual.

Software Utilities and Related Tools

The i960 processor software utilities are part of a toolset for developing
embedded applications for the i960 Sx, Kx, Cx, Jx, Hx, and RP processors.

This toolset contains a C compiler, several libraries, an assembler, a
debugger, and the utilities described in this manual and in on-line
hypertext. For information on all the related documentation, including the
tools hypertext, see your Getting Started with the i960 Processor
Development Tools manual.

Each utility also has a help option that displays a summary of the utility's
invocation options.

Table 1-1 lists the software utilities that are described in this manual.

i960 Processor Software Utilities User's Guide

1-2

1
Table 1-1 i960 Processor Software Utilities

Utility Names Function See

archiver arc960,
gar960

creates and maintains libraries
and archives.

Ch. 2

converters cof960
/objcopy,
cvt960

reorder bytes as big-endian or
little-endian and convert between
b.out format, COFF, ELF, and
IEEE-695 format.

Ch. 3, 4

coverage
analyzer

gcov960 facilitates testing of i960 processor
software applications.

Ch. 5

dumper/
disassembler

dmp960,
gdmp960

disassembles and displays object
and archive file contents.

Ch. 6

linker gld960,
lnk960

combines object files into
executable or relocatable files.

Ch. 7

macro
processor

mpp960 creates and interprets macros. Ch. 8

munger gmung960 modifies text section and/or data
section load address(es) in an
object file.

Ch. 9

name lister gnm960,
nam960

prints object file and library symbol
table information.

Ch. 10

ROM image
builders

rom960,
grom960

create a memory image file from
an object file.

Ch. 11,
12

section-size
printer

size960,
gsize960

displays section and file sizes of
object files and libraries.

Ch. 13

statistical
profiler

ghist960 generates information about
application's runtime behavior.

Ch. 14

stripper gstrip960,
str960

removes symbolic information
from an object file.

Ch. 15

Overview

1-3

1
Compatibility

Code generated by Release 5.1 is fully compatible with code generated
with the Release 5.0 tools. Further, source programs compiled with
Release 5.0 are accepted by Release 5.1 without change. Almost all
environment variables and invocation options are unchanged. Object
modules generated with Release 5.0 can be linked with objects created
with Release 5.1. However, object modules compiled with Release 5.0 for
the RP processor should be recompiled with Release 5.1 in order to
generate objects that are forward compatible with future RP processors.

The software utilities also accept output from CTOOLS960 Release 3.0
and later, and from GNU/960 Release 1.2 and later.

Compatibility Invocation Names

Table 1-2 lists the invocation names to use for backwards compatibility
with GNU/960 Release 1.3 and later, and for backwards compatibility
with CTOOLS960 Release 3.5 and later. (Only tools with more than one
name are listed in this table.)

In some cases, using the alternate invocation name causes the tool to
behave differently. Invocation name details are provided in the chapter for
the tool in question.

Table 1-2 Invocation Names for Backwards Compatibility

Utility GNU/960 CTOOLS960 See

archiver gar960 arc960 Ch. 2

b.out / COFF / ELF converter objcopy cof960 Ch. 3,4

dumper/disassembler gdmp960 dmp960 Ch. 6

linker gld960 lnk960 Ch. 7

name lister gnm960 nam960 Ch. 10

section-size printer gsize960 size960 Ch. 13

stripper gstrip960 str960 Ch. 15

i960 Processor Software Utilities User's Guide

1-4

1
DOS No Longer Supported as a Host

CTOOLS no longer supports DOS as a host. For PC development,
CTOOLS now supports Microsoft* Windows* NT* and 95. These
platforms provide a far more robust development environment, and allow
PC users to run CTOOLS without the PharLap* software required by
previous versions.

Invocation Command-line

The utility programs and tools described in this manual are command-line
driven. This means that to use these tools, you must either:

• type invocation commands in at your host system’s command prompt;
• use command scripts, response files, or batch files that can execute on

your host; or
• use a tool such as Microsoft nmake, Opus make, or UNIX* make.

There are two similar styles of invocation command-line, resembling other
Windows and UNIX program invocation commands. The primary
difference between the Windows and UNIX style command-lines is that
case (upper and lower) is significant in UNIX paths, directories, and
filenames, whereas Windows does not recognize case. The other
difference between Windows and UNIX style command-lines involves
punctuation of pathnames and invocation options, as described below.

Invocation Names

The command-line for each utility consists of a program name (e.g.,
lnk960 or mpp960), options (optional), and filenames identifying tool
input and/or output. Some tools have more than one invocation name, for
compatibility with earlier versions of the tools. (See Compatibility on
page 1-1.)

Overview

1-5

1
Options, Arguments and Modifiers

Invocation command options must be preceded with a special character
that identifies them as options. On Windows, this can be either the hyphen
character (-) or the slash (/) character. On UNIX, this is the hyphen
character. Case is significant in command options, arguments and
modifiers, unless the argument is a Windows pathname element. Some
invocation options require or accept arguments, and some invocation
options have optional modifiers. Some of the tools can be used without
options, modifiers or filenames, depending on the tool’s default settings.
Refer to the chapter describing the desired software tool for information
on its invocation options.

File System Dependencies

You must observe the conventions and restrictions of your host
environment’s file system. Since the example commands in this manual
are from the UNIX environment, they work in Windows only if you use
the backslash (\) character in pathnames, rather than the slash (/)
character.

Archiver (arc960, gar960)

2-1

2
Use the archiver to create and maintain archive files of:

• ASCII and COFF files (in text or mixed-format archives)
• COFF files (in COFF libraries)
• b.out-format files (in b.out libraries)
• ELF-format files (in ELF libraries)

For information on linking with libraries, see the linker chapter.

NOTE. To ensure correct formatting, delete and recreate b.out-format
libraries created with a GNU/960 archiver before Release 1.3.

Invocation

Invoke the archiver as:





arc960

gar960
 - option [- modifier...] archive [name...]

arc960 invokes the archiver, providing backwards
compatibility with CTOOLS960 R3.5 or later.

gar960 invokes the archiver, providing backwards
compatibility with the GNU/960 R1.2 or later.

option is one or more options listed in Table 2-1.

modifier is one or more modifiers listed in Table 2-2.

i960 Processor Software Utilities User's Guide

2-2

2
archive is the archive filename. Unless you specify a

complete pathname, the archive must be in the
current directory.

names is one or more member or external filenames.
Note that when you do not specify a filename or
use the -F option, the archiver creates a COFF
archive.

Table 2-1 Archiver Options

Option Effect See Page

d deletes members from the archive. 2-10

F specifies the desired object module format for the an empty library.
Object formats are b.out, COFF, and ELF.

2-10

h displays help information. 2-11

m moves members to the end of the archive or to the specified
position.

2-13

p prints members in the archive. 2-14

r replaces existing members or adds new members. 2-15

s creates or updates library symbol table. 2-16

t prints member information or the archive table of contents. 2-17

u updates existing members by the modification dates, or adds new
members.

2-18

V reports the archiver version and continues processing. 2-20

v960 reports the archiver version and stops processing. 2-20

x extracts members to files without modifying the archive. 2-21

z suppresses time stamp in archive header. 2-22

Archiver (arc960, gar960)

2-3

2
Table 2-2 Archiver Option Modifiers

Modifier Used With Effect See Page

a pname r, u, or m adds or positions members after the pname
member.

2-7

b pname
i pname

r, u, or m adds or positions members before the pname
member.

2-8

c r or u suppresses the archive-creation message. 2-9

l any option uses the current working directory for temporary
files.

2-12

o x uses the member last-modified date as the
extracted file-creation date.

2-14

s any option
or none

creates or updates the library symbol table. 2-16

u r updates members only when the member last-
modified date is older than the file last-modified
date.

2-18

v any option reports the archiver progress. 2-19

Option and Modifier Arguments

Invoke the archiver with an option and one or more modifiers. Some
modifiers can operate without the option (see Table 2-2).

Some modifiers require arguments. The archiver interprets any string
following such a modifier as the argument. Omitting an argument at the
end of the command line causes an error. For example:

arc960 -rb xy
No archive name specified

i960 Processor Software Utilities User's Guide

2-4

2
Specifying the Object Module Format

By default the archiver creates libraries in COFF format. However, the
default is overridden when you:

• specify a different format with the -F option. (See page 2-10)

• specify a object file on the command line that is not in COFF format.

For example, to create an empty archive in COFF format enter the
command:

gar960 -u libname .a

To create an empty library in ELF format, use the -F option:

gar960 -Felf -u libname .a

However, when you instruct the archiver to add a non-COFF object file to
a new archive, the archiver uses the object file’s format. For example, if
you enter the command:

gar960 -u libname .a elf_omf_file.o

the archiver creates a new library in ELF format. When you use the -F

option to specify a library format and try to add an object file in a different
format, the archiver uses the format of the object file. For example:

gar960 -Felf -u libname .a coff_omf_file.o

creates a new library in COFF format.

Once a library is created, all object files within it must be of the same
format. For example, trying to add an ELF format object file to a COFF
format archive produces an error message.

Archiver (arc960, gar960)

2-5

2
Temporary Directory

The archiver creates and deletes temporary files. You can choose the
temporary working directory:

• Specify the local (l) modifier with a directory argument in the
archiver invocation.

• Define the TMPDIR environment variable. When you do not use the l

modifier, the archiver uses the directory specified in TMPDIR.
• Without either l or TMPDIR, the archiver uses the directory specified

in P_tmpdir , defined in the stdio.h standard C header file.

Option and Modifier Reference

You can provide the archiver with the names of external files that you
would like added to the archive, or you can tell the archiver the names of
any archive members that you would like extracted into external files.

Use the options and modifiers for the following operations:

• To create an archive or to modify the archive members, use r or u
(see Figure 2-1).

• To modify an archive without modifying the members or external
files, use m or s .

• To delete the members, use d.
• To modify the external files, use x .
• To print information about the archive and its members without

modifying the archive contents, use p or t .
• To display the archiver operation, use v .
• To display the archiver version information, use V or v960 .

i960 Processor Software Utilities User's Guide

2-6

2
Figure 2-1 Archive Member Replace and Update Operations

OSD308

Yes

No

Start

(r or u)

End
Yes

No

No

Yes
No

(r Only)

Yes

(r or u)

(u Only)(u Only)

Create
Archive

Archive
Exists?

Capture Next
Filename in

Namelist

Last
Filename

Processed?

Filename =
Any Member?

Add New
Member to

Archive

Replace
Existing Member

in Archive

File More
Recent Than

Member?

u Only?

Archiver (arc960, gar960)

2-7

2
This section describes the options and modifiers alphabetically.

a: After
Modifier: Positions
members after a
specified member

a pname

pname is the name of an archive member used as a
positional reference.

Discussion

By default, the archiver places new members at the end of the archive. To
place new archive members immediately after an existing member, use a

with replace (r) and update (u). To reposition existing members, use a

with move (m).

If you specify more than one position modifier, the last one takes effect.

Examples

1. The following example places file2.o immediately after file1.o in
libx.a :

arc960 -ma file1.o libx.a file2.o

2. The following example replaces existing members in libo.a with
corresponding files from the current working directory, positioning
any new members immediately after file1.o :

arc960 -ra file1.o libo.a *.o

i960 Processor Software Utilities User's Guide

2-8

2
Related Topics

Before
Insert

Move
Replace

Update

b: Before
i: Insert
Modifier: Positions
members before a
specified member.

b pname
i pname

pname is the name of the archive member used as a
positional reference.

Discussion

By default, the archiver places new members at the end of the archive. To
place new archive members immediately before an existing member, use b

or i with replace (r) and update (u). To reposition existing members, use
b or i with move (m).

If you specify more than one position modifier, the last one takes effect.

Examples

1. The following commands both place file2.o immediately before
file1.o in libx.a :

arc960 -mb file1.o libx.a file2.o
arc960 -mi file1.o libx.a file2.o

Archiver (arc960, gar960)

2-9

2
2. The following example replaces existing members in libo.a with

corresponding files from the current working directory, positioning
any new members immediately before file1.o :

arc960 -rb file1.o libo.a *.o

Related Topics

After
Insert

Move
Replace

Update

c: Create
Modifier: Suppresses
the archive creation
message

c

Discussion

To suppress the archive creation message, specify c .

Using the replace (r) or update (u) option with a nonexistent archive
filename creates a new archive. The archiver displays a message such as
the following on stdout :

arc960: creating archive

archive is the name of the new archive that you
specified.

i960 Processor Software Utilities User's Guide

2-10

2
Example

Assuming that libx.a does not already exist, the following example
creates an empty libx.a archive without displaying an archive creation
message:

arc960 -rc libx.a

d: Delete
Option: Deletes archive
members

d

Discussion

To delete all members specified on the command-line, use d.

Example

The following example deletes file1.o from libx.a :

arc960 -d libx.a file1.o

Archiver (arc960, gar960)

2-11

2
F: Library Format
Option: Specifies the
OMF for an empty
library

F{elf | coff | bout}

Discussion

This option specifies the desired object module format for the empty
library. Object formats are b.out, COFF, and ELF.

Example

The following example creates an ELF archive with member libx.c.

arc960 r -Felf libx.a libx.c

h: Help
Option: Displays help
information

h

Discussion

To display help information for the archiver, use the h option.

i960 Processor Software Utilities User's Guide

2-12

2
l: Local
Modifier: Places
temporary files in the
current directory

l

Discussion

To put temporary files in the current directory, use l . The archiver selects
a temporary working directory as described in “Specifying the Object
Module Format

By default the archiver creates libraries in COFF format. However, the
default is overridden when you:

• specify a different format with the -F option. (See page 2-10)

• specify a object file on the command line that is not in COFF format.

For example, to create an empty archive in COFF format enter the
command:

gar960 -u libname.a

To create an empty library in ELF format, use the -F option:

gar960 -Felf -u libname.a

However, when you instruct the archiver to add a non-COFF object file to
a new archive, the archiver uses the object file’s format. For example, if
you enter the command:

gar960 -u libname.a elf_omf_file.o

the archiver creates a new library in ELF format. When you use the -F
option to specify a library format and try to add an object file in a different
format, the archiver uses the format of the object file. For example:

gar960 -Felf -u libname.a coff_omf_file.o

Archiver (arc960, gar960)

2-13

2
creates a new library in COFF format.

Once a library is created, all object files within must be of the same
format. For example, trying to add an ELF format object file to a COFF
format archive produces an error message.

Temporary Directory” on page 2-4.

Example

The following example replaces file1.o and file2.o in libx.a , using
the current directory for temporary files:

arc960 -rl libx.a file1.o file2.o

m: Move
Option: Repositions
archive members

m

Discussion

To reposition members within the archive, use m. To move members
relative to another member, specify the after (a), before (b), or insert (i)
modifier. Omitting the position modifier moves the members to the end of
the archive.

Example

The following example places file1.o at the end of libx.a :

arc960 -m libx.a file1.o

i960 Processor Software Utilities User's Guide

2-14

2
o: Output Date
Modifier: Extracts a
member using the last-
modified date

o

Discussion

When extracting a member to a file, the archiver uses the current time and
date as the file-creation time stamp. To use the member last-modification
time and date, specify o with x (extract).

Example

The following example extracts the file.o member, creating the file.o

external file with the time and date the file.o member was last modified:

arc960 -xo libx.a file1.o

p: Print
Option: Prints archive
members

p

Discussion

To display the member contents on stdout , use p. To display all the
members, specify no member name.

To display each member name before its contents, specify the v (verbose)
modifier.

Archiver (arc960, gar960)

2-15

2
Example

The following example displays the source1.s member of lib.src :

arc960 -pv lib.src source1.s

r: Replace
Option: Replaces
existing archive
members and adds new
members

r

Discussion

To replace or add a member, regardless of the last-modification dates, use
r . Existing members specified on the command line are replaced. New
members specified on the command line are added. To replace existing
members from all filenames in the current directory, specify no member
names.

To designate a location for new members relative to existing members, use
the after (a), before (b), or insert (i) position modifier.

To create an archive, specify r for an archive that does not exist. The
following creation message appears:

arc960: creating archive

archive is the name of the archive created.

You can suppress the creation message with the create (c) modifier.

Creating an archive includes creating the new archive symbol table.

i960 Processor Software Utilities User's Guide

2-16

2
Examples

1. The following example adds file1.o before file2.o in libx.a :

arc960 -rb file2.o libx.a file1.o

2. The following example archives all .o files in the current working
directory by adding to or replacing members in libx.a . The verbose
(v) option displays messages on the terminal screen, indicating
whether members are added (a -) or replaced (r -).

arc960 -rv libx.a *.o

r - hello.o
r - proto.o
r - prog_84a.o
a - str_b.o
a - str_eg2.o
a - str_eg3.o
a - str_eg4.o

s: Symbol Table
Option and modifier:
Rebuilds the archive
symbol table

s

Discussion

To rebuild the symbol table, use s . You need not specify s with the d, r
or u option, since the archiver updates the symbol table automatically.

The s option has no effect on text archives.

Archiver (arc960, gar960)

2-17

2
Example

The following example rebuilds the symbol table of libo.a :

arc960 -s libo.a

t: Table of Contents
Option: Lists the
member names

t [names]

Discussion

To list all the members in an archive or to list specified members, use t .
The names argument lists the members for which you want information.
To print a table of contents for all members, omit names.

The information about specified members appears on stdout .

To list the names, permissions, sizes, dates and times of the specified
members, specify the verbose (v) option. Otherwise, the archiver displays
only the member names.

Example

The following example copies the libs.a table of contents to
contents.txt in the current working directory:

arc960 -t libs.a > contents.txt

i960 Processor Software Utilities User's Guide

2-18

2
u: Update
Option or Modifier:
Updates archives by
comparing the file and
member dates

u

Discussion

To add or replace members with newer versions, specify u. List specific
members to add or replace. Omitting the member list updates only the
members with corresponding external filenames in the current directory.

Updating replaces a member only when the date and time stamps on the
external file are newer than on the member.

NOTE. The u option has the same effect both as a separate option and as
a modifier of the replace (r) option.

Examples

1. The following example places all .o files from the current working
directory into libo.a . Existing members are updated and new
members are added.

arc960 -u libo.a *.o

2. The following example uses u as a modifier for the replace (r) option,
updating file.o only if the external file is more recent than the
archived version:

arc960 -ru libx.a /newfiles/file.o

Archiver (arc960, gar960)

2-19

2
Related Topic

Replace

v: Verbose
Modifier: Prints the
archiver progress
information

v

Discussion

For complete information about the archiver operation, specify v . The
verbose information is specific to the option you specify, as shown in
Table 2-3.

Table 2-3 Verbose Modifier Information Display

Control Screen Display Meaning

d (delete) d - name removes a member

m (move) m - name moves a member within the archive

r (replace) and u
(update)

r - name
a - name

replaces a member
adds a member

x (extract) x - name extracts a member into an external file

p (print) prints the member name and contents

t (toc) prints the archive table of contents

NOTE: name is the name of the processed archive member.

i960 Processor Software Utilities User's Guide

2-20

2
Example

The following example replaces existing members in libx.a with the
corresponding files in the current directory, placing new members before
file1.o . As new members are added and existing members replaced, the
archiver generates appropriate messages.

arc960 -vrb file1.o libx.a *.o

On a Windows host, the output is:

r - file1.o
a - t.o
a - file2.o
a - file3.o
a - file4.o

V, v960: Version
Option: Displays the
archiver version number
and creation date







V

v960

Discussion

To display a sign-on message during archiving, use V. After displaying
the message, the archiver continues processing.

To display the message without archiving, use v960 . You need not
provide any other input. After displaying the message, the archiver stops.

The message includes the version number of the archiver and the date and
time the archiver was created.

Archiver (arc960, gar960)

2-21

2
Example

The following command displays the archiver version information and
continues processing:

arc960 -V

The following is a sample message:

Intel 80960 Archiver n.n, Thu Oct 19 15:14:07 EDT 199n

x: Extract
Option: Extracts
archive members to files

x

Discussion

To copy members to external files in the current directory, use x . To
extract all members, list none on the command line. The contents of the
copied archive member are not affected.

The archiver overwrites files in the working directory with the same
names as the copied members. If no such files exist, the archiver creates
them. The extracted files retain the file attributes stored in the archive,
including the modification date and time. To retain the time stamp of
when the file was recorded in the library, use the o option.

Example

The following example extracts all members of libs.a into the current
directory. The verbose (v) modifier displays the name of each member
extracted.

arc960 -xv libs.a

i960 Processor Software Utilities User's Guide

2-22

2
z: Suppress Time Stamp
Option: Suppresses
time stamp in the
archive header

z

Discussion

To suppress the time stamp in the archive header, use the z option.

Example
arc960 -z libs.a

COFF/ELF/b.out Converter
(cof960/objcopy)

3-1

3
cof960 and objcopy convert header information in object files to allow
greater portability between hosts. Note that cof960/objcopy does not
change the data portion of a file. The converter takes an input file and
creates an output file with one of these conversions:

big-endian byte order to little-endian or vice-versa.

• COFF to b.out format or vice-versa.
• ELF to b.out or vice-versa.
• ELF to COFF or vice-versa.

Or you can instruct the converter to remove relocation and symbolic
information to reduce code size of debugged objects.

Changing the byte order may be necessary for symbolic debugging, and
for examination with common object format library (COFL) tools and
other utilities. In such cases, COFF object-file byte order may need to
match the host system's byte order. For example, certain debuggers
require it, as do the tools COFL and cvt960.

NOTE. The converter does not initialize the space between ELF sections.
Although this does not affect the validity of the ELF file, it can produce
unexpected differences between otherwise identical files. Use the
dumper/disassembler (gdmp960/dmp960) with the -m option to determine
the location of these gaps in an object file.

i960 Processor Software Utilities User's Guide

3-2

3
Invocation

Invoke the cof960/objcopy converter as:







cof960

objcopy
 [- option]... input [output]

cof960 invokes the converter for backwards
compatibility with CTOOLS960 R3.5 and later.

objcopy invokes the converter for backwards
compatibility with GNU/960 R1.3 and later.

option is any option listed in Table 3-1.

input is the input file.

output names the output file. Without an output
filename specification, the converter overwrites
the input file.

Table 3-1 cof960 / objcopy Options

Option Effect

b generates big-endian output, regardless of the input byte order.

c copies the file rather than moving it.

C strips CCINFO from output.

Fbout
Fcoff
Felf

specifies the output format, regardless of the input format.

• Fbout generates b.out-format output.
• Fcoff generates COFF output.
• Felf generates ELF output.
Omitting F leaves the format unchanged. Changing the file format removes the
relocation information and symbol table.

h generates an output byte order matching the host-system byte order, regardless of
the input byte order.

help displays help information and exits.

continued ☛

COFF/ELF/b.out Converter (cof960/objcopy)

3-3

3
Table 3-1 cof960 / objcopy Options (continued)

Option Effect

J Compresses the symbol table, merges duplicate tags, and compresses the string
table (COFF files only).

l generates little-endian output, regardless of the input byte order.

p overwrites the input files with the converted output.

q suppresses printing status information during conversion.

r converts little-endian input to big-endian output. Using r with big-endian input
causes an error.

S removes all relocation and symbol-table information. Do not use S when
converting a library or other relocatable files, as it renders the files useless.

v displays progress information during the conversion (converter lists the action
taking place).

V displays (on stdout) the converter version number and the date and time the
converter was created, then continues processing.

v960 displays (on stdout) the converter version number and the date and time the
converter was created, then stops processing.

x removes the local symbols generated by the gcc960 compiler.

z uses Time Zero instead of the current time and date for the COFF output-file time
stamp. Time Zero is 4:00, 31 December, 1969.

Output File Specification

You can direct the converted output either to overwrite the input or to
produce a different file:

• To put the converted output in another file, preserving the input file,
follow the input filename with the output filename in the invocation.
For example, the following puts the big-endian conversion of
lfile.o into bfile.o :

cof960 -b lfile.o bfile.o

i960 Processor Software Utilities User's Guide

3-4

3
• To overwrite the input files, specify the p option. When converting

the file contents in place, you can provide multiple input files for each
converter invocation. Separate the input files with spaces. For
example, the following converts file1.o , file2.o , and file3.o

from little-endian to big-endian:

cof960 -bp file1.o file2.o file3.o

COFF to IEEE-695
Converter (cvt960)

4-1

4
The COFF-to-IEEE converter (cvt960) converts files in Common Object
File Format (COFF) to IEEE-695 format. The IEEE-695 format conforms
to the IEEE-695 Object Module Format Specification, Revision 4.0,
Copyright 1987-1989, by Microtec Research Incorporated and Hewlett-
Packard. Note that cvt960 cannot translate b.out or ELF format files into
IEEE-695 format.

cvt960 requires that the input COFF file provided for translation be in
host-endian orientation. Use objcopy/cof960 to translate the input file into
host-endian orientation prior to executing cvt960.

Invocation

To convert files in common object file format (COFF) to IEEE-695
format, invoke cvt960 with the following syntax:

cvt960 [- option]...

cvt960 invokes the converter.

option is one or more of the options listed in Table 4-1.

NOTE. To convert a file named a.out , putting the IEEE-695 format
output in a.x , invoke the converter with no options.

i960 Processor Software Utilities User's Guide

4-2

4
Table 4-1 cvt960 Options

Option Effect

a converts files for use with the MRI Xray user interface (pre-X263 and earlier
versions).

Aarch specifies an 80960 architecture tag for the IEEE-695 output file. Valid arch
values are CORE0, CORE1, CORE2, CORE3, SA, SB, KA, KB, CA, CF, JA,
JD, JF, HA, HD, HT, and RP. See Getting Started for a description of the new
CORE0-CORE3 group architecture options.

c specifies emitting column zero for line entries rather than one.

h displays help information.

i input specifies an input COFF file. The default input filename is a.out.

o output names the IEEE-695 output file. The default output file is the input filename
with the extension replaced by .x. When the input filename has no suffix, the
converter appends .x.

s suppresses the IEEE-695 public and debug parts. The converted file contains
no line number, symbol table, or debug information.

V displays converter version information and continues processing.

v960 displays converter version information and stops processing.

w suppresses warning messages.

z writes constant time stamp (Time Zero) and command line to output file. Time
Zero is 4:00, 31 December, 1969.

Examples

1. The following converts a.out to a.x :

cvt960

2. The following displays the converter version information and
translates hpx.in into hpx.x in /e/asm_tests/cvt_960 :

cvt960 -V -i /e/asm_tests/cvt_960/hpx.in

3. The following translates a.out into hpx.out , stripping the debug
information:

cvt960 -s -o /e/asm_tests/cvt_960/hpx.out

COFF to IEEE-695 Converter (cvt960)

4-3

4
Limitations

This section describes parts of the COFF, the converter, or the IEEE-695
format that can cause conversion problems.

Position-independent Code, Data, and Symbols

The converter translates position-independent code and data correctly, but
position-independent code symbols and position-independent data symbols
lose the flags that mark them as position-independent.

Archives and Relocatable Objects

Use the converter only on COFF absolute-executable load modules. The
converter does not translate archives or relocatable objects.

Unreferenced Types

The converter does not produce type definitions for high-level types that
are not referenced. This omission helps to reduce the size of the
IEEE-695 module where the C #include mechanism has produced a
large number of unreferenced type definitions, such as structure tags.

Global Uninitialized Symbols

With IEEE-695, every symbol is owned by some source module. The
structure of the COFF symbol table, however, dictates that symbols for
global, uninitialized variables belong to no specific source module. In
order to translate COFF global variables, the converter produces a module
in .bss strictly for symbols that are not accounted for in any other
module. This module is named .global_non_init . A single-module
section is produced for .global_non_init , which extends from the
lowest-addressed symbol in the module to the end of the .bss section.

i960 Processor Software Utilities User's Guide

4-4

4
Compilation/Assembly Information

COFF does not include source file path information, and the compiler and
assembler tools before V3.0 do not supply the time of compilation and
assembly for source modules. The converter does not supply this
information.

COFF Line Numbers

COFF does not provide column information for source coordinates and the
converter does not provide that information. Column numbers in the
IEEE-695 output module are 0.

The converter translates each COFF line-number record to a IEEE-695
ATN/ASN pair, possibly causing one-to-many mappings in the output
module numbers, as in the following examples:

• COFF source-line information provides the same code address for the
line of a function block's { token and the first executable line of code.
Using the code fragment below, for example, the converter puts the
line containing { and the line containing int foo = 1 (lines 2 and 4) in
the COFF symbol table with the same code address.

1: main()
2: {
3:
4: int foo = 1;

• COFF source-line information provides multiple addresses for the
same source line under some conditions. For example, a while loop
associates the source line of the while statement with the machine
address of the branch to the loop-condition test at the end of the loop.
The machine code associated with the loop-condition test produces an
additional line-number entry with the same row number as the branch.
These two line number groups are translated for the while loop with
the same line number and different addresses.

COFF to IEEE-695 Converter (cvt960)

4-5

4
COFF Symbol Translation

The compiler prefixes most C language names with an underscore (_)
when creating COFF symbols. When the converter finds a symbol with an
initial underscore and a .file symbol ending in .c or .i , it treats the
symbol as a C name with the underscore prefix. The converter strips out
the initial underscore and places the symbol in the B3 block corresponding
to that COFF module. The B3 block describes high-level debug
information.

COFF symbols that come from any source modules whose .file symbol
does not end in .c or .i are considered assembly language symbols. The
converter leaves any initial underscores intact and places the symbols in
the B10 block, which describes assembly-level debug information. The
symbols are given IEEE-695 assembler-static attributes and built-in types.

IEEE-695 Built-in Types

Table 4-2 lists the translation of COFF symbols of scalar and pointer types
to IEEE-695 built-in types. The Valid in Public Part column indicates
types produced for symbols in the IEEE-695 public part.

i960 Processor Software Utilities User's Guide

4-6

4
Table 4-2 Mappings Between COFF and IEEE-695 Built-in Types

IEEE-695
Code COFF Concept Meaning

Valid in
Public Part Notes

0 T_NULL unknown type yes

1 T_VOID void-return no

2 T_CHAR 8-bit signed yes

3 T_UCHAR 8-bit unsigned no

4 T_SHORT 16-bit signed no

5 T_USHORT 16-bit unsigned yes

6 T_INT,T_LONG 32-bit signed no

7 T_UINT,T_ULONG 32-bit unsigned yes

8 n/a 64-bit signed no

9 n/a 64-bit unsigned no

10 T_FLOAT 32-bit float yes

11 T_DOUBLE 64-bit float yes

12 T_LNGDBL extended float yes 1

13 n/a 128-bit float no 1

14 n/a quoted string no

15 C_LABEL code address yes

16 n/a stack push no 2

17 n/a stack push no 2

18 n/a stack push no 2

19-24 n/a alias for above no

25 n/a 64-bit BCD float no 3

26-31 reserved no

continued ☛

COFF to IEEE-695 Converter (cvt960)

4-7

4
Table 4-2 Mappings Between COFF and IEEE-695 Built-in Types (continued)

IEEE-695
Code COFF Concept Meaning

Valid in
Public Part Notes

32 DT_PTR p.unknown type no

33 DT_PTR p.void-return no

34 DT_PTR p. 8-bit signed no

35 DT_PTR p. 8-bit unsigned no

36 DT_PTR p. 16-bit signed no

37 DT_PTR p. 16-bit unsigned no

38 DT_PTR p. 32-bit signed no

39 DT_PTR p. 32-bit unsigned no

40 n/a p. 64-bit signed no

41 n/a p. 64-bit unsigned no

42 DT_PTR p. 32-bit float no

43 DT_PTR p. 64-bit float no

44 DT_PTR p. extended float no 1

45 n/a p. 128-bit float no 1

46 n/a p. quoted string no

47 DT_PTR p. code address no

48 n/a p. stack push no 2

49 n/a p. stack push no 2

50 n/a p. stack push no 2

51-56 n/a alias for above no

57 n/a 64-bit BCD float no 3

58-255 reserved

Notes:
1 Although ic960 allocates a 128-bit cell with base address to 24 for the C "long double" type, the

actual datum is 12 bytes long (manipulated by load-and-store triple word instruction). Thus, the
ic960 long double type maps to IEEE-695 built-in type #12, even though its memory alignment
might suggest built-in type #13.

2 These types correspond to stack pushes. The converter does not produce them because the i960
processor family does not have explicit push instructions.

3 The i960 processor family has no BCD-float support.

i960 Processor Software Utilities User's Guide

4-8

4
IEEE-695 Converter Warning Messages

The warning messages appear on stderr . After a warning, the translation
completes, but the output can be unusable.

No public/debug info produced: no .file symbols in COFF
symbol table

The converter must find at least one .file symbol in the COFF
symbol table to establish a starting point for translation. When no
such symbol is found, the IEEE-695 public and debug parts are not
included in the output module.

COFF section id number is type COPY;symbol/data conflicts
possible in output

The converter found a COPY section in the COFF file. The IEEE-695
format has no direct analog of a COPY section, so the conversion could
confuse the user.

COFF section id number is type DSECT; symbol conflicts
possible in output

The converter issues this message because some linkages may
produce symbol tables where two or more symbols point to the same
memory. Some emulators cannot handle this, and reject loading such
files. The converter gives you this information here to prevent your
waiting until an emulator fails to load the files.

Illegal register value (number) at symbol index number

The value of the COFF symbol at the indicated index does not
represent an i960 processor register. The IEEE-695 translation
contains an invalid i960 processor register index.

COFF argument symbol at index number is ignored;
addressing path too complicated for IEEE-695

The converter cannot process any COFF symbol whose addressing
path is more complicated than: offset (register) . This limitation
only affects C function arguments that are allocated in the caller's
argument block.

COFF to IEEE-695 Converter (cvt960)

4-9

4
One or more COFF symbols (index number) have invalid tag
index number

The converter encountered COFF symbols of a tag type (struct ,
union , or enum) with no reference to their COFF type information.
The IEEE-695 information for these symbols is not correct.

Coverage Analyzer (gcov960)

5-1

5
The gcov960 test coverage analysis tool performs basic block execution
coverage analysis of instrumented programs.

To use gcov960, first compile your program with the gcc960 fprof

instrumentation option, then execute the program with appropriate input
data. (For more information on profiling, see the i960 Processor Compiler
User’s Guide.) Executing your instrumented program causes the
compilation system to update the program database and create a profile
data file (default.pf , by default). You can then use the options
described in this chapter to create a variety of reports showing how your
program behaves with various inputs.

Invocation

Invoke the coverage analyzer using the syntax:

gcov960 [control]... [file [= module , ...]]... [option] ...

control is one of the controls listed in Table 5-1.

file identifies a source file, from the profiled
program represented in the program database.
Specifying file restricts the operation of
gcov960 to the file.

module identifies a module within file .

option is one or more of the options listed in Table 5-2.

i960 Processor Software Utilities User's Guide

5-2

5
If you supply the optional file [= module ,...] input along with the -rl

option, gcov960 reads the source and produces an annotated listing of the
source along with the coverage data in file .cov . In the annotated
source, each statement within a basic block is prefixed with the number of
times it has been executed. Lines that have not been executed are prefixed
with ######## .

Note that in this chapter a basic block refers to a single entry, single exit
code region containing no branching mechanisms. The number of lines
marked with ######## may not equal the number of blocks listed in the
gcov960 report.

Table 5-1 gcov960 Controls

Control Argument Effect

c p produces program-level coverage report.

m produces module- and program-level coverage report.

f produces function-, module-, and program-level coverage report.

s produces a source- and module-level coverage report.

f n produces the n most frequently executed lines (when n is positive) or
least frequently executed (when n is negative).

g h produces a call-graph listing of the program. The h argument is
optional; it attaches to the report an explanation of how to interpret
the call-graph listing.

n new_profile compares two profiles. The new profile is compared to the default or
the profile specified with the p or iprof option, and just-hit or just-
missed lines are reported. Multiple instances of this control and
argument are supported; The profiles specified are automatically
merged together.

Q n ignores hits from functions whose profiles are of increasing accuracy
(decreasing levels of interpolation). n is 0..9. The default is Q9,
which ignores hits for all functions except those with perfect profiles.
Q0 ignores hits for any functions, even those with completely
guessed profiles.

continued ☛

Coverage Analyzer (gcov960)

5-3

5
Table 5-1 gcov960 Controls (continued)

Control Argument Effect

r l produces annotated source listing.

h produces the line numbers within the basic blocks that were hit. You
can also use the l option to specify the directories searched.

m produces the line numbers within basic blocks that were missed. You
can use the l option to specify the directories searched.

Table 5-2 gcov960 Options

Option Argument Effect

C calculates the total number of execution counts in a profile.

h prints help information.

I search_dir adds directory to list that gcov960 searches for source files.

p or iprof file identifies profile to be used. Default is default.pf. Multiple
instances of this option and argument are supported. The profiles
specified are automatically merged together.

Q n Ignores hits except from functions whose profiles are at least <n>
accurate. The valid range for <n> is 0-9. The default is -Q9, which
ignores profile information for functions that have had source code
changes since the profile was collected. -Q0 tells gcov960 to use
a profile even for functions with profile information that is
completely interpolated. A profile's quality gradually drops as
changes are made to the code from which it was collected and
interpolation is done to make it useable by gcc960, ic960, and
gcdm960.

q suppresses display of version, copyright, profile, and program
database used.

t truncates displayed names to keep them within column widths.

V prints version and continues.

continued ☛

i960 Processor Software Utilities User's Guide

5-4

5
Table 5-2 gcov960 Options (continued)

Option Argument Effect

v960 prints version and exits.

Z pdb_dir identifies program database directory. Default is directory
identified by G960PDB (gcc960) or I960PDB (ic960). See the
Getting Started manual for more information on environment
variables.

NOTE. The reports produced by gcov960 may give misleading
information about functions that are inlined. The reports may indicate
that the code of the inlined function has never been executed, or may show
execution counts that are unexpectedly low. This occurs because the
inlined code fragments are treated as part of the function they are inlined
into and not as part of the original function.

Examples

The following examples assume that you compile and execute the
following source file named compare.c .
/* compare.c */
#include <stdio.h>
 main(argc, argv)
 int argc;
 char *argv[];
 {
 int n1, n2;
 if (argc != 3)
 {
 printf("Usage: compare n1 n2\n");
 exit(0);
 }
 n1 = atoi(argv[1]);
 n2 = atoi(argv[2]);
 if ((n1 <= 0) || (n2 <= 0))

Coverage Analyzer (gcov960)

5-5

5
 {
 printf("Use integers larger that zero\n");
 exit(0);
 }
 if (n1 == n2)
 printf("\n%d equals %d\n", n1, n2);
 else
 {
 if (n1 < n2)
 printf("\n%d is less than %d\n", n1, n2);
 else
 printf("\n%d is greater than %d\n", n1,
n2);
 }

 }

To compile compare.c use the command:

gcc960 -Fcoff -fprof -Z pdb -ACF -Tmcycx compare.c

The above command creates the directory pdb (if it doesn’t exist already)
to store the program database information and generates an absolute
module named a.out , which can be downloaded and executed on a
Cyclone board with a i960 CF processor module.

The following command creates the file containing the profile information
using mondb.

mondb -ser a.out 10 10

This command creates a file called default.pf . Once you have the
default.pf file you can copy it to a file with a different name such as
default.old . You can then use mondb again to create a new profile with
a different set of data, for example:

mondb -ser a.out 10 20

i960 Processor Software Utilities User's Guide

5-6

5
Example 1
• The gcov960 invocation:

gcov960 -c -Z pdb

• produces the coverage report shown below.

Intel 80960 Coverage Analyzer n.n.nnn

Copyright (C) 1996 Intel Corporation. All rights reserved.

 Coverage Analysis
 Program Summary
No. No. Blocks No. Block
Blocks Hits Misses Coverage
__________ __________ __________ _________
 13 7 6 53.85%

Program database: /ffs/a/joe/tmp/pdb

Program profile: /ffs/a/joe/tmp/default.pf

Example 2
• The gcov960 invocation for an instrumented program compare.c :

gcov960 -rl -Z pdb

produces the output in file compare.cov shown below. The numbers on
the left are the execution count for the basic blocks associated with the
statement.

 #include <stdio.h>

 main(argc, argv)

 int argc;

 char *argv[];

 1 -> {

 int n1, n2;

 1 -> if (argc != 3)

 {

########-> printf("Usage: compare n1 n2\n");

########-> exit(0);

 }

Coverage Analyzer (gcov960)

5-7

5
 1 -> n1 = atoi(arv[1]);

 1 -> n2 = atoi(arv[2]);

 1 1 1 -> if ((n1 <= 0) || (n2 <= 0))

 {

########-> printf("Use integers larger than zero\n");

########-> exit(0);

 }

 1 -> if (n1 == n2)

 1 -> printf("\n%d equals %d\n", n1, n2);

 else

 {

########-> if (n1 < n2)

########-> printf("\n%d is less than %d\n", n1, n2);

 else

########-> printf("\n%d is greater than %d\n", n1, n2);

 }

 }

No. of Blocks: 13

Blocks Hit: 7

Blocks Missed: 6

Source Coverage: 53.85%

Program database: /ffs/a/joe/tmp/pdb

Program profile: /ffs/a/joe/tmp/default.pf

Example 3

The gcov960 invocation to compare two profile files (default.pf and
default.old) created after running the instrumented program
compare.c :

gcov960 -rlm -n default.pf -p default.old -Z pdb

• produces file compare.cov containing the output shown below.
 #include <stdio.h>

 main(argc, argv)

 int argc;

 char *argv[];

 {

 int n1, n2;

i960 Processor Software Utilities User's Guide

5-8

5
 if (argc != 3)

 {

 printf("Usage: compare n1 n2\n");

 exit(0);

 n1 = atoi(argv[1]);

 n2 = atoi(argv[2]);

 if ((n1 <= 0) || (n2 <= 0))

 {

 printf("Use integers larger than zero\n");

 exit(0);

 }

 if (n1 == n2)

 printf("\n%d equals %d\n", n1, n2);

 else

 {

########-> if (n1 < n2)

########-> printf("\n%d is less than %d\n", n1, n2);

 else

 printf("\n%d is greater than %d\n", n1, n2);

 }

 }

Lines Just Missed: 2
No. of Blocks: 13
Blocks Hit: 9
Blocks Missed: 4
Source Coverage: 69.23%
Program database: /ffs/a/elvis/tmp/pdb
Program profile: /ffs/a/elvis/tmp/default.old
Other program file: /ffs/a/elvis/tmp/default.pf

Dumper/Disassembler
(dmp960, gdmp960)

6-1

6
The dumper/disassembler displays object or archive (library) files in
COFF, ELF, and b.out formats.

It displays object file contents, including:

• file, section, and COFF optional headers
• line-number entries
• relocation entries
• symbol and string tables
• contents of the sections as assembly language
• contents of the sections as hexadecimal bytes, in little-endian byte

order

Invocation

Invoke the dumper as:







dmp960

gdmp960
 [- option]... filenames

dmp960 invokes the dumper for backwards compatibility
with CTOOLS960 Release 3.5 and later.

gdmp960 invokes the dumper for backwards compatibility
with GNU/960 Release 2.0.1 and later.

option an option listed in Table 6-1. Invoking the
dumper without any options disassembles the
contents of all sections.

i960 Processor Software Utilities User's Guide

6-2

6
filenames one or more filenames, separated by spaces,

indicating files to be displayed. You can specify
complete pathnames.

Table 6-1 dmp960/gdmp960 Options

Option Effect

a disassembles all sections in an object file. Use this to
examine the raw DWARF information in a file.

A{ SA | SB | KA |
KB | CA | CF | JA |
JD | JF | HA | HD |
HT | RP |

CORE0 | CORE1 |
CORE2 | CORE3 |
ANY}

Specifies architecture for which you are disassembling.
This options does not currently affect disassembly.

c displays the string table.

d disassembles all sections loaded into target memory.
Unless otherwise specified, text sections appear as
assembly language, and data sections appear as
hexadecimal bytes. When no options are specified
when invoking the dumper, -d is assumed as the default
option.

D disassembles sections as hexadecimal bytes,
regardless of the section type. The physical address of
every fourth word appears at the beginning of each line.

e applies all command line options to each member of an
archive file.

f displays the file headers.

F function disassembles the specified COFF or ELF function.

continued ☛

Dumper/Disassembler(dmp960, gdmp960)

6-3

6
Table 6-1 dmp960/gdmp960 Options (continued)

Option Effect

g[arg]... dumps one or more .debug_* sections. The default
argument is i (.debug_info). Use the following
arguments to specify a different section, or multiple
sections:

i dump .debug_info (default argument)
l dump .debug_line
f dump .debug_frame
p dump .debug_pubnames
a dump .debug_aranges
m dump .debug_macinfo
A dump all .debug_* sections

h displays the section headers.

help displays help information and exits.

i displays the COFF optional header.

l displays the line numbers.

m displays the memory map (section layout) of the file.

n name displays the requested information for only the specified
section.

O filename displays the requested information for only the specified
file within an archive.

o displays the disassembled addresses in octal. The
default is hex.

p suppresses all the header displays, producing a
parseable output.

q queries the file and displays its type.

r displays the relocation information.

s used with d, puts symbols in the disassembly in place of
addresses.

continued ☛

i960 Processor Software Utilities User's Guide

6-4

6
Table 6-1 dmp960/gdmp960 Options (continued)

Option Effect

S Instructs the disassembler to output symbol labels
rather their values for any symbols for which you have
specified the absolute address. This option works in
conjunction with the -s (lowercase) option, which
instructs the disassembler to perform symbolic
disassembly.

t displays the object file symbol-table entries, or an
archive’s symbol list.

T displays the disassembled section as assembly
language, regardless of the section type.

V displays the dumper version and creation date, and
continues processing.

v960 displays the dumper version and creation date, and
stops processing.

x is ignored unless used with -t. Displays the symbol-
table entries as hexadecimal numbers instead of a
symbolic translation of debug information. By default,
the dumper produces symbolic information.

z suppresses the translation of zeros into .word directives
for text-type disassembly.

Dumper/Disassembler(dmp960, gdmp960)

6-5

6
Dumping Absolute Symbols

The -S option instructs the disassembler to output symbol labels rather
than their values for any symbols for which you’ve specified the absolute
address. This option works in conjunction with the -s (lowercase) option,
which instructs the disassembler to perform symbolic disassembly. For
example, with an object file created with the following instructions:

.globl proc1

.set proc1,0xc
callx proc1
callx 0xc
addi proc1,r5,r6

If you use the following gdmp960 command line:

gdmp960 t2.o -s

you would see the output:

Section '.text':
0: 8600000c callx 0xc
4: 8600000c callx 0xc
8: 5931488c addi 12,r5,r6

Notice that in the second line, proc1 from the source code is converted to
0xc , the user-specified address for proc1 .

Adding the -S option to the command line instructs the disassembler to
display the symbol name instead of its address. For example, this
command line:

gdmp960 t2.o -s -S

produces the following output:

Section '.text':
0: 8600000c callx proc1
4: 8600000c callx proc1
8: 5931488c addi 12,r5,r6

Notice that in the both callx statements, proc1 now appears instead of
0xc . Using the -S option causes the disassembler to display the symbol
name for all calls to that address.

i960 Processor Software Utilities User's Guide

6-6

6
NOTE. This option was supported in the rev. 5.0 disassembler as the
undocumented -A switch. This option has been renamed -S .

Examples

The examples that follow show how you can extract information from
object files with dmp960. The file t.c is a simple C program that is first
compiled then assembled.

int arr[12] = { 3, 4 };

static int index;

main()

{

int tempt = func(arr[index]);

}

ic960 -S -g t.c

cat t.s

Command line (ic960): ic960 -S -g t.c # Command line (cc1):

/ffs/p1/dev/sun4/lib/cc1.960 -ic960 -ffancy-errors -sinfo

/tmp/ica02371.sin -fno-builtin -quiet -Fcoff -mkb -mic3.0-compat

-fsigned -char -w1 -bname_tmp /tmp/ica02371.btm -O0 -g -dcmd

"ic960 -S -g t.c" -dumpbase t /tmp/ica02371.i -o t.s .file "t.c"

ic_name_rules.:

gcc2_compiled.:

___gnu_compiled_c:

.globl _arr

.data

.align 4

_arr:

.word 3

.word 4

.space 40

.text

.align 4

.def _main; .val _main; .scl 2; .type 0x44;

.endef

.globl _main

Function 'main'

Dumper/Disassembler(dmp960, gdmp960)

6-7

6
Registers used: g0 g4 g5 g6 g7 g14 fp r4*

_main:

.def .bf; .val .; .scl 101; .line 5; .endef

.ln 1

addo 16,sp,sp

#Prologue stats:

Total Frame Size: 16 bytes

Local Variable Size: 16 bytes

Register Save Size: 0 regs, 0 bytes #End Prologue#

mov g14,r4

.def _temp; .val 64; .scl 1; .type 0x4; .en

def

.ln 2

ld _index,g4

ld _arr[g4*4],g0

callj _func

mov g0,g4

mov g4,g5

st g5,64(fp)

.ln 3

#EPILOGUE:

ret

.def .ef; .val .; .scl 101; .line 3; .endef

.def _main; .val .; .scl -1; .endef

.def _index; .val _index; .scl 3; .type 0x4;

.endef

.bss _index,4,2

.def _arr; .val _arr; .scl 2; .dim 12; .size

48; .type 0x64; .endef

asm960 t.s -o -t.o

i960 Processor Software Utilities User's Guide

6-8

6
dmp960 t.o

Section '.text':

0: 59084810 addo 16,sp,sp

4: 5c20161e mov g14,r4

8: 90a03000 00000060 ld 0x60,g4

10: 90803914 00000030 ld 0x30[g4*4],g0

18: 09ffffe8 call 0x0

1c: 5ca01610 mov g0,g4

20: 5ca81614 mov g4,g5

24: 92afe040 st g5,0x40(fp)

28: 0a000000 ret

Section '.data':

30: 03000000 04000000 00000000 00000000

40: 00000000 00000000 00000000 00000000

50: 00000000 00000000 00000000 00000000

Here is the same example, but with symbolic disassembly enabled. Note
how much more closely the disassembly resembles the assembly source
code.

dmp960 -s t.o

Section '.text':
_main:

 0: 59084810 addo 16,sp,sp
 4: 5c20161e mov g14,r4
 8: 90a03000 00000054 ld _index,g4
10: 90803914 00000024 ld _arr[g4*4],g0
18: 09ffffe8 call _func
1c: 9287e040 st g0,0x40(fp)
20: 0a000000 ret

Section '.data':
24: 03000000 04000000 00000000 00000000
34: 00000000 00000000 00000000 00000000
44: 00000000 00000000 00000000 00000000

Dumper/Disassembler(dmp960, gdmp960)

6-9

6
Here are the relocations that are passed to the linker.

dmp960 -r t.o

*** RELOCATION INFORMATION ***
Section '.text':
Vaddr Type Name
0x0000000c RELLONG.bss
0x00000014 RELLONG.data
0x00000018 IPRMED_func
0x00000018 OPTCALL_func
Section '.data':
Section '.bss':

And here is part of the COFF symbol table. Note the use of the -n option
to make the dumper display only symbols from the .bss section.

dmp960 t.o -t -n .bss

 *** SYMBOL TABLE INFORMATION ***

[Index] m1 Name/Offset Value Scnum Flags Type Sclass Numaux Name
[Index] a0 Word1 Short1 Short2 Short3 Short4 Short5 Short6 Tv
[Index] a1 Fname
[Index] a2 Tagndx Fsize Lnnoptr Endndx Tvndx
[Index] a3 Scnlen Nreloc Nlinno
[Index] a4 Tagndx Lnno Size Dim[0] Dim[1] Dim[2] Dim[3]
[Index] a5 Identification String Date/Time
[12] m1 _index 0x00000060 3 0x1000 int static 0
_index
[17] m1 .bss 0x00000060 3 0x1200 static 1 .bss
[18] a3 0x00000004 0x0000 0x0000

i960 Processor Software Utilities User's Guide

6-10

6
Here is part of the b.out symbol table. The S column identifies the section,
as in gnm960 output. The O column indicates whether each symbol is
ordinary (O), a leaf entry point (L), or a system procedure entry point (S).

gcc960 -c -Fbout t.c; gdmp960 -t t.o

*** BOUT SYMBOL TABLE ***

Value | S | O | Symbol Name

-----------+---+---+--------------------------------

0x00000000 | t | | gcc2_compiled.

0x00000000 | t | | ___gnu_compiled_c

0x00000030 | D | | _arr

0x00000000 | T | | _main

0x00000060 | b | | _index

0x00000000 | U | | _func

0x00000000 | t | | .text

0x00000030 | d | | .data

0x00000060 | b | | .bss

Here is part of the ELF symbol table. For more information on ELF
symbol tables, refer to the 80960 Embedded Application Binary Interface
(ABI) Specification.

gcc960 -c -Felf t.c

gdmp960 -t t.o

Index Value Size Binding Type Section Oth Name
0 0x00000000 0 LOCAL NONE UNDEFINED 0x0
1 0x00000000 0 LOCAL SECTION .text 0x0 .text
2 0x00000000 0 LOCAL SECTION .data 0x0 .data
3 0x00000000 0 LOCAL SECTION .bss 0x0 .bss
4 0x00000000 0 LOCAL SECTION .shstrtab 0x0 .shstrtab
5 0x00000000 0 LOCAL SECTION .strtab 0x0 .strtab
6 0x00000000 0 LOCAL SECTION .symtab 0x0 .symtab
7 0x00000000 0 LOCAL SECTION .rel.text 0x0 .rel.text
8 0x00000000 0 LOCAL FILE ABSOLUTE 0x0 t.c
9 0x00000000 0 LOCAL NONE .text 0x0 gcc2_compiled.
10 0x00000000 0 LOCAL NONE .text 0x0 ___gnu_compiled_c
11 0x00000000 0 LOCAL NONE .bss 0x0 _index
12 0x00000000 0 GLOBAL NONE .data 0x0 _arr
13 0x00000000 0 GLOBAL NONE .text 0x0 _main
14 0x00000000 0 GLOBAL NONE UNDEFINED 0x0 _func

Dumper/Disassembler(dmp960, gdmp960)

6-11

6
The last example shows the dumper's display of the COFF section headers:

dmp960 t.o -h

*** SECTION HEADERS ***

Name Paddr Vaddr Scnptr Relptr Lnnoptr
Align Size Nreloc Nlnno Flags

.text 0x00000000 0x00000000 0x00000098 0x000000f4 0x00000124
0x00000010 0x0000002c 4 4 REG, TEXT

.data 0x00000030 0x00000030 0x000000c4 0x00000000 0x00000000
0x00000010 0x00000030 0 0 REG, DATA

.bss 0x00000060 0x00000060 0x00000000 0x00000000 0x00000000
0x00000010 0x00000004 0 0 REG, BSS

Archive Support

With release 5.1, gdmp960 supports dumping of archive files and archive
file members. Previous versions of the dumper only worked with object
files. Archive support allows you to dump:

• all members of an archive
• one or more object files within an archive
• information on the structure of an archive (e.g., the archive symbol

list)

The table below lists the options that allow archive support:

Option Description

-e 1 applies all options on the command line (e.g., -r ,
-f) to each member of an archive.

-m displays a map of the archive contents. See the first
example later in this section.

-O filename 1 applies all command line options to the named
archive member file only.

-p suppresses headers.

-q queries the archive file and displays its object
module format and host byte order.

-t displays the archive symbol list.
1 Indicates a new dumper option.

i960 Processor Software Utilities User's Guide

6-12

6
Displaying Archive Structure Information

The examples that follow show an archive file lib.a that contains the
object files a.o , b.o , and c.o , in that order.

This first set of examples show how the dumper can display information
on the structure of an archive file using the -q , -m, and -t options.

This example demonstrates the behavior of the dumper when querying an
archive file for its type. The command:

gdmp960 -q lib.a

produces the output:

File: lib.a

OMF: elf archive
Host Byte Order: big
Target Byte Order: unknown

In the next example, the dumper maps the internal structure of an archive
file. The command:

gdmp960 -m lib.a

produces the following output:
 HEX DEC OCT
 --- --- ---
+----------------------+ 0 0 0
| Magic String |
| 0x8 (8) |
+----------------------+ 8 8 10
| Symbol List HDR |
| 0x3c (60) |
+----------------------+ 44 68 104
| Symbol List |
| 0x64 (100) |
+----------------------+ a8 168 250
| a.o HDR |
| 0x3c (60) |
+----------------------+ e4 228 344
| a.o |
| 0x2934 (10548) |
+----------------------+ 2a18 10776 25030
| b.o HDR |
| 0x3c (60) |

Dumper/Disassembler(dmp960, gdmp960)

6-13

6
+----------------------+ 2a54 10836 25124
| b.o |
| 0x253c (9532) |
+----------------------+ 4f90 20368 47620
| c.o HDR |
| 0x3c (60) |
+----------------------+ 4fcc 20428 47714
| c.o |
| 0x7b74 (31604) |
+----------------------+ cb40 52032 145500
| END OF FILE |
| 0x0 (0) |
+----------------------+ cb40 52032 145500

The -t option of the dumper permits dumping of the archive symbol list
information. For example, the command:

gdmp960 -t lib.a

produces the output:

Name Offset Filename

_dwarf_init 168 a.o

_dwarf_tag 10776 b.o

__dw_build_a_die 20368 c.o

__dw_build_tree 20368 c.o

__dw_build_cu_list 20368 c.o

i960 Processor Software Utilities User's Guide

6-14

6
Dumping the Contents of Archive Members

The dumper lets you disassemble or display information about a file within
an archive by using the -e and -O options in combination with other
command line switches. In the example below, the -e option applies all
command line options to each member of an archive:

gdmp960 -q -e lib.a

a.o:
File: a.o
OMF: elf
Host Byte Order: big
Target Byte Order: little

b.o:
File: b.o
OMF: elf
Host Byte Order: big
Target Byte Order: little

c.o:
File: c.o
OMF: elf
Host Byte Order: big
Target Byte Order: little

Dumper/Disassembler(dmp960, gdmp960)

6-15

6
The example below shows how the -O option lets you apply all command
line options to the named object file only. The command:

gdmp960 -q -Oa.o -Oc.o lib.a

produces the following output:
a.o:
File: a.o
OMF: elf
Host Byte Order: big
Target Byte Order: little

c.o:
File: c.o
OMF: elf
Host Byte Order: big
Target Byte Order: little

Linker (lnk960, gld960)

7-1

7
Overview

The linker lets you combine unlinked or partially linked object files and
libraries into programs for debugging or execution on any i960 processor.
Linking can include:

• configuring a program for the target memory, including the addresses
and section combinations

• searching libraries to resolve external references
• adding, preserving, or removing symbolic debugging information
• defining or redefining global symbols
• changing callj and calljx to branch-and-link or system calls
• patching all relocatable instructions, data and debug information (in

ELF/DWARF)

Though you can specify most of the linker options to perform these
functions on the command line, most users use a combination of command
line options and a linker directive file to provide input to the linker.
CTOOLS provides a number of linker directive (.ld) files in the
[$G960BASE | $I960BASE]\lib directory. Typically, users store most
commands for allocating memory blocks and configuring memory in the
linker directive file. They then use the command line to invoke the linker,
specify the object files to be linked, specify the linker directive file, and
include any command line options needed to add to or override the settings
in the linker directive file.

i960 Processor Software Utilities User's Guide

7-2

7
This chapter focuses on teaching you how to use the linker by providing
the following:

• Some basic information about how the linker allocates memory blocks
and sections.

• A sample linker directive file that you can edit to match the
requirements of your target execution environment.

• Instructions on how to invoke the linker, specify your linker directive
file, object files, and other command line options.

• Sample command lines using additional linker features such as
callj /calljx link time optimization that you may want to use in
your software development.

• A complete reference of all linker command line options.

Understanding Memory Blocks and Sections

With the linker, you can specify the portions of i960 processor’s address
space are available and where within that space the sections of your
program will be located. Once you have defined configured memory, all
other areas in the address space are left unconfigured, and are unavailable
for linking.

A section is the smallest relocatable unit of an object file. The linker
supports COFF, b.out, and ELF object module formats. A b.out-format
program contains exactly three standard sections:

.text is the standard text-type section, containing
instructions and by default starting at address 0.

.data is the standard data-type section, containing
initialized data and by default follows .text .

.bss (block started by symbol) is a unique section,
containing uninitialized data and by default
follows .data .

Linker (lnk960, gld960)

7-3

7
A COFF or ELF program contains at least the three standard sections
(containing up to 65535 lines or relocation entries each) COFF section
names are restricted to eight or fewer characters; ELF section names can
be any length. For information on the COFF file format see Appendix C.
For more information on the ELF format, see the 80960 Embedded
Application Interface Specification (Intel order number 631999).

The following example includes two global declarations and an
assignment. The translated assignment code is stored in .text , the i
variable in .data , and the abc variable in .bss , as shown in Figure 7-1.

int abc[200]; /* in the .bss section, because abc is
 not initialized in the .data */
int i=100 /* section because i is initialized */
int f() { */
abc[i] = 0; /* instructions are placed */
} /* in the .text section */

Figure 7-1 C Program Storage

.text

.data

OSD312

.bss

SectionMemoryContents

Instruction

Variable i
Value Assigned

Variable abc
No Value Assigned

abc[i]=0;

100

abc[200]

i960 Processor Software Utilities User's Guide

7-4

7
You can define and link the sections in any order. In your assembly
source text and linker directive files, you can create and name additional
text-type, data-type and BSS-type sections for COFF and ELF programs.
You can also specify section and global-symbol addresses and overlap or
suppress some sections.

ELF/DWARF Sections

ELF/DWARF sections are placed in non-allocated sections. The linker
concatenates and relocates these sections, but allocates no memory for
them. These sections are all allocated to memory address 0. This
includes, among other sections, .debug_info and .debug_abbrev . For
more information on the ELF format, see the 80960 Embedded
Application Interface Specification (Intel order number 631999).

Named BSS Sections

Named Block Started by Symbol (BSS) sections are supported by the
linker. When the linker detects the symbol
___clear_named_bss_sections in the linkage, the linker generates
code to resolve this symbol. By default, the code is composed of a ret

instruction only. However, when the linker detects any number of named
bss sections in its output, it generates code to clear the sections and places
this code in the ___clear_named_bss_sections code.

Working with Linker Directive Files

The sample linker directive file below is for the Cyclone i960 Cx
processor-based evaluation board. By default, the installation program
places this file in:

[$G960BASE | $I960BASE]\lib\cycx.ld

The commands under the MEMORY directive define the areas of memory
that are available and the type of memory that resides there. This platform
has two memory blocks defined: a DRAM region that begins at address
0xA0008000 and is 0x1ff8000 bytes in length, and an SRAM region that

Linker (lnk960, gld960)

7-5

7
begins at address 0xA0000100 and is 0x300 bytes long. Notice that the
DRAM address range allows room for the RAM space required by the on-
board monitor.

The commands in SECTIONS specify where the linker places the different
program sections in memory.

MEMORY
 {
 dram : org = 0xA0008000, len = 0x1ff8000 /* 32M less monitor */
 isram : org = 0x00000100, len = 0x300
 }

SECTIONS
 {
 .text :
 {
 } >dram

 .data :
 {
 } >dram

 .bss :
 {
 } >dram

/* Arithmetic controls location when using floating point library. */
 SFP_AC :
 {
 fpem_CA_AC = .;
 } >isram
}

/* Bounds of heap: */
/* The heap may be placed in a separate memory region, if desired. */
_heap_size = 0x20000;
_heap_base = (_end + 0xf) & ~0xf;
_heap_end = _heap_base + _heap_size - 1;

/* _stackbase marks base of user stack */
/* stack is allocated following the heap. */
/* The stack may be based in a separate memory region, if desired. */
_stackbase = (_heap_end + 0x10) & ~0x0f;

STARTUP ("crt960*")
HLL ()
SYSLIB ("libmn*")
SYSLIB ("libll*")
FLOAT

i960 Processor Software Utilities User's Guide

7-6

7
The remaining options specify the floating point and other libraries used.
_heap_size , _heap_base , _heap_end , and _stackbase are global
symbols that define the heap and stack. For more information on the linker
directives used in this sample file, see Appendix A.

Linker Invocation

Once you have set up your linker directive file, you are ready to link your
object modules. To run the linker, use the syntax:







lnk960

gld960
 [- options] filenames

lnk960 invokes the linker, providing backwards
compatibility with CTOOLS960 Release 3.5 or
later.

gld960 invokes the linker, providing backwards
compatibility with GNU/960 Release 2.2 or later.

options is one or more of the options listed in Table 7-1.

filenames is one or more object, library, or linker-directive
filenames.

For example, to link the files file1.o , file2.o using the linker
directives in cycx.ld , enter the command:

lnk960 file1.o file2.o cycx.ld

The linker provides many options that let you customize the linking
process. Table 7-1 lists these options.

Linker (lnk960, gld960)

7-7

7
Table 7-1 Linker Options

Name Option Effect Default Action

Architecture A{ SA | SB | KA |
KB | CA | CF | JA
| JD | JF | HA |
HD | HT | RP |
CORE0 | CORE1
| CORE2 |
CORE3 }

specifies architecture. The
CORE0-3 options let you
generate code that is
compatible with a group of
processors. The types of i960
processors supported by each
CORE switch are:

CORE0 Jx, Hx, RP

CORE1 All 80960
architectures

CORE2 Jx, Hx, RP

CORE3 Cx, Jx, Hx

uses the KB libraries.

Section start
address

Bsection addr
T {bss | data |
text} addr

assigns section addresses. locates the sections
consecutively in the
default sequence.

Startup
alternative

C suppresses any STARTUP
directive.

uses the startup routine
specified with STARTUP
in the directive file.

Circular
search

c searches libraries circularly. searches libraries once.

Inhibit CAVE
compression

D prevents the linker from
compressing CAVE sections.

linker compresses CAVE
sections.

Define
common
symbol space

dc
dp

reserves space for common
symbols, with the same effect
as a FORCE_
COMMON_ALLOCATION
directive (see Appendix A).
Useful only when combined
with -r.

does not reserves space
for common symbols.

continued ☛

i960 Processor Software Utilities User's Guide

7-8

7
Table 7-1 Linker Options (continued)

Name Option Effect Default Action

Define symbol defsym name =
expr

defines an absolute symbol.

Entry point esymbol defines the primary entry
point.

uses the beginning of
.text as the entry point.

Format Fcoff
Fbout
Felf

selects COFF, b.out, or ELF
as the output format.

defaults to b.out for
gld960 and COFF for
lnk960.

Fill fvalue initializes the gaps within a
section.

initializes the memory
between sections to 0.

Big-endian
target

G specifies that input files and
output files are for a big-
endian target. Valid only for
COFF or ELF files.

little-endian target files.

Decision
maker

gcdm invokes gcdm960 optimization
decision maker.

does not invoke
gcdom960.

Sort common
symbols

H sorts common symbols by
size.

does not sort common
symbols.

Help h prints help and terminates.

Compress J merges duplicated tags, and
compresses string table.
(COFF only).

uses no compression.

Library search
path

Ldir adds a directory to the library
and directive-file search path.

uses a search path
determined by the output
format and invocation
name.

continued ☛

Linker (lnk960, gld960)

7-9

7
Table 7-1 Linker Options (continued)

Name Option Effect Default Action

Library input labbr specifies a library-filename
abbreviation.

takes no action.

Memory map m writes a memory map to
stdout.

generates no memory
map.

Name map file Nfile places memory map in file.
Useful only with -m.

sends memory map (if
generated) to stdout.

Noinhibit
output

n produces an output file
regardless of errors.

for most errors,
suppresses the output
file.

Optimization
inhibit

Ob
Os

inhibits the branch-and-link or
system-call optimizations.

optimizes the callj and
calljx pseudo-instructions.

Output
filename

ofilename names the output file. produces a.out for COFF
output, b.out for b.out-
format output, and e.out
for ELF format output.

Profiling P adds profiling initialization
code. This option is useful
only when combined with -r.

adds no profiling
instrumentation.

Position
independence

p{b | c | d} marks the output as position-
independent (PIC/PID),
issuing a warning for non-
PIC/PID input. Uses libraries
with PIC (-pc), PID (-pd) or
both (-pb).

does not mark output as
position-independent.

Read symbols
only

Rfilename includes only the symbols
from the specified object file.

includes the entire file.

Relocation r retains the relocation entries
in the output file.

removes the relocation
entries.

continued ☛

i960 Processor Software Utilities User's Guide

7-10

7
Table 7-1 Linker Options (continued)

Name Option Effect Default Action

Strip S,s -S removes only the debug
information from the output
file. -s removes all symbolic
information from the output
file.

retains the symbolic
information.

Section start
address

Bsection addr
T {bss | data |
text} addr

assigns section addresses. locates the sections
consecutively in the
default sequence.

Target Tfilename uses the full search path for
directive filename, with the
same effect as a TARGET
directive.

searches only the current
directory.

Suppress
multiple
definition
symbol
warnings

t suppress warnings of multiple
symbol definitions, even if
they differ in size.

displays all warnings.

Unresolved
symbol

usymbol puts an unresolved symbol in
the symbol table.

suppress warnings of
multiple symbol
definitions even if they
differ in size. No
unresolved symbols
added to file.

Version V displays linker version
information.

displays no version
information.

Verbose v displays linker progress. displays no progress
information.

Version; stop v960 displays the linker version
information and stops linking.

displays no version
information and stops
linking.

Warnings W suppresses warnings except
symbol table warnings.

displays all warnings.

continued ☛

Linker (lnk960, gld960)

7-11

7
Table 7-1 Linker Options (continued)

Compress X removes the local symbols
beginning with a dot (.) or L.

retains local symbols.

Compress x removes the local symbols. retains local symbols.

Trace symbol y sym traces a symbol, indicating
each file where it appears, its
type, and whether the file
defines or references it.

does not trace symbols.

Program
database

Z pdb_dir specifies location of program
database.

linker uses location
defined with variable
$G960PDB if defined.

Time stamp
suppression

z puts Time Zero in the output
time stamp.

uses current time stamp.

Specifying Object Files

When you specify the input-object and library files on the command line
or in the directive files, provide the full object filenames, with the
filename extensions. The linker processes the input object and library files
in the following order:

1. a file designated with the STARTUP directive (the C option suppresses
the STARTUP directive).

2. the object files and libraries listed individually in the invocation, in the
order appearing on the command line.

3. the object files and libraries listed individually in the linker-directive
files, in the order encountered.

4. the libraries listed with the HLL directive.
5. the libraries listed with the SYSLIB directive.

i960 Processor Software Utilities User's Guide

7-12

7
Specifying Libraries

To resolve a library reference, list the library after all object files
containing the reference. Only required library members are linked. The
libraries are opened and searched once (unless you use the -c option).
Specify a library file:

• with no option, using the full filename with its extension.
• with the l option and a standard library-filename abbreviation, as

described in the Library Naming Conventions and Search Paths
section on page 7-21.

• with the HLL directive, for the standard high-level support libraries.
• with the SYSLIB directive, for the libraries (such as low-level support

libraries) to be linked last.

The following example links the file1.o and file2.o object files. The
user-defined library libu.a resolves references in file1.o . Any
unresolved references in file2.o that could be resolved in libu.a cause
the link to fail.

lnk960 file1.o -lu file2.o

Using the c option to perform a circular library search resolves all
symbols.

Specifying Linker-directive Files

A linker-directive file can contain input object and library filenames,
directives, options, and other directive filenames.

• To restrict the directive-file search path to the current directory,
specify the filename alone on the command line or with INCLUDE in
another directive file with a restricted search path.

• To use the full search path, use the T option or the TARGET directive.
INCLUDE directives in a file included with T or TARGET also use the
full search path.

Linker (lnk960, gld960)

7-13

7
The following example links the file1.o and file2.o object files. The
object files and the lnk12.ld directive file are in the current directory.
Instructions and data from file1.o are given lower addresses,
respectively, than instructions and data from file2.o , unless otherwise
specified in the directive file.

lnk960 file1.o file2.o lnk12.ld

For more information on linker directive files, see Appendix A.

Naming the Output File

Unless you specify otherwise, the output file is named:

a.out for COFF output

b.out for b.out-format output

e.out for ELF output

The linker overwrites existing files with the default output names. To
preserve an existing a.out , b.out or e.out file, use the o option or the
OUTPUT directive to specify an output filename.

Incremental Linking

You can use the output of the linker as input to subsequent linker sessions.
To generate relocatable linked files for such incremental linking, invoke
the linker with the -r option.

Linking a non-relocatable input file generates a warning message. For
successful linking, non-relocatable input files must:

• have no unresolved external references
• be located at the same address as in previous linker invocations

i960 Processor Software Utilities User's Guide

7-14

7
Object Module Format Compatibilities

You can link b.out-format, COFF or ELF object files and libraries, in any
combination. To determine a file format, the linker examines the first two
bytes of the file. An unrecognized value indicates a linker-directive file.

This feature is useful when using third-party archives with the Intel-
supplied runtime libraries and your application code. The runtime libraries
are shipped in ELF only (effective with CTOOLS R5.0 and later). Each
archive can have a different Object Module Format (OMF), and the
linkage still completes without error.

When the linker generates a different output format than the input, the
linker does not copy the debug information from the input file to the
output file. For example, if you include a b.out OMF file in a linkage
where the output file OMF is COFF, the linker does not copy any of the
debug information from the b.out file to the output COFF file. Ideally, you
should use one OMF consistently.

However, the following symbol information is translated and incorporated
into the output OMF file:

• Leaf procedures
• System Procedures (sysprocs)
• Common (global uninitialized variables)
• Locals (statics) in any section (typically .text , .data , or .bss)
• Globals in any section
• Absolutes

The linker ignores any other type of symbol when the output OMF is
different from the input, including:

• Type Information (e.g., x is a structure containing elements y and z).
• Line Information (e.g., function x, comes from file x.c , and ranges

from lines 123-456. Line 235 is at ip 0x12345678).
• Weak Symbols. ELF supports a third granularity of symbol type.

None of the other OMFs supports it.

Linker (lnk960, gld960)

7-15

7
Some OMFs are not as rich as others and therefore cannot accommodate
the features of other OMFs. Some examples follow:
1. Sections. The b.out OMF accommodates only .text , .data , and

.bss sections. If you create a b.out output file and attempt to use the
linker to create a section with any other name, the linker terminates
with an error. There is a workaround for this in the normal linker
directive language. Suppose you have an ELF file called ELF_file.o

with a section called Other_code_section . You can use the
following linker directives to include the contents of this section in the
.text section of the b.out output file:

SECTIONS {
.text : {

elf_file.o(Other_code_section)
...

}
...

}

Also, COFF accommodates only sections with names that are up to
eight characters long, whereas ELF can have arbitrary length section
names. When incorporating an ELF section into COFF output, the
linker shortens the name to eight characters.

2. Relocation types. b.out does not support ELF's R_960_SUB

relocation type. If you try to create a relinkable output file with one of
these relocations in it, and the output OMF is b.out or COFF, an error
occurs. Note, however, that not making a relinkable file does not
create a problem. The linker relocates it, and throws the relocation
directives away.

3. System procedure (sysproc) indices. The b.out OMF accommodates
only system procedure indices that are greater than zero and less than
254. If you have a .sysproc symbol in a COFF or ELF symbol table
whose system procedure index value exceeds the bounds that b.out
supports, and you attempt to include this file in a b.out linkage, an
error occurs.

i960 Processor Software Utilities User's Guide

7-16

7
Note that when a .leafproc crosses from ELF or COFF into b.out, the
leaf entry point is produced from the call symbol. For example:

.leafproc x,L0
x:
 lda 0,g0
L0:
 ret
$ gas960e t.s
$ gld960 -r t.o -Fbout -o t.bout.o
$ gnm960 t.bout.o

Symbols from t.bout.o:

0x00000000 t x
0x00000004 t x$LF

Symbol x appears, and also symbol x$LF (which corresponds to the leaf
entry point of x .).

Link-time Optimization

When the linker performs relocation, it changes callj/calljx pseudo
instructions into bal/balx instructions when the target of the
callj/calljx is a leaf procedure. It also changes the instruction to a
calls when the target is a system procedure index. In your assembly
source, use the callj and calljx pseudo-instructions, to be replaced as
shown in Table 7-2:

• When the pseudo-instruction argument is a leaf procedure, the linker
substitutes a branch-and-link, which is faster than a call.

• For system procedures, the linker substitutes system calls, providing
convenient access to a set of kernel services.

• To prevent these optimizations, use the -O option.

Linker (lnk960, gld960)

7-17

7
Table 7-2 Branch-and-link and System-call Optimization

Pseudo-instruction Storage Class Replaced By

callj external, static call

leaf external bal

system call calls

calljx external, static callx

leaf external balx

system call lda index, g13; calls g13

For a system call, the processor refers to a system-procedure-table index,
provided as the calls argument:

• For an index from 0 to 31 with callj , the linker generates a calls

with a literal index constant.
• For an index from 0 to 259 with calljx , the linker generates

instructions to load the index into register g13 and perform the call as
follows:

lda index, g13
calls g13

Since register g13 is used, avoid returning a structure longer than 16 bytes
from a system procedure. Instead, return pointers to a structure.

The following cause out-of-range errors:

• using callj with an index greater than 31

• using calljx with an index greater than 259 for COFF programs
• using calljx with an index greater than 257 , or less than 1, for b.out

format programs

For link-time optimization, design any hand-coded assembly language leaf
procedures for both call (callj /calljx) and branch-and-link (bal /balx)
access. Then, the linker can optimize the call while protecting any indirect
procedure accesses that are not recognized as optimizable.

i960 Processor Software Utilities User's Guide

7-18

7
The following example provides both branch-and-link and call access:

 .leafproc _name,_second
_name: lda retlbl,g14
_second: mov g14,g13
The subroutine appears here.
 bx (g13)
retlbl: ret

• Branch-and-link instructions place the address of the next instruction
in g14 before branching.

• The lda instruction at the _name: label places the retlbl address of
the ret instruction in g14 .

• The first .leafproc argument, _name, is used as the call and callx

entry point.
• The second .leafproc argument, _second , used as the bal and

balx entry point.
• The branch destination is g13 , whose contents are determined by the

contents of g14 , which vary depending upon the entry point. In either
case, the routine returns correctly when the bx instruction is executed:
 The lda instruction at _name places retlbl in g14 when the

routine is entered by _name and by a call or callx instruction.
 The g14 register contains the address of the instruction after the

bal or balx when the routine is entered by _second and by a
bal or balx instruction.

For more information on the callj and calljx pseudo-instructions, see
the i960 Processor Assembler User's Guide.

Linker (lnk960, gld960)

7-19

7
Using calljx with the i960 RP Processor

When using a calljx pseudo instruction with the new -ARP option,
calljx uses a different syntax. For example, inserting a calljx

instruction while using the -AJD setting might produce the following
linker output depending upon whether the target is a default call, leaf
procedure, or system call:

Default Call Leaf Procedure System Call

callx _target balx _target,g14 lda _sysprocIndex,g13

calls (g13)

When using a calljx with the new -ARP option, calljx uses the syntax:

calljx _target, tmpreg

where tmpreg is a local or global register. This change results in the
following sequences in the linker:

Default Call Leaf Procedure System Call

lda _target,tmpreg

callx (tmpreg)

lda _target,tmpreg

balx (tmpreg),g14

lda _sysprocIndex,g13

calls (g13)

Notice that with the 80960RP calljx format all three call types result in
a three-word instruction sequence, whereas with other architectures the
previous calljx format requires only two words.

Binding Profile Counters to Non-standard Sections

When compiling for two-pass compilation, the compiler places profile
counters in your code. These are COMMON variables, but are allocated
jointly; therefore, all profile counters occupy a contiguous stream of
memory. By default, these profile counters are allocated to the same
memory as other common variables, but they can be allocated to any
memory using the wildcard linker section directive.

i960 Processor Software Utilities User's Guide

7-20

7
Environment Variables

Environment variables set default operating parameters, such as search
paths and the target architecture. Define the environment variables before
invoking the linker. UNIX users must define the environment variables
with the set or setenv command at the operating system prompt, in
script files, or in a bootup file such as .cshrc , .login , or .profile .
Windows users define the environment variables at the operating system
prompt, in batch files, in the autoexec.bat file, or using the Control
Panel.

For more information on the environment variables used by the i960
processor assembler and software utilities, see the i960 Processor
Assembler User's Guide. For more information on defining environment
variables, see your host system documentation.

The linker requires you to define the following environment variables:

G960BASE specifies base directory for invoking the linker as
gld960 .

I960BASE specifies base directory for invoking the linker as
lnk960 .

G960ARCH specifies the target-architecture libraries for the
gld960 invocation.

I960ARCH specifies the target-architecture libraries for the
lnk960 invocation.

G960LIB specifies an additional directory for the gld960 -
invocation library and directive-file search path.

G960LLIB library and directive-file search path.

I960LIB specifies additional directories for the lnk960 -
invocation.

I960LLIB library and directive-file search path.

Linker (lnk960, gld960)

7-21

7
For more information on how setting these environment variables affects
the linker, see the Library Naming Conventions and Search Paths section
on page 7-21.

Library Naming Conventions and Search Order

The l abbr option specifies an abbreviation for one of the four standard
library types (standard ANSI, math, floating-point, and low-level). The
linker combines the abbreviation for the type with the architecture option
and big-endian and position-independent code and data options, if any, to
generate a list of candidate library names.

abbrqual .a
lib abbrqual .a
abbrarchqual .a
lib abbrarchqual .a

abbr is the argument of the l option, one of:

c which contains the standard ANSI C functions.

m which contains the standard ANSI math
functions.

h which contains the accelerated floating-point
functions for processors without on-chip
floating-point support.

ll which contains a MON960 low-level library.

qual is null unless big-endian, PIC or PID options are specified on the
linker command line. Then, qual is one of:

_b or b which selects a big-endian library for Cx, Jx, and
Hx applications.

_p or p which indicates that the library contains position-
independent data (PID).

_e or e which indicates a PID and big-endian library for
Cx, Hx, and Jx applications.

i960 Processor Software Utilities User's Guide

7-22

7
arch is the architecture option specified by the linker command line. It is
one of:

ca for i960 Cx, Hx, and Jx processor-based
applications.

jx for i960 Jx processor-tuned floating-point
libraries.

ka for i960 KA and SA processor-based
applications.

kb for i960 KB and SB processor-based
applications.

rp for i960 RP processor-based applications.

The linker searches for each library name along a library search path
determined by the linker invocation.

When you invoke the linker as gld960 , the search path is:

1. any path given with the L option
2. any path given with the SEARCH_DIR directive
3. the path given with the G960LIB environment variable
4. the path given with the G960LLIB environment variable
5. the path given with the G960BASE environment variable
6. the current working directory

When you invoke the linker as lnk960 , the search path is:

1. any path given with the L option
2. any path given with the SEARCH_DIR directive
3. the path, if any, given with the I960LIB environment variable
4. the path, if any, given with the I960LLIB environment variable
5. the lib subdirectory of the path given with the I960BASE

environment variable
6. the current working directory

The following example shows a linker search path, using the slash (/)
UNIX directory syntax:

lnk960 -L/ffs/qqq -lxyz objects.o -Tpath2

Linker (lnk960, gld960)

7-23

7
The path2.ld directive file contains SEARCH_DIR(/abc) .

For the default (KB) architecture, the linker constructs the following
library filenames:

xyz.a
libxyz.a
xyzkb.a
libxyzkb.a

The linker searches the following directories:

/ffs/qqq/xyz.a
/abc/xyz.a
$I960LIB/xyz.a
$I960LLIB/xyz.a
$I960BASE/lib/xyz.a
./xyz.a
/ffs/qqq/libxyz.a
/abc/libxyz.a
$I960LIB/libxyz.a
$I960LLIB/libxyz.a
$I960BASE/lib/libxyz.a
./libxyz.a
/ffs/qqq/xyzkb.a
/abc/xyzkb.a
$I960LIB/xyzkb.a
$I960LLIB/xyzkb.a
$I960BASE/lib/xyzkb.a
./xyzkb.a
/ffs/qqq/libxyzkb.a
/abc/libxyzkb.a
$I960LIB/libxyzkb.a
$I960LLIB/libxyzkb.a
$I960BASE/lib/libxyzkb.a
./libxyzkb.a

i960 Processor Software Utilities User's Guide

7-24

7
Library Search Order When i960 RP Architecture Is
Selected

When a non-i960 RP architecture is specified, the linker searches first for
architecture-neutral libraries, then for architecture-specific libraries. For
example, when the linker looks for the i960 KA processor libc library, it
first tries to find libc.a and, if the library is not found, the linker looks
for libcka.a . Because files targeted for the i960 RP processor require
target-specific libraries, the linker looks first for architecture-specific
libraries (e.g., libcrp.a), and, if those libraries are not found, the linker
looks for architecture-neutral libraries (e.g., libc.a).

Linker Options Reference

This section describes the linker command-line options in alphabetical
order.

Linker (lnk960, gld960)

7-25

7
A: Architecture
Selects libraries;
identifies instruction set

Aarchitecture

architecture is SA, SB, KA, KB, CA, CA_DMA, CF, JA, JD, JF, HA,
HD, HT, RP, CORE0, CORE1, CORE2, or

CORE3

Discussion

Specifying the architecture:

• selects the libraries for your target i960 processor
• identifies the instruction set used in the input object files

To specify the architecture, use the A option. This overrides any
OUTPUT_ARCH directive and the I960ARCH or G960ARCH environment
variable.

Some pairs of A arguments have identical effects:

• SA is the same as KA

• SB is the same as KB

• CA is the same as CF and CA_DMA

You can prepare several levels of default values for the architecture and
standard libraries. Omitting A uses the architecture specified by
OUTPUT_ARCH in the linker-directive file. Omitting both A and
OUTPUT_ARCH uses the default architecture for the linker invocation and
the architecture environment variables (described in the Library Naming
Conventions and Search Paths section on page 7-21):

• Invoking the linker with lnk960 uses the I960ARCH environment
variable.

• Invoking the linker with gld960 uses the G960ARCH environment
variable.

i960 Processor Software Utilities User's Guide

7-26

7
• With I960ARCH or G960ARCH undefined, the default architecture is

KB, regardless of the invocation command.

Specifying A with no valid argument causes a fatal error.

New Architecture Options

The linker now accepts -ARP, -ACORE0, -ACORE1, -ACORE2, and -ACORE3

architecture switches or environment variable settings. The following
table shows the input/output compatibilities of all supported architectures.

Table 7-3 Supported Input/Output Architecture Combinations

Output

SA/

KA

SB/

KB Cx Jx Hx RP CORE0 CORE1 CORE2 CORE3

SA/KA C C NA NA NA NA NA NA NA NA

SB/KB NA C NA NA NA NA NA NA NA NA

I Cx NA NA C NA NA NA NA NA NA NA

n Jx NA NA NA C C NA NA NA C NA

p Hx NA NA NA NA C NA NA NA NA NA

u RP NA NA NA C C C C NA C NA

t CORE0 NA NA NA C C C C NA C NA

CORE1 C C C C C NA NA C C C

CORE2 NA NA NA C C NA NA NA C NA

CORE3 NA NA C C C NA NA NA C C

C = compatible.

NA = incompatible. Warning issued.

Linker (lnk960, gld960)

7-27

7
Libraries

The linker uses the architecture-specific standard libraries for an HLL

directive without arguments. The provided directive files, such as
eva.ld , contain the appropriate library directives. The designated
architecture also affects the library names generated from the l (library)
option.

Example

The following links proto.o for a KA target.

lnk960 -AKA proto.o

Related Topic

l (Library Input)

B, T: Section Start Address
Assigns a section
starting address

Bsection addr

T







bss

data

text
 addr

section is a section name. The space between section

and addr is required.

bss identifies the .bss section.

data identifies the .data section.

text identifies the .text section.

i960 Processor Software Utilities User's Guide

7-28

7
addr is a hexadecimal integer constant for T, or an

octal, decimal, or hexadecimal expression for B.

Put no space between T and bss , data , or text . Do not start the bss ,
data , or text argument to T with a dot (.).

A space between B and the section name is optional. Use the full section
name, including any leading dot.

Discussion

To specify a section starting address, use B, overriding any other default or
directive-file section starting address. For addr , you can use:

• an octal constant starting with 0.

• a decimal constant starting with any digit other than 0.

• a hexadecimal constant starting with 0x.

• an expression that can contain octal, decimal, and hexadecimal
constants and symbols defined in linker directive files or with the
defsym option.

For backward compatibility, T is supported, with the following restrictions:

• Specify addr as a hexadecimal constant. Expressions are not
evaluated. Regardless of the leading character or digit, T interprets
the address as hexadecimal.

• Use T for only the .text , .data , and .bss sections.

Examples
• The following starts .data at the address 1000 hexadecimal and starts

the section named mydata at the address 24 hexadecimal:

lnk960 -Tdata 0x1000 -Bmydata 0x24 file1.o file2.o

• When B and T locate the same section name, B overrides T. The
following starts .text at 0xc :

lnk960 -Ttext 0xf0 file1.o file2.o -B.text 0xc

• The starting address of sect1 in the following command can be
expressed as 012750 octal, 5608 decimal, or 0x15e8 hexadecimal:

lnk960 -Bsect1 0x1000+1000+01000 file1.o file2.o

Linker (lnk960, gld960)

7-29

7
C: Startup Alternative
Suppresses any
STARTUP directive in
the linker directive file

C

Discussion

By default, the first object file or library specified on the command line is
linked first. To link a different file first, use C. The C option overrides the
STARTUP directive and returns to the default.

Example

For example, the my-targ.ld file contains a STARTUP(crtest.o)

directive. The following links newstart.o first instead of crtest.o :

lnk960 -C -Tmy-targ newstart.o file1.o

c: Circular Library Search
Searches libraries
circularly

c

Discussion

By default, the linker processes libraries in order, reading from left to right
on the command line. In most cases, this approach works well.
Occasionally, however, libraries contain circular references. In such
cases, you can use the linker's c option to search libraries iteratively to

i960 Processor Software Utilities User's Guide

7-30

7
resolve these references. This does, however, slightly change the
semantics of links; formerly undefined symbols may be defined by other
libraries in the loop.

Example
lib1 and lib2 interrelate as follows:

lib1 defines references object file

x a x.o

y y.o

lib2 defines references object file

a y a.o

If you link using:

gld960 -ux lib1.a lib2.a

the linker opens lib1.a first, finds symbol x resolved in the x.o object
file, and reads it in. It finds no other references to symbols it needs, so it
closes lib1.a .

The linker then opens lib2.a and resolves the symbol a referenced in the
x.o file (from lib1.a). It reads in the a.o object file. It finds no other
symbols it can resolve, so it closes lib2.a .

However, symbol y is left unresolved, because it is defined in lib1.a and
referenced in a.o (from lib2.a) . This is a circular definition.

The c option resolves circular definitions by iterating through the list of
libraries and fetching object files from them as needed for each loop. The
search is complete when:

• there are no more undefined symbols, OR
• neither the number of global symbols nor the number of undefined

symbols has changed from the previous iteration.

Linker (lnk960, gld960)

7-31

7
D: Inhibit CAVE section compression
Prevents the linker from
compressing CAVE
sections

D

Discussion

By default the linker compresses any sections set up for Compression
Assisted Virtual Execution (CAVE) by the user. Using the D option
prevents the linker from performing this processing. For more information
on CAVE, see the i960 Processor Compiler User’s Guide.

d: Define Common Symbol Space
Allocates common
symbols to .bss even
when doing -r links

dc
dp

c and p have identical effects.

Discussion

To assign common-symbol space in an output file linked with the -r

(Relocation) option, use dc or dp. This option has the same effect as the
FORCE_COMMON_ALLOCATION directive. (It places common symbols by
default into the .bss section.)

The final link automatically allocates space for common symbols.

i960 Processor Software Utilities User's Guide

7-32

7
Example

The following assigns space in the .bss section of a.out for common
symbols and retains relocation information for later re-linking:

lnk960 -rdc dcomm.o file1.o

defsym: Define a Symbol
Defines an absolute
symbol

defsym name=expr

name names the symbol.

expr initializes the symbol.

Discussion

To define a symbol on the linker command line, use defsym . You can
reference the symbol in your source text, in a directive file, or on the
linker command line.

Example

The following resolves any references to filenum1 in file1.o or
file2.o . Its value is zero (absolute).

lnk960 -defsym filenum1=0 file1.o file2.o

Related Topic

R (Read symbols only)

Linker (lnk960, gld960)

7-33

7
e: Entry Point
Defines the primary
entry point

esymbol

symbol is a symbol name in a text-type section in the
output file.

Discussion

To define the primary entry-point symbol in the output file, use e.

The linker uses the following order of precedence to select an entry point:

1. e on the command line
2. with e unspecified, ENTRY in the linker directive file
3. with e and ENTRY unspecified, the first appearance of start or _main

in your program
4. with start and _main undefined, the first address in .text

Example

The following command links file.o for execution on a Cx target and
specifies the symbol midpoint as the entry point:

lnk960 -Tmepcx -e midpoint file.o

i960 Processor Software Utilities User's Guide

7-34

7
F: Format
Specifies the COFF,
ELF or b.out format for
the output

Fcoff specifies COFF output.

Felf specifies ELF output.

Fbout specifies b.out output.

Discussion

To specify an output format, use the F option.

gld960 or gld960 -Fbout generates b.out format output. The
Fbout option is not valid when the
linker is invoked with lnk960 .

gld960 -Fcoff or lnk960 generates COFF output.

gld960 -Felf or lnk960 -Felf generates ELF output.

The output format generates the default output filename (see the Linker
Invocation section and the o option in this section). The default format for
gld960 is b.out; the default format for lnk960 is COFF.

Example

The following generates a COFF program:

gld960 -Fcoff file1.o file2.o

Linker (lnk960, gld960)

7-35

7
f: Fill
Sets the fill value for
unused memory in an
output section

f value

value is a two-byte hexadecimal constant in C-style
notation.

Discussion

Use this options to initialize blocks of memory in sections of an output
file.

You can prepare several levels of default fill values:

• A FILL directive inside a section (valid only for parts of the section
defined after FILL is encountered) definition is used first.

• With no fill value inside a section definition, the linker uses the FILL

directive at the end of the current section definition, inside the
SECTIONS directive.

• With no fill value defined in the directive file, the linker uses the f

option.
• With both f and FILL omitted, the linker uses a 0 fill value.

Filler is used to ensure alignments between input sections:

a.s b.s .text 0
.align 4 .align 4 lda 0,g0
lda 0,g0 lda 0,g0 Filler

lnk960 a.o b.o lda 0,g0

i960 Processor Software Utilities User's Guide

7-36

7
Example

The following command links file1.o , file2.o , and file3.o to
produce an executable image named a.out . The linker places 0xFFFF in
all gaps between the input sections in the output file.

lnk960 -f 0xFFFF file1.o file2.o file3.o file.o xxx.ld
SECTIONS {

one: {
first.o (.text)
. += 0x1000; /*filler*/
second.o (.text)
}

}

G: Big-endian Target
Produces a COFF or
ELF file for a big-
endian target

G

Discussion

To link big-endian instructions and data, invoke the linker and:

• Specify G, to select the big-endian search path and libraries, as
described in the Library Naming Conventions and Search Paths
section on page 7-21.

• Specify Fcoff or Felf , for COFF or ELF output.
• Select the i960 Cx, Jx, or Hx architecture.

Linker (lnk960, gld960)

7-37

7
NOTE. Big-endian code is supported for COFF or ELF on the i960 Cx,
Jx and Hx processors only. Memory regions must be either all big-endian
or all little-endian. The linker emits warnings when you attempt to mix
big- and little-endian code.

Example

The following links with a user-defined library (abbreviated as myca) for a
big-endian CA target. The linker uses the _b or b qualifiers first when
searching for the library indicated by -lmyca .

gld960 -ACA -G -Fcoff fcab.o fcag.o -obigca.o -lcg -lm -lmyca

The objects must have been produced using the assembler's G option.

gcdm: Decision maker
Invoke gcdm960
optimization decision
maker

gcdm

Discussion

See Chapter 6, gcdm Decision Maker Option, in your compiler manual for
more information on this option.

i960 Processor Software Utilities User's Guide

7-38

7
h: Help
Displays help
information

h

Discussion

To display help information for the linker, use the -h option.

H: Sort common symbols
Sorts common symbols
based on size.

H

Discussion

To use the linker to sort common symbols based on size, use the -H option.
For each input file in the linkage, the common symbols defined in that file
are sorted based on the size of the symbol.

Linker (lnk960, gld960)

7-39

7
J: Compress
Merges duplicated tags
from COFF symbol
tables, compresses
string table

J

Discussion

This option merges duplicated COFF symbol tags from output symbol
tables.

Linking with the J option eliminates such duplicated tags. The resulting
symbol table has tag indices that cross .file scope boundaries. The file has
F_COMP_SYMTAB ORed into the flags of the file header structure (see
coff.h). The string table is also compressed with this option.

L: Library Search Path
Changes the path for
library searches

Ldir

dir is a directory name.

Discussion

To extend the linker search path (described in the Library Naming
Conventions and Search Paths section on page 7-21), use L. You can use
L multiple times on the command line. The L option has the same effect as
SEARCH_DIR, but directories specified with L are searched before
directories specified with the SEARCH_DIR directive.

i960 Processor Software Utilities User's Guide

7-40

7
l: Library Input
Specifies an input
library

l abbr

abbr is an abbreviated form of a library name. Only
one abbr can accompany each l .

Discussion

See the Library Naming Conventions and Search Paths section on page 7-
21 for information on this option.

Only the first filename found is used. Once closed, a library is reopened
only when specified again on the command line or in a linker directive
file, or if the -c is used.

You can use the u option to create an unresolved reference to a symbol in
the desired library member before specifying the library.

NOTE. Because the linker processes libraries and files in order, the
appearance order of the l option on the command line is significant. For
example, gld960 f.o -lh differs from gld960 -lh f.o , and gld960

... -lh -lc differs from gld960 ... -lc -lh .

Linker (lnk960, gld960)

7-41

7
Examples

In the following example:

• Input file1.o refers to the ABC symbol, defined in member 0 of
libckb.a .

• Input file2.o refers to the XYZ symbol, defined in member 0 of
liba.a .

• Both input files refer to the FCN external function, defined in member
1 of both libraries.

The command line is:

lnk960 file1.o -la file2.o -lc

The FCN references are satisfied by liba.a , member 1; ABC is obtained
from libckb.a , member 0; and XYZ remains undefined, since the library
liba.a is searched before file2.o is specified.

To repair this, consider changing the command line to:

lnk960 file1.o -u_XYZ -la file2.o -lc

You can create an unresolved reference from the command line with the u
option. Such references link archive members needed to resolve the
undefined symbol, even when the input does not explicitly reference the
symbol. The following command creates an undefined symbol, called
rout1 , in the global symbol table:

lnk960 -u rout1 file1.o -la

The linker extracts the first member of library liba.a that defines rout1 .
With no other references to liba.a members, the linker would link only
the member resolving rout1 .

i960 Processor Software Utilities User's Guide

7-42

7
M: Multiple Definition Warning
Included for backwards
compatibility, No effect

M

Discussion

This option is supported for backwards compatibility, but has no effect.

Related Topic

t (Multiple definition warning)

m: Memory Map
Provides a memory map
of the linked executable

m

Discussion

To write a memory map of the linked executable to stdout , specify m,
which lists:

• the symbol locations
• the global common storage allocation

Linker (lnk960, gld960)

7-43

7
For information on stdout , see your host system documentation. You
can redirect map information to a file using the N option.

Related Topic

N (Name memory map file)

N: Name Memory Map File
Specifies a filename for
writing the memory map

Nfile

Discussion

Redirects the linker memory map to the specified file file . When this
option is not specified but the m option is given, map information is written
to standard output. This option allows you to separate the linker map from
other information written to standard output, such as verbose messages
and warnings.

Example

The following command links t.o with verbose messages, and redirects
the linker map to a file mapfile . Verbose messages are still sent to
standard output.

lnk960 -m -Nmapfile t.o -v

Related Topic

m (Memory map)

i960 Processor Software Utilities User's Guide

7-44

7
n: Noinhibit Output
Writes an output file
regardless of errors

n

Discussion

To produce an output file even when the linker encounters non-fatal
errors, specify n. By default, any error suppresses the output file.

Example

The following command produces an output file named haserr.o

regardless of non-fatal errors:

lnk960 -n proto.o -ohaserr.o

O: Optimization of Calls Inhibited
Inhibits branch-and-link
or system call
optimizations

O { b | s }

b inhibits the replacement of callj and calljx

pseudo-operations with branch-and-link
instructions.

s inhibits the replacement of callj and calljx

pseudo-operations with system call instructions.
call instructions remain.

Linker (lnk960, gld960)

7-45

7
Discussion

To inhibit branch-and-link optimizations, specify Ob. To inhibit system
call optimizations, specify Os. By default, the linker performs both types
of call optimization.

Note that if a function declared with #pragma systemproc lacks a
function definition, -Os causes the linker to issue a fatal error.

Example

The following command inhibits system call optimizations but allows
branch-and-link optimizations:

lnk960 -Os proto.o

o: Output Filename
Names the output object
file

ofilename

filename names the output file. You can include a full or
partial pathname.

Discussion

To specify an output filename other than the default, use o. The default
output filenames are:

a.out for COFF output

b.out for b.out format output

e.out for ELF output

i960 Processor Software Utilities User's Guide

7-46

7
Example

The following command links file.o , creating proto.out in the
/testdir directory:

lnk960 -Texv -o /testdir/proto.out file.o

Related Topic

F (Format)

P: Profiling
Puts profiling code in
the linker output to
support the
two-pass optimizing
compiler

P

Discussion

This option adds the profiling startup code used by the compiler. This
option is useful only when combined with -r . By default P is not included
when using the r option,

Example

The following command links for profiling optimization and makes the
output relocatable:

gld960 -P -r file.o

Linker (lnk960, gld960)

7-47

7
p: Position-independence
Marks the linker output
file as position-
independent

p { b | c | d }

Discussion

To link and mark the output file for position-independent code or data,
invoke the linker with lnk960 and specify p, as follows:

pb selects libraries with position-independent code
and data.

pc selects libraries with position-independent code.
Currently, all the libraries provided with your
i960 processor software toolset contain position-
independent code.

pd selects libraries with position-independent data.

For more information on library selection, see the Library Naming
Conventions and Search Paths section on page 7-21 and the L option in
this section.

By default, files are linked as position-dependent. If you use these
switches and the files are not marked as position independent, the linker
issues a warning message.

For information on generating position-independent code and data, see
your compiler user's guide. For information on marking unlinked object
files for position independence, see the assembler user's guide. For
information on the position-independent and position-dependent libraries,
see the library supplement.

When the linker directive file contains HLL() , the linker chooses default
libraries according to the position-independent flag.

i960 Processor Software Utilities User's Guide

7-48

7
R: Read Symbols Only
Includes only the
symbols from an object
file

R

Discussion

To read all the symbol names and addresses from an input object file,
specify R. The rest of the input file is not relocated or included in your
linked output. With R, your output file can refer symbolically to non-
relocatable locations defined in other programs.

Example

The following command links only symbols from file1.o and includes
all of file2.o in the linked output:

lnk960 -R file1.o file2.o

Linker (lnk960, gld960)

7-49

7
r: Relocation
Keeps relocation entries
in the output object file

r

Discussion

With the r option, relocation entries remain in the output object file for a
subsequent linker call, and the linker issues no warnings about unresolved
references.

Relocation requires symbol table entries that you can remove with the s

option. The linker accepts no command line containing both the -r and
-s options.

Example

In the following incremental links, the first invocation links file1.o and
file2.o to produce the relocatable output file f1.out . The second links
file3.o and file4.o to produce f2.out . The third links the two
relocatable files to produce done.out and writes a link map to stdout .

lnk960 -r -o f1.out file1.o file2.o
lnk960 -r -o f2.out file3.o file4.o
lnk960 -m -o done.out f1.out f2.out

i960 Processor Software Utilities User's Guide

7-50

7
Related Topics

x , X (Compress)
s (Strip)

dc , dp (Define common-symbol space)

S, s: Strip
Removes debugging or
symbolic information
from the object file

S

s

Discussion

For a smaller output file, strip symbol information with s (lower case),
removing:

• the line number entries
• the symbols
• the symbol-table information
• In ELF output, this eliminates all non-allocated sections (e.g.,

.debug_info , .debug_line).

Using S (uppercase) retains the symbol table but removes debug symbols.
This option is supported in COFF and ELF only. In ELF, this removes all
non-allocated sections (.debug* sections). By default, all information
remains in the output file.

Since relocation requires the symbol table, using s with the relocation
option (r) terminates the linker with an error.

Linker (lnk960, gld960)

7-51

7
Related Topics

x , X (Compress)
r (Relocate)

T: Target
Searches for the linker
directive file in the
linker search path

Tfilename

filename is the linker directive filename. You need not
specify a .ld extension.

Discussion

To find a linker directive file in a directory other than the current one,
specify the file with T. Providing the directive filename without T limits
the linker to searching in the current directory.

The linker searches for both filename and filename .ld .

With T, the linker searches for the directive file along the search path
described in the Library Naming Conventions and Search Paths section on
page 7-21.

The T option has the same effect as a TARGET directive.

For information on the linker command language used in linker directive
files, see Appendix A.

i960 Processor Software Utilities User's Guide

7-52

7
NOTE. You must add the .ld extension when specifying any directive
filenames that are the same as the standard section names:
text.ld use Ttext.ld

data.ld use Tdata.ld

bss.ld use Tbss.ld

You cannot use the T option to find a directive file named text , data , or
bss . You can use the names text.ld , data.ld , or bss.ld , but you must
append the filename and its extension when you use the T option.

Related Topics

A (architecture) B

L (library directory) Ttext , Tdata

t: Suppress Multiple Definition Symbol Warnings
Suppresses warning of
multiple symbol
definitions.

t

Discussion

Use this option to suppress warnings of multiple symbol definitions, even
if they differ in size

Related Topic

W (Warnings)

Linker (lnk960, gld960)

7-53

7
u: Unresolved Symbol
Places unresolved
external symbol in the
symbol table

usymbol

symbol names the symbol.

Discussion

When creating programs of libraries only, such as run-time libraries, build
the symbol table with u. This option introduces an unresolved external
symbol into the output file symbol table. The linker resolves the reference
with the first module defining the symbol. This option is useful when
libraries are to be traversed in an order that prevents your application from
linking.

Example

The following example shows how to fetch the closure of components of
printf .

lnk960 -rvu printf -oprintf.o -lc

i960 Processor Software Utilities User's Guide

7-54

7
v: Verbose
Displays linker progress

v

Discussion
To display the files sought by the linker as the linker search progresses,
specify v . The search messages appear on stdout .

V, v960: Version
Displays the linker
version number and
creation date

V

v960

Discussion

To display a sign-on message on stdout during linking, use V. After
displaying the message, the linker continues processing.

To display the message without linking, use v960 . You need not provide
any other input. After displaying the message, the linker stops.

The message includes the version number of the linker, and the date and
time it was created.

Linker (lnk960, gld960)

7-55

7
W: Warnings
Suppresses warnings

W

Discussion

The linker provides warning messages about non-standard conditions
arising during the link. Using W suppresses the warnings.

Related Topic

T (Suppress Multiple Definition Symbol Warnings)

X, x: Compress
Omits local symbols
from the output symbol
table

x

X

Discussion

Delete local symbols from the output symbol table as follows:

x removes all local symbols.

X removes all local symbols beginning with L or a dot (.).

When generating a compressed output file, you can also remove symbolic
information with the strip option (s).

i960 Processor Software Utilities User's Guide

7-56

7
By default, all information remains in the output symbol table for symbolic
debugging.

Related Topic

S, s (Strip)

y: Trace Symbol
Traces the specified
symbol

ysymbol

symbol identifies the symbol.

Discussion

The linker traces the symbol symbol , indicating each file where it appears,
its type, and whether the file defines or references it. You can trace
multiple symbols by using multiple y options. If symbol comes from a C
program, you must precede it with an underscore.

Linker (lnk960, gld960)

7-57

7
Z: Program database
Specifies location of
program database

Z PDB_directory

Discussion

Use this option to specify the location of the program database. For
information on the program database, used when performing whole-
program or profile-driven optimization, see your compiler manual.

z: Time Stamp Suppression
Suppresses the time
stamp in the COFF
output file

z

Discussion

For COFF files, the linker notes the current time and date in the output-file
header. To put Time Zero in place of the current time stamp, specify z .
Time Zero is 4:00, 31 December, 1969.

NOTE. Neither b.out format nor ELF files have a time stamp.

Macro Processor (mpp960)

8-1

8
The mpp960 macro processor copies its input to its output, expanding
macros as it goes. The macros are either built-in or user-defined and can
take any number of arguments. mpp960 has built-in functions for
including named files, running UNIX commands, performing integer
arithmetic, manipulating text in various ways, doing recursion, and
performing other tasks. mpp960 can be used as a stand-alone macro
processor or as a front-end to a compiler or assembler.

mpp960 is compatible with the UNIX System V, Release 3 m4 utility, with
some minor differences. See the Compatibility with Other Macro
Processors section in this chapter for more details.

mpp960 Message Prefixes

This chapter contains many examples of mpp960 input and output. Output
from mpp960 is prefixed by the string =>. For example:

=>Output line from mpp960

Error messages are prefixed by the string error-->

error-->and an error message

mpp960's predefined macros are described by a prototype call of the
macro using descriptive names as arguments.

regexp(string , regexp , [replacement])

All mpp960 macro arguments are strings, but some strings are interpreted
as numbers, filenames, or regular expressions.

i960 Processor Software Utilities User's Guide

8-2

8
The [] characters around the third argument shows that this argument is
optional  when it is left out, it is taken to be the empty string. An
ellipsis (...) last in the argument list means that any number of arguments
can follow.

Invoking mpp960

The format of the mpp960 command is:

mpp960 [- option]... [macro-definition]... [input-file]...

where -option is any of the following:

Dname Enters name into the symbol table, before any
input files are read. When =value is missing, the
value is taken to be the empty string. The value
can be any string, and the macro can be defined
to take arguments just as if defined from within
the input.

dflags Sets the debug-level according to the flags .
The debug-level controls the format and amount
of information presented by the debugging
functions.

a Shows the actual arguments in each
macro call.

c Shows several trace lines for each
macro call.

e Shows the expansion of each macro
call, if it is not void.

f Shows the name of the current input
file in each trace output line.

i Prints a message each time the current
input file is changed.

l Shows the current input line number in
each trace output line.

Macro Processor (mpp960)

8-3

8
p Prints a message when a named file is

found through the path search
mechanism, giving the actual filename
used.

q Quotes actual arguments and macro
expansions in the display with the
current quotes.

t Traces all macro calls made in this
invocation of mpp960.

x Adds a unique macro call id to each
line of the trace output.

V Shorthand for all the debug flags.

efile Redirects debug and trace output to the named
file. Error messages are still printed on the
standard error output.

G Suppresses all mpp960 extensions that are not
supported by the UNIX System V m4 tool.

Hn Sets the size of the internal hash table for symbol
lookup n entries. The number should be prime.
The default is 509 entries.

I dir Makes mpp960 search dir for included files that
are not found in the current working directory.

i Makes this invocation of mpp960 interactive.
This means that all output is unbuffered and
interrupts are ignored.

l num Restricts the size of the output generated by
macro tracing to num bytes.

Nn Allows for up to n diversions to be used at the
same time. The default is 10 diversions.

Q Suppresses warnings about missing or
superfluous arguments in macro calls.

i960 Processor Software Utilities User's Guide

8-4

8
s Generates synchronization lines for use by the C

preprocessor or other similar tools. This is
useful, for example, when mpp960 is used as a
front end to a compiler. Source filename and
line number information is conveyed by lines of
the form #line linenum " filename " that are
inserted as needed into the middle of the input
(but always on complete lines by themselves).
Such lines mean that the following line
originated or was expanded from the contents of
input file filename at line linenum . filename

may be omitted when the filename did not
change from the previous synchronization line.

V Displays the version number of the program.

v960 Displays the version number and exits.

B, S, T Provides for compatibility with UNIX System V
m4, but these options do nothing in this
implementation.

Macro definitions and deletions can be made on the command line, by
using the D and U options. They have the following format:

Dname[= value] Enters name into the symbol table before any
input files are read. When =value is missing,
the value is taken to be the empty string. The
value can be any string, and the macro can be
defined to take arguments, just as if defined from
within the input.

Uname Deletes any predefined meaning name might
have. Only predefined macros can be deleted in
this way.

t name Enters name into the symbol table as undefined
but traced. The macro is consequently traced
from the point it is defined.

Macro Processor (mpp960)

8-5

8
The remaining arguments on the command line are taken to be input
filenames. If no names are present, standard input is read. A filename of
- is also taken to mean standard input.

The input files are read in the sequence given. The standard input can be
read only once, so the filename - should appear only once on the
command line.

Lexical and Syntactic Conventions

mpp960 separates its input into tokens. A token is either a name, a quoted
string, or any single character that is not a part of either a name or a string.
Input to mpp960 can also contain comments.

Names

A name is any sequence of letters, digits, and the underscore character (_),
where the first character is not a digit. If a name has a macro definition it
is subject to macro expansion.

Examples of legal names are: foo , _tmp , and name01.

Quoted Strings

A quoted string is a sequence of characters surrounded by quotes; the
number of start and end quotes within the string must balance. The so-
called start and end quote characters are the backquote (`) and apostrophe
('), respectively. The value of a string token is the text, with one level of
quotes stripped off. Thus, ` ' is the empty string and ``quoted'' is the
string: ̀quoted' .

The quote characters can be changed at any time using the built-in macro
changequote .

i960 Processor Software Utilities User's Guide

8-6

8
Other Tokens

Any character that is neither a part of a name nor part of a quoted string is
a token by itself.

Comments

Comments in mpp960 are normally delimited by the characters # and
newline. All characters between the comment delimiters are ignored, but
the entire comment (including the delimiters) is passed through to the
output.

Comments cannot be nested, so the first newline after a # ends the
comment. The begin comment character can be included in the input by
quoting it.

The comment delimiters can be changed to any string at any time, using
the built-in macro changecom .

How to Invoke Macros

This section describes macro invocation, macro arguments and how macro
expansion is treated.

Macro Invocation

Macro invocations have one of these forms:

macroname

which is a macro invocation without any arguments, or:

macroname(arg1 , arg2 , ... , argN)

which is a macro invocation with N arguments. Macros can have any
number of arguments. All arguments are strings, but different macros
might interpret the arguments in different ways.

Macro Processor (mpp960)

8-7

8
The opening parenthesis must follow the macroname directly, with no
spaces in between. If it does not, the macro is called with no arguments at
all. For a macro call to have no arguments, the parentheses must be left
out. The macro call:

macroname()

is a macro call with one empty string argument, rather than a call with no
arguments.

Macro Arguments

A name that has a macro definition is expanded as a macro. If the name is
followed by an opening parenthesis, the arguments are collected before the
macro is called. If too few arguments are supplied, the missing arguments
are taken to be the empty string. If there are too many arguments, the
excess arguments are ignored.

Normally, mpp960 issues warnings when a built-in macro is called with an
inappropriate number of arguments, but it can be suppressed with the Q

command line option. For user defined macros, there is no check of the
number of arguments given.

Macros are expanded normally during argument collection, and whatever
commas, quotes and parentheses that might show up in the resulting
expanded text defines the arguments as well. Thus, if foo expands to
,b,c , the macro call:

bar(a foo,d)

is a macro call with four arguments: a , b, c and d.

Quoting Macro Arguments
Each argument has leading unquoted white space removed. Within each
argument, all unquoted parentheses must match. For example, if foo is a
macro:

foo(() (`(') `(')

is a macro call, with one argument, whose value is () (() (.

i960 Processor Software Utilities User's Guide

8-8

8
It is common practice to quote all arguments to macros, unless you are
sure you want the arguments expanded. To use this convention, you
would change the above command to:

foo(`() (() (')

Macro Expansion

When any arguments to a macro call have been collected, the macro is
expanded and the expansion text is pushed back unquoted onto the input
and reread. The expansion text from one macro call might therefore result
in more macros being called, if the calls are included, completely or
partially, in the first macro call's expansion.

Taking a very simple example, if foo expands to bar , and bar expands to
Hello world. , the input:

foo

expands first to `bar' , and when this is reread and expanded, into:

Hello world.

How to Define New Macros

Macros can be defined, redefined, and deleted in several different ways. It
is also possible to redefine a macro without losing a previous value.
Previous values can be brought back at a later time.

Defining a Macro

The normal way to define or redefine macros is to use the built-in define :

define(name, expansion)

which defines name to expand to expansion .

The expansion of define is void.

Macro Processor (mpp960)

8-9

8
The following example defines the macro foo to expand to the text
"Hello World. ".

define(`foo', `Hello world.')
=>
foo
=>Hello world.

The empty line in the output is there because the newline is not a part of
the macro definition and it is consequently copied to the output. You can
avoid this by using the dnl macro.

Arguments to Macros

Macros can have arguments. The Nth argument is denoted by $n in the
expansion text, and is replaced by the Nth actual argument, when the
macro is expanded. Here is a example of a macro with two arguments. It
simply exchanges the order of the two arguments.

define(`exch', `$2', `$1')
=>
exch(arg1, arg2)
=>arg2, arg1

This can be used, for example, if you like the arguments to define to be
reversed.

define(`exch', `$2, $1')
=>
define(exch(``expansion text'', ``macro''))
=>
macro
=>expansion text

For an explanation of the double quotes, see Quoting Macro Arguments.
mpp960 allows the number following the $ to consist of one or more
digits, allowing macros to have any number of arguments.

i960 Processor Software Utilities User's Guide

8-10

8
As a special case, argument zero, $0, is always the name of the macro
being expanded.

define(`test', ``Macro name: $0'')
=>
test
=>Macro name: test

If you want quoted text to appear as part of the expansion text, remember
that quotes can be nested in quoted strings. Thus, in:

define(`foo', ``This is macro ‘foo’ . '')
=>
foo
=>This is macro ‘foo’.

The foo in the expansion text is not expanded, since it is a quoted string,
and not a name.

Special Arguments to Macros

There is a special notation for the number of actual arguments supplied
and for all the actual arguments. The number of actual arguments in a
macro call is denoted by $# in the expansion text. Thus, a macro to
display the number of arguments given can be:

define(`nargs', `$#')
=>
nargs
=>0
nargs()
=>1
nargs(arg1, arg2, arg3)
=>3

The notation $* can be used in the expansion text to denote all the actual
arguments, unquoted, with commas in between. For example:

define(`echo', `$*')
=>
echo(arg1, arg2, arg3 , arg4)
=>arg1,arg2,arg3 ,arg4

Macro Processor (mpp960)

8-11

8
Use the notation $@ when each argument should be quoted. It is just like
$* , except that it quotes each argument. This is a simple example:

define(`echo', `$@')
=>
echo(arg1, arg2, arg3 , arg4)
=>arg1,arg2,arg3 ,arg4

Where did the quotes go? They were removed when the expanded text
was reread by mpp960. To show the difference, try:

define(`echo1', `$*')
=>
define(`echo2', `$@')
=>
define(`foo', ``This is macro foo.'')
=>
echo1(foo)
=>This is macro This is macro foo..
echo2(foo)
=>This is macro foo.

A $ sign in the expansion text that is not followed by anything that
mpp960 understands is simply copied to the macro expansion, as is any
other text.

define(`foo', `$$$ hello $$$')
=>
foo
=>$$$ hello $$$

If you want a macro to expand to a value such as $12 , put a pair of quotes
after the $. This prevents mpp960 from interpreting the $ sign as a
reference to an argument.

Deleting a Macro

A macro definition can be removed with undefine :

undefine(` name')

which removes the macro name. The macro name must be quoted, since it
is expanded otherwise.

i960 Processor Software Utilities User's Guide

8-12

8
The expansion of undefine is void.

foo
=>foo
define(`foo', `expansion text')
=>
foo
=>expansion text
undefine(`foo')
=>
foo
=>foo

It is not an error for name to have no macro definition. In that case,
undefine does nothing.

Renaming Macros

It is possible to rename an already defined macro with the built-in defn :

defn(` name')

which expands to the quoted definition of name. If the argument is not a
defined macro, the expansion is void.

If name is a user-defined macro the quoted definition is simply the quoted
expansion text. If name is a built-in, the expansion is a special token that
points to the built-in's internal definition.

This token is meaningful only as the second argument to define (and
pushdef) and is ignored in any other context. Its normal use is best
understood through an example that shows how to rename undefine to
zap :

define(`zap', defn(`undefine'))
=>
zap(`undefine')
=>
undefine(`zap')
=>undefine(zap)

Macro Processor (mpp960)

8-13

8
In this way, defn can be used to copy macro definitions and definitions of
built-in macros. Even if the original macro is removed, the other name
can still be used to access the definition.

Temporarily Redefining Macros

It is possible to redefine a macro temporarily, reverting to the previous
definition at a later time. This is done with the built-ins pushdef and
popdef :

pushdef(` name', ` expansion ')

popdef(` name')

which are quite analogous to define and undefine .

These macros work in a stack-like fashion. A macro is temporarily
redefined with pushdef which replaces an existing definition of name

while saving the previous definition before the new one is installed. If
there is no previous definition, pushdef behaves exactly like define .

If a macro has several definitions (of which only one is accessible), the
topmost definition can be removed with popdef . If there is no previous
definition, popdef does nothing.

If a macro with several definitions is redefined with define , the topmost
definition is replaced with the new definition. If it is removed with
undefine, all the definitions are removed, not only the topmost one.

It is possible to temporarily redefine a built-in with pushdef and defn .

Indirect Call of Macros

Any macro can be called indirectly with indir :

indir(` name', ...)

This results in a call to the macro name which is then passed the rest of the
arguments. You can use indir to call macros with "illegal" names
because define allows such names to be defined.

i960 Processor Software Utilities User's Guide

8-14

8
(Some macro packages have private macros that can be called only
through the built-in indir .)

Indirect Call of Built-Ins

Built-in macros can be called indirectly with builtin :

builtin(` name', ...)

This results in a call to the built-in name which is then passed the rest of
the arguments. This can be used if name has been given another definition
that has covered the original.

Conditionals, Loops and Recursion

mpp960 macros can contain tests and other elements that cause them to
evaluate differently at run time.

Testing Macro Definitions

There are two different built-in conditionals in mpp960. The first is
ifdef :

ifdef(` name', ` string-1 ', [` string-2 '])

which makes it possible to test whether a macro is defined or not. If name

is defined as a macro, ifdef expands to string-1 ; otherwise to
string-2 . If string-2 is omitted, it is taken to be the empty string
(according to the normal rules).

ifdef(`foo', ``foo' is defined', ``foo' is not defined')
=>foo is not defined
define(`foo', `')
=>
ifdef(`foo', ``foo' is defined', ``foo' is not defined')
=>foo is defined

Macro Processor (mpp960)

8-15

8
Comparing Strings

The ifelse conditional is much more powerful than ifdef . You can use
ifelse as a way to introduce a long comment, as an if-else construct, or
as a multibranch, depending on the number of arguments supplied:

ifelse(` comment')

ifelse(` string-1 ', ` string-2 ', ` equal ', [` not-equal '])

ifelse(` string-1 ', ` string-2 ', ` equal ', ...)

When ifelse is used with only one argument, it discards the argument
and produces no output. This is a common mpp960 idiom for introducing
a block comment, as an alternative to repeatedly using dnl . This special
usage is recognized, so that in this case the warning about missing
arguments is never triggered.

If called with three or four arguments, ifelse expands into equal (if
string-1 and string-2 are equal character for character), otherwise it
expands to not-equal .

ifelse(foo, bar, `true')
=>
ifelse(foo, foo, `true')
=>true
ifelse(foo, bar, `true', `false')
=>false
ifelse(foo, foo, `true', `false')
=>true

However, ifelse can take more than four arguments. If given more than
four arguments, ifelse works like a case or switch statement in
traditional programming languages. If string-1 and string-2 are
equal, ifelse expands into equal , otherwise the procedure discards the
first three arguments discarded and repeats. For example:

ifelse(foo, bar, `third`, gnu, gnats, `sixth', `seventh')
=>seventh

A common use of ifelse is in macros implementing loops of various
kinds.

i960 Processor Software Utilities User's Guide

8-16

8
Loops and Recursion

There is no direct support for loops in mpp960, but macros can be
recursive. There is no limit on the number of recursion levels, other than
those enforced by your hardware and operating system.

Loops can be programmed using recursion and the conditionals described
previously.

The built-in macro shift can iterate through the actual arguments to a
macro:

shift(...)

It takes any number of arguments and expands to all but the first
argument, separated by commas, with each argument quoted.

How to Debug Macros and Input

Macro debugging in mpp960 is described below.

Displaying Macro Definitions

The built-in dumpdef shows what a name expands into:

dumpdef(...)

This macro accepts any number of arguments. If called without any
arguments, it displays the definitions of all known names; otherwise it
displays the definitions of the names given. The output is printed directly
on the standard error output.

The expansion of dumpdef is void.

define(`foo', `Hello world.')
=>
dumpdef(`foo')
=>foo: Hello world.
=>
dumpdef(`define')
=>define: <define>
=>

Macro Processor (mpp960)

8-17

8
The last example shows how built-in macro definitions are displayed.

Tracing Macro Calls

It is possible to trace macro calls and expansions using the built-ins
traceon and traceoff :

traceon(...)

traceoff(...)

When called without any arguments, traceon and traceoff enables or
disables tracing, respectively, for all defined macros. When called with
arguments, only the named macros are affected.

The expansion of traceon and traceoff is void.

The call is displayed whenever a traced macro is called and the arguments
have been collected. The expansion can be displayed after the call if the
expansion of the macro call is not void. The output is printed directly on
the standard error output.

define(`foo', `Hello World.')
=>
define(`echo', `$@')
=>
traceon(`foo', `echo')
=>
foo
error-->mpptrace: -1- foo
=>Hello World.
echo(gnus, and gnats)
error-->mpptrace: -1- echo
=>gnus,and gnats

The number between dashes is the depth of the expansion. The depth is 1
most of the time, signifying an expansion at the outermost level, but it
increases when macro arguments contain unquoted macro calls.

See the d option (next topic) for information on controlling the details of
the debug display.

i960 Processor Software Utilities User's Guide

8-18

8
Controlling Debugging Output

The d option to mpp960 controls the amount of detail presented when
using the macros described in the preceding sections.

The flags following the d option can be one or more of the following:

a Show the actual arguments in each macro call. This applies to all
macro calls if the t flag is used, otherwise only the macros covered by
calls of traceon .

c Show several trace lines for each macro call. A line is shown when
the macro is seen, but before the arguments are collected; a second
line is shown when the arguments have been collected, and a third line
is shown after the call is complete.

e Show the expansion of each macro call if it is not void. This applies
to all macro calls if the t flag is used; otherwise it applies only to the
macros covered by calls of traceon .

f Show the name of the current input file in each trace output line.
i Print a message each time the current input file is changed, giving

filename and input line number.
l Show the current input line number in each trace output line.
p Print a message when a named file is found through the path search

mechanism, giving the actual filename used.
q Quote actual arguments and macro expansions in the display with the

current quotes.
t Trace all macro calls made in this invocation of mpp960.
x Add a unique macro call id to each line of the trace output. This is

useful in connection with the c flag above.
V A shorthand for all of the above flags.

The default is aeq if no flags are specified with the d option. The
examples in the previous two sections assumed the default flags. The
built-in macro debugmode allows on-the-fly control of the debugging
output format:

debugmode([flags])

Macro Processor (mpp960)

8-19

8
The flags argument should be a subset of the letters listed above. There
are three special cases:

1. If the argument starts with a +, the flags are added to the current
debug flags.

2. If the argument starts with a - , the flags are removed.
3. If no argument is present, the debugging flags are set to zero (as if -d

was not given), and with an empty argument the flags are reset to the
default.

Saving Debugging Output

Debug and tracing output can be redirected to files using either the o

option to mpp960, or with the built-in macro debugfile .

debugfile([filename])

sends all further debug and trace output to filename . If filename is
empty, debug and trace output are discarded. If debugfile is called
without any arguments, debug and trace output are sent to the standard
error output.

Input Control

This section describes various built-in macros for controlling the input to
mpp960.

Deleting Whitespace in Input

The built-in dnl reads and discards all characters up to and including the
first newline:

dnl

It is often used in connection with define to remove the newline that
follows the call to define. Thus:

define(`foo', `Macro `foo'.')dnl A very simple macro, indeed.
foo
=>Macro foo.

i960 Processor Software Utilities User's Guide

8-20

8
The input up to and including the next newline is discarded.

Usually, dnl is immediately followed by an end of line or some other
white space. mpp960 produces a warning diagnostic if dnl is followed by
an open parenthesis. In this case, dnl collects and processes all
arguments, looking for a matching close parenthesis. All predictable side
effects resulting from this collection take place. dnl returns no output.
The input following the matching close parenthesis up to and including the
next newline, on whatever line containing it, is still discarded.

Changing the Quote Characters

The default quote delimiters can be changed with the built-in
changequote :

changequote([start], [end])

where start is the new start-quote delimiter and end is the new end-
quote delimiter. If any of the arguments are missing, the default quotes `

and ' are used instead of the void arguments.

The expansion of changequote is void.

In this example, the [and] characters are the new quote characters:

changequote([,])
=>
define([foo], [Macro [foo].])
=>
foo
=>Macro foo.

Macro Processor (mpp960)

8-21

8
If no single character is appropriate, start and end can be of any length.

changequote([[,]])
=>
define([[foo]], [[Macro [[[foo]]].]])
=>
foo
=>Macro [foo].

Changing the quotes to the empty strings effectively disables the quoting
mechanism, leaving no way to quote text.

define(`foo', `Macro `FOO'.')
=>
changequote(,)
=>
foo
=>Macro `FOO'.
`foo'
=>Macro `FOO'.

There is no way in mpp960 to quote a string containing an unmatched left
quote, except using changequote to change the current quotes.

Neither quote string should start with a letter or _ (underscore), as they are
confused with names in the input. Doing so disables the quoting
mechanism.

Changing Comment Delimiters

The default comment delimiters can be changed with the built-in macro
changecom :

changecom([start], [end])

where start is the new start-comment delimiter and end is the new end-
comment delimiter. If any of the arguments are void, the default comment
delimiters (# and newline) are used instead of the void arguments. The
comment delimiters can be of any length.

The expansion of changecom is void.

i960 Processor Software Utilities User's Guide

8-22

8
Comments are copied to the output, much as if they were quoted strings.
If you want the text inside a comment expanded, quote the start comment
delimiter.

Calling changecom without any arguments disables the commenting
mechanism completely.

Saving Input

It is possible to save some text until the end of the normal input has been
seen. Text can be saved to be read again by mpp960 when the normal
input has been exhausted. This feature is normally used to initiate cleanup
actions before normal exit, as when deleting temporary files.

Use the built-in mppwrap to save input text:

mppwrap(string , ...)

This stores string and the rest of the arguments to be reread when end of
input is reached.

The saved input is reread only when the end of normal input is seen, but
not if mppexit is used to exit mpp960.

It is safe to call mppwrap from saved text, but then the order in which the
saved text is reread is undefined. If mppwrap is not used recursively, the
saved pieces of text are reread in the opposite order in which they were
saved (LIFO  last in, first out).

File Inclusion

mpp960 allows you to include named files at any point in the input.

Including Named Files

There are two built-in macros in mpp960 for including files:

include(filename)

sinclude(filename)

Macro Processor (mpp960)

8-23

8
Both of these cause the file named filename to be read by mpp960.
When the end of the file is reached, input is resumed from the previous
input file. The expansion of include and sinclude is therefore the
contents of filename .

It is an error for an included file not to exist. If you don't want error
messages about non-existent files, use sinclude to include a file, if it
exists. It expands to nothing if it does not exist.

Normally, file inclusion is used to insert the contents of a file into the input
stream. The fact that include and sinclude expand to the contents of
the file can be used to define macros that operate on entire files. The use
of include is important, as files can contain quotes, commas and
parentheses that can interfere with the way the mpp960 parser works.

Searching for Include Files

mpp960 allows included files to be found in directories other than the
current working directory. If a file is not found in the current working
directory, and the filename is not absolute, mpp960 searches for the file in
a specified search path.

The directories specified with the I option are searched first, in the order
found on the command line.

If the I960INC environment variable is set, it is expected to contain a
colon-separated list of directories, which are searched in order.

If the automatic search for include-files causes trouble, the p debug flag
can help isolate the problem.

Diverting and Undiverting Output

Diversions are a way of temporarily saving output. The output of mpp960
can at any time be diverted to a temporary file, and can be reinserted into
the output stream later, undiverted.

i960 Processor Software Utilities User's Guide

8-24

8
mpp960 supports up to ten numbered diversions (numbered from 0 to 9).
Diversion number 0 is the normal output stream. The number of available
diversions can be increased with the N option.

Diverting Output

Use divert to divert output:

divert([number])

where number is the diversion to be used. If number is left out, it is
assumed to be zero.

The expansion of divert is void.

Diverted output that has not been explicitly undiverted is undiverted when
all the input has been processed.

divert(1)

This text is diverted.

divert

=>This text is not diverted.

=>This text is not diverted.

^D

=>

=>This text is diverted.

Several calls of divert with the same argument do not overwrite the
previous diverted text, but append to it.

Output diverted to an non-existent diversion is discarded. This can be
used to suppress unwanted output. A common example of unwanted
output is the trailing newlines after macro definitions. Here is how to
avoid them:

divert(-1)

define(foo, Macro foo.)

define(bar, Macro bar.)

divert

=>

Macro Processor (mpp960)

8-25

8
This is a common programming idiom in m4.

Undiverting Output

Diverted text can be undiverted explicitly using the built-in undivert :

undivert([number], ...)

which undiverts the diversions given by the arguments in the order given.
If no arguments are supplied, all diversions are undiverted in numerical
order.

The expansion of undivert is void.

divert(1)

This text is diverted.

divert

=>This text is not diverted.

=>This text is not diverted.

undivert(1)

=>

=>This text is diverted.

=>

Notice the last two blank lines. One of them comes from the newline
following undivert , the other from the newline that followed the
divert ! A diversion often starts with a blank line like this.

When diverted text is undiverted it is not reread; it is copied directly to the
current output, and it is therefore not an error to undivert into a diversion.

i960 Processor Software Utilities User's Guide

8-26

8
When a diversion has been undiverted, the diverted text is discarded, and
it is not possible to bring back diverted text more than once.

Attempts to undivert the current diversion are silently ignored. mpp960
allows named files to be undiverted. Given a non-numeric argument, the
contents of the file named are copied, uninterpreted, to the current output.
This complements the built-in include . To illustrate the difference,
assume the file foo contains the word bar :

Diversion Numbers

The built-in divnum expands to the number of the current diversion.

Discarding Diverted Text

Often it is not known when output is diverted whether the diverted text is
actually needed. A method of discarding a diversion is needed because all
non-empty diversions are brought back when the end of input is seen. If
all diversions should be discarded, the easiest way is to end the input to
mpp960 with divert(-1) .

No output is produced.

Macros for Text Handling

There are built-in macros for manipulating text in various ways, extracting
substrings, searching, substituting, and so on.

Calculating Length Of Strings

The length of a string can be calculated by len :

len(string)

which expands to the length of string, as a decimal number.

Macro Processor (mpp960)

8-27

8
Searching For Substrings

Use index to search for substrings.

index(string , substring)

expands to the index of the first occurrence of substring in string .
The first character in string has index 0. If substring does not occur
in string , index expands to -1 .

Searching for Regular Expressions

Use the built-in regexp to search for regular expressions:

regexp(string , regexp , [replacement])

which searches for regexp in string . (The syntax for regular
expressions is the same as in GNU Emacs.)

If replacement is omitted, regexp expands to the index of the first
match of regexp in string . If regexp does not match anywhere in
string , it expands to -1 . For example:

regexp(GNUs not UNIX, \<[a-z]\w+)

=>5

regexp(GNUs not UNIX, \<Q\w*)

=>-1

If replacement is supplied, regexp changes the expansion to this
argument, with \& substituted by string , and \N substituted by the text
matched by the Nth parenthesized sub-expression of regexp , \0 being the
text the entire regular expression matched.

regexp(GNUs not UNIX, \w\(\w+\)$, *** \0 *** \1 ***)

=>*** UNIX *** nix ***

i960 Processor Software Utilities User's Guide

8-28

8
Extracting Substrings

Use substr to extract substrings.

substr(string , from , [length])

expands to the substring of string which starts at index from and extends
for length characters, or to the end of string , if length is omitted. The
starting index of a string is always 0.

Translating Characters

Character translation is done with translit .

translit(string , chars , replacement)

expands to string , with each character that occurs in chars translated
into the character from replacement with the same index.

If replacement is shorter than chars , the excess characters are deleted
from the expansion. If replacement is omitted, all characters in string

that are present in chars are deleted from the expansion.

Both chars and replacement can contain character-ranges such as a-z

(meaning all lowercase letters) or 0-9 (meaning all digits). To include a
dash - in chars or replacement , place it first or last.

It is not an error for the last character in the range to be larger than the
first. In that case, the range runs backwards: 9-0 indicates the string
9876543210 .

Substituting Text by Regular Expression

Global substitution in a string is done by patsubst :

patsubst(string , regexp , [replacement])

This searches string for matches of regexp and substitutes
replacement for each match. (The syntax for regular expressions is the
same as in GNU Emacs.)

Macro Processor (mpp960)

8-29

8
The parts of string that are not covered by any match of regexp are
copied to the expansion. Whenever a match is found, the search proceeds
from the end of the match so a character from string is never substituted
twice. If regexp matches a string of zero length, the start position for the
search is incremented, to avoid infinite loops.

To make a replacement:

1. Insert replacement into the expansion.
2. Substitute string for \& .
3. Substitute the text matched by the Nth parenthesized sub-expression of

regexp (\0 being the text the entire regular expression matched) for
\N .

The replacement argument can be omitted, in which case the text
matched by regexp is deleted.

Formatted Output

Use format to format output.

format(format-string , ...)

works much like the C function printf . The first argument is a format
string that can contain % specifications and the expansion of format is the
formatted string.

The built-in format is modeled after the ANSI C printf function. It
supports the normal % specifiers c , s , d, o, x , X, u, e, E and f ; It also
supports field widths and precisions and the modifiers +, - , 0, #, h and l .
For more details on printf , see C: A Reference Manual.

i960 Processor Software Utilities User's Guide

8-30

8
Macros for Doing Arithmetic

Integer arithmetic using a C-like syntax is included. There are built-in
macros for simple increment and decrement operations.

Decrement and Increment Operators

The built-ins incr and decr support the increment and decrement of
integers:

incr(number)

decr(number)

which expand to the numerical value of number incremented or
decremented, respectively, by one.

Evaluating Integer Expressions

Use eval to evaluate integer expressions:

eval(expression, radix, [width])

expands to the value of expression .

Expressions can contain the following operators, listed in order of
decreasing precedence.

- Unary minus

** ^ Exponentiation

* / % Multiplication, division and modulo

+ - Addition and subtraction

== != > >= < <= Relational operators

! Logical negation

& Bitwise and

| Bitwise or

&& Logical and

|| Logical or

Macro Processor (mpp960)

8-31

8
All operators, except exponentiation, are left associative. Numbers can be
given in decimal, octal (starting with 0), or hexadecimal (starting with 0x).
Parentheses may be used to group subexpressions whenever needed. For
the relational operators, a true relation returns 1, and a false relation
returns 0.

eval does not handle macro names, even if they expand to a valid
expression or part of a valid expression. All macros must be expanded
before they are passed to eval .

If radix is specified, it specifies the radix to be used in the expansion.
The default radix is 10. The result of eval is always taken to be signed.
The width argument specifies a minimum output width. The result is
zero-padded to extend the expansion to the requested width.

Note that radix cannot be larger than 36 in the current implementation.
Any radix larger than 36 is rejected.

Running Host Commands

This section describes the mpp960 macros that let you run host system
commands from within mpp960.

Executing Simple Commands

Use syscmd to execute any shell command:

syscmd(shell-command)

executes shell-command as a shell command. The expansion of syscmd

is void.

The expansion is not the output from the command! Instead the standard
input, output and error of the command are the same as those of mpp960.
This means that output or error messages from the commands are not read
by mpp960 and might get mixed with the normal output from mpp960,
producing unexpected results. It is therefore a good habit to always
redirect the input and output of shell commands used with syscmd .

i960 Processor Software Utilities User's Guide

8-32

8
Reading the Output of UNIX Commands

Use esyscmd if you want mpp960 to read the output of a UNIX
command:

esyscmd(shell-command)

This expands to the standard output of the shell command.

The error output of shell-command is not a part of the expansion. It
appears along with the error output of mpp960.

Note that the expansion of esyscmd has a trailing newline.

This is not available on Windows hosts.

Exit Codes

Use sysval to see whether a shell command succeeded:

sysval

This expands to the exit status of the last shell command run with syscmd

or esyscmd .

This is not available on Windows hosts.

Making Names for Temporary Files

Commands specified to syscmd or esyscmd might need a temporary file
for output or for some other purpose. Use the built-in macro maketemp to
make temporary filenames.

maketemp(template)

This expands to a name of a non-existent file made from the string
template, which should end with the string XXXXXX. The six Xs are then
replaced, usually with something that includes the process ID of the
mpp960 process, in order to make the filename unique.

Macro Processor (mpp960)

8-33

8
Several calls of maketemp might expand to the same string, since the
selection criteria is whether the file exists or not. If a file has not been
created before the next call, the two macro calls might expand to the same
name.

Printing Error Messages

You can print error messages using errprint :

errprint(message , ...)

which simply prints message and the rest of the arguments on the standard
error output. The expansion of errprint is void.

errprint(`Illegal arguments to forloop
')

error-->Illegal arguments to forloop

=>

A trailing newline is not printed automatically, so it must be supplied as
part of the argument, as in the example.

Two utility built-ins make it possible to specify the location of the error.

__file__

__line__

expand to the quoted name of the current input file and the current input
line number in that file.

errprint(`mpp960:'__file__:__line__: `Input error
')
error-->mpp960:56.errprint:2: Input error

=>

i960 Processor Software Utilities User's Guide

8-34

8
Exiting from mpp960

If you need to exit from mpp960 before the entire input has been read, use
mppexit :

mppexit([code])

This causes mpp960 to exit, with exit code code . If code is left out, the
exit code is zero.

define(`fatal_error', `errprint(`mpp960:' __file__: __line__`:
fatal error: $*')mppexit(1)')

=>
fatal_error(`This is a BAD one, buster')
error-->mpp960: 57.mppexit: 5: fatal error: This is a BAD one,

buster

After this macro call, mpp960 exits with exit code 1. This macro is only
intended for error exits, since the normal exit procedures are not followed,
e.g., diverted text is not undiverted, and saved text (see mppwrap) is not
reread.

Compatibility with Other Macro Processors

This section describes the differences between mpp960 and the UNIX
System V, Release 3, m4 macro processor.

Extensions in mpp960

mpp960 contains a some facilities that do not exist in UNIX System V m4.
These extra facilities are all suppressed by using the G option, unless
overridden by other command line options.

• In the $N notation for macro arguments, N can contain several digits,
while UNIX System V m4 accepts one digit only. This allows
mpp960 macros to take any number of arguments, not only nine.

Macro Processor (mpp960)

8-35

8
• When files included with include and sinclude are not found in the

working directory they are sought in a user-specified search path. The
search path is specified by the I option and the I960INC environment
variable.

• Arguments to undivert can be non-numeric, in which case the
named file is included uninterpreted in the output.

• Formatted output is supported through the format built-in which is
modeled after the C library function printf .

• Searches and text substitution through regular expressions are
supported by regexp and patsubst .

• On UNIX (but not in Windows), the output of shell commands can be
read into mpp960 with esyscmd .

• There is indirect access to any built-in macro with builtin .

• Macros can be called indirectly through indir .

• The name of the current input file and the current input line number
are accessible through the built-ins __file__ and __line__ .

• The format of the output from dumpdef and macro tracing can be
controlled with debugmode .

• The destination of trace and debug output can be controlled with
debugfile .

In addition to the above extensions, mpp960 implements the following
command line options: V, d, l , o, N, and t . For a description of these
options, see the Invoking mpp960 section.

Also, the debugging and tracing facilities in mpp960 are much more
extensive than in most other versions of m4.

i960 Processor Software Utilities User's Guide

8-36

8
Facilities in UNIX System V m4 not in mpp960

There are a few incompatibilities between mpp960 and the UNIX System
V m4 tool:

• UNIX System V m4 supports multiple arguments to defn . This is not
implemented in mpp960.

• When text is being diverted mpp960 implements sync lines differently
from UNIX System V m4. mpp960 outputs the sync lines when the
text is being diverted, and UNIX System V m4 outputs it when the
diverted text is being brought back.

• The problem is determining which lines and filenames should be
attached to text that is being, or has been, diverted. UNIX System V
m4 regards all the diverted text as being generated by the source line
containing the undivert call, whereas mpp960 regards the diverted
text as being generated at the time it is diverted.

• Invoking mpp960 without the G option defines the macro __gnu__ to
expand to the empty string.

• On UNIX systems, mpp960 without the G option defines the macro
__unix__ ; otherwise the macro unix . Both expand to the empty
string.

Munger (gmung960)

9-1

9
The gmung960 utility modifies text section and/or data section memory
load addresses in an object file. Use gmung960 to load text and/or data at
an address other than where it was linked. For example, some code must
copy its data from ROM to RAM before execution. In this case, the data
is linked at the RAM address, but it must be loaded at the ROM address
from which it will be copied. The file’s data load address corresponds to
the RAM address at link time. After link time, you can modify the data
load address to correspond to the ROM address. This lets the ROM burner
or loader know the correct address to place the section’s contents.

Invoke the munger as:

gmung960 [- option]... file

option is one of the options listed in Table 9-1.

file identifies the object file to be munged. It must
be a linked, executable file.

i960 Processor Software Utilities User's Guide

9-2

9
Table 9-1 gmung960 Options

Option Effect

D [addr] Changes the load address of the file’s data section to addr . addr
is interpreted as a decimal, unless preceded by 0x (hex indicator).
If addr is omitted, the load address is the first available address
following a previously-specified address.

h gives a help message.

T [addr] changes the load address of file's text section to addr . addr is
interpreted as a decimal number, unless preceded by 0x (hex
indicator). If addr is omitted, the load address is either zero or the
first available address following a previously-specified address.

v960 writes gmung960 version information to stdout and exits without
doing anything.

NOTE. The section specification options T and D are processed in the
order they appear in the invocation.

Name Lister (gnm960, nam960)

10-1

10
NOTE. Before using the name lister, make sure your object file or
archive is in host-endian byte order. To determine byte order, use
gdmp960/dmp960 described in Chapter 6. To change the byte order, use
the cof960/objcopy converter described in Chapter 3.

To display symbolic information on stdout , invoke the name lister for:

• relocatable object files
• non-relocatable object files
• libraries
• library members

Unless you specify otherwise, the symbols appear in the order
encountered.

Invoke the name lister as:







nam960

gnm960
 [- option]... [filename...]

nam960 invokes the name lister for backwards
compatibility with CTOOLS960 Release 3.5 and
later.

gnm960 invokes the name lister for backwards
compatibility with GNU/960 Release 2.1 and
later.

i960 Processor Software Utilities User's Guide

10-2

10
option is any option listed in Table 10-1.

filename specifies the name(s) of one or more files
(separated with spaces), whose symbol tables
you want the name lister to display. If you do not
specify a filename, the name lister tries a.out.
You can specify complete pathnames. On
UNIX, case is significant in filenames and
pathnames.

The symbolic information appears on stdout . The display includes:

Code the section code, as listed in Table 10-2, in
lowercase for local symbols and in uppercase
otherwise

Name the symbol name

Value the symbol value

Name Lister (gnm960, nam960)

10-3

10
Table 10-1 gnm960/nam960 Options

Option Effect

a displays the debug information.

d displays the addresses in decimal.

e displays only the global (external) and static symbols, including the
leaf-procedure names.

f displays all the symbols, including redundant symbols (such as
.text, .data, and .bss) that are usually suppressed. This option
overrides the g or e option.

g is the same as e.

h suppresses the output-header display.

help displays help information.

n sorts the symbols alphabetically by name. This option overrides v.

o displays the addresses in octal.

p displays the information in a three-column parseable format (the
b.out and ELF format default).

R Reverses the symbol sorting order of the n or v options (sorts in
descending order).

r displays the names of the files defining or referencing each
symbol.

s displays the library symbol map.

T truncates the symbol names to fit the display-column widths.

u displays only the undefined symbols. This option overrides g, e,
or f .

V displays the name-lister version and creation date on stdout ,
and continues processing.

v sorts the symbols ascending numerically by value.

v960 displays the version and creation date, and stops processing.

x displays the addresses in hexadecimal (the default).

i960 Processor Software Utilities User's Guide

10-4

10
Table 10-2 Section Codes

Code Symbol Type

u undefined symbol

a absolute (non-relocatable) symbol

t text-type-section symbol (instructions)

d data-type-section symbol (initialized data and constants)

b .bss symbol (uninitialized data)

c common symbol

o any other type section symbol (COFF or ELF only)

f filename symbol

? debugger symbol-table entry

The COFF display also includes:

Class a storage class, such as extern for an external
symbol or fcn for the beginning and end of a
function block

Line the source line number defining the symbol, for
object files containing debug information

Type the type and derived type, for object files
containing debug information

Size the size in bytes, for object files containing
debug information

To suppress the additional COFF information, specify the p option.

Symbols are displayed in the order in which they appear in the symbol
table, preserving the scoping information. You can sort the symbols by
name or address with the n, R, and v options.

Name Lister (gnm960, nam960)

10-5

10
Examples

1. The following displays the symbols from each of the members of the
archive sample.a . The name lister displays the filename where each
symbol is found. This example uses the -T options to truncate symbol
names, which keeps the output columns equally spaced.

nam960 -r -T sample.a

Symbols from symbol.a[hello.o]:

hello.o
Name Value Class Type Size Line Section
hell*:gcc2_compiled.|0x00000000|label | | | |.text
h*:___gnu_compiled_c|0x00000000|label | | | |.text
hello.o:_main |0x00000010|extern| ()|0x0018| |.text
hello.o:_printf |0x00000000|extern| | | |

Symbols from symbol.a[byte.o]:

byte.o
Name Value Class Type Size Line Section
bye.o:gcc2_compiled.|0x00000000|label | | | |.text
b*:___gnu_compiled_c|0x00000000|label | | | |.text
bye.o:_main |0x00000010|extern| ()|0x0018| |.text
bye.o:_printf |0x00000000|extern| | | |

2. The following suppresses the header. No column labels appear in the
output.

nam960 -h hello.o
hello.c | | file | | | |
_main | 0|extern| int()| 16| |.text
_printf | 0|extern| | | |

i960 Processor Software Utilities User's Guide

10-6

10
3. The following displays the proto.o symbols in parseable format:

nam960 -p proto.o
 f proto.c
00000000 T _main
00000352 T _watering
00000368 T _is_time
00000416 T _watered
00000000 U _printf
00000000 U _scanf
00000000 U _init_bentime
00000000 U _exit
00000000 U _bentime
00000000 U _srand48
00000000 U _lrand48

4. The following displays only the external symbols:

nam960 -e hello.o

Symbols from hello.o:

Name Value Class Type Size Line Section

_main | 0|extern| int()| 16| |.text

_printf | 0|extern| | | |

5. The following displays the full output:

nam960 -f hello.o

Symbols from hello.o:

Name Value Class Type Size Line Section

hello.c | | file | | | |

_main | 0|extern| int()| 16| |.text

.text | 0|static| | 2| 3|.text

.data | 16|static| | | |.data

.bss | 32|static| | | |.bss

_printf | 0|extern| | | |

Name Lister (gnm960, nam960)

10-7

10
6. The following sorts the symbols by name:

nam960 -n proto.o

Symbols from proto.o:

Name Value Class Type Size Line Section

_bentime | 0|extern| | | |

_exit | 0|extern| | | |

_init_bentime | 0|extern| | | |

_is_time | 368|extern| int()| 44| |.text

_lrand48 | 0|extern| | | |

_main | 0|extern| int()| 348| |.text

_printf | 0|extern| | | |

_scanf | 0|extern| | | |

_srand48 | 0|extern| | | |

_watered | 416|extern| int()| 36| |.text

_watering | 352|extern| arg()| 4| |.text

proto.c | | file | | | |

7. The following sorts the symbols by value:

nam960 -v proto.o

Name Value Class Type Size Line Section

proto.c | | file | | | |

_bentime | 0|extern| | | |

_exit | 0|extern| | | |

_init_bentime | 0|extern| | | |

_lrand48 | 0|extern| | | |

_main | 0|extern| int()| 348| |.text

_printf | 0|extern| | | |

_scanf | 0|extern| | | |

_srand48 | 0|extern| | | |

_watering | 352|extern| arg()| 4| |.text

_is_time | 368|extern| int()| 44| |.text

_watered | 416|extern| int()| 36| |.text

ROM Image Builder (grom960)

11-1

11
grom960 extracts the text (executable code) and data sections from one or
more object files, places them in specified locations in a binary image, and
converts the binary image into one or more files in Intel hex format
suitable for submission to a PROM programmer. grom960 also provides
options that allow bytes from the binary image to be interleaved into
multiple banks of PROMs. grom960 accepts ELF, COFF, or b.out object
file formats as input.

Invocation

The invocation command is:

grom960 [- option]... section_spec ...

option is one of the options listed in Table 11-1.
Numeric arguments are interpreted as decimal,
unless preceded by 0x (hex).

section_spec specifies the placement of a text or data section
into the binary image. Multiple specifications
are allowed; they are processed in the order
encountered. There are four types, listed in
Table 11-2.

i960 Processor Software Utilities User's Guide

11-2

11
Table 11-1 grom960 Options

Option Effect

20 generates extended address records in 20-bit format (e.g., as
used by the 8086), if the ROM is larger than 64K. The default
is to generate 32-bit format records. This option is included
primarily for compatibility with old ROM burner software that
does not support 32-bit format.

An sets checksum storage address to n. Default = 0x10000.

bn generates images for n banks of ROMs. Default = 1.

c 16 | 32 generates a 16-bit or 32-bit (CRC) checksum.

En sets checksum end address to n. Default = 0xffff.

f dumps a full image and does not skip records with all ones.

h displays help output and exits.

i suppresses generating hex output files. Instead, dumps the
raw binary image to output file image.

l n generates images for ROMs that are n bytes long. The default
is 0x10000 (64K).

m writes a map of the binary image to stdout.

o name specifies the base name of the output file(s). When the i
option is used, the output file contains the binary image.
(Default filename is image.) When the i option is not used, a
series of files named namexy.hex contain the hex ROM
images. (Default is a series of files named romxy.hex.)

Sn sets the checksum start address to n. Default is 0x0.

V prints the version number and continues.

v produces a map, as with the m option, and summarizes the
ROM configuration settings.

v960 writes grom960 version information to stdout and quits.

wn generates ROMs that are n bytes "wide" (the default is 1).
grom960 writes n bytes at a time from the binary image to
each bank of ROM, before moving on to the next ROM bank.
The combination of the b and w options controls interleaving of
ROMs.

ROM Image Builder (grom960)

11-3

11
Table 11-2 Section Specifications

Section
Specification Effect

filename[,addr] places the text section of the specified file at address
addr , relative to the start of the image, and places
the data section immediately following the text
section.

B filename[,addr] also places both the text and data sections of the
specified file at address addr , relative to the start of
the image. However, the order of the text and data
sections is the same as in the input file (i.e., the one
linked at the lower address comes first); and any gap
between the sections is preserved in the output
image.

D filename[,addr] places the data section of the specified file at address
addr .

T filename[,addr] places the text section of the specified file at address
addr .

NOTE. The addr argument is always optional. Omitting the address
places the specified section(s) immediately after the one in the preceding
specification (or at address 0 in the binary image, in the case of the first
section specification).

Using grom960

Generating ROM images is a two-step process:

1. creating a binary image, and
2. converting the image to a ROM image (Intel hex) files.

i960 Processor Software Utilities User's Guide

11-4

11
Creating Binary Images

Regardless of the addresses where the code was linked, all bytes in a ROM
image appear in a contiguous address space relative to the ROM's base
address. For instance, a 64K ROM based at address 0xffff0000 has a
ROM address space of [0,0xffff], byte 0 of the ROM being the byte that is
addressed at 0xffff0000 at run time.

The binary image is generated by extracting the text and data sections of
the input files and placing them at the specified locations in the ROM
address space. Unused address space bytes are initialized to 0xff, the
value of a byte in an erased PROM.

Converting the Image to Hex Files

After a single binary image is created, it is interleaved according to the
ROM width and the number of banks requested. If the width is w, and the
number of banks is b, the first w bytes in the image are written to the first
bank of ROMs, the second w bytes are written to the second bank, and so
on. After the bth bank has been written, output resumes at the first bank.
For example, if the number of banks is four, the ROM width is two, and
the first sixteen bytes of the image are:

0x00112233445566778899aabbccddeeff

then the four banks would begin with the following values:

bank 0: 0x00118899...

bank 1: 0x2233aabb...

bank 2: 0x4455ccdd...

bank 3: 0x6677eeff...

Each bank corresponds to at least one ROM. Every time the amount of
data written to a bank exceeds the specified ROM length, a new ROM
image file is started.

Each output file is in Intel hex format and corresponds to a single ROM
device. The output files are named basenamexy .hex , where y is the bank
number and x is the sequence number within the bank. Both x and y are

ROM Image Builder (grom960)

11-5

11
numbered from 0. For example, if the number of banks is four, the ROM
length is 64K, and the total image size is 512K, then the following hex
files would be output:

bank 0: rom00.hex, rom10.hex

bank 1: rom01.hex, rom11.hex

bank 2: rom02.hex, rom12.hex

bank 3: rom03.hex, rom13.hex

Example 1

This example converts the executable b.out into ROM images, with text
followed immediately by data, with even bytes in one bank and odd bytes
in another, for a ROM with 128-Kbyte capacity.

grom960 b.out -b 2 -l 0x20000

If the binary image is less than 256 Kbytes, there are two output files:
rom00.hex (even bytes) and rom01.hex (odd bytes).

Example 2

This example assumes two b.out files as input: b.out contains the text and
data for an i960 CA processor, and imi contains the Initial Memory Image
(data that must appear at location 0xffffff00 when the processor powers
up). Assume that the total binary image is under 64 Kbytes, and that the
ROM will be installed at address 0xffff0000 .

grom960 b.out imi,0xff00 -o ca

A single output file, named ca00.hex , is created.

Example 3

This example makes the same assumptions as Example 2, but data (other
than the Initial Memory Image) should appear at location 0x8000 in the
ROM (0xffff8000 in the runtime address space).

grom960 -T b.out -D b.out,0x8000 imi,0xff00 -o ca

ROM Image Builder (rom960)

12-1

12
This chapter describes using the rom960 rommer to convert ELF, COFF,
or b.out object files to unformatted executable images.

As shown in Figure 12-1, you can prepare code for a specific target
environment. The linker generates object files for a downloader. rom960
facilitates rearrangement of section descriptions so that the code can be
programmed into programmable read-only memory (PROM) devices.

Figure 12-1 rom960 Rommer Operations

Executable

Code

0101

Target

A0021-01.eps

PROM

Loadable

Code

Rearrange

Section

Description

(move)

Create Absolute

Memory Image

(mkimage)

Convert to

ROM-able

code

Debug and

Run

gdb960

rom960

i960 Processor Software Utilities User's Guide

12-2

12
To place code in ROM, code sections must be located at the PROM device
addresses. Translating a formatted object file into an unformatted
executable image, may include any of the following steps:

• re-ordering the bits to match machine requirements.
• organizing the images to fit the target ROMs.
• calculating a checksum and incorporating it in the image.
• outputing the image in Intel hexadecimal format for a PROM

programming device.

Figure 12-2 shows an example of the rommer translation of a COFF file.

Figure 12-2 Data Placement in Memory Image

COFF Memory Image

OSD1702

Headers

Raw Data 1

Raw Data 2

Raw Data 3

.

.

.

Data

Data

Data

ROM Image Builder (rom960)

12-3

12
Rommer Invocation

Use this syntax to invoke the rommer:

rom960 -[option] [dfile [arglist]]

where option is any of the following:

h displays help.

V displays the version number and copyright date.

v960 displays version information and exits.

dfile specifies a rommer directive file named dfile .ld .

arglist is up to 10 directive-file arguments, separated by
spaces.

NOTE. You must either specify dfile in the invocation or supply the
directives interactively after entering the rom960 command. To end an
interactive session, type exit , quit , Ctrl-z (in Windows), or Ctrl-d

(on UNIX) at the rommer prompt.

Directive Files

The rommer directive filename must have a .ld extension. When you run the
rommer, you specify the base filename without the .ld extension. Table 12-1
lists the rommer directives. For information on using the directives, see the
Directive Reference section.

i960 Processor Software Utilities User's Guide

12-4

12
Table 12-1 rom960 Directives

Directive Operation

checksum computes and stores a checksum.

help Displays help information and exits.

ihex translates an image to an Intel hexadecimal format.

map reports the section addresses, section sizes, and the image file
size to stdout.

mkfill translates a COFF executable file into a memory image
containing an image of the program as it would appear when
downloaded.

mkimage creates an image of the executed file.

move rearranges the sections.

patch changes the image contents.

permute rearranges the address (permute_a) or data (permute_d) bits.

rom specifies the address space length and width.

sh executes a host-system command.

split splits one image into smaller images of the specified size.

ROM Image Builder (rom960)

12-5

12
You can put rommer directives in your linker-directive files:

• Use only lowercase letters for the rommer directives.
• Start rommer-directive lines with #* in columns 1 and 2, putting no

space between the #* and the rommer directive.
• Separate the rommer directives from the rest of the linker-directive

file with /* and */ . The linker processes no lines between the /* and
*/ .

You can write directive files for use with different sets of input. Use the
parameters $0 through $9 in a directive file to accept arguments
sequentially from the rommer invocation. For example, the following uses
the rom.ld directive file first to build mypgm.r from mypgm.o, then to
build pgm2.r from pgm2.o :

rom960 rom.ld mypgm.o mypgm.s First invocation

rom960 rom.ld pgm2.o pgm2.s Second invocation

Here is a sample linker-directive file that produces a ROM image:

_intr_stack = 0x00040000;
ram_ = 0x30000000;
MEMORY {
 rom: o=0x00000000,l=0x40000
 ram: o=0x301f0000,l=0x40000
}
SECTIONS {
 .text : { } >rom
 .data : { } >ram
 .bss : { } >ram
}
/*
#*move $0
#*mkimage $0 $1
#*split $1 65536 16 65536 8 $1
#*ihex $1.00 $1.eve
#*ihex $1.01 $1.odd
*/

The linker processes the assignment statements and the MEMORY and
SECTIONS directives.

i960 Processor Software Utilities User's Guide

12-6

12
The rommer directives appear between the /* and */ characters and each
rommer-directive line starts with #* (note that only section headers are
changed; no relocation is performed):

move places the .data section immediately after
.text .

mkimage prepares an image of the data to be programmed
into PROMS.

split divides the image into the two eight-bit-wide
units. The first unit contains even-numbered
bytes (0, 2, 4 ...); the second contains
odd-numbered bytes (1, 3, 5 ...).

ihex converts the split images into the hexadecimal
format required for a PROM programming
device.

The $0 and $1 characters represent arguments from the rommer
invocation.

Directive Reference

This section describes the rommer directives alphabetically. Note that
example commands are those that you would place in a linker directive
(.ld) file or enter at the rommer command prompt.

ROM Image Builder (rom960)

12-7

12
checksum
Computes and stores a
checksum

checksum image start-addr end-addr checksum-addr [16 |
32]

image is the name of the file in which the checksum is
placed.

start-addr is the checksum starting address.

end-addr is the checksum ending address.

checksum-addr is the checksum result address.

[16 | 32] is an option argument to specify a 16- or 32-bit
checksum. The default is a 16-bit checksum.

Discussion

To compute a 16- or 32-bit checksum (CRC) over a specified address
range in the image file, use checksum . The result appears in the image at
the checksum-addr you specify.

A checksum address beyond the end of the image extends the image,
padding any additional intervening bytes with 0xff .

i960 Processor Software Utilities User's Guide

12-8

12
Example

The following inserts three successive 32-bit checksums in the image
crctest . The first checksum result is used for the second and the second
result is used for the third.

rom 32767 8
move hello
mkimage hello crctest
checksum crctest 0 8191 8192 32
checksum crctest 8192 16534 16535 32
checksum crctest 16535 32766 32767 32

Related Topic
mkimage

ihex
Translates an image to
an Intel hexadecimal
format

ihex bin hex-file mode

bin is the name of the file to be translated.

hex-file is the name of the hexadecimal output file.

mode specifies the hexadecimal address record format
(described below).

ROM Image Builder (rom960)

12-9

12
Discussion

For downloading to an intelligent EPROM programmer, translate a binary
image into either of two Intel hexadecimal formats with ihex . For the
address record format, specify a mode as follows:

mode16 specifies a hexadecimal object file format with
extended segment address records. This format is
used on Intel's 8086 series of 16- or 32-bit
processors, and also required by some PROM
programmers.

mode32 specifies a hexadecimal object file format with
extended linear address records. This format is
used on Intel's i960 processors.

Example

The following translates a file named dhry into an executable image
named dhryston , splits the dhryston image into two parts, and translates
the two parts into new files in hexadecimal format for the PROM
programming device:

move dhry
mkimage dhry dhryston
split dhryston 65536 16 65536 8 dhryston
ihex dhryston.00 dhryston.even
ihex dhryston.01 dhryston.odd

Related Topics
mkimage
split

i960 Processor Software Utilities User's Guide

12-10

12
map
Reports the section
addresses, section sizes,
and the image size

map infile

infile is the filename to be placed in ROM.

Discussion

Use map to show how the rommer has restructured the file. The map

directive displays the following on the stdout standard-output device:

• the address and size of each file section
• the size, in bytes, of the projected ROM image

You can use map to display information while building a ROM image
interactively or from a directive file.

Examples

1. The following shows the .data section located in the input file
immediately after the .text section:

#*map a.out

Section name Physical address Size
.text 0x040000000 0x5b90
.data 0x040005b90 0x938
.bss 0x600000000 0x118c
Image made from a.out will be 25800 (decimal) bytes
long

ROM Image Builder (rom960)

12-11

12
2. The following shows the .text section placed at address 0 and .data

still at 0x40005b90 . When created with mkimage , the space between
the sections is filled with zeroes (note the image size):

#*move a.out .text 0x0
#*map a.out

Section name Physical address Size
.text 0 0x5b90
.data 0x40005b90 0x938
.bss 0x60000000 0x118c
Image made from a.out will be 1073767624 (decimal)
bytes long

3. The following shows .data moved to a location that is again
immediately after .text , producing a smaller image size:

#*move a.out
#*map a.out

Section name Physical address Size
.text 0 0x5b90
.data 0x5b90 0x938
.bss 0x60000000 0x118c
Image made from a.out will be 25800 (decimal) bytes
long

Related Topic
move

i960 Processor Software Utilities User's Guide

12-12

12
mkfill
Translates a COFF file
into a memory image

mkfill object-input image-output fill-character

object-input

image-output

fill-character

Discussion

This command translates a COFF executable file into a memory image
containing an image of the program as it would appear when downloaded.

mkimage
Creates an executable
image

mkimage infile image [section1 [section2 ...]]

infile is the object filename.

image is the converted image filename.

section is the name of the section in the infile to be
converted into the image.

ROM Image Builder (rom960)

12-13

12
Discussion

This option translates a file into a memory image for downloading or
burning into ROMs or PROMs. This directive puts only the raw data of
text-type and data-type sections in the image, without the bss-type section,
and pads any space between the sections with 0xff.

By default, all text and data sections are translated. However, you may
specify sections to translate in the mkimage command.

The text-type and data-type section addresses determine the size of the
image. The image starts with the lowest-address text-type or data-type
section and ends after the highest-address such section.

Examples

The following translates the file hello to the binary image romhello :

mkimage hello romhello

The following translates only the three input sections from the file:

mkimage file file.image .text .text1 foo

The following uses a mkimage command after a rom command specifying
the target ROM configuration.

mkimage hello romhello

rom 32767 16 2

Related Topic
move

i960 Processor Software Utilities User's Guide

12-14

12
move
Rearranges the sections

move infile [section { phys-addr | after section }]

infile is the input filename.

section is a linked section name.

phys-addr is the new memory section physical address.

Discussion

Changes the address of section in the object file to the specified physical
address (phys-addr). The physical address may be specified in hex, or
using the keyword “after ” followed by a section name. For example:

move myfile bigblock after .data

The move directive changes only the header information in infile, without
relocating any symbols. Use move to prepare a file for the mkimage

directive or (for example) to change the physical address for a particular
EPROM.

The move command writes the changes to infile.

CAUTION. After the input file has been modified with move, the
application must contain executable startup code to copy each section
that is moved back to its original address, as defined in the linker
directive file. Without such executable startup code, the application may
execute incorrectly when downloaded, since inter-section references may
no longer be valid.

ROM Image Builder (rom960)

12-15

12
Example

In the following, the first move directive starts the .text section at 16383 :

move hello .text 16383
Related Topics

Related Topic
map
mkimage

packhex
Compresses a hex file
by repacking the data
records

packhex hex-file

hex-file Name of the hex file to repack.

Discussion

This command compresses a hex file by re-packing the data records. The
hex is converted in-place. This operation should be done before using a
split command.

Example
packhex myfile

i960 Processor Software Utilities User's Guide

12-16

12
patch
Overwrites the image
contents with that of a
new file

patch image infile addr

image is the executable binary filename.

infile is the patch filename.

addr is the patch starting address in the binary file.

Discussion

To overwrite part of an executable binary file with the contents of a patch
file, use patch . Specify the address offset in the binary file where the
patch is to start. The length of the patch file determines how much of the
binary file is overwritten.

Example

The following overwrites code in the patfile file with the contents of the
newbyte file, beginning at address 1000 of patfile :

move hello
mkimage hello patfile
patch patfile newbyte 1000

Related Topic
mkimage

ROM Image Builder (rom960)

12-17

12
permute
Rearranges the data or
addresses in a binary
file

permute-a infile order outfile
permute-d infile order outfile

infile is the binary filename to be permuted.

order is a series of integers separated by spaces
indicating the order of the bits to be permuted.

outfile is the name of the file containing the permuted
image.

Discussion

Rearrange the address bits or the data bits in a ROM image as follows:

To reorder data bits, use permute-d . Bits are repositioned within data
items that are the width of the ROM image. Specify the output bit location
for each input bit from the least-significant to the most-significant input
bit.

To reorder address bits, use permute-a . Bits are repositioned within
32-bit addresses. Specify the new bit location for each address bit from
least- to most-significant input bit.

In interactive mode, the rommer prompts for the new location of each bit.

Use permute-a or permute-d after a rom command describing the target
ROM configuration. The permute-a command uses the length and width
specifications from the rom command to define the working address space.

i960 Processor Software Utilities User's Guide

12-18

12
Examples

1. The following reorders data bits 0 through 7 in test and places the
new image in bldrom :

rom 64000 8
move hello
mkimage hello test
permute-d test 0 2 4 6 1 3 5 7 bldrom

2. The following reverses address bits 16 through 31, placing the new
image in hello2 :

rom 120000 32
move hello
mkimage hello romhello
permute-a romhello 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
hello2

Related Topics
mkimage split
rom

rom
Specifies the image
length and width

rom length, width, [count]

length is the number of bytes in the ROM image.

width is the width of the ROM image, in bits.

count is the maximum number of ROM images.

ROM Image Builder (rom960)

12-19

12
Discussion

Use this option to specify the length, width, and number of ROM images
before using a permute command. Figure 12-3 shows an eight-ROM
memory image and an example of the command required to specify it.

If you specify a count , the rommer issues a warning message for any
mkimage output greater than the expected memory size (in bytes). To
determine the expected memory size, use the formula:

length * count

The permute-d command uses width and permute-a uses both length

and width as the number of bits to be permuted.

i960 Processor Software Utilities User's Guide

12-20

12
Figure 12-3 Dimensions of a Memory Image

Memory Image

16 Bits Wide

4,000 16-bit

Words Long

8 Bits Wide

ROM Image

ROM command required to use either the

permute-a or permute-d command:

rom 1000 8 8

Description of one ROM

Quantity needed to fill the memory image

1,000 Bytes

A0123-01

Examples

1. The following sets the length to 32767 bytes and the width to 8 bits
for individual ROM images:

rom 32767 8

ROM Image Builder (rom960)

12-21

12
2. The following sets the length to 65536 bytes and the width to 8 bits;

and, by specifying four ROM images of those dimensions, establishes
262144 bytes as the expected image size:

rom 65536 8 4

Related Topics
mkimage
permute

sh
Executes a host-system
command

sh command

command is the host-system command to be executed.

Discussion

To execute a command on your host system, use sh . When the command
completes, the rommer continues executing.

Examples

1. The following lists the current directory on UNIX:

sh ls -l

2. The following lists the current directory in Windows:

sh dir

i960 Processor Software Utilities User's Guide

12-22

12
split
Specifies the output
image sizes

split image m-length m-width r-length r-width name

image is the binary filename to be split.

m-length is the length, in bytes, of the memory image to be
split.

m-width is the width, in bits, of the memory image to be
split.

r-length is the ROM image length, in bytes.

r-width is the ROM image width, in bits.

name is a base name for the various images produced.

Discussion

To split a memory image into smaller ROM images, use split . Each
output ROM image filename is of the form name.nm:

n indicates the vertical position of the ROM image, from 0 (the
lowest part of the memory address range) to (m-length / r-length).

m indicates the horizontal position of the ROM image, from 0 (the
first block of r-width bits in the m-width -bits-wide data path)
to (m-width / r-width).

Subsequent permute directives use the ROM image r-length and
r-width .

Example

The following produces four files named a. nm, as shown in Figure 12-4:

mkimage hello a.image
split a.image 262144 32 65536 8 a

ROM Image Builder (rom960)

12-23

12
Figure 12-4 split Command Example

0
1
2
3
4
5
6
7
8
9

262144
Bytes

65536
Bytes

a.00 a.01 a.03a.02

0
4
8

1
5
9

3
7
11

3
7

11

2
6

10

1
5
9

0
4
8

ROM Images Created
OSD1701

a.image As It Is Stored
8 Bits

a.image As It Is Understood
32 Bits

2
6
10

Related Topics
mkimage
permute-d

Section-size Printer
(gsize960, siz960)

13-1

13
This chapter describes the section-size printer, used for displaying the
sizes of archive members, object-file sections, and entire files.

NOTE. Before using this tool, make sure your object file or archive is in
host-endian byte order. To change the byte order, use the cof960/objcopy
converter described in Chapter 3.

Invocation

Invoke the section-size printer as:







siz960

gsize960
 [- options] filenames

siz960 invokes the section-size printer for backwards
compatibility with CTOOLS960 Release 3.5 and
later.

gsize960 invokes the section-size printer for backwards
compatibility with GNU/960 Release 2.1 and
later.

options is one or more of the options listed in Table 13-1.

filenames is one or more filenames, separated with spaces,
for which the symbol tables are to be displayed.
You can specify complete pathnames.

i960 Processor Software Utilities User's Guide

13-2

13
Table 13-1 gsize960/siz960 Options

Option Effect

c displays total size of common symbols.

d displays the sizes and addresses in decimal.

h displays help information and exits.

n Includes unallocated sections in the size calculation.

o displays the sizes and addresses in octal.

p Suppresses header display.

V displays the section-size printer version and creation date and
continues processing.

v960 displays the section-size printer version and creation date and
stops processing.

x displays the sizes and addresses in hexadecimal.

By default, sizes are displayed in decimal and addresses in hexadecimal.
For example, the following displays the version information and continues
processing:

siz960 test.o

test.o :
Section Size Address

.text 52 0x00000000

.data 4 0x00000034

.bss 0 ox00000038

Total 56

NOTE. With release 5.1, the -n option includes ELF .debug sections in
the size calculation. Note that using siz960/gsize960 with the -n
option produces output that is identical to that produced by version 5.0 of
the sizer.

Statistical Profiler (ghist960)

14-1

14
This chapter provides information on the ghist960 statistical profiler,
including a description of the program, instructions on invoking ghist960,
and a list of command line options.

The ghist960 utility facilitates statistical analysis of the execution behavior
of programs containing debug information. The ghist960 tool can process
b.out, COFF and ELF files, in either big- or little-endian byte order.
ghist960 presents information collected from a data file created during
execution of your program using representative inputs.

To use ghist960, first compile your program with the - g (Debug) compiler
driver option. Then, link it with the special libhis profiling library.
Execute the program with appropriate inputs. Executing your
instrumented program causes the compilation system to create a profile
data file (ghist.dat , by default). You can then use the controls and
options described in this section to create a variety of reports showing how
your program behaves with various inputs.

Note that statistical profiling differs from the precise profiling that is
described in the i960 Processor Compiler User’s Guide.

i960 Processor Software Utilities User's Guide

14-2

14
Invocation

Invoke the statistical profiler with:

ghist960 [option]... program [data_file]

option is one of the options listed in Table 14-1.

program identifies the application (object file) for which
you are creating the report.

data_file names the execution profile data file
(ghist.dat by default).

The ghist960 tool processes the object file by:

1. Building an internal database of function entry and line number
symbols.

2. Processing the profile data, matching "bucket" hit counts to their
associated symbols and line number entries. A bucket is a range of
addresses. The range of addresses corresponding to a bucket is
determined by the number of address bytes in the bucket (bucket size).

3. Printing the internal database for each symbol/ line entry, which
includes:
• the percentage of hits for this particular symbol/address range
• the function name associated with the symbol
• the source file line number of the symbol
• the file where the symbol resides
• the address of the symbol

Optionally, you can use the n option to obtain the actual number of hits in
the address range.

Statistical Profiler (ghist960)

14-3

14
Table 14-1 ghist960 Options

Option Effect

a prints all buckets with one or more hits. (Normally, only buckets
with 1% or more of the hits are printed.)

d prints ghist960's internal symbol table and the standard data.

f tallies function information. Counts the number of hits for each
line in a function and associates the sum with line zero of the
function.

h displays help output and exits.

n prints the number of hits for each bucket, in addition to the
standard data.

s suppresses the printing of miscellaneous header and footer
information and format lines.

V writes version information to stdout and continues.

v960 writes version information to stdout and exits.

i960 Processor Software Utilities User's Guide

14-4

14
Table 14-2 ghist960 Buckets

Argument Effect

__buck_size Number of text space bytes per bucket. Default is 64.
Available memory is an important factor in determining bucket
size. A smaller bucket size require more buckets and more
heap space to count bucket hits. See _heap_size for details.

__timer_freq Timer interrupt frequency. Default is one millisecond. The IP
address is recorded at every timer interrupt. Since profiling
depends on asynchronous timer interrupts, interrupt frequency
greatly affects data granularity. Use one of the following
settings. (Any other setting resets the default.)
defsym interrupt frequency
__timer_freq=0x01 500 microseconds
__timer_freq=0x02 1 millisecond (default)
__timer_freq=0x03 2 milliseconds
__timer_freq=0x04 5 milliseconds

Note: Profiling requires complete control of the target board's
timer. If the program being profiled uses the timer, the profile
data is incorrect or misleading. You must disable all timer
accesses.

__prof_start The low address in the range of instruction addresses to
profile. (Default is the start of program address space:
__Btext.) Changing this parameter directly affects heap space
requirements. See _heap_size for details.

__prof_end The high address in the range of instruction addresses to
profile. (Default is the end of program address space: _etext.)
Changing this parameter directly affects heap space
requirements. See _heap_size for details.

_heap_size Memory allocated for heap space (MON960). Heap space is
where the raw profile data is kept for later dumping to the host.
Default is 8KB (0x2000); usually insufficient for profiling. To
determine the extra heap size you need for profiling, use the
formula:
_heap_size += ((__prof_end - __prof_start) / __bucket_size) * sizeof (int)

Stripper (gstrip960, str960)

15-1

15
The stripper removes symbol-table and line-number information from
your files. In most cases, you will want to use the stripper after debugging
to reduce the code size by removing debug symbols.

NOTES.
– The stripper overwrites the input file with the stripped file.
– You cannot link or symbolically debug a stripped file.

Invoke the stripper as:







str960

gstrip960
 [- option]... filename...

str960 invokes the stripper for backwards compatibility
with CTOOLS960 Release 3.5 and later.

gstrip960 invokes the stripper for backwards compatibility
with GNU/960 Release 1.2 and later. On
Windows hosts, the invocation command is:
gstrip96 .

option is one or more of the options listed in Table 15-1.
Use the options only for stripping COFF or ELF
files. For b.out files, specify no options.

filename is one or more files to be stripped.

NOTE. To strip all debugging information for COFF, b.out, or ELF,
specify no options. Also, you can interleave the options and filenames in
any order.

i960 Processor Software Utilities User's Guide

15-2

15
To strip a file while preserving and re-indexing the relocation entries for
incremental linking, use the r option. Without r , the relocation
information inhibits the stripper.

When you use the stripper on an ELF/DWARF file, all sections that lack
the SHF_ALLOC bit in the section header table are removed from the output
file. The one exception to this rule is the .shstrtab section, which is not
removed.

Table 15-1 str960/gstrip960 Options

Option Effect

a strips all symbols. This is the default.

b strips the local symbols and line numbers only, retaining the block
information.

C strips CCINFO only.

h displays help information and exits.

l Stips line numbers only.

r strips files containing relocation information, revising the remaining
relocation indexes. External and static symbols remain.

V displays the stripper version number and the date and time the
stripper was created, then continues processing.

v960 displays the stripper version number and the date and time the
stripper was created, then stops processing.

x strips all except static and external symbol information.

z suppresses writing a time-stamp in the COFF header file.

Partial stripping is supported by the b, C, l , r and x options. For ELF
files, these options are equivalent: Both remove debugging information
from the output file. All sections named .debug* are removed from the
output file, but the file remains relocatable because both the .strtab and
.rel* sections are retained.

Linker Command Language

A-1

A
Introduction

The linker command language lets you control the linking process. You
can use the linker command language to:

• Define and allocate memory.
• Specify files and libraries to be linked.
• Group sections in memory.
• Place input files' input sections (the smallest relocatable pieces of

object files) into output sections (sections in linker output files).
• Resolve global symbols to absolute addresses.
• Calculate checksums.

The linker command language consists of keywords called linker
directives. These directives are placed in linker directive files, which are
also known as link scripts and configuration files in some environments.
Linker directive files typically use the extension .ld . You specify linker
directive files when you run the linker, either directly or indirectly (via a
compiler invocation).

Most of this appendix is devoted to a description of the linker directives.
The last section of this appendix, provides some details on linker directive
files and sample linker directive files. (The toolset includes linker
directive files for various common i960 processor evaluation boards.)

Before using the information in the Linker Directives Reference section,
you should be familiar with the information in the next section, which
discusses other directive file elements, such as expressions and operators.

i960 Processor Software Utilities User's Guide

A-2

A
Expressions and Operators

You can use global symbols, constants, and C-language operators in
expressions in linker directive files. Names can contain uppercase or
lowercase letters, numbers, dollar signs ($), and underscores (_). All
numbers are long integers. As in C, constants are in decimal format unless
preceded by 0 for octal or 0x for hexadecimal.

The value of a symbol corresponds to the value in the symbol table after
the link is complete.

Table A-1 shows the operators in order of precedence. Operators on the
same level have the same precedence and are processed as encountered.

Table A-1 Order of Precedence for Operators

Precedence Operators Associativity

1 (highest) ! - ~ (unary) left

2 * / % left

3 + - left

4 >> << left

5 == != > < <= >= left

6 & left

7 | left

8 && left

9 || left

10 ?: right

11 (lowest) &= *= |= += -= /= right

To define symbols and assign values to them, use assignment statements
with the following syntax:

symbol [op]= expression ;

symbol is the symbol name.

op is one of the operators & , * , | , + , - , or / . Not
all assignments require an operator.

Linker Command Language

A-3

A
= is the assignment operator.

expression is a valid expression. For example:
start + 10

NOTE. The final semicolon is required for all assignment statements.

Assignment statements are processed in the order they are input to the
linker and are evaluated after allocation. However, for symbols used in
the expression , the evaluation addresses reflect the symbol addresses in
the output object file. Subsequent symbol references access the latest
assigned values.

For conditional statements, use the following C syntax:

condition ? t-expr : f-expr ;

condition evaluates to true (1) or false (0). The question
mark (?) is required.

t-expr is evaluated when the condition evaluates to
true.

f-expr is evaluated when the condition evaluates to
false. The colon (:) separates the f-expr from
the t-expr .

i960 Processor Software Utilities User's Guide

A-4

A
Linker Directives Reference

Use linker directives to:

• Configure your target memory.
• Include library files and other directive files.
• Provide the start-up routine.

NOTE. In this section, the curly braces ({ and }) are part of the
directive syntax and must be entered as shown. Square brackets
([and]) and ellipses (...) indicate optional and repeatable elements.

Table A-2 Linker Directives

Directive Operation

ADDR returns a non-relocatable section address.

ALIGN assigns non-relocatable values to symbols. This
operation is different from the ALIGN keyword of
the SECTIONS directive. This option is
synonymous with NEXT.

CHECKSUM generates a checksum for the bus confidence test.

DEFINED returns whether a symbol is defined in the global
symbol table.

ENTRY specifies the first executable instruction address.

[NO]FLOAT specifies whether to use the extended-arithmetic
and floating-point libraries.

FORCE_COMMON_
 ALLOCATION

forces allocation of space for common symbols,
even for non-final (relocatable) linking.

HLL specifies the high-level support libraries.

INCLUDE locates and processes the specified directive file.

continued ☛

Linker Command Language

A-5

A
Table A-2 Linker Directives (continued)

Directive Operation

INPUT provides backward compatibility with GNU R2.0.1
(required in that release for naming linker input files
inside a directive file). Later versions of the linker
allow naming input files without using the INPUT
directive.

MEMORY specifies the available target memory and defines
configured and unconfigured memory.

NEXT synonomous to ALIGN.

OUTPUT names the output file.

OUTPUT_ARCH specifies the target 80960 architecture for the
current link. Overrides $G960ARCH and is
overridden by the A linker option. Default
architecture is KB.

PRE_HLL Lets the user specify libraries that are processed
immediately before the high-level language libraries
specified with the HLL() directive.

SEARCH_DIR extends the library search path (like L dir).

SECTIONS defines the contents, configuration, and location of
the output sections.

SIZEOF returns a section size.

STARTUP specifies the first file to be linked.

SYSLIB specifies the low-level support libraries.

TARGET uses the search path to find the specified directive
file, with the same effect as the T option.

MEMORY: Configuring Memory Regions

Use the MEMORY directive to:

• Specify the target-memory size.
• Designate configured and unconfigured memory regions.
• Prepare memory regions for specific sections.

i960 Processor Software Utilities User's Guide

A-6

A
Omitting MEMORY configures a single RWXI region from 0x0 through
0xffffffff .

The syntax is:

MEMORY {
 name [(attr)] : origin = expr , length = expr
 [. . .]
}

name is a symbol for an address range.

(attr) is one or more of the attributes listed in
Table A-3. The parentheses are required when
you specify attr .

origin is a keyword assigning the region starting
address. You can abbreviate origin to org or
o. Use either a space or a comma to separate
origin and length .

length is a keyword assigning the region size, in bytes.
You can abbreviate length to len or l .

expr is a decimal, octal, or hexadecimal expression in
C syntax.

NOTE. When you prepare memory regions for sections or groups with
(attr) , the MEMORY attribute list must exactly match the corresponding
SECTIONS attribute list. Omitting the attribute list gives the memory
region the RWXI attributes.

Linker Command Language

A-7

A
Table A-3 Memory and Section Attributes

Attribute Characteristic

R indicates a readable region.

W indicates a writable region.

X indicates an executable region.

I, L indicate a region that can be initialized.

NOTE. Specifying more memory than is actually contained in your
system causes a fatal error.

For more information on assigning sections and groups to memory
regions, see the SECTIONS: Defining Output Sections section.

Examples

1. The following example prevents any code from being located in the
first 0x10000 words of memory:

MEMORY {
 valid : org = 0x10000, len = 0xffff0000
}

2. In the following example the largest configured region is 0x10000

bytes:

MEMORY {
 mem1: o = 0x00000 l = 0x02000
 mem2: o = 0x40000 l = 0x05000
 mem3: o = 0x20000 l = 0x10000
}

Default Linker Allocation

The term allocation refers to the process the linker uses to locate input
sections into output sections and then to assign the output sections to
actual memory addresses.

i960 Processor Software Utilities User's Guide

A-8

A
Omitting a SECTIONS directive puts all input sections with the same name
in an output section of that name, in the order shown below. For example,
linking several object files, each containing the .text , .data , .mysect ,
and .bss input sections, creates the combined .text , .data , .mysect ,
and .bss output sections. The linker allocates the output sections in the
following order when a SECTIONS directive is not supplied:

• .text at the lowest available address
• other text-type sections after .text

• the .data section after all the text-type sections
• other data-type sections after .data

• other types of sections after all the text-type and data-type sections
• .bss after all other sections

If you provide a SECTIONS directive, the linker first locates any sections
you specify, then puts unassigned sections into suitably configured
memory on a first-fit basis, keeping groups intact.

You should carefully study the link map after you link your executable. If
you do not like the arrangement, use the techniques discussed below to
give the linker explicit directions on how to allocate your application.
You can use the v linker option to display the order in which it allocates
output sections and the addresses it chooses for the sections.

SECTIONS: Defining Output Sections

Use the SECTIONS directive to:

• combine the input sections into output sections
• locate the output sections in memory
• create and initialize symbols
• initialize unassigned memory
• locate the entry point

Linker Command Language

A-9

A
The syntax is:

SECTIONS {
[GROUP [addr-spec]: {] # opens an optional GROUP block

o-section [addr-spec] [ns-type]: {
 [statements]
} [= fill] [> mem-attr]
[...]

[} [mem-attr]] # closes the optional GROUP block
[...]

}

GROUP specifies sections to be treated as one unit. See
Table A-4.

addr-spec is a starting address. For more information on
this subject see the description for the B and T
section start address options in Chapter 7.

o-section defines an output section. The colon is required.

ns-type is the DSECT, NOLOAD, or COPY nonstandard type
(these may have optional parentheses).

statements describe the section contents, including
filenames, input-section names, keywords (listed
in Table A-4), assignments, and other
expressions (described in the Linker Command
Language section).

The braces are required, even with no
statements. An empty output-section definition
contains all otherwise-unallocated input sections
with the same name (o-section) as the output
section.

fill is a two-byte initialization value for spaces
between input sections in the output section.

i960 Processor Software Utilities User's Guide

A-10

A
mem-attr specifies a memory region either by name or by

attribute, as described in the MEMORY:
Configuring Memory Regions section. The > is
required. For a list of the attributes, see
Table A-4.

NOTES. Specify a starting address or a memory region (or neither), but
not both. Conflicting group and section specifications cause syntax
errors.

In a SECTIONS directive, you can use the keywords summarized in
Table A-4.

Table A-4 SECTION Keywords

Keyword Operation

ALIGN returns the next address that fits the specified boundary.

BYTE puts a byte value at the current address.

COMMON locates uninitialized data.

COPY copies output-section data to the output file without
relocating the section or allocating any memory.

CREATE_OBJECT_SYMBOLS creates a symbol for each input file.

DSECT creates an empty section, allocating no memory (but
processing contained symbols).

ENTRY locates the entry point.

FILL specifies the value used to fill gaps in an output section.

GROUP specifies sections to be treated as a unit.

LONG puts a 4-byte (word) value at the current address.

NOLOAD allocates memory and locates the output section, but
copies no data to the output file.

SHORT puts a two-byte (half-word) value at the current address.

Linker Command Language

A-11

A
The sample below shows a SECTIONS directive where all .text , .data ,
and .bss sections are allocated to DRAM.

SECTIONS
{
 .text :
 {
 } >dram

 .data :
 {
 } >dram

 .bss :
 {
 } >dram
}

Combining Input Sections Into Output Sections

By default, the linker combines sections as follows:

• Combine all input sections of each name together into one output
section with the input-section name. In each output section, sequence
the input sections in the order encountered in the input files.

You can build an output section from specific input sections. List the
input filenames and sections in an output-section definition as:

[filename]([i-sections])

filename is an input filename.

i-sections is one or more input-section names, separated
with commas or spaces.

You can use the wildcard character (*) for the filename. For example:
*(.text) specifies all input file .text sections.

i960 Processor Software Utilities User's Guide

A-12

A
Common Sections (COMMON)

The term common section refers to global uninitialized variable space.
The following are examples of common variables:

int x,y[20];

With respect to impact on external linkage, this term is used exactly as it is
in the FORTRAN programming language. COMMON symbols are
overridden by a larger definition of the same name, or by a definition that
is initialized. For example:

int x; defined in x.o

double x; defined in y.o

char x = 'a'; defined in z.o

would each override each other resulting in a global variable named x that
is an initialized character variable. To designate an output section for
common sections of input files, use the COMMON keyword anywhere in an
output-section definition. To include the common symbols from specific
input sections, use COMMON after the input-section statement. For example:

foo.o(COMMON) /* COMMON section from foo.o */

Similarly, the wildcard can be used:

(COMMON) / Place ALL COMMON sections here. */

COMMON tells the linker where to locate variables not assigned to another
section. It can refer to all such variables or just to the unassigned
variables from specific input files.

You can list the input files in the output symbol table. To create a symbol
for each input file in an output section, specify CREATE_OBJECT_SYMBOLS

at the beginning of the output-section definition, after the opening brace:

o-section [addr-spec]: { CREATE_OBJECT_SYMBOLS
{ [statements] }

}

Linker Command Language

A-13

A
Note that *(section_name) and [section_names] mean that if any
input sections named section_name exist, and are not already placed in
an output section, place them in this output section. For example, the
following code produces an error if bar.o is the only input object file.

SECTIONS {
foo {bar.o}
junk : { *(COMMON) }
}

However, the following example does not produce an error because as it is
evaluating *(COMMON), bar.o(COMMON) is available.

SECTIONS {
junk : { *(COMMON) }
foo : { bar.o }
}

Files and sections are bound top to bottom, and left to right in linker
directive files.

Splitting COFF Output Sections

The common object file format (COFF) allows only 65535 line-number
entries and 65535 relocation entries for any section within an object file.
The linker creates additional output sections whenever adding another
input section to an existing output section overflows the line number entry
table or the relocation entry table.

To split a section, the linker:

• creates a new section with the original section name, starting with the
first input section that does not fit completely in the original section.

• assigns a new name to the original output section by appending a
number to the original section name, truncated as necessary to limit
the new section name to eight characters.

For example:

• Splitting the .mybgtxt section once assigns the name .mybgtx0 to
the original output section and creates a new section called .mybgtxt

for the remaining input-section contents. More than 10 splits create
section names such as .mybgt10 and .mybgt11 .

i960 Processor Software Utilities User's Guide

A-14

A
• A .text section of 196700 bytes splits into four sections named

.text0 (containing the first input sections), .text1 , .text2 , and

.text (containing the last input sections).

The linker notifies you of each section split with a warning message unless
you suppress all warnings by using the W linker option. You receive no
other indication of section splits unless you produce a memory map by
using the m linker option.

NOTE. The linker treats the new sections created under the same linker
directives that applied to the original section. Do not put the new names
into the directive file.

Examples

1. The following creates an output section named .ab_txt , containing
the input .text sections from all the available input files, all the input
sections from the abn.o file, the .atxt and .atxtq sections from
afile.o , and .btxt from bfile.o , located as described in the
MEMORY: Configuring Memory Regions section.

SECTIONS {
 .ab_txt: {
 *(.text)
 abn.o
 afile.o(.atxt .atxtq)
 bfile.o(.btxt)
 }
}

2. The following puts all of the common symbols from all the input files
into the mycom output section:

SECTIONS {
 mycom: {[COMMON]}
}

Linker Command Language

A-15

A
3. To place COMMON sections from a specific file into a particular section,

use this form:

SECTIONS {
 xxx : { filename.o(COMMON) }
}

4. The following puts a symbol in the output symbol table for each file
that contributes a .txt input section to the .utxt output section:

SECTIONS {
 .utxt: {
 CREATE_OBJECT_SYMBOLS
 *(.txt)
 }
}

If COMMON is not in the linker directive file in a final link, uninitialized
variables are placed by default into the .bss section.

Allocating the Output Sections (> region , ALIGN, GROUP)

You can allocate an output section by:

• explicit addresses
• alignment
• memory region name
• memory attribute

When allocating the output sections, the linker maintains the default or
specified alignment. The linker processes the output sections in the
following order:

1. output sections with explicit starting addresses.
2. output sections with memory-region names or attributes, placing each

section into the first appropriately configured, unallocated region of
sufficient size.

3. output sections with no location specifications, placing each section
into the first appropriate unallocated region of sufficient size.

For information on configuring memory regions, see the MEMORY:
Configuring Memory Regions section.

i960 Processor Software Utilities User's Guide

A-16

A
By default, the linker uses the largest alignment of any input section in the
output-section definition for the entire output section. You can specify a
larger output-section alignment, which then overrides the input section's
alignment specifications.

Specify the section alignment or address (not both) after the name of an
output-section specification, before the colon and the opening brace:

o-section






ALIGN(align-expr)

addr-expr : {[statements]}

align-expr evaluates to a power of 2.

addr-expr evaluates to an address in configured memory.

Instead of allocating the output sections by an address, you can assign an
output section to a specific memory region by name or by attribute. For a
region name, use the > operator and the name after the output-section
definition:

o-section : {[statements]} [> region]

region is a memory-region name or attribute list, as
defined in a MEMORY directive. The > is required.
For more information on matching sections and
memory regions by attribute, see the MEMORY:
Configuring Memory Regions section.

NOTE. You cannot specify both an address and a memory region.

Treating Output Sections as a Unit (GROUP)

You can specify a set of output sections to be treated as a unit, including:

• contiguous memory locations, with the order of the sections preserved
• homogeneous attributes, kept together in a single memory region

Linker Command Language

A-17

A
Put the output sections in a GROUP block in the SECTIONS directive. You
can define multiple groups:

GROUP [addr-spec]: {
 section-defs
 } [> mem-spec]

addr-spec specifies an alignment or address. For more
information on this subject see the description for
the B and T section start address options in
Chapter 7.

section-defs is one or more output-section definitions.

mem-spec specifies a memory region by name or attributes.
The > is required.

NOTE. Specify the address or memory region for a group the same as for
a section. Specify no such locations for the individual sections within a
group.
An output section or group that does not fit at the specified address causes
an error.

Although the linker does not ensure that the sections are an even number
of bytes in length, you need not align the individual input sections within
an aligned output section. The assembler and compiler create sections that
are multiples of four bytes in length.

Examples

1. The following aligns the outsec output section on an address that is a
multiple of 0x20000 (address 0x0 , 0x20000 , 0x40000 , etc.)

SECTIONS { outsec ALIGN(0x20000): { } }

i960 Processor Software Utilities User's Guide

A-18

A
2. The following assigns .text the starting address 0x040000000 ,

.data the first available address in mem1, and .bss the first memory
location big enough hold it:

MEMORY {
 mem1: o = 0x10000000, l = 0x20000
 mem2: o = 0x40000000, l = 0x40000
}
SECTIONS {
 .text 0x040000000: {}
 .data: {} > mem1
 .bss: {}
}

3. The following keeps the .text , .data , and .bss sections together in
the membase memory region. Note that all of the sections are aligned
per the input section requirements and that .data immediately
follows .text , and .bss immediately follows .data .

SECTIONS {
 GROUP: {
 .text : { }
 .data : { }
 .bss : { }
 } >membase
}

Creating Gaps and Defining Symbols in Output Sections
(ALIGN, BYTE, FILL, LONG, SHORT, dot)

A section gap contains no information. To create a gap:

1. Change the location counter, represented by the dot (.) symbol, to
insert a gap of any length filled with a repeated two-byte value.

2. Use an initialization keyword to insert a byte, half-word, or word
value.

Linker Command Language

A-19

A
Assign a new value to the location counter with either:

. [operator]= size-expr ;

. = ALIGN(align-expr);

operator is an +, - , * , or / operator.

size-expr evaluates to an offset address, relative to the
beginning of the output section, or to a value to
be used by the operator.

align-expr evaluates to a power of 2.

ALIGN returns the next address, within the output section, that is divisible
by the align-expr .

To specify a repeating two-byte initialization value for the gaps in a
section, assign the fill value after the closing brace of the output-section
definition (or use FILL () within a section definition):

o-section [addr-spec]: {
 [statements]
} [= fill] [mem-spec]

The phrase =fill designates the fill value for the o-section output
section.

For one-, two-, or four-byte gaps, use the initialization keywords:

BYTE(expr)
SHORT(expr)
LONG(expr)

expr is a byte, half-word, or word value, respectively.
For any value that is longer than the keyword
requires, the linker uses the least-significant byte,
half-word, or word.

i960 Processor Software Utilities User's Guide

A-20

A
The location counter within an output-section definition is an offset
relative to the base address of the output section. Any address or
alignment you specify is relative to the beginning of the output section.
To find or specify the location counter absolutely, specify the base address
by explicitly locating the output section, as described in the Locating the
Output Sections (>region, ALIGN, GROUP) section.

Examples

1. The following puts two gaps in the outsec output section:
 A 0x1000 byte gap is left at the beginning of the outsec output

section. The f1.o(.text) input section begins after the gap.
 The f2.o(.text) input section begins at 0x100 bytes after the

end of f1.o(.text) .
 The f3.o(.text) input section begins on the next word

boundary with respect to the beginning of outsec .
 The gaps are filled with the two-byte value 0x0020 .

SECTIONS {
 outsec: {
 .+= 0x1000;
 f1.o(.text)
 .+= 0x100;
 f2.o(.text)
 .= ALIGN (4);
 f3.o(.text)
 }=0x0020
}

2. The following quad-word-aligns outsec :

SECTIONS {
 outsec ALIGN(16): {
 .+= 0x1000;
 f1.o(.text)
 .+= 0x100;
 f2.o(.text)
 f3.o(.text)
 }
}

Linker Command Language

A-21

A
3. In this example:

 The s2_start symbol points to the beginning of infile2(ss2)

(section ss2 from input file infile2)
 The s2_end symbol points to the last byte of infile2(ss2) .

 SECTIONS {
 outsc1: {
 infile1(ss1)
 s2_start = . ;
 infile2(ss2)
 s2_end = .-1;
 }
 }

4. In this example, the symbol mark points to the first full word beyond
the end of the .data section of file1.o . Four bytes are reserved by
the . += 4; statement for a run-time initialization of mysymbol ,
representing a long integer.

SECTIONS {
 outsc1: {
 file1.o (.data)
 . = ALIGN(4);
 mysymbol = .;
 . += 4;
 file2.o (.data)
 }
}

5. This example does the following:
 aligns the .data output section on the next 0x2000 -byte

boundary after the .text output section
 defines the als symbol to point to the next 0x8000 -byte

boundary after the .data input sections

SECTIONS {
 .text { }
 .data ALIGN(0x2000): {
 *(.data)
 als = ALIGN(0x8000);
 }
}

i960 Processor Software Utilities User's Guide

A-22

A
Defining Non-standard Sections (DSECT, COPY, NOLOAD)

You can create output sections that:

• overlay other sections
• contain complete and exact copies of the input sections
• contain no data

Specify the non-standard section keywords (with or without parentheses)
immediately before the colon and opening brace of an output-section
definition:

o-section [addr-spec]







DSECT

COPY

NOLOAD
: { [statements] }

With DSECT, you can locate the symbols in an output section without
writing any object code to the output file or allocating any memory. The
global symbols defined in a DSECT section are relocated normally, are
resolved as needed from the libraries, and are available to other sections.
For example, use DSECT to create an overlay section that, during
execution, can re-use a memory region no longer needed by a prior
section. Overlay section data can be read in from peripheral storage
during execution.

To exclude the input-section contents from the output section, use NOLOAD.
A NOLOAD output section has no data in the object file, but occupies
memory and appears in the memory map. For example, use NOLOAD to
reserve a memory region for a section that is linked and located separately.

To copy the input-section contents and all associated information to the
output file, use COPY. A COPY output section is not located and occupies
no memory.

Linker Command Language

A-23

A
Example

The following allocates one of each nonstandard output-section type:

SECTIONS {
 name1 0x200000 DSECT: { file1.o }
 name2 0x400000 COPY: { file2.o }
 name3 0x600000 NOLOAD: { file3.o }
}

COFF Binary Representations

The COFF binary representations of the NOLOAD, DSECT and COPY sections
are detailed in the table below:

Table A-5 COFF Binary Representation of NOLOAD, DSECT, COPY Sections

ALLOC RELOCATED scnptr size flags LOADED

NOLOAD N NA 0 S NOLOAD N

DSECT N NA 0 0 DSECT N

COPY N N S S COPY Y

ORDINARY Y Y S S 0 Y

The ALLOC column indicates whether or not the linker allocates memory
for it.

RELOCATED indicates whether the section is relocated or not. Since the
DSECT and NOLOAD sections do not have section contents, it is not
applicable to them. Note that the COPY sections are not relocated, but
copyed verbatim.

If scnptr is 0 in COFF, there are no section contents for it, even if there is
size of the section. S indicates that the scnptr corresponds to the file
seek address of the section contents. See Appendix C for information on
the the COFF OMF.

If size is 0, the output section for that element is fillied with zeros.
S indicates that the section size is retained for your information.

i960 Processor Software Utilities User's Guide

A-24

A
Some of the sections set some special flags into the section's flagword.
The table above indicates which flags are set.

A loader can load anything from the OMF file but, according to the
semantics defined here, the loader loads only those marked with a Y in the
table above.

ELF Binary Representations

The ELF binary representations of the NOLOAD, DSECT and COPY sections
are detailed in the table below:

Table A-6 ELF Binary Representation of NOLOAD, DSECT, COPY Sections

SHF_ALLOC RELOCATED SHT_PROGBITS SIZE HAS_PROGRAM_HDR

NOLOAD N NA N S N

DSECT N NA N 0 N

COPY Y N Y S Y

ORDINAR
Y

Y Y Y S Y

SHF_ALLOC indicates whether or not the section is allocated memory by
the linker. It also indicates that the output flag word contains this output
flag.

RELOCATED indicates whether the section is relocated or not. Since the
DSECT and NOLOAD sections do not have section contents, it is not
applicable to them. Note that the COPY sections are not relocated, but
copyed verbatim.

Each section contains SHT_PROGBITS or SHT_NOBITS. Y indicates that the
section is a SHT_PROGBITS, while N indicates it is SHT_NOBITS.

If size is 0, the output section has zeroed that element. S indicates that
the section size is retained for your information.

If the column for HAS_PROGRAM_HDR contains a Y, the section should be
loaded by a memory loader utility.

Linker Command Language

A-25

A
FORCE_COMMON_ALLOCATION: Allocating
Space for Common Symbols

To assign common-symbol space in the output data, use
FORCE_COMMON_ALLOCATION. This directive has the same effect as the d

option. You can use FORCE_COMMON_ALLOCATION when generating either
relocatable or non-relocatable linked files. However, this feature is most
useful when using relocatable links.

DEFINED: Finding Symbols

To determine whether a global symbol is defined, use DEFINED:

DEFINED(symbol)

symbol is the symbol name.

Finding the symbol in the global symbol table returns 1.

In the following example, the value of begin is preserved if begin

already exists in the global symbol table; otherwise, begin is set to the
location counter (.):

begin = DEFINED(begin) ? begin : . ;

ADDR, ALIGN, NEXT: Finding Addresses

To find the absolute beginning address of a section, use ADDR:

ADDR(section)

section is the name of a located section.

For an address aligned after the current location counter, use ALIGN or
NEXT:

ALIGN(expr)
NEXT(expr)

expr is an alignment factor.

i960 Processor Software Utilities User's Guide

A-26

A
For memory with no unconfigured regions, ALIGN and NEXT are
equivalent. ALIGN returns the next address in configured memory that fits
the specified boundary. NEXT returns the next unallocated address that fits
the boundary.

Examples

1. The following locates the osec1 output section in the mem1 memory
region and assigns the osec1 beginning address to the begin_1

symbol:

SECTIONS {
 osec1 : { *(.osec1) } >mem1
 begin_1 = ADDR(osec1);
}

2. The following assigns the first word-aligned address after the location
counter to the mark1 symbol. If osec1 completely fills mem1, the
mark1 value is 0x02000 , in unconfigured memory:

MEMORY {
 mem1: o = 0x00000 l = 0x02000
 mem3: o = 0x40000 l = 0x05000
}
SECTIONS {
 osec1: { } >mem1
 mark1 = NEXT(4);
}

3. The following assigns the first word-aligned address after the location
counter to the mark1 symbol. If osec1 completely fills mem1, the
mark1 value is 0x40000 , in the next configured memory region:

MEMORY {
 mem1: o = 0x00000 l = 0x02000
 mem3: o = 0x40000 l = 0x05000
}
SECTIONS {
 osec1: { } >mem1
 mark1 = ALIGN(4);
}

Linker Command Language

A-27

A
SIZEOF: Finding Section Sizes

To find the size, in bytes, of a section, use SIZEOF:

SIZEOF(section)

section is the name of a located section.

The following example locates and sizes the .out1 output section. The
outsz1 and outsz2 symbols acquire identical values.

SECTIONS {
 .out1: {
 st_o1 = . ;
 *(.out)
 end_o1 = . ;
 }
 outsz1 = end_o1 - st_o1;
 outsz2 = SIZEOF(.out1);
}

STARTUP: Specifying a Startup File

The syntax for the STARTUP directive is:

STARTUP(filename)

filename specifies the file to be linked first.

Specifying a file with STARTUP links the file first. This is similar to
SYSLIB , except that with SYSLIB the file is linked after all other object
files and libraries. See page A-31 for more information on SYSLIB .

To find the file specified with STARTUP, the linker follows the search
algorithm described in the Search Paths section.

The C (startup) linker option overrides the STARTUP directive, as described
in the Option Reference section.

i960 Processor Software Utilities User's Guide

A-28

A
You can also use an asterisk to instruct the linker to search multiple
libraries. For example, if you specify:

STARTUP yourlib*

the linker searches for yourlib , yourlib_b , yourlib_p , and
yourlib_e .

ENTRY: Defining the Entry Point

The linker selects an entry point with the following order of precedence:

1. the symbol you specify with the e option
2. the symbol you specify with the ENTRY directive
3. the start symbol, if defined
4. the _main symbol, if defined
5. the first address in .text

6. the address 0

You can assign the entry point with e, ENTRY, or an assignment to start

or _main . For example:

start = _my_start_function;

You can use ENTRY anywhere in your directive file, including inside an
output-section definition.

PRE_HLL(): Specifying Libraries to be Processed
Before the High-level Libraries

The syntax for the new directive is:

PRE_HLL(libraries)

libraries is one or more high-level support libraries to be
linked prior to those specified with an HLL()

directive.

Linker Command Language

A-29

A
The linker directive PRE_HLL() allows the user to specify libraries that are
processed immediately before the high-level language libraries specified
with the HLL() directive. The linker now loads the object files and
libraries in the following order:

1. The filename specified with STARTUP.

2. All the object files and libraries listed individually in the invocation, in
the order listed.

3. All the object files and libraries listed individually in the directive
files, in the order listed.

4. All the libraries specified with PRE_HLL.

5. All the libraries specified with HLL or default libraries in response to
HLL() .

6. All the libraries specified with SYSLIB .

HLL: Specifying High-level Libraries

The syntax for the directive is:

HLL([libraries])

libraries is one or more high-level support library
filenames. The parentheses are required.

If you do not specify libraries, the default HLL libraries are used.

Specify multiple libraries by entering more than one HLL directive or by
entering multiple filenames separated by spaces or commas. To use the
default libraries, enter HLL() .

The libraries and search path found by HLL depend on the linker
invocation and the output format. A gld960 invocation for COFF treats
the HLL arguments the same as the l linker option arguments, with the
search algorithm described in the Search Paths section. The default COFF
library abbreviations for HLL() are:

• cg for the KB and SB architectures
• cg and fpg for the KA, SA, C-series, and J-series architectures

i960 Processor Software Utilities User's Guide

A-30

A
Invoking the linker as lnk960 has the following effect on HLL:

• Any arguments you specify must be the full library filenames.
• The linker uses the search path for lnk960 invocations, as described

in the Search Paths section.
• When you specify HLL() with no arguments, the linker includes a

high-level C library abbreviated as libc . Also, specifying FLOAT

includes:
 the libm high-level math library abbreviation, for all

architectures.
 The libh floating-point library abbreviation, for the i960 KA,

SA, Cx, Jx, Hx, and RP architectures.

Without FLOAT, or with NOFLOAT, the linker uses libmstub.a instead
of any libm library and includes no floating-point library.

To form the library filenames, the linker appends the following to the
libc , libm , and libh abbreviations:

1. the two-letter architecture abbreviation
2. _p, for position independence
3. .a , the standard library-filename extension

For example:

• The C library for a non-position-independent KB program is
libckb.a .

• The math library for position-independent KB program, with
FLOAT specified, is libmkb_p.a .

• The floating-point library for position-independent KA output,
with FLOAT specified, is libhka_p.a .

The linker loads the object files and libraries in the following order:

1. the gap specified with STARTUP.
2. all the object files and libraries listed individually in the invocation, in

the order listed.
3. all the object files and libraries listed individually in the directive files,

in the order listed.

Linker Command Language

A-31

A
4. all the libraries specified with HLL or default libraries in response to

HLL().
5. all the libraries specified with SYSLIB.

SYSLIB: Specifying Low-level Libraries

The syntax for the directive is:

SYSLIB(libraries)

libraries is one or more libraries to be linked last.

Specify multiple libraries by entering more than one SYSLIB directive or
by entering multiple names separated by commas or spaces. You must put
parentheses around the filenames. The linker follows the search algorithm
described in the Search Paths section. You can also use an asterisk to
instruct the linker to search multiple libraries. For example, if you specify:

SYSLIB yourlib*

the linker searches for yourlib , yourlib_b , yourlib_p , and
yourlib_e .

 [NO]FLOAT: Supporting Floating-point Operations

The syntax for the directive is:

FLOAT | NOFLOAT

FLOAT specifies support for floating-point operations.
The linker loads special emulation libraries for
the i960 KA, SA, Cx, Jx, Hx, and RP processors,
which have no on-chip floating-point support.
For all processors, the linker also loads an
extended math support library. For information
on the floating-point and math library names, see
the Directives Reference section.

i960 Processor Software Utilities User's Guide

A-32

A
NOFLOAT indicates no need for floating-point operations.

The linker links the libmstub.a rudimentary
math library and no emulation libraries.
NOFLOAT is the default.

SEARCH_DIR: Extending the Search Path

To extend the linker search path, use SEARCH_DIR:

SEARCH_DIR(path)

path is a directory to be searched for libraries.

For a complete description of the library search path, see the Search Paths
section.

The L option has the same effect as the SEARCH_DIR directive.

INCLUDE: Including Additional Directive Files

The syntax for the directive is:

INCLUDE(config-file)

config-file is the name of the linker directive file.

You can specify the file to be included with a full pathname or with a
filename. The search algorithm differs according to the way you enter the
file specification. When you enter a full or relative pathname, the linker
searches only the specified directory for the file. When you enter only a
filename, the linker searches for the file as follows:

• The INCLUDE directive is within a target file, that is, a file specified
with the TARGET directive or the T (target) linker option. The linker
searches for the file according to the algorithm described in the
Search Paths section.

• The INCLUDE directive is in any other directive file. The linker
searches only the current directory for the specified file.

Linker Command Language

A-33

A
TARGET: Using the Search Path for Directive Files

The syntax for the directive is:

TARGET(filename)

filename is the directive filename for your target system.

The linker follows the search algorithm described in the Search Paths
section to find a directive file.

The TARGET directive has the same effect as the T linker option.

CHECKSUM: Preparing for the Bus
Confidence Test

The syntax for the directive is:

last-check-word=CHECKSUM(expr,...)

expr identify the checksum component values.

Use this directive to obtain the value for the final checksum word to
complete the bus confidence test, as explained in your processor user’s
manual. Typically, you want to load the first few check words with bit
patterns that expose possible bus failure symptoms. CHECKSUM lets you
load the final check word with a value that results in zero when the
processor performs an add-with-carry on all words in the initialization
boot record (IBR).

The CHECKSUM directive takes a variable number of arguments, depending
upon the target processor's requirements. You define the values in the
directive file for your program.

i960 Processor Software Utilities User's Guide

A-34

A
For example, on an i960 CA processor, suppose the IBR contains the
following word directives:

_init_boot_record:
 .word BYTE_0 (BUS_CONFIG)
 .word BYTE_1 (BUS_CONFIG)
 .word BYTE_2 (BUS_CONFIG)
 .word BYTE_3 (BUS_CONFIG)
 .word _start
 .word _rom_prcb
 .word cwd1
 .word cwd2
 .word cwd3
 .word cwd4
 .word cwd5
 .word cwd6

In the directive file, you define cwd1 through cwd5, then use the
CHECKSUM directive to determine the value of cwd6, as follows:

cwd1 = 0xa5a5a5a5;

cwd2 = 0xffffffff;

cwd3 = 0x55555555;

cwd4 = 0xaaaaaaaa;

cwd5 = 0x5a5a5a5a;

cwd6 = checksum(_start,_rom_prcb,cwd1,cwd2,cwd3,cwd4,cwd5);

For the CHECKSUM definition for a particular target processor, see the
chapter on initialization in the appropriate processor user’s manual.

OUTPUT: Naming the Output File

To specify an output filename other than the default, use OUTPUT:

OUTPUT(filename)

filename is the output filename.

Linker Command Language

A-35

A
The default output filenames are:

a.out for COFF format output

b.out for b.out format output

e.out for ELF format output

The OUTPUT directive has the same effect as the o linker option.

Linker Directive Files

To avoid reentering a long or often used invocations, keep options and
filename information in a text file containing linker directives. Linker
directive files typically use the extension .ld . For example, the following
specifies file1.o , file2.o , and file3.o in the linker invocation:

lnk960 -f 0xffff file1.o file2.o file3.o

The following directive file, named lnkcmd.ld , specifies the same
filenames and f option:

-f 0xffff
file1.o
file2.o
file3.o

Using lnkcmd.ld shortens the linker invocation:

lnk960 lnkcmd.txt

You can put options, object filenames, and library filenames in directive
files. To nest directive files, use INCLUDE. Precede options in directive
files with a hyphen (-), not a slash (/), regardless of your host system.
The linker processes filenames and INCLUDE directives in the order
encountered.

Linker directive files support comments that are delimited by /* and */
(just as in C).

i960 Processor Software Utilities User's Guide

A-36

A
NOTE. You cannot use a hyphen (-) as the first character of a filename.

In the following example, the ifile.txt file contains:

file3.o
file4.o

Linking occurs in the order file1.o, file3.o, file4.o, file2.o

when you enter:

lnk960 file1.o ifile.txt file2.o

Example

The following is an example linker directive file suitable for use with a
fictitious target board. See the other linker directive files shipped with the
tools located in $I960BASE/lib/*.ld and $G960BASE/lib/*.ld for
more examples.

/* You can include invocation options at the beginning of
 the linker directive file, for shorter, more
 consistent linker invocations. */
-ACA /* Produce code for an Intel 960 CA processor. */
-m /* Produce a map file. */

-N map.out /* Write the map file to the file map.out */
-v /* Produce verbose output. */

/* You can specify input modules at the beginning of the
 directive file, to be processed as if on the
 invocation line. You can also include in the
 invocation a separate text file containing only input
 filenames, one per line, to be processed as if on the
 invocation line or at the beginning of the directive
 file. */
file1.o
file2.o
file3.o

Linker Command Language

A-37

A
MEMORY {
 ibr: o=0xffffff00,l=0x00ff /* The Intel 80960 CA
 Initial Boot Record.
*/
 rom: o=0xffff8000,l=0x7800 /* Assume a bank of ROM
 exists at this address.
*/
 ram: o=0xe0ff9000,l=0x6000 /* Assume some RAM exists
 at this address. */

 }

SECTIONS {

/* We allocate the ibr to ibr memory. Assume the code
for the ibr is in the input section .text in the file
named ca_ibr.o. */
 ibr: {
 ca_ibr.o(.text)
 } > ibr

/* Assume we want the executable code and constants found
in the .text input sections allocated to the rom memory
*/

.text : { *(.text) } > rom

/* We allocate the .data sections to ram. */

.data : {

*(.data)
 } > ram

/* We allocate the .bss section to ram (following the end
of .data. We also place all common variables here.
Lastly, note how we save off the addresses of the start
of bss and the end of bss, for possible later use at
runtime. */

i960 Processor Software Utilities User's Guide

A-38

A
.bss : {_start_bss = .;

*(.bss)

[COMMON]
_end_bss = . ;

} > ram
}

SYSLIB(mylibca.a) /* We include a system library in the
 linkage. */

Finding Information
in Object Files

B-1

B
Using the Common Object File Library: COFL

To use a function from the libld960.a common object file library
(COFL), call the function from your C source text and link the assembled
object file with the COFL. Put the following lines in your C source text
before the first COFL function call:

#include <stdio.h>
#include "ldfcn.h"

Add the directory containing ldfcn.h to your host-system compiler
search path. For more information on your host-system compiler, see your
host-system documentation. For more information on the .h header files
and directories, see the i960 Processor Library Supplement.

The COFL includes the functions listed in Table B-1.

Table B-1 Common Object File Library (COFL) Functions

Function Definition

ldaclose Closes the object file or archive.

ldahread Reads an archive member header.

ldaopen Opens the object file or archive for reading.

ldclose Closes the object file or archive member.

ldfhread Reads the file header.

ldgetname Retrieves a name from the object file symbol table.

ldlinit Prepares the object file for reading line number entries via
ldlitem.

continued ☛

i960 Processor Software Utilities User's Guide

B-2

B
Table B-1 Common Object File Library (COFL) Functions (continued)

Function Definition

ldlitem Reads the line number entry from the object file after ldlinit.

ldlread Reads the line number entry from the object file.

ldlseek Seeks to the line number entries.

ldnlseek Seeks to the line number entries, given the section name.

ldnrseek Seeks to the relocation entries, given the section name.

ldnshread Reads the section header, given the section name.

ldnsseek Seeks to the section, given the section name.

ldohseek Seeks to the optional file header.

ldopen Opens the object file or archive member for reading.

ldrseek Seeks to the relocation entries.

ldshread Reads the section header, given the section number.

ldsseek Seeks to the section.

ldtbindex Returns the long index of the symbol table entry at the current
position.

ldtbread Reads a specific symbol table entry.

ldtbseek Seeks to the symbol table

Extracting File Header Information

To extract COFF file-header information, use one of the macros listed in
Table B-2. Each header information macro takes as an argument an
ldfile structure returned by a call to ldopen .

Finding Information in Object Files

B-3

B
Table B-2 Common Object File Interface Macros

Macro Definition

TYPE Returns the file type number. For archive files, TYPE
returns ARTYPE, as defined in ldfcn.h

IOPTR Returns the file pointer opened by ldopen and used by the C
library I/O functions.

OFFSET Returns the object file beginning address. The address is
zero except for archive file members.

HEADER Obtains the COFF file header structure.

Function Reference

This section describes the COFL functions alphabetically. Closely related
functions are described together. For example, the ldlinit and lditem

functions are grouped with ldlread .

ldahread
Reads an archive-
member header

#include <stdio.h>
#include "ldfcn.h"

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

Discussion

To read an open archive header, use ldahread . The header of the
archive currently associated with ldptr is put into memory beginning at
arhead .

i960 Processor Software Utilities User's Guide

B-4

B
The ldahread function returns SUCCESS or FAILURE, defined in
ldfcn.h . FAILURE indicates either:

• TYPE(ldptr) does not represent an archive file.
• The ldahread function cannot read the archive header.

ldclose, ldaclose
Closes an object file or
an archive member

#include <stdio.h >
#include "ldfcn.h"

int ldclose (ldptr)
LDFILE *ldptr;

int ldaclose (ldptr)
LDFILE *ldptr;

Discussion

For uniform access to both object files and archive members, use:

ldclose for files opened with ldopen

ldaclose for files opened with ldaopen

To close an archive member, keeping the archive open, use ldclose . The
ldclose function returns SUCCESS or FAILURE, defined in ldfcn.h :

FAILURE when TYPE(ldptr) represents an archive file
and the archive contains more members. The
ldclose function sets the offset of ldptr to the
next member file address and prepares ldptr for
a subsequent ldopen call.

Finding Information in Object Files

B-5

B
SUCCESS when the archive contains no more members, or

when TYPE (ldptr) represents an individual
object file.

To close an archive or object file regardless of the TYPE(ldptr) , use
ldaclose . The ldaclose function:

• closes the file
• frees the memory allocated to the LDFILE structure associated with

ldptr

• returns SUCCESS

ldfhread
Reads the file header

#include <stdio.h>
#include "ldfcn.h"

int ldahread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

Discussion

To read an open file header, use ldfhread . The object-file header
associated with ldptr is put into memory beginning at filehead . The
ldfhread function returns SUCCESS or FAILURE, defined in ldfcn.h ,
indicating whether the read operation is successful.

To access file-header fields without a function call, use HEADER(ldptr) ,
defined in ldfcn.h . The macro returns no value.

i960 Processor Software Utilities User's Guide

B-6

B
ldgetname
Retrieves a name from
the object-file symbol
table

#include <stdio.h>
#include "ldfcn.h"

char *ldgetname (ldptr, symbol)
LDFILE *ldptr;
SYMENT *symbol;

Discussion

To retrieve a name from the string table, use ldgetname . The returned
address points to a static buffer local to ldgetname . To save the name,
copy the static buffer, since the next ldgetname call overwrites the static
buffer.

A NULL returned address indicates that the name cannot be retrieved,
when:

• The string table cannot be found.
• The name is too long for the amount of memory allocated to the string

table.
• The string table appears not to be a string table. For example, an

auxiliary entry passed to ldgetname can apparently refer to a name in
a nonexistent string table.

• The offset into the string table is beyond the end of the string table.

For example, you can call ldgetname immediately after a successful call
to ldtbread to retrieve the name associated with the new symbol table
entry.

Finding Information in Object Files

B-7

B
ldlread, ldlinit, ldlitem
Locates and reads the
function line-number
entries

#include <stdio.h>
#include "ldfcn.h"

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LINENO *linent;

int ldlinit(ldptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO *linent;

Discussion

To locate and read line-number entries:

ldlread locates and reads a line-number entry for the
function specified by the fcindex symbol-table
entry.

ldlinit locates the line-number entries for the specified
function.

ldlitem locates and reads a line-number entry for the
current function.

i960 Processor Software Utilities User's Guide

B-8

B
Using ldlinit followed by ldlitem is the same as using ldlread alone.
You can find the beginning of a series of line number entries with
ldlinit or ldlread , then use ldlitem to retrieve the subsequent entries
in the same function. For line number entries in a different function, call
ldlinit or ldlread with a different fcindex .

You need not know an exact line number when calling ldlread or
ldlitem . Both functions read the entry with the smallest line number
equal to or greater than linenum into linent .

To specify the function for line number entry searches without reading a
line number entry into linent , use ldlinit . To specify a new function
and read a line number entry, use ldlread .

To find and read a line number entry without respecifying the function to
be searched, use ldlitem .

The ldlinit , ldlitem , and ldlread functions return SUCCESS or
FAILURE, defined in ldfcn.h . Failure can indicate:

Condition Function

The object file contains no line
number entries.

ldlread , ldlinit

The fcnindx matches no symbol
table function entry.

ldlread , ldlinit

No line number is equal to or greater
than linenum .

ldlread , ldlitem

Finding Information in Object Files

B-9

B
ldlseek, ldnlseek
Seeks to the line-number
entries of an object-file
section

#include <stdio.h>
#include "ldfcn.h"

int ldlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

Discussion

The ldlseek function seeks to the line-number entries of the section
specified by sectindx of the COFF file currently associated with ldptr .
The ldnlseek function seeks to the line-number entries of the section
specified by sectname .

The ldlseek and ldnlseek functions return SUCCESS or FAILURE,
defined in ldfcn.h :

• The ldlseek function fails when the variable sectindx is greater
than the number of sections in the object file.

• The ldnlseek function fails when no section name corresponds with
*sectname .

• Either function fails when the specified section has no line-number
entries or when the function cannot seek to the specified entries.

The first section index is 1.

i960 Processor Software Utilities User's Guide

B-10

B
ldohseek
Seeks to the COFF
optional file header

#include <stdio.h>
#include "ldfcn.h"

int ldohseek (ldptr)
LDFILE *ldptr;

Discussion

The ldohseek function seeks to the optional file header of the COFF file
currently associated with ldptr .

The ldohseek function returns SUCCESS or FAILURE, defined in
ldfcn.h . Failure occurs when:

• The object file has no optional header.
• The function cannot seek to the optional header.

ldopen, ldaopen
Opens an object file or
archive member for
reading

#include <stdio.h>
#include "ldfcn.h"

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

Finding Information in Object Files

B-11

B
Discussion

The ldopen and ldclose functions provide uniform access to both simple
object files and object files that are members of archive files.

When ldptr is NULL, ldopen :

• opens the file indicated by filename

• allocates and initializes the LDFILE structure
• returns a pointer to that structure to the calling program

When ldptr is valid and TYPE(ldptr) is an archive-file type number,
ldopen reinitializes LDFILE for the next filename archive-file member.

Use ldopen and ldclose together. The ldclose function returns
FAILURE, defined in ldfcn.h , only when TYPE(ldptr) is the archive
magic number and the archive contains other members to be processed. In
such cases, call ldopen with the current value of ldptr . In all other
cases, especially when a new file is opened, call ldopen with a NULL

ldptr argument.

For example:

/* for each file name to be processed */
ldptr = NULL;
do {
 if ((ldptr = ldopen(filename, ldptr)) !=NULL) {
 /* Check the file-type number. */
 /* Process the file. */
 }
} while (ldclose(ldptr) == FAILURE);

When oldptr is not NULL, ldaopen :

• opens filename as a new file
• allocates and initializes a new LDFILE structure
• copies the TYPE, OFFSET, and HEADER fields from oldptr

i960 Processor Software Utilities User's Guide

B-12

B
The ldaopen function returns a pointer to the new LDFILE structure,
independent of oldptr . You can use both pointers concurrently to read
separate parts of the object file. For example, use one pointer to step
sequentially through the relocation information and the other to read
indexed symbol-table entries.

Both ldopen and ldaopen open the specified file for reading and return
NULL when the file cannot be opened or LDFILE structure memory cannot
be allocated. A successful open operation does not ensure that the file is a
COFF file or an archived object file.

ldrseek, ldnrseek
Seeks to the file-section
relocation entries

#include <stdio.h>
#include "ldfcn.h"

int ldrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnrseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

Discussion

The ldrseek function seeks to the relocation entries of the section
specified by the sectindx of the COFF file associated with ldptr .

The ldnrseek function seeks to the relocation entries of the section
specified by sectname .

Finding Information in Object Files

B-13

B
The ldrseek and ldnrseek functions return SUCCESS or FAILURE, as
defined in ldfcn.h :

• The ldrseek function fails when sectindx is greater than the
number of sections in the object file.

• The ldnrseek function fails when no section name corresponds with
*sectname .

• Either function fails when the specified section has no relocation
entries or when the function cannot seek to the specified relocation
entries.

The first section index is 1.

ldshread, ldnshread
Reads an indexed or
named file section
header

#include <stdio.h>
#include "ldfcn.h"

int ldshread(ldptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *secthead;

int ldnshread(ldptr, sectname, secthead)
LDFILE *ldptr;
char *sectname;
SCNHDR *secthead;

Discussion

The ldshread function reads the section header specified by sectindx

of the COFF file associated with ldptr into memory beginning at
secthead . The ldnshread function reads the section header specified by
*sectname into memory beginning at secthead .

i960 Processor Software Utilities User's Guide

B-14

B
The ldshread and ldnshread functions return SUCCESS or FAILURE,
defined in ldfcn.h :

• The ldshread function fails when sectindx is greater than the
number of sections in the object file.

• The ldnshread function fails when no section name corresponds with
*sectname .

• Either function fails when it cannot read the specified section header.

The first section-header index is 1.

ldsseek, ldnsseek
Seek to an indexed or
named file section

#include <stdio.h>
#include "ldfcn.h"

int ldsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

Discussion

The ldsseek function seeks to the section specified by sectindx of the
common object file currently associated with ldptr .

The ldnsseek function seeks to the section specified by *sectname .

Finding Information in Object Files

B-15

B
The ldsseek and ldnsseek functions return SUCCESS or FAILURE,
defined in ldfcn.h :

• The ldsseek function fails when the variable sectindx is greater
than the number of sections in the object file.

• The ldnsseek function fails when no section name corresponds with
*sectname .

• Either function fails when the specified section has no section data or
when the function cannot seek to the section data.

The first section index is 1.

ldtbindex
Computes the symbol-
table-entry index

#include <stdio.h>
#include "ldfcn.h"

long ldtbindex (ldptr)
LDFILE *ldptr;

Discussion

The ldtbindex function returns the index of the symbol-table entry at the
current position of the COFF file associated with ldptr . The index is a
long integer.

You can use the index in subsequent calls to ldtbread . Calling
ldtbindex immediately after reading a particular symbol-table entry
returns the next entry index, because ldtbindex returns the index of the
symbol-table entry that begins at the current position of the object file.

i960 Processor Software Utilities User's Guide

B-16

B
The ldtbindex function fails when the object file contains no symbols or
when the object file is not positioned at the beginning of a symbol-table
entry.

The first symbol index in the symbol table is 0.

ldtbread
Reads an indexed
symbol-table entry

#include <stdio.h>
#include "ldfcn.h"

int ldtbread (ldptr, symindex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT *symbol;

Discussion

The ldtbread function reads the symindex symbol-table entry of the
COFF file associated with ldptr into memory beginning at symbol .

The ldtbread function returns SUCCESS or FAILURE, defined in
ldfcn.h . Failure occurs when symindex is greater than the number of
symbols in the object file or when ldtbread cannot read the symbol-table
entry.

Finding Information in Object Files

B-17

B
ldtbseek
Seeks to the symbol
table

#include <stdio.h>
#include "ldfcn.h"

int ldtbseek (ldptr)
LDFILE *ldptr;

Discussion

The ldtbseek function seeks to the symbol table of the object file
associated with ldptr .

The ldtbseek function returns SUCCESS or FAILURE, defined in
ldfcn.h . The ldtbseek function fails when the symbol table has been
stripped from the object file or when the function cannot seek to the
symbol table.

Common Object File Format
(COFF) and Common
Archive File Format (CAFF)

C-1

C
This chapter describes the i960 processor common object file format
(COFF) and the associated common archive file format (CAFF) standards.

Characteristics of COFF

COFF applies to two kinds of files: relocatable binary files and executable
files. Relocatable binary files are produced by the assembler and by some
linker options. Executable files are created from relocatable binary files
by the linker.

Figure C-1 shows the relation of headers to the information in COFF.

NOTE. The only optional header the assembler uses is the execution
header.

When you link a program with the linker's strip option, relocation
information, line numbers, the symbol table, and the string table are
deleted. Or you can remove line number information, the symbol table,
and the string table with the stripper.

Line numbers do not appear unless the program is compiled with the
compiler's debug control. If all external references are resolved at link-
time, no relocation information is included. The string table is also
omitted when the source file contains no symbols with names longer than
eight characters.

i960 Processor Software Utilities User's Guide

C-2

C
Figure C-1 Object File Format

File Header

Section 1 Header

Section n Header

Raw Data for Section 1

Raw Data for Section n

Line Numbers for Sect. 1

Line Numbers for Sect. n

Symbol Table

String Table

Required Header Information

Optional Header Information

0

24

OSD317

Relocation Info. for Sect. 1

Relocation Info. for Sect. n

Definitions and Conventions

Be sure you are familiar with these definitions and conventions before
using COFF. You can find additional terms in the glossary.

Sections

A section is the smallest portion of an object file that can be relocated and
treated as a separate entity by the linker. By default, an object file has
three sections that are loaded into memory when the file is executed. The
sections and their contents are:

.text the executable code for each instruction

.data initialized data variables

.bss uninitialized data variables

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-3

C
Additional sections can accommodate multiple text or data blocks, shared
data blocks, or user-specified sections.

For a linked file, each COFF section in that file has a begin and an end
symbol. Generally, _ _Bname is the begin symbol for each section and
_ _Ename is the end symbol, where name matches the COFF section name.
The begin and end symbols are limited to a length of 8 characters.

Physical and Virtual Address

In most COFF files, the physical address and virtual address of each
section or symbol are the same, even though the section heading contains
an address field for both. For example, on a system with paging, the
address is located relative to address zero of virtual memory and the
operating system performs another address translation.

File Header

The file header contains 20 bytes of information about the object file.
Table C-1 shows the contents of the file.

The f_opthdr field contains the size of the optional header information.
The i960 processor utilities, such as the dumper, work properly on any
common object file because they use the contents of the f_opthdr field to
locate the end of the optional header information and seek past the header.

i960 Processor Software Utilities User's Guide

C-4

C
Table C-1 File Header Contents

Bytes Declaration Name Description

0-1 unsigned short f_magic file type number

2-3 unsigned short f_nscns number of section headers
(equals the number of sections)

4-7 long int f_timdat time and date stamp indicating
when the file was created
relative to the number of elapsed
seconds since 00:00:00 GMT,
January 1, 1970

8-11 long int f_symptr file pointer containing the
starting address of the symbol
table

12-15 long int f_nsyms number of entries in the symbol
table

16-17 unsigned short f_opthdr number of bytes in the optional
header

18-19 unsigned short f_flags flags

File Header Declaration

The C structure declaration for the file header is in the coffcoff.h

header file. Example C-1 shows the declaration format.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-5

C
Example C-1 File Header Declaration

 struct filehdr {
 unsigned short f_magic; /* magic number */
 unsigned short f_nscns; /* number of section */
 long f_timdat; /* and date stamp */
 long f_symptr; /* ptr to symbol table */
 long f_nsyms; /* number entries in
 symbol table */
 unsigned short f_opthdr; /* size of optional
 header */
 unsigned short f_flags; /* flags */
 };

 #define FILHDR struct filehdr
 #define FILHSZ sizeof(FILHDR)

File Header Flags

The file header flags describe the type of the object file. Table C-2
provides definitions of the flags.

Table C-2 File Header Flags

Mnemonic Definition

F_RELFLG indicates whether relocation information was stripped
out.

F_EXEC set if the file is executable and has no unresolved
external references.

F_LNNO set if line numbers were stripped out.

F_LSYMS set if local symbols were stripped out.

F_AR32WR set if byte ordering is little-endian.

F_AR32W set if byte ordering is big-endian.

F_PIC set if the file contains position-independent code.

continued ☛

i960 Processor Software Utilities User's Guide

C-6

C
Table C-2 File Header Flags (continued)

Mnemonic Definition

F_PID set if the file contains position-independent data.

F_LINKPID set if the file is suitable for linking with position-
independent code or data.

F_BIG_ENDIAN_T set if target information is in big-endian byte order.

F_SECT_SYM set in symbols representing section names.

The upper four bits of the flag's word contains the architecture type.
Table C-3 lists the flag names.

Table C-3 Architecture Types of File Header Flags

Mnemonic Definition

F_I960CORE architecture common to all i960 processors

F_I960KB or
F_I960SB

architecture common to KB and SB processors

F_I960XA architecture common to KA, SA, and CA processors

F_I960CA architecture common to CA and CF processors

F_I960KA or
F_I960SA

architecture common to KA and SA processors

File Type Numbers

In the file header, the first two bytes indicate the target on which the
object file can be executed. These file type numbers are defined as
follows:

#define I960ROMAGIC 0x0160 /* read-only text segments */
#define I960RWMAGIC 0x0161 /* read-write text segments */

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-7

C
Execution File Header Declaration

The execution file header is the first data structure in the optional file
header that immediately follows the required header information. See
Table C-1 for the location and size of execution information in the file
header.

The C language structure declaration for the i960 processor-executable
(a.out) file header is in the coff.h header file. Refer to Table C-4 for
the declaration's fields.

Table C-4 Standard Output (a.out) File Header

Bytes Declaration Name Description

0-1 short f_magic magic number

2-3 short vstamp version stamp

4-7 unsigned long tsize text size in bytes, padded to full
word boundary

8-11 unsigned long dsize initialized data size

12-15 unsigned long bsize uninitialized data size

16-19 unsigned long entry entry point

20-23 unsigned long text_start base of text for this file

24-27 unsigned long data_start base of data for this file

28-31 unsigned long tagentries number of tag entries to follow

The tagentries field is always zero because none of Intel's development
tools use tag entries.

Section Headers

A table of section headers specifies the layout of data within the file.
Table C-5 shows the section header format. The size of a section is
padded to a multiple of 4 bytes.

i960 Processor Software Utilities User's Guide

C-8

C
Table C-5 Section Header Contents

Bytes Declaration Name Description

0-7 char s_name 8-character section name,
padded with zeros

8-11 long int s_paddr physical address of section

12-15 long int s_vaddr virtual address of section

16-19 long int s_size section size in bytes

20-23 long int s_scnptr file pointer to raw data

24-27 long int s_relptr file pointer to relocation entries

28-31 long int s_lnnoptr file pointer to line number entries

32-33 unsigned short s_nreloc number of relocation entries

34-35 unsigned short s_nlnno number of line entries

36-39 long int s_flags flags

40-43 unsigned long
int

s_align alignment of the section to the
specified byte boundary

NOTE. The Intel 80960 assembler rounds section sizes to the next higher
4-byte word boundary.

Section Header Declaration

The C structure declaration for the section headers is in the coff.h header
file. Example C-2 shows the declaration format.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-9

C
Example C-2 Section Header Declaration

struct scnhdr
 {
 char s_name[8]; /* section name */
 long s_paddr; /* physical address */
 long s_vaddr; /* virtual address */
 long s_size; /* section size */
 long s_scnptr; /* file ptr to section
 raw data */
 long s_relptr; /* file ptr to
 relocation */
 long s_lnnoptr; /* file ptr to line
 number */
 unsigned short s_nreloc; /* number of
 relocation entries */
 unsigned short s_nlnno; /* number of line
 entries */
 long s_flags; /* flags */
 unsigned long s_align; /* section alignment */
 };
#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Section Header Flags

Section header flags indicate the section type. Table C-6 shows the flag
format.

The flag field occupies one byte. The value in the first five bits of the byte
indicates the section type. The value in the last three bits indicates the
contents of the section. Figure C-2 shows the flag field for a regular text
section.

i960 Processor Software Utilities User's Guide

C-10

C
Figure C-2 Flag Field Values

0 0 0 0 0 0 01

7 0

Section
Contents

Section
Type

OSD1134

Table C-6 Section Header Flags

Mnemonic Flag Definition

STYP_REG 0x00 regular section (allocated, relocated, loaded)

STYP_DSECT 0x01 dummy section (not allocated, relocated, not
loaded)

STYP_NOLOAD 0x02 noload section (allocated, relocated, not
loaded)

STYP_GROUP 0x04 grouped section (formed from input sections)

STYP_PAD 0x08 padding section (not allocated, not relocated,
loaded)

STYP_COPY 0x10 copy section (for a decision function used in
updating fields; not allocated, not relocated,
loaded, relocation and line number entries
processed normally)

STYP_TEXT 0x20 section contains executable text

STYP_DATA 0x40 section contains initialized data

STYP_BSS 0x80 section contains uninitialized data

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-11

C
Sections

The raw data for each section follows the list of section headers. If a
section has data, the s_scnptr field in its section header points to it (see
Figure C-2). For a section with no raw data (a bss section, for example),
the s_scnptr field contains a null value.

Relocation

A relocation entry is used by the linker. It consists of the address at which
relocation should occur, the index of the relevant symbol in the symbol
table, and the type of relocation required. Table C-7 shows relocation
entry format.

Table C-7 Relocation Entry Format

Bytes Declaration Name Description

0-3 long int r_vaddr address of reference

4-7 long int r_symndx symbol table index

8-9 unsigned short r_type relocation type

10-11 char padder[2] padding---not used

Table C-8 contains relocation types defined for the i960 processor.

i960 Processor Software Utilities User's Guide

C-12

C
Table C-8 Relocation Types

Mnemonic
Decimal
Value

Hexadecimal
Value Definition

R_RELLONG 17 0x0011 direct 32-bit relocation

R_RELSHORT 22 0x0016 direct 12-bit relocation

R_IPRSHORT 24 0x0018 unimplemented

R_IPRMED 25 0x0019 IP-relative relocation

R_IPRLONG 26 0x001A 32-bit IP-relative relocation

R_OPTCALL 27 0x001B optimizable call (callj)

R_OPTCALLX 28 0x001C optimizable call (calljx)

R_GETSEG 29 0x001D unimplemented

R_GETPA 30 0x001E unimplemented

R_TAGWORD 31 0x001F unimplemented

Relocation Entry Declaration

The structure declaration for relocation entries is in the coff.h header
file. Refer to Example C-3 for the declaration format.

Example C-3 Relocation Entry Declaration

struct reloc
 {
 long r_vaddr; /* virtual address of
 reference */
 long r_symndx; /* symbol tableindex
 into symbol table */
 unsigned short r_type; /* relocation type */
 char padder[2] /* padding */
 };

#define RELOC struct reloc
#define RELSZ sizeof(RELOC)

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-13

C
Direct Relocation

In direct relocation, the linker adds the 32-bit address of the requested
symbol to the value at a given location. In this example, the assembler
places the value 4 at location x and issues a R_RELLONG request for
fumble . At link-time, linker adds the value of fumble to the word at x .

.glob fumble
x: .word fumble+4

IP-relative Relocation

In IP-relative relocation, the linker adds the value of the following
expression to the offset in the instruction specified by the relocation entry.

addr(symbol) - (base address of current segment)

The branch instruction takes a 24-bit IP-relative offset. In the following
example, the assembler places the negation of the current location counter
in the branch instructions offset field (in this example, 0xfffff0) and
issues an r_iprmed relocation request for this branch instruction. At link-
time, the linker adds the value of fumble and subtracts the value of
tstart from the branch instruction's offset. The result is the true
IP-relative offset of fumble . The branch address must be within 24 bits.

.globl fumble

.text
tstart:
.space 0x10
x: b fumble
/* disassembly for r.0 */
/* section .text */
 .text
 0: 00000000 .word 0x0
 4: 00000000 .word 0x0
 8: 00000000 .word 0x0
 c: 00000000 .word 0x0
 10: 08fffff0 b 0x0

i960 Processor Software Utilities User's Guide

C-14

C
 RELOCATION INFORMATION
 Vaddr Symndx Type Name
r.0:
.text:
 0x00000010 10 IPRMED fumble
.data:
.bss:

Line Number Entry
Invoke the compiler with the debug option to get a listing of line numbers
where you can place breakpoints to make debugging easier. All line
numbers in a section are grouped by function, as shown in Example C-4,
and are relative to the beginning of a function. The s_lnnoptr field in
the section header points to the first line number entry for that section.

Example C-4 Line Number Grouping

symbol index 0
physical address line number
physical address line number
 : :
 . .
symbol index 0
physical address line number
physical address line number

The first entry for each section has line number zero and contains the
symbol table index of the function name. Each following entry associates
each line number with the address of the code generated for it.

The structure declaration for line number entries is in the coff.h header
file. Example C-5 shows the structure declaration for line number entries.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-15

C
Example C-5 Line Number Entry Declaration

struct lineno
 {
 union
 {
 long l_symndx; /* symbol table index
 of func name*/
 long l_paddr; /* paddr of line
 number*/
 } l_addr;
 unsigned short l_lnno; /* line number */
 char padding[2] /* not used */
 };

#define LINENO struct lineno
#define LINESZ sizeof(LINENO)

Symbol Table

The symbol table consists of at least one fixed-length entry per symbol,
with some symbols followed by auxiliary entries. Each entry includes the
value, the type, and other information. Example C-6 shows the order in
which symbols are listed. f_symstr in the file header points to the
beginning of the symbol table. The f_nsyms field in the file header
contains the total number of entries in the symbol table.

i960 Processor Software Utilities User's Guide

C-16

C
Example C-6 COFF Symbol Table

file name 1
function 1
local symbols for function 1
function 2
local symbols for function 2
 .
 .
 .
static variables
 .
 .
 .
file name 2
function 1
local symbols for function 1
 .
 .
 .
static variables
 .
 .
 .
defined global symbols
undefined global symbols

Symbol Table Entries

The symbol table consists of two general kinds of entries, each 24 bytes
long. The first type is the main entry, representing a symbol. The format
of the main entry is shown in Table C-9. The second type of entry is an
auxiliary entry, whose format varies depending on how it is used.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-17

C
Table C-9 Symbol Table Entry Format

Bytes Declaration Name Definition

0-7 _n the name of a pointer or of a symbol

8-11 long int n_value symbol value; storage class
dependent

12-13 short n_scnum section number of symbol

14-15 unsigned short n_flags pic, pid flags for the module
containing the symbol, flag when
symbol is a section name

16-19 unsigned long n_type basic and derived type specification

20 char n_sclass storage class

21 char n_numaux number of auxiliary entries

22-23 char pad2[2] padding to force alignment

Structure for Symbol Table Entries

Example C-7 shows the C language structure declaration for the symbol
table entry that can be found in the coff.h header file.

Example C-7 Symbol Table Entry Declaration

#define SYMNMLEN 8 /* Number of characters in a
 symbol name */
struct syment {
 union {
 char _n_name[SYMNMLEN]; /* symbol name */
 struct {
 long _n_zeroes; /* zero - name in string table */
 long _n_offset; /* offset into string table */
 } _n_n;
 char *_n_nptr[2]; /* allows for overlaying */
 } _n;
 long n_value; /* value of symbol */
 short n_scnum; /* section number */

continued ☛

i960 Processor Software Utilities User's Guide

C-18

C
Example C-7 Symbol Table Entry Declaration (continued)

 unsigned short n_flags; /* copy of "flags" from */
 /* input file header if */
 /* not a section symbol./*
 unsigned long n_type; /* type and derived type */
 char n_sclass; /* storage class */
 char n_numaux; /* number of aux. entries */
 char pad2[2]; /* force alignment */
};

#define n_name _n._n_name
#define n_nptr _n._n_nptr[1]
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n_n._n_offset

.

.

.

#define SYMENT struct syment
#define SYMESZ sizeof(SYMENT)

Symbols and Inner Blocks .bb/.eb

A block is a compound statement, and an inner block is a block that occurs
within a function that is itself a block.

For each inner block that uses local symbols, the symbol .bb appears in
the symbol table right before the first local symbol of that block, and the
symbol .eb appears right after the last local symbol. The sequence is
shown here:

.bb
local symbols for that block
.eb

Example C-8 is a C language example that shows nesting the .bb and .eb

pair and associated symbols.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-19

C
Example C-8 Nested Blocks

{ /* block 1 */
 int i;
 char c;
 ...
 { /* block 2 */
 long a;
 ...

 { /* block 3 */
 int x;
 ...
 } /* block 3 */
 } /* block 2 */

 { /* block 4 */
 long i;
 ...
 } /* block 4 */
} /* block 1 */

Example C-9 shows the format of the symbol table for these nested blocks.

Example C-9 Example of a Symbol Table

.bb for block 1
 i
 c
.bb for block 2
 a
.bb for block 3
 x
.eb for block 3
.eb for block 2
.bb for block 4
 i
.bb for block 4
.eb for block 1

i960 Processor Software Utilities User's Guide

C-20

C
Symbols and Functions .bf/.ef, .target

In the symbol table, the symbol .bf appears between the function name
and the first local symbol of the function, and the symbol .ef appears
right after the last local symbol. The sequence is shown here:

function name
 .bf
 local symbol
 .ef

When the return value of the function is a structure or union, the compiler
creates a .target symbol for storing the function-return. This symbol is
an automatic variable of the type pointer and has a value field of zero. It
appears in the symbol table between the function name and the symbol
.bf , as shown here:

function name
 .target
 .bf
local symbols
 .ef

Special Symbols

The symbol table contains special symbols that are generated by the
assembler, the compiler, and other utilities. Table C-10 shows a list of
these symbols.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-21

C
Table C-10 Special Symbols in the Symbol Table

Symbol Definition

.file filename

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or union returned by a function

.xfake dummy tag name for structure, union, or enumeration

.eos end of members of structure, union, or enumeration

_etext next available address after the output section .text

_edata next available address after the output section .data

_end next available address after the output section .bss

_ _Bname address of beginning of name

_ _Ename address of end of name

The symbols _ _Bname and _ _Ename are generated by the linker as a
convenience to the user. _ _Bname marks the beginning of a section
denoted as name and _ _Ename marks the byte following the last byte of
the section.

NOTE. These symbol names are preceded by a double underscore (_ _).
These symbol names cannot exceed 8 characters in length.

i960 Processor Software Utilities User's Guide

C-22

C
When _ _Bname and _ _Ename mark the beginning and end of the .text ,
.data , and .bss sections, the initial period in the filenames is dropped.
Thus, the sections .text and .data would be delimited by _ _Btext ,
_ _Etext , _ _Bdata , and _ _Edata . The initial period in any
user-defined section, however, is retained. A user file called .mysec , for
example, would be delimited by _ _B.mysec and _ _E.mysec .

Six special symbols come in pairs. The .bb and .eb pair indicates the
boundaries of inner blocks. The .bf and .ef pair brackets each function.
The . x fake and .eos pair names and defines the limit of unnamed
structures, unions, and enumerations;. The .eos symbol also appears after
named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
invents a symbol table name: . x fake; , where x is an integer greater than
zero. Several unnamed items are tagged consecutively, as follows:
.1fake , .2fake , .3fake 11fake , .12fake , etc.

For each section the assembler creates, it generates a symbol table entry in
which bit 0x200 in the symbol flags field is set. This creates a signature
recognized by the tools that process COFF files.

The linker does not generate symbols for the sections it creates.

Symbol Name

The symbol name structure is actually a union declared like this:

union {
 char n_name[8];
 struct string_table_pointer {
 long n_zeroes;
 long n_offset;
 };

If a symbol name is less than eight characters long, it is stored in n_name,
padded if necessary with nulls. If the symbol name is longer than 8
characters, n_zeroes is set to 0 and n_offset is set to the offset into the
string table at which the symbol name is stored.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-23

C
Table C-11 Symbol Name Field

Bytes Declaration Name Description

0-7 char n_name null-padded symbol name

0-3 long_int n_zeros zero in this field indicates that the
name is in the string table

4-7 long_int n_offset offset of the name in the string table

Storage Classes

Storage class is associated with each symbol by the compiler or assembler
and stored in the n_sclass field. However, the following are used only
externally: C_EFCN, C_EXTDEF, C_ULABEL, C_USTATIC, and C_LINE .
Table C-12 provides definitions of the storage classes.

Table C-12 Storage Classes

Mnemonic
Decimal
Value

Hexadecimal
Value Storage Class

C_EFCN -1 physical end of a

C_NULL 0 0x0000 unknown

C_AUTO 1 0x0001 automatic variable

C_EXT 2 0x0002 external symbol

C_STAT 3 0x0003 static variable

C_REG 4 0x0004 register variable

C_EXTDEF 5 0x0005 external definition

C_LABEL 6 0x0006 label

C_ULABEL 7 0x0007 undefined

C_MOS 8 0x0008 member of structure

C_ARG 9 0x0009 function argument in an argument
block

C_STRTAG 10 0x000A structure tag

continued ☛

i960 Processor Software Utilities User's Guide

C-24

C
Table C-12 Storage Classes (continued)

Mnemonic
Decimal
Value

Hexadecimal
Value Storage Class

C_MOU 11 0x000B member of union

C_UNTAG 12 0x000C union tag

C_TPDEF 13 0x000D type definition

C_USTATIC 14 0x000E uninitialized static variable

C_ENTAG 15 0x000F enumeration tag

C_MOE 16 0x0010 member of enumeration

C_REGPARM 17 0x0011 function argument in a register

C_FIELD 18 0x0012 bit field

C_AUTOARG 19 0x0013 function argument in the callee's
frame

C_BLOCK 100 0x0064 beginning and end of

C_FCN 101 0x0065 beginning and end of

C_EOS 102 0x0066 end of

C_FILE 103 0x0067 filename

C_LINE 104 0x0068 used only by utility programs

C_ALIAS 105 0x0069 duplicated tag

C_HIDDEN 106 0x006A used to avoid name conflicts

C_SCALL 107 0x006B reached by a system call

C_LEAFEXT 108 0x006C global leaf procedure: can be
called with BAL

C_LEAFSTAT 113 0x0071 static leaf procedure: can be
called with BAL

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-25

C
Storage Classes for Special Symbols

Restricted storage classes, used only for certain symbols, are given in
Table C-13.

Table C-13 Restricted Storage Classes

Storage Class Special Symbol

C_BLOCK .bb, .eb

C_FCN .bf, .ef

C_EOS .eos

C_FILE .file

Call Optimization

Call optimization occurs when the linker matches an R_OPTCALL

relocation request with a symbol of storage class C_SCALL, C_LEAFSTAT,
or C_LEAFEXT. When the storage class is C_SCALL, the linker replaces the
call instruction with a calls instruction to the appropriate system
procedure index. For the C_LEAFEXT or C_LEAFSTAT storage classes, the
linker replaces the call with a branch-and-link instruction to a special
entry point in the destination procedure.

C_SCALL is the storage class associated with names of routines that can be
called with the calls instruction. Symbols of type C_SCALL have two
auxiliary entries, the second of which contains the index of the destination
procedure in a table of system calls.

The C_LEAFEXT storage class is associated with routines that can be called
with the branch-and-link (bal) instruction. Such routines can have two
entry points. The address of the first, the call entry, is given as the value
of the routine name and supports access via a call instruction. The
address of the second is contained in the second auxiliary entry.

i960 Processor Software Utilities User's Guide

C-26

C
The C_LEAFSTAT storage class also is associated with routines to be called
with bal , but the assembler optimizes the functions instead of the linker
because the routine is of source module scope.

Symbol Value Field

The value of a symbol depends on its storage class. This relationship is
summarized in Table C-14.

Table C-14 Symbol Value Field

Storage
Class

Decimal
Value

Hexadecimal
Value Argument Value

C_AUTO 1 0x0001 frame pointer offset in bytes

C_EXT 2 0x0002 relocatable

C_STAT 3 0x0003 relocatable address

C_REG 4 0x0004 register number: r0 = 0,...,r15 = 15,
 g0 = 16,...,g15 =
31

C_LABEL 6 0x0006 relocatable address

C_MOS 7 0x0008 offset in bytes

C_ARG 8 0x0009 argument block offset

C_STRTAG 9 0x000A zero

C_MOU 11 0x000B zero

C_UNTAG 12 0x000C zero

C_TPDEF 13 0x000D zero

C_ENTAG 15 0x000F zero

C_MOE 16 0x0010 enumeration value

C_REGPARM 17 0x0011 register number r0 = 0,...,r15 = 15,
 g0 = 16,...,g15 =
31

C_FIELD 18 0x0012 bit displacement

C_AUTOARG 19 0x0013 frame pointer offset in bytes

continued ☛

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-27

C
Table C-14 Symbol Value Field (continued)

Storage
Class

Decimal
Value

Hexadecimal
Value Argument Value

C_BLOCK 100 0x0064 relocatable address

C_FCN 101 0x0065 relocatable address

C_EOS 102 0x0066 size

C_FILE 103 0x0067 symbol table entry index for next
.file symbol

C_ALIAS 105 0x0069 tag index

C_HIDDEN 106 0x006A relocatable address

A symbol with storage class C_FILE has a value that points to the next
.file symbol in the symbol table, or the beginning of the global symbols
in the case of the last .file symbol. Before files are linked, the value of
the .file symbol is zero.

Relocatable address symbols have a value equal to the address of the
symbol. When the linker relocates the section, the value of the symbol
changes.

Section Number Field

The section number field indicates the section in which a symbol is
defined. Table C-15 shows the defined constants used to refer to this field.

i960 Processor Software Utilities User's Guide

C-28

C
Table C-15 Section Number Field

Symbol Name
Section
Number Definition

N_DEBUG -2 symbolic debugging symbol, including tag
names for structures, unions, or
enumerations, typedefs, and name of file

N_ABS -1 absolute symbol, not relocatable

N_UNDEF 0 undefined external symbol

N_SCNUM any integer > 0 section number in which symbol is defined

Absolute symbols include automatic and register variables, function
arguments, and .eos symbols. The .text , .data , and .bss symbols
default to section numbers 1, 2, and 3 respectively.

A section number of zero indicates a relocatable external symbol that is
undefined in the current file. However, a multiply-defined external
symbol (i.e., an uninitialized variable defined outside a function in C) has
a section number of zero and a positive value, which gives the symbol
size.

When files with multiply defined external symbols are combined, the
linker combines all input symbols into one symbol and assigns the .bss

section number. The size of the combined symbols determines how much
memory is allocated, and the value becomes the address of the symbol.

Section Numbers and Storage Classes

Symbols with certain storage classes are restricted to certain section
numbers. This relationship is summarized in Table C-16.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-29

C
Table C-16 Section Number and Storage Class

Storage
Class

Section
Number

Hexadecimal
Value Symbol Names

C_AUTO -1 0x0001 N_ABS

C_EXT -1, 0, 1 to
077777

0x0002 N_ABS, N_UNDEF,
N_SCNUM

C_STAT 1 to 077777 0x0003 N_SCNUM

C_REG -1 0x0004 N_ABS

C_LABEL -1, 0, 1 to
077777

0x0006 N_UNDEF, N_SCNUM,
N_ABS

C_MOS -1 0x0008 N_ABS

C_ARG -1 0x0009 N_ABS

C_STRTAG -2 0x000A N_DEBUG

C_MOU -1 0x000B N_ABS

C_UNTAG -2 0x000C N_DEBUG

C_TPDEF -2 0x000D N_DEBUG

C_ENTAG -2 0x000F N_DEBUG

C_MOE -1 0x0010 N_ABS

C_REGPARM -1 0x0011 N_ABS

C_FIELD -1 0x0012 N_ABS

C_BLOCK 1 to 077777 0x0064 N_SCNUM

C_FCN 1 to 077777 0x0065 N_SCNUM

C_EOS -1 0x0066 N_ABS

C_FILE -2 0x0067 N_DEBUG

C_ALIAS -2 0x0069 N_DEBUG

i960 Processor Software Utilities User's Guide

C-30

C
Type Entry

The type field in the symbol table entry contains information about the
basic and derived type for the symbol. The compiler generates this
information when the debug option is used. Each symbol has one basic or
fundamental type but can have more than one derived type.

The format of the 32-bit type entry is:

d13 ... d6 d5 d4 d3 d2 d1 type

Bit order is from bit 31 on the left to bit 0 on the right. Bits 4 through 0,
indicated above by type , specify one of the fundamental types given in
Table C-17. Fundamental types are determined by the user input type.
Bits 5 through 30 are arranged as thirteen 2-bit fields referred to as d1

through d13 . These fields represent levels of the derived types with the
values shown in Table C-18.

Two examples demonstrate the interpretation of the symbol table entry
representing type .

In the first example, the function func returns a pointer to a character.

char * func();

The fundamental type is 2 (character), the d1 field is 2 (function), and the
d2 field is 1 (pointer). Therefore, the type word in the symbol table for
func contains the hexadecimal number 0xC2, indicating a function that
returns a pointer to a character.

In the second example, the tabptr identifier is a three-dimensional array
of pointers to short integers.

short * tabptr[10][25][3];

The fundamental type of tabptr is 3 (short integer); the d1, d2, and d3

fields each contain a 3 (array), and the d4 field is 1 (pointer). Therefore,
the type entry in the symbol table contains the hexadecimal number
0xFE3 , indicating a three-dimensional array of pointers to short integers.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-31

C
Table C-17 Fundamental Types

Mnemonic
Decimal
Value

Hexadecimal
Value Definition

T_NULL 0 0x0000 not assigned

T_VOID 1 0x0001 void

T_CHAR 2 0x0002 character

T_SHORT 3 0x0003 short integer

T_INT 4 0x0004 integer

T_LONG 5 0x0005 long integer

T_FLOAT 6 0x0006 floating point

T_DOUBLE 7 0x0007 double word

T_STRUCT 8 0x0008 structure

T_UNION 9 0x0009 union

T_ENUM 10 0x000A enumeration

T_MOE 11 0x000B member of enumeration

T_UCHAR 12 0x000C unsigned character

T_USHORT 13 0x000D unsigned short

T_UINT 14 0x000E unsigned integer

T_ULONG 15 0x000F unsigned long

T_LNGDBL 16 0x0010 long double

Table C-18 Derived Types Field Values

Mnemonic
Decimal
Value

Hexadecimal
Value Definition

DT_NON 0 0x00000 no derived type

DT_PTR 1 0x0001 pointer

DT_FCN 2 0x0002 function

DT_ARY 3 0x0003 array

i960 Processor Software Utilities User's Guide

C-32

C
Type Entries and Storage Classes

Table C-19 shows the derived type entries that are legal for each storage
class.

Table C-19 Type Entries by Storage Class

--------Derived Type Entries-------

Storage Class Function Array Pointer Basic Type

C_AUTO no yes yes any except T_MOE

C_EXT yes yes yes any except T_MOE

C_STAT yes yes yes any except T_MOE

C_REG no no yes any except T_MOE

C_LABEL no no no T_NULL

C_MOS no yes yes any except T_MOE

C_ARG yes no yes any except T_MOE

C_STRTAG no no no T_STRUCT

C_MOU no yes yes any except T_MOE

C_UNTAG no no no T_UNION

C_TPDEF no yes yes any except T_MOE

C_ENTAG no no no T_ENUM

C_MOE no no no T_MOE

C_REGPARM no no yes any except T_MOE

C_FIELD no no no T_ENUM
T_UCHAR
T_USHORT
T_UNIT
T_ULONG

C_BLOCK no no no T_NULL

C_FCN no no no T_NULL

continued ☛

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-33

C
Table C-19 Type Entries by Storage Class (continued)

--------Derived Type Entries-------

Storage Class Function Array Pointer Basic Type

C_EOS no no no T_NULL

C_FILE no no no T_NULL

C_ALIAS no no no T_STRUCT
T_UNION
T_ENUM

Conditions for the d entries apply to d1 through d13 , except that you
cannot have two consecutive derived types of function, that is, you cannot
have a function returning a function.

Although function arguments can be declared as arrays, the compiler
changes them to pointers by default. Therefore, a function argument
cannot have array as its first derived type.

Auxiliary Table Entries

The auxiliary table entry or entries for a symbol have 24 bytes each.
Every symbol has an auxiliary table entry with the same number of bytes
as the symbol has in the symbol table entry. Table C-20 provides a
summary of the auxiliary symbol table format. The formats are discussed
in detail in subsequent sections.

i960 Processor Software Utilities User's Guide

C-34

C
Table C-20 Auxiliary Symbol Table Entries

Name
Storage
Class

----Type of Entry----
d1 typ

Auxiliary
Entry Format

.file C_FILE DT_NON T_NULL filename - possibly
followed by compiler
or assembler
identification

.text,.data,

.bss
C_STAT DT_NON T_NULL section

tagname C_STRTAG DT_NON T_NULL tag name

C_UNTAG

C_ENTAG

.eos C_EOS DT_NON T_NULL end of structure

function name C_EXT DT_FCN Any except function

C_STAT T_MOE.

array name C_AUTO DT_ARY Any except array

C_STAT T_MOE.

C_MOS

C_MOU

C_TPDEF

.bb C_BLOCK DT_NON T_NULL beginning of block

.eb C_BLOCK DT_NON T_NULL end of block

.bf,.ef C_FCN DT_NON T_NULL beginning and end of
function

name related C_AUTO DT_PTR T_STRUCT name related

to structure, C_STAT DT_ARR T_UNION to structure,

union, C_MOS DT_NON T_ENUM union,

enumeration C_MOU enumeration

C_TPDEF

A tagname is a symbol name that includes the special symbol . x fake .
The classes fcname and arrname represent any symbol name.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-35

C
Filenames

Filenames can be any length. Filenames larger than 14 characters go into
the string table. Shorter filenames are padded with zeros.

The .file symbol contains a 0 until the object file is linked. At the time,
it either points to the file header for the next file in the chain or the start of
the global storage area. Each .file entry generates one, two, or three
auxiliary table entries. The first entry lists the name provided with the
.file directive. If the program is a compiled source file, the second entry
contains the .ident information from the compiler, such as the compiler's
name and version with the present date and time. The third entry contains
the assembler information, such as assembler identity and version.

NOTE. All entry information is controlled by the environment variable
I960IDENT . If the I960IDENT variable is not set, the assembler
generates no .ident entries.

If the source file is an assembly file, the second auxiliary table entry
contains the assembler information and the symbol table contains no third
entry.

Sections

The auxiliary table entries for a section have the format shown in
Table C-21.

Table C-21 Format for Auxiliary Table Entries

Bytes Declaration Name Description

0-3 long int x_scnlen section length

4-5 unsigned short x_nreloc number of relocation entries

6-7 unsigned short x_nlinno number of line numbers

8-23 - - unused (filled with zeros)

i960 Processor Software Utilities User's Guide

C-36

C
Tag Names

The auxiliary table entries for a tag name have the format shown in
Table C-22.

Table C-22 Tag Name Entries

Bytes Declaration Name Description

0-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of structure, union, and
enumeration

8-11 - - unused (filled with zeros)

12-15 long int x_endndx index of next entry beyond this
structure, union, or enumeration

16-23 - - unused (filled with zeros)

End of Structure

The auxiliary table entries for the end of structure have the format shown
in Table C-23.

Table C-23 Table Entries for End of Structure

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of , union, or enumeration

8-23 - - unused (filled with zeros)

Functions

The auxiliary table entries for a function have the format shown in
Table C-24.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-37

C
Table C-24 Table Entries for Function

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-7 long int x_fsize size of function (in bytes)

8-11 long int x_lnnoptr file pointer to line number

12-15 long int x_endndx the end index for functions
points to the symbol table entry
for the next function, except the
last function for the .file scope,
which points at the first static
symbol in the .file scope.

16-23 unsigned short x_tvndx unused (filled with zeros)

Arrays

The auxiliary table entries for an array have the format shown in
Table C-25.

Table C-25 Table Entries for Array

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 unsigned short x_lnno line number of declaration

6-7 unsigned short x_size size of array

8-9 unsigned short x_dimen[0] first dimension

10-11 unsigned short x_dimen[1] second dimension

12-13 unsigned short x_dimen[2] third dimension

14-15 unsigned short x_dimen[3] fourth dimension

16-23 - - unused (filled with zeros)

i960 Processor Software Utilities User's Guide

C-38

C
End of Blocks and Functions

The auxiliary table entries for the ends of blocks and functions have the
format shown in Table C-26.

Table C-26 End of Block and Function Entries

Bytes Declaration Name Description

0-3 - - unused (filled with zeros)

4-5 unsigned short x_lnno number of lines in block

6-23 - - unused (filled with zeros)

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have
the format shown in Table C-27.

Table C-27 Beginning of Block and Function Entries

Bytes Declaration Name Description

0-3 - - unused (filled with zeros)

4-5 unsigned short x_lnno line number in source where
function begins

6-11 - - unused (filled with zeros)

12-15 long int x_endndx index of next entry past this
block

16-17 - - unused (filled with zeros)

Names Related to Structures, Unions, and
Enumerations

The auxiliary table entries for structure, union, and enumerations symbols
have the format shown in Table C-28.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-39

C
Table C-28 Entries for Structures, Unions, and Enumerations

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of the structure, union, or
numeration

8-17 - - unused (filled with zeros)

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is
given in Example C-10. This declaration can be found in the header file
coff.h .

Example C-10Auxiliary Symbol Table Entry

/*
 * AUXILIARY ENTRY FORMAT
 */
union auxent {
 struct {
 long x_tagndx; /* str, un, or enum tag indx */
 union {
 struct {
 unsigned short x_lnno;/* declaration line number */
 unsigned short x_size;/* str, union, array size */
 } x_lnsz;
 long x_fsize; /* size of function */
 } x_misc;
 union {
 struct { /* if ISFCN, tag, or .bb */
 long x_lnnoptr; /* ptr to fcn line # */
 long x_endndx; /* entry ndx past block end */
 } x_fcn;
 struct { /* if ISARY, up to 4 dimen. */

continued ☛

i960 Processor Software Utilities User's Guide

C-40

C
Example C-10Auxiliary Symbol Table Entry (continued)

 unsigned short x_dimen[DIMNUM];
 } x_ary;
 } x_fcnary;
 unsigned short x_tvndx; /* transfer vector index
 (not used)*/
 } x_sym;
 union {
 char x_fname[AUXFILNMLEN]; /* File name for .file
 symbol */
 struct {
 long x_zeroes; /* zero indicating offset valid */
 long x_offset; /* symbol string table offset */
 } x_n;
 } x_file;
 struct {
 long x_scnlen; /* section length */
 unsigned short x_nreloc; /* number of relocation
 entries */
 unsigned short x_nlinno; /* number of line numbers */
 } x_scn;
 struct {
 long x_tvfill; /* tv fill value */
 unsigned short x_tvlen; /* length of .tv */
 unsigned short x_tvran[2]; /* tv range */
 } x_tv; /* info about .tv section (in auxent of
 symbol .tv) */
 /*
 ** i960 processor-specific *2nd* aux. entry formats
 */
 struct {
 long x_stindx; /* sys. table entry */
 } x_sc; /* system call entry */
 struct {
 unsigned long x_balntry; /* BAL entry point */
 } x_bal; /* BAL-callable function */

continued ☛

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-41

C
Example C-10Auxiliary Symbol Table Entry (continued)

 /*
 ** i960 processor 2nd and 3rd aux. entry formats
 */
 struct {
 unsigned long x_timestamp; /* identification time
 stamp*/
 char x_idstring[20]; /* producer identity string */
 } x_ident;
 char a[sizeof(struct syment)]; /* force aux to
 syment size */
};

#define AUXENT union auxent
#define AUXESZ sizeof(AUXENT)

String Table

Symbol table names longer than eight characters are stored next to each
other in the string table; each symbol name is delimited by a NULL byte.
The first four bytes of the string table are the size of the string table in
bytes; offsets in the string table are therefore 4 or more.

In this example, the file has two symbols whose names are longer than
eight characters, long_name_1 and another_one . Thus, the string table
has the format shown in Figure C-3.

i960 Processor Software Utilities User's Guide

C-42

C
Figure C-3 String Table

OSD321

28

`l' `o' `n' `g'

`-' `n' `a' `m'

`e' `-' `1' `\0'

`a' `o' `t'`n'

`o'

`h' `r' `-'`e'

`n' `e' `\0'

Index

0

4

8

12

16

20

24

The size of the string table in Figure C-3 is 28 bytes, which is equal to 4
bytes plus one byte for each character including the null terminator. The
index of long_name_1 in the string table is 4 and the index of
another_one is 16.

Access Routines

Access routines, found in the common object file library, can be used for
reading a common object file. These routines insulate the calling program
from having to know the structure of the object file.

Archive Library Format

Figure C-4 represents a typical archive. The figure shows an object
library consisting of n members.

The definitions of four elements constitute the common archive file format
(CAFF):
• archive identification string
• one or more members
• symbol table
• name or spelling pool

The following sections describe each of these elements in greater detail.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-43

C
Figure C-4 An Archive Library

Archive Header

Archive Header

Archive Header

Symbol Table

Extended Filename Table

Member Data

Member 1

Member 2

Member K

Member n-1

OSD319

Archive Identification String

Member 0

The Archive Identification String

The archive identification string identifies a file as an archive. Each
archive library begins with a special string. For example, these two lines
define the archive identification string:

#define ARMAG "!<arch>\n"
 /*archive identification string*/
#define SARMAG 8
 /*length of archive identification string*/

i960 Processor Software Utilities User's Guide

C-44

C
This string appears as the first eight characters in an archive. This string
must be present, or the archiver cannot recognize this file as common
archive file format (CAFF).

Archive Members

Archives can contain the following combinations of file types:

• COFF and ASCII text
• COFF only
• b.out format only

Archive members are arranged in sequential order within the library.

Figure C-5 represents a typical member, such as Member K of the archive
shown in Figure C-4.

Figure C-5 An Archive Member

OSD320

Archive Header
 Member name
 Text size
 File information

Contents

Padding Character
("\n" pad to even byte)

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-45

C
The member header begins with the member name to identify the module
within the archive. Several additional entries, containing control
information, follow this string. A special trailer string terminates each
archive member header.

The structure in Example C-11 defines the archive member header:

Example C-11Archive Member Headers

#define ARFMAG "`\n" /*header trailer string*/
struct ar_hdr /*member header*/
{
 char ar_name[16]; /*/-terminated member name*/
 char ar_date[12]; /*member date*/
 char ar_uid[6]; /*member user id*/
 char ar_gid[6]; /*member group id*/
 char ar_mode[8]; /*member mode(octal)*/
 char ar_size[10]; /*member size*/
 char ar_fmag[2]; /*header trailer string*/
};

Numeric information in the member header is stored in decimal format,
except for ar_mode , which is formatted in octal. You can look at the
information stored in the member headers of an archive by using the
archiver's table-of-contents control with the verbose modifier on the
command line.

Table C-29 lists archive member headers, their sizes, and their contents.

i960 Processor Software Utilities User's Guide

C-46

C
Table C-29 Size and Contents of Archive Member Headers

Bytes Field Contents

0-15 ar_name; field contains the name of the member, padded
with a slash (/) followed by blanks. The archiver
derives this name from the pathname of the
external file when it adds the member to the
archive. The member name cannot be changed,
although the member may be replaced, deleted,
or moved within the archive.

16-27 ar_date field shows the date and time of the external file
when initially archived or updated in the archive.
This date is returned from a system call; format
of the date is system-dependent.

28-33 ar_uid fields contain the user and group identification

34-39 ar_gid numbers of the user owning this member. On
Windows hosts, these fields contain zero.

40-47 ar_mode field is derived from the system and contains an
octal representation of the file permissions on the
external file at archival time.

48-57 ar_size field contains the size, in bytes, of the member.
The member's size does not include the extra
byte of padding, if present at the end of the
archive member. Each archive file member
starts on an even byte boundary, with a single
new-line pad between members, if necessary.
An archive member may not contain any empty
areas.

58-59 ar_fmag field contains the header trailer string ('\n).

When you add members with long names using the replace or update
command, the archiver creates an extended filename table to store
member names longer than 14 characters. If the archiver creates the
extended filename table, the table follows the second archive header. If
you strip the symbol table, the extended filename table follows the first
archive member (see Figure C-4).

Common Object File Format (COFF) and Common Archive File Format (CAFF)

C-47

C
The Symbol Table

The first part of an archive (designated Member 0 in Figure C-4) is the
archive symbol table. The archiver generates this structure when you add
the first COFF or b.out format file to the archive. It is updated whenever
necessary to reflect the current contents of the archive.

The symbol table is transparent to the user and inaccessible to a user of the
archiver. It is implemented as a member of the archive, with a standard
archive header. The symbol table has a name of zero length, that is:

ar_name[0]==`\0' ('\0' means NULL, the string terminator)

The ar_date field in the symbol table header reflects the date of the
archive's creation. Figure C-6 illustrates an archive symbol table.

The symbol table consists of the following fields:

• Total number of symbols in the archive: 1 word.
• Array of offsets to member headers: 1 word per symbol.
• String table of null-terminated external symbols: 1 string per symbol.

The symbol table enables the linker to make a more efficient pass over
object libraries.

i960 Processor Software Utilities User's Guide

C-48

C
Figure C-6 The Archive Symbol Table

OSD318

Symbol Table Header

Number of Symbols
in Archive

Offsets to Members
(one per symbol)

Name String Table
(one per symbol)

["\n" pad to even byte]

member 0 test

member 0 padding
(if necessary)

member 0 header
(with zero-length name)

HP/MRI IEEE 695
Object File Format

D-1

D
This chapter describes the Microtec Research Inc./Hewlett-Packard
Company version of IEEE-695 object module format, supporting
assemblers, compilers, linkers and debuggers.

The material for this chapter is taken from the HP/MRI IEEE-695 Object
Module Format Specification, Rev. 4.0, August 16, 1989. This chapter
contains only those parts of the HP/MRI IEEE-695 specification that you
need to understand output for the COFF to IEEE-695 converter (cvt960).
This chapter omits the following:

• Target-specific information not pertinent to the i960 family of
processors.

• Translator output information for high-level languages other than C.
• Memory location information for relocatable modules. Only position-

dependent (absolute) modules are described.
• Any other information not relevant to debugging and using output

from the cvt960 utility.

If you need a complete IEEE-695 object module specification, you should
consult the IEEE or MRI/HP version, as appropriate for your application.
The Related Publications section in Chapter 1 provides ordering
information for both.

The IEEE Trial Use 695 standard describes both an ASCII and a binary
version of the format. MRI and HP implement the more compact binary
form. Derived from the IEEE Trial Use Standard 695, the HP/MRI
specification includes extensions and limitations required to support MRI
and HP products.

i960 Processor Software Utilities User's Guide

D-2

D
Terminology

The IEEE specification defines a term that is redefined in this chapter.
The term applies to the basic division of an object file that is referred to as
a "command". Since this conflicts with the IEEE-695 use of command, the
basic unit is renamed to be a "record". Object module records are
predefined with a record type byte in the range $E0 through $FF. The
term library is used throughout to mean a single file with more than one
relocatable module. The term MAU is used throughout to mean minimum
addressable unit; e.g. a byte (8 bits) on the i960.

Table D-1 shows the initial bytes of IEEE formats described in this
section.

Table D-1 Initial Bytes of IEEE Elements

Prefix Description

$00-$7F Simple number in the range 0 to 127, or 7-bit ASCII string with
length 0 to 127.

$80-$84 Number larger than 127 or negative. 0 to 4 bytes follow. $80 is
used as a place holder and indicates that the value was not
provided.

$89-$9F Unused.

$BE-$BF Function values.

$C0-$DA Variable letters (null, A-Z).

$DB-$DD Unused.

$DE-$DF Extension length. If DE, the next byte is the length of an 8-bit
string between 0 and 255 bytes long. If DF, the next two bytes
in high-order/low-order format are the length of an 8-bit string
between 0 and 65535 bytes long.

$E0-$FA Record headers.

$FB-$FF Unused.

HP/MRI IEEE 695 Object File Format

D-3

D
Nomenclature

The following nomenclature is used throughout this chapter:

• Braces { } surround a required field.
• Brackets [] surround an optional field.
• Dollar Signs ($) precede character representations of hexadecimal

numeric values.

Number Format

Numbers are used to define byte counts for fields and to specify numeric
parameters. These specifications can have two forms:

• If the value is between 0-127 decimal, the number is $0-$7F .
• If the value is greater than 127 decimal, then the number must be

defined by 1 byte of count with the high order bit set ($80) followed
by the indicated number of bytes of numeric data with the most
significant byte first. The range for the count is usually 0-4
(i.e. $80-$84) and can be 0-8 on some installations. This form is also
valid for numbers in the range 0-127.
For example, $7FFF is encoded as {$82}{$7F}{$FF} (3 bytes).
0 can be encoded as {$00} or {$81}{$00} . 232 can be encoded as
{$85}{01}{00}{00){00}{00} , etc.

• Omitted optional fields in records may be represented by a byte count
of zero. Example: {$80}

• Numeric fields are represented in the chapter as {n} and {x} .
• Numeric fields in miscellaneous records are represented as {v} .

Name Format

Name fields are represented in this chapter by {Id} and consist of 1 byte
of count (0-127) followed by the indicated number of ASCII characters.
The HP/MRI format extends the IEEE specification to allow the use of
any printable ASCII character in a name. Characters are represented as
hexadecimal values in the file but are represented as quoted characters in
this chapter for improved readability, as follows:

name "ABCD" = {$04}{$41}{$42}{$43}{$44}

i960 Processor Software Utilities User's Guide

D-4

D
Name fields in miscellaneous records are represented as {s} .

The IEEE format allows only for printable strings. This implementation
allows for non-printable strings.

An extension byte allows for more than 127 characters. If the reader
encounters a DE character, the next one byte is the string length. The one
byte length allows strings from 0 to 255 characters. If the reader
encounters a DF character, the next two bytes are the string length. The
two byte string allows 0 to 65535 characters.

Information Variables

Information variables convey information to a symbolic debugger or linker
about various constructs within the program. The information conveyed
relates to symbols, section addresses and lengths, starting addresses, and
current PC value. These are represented by an alphabetic letter optionally
followed by a number:

G Execution starting address.
In Address of public symbol n.
Nn Address of local symbol n.
Pn The program counter for section n; implicitly changes with each

LR, LD, or LT that applies to section n in the Data part.
Sn The size, in minimum address units (MAUs), of a section n.
Wn n is 0 through 7; Wn is the file offset, in bytes, of the n'th part of

the object file from the beginning of the file.

The number, if present for symbol definitions, identifies which of several
variables of the same type is referenced. This number is referred to as an
"index" in the discussion that follows. There are 3 different series of
indices: external reference indices, section indices and public
name/type/local name indices. Indices must be unique within a module for
each series and must be included with all variable specifications except G.
Public/local (I/N) type symbol indices between 0 and 31 are reserved for
special class symbols. Normal symbol indices begin at 32. Therefore,
"I3" represents public symbol number 3 in the current module.

HP/MRI IEEE 695 Object File Format

D-5

D
Specification of G variables must not include an index. The IEEE
standard has been extended to require index values for L, S, and P
variables (these are all section indices). The binary encoding for the letters
A-Z is $C1-$DA respectively.

Line Numbers

Object modules can have a significant number of line number records
included in typical situations. To minimize the impact upon the size of the
object module, the HP/MRI standard defines only one NN record per
source file. A line number is specified by ATN and ASN records only.

Types

Symbol types supply information to debug and analysis tools to aid in
determining the size, organization, and type of program object referenced
by the symbol. Each symbol has an associated type number and/or a
mnemonic "code letter" that serves as a shorthand identifier for the type in
the object file and elsewhere.

Complex Types strt

Table D-2 identifies the supported high level complex types. These types
must be explicitly defined using an IEEE 'ty ' directive (see the Define
Types (TY) section) in order to correctly represent the use of the symbol
type in the high-level language source code. Table D-2 shows what
parameters are used to define the type, where these parameters appear in
the IEEE, and the NN and TY records which define the type.

Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types

Definition Type-parameters IEEE Record/Field

Unknown type (sized) 'type name' NN/{Id}

Mnemonic: ! ! ($21) TY/{n3}

size in MAUs TY/{n4}

generalized C language 'enum-tag-name' NN/{Id}

continued ☛

i960 Processor Software Utilities User's Guide

D-6

D
Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types

(continued)

Definition Type-parameters IEEE Record/Field

enumeration N ($4E) TY/{n3}

Mnemonic: N 0 TY/{n4}

size of enumeration in MAUs TY/{n5}

1st enum constant name TY/{n6}

1st enum constant value TY/{n7}

additional names/values [...]

32 bit pointer to another type (name or null-name) NN/{Id}

Mnemonic: P (pointer) P ($50) TY/{n4}

type index of pointer target TY/{n4}

data structure 'structure-tag-name' NN/{Id}

Mnemonic: S (structure) S ($53) TY/{n3}

size of structure (in MAUs) TY/{n4}

member 1 name TY/{n5}

member 1 type index TY/{n6}

member 1 MAU offset TY/{n7}

member 2 name TY/{n8}

member 2 type index TY/{n9}

member 2 MAU offset TY/{n10}

[additional members] [...]

union of members 'union-tag-name' NN/{Id}

Mnemonic: U (union) U ($55) TY/{n3}

size of union (in MAUs) TY/{n4}

member 1 name TY/{n5}

member 1 type index TY/{n6}

member 1 MAU offset TY/{n7}

member 2 name TY/{n8}

member 2 type index TY/{n9}

member 2 MAU offset TY/{n10}

[additional members] [...]

continued ☛

HP/MRI IEEE 695 Object File Format

D-7

D
Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types

(continued)

Definition Type-parameters IEEE Record/Field

C array with lower bound = 0 (name or null-name) NN/{Id}

Mnemonic: Z (zero based array) A ($5A) TY/{n3}

type index of component TY/{n4}

high bound (note 1) TY/{n5}

Bitfield type 'type name' NN/{Id}

Mnemonic: g g {$67} TY/{n3}

signed (0=unsigned,1=signed) TY/{n4}

size (in bits, 1 through n) TY/{n5}

base type index TY/{n6}

procedure with compiler 'procedure-name' NN/{Id}

dependencies x ($78) TY/{n4}

Mnemonic: x (executable) attribute (note 2) TY/{n4}

frame_type (note 4) TY/{n5}

push_mask (note 5) TY/{n6}

return_type TY/{n7}

of arguments (note 3) TY/{n8}

[1st argument type] TY/[n9]

[2nd argument type] TY/[n10]

[additional argument types] TY/[n11 thru nN]

level (note 6) TY/{n9 or TY/nN + 1}

NOTE 1: When the upper limits in array types A and Z are unknown, as for external references, the number of elements
should be set to -1.

NOTE 2: The attribute parameter of the function type (X or x) is bit mask of:
Bit Meaning Bit Meaning
0 Unknown frame - Set if this 5 PASCAL nested (always clear)

 is a leaf procedure 6 no push mask available
1 Near (always clear) (always set)
2 Far (always clear) 7 Interrupt (always clear)
3 Re-entrant (always set) 9-32 To be defined
4 ROMable (always set)

NOTE 3: # of arguments (-1 if unknown).

NOTE 4: The 'frame-type' indicates the type of stable frame used by the routine. cvt960 sets the frame-type to 0.

NOTE 5: The 'push_mask' is always set to 0.

NOTE 6: the 'level' parameter is always set to 0.

i960 Processor Software Utilities User's Guide

D-8

D
Built-in Types

Table D-3 identifies the implicit or "built-in" types supported by the
cvt960 program. The built-in types represent C type definitions for
common scalar types (and pointers to common scalar types) that are
implicit to the compiler, assembler, linker, and debugger. As for complex
types, the type number or mnemonic letter code for built-in types implies
the size and organization of the program object. The type number also
specifies a default type name for use by HP or MRI debugging tools in
referring to the built-in type.

Built-in types normally do not require additional information other than
the type number to completely describe them. Only the number of the
built-in type is used in an ATN record describing a symbol having one of
the implicit types. It is also the number used in the definitions for more
complex types that have elements that are of built-in type. The shorthand
notation for implicit types is intended to minimize the size of object
modules by providing a short notation for the common subsets of more
general types.

The interpretation of built-in types by cvt960 is shown in Table D-3.

The following assumptions relating to typedefs are made by HP and MRI
tools:

• Type "char" is assumed to be signed.
• The size assumed for a pointer is the natural size for the target

(i.e. i960 = 4 minimum address units).

Table D-3 HP/MRI IEEE-695 Object-file Built-in Types

Mnemonic Definition Default Type Name

0 ? unknown type 'UNKNOWN TYPE'

1 V (void) procedure returning void 'void'

2 B (byte) 8-bit signed 'signed char'

3 C (char) 8 bit unsigned 'unsigned char'

4 H (halfword) 16 bit signed 'signed short int'

continued ☛

HP/MRI IEEE 695 Object File Format

D-9

D
Table D-3 HP/MRI IEEE-695 Object-file Built-in Types (continued)

Mnemonic Definition Default Type Name

5 I (int) 16 bit unsigned 'unsigned short int'

6 L (long) 32 bit signed 'signed long'

7 M 32 bit unsigned 'unsigned long'

10 F (float) 32 bit floating point 'float'

11 D (double) 64 bit floating point 'double'

12 K (king size) extended precision
floating point

'long double'
(see note 1)

15 J (jump to) code location 'instruction address'

26-31 reserved for future use

32 pointer to unknown type 'UNKNOWN TYPE'

33 pointer to procedure
returning void

'void

34 pointer to 8 bit signed 'signed char'

35 pointer to 8 bit unsigned 'unsigned char'

36 pointer to 16 bit signed 'signed short int'

37 point to 16 bit unsigned 'unsigned short int'

38 point to 32 bit signed 'signed long'

39 pointer to 32 bit unsigned 'unsigned long'

42 pointer to 32 bit floating point 'float'

43 pointer to 64 bit floating point 'double'

44 pointer to extended precision
floating point

'long double'
(see note 1)

58-255 reserved for future use

i960 Processor Software Utilities User's Guide

D-10

D
Object File Components

An object file is divided into seven component parts. Each part is a
contiguous group of bytes within the file. The component parts may occur
in any order within the file with the exception that the Header must occur
first and the Module End must occur last. The Header part contains
information pointing to the location of the other parts within the file.
Therefore, the various file parts do not necessarily have to be read in the
order in which they appear. The component parts listed below are
described in the following sections:

Header Part

Module Beginning (MB) - $E0

Address Descriptor (AD) - $EC

Assign Value to Variable W0 (ASW0) - $E2D700

Assign Value to Variable WI (ASW1) - $E2D701

Assign Value to Variable W2 (ASW2) - $E2D702

Assign Value to Variable W3 (ASW3) - $E2D703

Assign Value to Variable W4 (ASW4) - $E2D704

Assign Value to Variable W5 (ASW5) - $E2D705

Assign Value to Variable W6 (ASW6) - $E2D706

Assign Value to Variable W7 (ASW7) - $E2D707

AD Extension Part (ASW0)

Variable Attributes (NN) - $F0

Variable Attributes (ATN) - $F1CE

Variable Values (ASN) - $E2CE

Environment Part (ASW1)

Variable Attributes (NN) - $F0

Variable Attributes (ATN) - $F1CE

Variable Values (ASN) - $E2CE

Section Definition Part (ASW2)

Section Type (ST) - $E6

Section Size (ASS) - $E2D3

Section Base Address (ASL) - $E2CC

HP/MRI IEEE 695 Object File Format

D-11

D
External Part (ASW3)

Public (External) Symbol (NI) - $E8

Variable Attribute (ATI) - $F1C9

Variable Values (ASI) - $E2C9

Debug Information Definition Part (ASW4)

Declare Block Beginning (BB) - $F8

Declare Type Name, filename, line numbers, function name, variable
names, etc.
(NN) - $F0

Define Type Characteristics (TY) - $F2

Variable Attributes (ATN) - $F1CE

Variable Values (ASN) - $E2CE

Declare Block End (BE) - $F9

Data Part (ASW5)

Current Section (SB) - $E5

Current Section PC (ASP) - $E2D0

Load Constant MAUs (LD) - $ED

Repeat Data (RE) - $F7

Trailer Part (ASW6)

Execution Starting Address (ASG) - $E2C7

Module End (ME) - $E1

Header Part

The header part contains information pointing to the location of other parts
within the file.

Module Begin (MB)

The MB record must be the first record in the module.

{$E0}{Id1}{Id2}

$E0 Record type
Id1 Processor (e.g. "80960CORE")
Id2 Module name

i960 Processor Software Utilities User's Guide

D-12

D
Table D-4 shows the i960 processor names that tools consuming
HP/MRI IEEE-695 object files recognize in the Id1 field of the MB
record.

Table D-4 Processor Names

Name Processor Family

80960CORE Intel i960 core architecture

80960KA Intel i960 KA, SA

80960KB Intel i960 KB, SB

80960CA Intel i960 CA, CF

80960JX Intel i960 JA, JD, JF, JL, RP

80960HX Intel i960 HA, HD, HT

Address Descriptor (AD)

The AD record describes the characteristics of the target processor.

{$EC}{8){4}{$CC}

$EC Record type
8 Number of bits/minimum address unit
4 Number of minimum address units constituting the largest

address form
$CC ('L') Low address of field contains least significant byte

Assign Value To Variable W0 (ASW0)

The ASW0 record contains a file byte offset pointer to the AD Extension
record relative to the beginning of the file. A zero (0) value indicates that
this extension is not included in the file.

{$E2}{$D7}{00}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

HP/MRI IEEE 695 Object File Format

D-13

D
Assign Value To Variable W1 (ASW1)

The ASW1 record contains a file byte offset pointer to the Environmental
record relative to the beginning of the file. A zero (0) value indicates that
this extension is not included in the file.

{$E2}{$D7}{01}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W2 (ASW2)

The ASW2 record contains a byte offset pointer to the module Section part
relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{$E2}{$D7}{$02}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable (ASW3)

The ASW3 record contains a byte offset pointer to the module External
part relative to the beginning of the module. A zero (0) value indicates
that this part is not included in the module.

{$E2}{$D7}{$03}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W4 (ASW4)

The ASW4 record contains a byte offset pointer to the module Debug
Information definition part relative to the beginning of the module. A zero
(0) value indicates that this part is not included in the module.

{$E2}{$D7}{$04}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

i960 Processor Software Utilities User's Guide

D-14

D
Assign Value To Variable W5 (ASW5)

The ASW5 record contains a byte offset pointer to the module Data part
relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{$E2}{$D7}{$05}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W6 (ASW6)

The ASW6 record contains a byte offset pointer to the module Trailer part
relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{$E2}{$D7}{$06}{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable (ASW7)

The ASW7 record contains a byte offset pointer to the ME record relative
to the beginning of the module.

{$E2}{$D7}{$07}{ n}

n Byte offset in File in number format (see the AD Extension Part
section)

AD Extension Part

The AD Extension Part contains information describing how the object
module was created. This part is located after the header part and the AD
record. It is pointed to by the W0 portion of ASW0. An NN record with a
unique index associates ATN records defining the additional information.
For more information on the syntax of records in the AD Extension Part,
see the HP/MRI IEEE 695 Format Object File Semantics section. The AD
Extension Part has the following format:

NN: {$F0}{n1}{Id}

ATN: {$F1}{$CE}{n1}{n2}{n3}[x1][x2][Id]

HP/MRI IEEE 695 Object File Format

D-15

D
$F0 NN record type
n1 Symbol name (NN record) type
Id Symbol name
$F1CE ATN Record type
n1 Symbol name index (must be the same index as was specified for

the NN record)
n2 Symbol type index (unused, set to 0)
n3 Attribute definition: The attribute definitions for the AD

Extension Part appear in Table D-5.

Table D-5 Attribute Definitions for the AD Extension Part

n3 Description

37 Object format version number; requires two extra fields [x1] and [x2]
defining the version number and revision level respectively.
The current HP/MRI version supported is 4.0.

38 Object format type; requires one extra field [x1] defining the type:
1 Absolute (not relinkable)

39 Case sensitivity; requires one extra field [x1].
2 Do not change the case of symbols

Environmental Part

The Environmental Part contains information relating to the host
environment where the object module was created. It is located after the
Header Part and is pointed to by the W1 portion of ASW1. The
organization of this part is similar to the AD Extension part described
earlier. For more information on the syntax of records in the
Environmental Part, see the HP/MRI IEEE 695 Format Object File
Semantics section. The ATN records have the following format:

NN: {$F0}{n}{Id}

ATN: {$F1}{$CE}{n1}{n2}{n3}[x1[x2[x3[x4[x5[x6[Id]]]]]]]

F0 NN record type
n1 Symbol name (NN record) type

i960 Processor Software Utilities User's Guide

D-16

D
Id Symbol name
$F1CE ATN record type
n1 Symbol name index (must be same index as specified for its

associated record)
n2 Symbol type index (0 = unspecified)
n3 Attribute definition: The attribute definitions for the

Environmental Part appear in Table D-6 below.

Table D-6 Attribute Definitions for the Environmental Part

n3 Description

50 Creation date and time; requires one extra field [x1[x2[x3[x4[x5[x6]]]]]]:
x1 Year (e.g., 1990)
x2 Month (1 - 12)
x3 Day(1 - 31)
x4 Hour(0 - 23)
x5 Minute (0 - 59)
x6 Second (0 - 59)
The date and time are derived from the date and time of the COFF file. The year
is encoded as a decimal number, not four hexadecimal digits. There is no ASN
record.

51 Command line text; requires one extra field [Id] containing the command line. The
command line is derived from the cvt960 command line. There is no ASN record.

52 Execution status; requires one extra field [xl]: 0 Success
There is no ASN record.

53 Host environment; requires one extra field [x1]: 4 HP-UX
There is no ASN record.

54 Tool and version number used to create the module; requires three extra fields
[x1], [x2], and [x3] defining the tool, version, and revision number. An optional
fourth field [x4] is an ASCII character that defines the revision level (e.g. A, B, etc).
The [x1] field contains 210, the cvt960 tool code. There is no ASN record.

55 Comments; requires one extra field [Id] specifying the comment string. There is no
ASN record.

HP/MRI IEEE 695 Object File Format

D-17

D
External Part

The External part contains records used to define global symbols from
COFF. Variable miscellaneous records are also allowed in the External
part. For more information on the syntax of records in the External and
Public parts, see the HP/MRI IEEE 695 Format Object File Semantics
section.

Public (External) Symbol (NI)

The Public Symbol provides for Public symbol definition and is optionally
included in a module. Public symbol indices begin at 32. Indices 0
through 31 are reserved.

{$B8}{ n}{Id}

$B8 Record type
n Public name index number, unique within an object file (must

be> 31,0 - 31 reserved)
Id Symbol name

Attribute Records (ATI)
{$F1}{$C9}{n1}{n2}{n3}{n4}

$F1C9 ATI record type
nl Symbol name index (this must be the same index as specified for

the M record)
n2 Symbol type index as follows:

0 Unspecified
2 Initialized data byte
5 Initialized data word
7 32 bit double word
10 32 bit floating point
11 64 bit floating point
12 10 or 12 byte floating point
15 Instruction address

n3 Attribute definition: The attribute definitions are described in
Table D-7.

i960 Processor Software Utilities User's Guide

D-18

D
n4 If n2 is non-zero, number of elements in the symbol type

specified in n2

Table D-7 Attribute Definitions for the External Part

n3 Description

19 Static symbol generated by assembler. There is an ASI record
specifying the address value.

Value Records (ASI)

The ASI record defines values for variables.

{$E2}{$C9}{n1}{n2}

$E2C9 Record type
n1 Symbol index (this must be the same index as specified for the

NI record)
n2 value of symbol

Section Part

The Section part contains information defining the sections of the module.
A "section" in this context is a contiguous area of memory. It may be
absolute or relocatable, and may or may not have a name. All data
minimum address units must be defined in a section.

For more information on the syntax of records in the Section Part, see the
HP/MRI IEEE 695 Format Object File Semantics section.

Section Type (ST)

Each section must have exactly one section type record.

ASL and ASS records must appear after the ST record they refer to.

${E6}{n1}{l}[Id][n2][n3][n4]

$E6 Record Type
n1 Section index (index must be greater than zero and unique to this

module)

HP/MRI IEEE 695 Object File Format

D-19

D
l Section type (only the new section types are described here)

AS {$C1}{$D3} normal attributes for absolute sections.
Sections from different modules with these attributes,
whether they have the same name or not, are considered
to be unrelated.

ASP {$C1}{$D3}{$D0} absolute code
ASD {$C1}{$D3}{$C4} absolute data

Section Size (ASS)

The ASS record is required for all sections and defines the size for this
section.

{$E2}{$D3}{n1}{n2}

$E2D3 Record type
n1 Section index An ST record must have occurred before this ASS

record.
n2 Section size (in minimum address units). This expression must

be a simple number.

Section Base Address (ASL)

ASL records specify the section base address.

{$E2}{$CC}{n1}{n2}

$E2CC Record type
nl Section index (this must be the same index as specified for the

ATN record)
n2 Section Base address (in minimum address units)

Debug Information Part

The Debug Information part contains records that define how to determine
the symbol related information for a module at execution time. This is
required for debuggers that provide high-level debugging capabilities.

For information on the syntax of records in the Debug Information Part,
see the HP/MRI IEEE 695 Format Object File Semantics section.

i960 Processor Software Utilities User's Guide

D-20

D
Block Begin (BB)

The BB records are an extension to the IEEE-695 Trial Use standard.
They provide definitions of debugging information related to the high
level language definitions for types, scope and line numbers. They also
provide assembly level language definitions for modules and local
symbols. A block beginning with a BB is terminated with a BE record.
BB records can be nested according to rules described below. Nested BB
blocks can be used to capture scoping information. The types of BB
blocks include:

BB1 Type definitions local to a module.
BB3 A module. A non-separable unit of code, usually the result of a

single compilation, i.e. the symbols associated with a COFF
.file symbol.

BB4 A global subprogram.
BB5 A source file line number block.
BB6 A local (static) subprogram.
BB10 An assembler debugging information block.
BB11 The module portion of a section.

The following list describes features of some of the blocks.

• BB1, BB3 and BB5 blocks usually occur together and in that order.
• BB1 blocks can be absent for modules that declare no local types.
• BB5 blocks immediately follow BB3 blocks in this implementation.
• A BB5 cannot occur without a BB3.
• Consecutive BB3 and BB5 blocks must refer to the same module.

HP/MRI IEEE 695 Object File Format

D-21

D
Block Nesting . For a summary of block nesting rules, see Table D-8
below.

Module-Scope Type Definitions (BB1)
 NN and TY records
Module-Scope Type Definitions End (BE1)

High Level Module Block Begin (BB3)
 Global Variables (NN, ATN8, ASN)
 Module-Scope Variables (NN, ATN3, ASN)

 Module-Scope Function Block Begin (BB6)
 Local Variables (NN, ATN, ASN)
 Module-Scope Function Block End (BE6)
 Global Function Block Begin (BB4)
 Local Variables (NN, ATN, ASN)
 Local Function Block Begin (BB6) High level
 Local Variables (NN, ATN, ASN) Module Block
 Local Function Block End (BE6) (one for each
 Global Function Block End (BE4) high-level
High Level Module Block End (BE3) module)
Source File Block Begin (BB5)
 NN,ASN,ATN, line numbers in source
Source File Block End (BE5)
Assembly Module Block Begin (BB10)
 Compiler Generated Global/External
 Variables (NH, ATK16, ASK)
 Compiler Generated Local Variables (NH,
 ATK16, ASK)
 Assembler Section Block Begin (BB11)
 Assembler Section Block End (BE11)
 Assembler Section Block Begin (BB11)
 Assembler Section Block End (BE11)
Assembly Module Block End (BE10)
Assembly Module Block Begin (BB10)
 Global/Extern Variables (KN,ATN19,ASN)
 Local Variables (KK, ATN19, ASN)
 Assembler Section Block Begin (BBll) Assembly Level
 Assembler Section Block End (BEll) Module Block
 (one for each
 Assembler Section Block Begin (BB11) assembly level
 Assembler Section Block End (BEll) module)
Assembly Module Block End (BE10)

i960 Processor Software Utilities User's Guide

D-22

D
Table D-8 below illustrates which of the blocks under Inner can be nested
within the blocks listed under Outer. Some of the blocks require an outer
block. For example, a BB4 block requires that its outer, enclosing block be
a BB3. Similarly, a BB1 or BB2 block requires that its outer, enclosing
block be the Debug Part, or debug.

Table D-8 Summary of Permitted Block Nesting

Inner
BB1 BB2 BB3

Outer
BB4 BB5 BB6 BB10 BB11 debug

BB1 no no no no no no no no yes

BB2 no no no no no no no no *

BB3 no no * * no * no no yes

BB4 no no required no no no no no no

BB5 no no no no * no no no yes

BB6 no no yes yes no * no no no

BB10 no no no no no no * no yes

BB11 no no no no no no required no no

* Supported by HP/MRI-695 but not produced by cvt960.

The format for each block type is described below:

Block Type 1 - unique type definitions for module

{$F8}{$01}{0){Id}

$F8 Record type
$01 Block Type 1 - unique typedefs for module
0 Block size in bytes (0 = unknown)
Id Module name (from COFF .file symbol).

Block Type 3 - high level module scope beginning

{$F8}{$03}{0}{Id}

$F8 Record type
$03 Block Type 3 - high level module scope beginning

HP/MRI IEEE 695 Object File Format

D-23

D
0 Block size in bytes (0 = unknown)
Id Module name (must be the same name as specified for BB1)

Block Type 4 - global function

{$F8}{$04}{0}{Id}{0}{n3}{n4}

$F8 Record type
$04 Block Type 4 - global function
0 Block size in bytes (0 = unknown)
Id Function name
0 Number of bytes of stack space required for local variables

(in minimum address units) (0 = unknown)
n3 Type index for return value parameter and function information

(`x' type), (0 = unknown)
n4 The absolute address of the beginning of the code block.

Block Type 5 - filename for source line numbers

{$F8}{$05}{0}{Id}

$F8 Record type
$05 Block Type 5 - filename for source line numbers
0 Block size in bytes (0 = unknown)
Id Source filename

Block Type 6 - local function

{$F8}{$06}{0}{Id}{n2}[n3]{n4}

$F8 Record type
$06 Block Type 6 - local function (static)
0 Block size in bytes (0 = unknown)
Id Function name
n2 Number of bytes of stack space required for local variables (in

minimum address units)
n3 Type index for return value parameter and function information

('x' type) (0 = unspecified)
n4 Offset (in minimum address units). The offset is the absolute

address of the beginning of the code block.

i960 Processor Software Utilities User's Guide

D-24

D
If the function name does not exist (length = 0), this is an unnamed block
used for variable scoping only.

Block Type 10 - assembler module scope beginning

{$F8}{$0A}{0}{Id}{Id}[n2][Id][n3[n4[n5[n6[n7[n8]]]]]]

$F8 Record type
$0A Block Type 10 - assembler module scope beginning
0 Block size in bytes (0 = unknown)
Id Name of the source file (COFF .file symbol)
Id Zero length string
n2 Tool type: if a .global_non_init module, this field contains

210 (tool code for the cvt960). Otherwise, if the assembler
outputs an asmid this field contains 209 (tool code for the
asm960) or if there is no asmid there is no n2.

Id Version and revision in string format: if n2 is 210, the version
and revision of cvt960 is given; if n2 is 209, the version and
revision of asm960 is given. If there is no n2, there is no Id .

n3 Year (e.g., 1988) (if produced by COFF)
n4 Month (1-12) (if produced by COFF)
n5 Day(1-31) (if produced by COFF)
n6 Hour (0-23) (if produced by COFF)
n7 Minute (0-59) (if produced by COFF)
n8 Second (0-59) (if produced by COFF)

The first Id field in the BB10 record holds the value of the .file symbol
from COFF; either a .c filename or an asm filename.

Block Type 11 - module section

{$F8}{$0B}{0}{Id}{n2}{n3}{n4}[n5]

$F8 Record Type
$0B Block Type 11 - module section
0 Block size in bytes (0 = unknown)
Id Zero length name (section name already defined)
n2 Section type

0 Mixture of code, data, etc.

HP/MRI IEEE 695 Object File Format

D-25

D
n3 Section index
n4 Offset (in minimum address units)

Optional fields may be null; but if any field is null and a later field is
present, the omitted field must be filled with the {$80} construct. The
relationship of blocks to variable attribute and variable value records (NN,
ASN, ATN records) is preserved in the file. For variables that have an
NN, ASN, ATN triple, these records must be together in the block
structure definition (i.e., there can be no BB nor BE records between
them). Block definitions may be nested.

Variable Names (NN)

These NN records declare variable names, type names and line numbers.
The IEEE-695 Trial Use standard has been extended to allow duplicate
local symbols to be defined, as long as the indices and the scoping are
different.

This provides symbol definitions that are local to a specific section.

{$F0}{ n}{Id}

$F0 Record type
n Name index number (must be> 31,0-31 are reserved)
Id Name

Define Types (TY)

The TY record specifies that a type name represents an explicit type
definition other than the implicit types predefined for use with HP/MRI
language variables. Different types with the same name may be declared.
This is supported by this specification by having multiple NN, TY pairs
with the same name in the NN.

{$F2}{nl}{$CE}{n2}[n3][n4]...

$F2 Record type

nl Type index unique within module (>255) (0-255
reserved for implicit types)

$CE Record type

i960 Processor Software Utilities User's Guide

D-26

D
n2 Local name index for symbol defined by NN

record

n3,n4... Variable number of fields specifying additional
type information as defined in Tables D-7 and
D-8.

Attribute Records (ATN)

Each ATN record is associated with an NN record and defines a valid
symbol.

NN record: {$F0}{nl}{Id}

ATN record: {$F1}{$CE}{n1}{n2}{n3}[x1][x2][x3][x4]

[x5][x6][Id]

ASN record: {$E2}{$CE}{n1}{h2}

$F0 NN record type

n1 Symbol name (NN record) type

Id Symbol name

$F1CE ATN record type

nl Symbol name index (this must be the same index
as specified for the NN record)

nl Symbol type index (0=untyped)

nl The numbers representing the attributes, the
blocks they can appear in, and their descriptions
are illustrated in Table D-9.

x1..... Id Optional features, described for each attribute.

$E2CE ASN record type

n1 Symbol name (NN record) index

n2 Symbol value

HP/MRI IEEE 695 Object File Format

D-27

D
Table D-9 Attribute Numbers, Blocks, and Descriptions

n3 Block Description

1 4,6 Automatic variable; requires an additional field [x1]
defining the stack offset (in minimum address units) .
There is no ASN record.

3 3,4,6 Compiler defined static variable. There must be an ASN
or ASI record specifying the address value.

5 External variable definition. There is no ASN record.

7 5 Line number; requires two extra fields giving the line
number and column number. Two optional fields [x3]
and [x4] are reserved and should be omitted. The line
and column number represent the end of a group of one
or more lines in a statement. A column number of 0
represents the end of the line and reflects the fact that
cvt960 cannot get this information from COFF. Line
numbers do not have to be in ascending order, and it is
the consuming tool's responsibility to handle numbers
that are "out of order." There must be an ASN record
specifying the address.

8 3 Compiler global variable. There must be an ASN record
specifying the address value.

10 4,6 Defines a variable name as a locked register; requires
an extra field, [x1], to define the index of the register
name. There is no ASN record.

19 10 Static variable generated by assembler; may be global in
scope. There must be an ASN record specifying the
address/value. There is one required field [x1], which
indicates the number of elements of type n2 described
by the symbol, and [x2], which is a local/global indicator.
[x2]=omitted or 0 indicates local. [x2]=1 indicates global.

37, 38,
39, 50,
51, 52,
53, 54, 55

See the AD Extension Part section and the
Environmental Part section.

continued ☛

i960 Processor Software Utilities User's Guide

D-28

D
Table D-9 Attribute Numbers, Blocks, and Descriptions (continued)

n3 Block Description

62 4,6 Procedure block misc.; followed by two fields that
describe the most recent procedure block. The first field
Ix1] is the pmisc. type identification number, the second
[x2] is the number of additional ATN 65 or ASN records
associated with this directive. See the Miscellaneous
Records section for the codes associated with this
directive.

63 3,4,6 Variable misc.; followed by two fields that describe a
variable. The first field [x1] is the vmisc. type
identification number, the second [x2] is the number of
additional ATN 65 or ASN records associated with this
directive. See the Miscellaneous Records section for
the codes associated with this directive.

64 3 Module misc.; followed by two fields that describe the
current module block. The first field [x1] is the mmisc.
type identification number, the second [x2] is the number
of additional ATN 65 and ASN records associated with
this directive. See the Miscellaneous Records section
for the codes associated with this directive.

65 3,4,6 Misc. string; requires one field that is a string value for
miscellaneous records 62, 63 and 64.

Value Records (ASN)

The ASN records are used to define values for variables.

{$E2}{$CE}{nl}{n2}

$E2CE Record type
nl Symbol name index (must be the same as specified for the

record)
n2 value for symbol (in minimum address units if it is an address)

Stack relative symbols and register-based symbols must not have an ASN
record since the value is defined at execution time.

HP/MRI IEEE 695 Object File Format

D-29

D
Compiler Id

This section is applicable if the assembler recognizes the ic960 compiler's
.ident directive. Compiler Id Codes directly follow the BB3 record. A
dummy NN record precedes the initial ATN record in order to produce a
symbol name index. One ATN record defines that this is a module
miscellaneous directive. It is followed by three ASN records for tool
code, type checking code, and default pointer size in minimum address
units. These are optionally followed by one ATN for the version number
and up to six ASNs for the date and time.

{$F1}{$CE}{n1}{0}{64}{50}{n5}{ASN1}{0}{4}[ATN1][ASN4[ASN5
[ASN6[ASN7[ASN8[ASN9]]]]]]

$F1CE ATN Record type
n1 Symbol name index produced by an NN record.
0 Symbol type index
64 Attribute definition of 64 for module misc.
50 Module misc. type identification number of 50 (ATN record)
n5 Miscellaneous record count (based on number of date values,

etc.)
ASN1 Tool code definition. The tool code is either 208 for the ic960

compiler or 210 for the cvt960 converter.
ASN2 Type code
0 Transparent type checking (structural type equivalence)
4 Default pointer size for module (in minimum address units).
ATN1 Version number of tool
ASN4 Year (e.g. 1990)
ASN5 Month (1-12)
ASN6 Day (1-31)
ASN7 Hour (0-23)
ASN8 Minute (0-59)
ASN9 Second (0-59)

i960 Processor Software Utilities User's Guide

D-30

D
Block End (BE)

The BE record extends the IEEE standard and is used in conjunction with
a BB record. The BE record for type 4,6, and 11 BB records are different
than others as indicated in the following definitions:

Block End - General

{$F9}

$F9 Record type

Block End - for block types 4 and 6

{$F9}{n1}

$F9 Record type
nl Expression defining the ending address of the function (in

minimum address units)

Block End - for block type 11

{$F9}{n1}

$F9 Record type
n1 Expression defining the size in minimum address units of the

module section

Data Part

The data part contains records defining fixed data for the module and is
always loaded at the current PC value in the current section. The current
section is defined by the SB record and the PC is defined by the ASP
record. If no SB record is defined, the current section is specified as 0. If
no ASP record is defined, the PC for a section is initially set to the start of
the section.

HP/MRI IEEE 695 Object File Format

D-31

D
NOTE. Section 10.1 of the IEEE Trial Use Standard says that the current
section is 0 before any SB records are encountered. Section 10.2 specifies
that if no ST record is present for a section, the type is absolute and shall
have an assignment to its L variable. Taken together, these statements
imply that the example module in Section 4.1 of the standard is illegal. HP
and MRI follow the definition as stated in Section 10.1 of the IEEE Trial
Use Standard.

Set Current Section (SB)

The SB record defines the current section. SB has no effect on the P
variable.

{$E5}{n1}

$E5 Record type
n1 Section index

Set Current PC (ASP)

The ASP record sets a new value for the current PC. An ASP record is
required after an SB record to reset the value of the P variable.

{$E2}{$D0}{n1}{n2}

$E2D0 Record type
nl Section index
n2 Expression defining new value (in minimum address units)

Load Constant Bytes (LD)

The LD record specifies the number of minimum address units to be
loaded as constant data.

{$ED}{n1}{...}

$ED Record type
n1 Number of minimum address units (1-127)
... (n1 x minimum address unit size) data bytes

i960 Processor Software Utilities User's Guide

D-32

D
Repeat Data (RE)

The RE record specifies data initialization in a compact form.

{$F7}{nl}

$F7 Record type
nl Expression defining number of times to repeat the following LD

or LR record data. The IEEE-695 standard has been extended to
include repeating LD records. The length of data that can be
repeated is limited to 128 bytes.

Trailer Part

The Trailer part contains the records described below.

Starting Address (ASG)

The ASG record is optional and defines the execution starting address.
This expression requires $BE/$BF delimiters.

{$BE}{n1}{$BF}

$E2C7 Record type
n1 Value defining the execution starting address (in minimum

address units)

Module End (ME)

The ME record defines the end of the module and must be the last record
in the module.

{ME}

HP/MPI IEEE-695 Format Object File Semantics

This section describes the HP/MRI IEEE-695 format object file semantics.
The format shows the records by record header (for example, NN is a
name index record). Records enclosed in square brackets ("[" and "] ") are
optional; records enclosed in curly braces ("{ " and "} ") are repeatable 0 or
more times.

HP/MRI IEEE 695 Object File Format

D-33

D
AD Extension Part and Environment Part

The AD Extension part and the Environment part constitute attribute
records describing the file, its contents, and its creation. The format of the
two sections is shown below:

{[NN]ATN[ASN]}

where at least one NN must be present before any ATN, and the name
index for the ATN must be the same as the last NN.

Public/External Part

The Public/External part contains records describing public and external
symbols, by name, type, and address. The format of the records is shown
below:

Public: {NI [ATI ASI]}

where the name index for the NI, ATI and ASI records must match in each
triplet. It is not possible to have more than one ATI or ASI record for any
name. A vmisc may follow any public.

Section Part

The Section part describes the different sections in the file. It describes
the combined sections after linkage.

The format of these records is shown below:

{ST [ASS][ASL]}

where the section index for the ST, ASS, or ASL records must match for
each group. It is not possible to have more than one ASS or ASL record
for any section name.

i960 Processor Software Utilities User's Guide

D-34

D
Debug Part

In the Debug part, there are two types of main groups: high-level blocks
created by a compiler, and assembly language blocks created by the
assembler. The high level blocks contain all compiler symbol information,
as described In the HP/MRI IEEE-695 specification. The format for the
Debug part is shown below:

{ ([BB1] BB3 [BB5] [BB10]) or BB10 }

where the first enclosing parenthesis shows a high-level group: The
module names for BB1, BB3, and BB10 must match; the filename in the
BB5 is related to the module name. The BB10 block provides backward
compatibility. The lone BB10 block is the assembly level group. It is
created when there is no high-level information.

BB1 Block

A BB1 block contains type information for high-level symbols; it is
described earlier in this document. The block is formatted as shown
below:

{NN {TY}}

where any number of types with the same name is allowed. The name
index must match between the TY record and the last NN record.

BB3 Block

A BB3 block contains the symbolic information for all symbols except
types and lines. It represents one compilation unit (a full compilation
module, with include files). It is formatted as shown below:

{[BB4] [BB6] NN ATN[ASN]}

where BB4 blocks are global functions and BB6 blocks are static functions
or unnamed blocks. The NN, ATN, ASN pairings are public, static, or
external symbols (locals are in BB4 and BB6 blocks). The name index for
NN, ATN and ASN records must match.

HP/MRI IEEE 695 Object File Format

D-35

D
BB4 and BB6 Blocks

BB4 and BB6 are scoping blocks and represent functions (procedures).
They contain all local symbols to the function. BB6 blocks may nest
inside of BB4 and BB6 blocks. If the BB6 block has a null name, it is a
scoping block only ("{ " blocks in C). The BB4 and BB6 blocks are
formatted as shown below:

{[BB6] ([NN] ATN) or (NN ATN[ASN]) }

where at least one NN record must be present for each ATN and ASN
name index used. The optionality of NN records is available only for
special ATN records (register lifetime). A local variable with the same
name as another symbol in an outer block must still have a new NN
record. The NN, ATN, or ASN records that describe a symbol must all
reside within the same BB/BE scope; their affiliation cannot cross BB or
BE boundaries. The optionality of ASN records is defined earlier in this
document.

BB5 and BB10 Blocks

A BB5 block carries the source file information, such as the source
filename, include filenames, and lines. It is formatted as shown below:

{ [BB5] [[NN] ATN ASN] } [BB10]

The BB10 block is created by the assembler to hold assembly language
information, such as assembly language source filename, and local section
information (R_Label sections); it is not intended to have assembler
symbols such as a lone BB10 block.

The cvt960-created .global_non_init module, however, has many
assembler-level globals in B10.

The BB10 block is placed after the BB5 block. The HP/MRI specification
allows other BB5 blocks to be nested inside, interspersed in the line
information. These are usually include files. The cvt960 converter does
not produce nested BB5s because include file information is not
available from COFF.

i960 Processor Software Utilities User's Guide

D-36

D
The line information must have at least one NN record before any ATN or
ASN records, and the index for the ATN and ASN must be the same as the
last NN. Only lines that have code associated with them need to be
present. All readers can assume that any missing lines are associated with
the next line specified.

The column offset parameter indicates the position of the high level source
line. The offset is taken to mean the column position of the last token of
the source text associated with the machine instructions immediately
following the code position indicated by ATN 7.

Source file columns are numbered starting with 1. The special column
offset value of 0 is defined to indicate the position of the last column on
the line. Because column information is not available from COFF, the
column is 0.

The BB10 block carries the information derived by the assembler from a
file not produced by a compiler (or one that did not put in debug
information). The BB10 block has the section information on a module
basis (as opposed to the linker's combined sections); this allows a tool to
know the part of a section that came from a particular module. Also, any
local or global assembly language symbols are shown here. It is formatted
as shown below:

{BB11 }{[BB10] NN ATN ASN}

where the BB11 block contains the section information as described
earlier in this manual. BB10 blocks may be nested for include files. The
name index for the NN, ATN and ASN records must match.

NOTE. COFF lacks module-membership information for global
uninitialized variables, so cvt960 produces the pseudo-module
.global_non_init for them.

HP/MRI IEEE 695 Object File Format

D-37

D
Miscellaneous Records

Miscellaneous records provide a flexible and extensible method for
communicating information generated by a compiler or other language
translator directly to a debugger or other consumer tool via the object file.
Information in miscellaneous records is classified according to a coding
system defined below. The content and meaning of each miscellaneous
information category can be defined to suit a wide range of information
needs, and new miscellaneous information categories can be defined as
needed. Thus, miscellaneous records allow the IEEE-695 object module
format to evolve in an orderly manner as new debugging features and
requirements emerge.

One of the main advantages of miscellaneous records is that, in general,
they are processed in a generic, content-independent manner by
intermediate language system tools such as assemblers and linkers. That
is, assemblers and linkers need not interpret or manipulate in any special
way the contents of miscellaneous records, except to resolve, in the
standard manner, the values of relocatable expressions that may be present
in these records. As a result, there is no need to modify assemblers or
linkers when new classes of miscellaneous information are defined.

Three classes of miscellaneous records have been defined: module
miscellaneous records for augmenting the debugging information for
program modules, procedure miscellaneous records for decorating code
blocks, and variable miscellaneous records for decorating data objects.
The three kinds of miscellaneous records differ primarily with regard to
the scope within which the record's information applies. The affiliation of
a miscellaneous record with the object or objects it describes is determined
primarily by the relative position within the object file of the
miscellaneous record and the object or objects it describes. These
positional relationships are explained in more detail below.

i960 Processor Software Utilities User's Guide

D-38

D
Module Miscellaneous Records

Module miscellaneous records convey information about a program
module. For high level modules, module miscellaneous records appear
within a BB3/BE3 scope. For assembly modules, module miscellaneous
records appear within a BB10/BE10 scope. The information in a module
miscellaneous record applies to the module within whose scope the record
is enclosed. For example, the information in the module miscellaneous
record having code 50 (compiler Id, type checking rules, and compilation
time) applies to the entire module and all objects in the module.

Multiple miscellaneous records can coexist within the same module scope,
especially if the records have different classification codes. However,
some module miscellaneous record types (e.g., code 50) allow at most one
record of a given classification code within any single program module
scope.

Specific object file readers may impose further restrictions on the position
of module miscellaneous records. For example, if the information in a
module miscellaneous record influences the interpretation of the
debugging information of other objects in the module scope, specific
consuming tools may require that the module miscellaneous record occur
before any other debug information. This is strictly a requirement of the
consuming reader tool, however, and not the object module format.

Variable Miscellaneous Records

The information in a variable miscellaneous record applies to the most
recent data object declared using a normal NN/ATN/ASN cluster, as
described in Chapter 3. For example, variable miscellaneous code defines
the register shadowing parameters for the specific data object immediately
preceding the variable miscellaneous record.

HP/MRI IEEE 695 Object File Format

D-39

D
Procedure Miscellaneous Records

The information in a procedure miscellaneous record applies to the entire
code block within whose scope the record is enclosed. The traditional
scope for a procedure miscellaneous record has been a procedure or
function code block, that is, BB4/BE4 or BB6/BE6. For example,
procedure miscellaneous code 1 conveys the address of the exit (return)
instruction of a procedure.

However, in anticipation of supporting future lexical features such as Ada
tasks and package scopes, and to limit the proliferation of terminology
associated with decoration of code blocks, the definition of the enclosing
scope for a procedure miscellaneous record is broadened to include other
kinds of code blocks, some of which are yet to be defined. There is no
ambiguity regarding the scope of each procedure miscellaneous record,
because the relevant enclosing scope had to have been agreed to both by
the producer and consumer of the procedure miscellaneous information
when the classification number was assigned.

Thus, by definition, each procedure miscellaneous record's classification
number also implies the record's relevant code block scope.

General Syntax Rules

Miscellaneous records are composed of groups of NN, ASN, and ATN
records that together form a cluster or packet of information The
miscellaneous record cluster can be thought of as a list of parameters, the
first of which constitutes a classification number that dishes each cluster
from all others. Remaining parameters are the information conveyed by
the record cluster.

Parameters In Miscellaneous Records

Parameters in miscellaneous records may be character strings, numerical
constants, compiler labels, or relocatable expressions. The object module
format constrains neither the number of parameters a miscellaneous record
may have, nor which of the permissible parameter types is to be used in

i960 Processor Software Utilities User's Guide

D-40

D
any of the individual parameter slots, except the first slot. The first slot
must be the numerical information classification code. The number and
composition of the remaining parameter slots is completely determined by
the syntax specification for each miscellaneous record. However, the
following rules apply to individual parameter values:

1. Numerical constants may be signed and have absolute values between
0 and 231 -1.

2. Floating point constants must be represented as quoted strings.

Every parameter that is a number or relocatable expression is represented
in the miscellaneous record cluster by an individual ASN record and every
parameter that is a string is represented by an individual ATN.

Examples

The following example illustrates how a module miscellaneous record
having the classification code 99 (chosen for illustration) would be
documented in this specification, and how it would be encoded in the
IEEE-695 object module.

code 99, value1, value2, `string1', value3, `string2'

The miscellaneous record cluster would be represented in this document as
follows:

NN: {$F0}{index}{null_name}

ATN: {$F1}{$CE}{index}{$00}{$40}{$63}{5}

ASN: {$E2}{$CE}{index}{value1}

ASN: {$E2}{$CE}{index}{value2}

ATN: {$F1}{$CE}{index}{$00}{$41}{string1}

ASN: {$E2}{$CE}{index}{value3}

ATN: {$F1}{$CE}{index){$00}{$41}{string2}

HP/MRI IEEE 695 Object File Format

D-41

D
The parameters of the NN and first few ATN and ASN records have the
following meanings:

NN: {$F0}{index}{null-name}

index unique index within the current BB3 block

null-name $00 (i.e., null name string)

ATN: {$F1}{$CE}{index}{n2}{n3}{n4}{n5}

index unique index within the current BB3 block (the ATN index must
match the index of the most recent NN record)

n2 $00 symbol type undefined
n3 $40 ATN type 64 - module miscellaneous information (mmisc)

record
n4 $63 = module miscellaneous information code 99 ($63 hex = 99

decimal)
n5 $05 = number of additional ASN/ATN records (5) associated

with this mmisc cluster

ASN: {$E2}{$CE}{index}{n2}

index as above
n2 expression for value1 (etc.)

A special case is where the first parameter in the miscellaneous record
cluster (after the classification code) is a string. In this case, the initial
string is encoded in the first ATN of the miscellaneous record cluster right
after the parameter indicating the number of additional ATN/ASN records
in the cluster. A procedure miscellaneous record cluster matching this
description, with illustrative classification code 99, is illustrated below.

code 99, 'string1', value1

The miscellaneous record would be represented in this specification as
follows:

NN: {$F0}(index}{null_name}

ATN: {$F1}{$CE}{index}{$00}{$3E}{$63}{1}{string1}

ASN: {$E2}{$CE}{index}{value1}

i960 Processor Software Utilities User's Guide

D-42

D
NOTE. string2 is included in the first ATN record of the cluster.

Optional Parameter Fields

Some miscellaneous records have optional parameters. These are denoted
in the parameter list as [parameter] . If some optional parameters in a
record are present but others are not, all of the optional parameter slots
preceding a supplied optional parameter must be accounted for. Missing
optional parameter(s) whose values are numbers are indicated using the
IEEE-695 "unknown" code ($80) in the slot corresponding to the missing
parameter. If the missing optional parameter is a string, a $80 length
string would appear in the ATN record corresponding to the missing
string. Omitted optional parameters that follow the last supplied
parameter need not be explicitly included in the miscellaneous record.

For example, in the following variable miscellaneous record, optional
value2 is missing:

code 99, value1 [,value2] [,value3]

The miscellaneous record cluster would be represented in this document as
follows:

NN: {$F0}{index}{null_name}

ATN: {$F1}{$CE}{index}{$00}{$3F}{$63}{5}

ASN: {$E2}{$CE}{indexXvalue1}

ASN: {$E2}{$CE}{index}{$80}

ASN: {$E2){$CE}{index}{value3}

HP/MRI IEEE 695 Object File Format

D-43

D
As another special case, it is permissible to omit the NN record when a
variable miscellaneous directive immediately follows the variable
NN/ATN/ASN that it modifies. In this case, the variable miscellaneous
directive ATNs and ASNs would all use the same NN index as the actual
variable:

NN index
ATN index info... Original Variable
ASN index expression

ATN index 0 64 misc_code count
 Variable Misc. Information
ASN/ATN index...

Codes for Miscellaneous Records

Each module, procedure, and variable miscellaneous directive is assigned
an ID number from a common index pool. For example, there is only one
miscellaneous directive with ID code 1.

The first 50 codes (0-49) are reserved for miscellaneous directives in
which the assembler needs to correlate the argument information with
other debug information. Codes greater than 49 are used for
miscellaneous directives where the assembler only needs to encode the
parameters of the miscellaneous directive into the relocatable object
module.

Policies for Adding and Modifying Miscellaneous
Records

Adding new miscellaneous records to the object module format is
straightforward, but requires agreement between the producers and
consumers of the miscellaneous information. To supplement the
debugging information for some program object, the compiler designer
need only agree with the consumer tool designer on the miscellaneous
record classification code to identify the new information category, and
output the appropriate miscellaneous record and parameters using the
general rules described below.

i960 Processor Software Utilities User's Guide

D-44

D
Clearly, even when there is agreement between producers and consumers
of IEEE-695 object modules, wholesale modification of existing
miscellaneous records is undesirable, because older versions of object
module reader tools can become confused by the new record syntax, and
the backward compatibility of new object files with older consumer tools
could suffer.

Policies for Generating and Reading Miscellaneous
Records

The following policies are set forth to ensure that miscellaneous
information records are created, modified, and consumed in an orderly
manner:

1. (For object module producers) Adding new required fields to an
existing miscellaneous record is prohibited. Adding new optional
fields to an existing miscellaneous record is permissible only if (a) the
new information is related to the information already in the record,
and (b) the new information does not alter in any way the
interpretation of the information already in the record. If the new
information violates any of these conditions, the new information
should go into a new miscellaneous record classification.

2. (For object module consumers) When a miscellaneous record having
an unknown classification is encountered, the object file reader should
first consult the version number of the object module format in the
ATN code 37 record of the Environment Part (see Chapter 3). If the
object module version is newer than the reader was designed to
consume, the reader should provide an indication to the user to this
effect. Readers might then either (a) continue reading the object file,
simply ignoring the information, or (b) abort reading the object file
with a message that continuing would result in potentially ignoring
important information about symbols in the object module. If
behavior (b) is implemented, the reader might be designed so that the
user can force it to read the object file anyway, thereby allowing the
user to get some benefit from the object file, while being fully aware
of the consequences of ignoring some information.

HP/MRI IEEE 695 Object File Format

D-45

D
When a miscellaneous record having an unexpected optional
parameter is encountered, the situation is somewhat different.
Assuming the unexpected optional parameters conform to the
producer rules above, that is, they do not alter the interpretation of the
information already in the record, they are truly discretionary, and the
reader probably can safely proceed with reading the object module,
perhaps after printing a warning (after checking the object module
version number) to the effect that unexpected fields were encountered
while reading a miscellaneous record.
Lastly, if the version number of the object file is one the reader was
designed to consume, and either new miscellaneous codes or
unexpected fields are encountered, the object module is either
defective or a producer has broken the rules for that object module
version. In either case, the reader should treat the remainder of the
object file with the same (or perhaps greater) suspicion than when the
object module version is newer than that supported by the reader.

The behavior in the face of all these contingencies is, of course, left to the
implementor of the consumer tool.

The currently defined miscellaneous information records are documented
in Table D-10.

i960 Processor Software Utilities User's Guide

D-46

D
Table D-10 Miscellaneous Record Codes

Misc.
Type Code Meaning

module 50 Compiler Id and date stamp.

Syntax: code 50, tool_code, type_rule, pointer_size
[,'compiler_version_string'] [,date]
NN: {$F0}{index}{null_name}
ATN: {$F1}{$CE}{index}{$00}{$40}{$32}{#_of_ATN/ASNs
 - currently between 3 and 10 inclusive}
ASN: {$E2}{$CE}{index}{tool_code}
ASN: {$E2}{$CE}{index}{type_rule}
ASN: {$E2}{$CE}{index}{pointer_size}
ATN: {$F1}{$CE}{index}{$00}{$41}
 {compiler_version_string}
ASN: {$E2}{$CE}{index}{year}
ASN: {$E2}{$CE}{index}{month}
ASN: {$E2}{$CE}{index}{day}
ASN: {$E2}{$CE}{index}{hour}
ASN: {$E2}{$CE}{index}{minute}
ASN: {$E2}{$CE}{index}{second}

continued ☛

HP/MRI IEEE 695 Object File Format

D-47

D
Table D-10 Miscellaneous Record Codes (continued)

Misc.
Type Code Meaning

variable 63 Call optimization information (i960_)

procedure Purpose/meaning:
 Holds the .sysproc/.leafproc information for the most
 recent public or external.

Position:
 In the Public/External Part after NI/ATI/ASI triples or
 after NX records in relocatable files.
Syntax: Code 63, proc_type, system_index | bal_address
 NN: {$F0}{index}{null_name}
 ATN: {$F1}{$CE}{index}{$00}{$3F}{$3F}
 {#_of_ATN/ASN's (1 or 2)}
 ASN: {$E2}{$CE}{index}{proc_type}
 ASN: {$E2}{$CE}{index}{bal_address}
Parameter meanings:
 proc_type: 0 if unknown

1 if leaf procedure
2 if system table procedure

 system_index: index into the system_table
(used only if proc_type == 2)

 bal_address: branch and link address (used only if
 proc_type == 1)

For more information on compiler identification, see the .ident directive
in the i960 Processor Assembler User's Guide.

Index

Index-1

A

a (After) archiver option modifier, 2-7

A (architecture) linker option, 7-25

arc960 command, 2-1

archiver, 2-1

a (After) option modifier, 2-7

b (Before) option modifier, 2-8

c (create) option modifier, 2-9

d (Delete) option modifier, 2-10

F (Library Format) option modifier, 2-11

h (Help) option modifier, 2-11

i (Insert) option modifier, 2-8

l (Local) option modifier, 2-12

m (Move) option modifier, 2-13

o (Output Date) option modifier, 2-14

options summary, 2-2

p (Print) option modifier, 2-14

r (Replace) option modifier, 2-15

s (Symbol Table) option modifier, 2-16

t (Table of Contents) option modifier, 2-17

u (Update) option modifier, 2-18

v (Verbose) option modifier, 2-19

V (Version) option modifier, 2-20

v960 (Version) option modifier, 2-20

x (Extract) option modifier, 2-21

z (Suppress Time Stamp) option modifier,
2-22

B

b (Before) archiver option modifier, 2-8

B (section start address) linker option, 7-27

b.out / COFF / ELF converter, 3-1

options summary, 3-2

backslash (\) character, use with tools, 1-5

BSS sections, linker, 7-4

C

c (circular library search) linker option, 7-29

c (Create) archiver option modifier, 2-9

C (startup alternative) linker option, 7-29

CAFF format for i960 processors, C-1

callj/calljx, link time optimization, 7-16

checksum rom960 directive, 12-7

cof960 command, 3-2

object converter, 3-1

COFF / b.out / ELF converter, 3-1

options summary, 3-2

COFF format for i960 processors, C-1

COFF symbol translation, cvt960, 4-5

COFF to IEEE-695 converter, 4-1

options summary, 4-2

Common Object File Library (COFL), B-1

compatibility of mpp960, 8-1

conversion tools for object files, 3-1, 12-1

i960 Processor Software Utilities User's Guide

Index-2

converter, 3-2

output file, 3-3

coverage analyzer, 5-1

controls summary, 5-2, 5-3

option summary, 5-3, 5-4

CTOOLS 5.1 compatibility, 1-3

cvt960 invocation, 4-1

cvt960 object converter, 4-1

archives and relocatable objects, 4-3

COFF line numbers, 4-4

compilation/assembly information, 4-4

global uninitialized symbols, 4-3

IEEE-695 built-in types, 4-5

IEEE-695 converter warning messages, 4-8

Position-independent code, data, and
symbols, 4-3

unreferenced types, 4-3

D

d (define common symbol space) linker
option, 7-31

d (Delete) archiver option, 2-10

D (inhibit CAVE section compression) linker
option, 7-31

debugging macros, 8-16–8-19

defsym (define a symbol) linker option, 7-32

Displaying archive structure, 6-12

dmp960

archive support, 6-11

displaying archive structure, 6-12

dumping absolute symbols, 6-5

dumping archive member contents, 6-14

examples, 6-6

section headers, 6-11

symbol tables, 6-9

with symbolic disassembly, 6-8

dmp960 / gdmp960

options summary, 6-2 thru 6-4

dmp960 invocation, 6-1

dumper

archive support, 6-11

displaying archive structure, 6-12

options summary, 6-2, 6-3

dumper / disassembler, 6-1

dumping absolute symbols, 6-5

dumping archive member contents, 6-14

E

e (entry point) linker option, 7-33

ELF / b.out / COFF converter, 3-1

options summary, 3-2

ELF/DWARF sections, linker, 7-4

environment variables, linker, 7-20

F

f (fill) linker option, 7-35

F (format) linker option, 7-34

F (Library Format) archiver option, 2-11

G

G (big-endian target) linker option, 7-36

gar960 command, 2-1

gcdm (decision maker) linker option, 7-37

gcov960 invocation, 5-1

Index

Index-3

gdmp960

archive support, 6-11

displaying archive structure, 6-12

dumping absolute symbols, 6-5

dumping archive member contents, 6-14

invocation, 6-1

ghist960

invocation, 14-2

options, 14-3

gld960 linker invocation, 7-6

global uninitialized symbol, IEEE-695, 4-3

gmung960 command, 9-1

gnm960 command, 10-1

grom960, 11-1

converting image to hex files, 11-4

creating binary images, 11-4

invocation, 11-1

options summary, 11-2

section specification, 11-2

gsize960 command, 13-1

gstrip960 command, 15-1

H

h (Help) archiver option, 2-11

h (help) linker option, 7-38

H (sort common symbols) linker option, 7-38

HP/MRI IEEE 695 object file format, D-1

hyphen (-) character, use with tools, 1-5

I-J

i (Insert) archiver option modifier, 2-8

IEEE-695

built-in types, cvt960, 4-5

converter warning messages, cvt960, 4-8

object file format, D-1

ihex rom960 directive, 12-8

invocation, conventions, 1-4

J (compress) linker option, 7-39

L

l (library input) linker option, 7-40

L (library search path) linker option, 7-39

l (Local) archiver option modifier, 2-12

library naming conventions and search order

linker, 7-21

linker, 7-1–7-57

B (section start address) option, 7-27

binding profile counters to non-standard
sections, 7-19

c (circular library search) option, 7-29

C (startup alternative) option, 7-29

calljx, i960 RP processor, 7-19

d (define common symbol space) option,
7-31

D (inhibit CAVE section compression)
option, 7-31

default allocation, A-7

defsym (define a symbol) option, 7-32

directives, A-4

e (entry point) option, 7-33

ELF/DWARF sections, 7-4

environment variables, 7-20

f (fill) option, 7-35

F (format) option, 7-34

G (big-endian target) option, 7-36

i960 Processor Software Utilities User's Guide

Index-4

linker (continued)

gcdm (decision maker) option, 7-37

h (help) option, 7-38

H (sort common symbols) option, 7-38

incremental linking, 7-13

J (compress) option, 7-39

l (library input) option, 7-40

L (library search path) option, 7-39

library naming conventions and search
order, 7-21

link time optimization, 7-16

linker directive files, specifying, 7-12

m (memory map) option, 7-42

M (multiple definition warning) option,
7-42

memory block and section allocation, 7-2

N (name memory map file) option, 7-43

n (noinhibit output) option, 7-44

named BSS sections, 7-4

O (optimization of calls inhibited) option,
7-44

o (output filename) option, 7-45

Object Module Format (OMF)
compatibilities, 7-14

options reference, 7-24

output file, naming, 7-13

p (position-independence) option, 7-47

P (profiling) option, 7-46

R (read symbols only) option, 7-48

r (relocation) option, 7-49

S (strip) option, 7-50

T (section start address) option, 7-27

t (suppress multiple definition symbol
warnings) option, 7-52

T (target) option, 7-51

u (unresolved symbol) option, 7-53

v (verbose) option, 7-54

V (version) option, 7-54

v960 (version) option, 7-54

W (warnings) option, 7-55

X (compress) option, 7-55

y (trace symbol) option, 7-56

Z (program database) option, 7-57

z (time stamp suppression) option, 7-57

linker command language, 7-51

assignments, A-2

expressions and operators, A-2

introduction, A-1

linker directive files, A-35

command language, A-1

described, 7-4

sample, 7-5

specifying, 7-12

linker directives

ADDR, A-25

ALIGN, A-25

CHECKSUM, A-33

DEFINED, A-25

ENTRY, A-28

FLOAT, A-31

FORCE_COMMON_ALLOCATION,
A-25

HLL, A-29

INCLUDE, A-32

MEMORY, A-5

linker directives (continued)

NEXT, A-25

Index

Index-5

OUTPUT, A-34

PRE_HLL, A-28

SEARCH_DIR, A-32

SECTIONS, A-8

SIZEOF, A-27

STARTUP, A-27

SYSLIB, A-31

TARGET, A-33

linker options summary, 7-7

linking, incremental, 7-13

lnk960 linker invocation, 7-6

M

m (memory map) linker option, 7-42

m (Move) archiver option, 2-13

M (multiple definition warning) linker option,
7-42

macro processor, 8-1

controlling input, 8-19

debugging macros, 8-16

diverting output, 8-23

including files, 8-22

processor options, 8-2

map rom960 directive, 12-10

mkfill, 12-12

mkimage rom960 directive, 12-12

move rom960 directive, 12-14

mpp960

command, 8-2

message prefixes, 8-1

munger, 9-1

options summary, 9-2

N

N (name memory map file) linker option, 7-43

n (noinhibit output) linker option, 7-44

nam960 command, 10-1

name lister, 10-1

options summary, 10-3

namer tool, 10-1

names of utilities, 1-3

O

O (optimization of calls inhibited) linker
option, 7-44

o (Output date) archiver option modifier, 2-14

o (output filename) linker option, 7-45

objcopy

command, 3-2

object converter, 3-1

options summary, 3-2

object file conversion tools, 3-1, 12-1

Object Module Format (OMF)

archives, 2-4

compatibilities, 7-14

optimization, link time, 7-16

output files, linker

naming, 7-13

i960 Processor Software Utilities User's Guide

Index-6

P

p (position-independence) linker option, 7-47

p (Print) archiver option, 2-14

P (profiling) linker option, 7-46

packhex rom960 directive, 12-15

patch rom960 directive, 12-16

permute rom960 directive, 12-17

profile (p) option, gcov960, 5-3, 5-4

Q-R

R (read symbols only) linker option, 7-48

r (relocation) linker option, 7-49

r (Replace) archiver option, 2-15

rom rom960 directive, 12-18

rom960

checksum directive, 12-7

directives summary, 12-4

ihex directive, 12-8

invocation, 12-1, 12-3

map directive, 12-10

mkfill directive, 12-12

mkimage directive, 12-12

move directive, 12-14

packhex directive, 12-15

patch directive, 12-16

permute directive, 12-17

rom directive, 12-18

sh directive, 12-21

split directive, 12-22

rommer, rom960, 12-1

S

S (strip) linker option, 7-50

s (Symbol Table) archiver option modifier,
2-16

section size printer, 13-1

options summary, 13-2

sh rom960 directive, 12-21

siz960 command, 13-1

slash (/) character, use with tools, 1-5

split rom960 directive, 12-22

statistical profiler, 14-1

buckets, 14-4

str960 command, 15-1

stripper, 15-1

options summary, 15-2

T

T (section start address) linker option, 7-27

t (suppress multiple definition symbol
warnings) linker option, 7-52

t (Table of contents) archiver option, 2-17

T (target) linker option, 7-51

temporary files, archiver, 2-5

test coverage analysis tool, 5-1

controls summary, 5-2, 5-3

option summary, 5-3, 5-4

tool names, 1-3

tools, list of, 1-2

Index

Index-7

U

u (unresolved symbol) linker option, 7-53

u (Update) archiver option and modifier, 2-18

UNIX command line, 1-4

utilities, list of, 1-2

utility names, 1-3

V

v (Verbose) archiver option modifier, 2-19

v (verbose) linker option, 7-54

V (Version) archiver option, 2-20

V (version) linker option, 7-54

v960 (Version) archiver option, 2-20

v960 (version) linker option, 7-54

W-X

W (warnings) linker option, 7-55

Windows command line, 1-4

X (compress) linker option, 7-55

x (Extract) archiver option, 2-21

Y-Z

y (trace symbol) linker option, 7-56

Z

Z (program database) linker option, 7-57

z (Suppress time stamp) archiver option, 2-22

z (time stamp suppression) linker option, 7-57

	i960® Processor Software Utilities User's Guide
	Disclaimer
	Contents
	Chapter 1 Overview
	Software Utilities and Related Tools
	Compatibility
	Compatibility Invocation Names

	DOS No Longer Supported as a Host
	Invocation Command-line
	Invocation Names
	Options, Arguments and Modifiers
	File System Dependencies

	Chapter 2 Archiver (arc960, gar960)
	Invocation
	Option and Modifier Arguments
	Specifying the Object Module Format
	Temporary Directory

	Option and Modifier Reference

	Chapter 3 COFF/ELF/b.out Converter (cof960/objcopy)
	Invocation
	Output File Specification

	Chapter 4 COFF to IEEE-695 Converter (cvt960)
	Invocation
	Limitations
	Position-independent Code, Data, and Symbols
	Archives and Relocatable Objects
	Unreferenced Types
	Global Uninitialized Symbols
	Compilation/Assembly Information
	COFF Line Numbers
	COFF Symbol Translation

	IEEE-695 Built-in Types
	IEEE-695 Converter Warning Messages

	Chapter 5 Coverage Analyzer (gcov960)
	Invocation

	Chapter 6 Dumper/Disassembler (dmp960, gdmp960)
	Invocation

	Chapter 7 Linker (lnk960, gld960)
	Overview
	Understanding Memory Blocks and Sections
	ELF/DWARF Sections
	Named BSS Sections

	Working with Linker Directive Files
	Linker Invocation
	Specifying Object Files
	Specifying Libraries
	Specifying Linker-directive Files
	Naming the Output File
	Incremental Linking

	Object Module Format Compatibilities
	Link-time Optimization
	Using calljx with the i960 RP Processor

	Binding Profile Counters to Non-standard Sections
	Environment Variables
	Library Naming Conventions and Search Order
	Library Search Order When i960 RP Architecture Is Selected

	Linker Options Reference

	Chapter 8 Macro Processor (mpp960)
	mpp960 Message Prefixes
	Invoking mpp960
	Lexical and Syntactic Conventions
	Names
	Quoted Strings
	Other Tokens
	Comments

	How to Invoke Macros
	Macro Invocation
	Macro Arguments
	Quoting Macro Arguments
	Macro Expansion

	How to Define New Macros
	Defining a Macro
	Arguments to Macros
	Special Arguments to Macros
	Deleting a Macro
	Renaming Macros
	Temporarily Redefining Macros
	Indirect Call of Macros
	Indirect Call of Built-Ins

	Conditionals, Loops and Recursion
	Testing Macro Definitions
	Comparing Strings
	Loops and Recursion

	How to Debug Macros and Input
	Displaying Macro Definitions
	Tracing Macro Calls
	Controlling Debugging Output
	Saving Debugging Output

	Input Control
	Deleting Whitespace in Input
	Changing the Quote Characters
	Changing Comment Delimiters
	Saving Input

	File Inclusion
	Including Named Files
	Searching for Include Files

	Diverting and Undiverting Output
	Diverting Output
	Undiverting Output
	Diversion Numbers
	Discarding Diverted Text

	Macros for Text Handling
	Calculating Length Of Strings
	Searching For Substrings
	Searching for Regular Expressions
	Extracting Substrings
	Translating Characters
	Substituting Text by Regular Expression
	Formatted Output

	Macros for Doing Arithmetic
	Decrement and Increment Operators
	Evaluating Integer Expressions

	Running Host Commands
	Executing Simple Commands
	Reading the Output of UNIX Commands
	Exit Codes
	Making Names for Temporary Files

	Printing Error Messages
	Exiting from mpp960
	Compatibility with Other Macro Processors
	Extensions in mpp960
	Facilities in UNIX System V m4 not in mpp960

	Chapter 9 Munger (gmung960)
	Chapter 10 Name Lister (gnm960, nam960)
	Chapter 11 ROM Image Builder (grom960)
	Invocation
	Using grom960
	Creating Binary Images
	Converting the Image to Hex Files

	Chapter 12 ROM Image Builder (rom960)
	Rommer Invocation
	Directive Files
	Directive Reference

	Chapter 13 Section-size Printer (gsize960, siz960)
	Invocation

	Chapter 14 Statistical Profiler (ghist960)
	Invocation

	Chapter 15 Stripper (gstrip960, str960)
	Appendix A Linker Command Language
	Introduction
	Expressions and Operators
	Linker Directives Reference
	MEMORY: Configuring Memory Regions
	Default Linker Allocation
	SECTIONS: Defining Output Sections
	FORCE_COMMON_ALLOCATION: Allocating Space for Common Symbols
	DEFINED: Finding Symbols
	ADDR, ALIGN, NEXT: Finding Addresses
	SIZEOF: Finding Section Sizes
	STARTUP: Specifying a Startup File
	ENTRY: Defining the Entry Point
	PRE_HLL(): Specifying Libraries to be Processed Before the High-level Libraries
	HLL: Specifying High-level Libraries
	SYSLIB: Specifying Low-level Libraries
	[NO]FLOAT: Supporting Floating-point Operations
	SEARCH_DIR: Extending the Search Path
	INCLUDE: Including Additional Directive Files
	TARGET: Using the Search Path for Directive Files
	CHECKSUM: Preparing for the Bus Confidence Test
	OUTPUT: Naming the Output File

	Linker Directive Files

	Appendix B Finding Information in Object Files
	Using the Common Object File Library: COFL
	Extracting File Header Information
	Function Reference

	Appendix C Common Object File Format (COFF) and Common Archive File Format (CAFF)
	Characteristics of COFF
	Definitions and Conventions
	Sections
	Physical and Virtual Address

	File Header
	File Header Declaration
	File Header Flags
	File Type Numbers
	Execution File Header Declaration

	Section Headers
	Section Header Declaration
	Section Header Flags
	Sections

	Relocation
	Relocation Entry Declaration
	Direct Relocation
	IP-relative Relocation

	Line Number Entry
	Symbol Table
	Symbol Table Entries
	Structure for Symbol Table Entries
	Symbols and Inner Blocks .bb/.eb
	Symbols and Functions .bf/.ef, .target
	Special Symbols
	Symbol Name
	Storage Classes
	Storage Classes for Special Symbols
	Call Optimization
	Symbol Value Field
	Section Number Field
	Section Numbers and Storage Classes
	Type Entry
	Type Entries and Storage Classes

	Auxiliary Table Entries
	Filenames
	Sections
	Tag Names
	End of Structure
	Functions
	Arrays
	End of Blocks and Functions
	Beginning of Blocks and Functions
	Names Related to Structures, Unions, and Enumerations
	Auxiliary Entry Declaration

	String Table
	Access Routines
	Archive Library Format
	The Archive Identification String
	Archive Members
	The Symbol Table

	Appendix D HP/MRI IEEE 695 Object File Format
	Terminology
	Nomenclature
	Number Format
	Name Format
	Information Variables
	Line Numbers
	Types

	Object File Components
	Header Part
	AD Extension Part
	Environmental Part
	External Part
	Section Part
	Debug Information Part
	Data Part
	Trailer Part

	HP/MPI IEEE-695 Format Object File Semantics
	AD Extension Part and Environment Part
	Public/External Part
	Section Part
	Debug Part
	BB1 Block
	BB3 Block
	BB4 and BB6 Blocks
	BB5 and BB10 Blocks

	Miscellaneous Records
	Module Miscellaneous Records
	Variable Miscellaneous Records
	Procedure Miscellaneous Records
	General Syntax Rules
	Parameters In Miscellaneous Records
	Optional Parameter Fields
	Codes for Miscellaneous Records
	Policies for Adding and Modifying Miscellaneous Records
	Policies for Generating and Reading Miscellaneous Records

	Index

