1960° Processor
Software Utilities
User’'s Guide

Order Number: 485277-005

Revision

-001
-002
-003
-004
-005

Revision History

Original Issue.

Minor corrections.

Revised for CTOOLS960 R4.5 and GNU/960 R2.4.

Revised for R5.0.
Revised for R5.1.

Date
12/92
09/93
05/94
02/96
01/97

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation

P.O. Box 7641

Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any
errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

* Other brands and names are the property of their respective owners.

N
&

recycled paper Copyright[] 1992-1994, 1996, 1997. Intel Corporation. All rights reserved.

Contents

Chapter 1 Overview

Software Utilities and Related Tools ... 1-1
CompatiDilitycovevviiiiiii 1-3
Compatibility Invocation Namesooevvvviivvvieinennnn. 1-3
DOS No Longer Supported as a HOSt............cuvvevevivieninnnns 1-4
Invocation Command-liNeoovvviviiiiiiiiiiiiiiiiiiiee, 1-4
INVOCAtION NAMES.......ueee e 1-4
Options, Arguments and Modifiersccvvvvevveeeeennee. 1-5
File System Dependencies...........ccceeeeiiiiieiiiieeeeeeeeeee 1-5
Chapter 2 Archiver (arc960, gar960)
INVOCALION. ...ttt 2-1
Option and Modifier Arguments.........ccccccevvvvvvviiiieeeennnn. 2-3
Specifying the Object Module Format............................ 2-4
Temporary DIr€CtOryccccceuuvmmiieriiiiirnieereeeeeeeeeeeeeeens 2-5
Option and Modifier Referenceccccccoiiiiiiiiiinnnn. 2-5
Chapter 3 COFF/ELF/b.out Converter (cof960/objcopy)
INVOCALION. ...ttt 3-2
Output File Specificationcccccvvviviiiiiiiiiiieee 3-3
Chapter 4 COFF to IEEE-695 Converter (cvt960)
INVOCALION. ...ttt 4-1
LIMIEATIONS ... 4-3
Position-independent Code, Data, and Symbols........... 4-3
Archives and Relocatable Objects............cccvvvvviiiveennnee. 4-3
Unreferenced TYPES......oooviiiiiiiiiiiii 4-3

1960 Processor Software Utilities User's Guide

Chapter 7

Global Uninitialized Symbols ... 4-3
Compilation/Assembly Informationccccceeinnnnns 4-4
COFF Line NUMDErS..........ouiiiiiiiiiiiiiiiiiiieeeee e 4-4
COFF Symbol Translationcccceeeeiiiiiiiiiiiiiiiiinns 4-5
IEEE-695 BUIlt-iN TYPESuiiiiiiiiiiieeee it 4-5
IEEE-695 Converter Warning Messages................euveeeennnes 4-8
Chapter 5 Coverage Analyzer (gcov960)
INVOCALION......ccoiiieee e 5-1
INVOCALION......coiiieee e 6-1
Chapter 6 Dumper/Disassembler (dmp960, gdmp960)
Dumping Absolute Symbolsccccooiiiiiii 6-5
ArChive SUPPOIT.....coiii 6-11
Displaying Archive Structure Information....................... 6-12
Dumping the Contents of Archive Members 6-14
Linker (Ink960, gld960)
OVEIVIBW ... 7-1
Understanding Memory Blocks and Sections..................... 7-2
ELF/DWARF SECHONSccovvviiiiiiiiiiiiiiiiiieeeeeeeee, 7-4
Named BSS SeCliONSccovvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 7-4
Working with Linker Directive Files...........ccccccoiiiiiiiiiinnnns 7-4
Linker INVOCAtIONcoooiiiiiiiii 7-6
Specifying Object Files ... 7-11
Specifying Librariesccoo 7-12
Specifying Linker-directive Filesccccccccn, 7-12
Naming the Output File..........cccoviiiiiiiiiii 7-13
Incremental Linkingcooovvvviiiiiiiiiiiieeee 7-13
Object Module Format Compatibilities...............ccccccvnvnnnnnns 7-14
Link-time Optimization ... 7-16
Using calljx with the i960" RP Processor 7-19
Binding Profile Counters to Non-Standard Sections........... 7-19

Contents

Environment Variables.............ccooooiiiiii 7-20
Library Naming Conventions and Search Order................. 7-21
Library Search Order When i960 RP
Architecture Is Selected...........ccooovviieii 7-24
Linker Options Referenceccccuvvvvieiiiiiiiiiiiiiiiiiiiiiiinns 7-24
Chapter 8 Macro Processor (mpp960)
MpPP960 Message Prefixes. ... 8-1
INVOKING MPPOBO.......eeieieiiiiiiiieiiieiiieieeieeeeee e 8-2
Lexical and Syntactic CoONventionsccccuvvvveeeienennnnns 8-5
NBIMES .. e 8-5
QuOted SEHNGS ..o 8-5
Other TOKENS......cooviiiiiiiiiieeee 8-6
COMMENES .. 8-6
HOW t0 INVOKE MACIOS........oviiiiiiiiiiiiiiiiiiiieeeee, 8-6
MaCIO INVOCALION ... 8-6
MaCro ArQUMENTSoeeeiiieeiiiee e 8-7
Quoting Macro ArgumMEeNtS.........ccevvvveieiiiieiieiiieeeieeeeeeeeen 8-7
MaCIO EXPANSION ... 8-8
How to Define New MaCrOS.............uuuuviimiiiiiiiiiiiiiieieeeeeeeeee 8-8
Defining @ MACIOccooeeeeeeeeeee e 8-8
Arguments t0 MaCIOSccovvvviriiiiiii e 8-9
Special Arguments t0 MacrosS..............evvveveviviveiieiiiiinnnns 8-10
Deleting @ MacCrOccoooeeeeeeeeeeeeeeee e 8-11
Renaming Macros ... 8-12
Temporarily Redefining Macros............ccc.evvvvviiieieeeennne. 8-13
Indirect Call of MacCros...........oooooviiiiiie s 8-13
Indirect Call of BUIlt-iNS..........ccooiiiiiis 8-14
Conditionals, Loops and ReCursionccccvvvecineeeennennnns 8-14
Testing Macro Definitionsuuvvvviiiiiiiiiiiiiiieieeeeee 8-14
CoMPAriNG SEHNQSeeveeeeieeieiiieeiieeieeeeeeeeeeeeereeeneeeeeeeaees 8-15

Loops and RECUISIONeuvvriiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnens 8-16

1960 Processor Software Utilities User's Guide

vi

How to Debug Macros and Input..........cccooveeeiiiiiiiiiineneeenn. 8-16
Displaying Macro Definitions..............ccvvvvviveeiieeeeeeeennne. 8-16
Tracing Macro CallS..........cccvvviiiiiii, 8-17
Controlling Debugging OUtpULeeeviiiiiiiiiiiiiiiiiiiinns 8-18
Saving Debugging OULPULccovvvviiiiiiiiiiiiiiiiieeeeeeeee 8-19

INPUE CONLIOL.....co 8-19
Deleting Whitespace in INput..........cccccvvvviiiiiiiiniininnnnnn. 8-19
Changing the Quote Characters.............ccevvvvvviviiininnnns 8-20
Changing Comment Delimiters.............cooeeiiiiiiiiicicnnnns 8-21
SAVING INPUL ..o 8-22

File INCIUSION ...oovviiiiiiiieeeeeeeeeee s 8-22
Including Named Files ..., 8-22
Searching for Include Files ... 8-23

Diverting and Undiverting OUtpULccovvvvviviiiiiiiiieieenne. 8-23
Diverting OULPUL.........cooviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 8-24
UNdiverting OUEPUL.vvvieiiiiiiiiiiiiieieeeieeeeeeeeeeeeeieeeieeees 8-25
Diversion NUMDENSuuiiiiiiiiiiiiiieiieeiieeeeeeeeeeeeeeee 8-26
Discarding Diverted TeXtuuuuvereeemiiiiiiiiieiiiiieeeeeeeeeen 8-26

Macros for Text Handling ..o 8-26
Calculating Length Of StringsS.........ccooeeeeeieeeieeeeeeeeeeeeen 8-26
Searching For SUbSrNgsS ... 8-27
Searching for Regular EXpressionscccceeeeeeeeeeenn. 8-27
Extracting SUDSIINGS......covvviiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeee 8-28
Translating Characters ... 8-28
Substituting Text by Regular Expression....................... 8-28
Formatted OUIPULcooiiiiiiiiii 8-29

Macros for Doing ArithMetiC ..., 8-30
Decrement and Increment Operatorsceevvvveveeene. 8-30
Evaluating Integer EXPressionscccccvvvvveeeeiieneeeenen. 8-30

Running Host Commands ... 8-31
Executing Simple Commands...........ccccceveeiiiiiinnnnn. 8-31

Contents

Chapter 9
Chapter 10
Chapter 11

Chapter 12

Chapter 13
Chapter 14

Appendix A

Reading the Output of UNIX Commands....................... 8-32
EXIt COUBS ... 8-32
Making Names for Temporary Files..............cccccccceeen. 8-32
Printing Error MESSAQES..........uuuuuriiiiiiiiiiiiiineieeeeeeeeeeeeeeeeeens 8-33
Exiting from mpp960uuiiiiiiiiiiiiiii 8-34
Compatibility with Other Macro Processors........................ 8-34
Extensions in MPPO60uuuuuiiiiiiiiiiiiiiiiiiiiiiiinees 8-34
Facilities in UNIX System V m4 not in mpp960 8-36

Munger (gmung960)

Name Lister (gnm960, nam960)

ROM Image Builder (grom960)

11 Zo o= 1o o TSRS 11-1

USING GromMO6B0........uvuuiriiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeieeee 11-3

Creating Binary IMages...........cuuvvvvivieieiiieiiiiiieiiiiiiieiiieieinens 11-4

Converting the Image to Hex FilesS..............ovvvviiiiiiiiiiiiinnns 11-4

ROM Image Builder (rom960)

Rommer INVOCAtIONcooviiiiiiiie e 12-3

DIreCtive FileS. 12-3

Directive Reference.........couvviiiii i 12-6

Section-size Printer (gsize960, siz960)

11 Zo o1 1o o TSR 13-1

Statistical Profiler (ghist960)

11 Zo o= 1o o TSRS 14-2

Linker Command Language

INErOAUCTION ... A-1

Expressions and OperatorsS..............eueveeeeireriiimiiiiiiiiieniiinnns A-2

Linker Directives Referenceccoveeevvieeiiiiieeieeeeenn, A-4
MEMORY: Configuring Memory Regions A-5
Default Linker Allocation............cccooeviiiiiiieiiieeieeeeee A-7

Vii

1960 Processor Software Utilities User's Guide

viii

SECTIONS: Defining Output Sections................ceeeeeee.. A-8
FORCE_COMMON_ALLOCATION: Allocating
Space for Common SymboOISeeeveiiiiiiiiiiiiiiiiiieeeeee A-25
DEFINED: Finding Symbols.............oooviiiiiiiiiiiiiiiiiiinne, A-25
ADDR, ALIGN, NEXT: Finding Addresses.................... A-25
SIZEOF: Finding Section Sizescccceeeviiiiiieeeeeeen A-27
STARTUP: Specifying a Startup Fileccccvvveeeeeee. A-27
ENTRY: Defining the Entry Point...........cooovvviiiiiiiiennnne. A-28
PRE_HLL(): Specifying Libraries to be
Processed Before the High-level Libraries..................... A-28
HLL: Specifying High-level Libraries..............ccccevvuveeee. A-29
SYSLIB: Specifying Low-level Libraries........................ A-31
[NOJFLOAT: Supporting Floating-point Operations A-31
SEARCH_DIR: Extending the Search Path.................. A-32
INCLUDE: Including Additional Directive Files.............. A-32
TARGET: Using the Search Path for Directive Files.....A-33
CHECKSUM: Preparing for the Bus Confidence Test ..A-33
OUTPUT: Naming the Output Filecuvvvieieiinnnnee. A-34

Linker DIreCtive FileSovviiiiiiiiiiiiiii, A-35

Appendix B Finding Information in Object Files

Using the Common Object File Library: COFL B-1
Extracting File Header Informationcccccoeeveeeeenn. B-2
Function Referenceccccoii B-3

Appendix C Common Object File Format (COFF) and

Common Archive File Format (CAFF)

Characteristics Of COFF ..o, C-1
Definitions and ConventionsS...........ccoeveveeeiviieeiieeeieeeeee, C-2
SECHONSt C-2
Physical and Virtual ADdress..............eeevvevvvveieieeiinnnennnns C-3
File HEAAENee e C-3
File Header Declaration............ccoccoeeeveieeiiiiiiiieeeeeee, C-4

Contents

File Header Flags ..o C-5
File Type NUMDErS ... C-6
Execution File Header Declarationcc.oeeeeveeeennee. C-7
Section Headers ... C-7
Section Header Declaration..............cceevveviiiiiiiiiiiiiennnnne. C-8
Section Header Flags.........ccccooviiiiiiiiiii C-9
Y=o 1o L P C-11
RElOCALION ... C-11
Relocation Entry Declaration.............ccooooieiiiiiiinnnnnns C-12
Direct ReloCationoovvviiiiiiiei e C-13
IP-relative Relocationcceeviiieeiiiieeiiiiie e C-13
Line NUMDBEr ENtIYooveeiiiieiiiee, C-14
Symbol Table ... C-15
Symbol Table Entries ... C-16
Structure for Symbol Table EntrieS...........ccovvevvvvveennnn. C-17
Symbols and Inner Blocks .bb/.eb..........ccceiii C-18
Symbols and Functions .bf/.ef, .target..........ccccccevvvenene. C-20
Special SymbOIS.......coooiiii C-20
SYmBOI NAMEcoiiiiiiiiiiiiiiiieeeeee e C-22
Storage ClasSSESoovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee C-23
Storage Classes for Special Symbols............cccccceeeeee. C-25
Call OPtMIZALIONeveeieeieieiieeeeeee e C-25
Symbol Value Field............ooviiiiiiiiiiiiiieiieiiiiis C-26
Section Number Fieldcoooviiiiiiiii e Cc-27
Section Numbers and Storage Classes............cccceeeennn. C-28
TYPE ENIY oo C-30
Type Entries and Storage Classesccevvvveeevvvnnnnnnnn. C-32
Auxiliary Table ENtriescccccouviviimiiiiiiiiiiiiiiiieieeeeeeeeeee C-33
FIleNameS.....ccooiieece e C-35
Y=o 1o 1= S C-35
TG NAMES ... e C-36

1960 Processor Software Utilities User's Guide

End of StrUCtUre......coevneeeeeee e, C-36
FUNCHIONS ..o C-36
ATTAYS .. C-37
End of Blocks and FUNctions...........ccccccoeeevvieiiiieeeinneee. C-38
Beginning of Blocks and Functions.............ccccccvvvvvvneee. C-38
Names Related to Structures, Unions, and
ENUMErAtiONSouiiiiieeeeeeeee e C-38
Auxiliary Entry Declaration...........cccccovvviiiiiiiiiniinn, C-39
StrNG TabIE ..o C-41
ACCESS ROULINES ...viiveicieeeee e C-42
Archive Library FOrmat.........cccccoviiiiiiiiiin C-42
The Archive Identification String............cccccccvvviviiiiiiinininnnns C-43
Archive MemDbBErScoovviii e C-44
The Symbol Table ..., C-47
Appendix D HP/MRI IEEE 695 Object File Format
TerminOIOQY ...coeeveeeiiiiie e D-2
NOMENCIALUIE ... D-3
Number FOrmat.........c.cooeeiiiiiiiie e, D-3
Name Format..........cooooiiiii e, D-3
Information Variables...........ccooeeiiiiiiiiii D-4
LiNE NUMDEIS ... D-5
L3 LS TR D-5
Object File COMPONENTS........uuuiiiiiiiiiiiiiiiiiiiiees D-10
Header Partooooviiiieeee e, D-11
AD EXxtension Partcooooviiiiiiiicie e, D-14
Environmental Part...........ooviiiiiiiiiieee, D-15
External Part........coooiiiiiiiie e D-17
SECHON Palt.. ..o D-18
Debug Information Partccccoooviiii D-19
Data Part ..o D-30

=V TST G 2= U PP D-32

Contents

Index
Examples

HP/MPI IEEE-695 Format Object File Semantics D-32
AD Extension Part and Environment Part...................... D-33
Public/External Part..........ccooeviiiiiiiieieeeeeee e, D-33
ST =Tox (o] g = S D-33
DEebUQG Part........uuiiiiiiiiiiiiiiiiiii i D-34
BB BIOCK......cuuiiiiiite et D-34
BB3 BIOCK.....ccuuiiiiieieeee et D-34
BB4 and BB6 BIOCKSoovvviiiiiieiieceeeee e D-35
BB5 and BB10O BIOCKSoovvvviiiiieiii e D-35

Miscellaneous RECOrdS..........coovevviiiiiiiiieieeee e, D-37
Module Miscellaneous Records...........cccceevevviiiiiieeeennnnn. D-38
Variable Miscellaneous Recordscccceevvevviviineeeenne, D-38
Procedure Miscellaneous Records..........c.ccovvvviieeeennnnn. D-39
General Syntax RUles............oooiiiiiiis D-39
Parameters In Miscellaneous Records..........c.cc..cceee. D-39
Optional Parameter FieldsS............cccccoeiiiii, D-42
Codes for Miscellaneous Records............cccceeeeevviviineens D-43
Policies for Adding and Modifying Miscellaneous
RECOIAS .. .cev e D-43
Policies for Generating and Reading Miscellaneous
RECOIAS .. v D-44

C-1 File Header Declaration.............cocoeveeeiiiiieiiiieeiiie, C-5

C-2 Section Header Declarationccccoeeveeeviieeinnenann. C-9

C-3 Relocation Entry Declaration............ccccceeeeiiiinnnnnnnnn. C-12

C-4 Line Number Groupingccoouveviiiieieeeseeeeeeeees C-14

C-5 Line Number Entry Declarationccccccceeeeennnn. C-15

C-6 COFF Symbol Table.........cccooeiiiiiie C-16

C-7 Symbol Table Entry Declaration...............cccccceeeeeennn. C-17

C-8 Nested BIOCKScccvniiiiieeeeeeeeeeeeee e C-19

Xi

1960 Processor Software Utilities User's Guide

Xii

Figures

Tables

C-9 Example of a Symbol Table...........ccccvvviviiiiiiiiiinnnn. C-19
C-10 Auxiliary Symbol Table Entry............cooooiiiiiiiiiis C-39
C-11 Archive Member Headers.............ccccoceiiiiiiiiiniiinnns C-45

7-1 C Program StOrage..........uuueeiieeeeiemmmnriiineeeeeeeennnnnnns 7-3
12-1 rom960 Rommer OPerationsccccvvvvviiiiieeeeeeneennn. 12-1
12-2 Data Placement in Memory Imageccccceeeeeeennn. 12-2
12-3 Dimensions of a Memory Imageccccvvvvvevveeennnnnn. 12-20
12-4 split Command Example........cccccovvvviiiiiiiii. 12-23
C-1 Object File FOrmat.........ccccccoummmmmmiiniiiiiiiiiieiireeeeeeeeee C-2
C-2 Flag Field Values............ovvveiiiiiiiiiiiiiiiiie C-10
C-3 String Tableoovii C-42
C-4 An Archive Librarycccccccovvmimimmmmmmeieeiieeeeeeeeeeeeeeee C-43
C-5 An Archive Member...........cccvviiiiiiiiiiiiiiiieeeeeeeeeeeee C-44
C-6 The Archive Symbol Tableccccviiiiiiiiiiiiiiieeee C-48
1-1 1960 Processor Software ULtilitieS.............eevvveeeeeennnnee. 1-2
1-2 Invocation Names for Backwards Compatibility......... 1-3
2-1 Archiver OPtioNS ... 2-2
2-2 Archiver Option Modifierscccceeiiiiiiiiiiiiiiiiiiinnns 2-3
2-3 Verbose Modifier Information Display.............cccccuueee 2-19
3-1 cof960 / objcopy OPLIONS.......evvvevveiiiieeieieiiieiieieiiiiiies 3-2
4-1 CVEI60 OPLIONS ...vvvvvvvrviririiiiiiiiiiiiiieiiiiieeeieeeeeee 4-2
4-2 Mappings Between COFF and IEEE-695

BUIIE-IN TYPES .ot 4-6
5-1 gCcoVI60 CONLIOISevvviieiiiiieiieeieeeeeee e 5-2
5-2 gCOVIBO OPLIONS ...oevvvveiiieiiieieeeeeeeeeeeeeeieeeeeeeeeeeeneeiennes 5-3
6-1 dmp960/gdmp960 OPLIONS......ccevvviviiiiiiiiiiiiiiiieeeeeee 6-2
7-1 LinKer OPtiONSevvveiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeneeeeeeeneees 7-7
7-2 Branch-and-link and System-call Optimization 7-17

Contents

7-3 Supported Input/Output Architecture Combinations..7-26

9-1 gmuNg960 OPLIONS......uuueiiiiiiiiiiiiiiiiiiiiiee 9-2
10-1 gnm960/nam960 OPLIONS........uuurriirrrriiieeee e 10-3
10-2 Section COUES.......uuuririrrriiiriiiiiiiiiiinieeeenees 10-4
11-1 grom9O60 OPLIONS......uuurrrirriiiiiiiiiiiiiiiiireneineeeneeeeeeees 11-2
11-2 Section SpecificationsSccooeeeeeeeeieeieeeeeeeeeeeeeeen 11-3
12-1 rom960 DIreCtiVeSccoveeiiieeee e 12-4
13-1 gsize960/Siz960 OPLIONSvvvvvrviriiiiiiiiiiiiiiiiiiiiiiinns 13-2
14-1 ghist960 OPLIONSuveviiiiiiiiiiiiiiiiiiee 14-3
14-2 ghist960 BUCKELS.........uuuiiiiiiiiiiiiii s 14-4
15-1 str960/gstrip960 OPLiONSuuvummmiiiiiiiiiiiiiiiiiiiiiiinees 15-2
A-1 Order of Precedence for Operators............cccuvvvvennnes A-2
A-2 LinKer Dir€CtIVES.........ccccoiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeees A-4
A-3 Memory and Section Attributesccccceecinnnnnns A-7
A-4 SECTION KeyWOrdS.........cccuuviriiieieeaiiiiiiiiiieeeee e A-10
A-5 COFF Binary Representation of NOLOAD,

DSECT, COPY SeCtionSccoveviviiiiiiiieeieeeeeeeean, A-23
A-6 ELF Binary Representation of NOLOAD,

DSECT, COPY SECHIONS ...cvniieeiieeieeeeeieeeeeee e, A-24
B-1 Common Object File Library (COFL) Functions......... B-1
B-2 Common Object File Interface Macros...................... B-3
C-1 File Header Contentsccooeeeeieieiiiiiiis C-4
C-2 File Header Flags........cccooeeiiiiiiiiiiieeees C-5
C-3 Architecture Types of File Header Flags C-6
C-4 Standard Output (a.out) File Header.............cccconeee C-7
C-5 Section Header Contents...........ccccoeeenmmnminnnnininnnnnnns C-8
C-6 Section Header FIags...........ccoeveiiiieieeceee C-10
C-7 Relocation Entry Format............ccccooeeeeiiiiiiiiiecs C-11
C-8 Relocation TYPEScooviiiiiiiiiieeeeeeee e C-12
C-9 Symbol Table Entry Format............ccccoeeeeieiiiiinnnnnnnnn. C-17
C-10 Special Symbols in the Symbol Table........................ C-21

xiii

1960 Processor Software Utilities User's Guide

C-11 Symbol Name Fieldccccouvmmivimmiiiiiiiiieieeeeeeee C-23
C-12 Storage ClasSes........oovvvviiiiiiiiiiiiiiiii C-23
C-13 Restricted Storage Classes............uuvvviviveeerieeeeeeennne. C-25
C-14 Symbol Value Fieldooviiiiiiiiiiiiiiiiiiiiiiiiieeeee C-26
C-15 Section Number Field.........cccoooeeiiiiiiiiiiieeeeees C-28
C-16 Section Number and Storage Classcccccvvvveeeeee. C-29
C-17 Fundamental TYPeS.........uuvrrrmmmmmmriiiiiiiiiiiiiiiiiiiiineiinees C-31
C-18 Derived Types Field Values............ccccvvvvviiiiiiieeennnee. C-31
C-19 Type Entries by Storage ClassS...........euveveeeeeeeeeeeeennne. C-32
C-20 Auxiliary Symbol Table EntrieS........ccccccvvvveiiieninnnnnn. C-34
C-21 Format for Auxiliary Table ENntriesccccccvvveeeeenn. C-35
C-22 Tag Name ENtrESoevviiiiiiiiiiiiieiieeeeeeeeee e C-36
C-23 Table Entries for End of Structureccccoeeeeveeeeens C-36
C-24 Table Entries for FUNCHIONccooevvieeiiiiiiiiiie e C-37
C-25 Table Entries for Array...........cccccuvvvemimiiiniiinenineieeenne. C-37
C-26 End of Block and Function Entriesccccccvunnn... C-38
C-27 Beginning of Block and Function Entries................... C-38
C-28 Entries for Structures, Unions, and Enumerations.....C-39
C-29 Size and Contents of Archive Member Headers........ C-46
D-1 Initial Bytes of IEEE Elements...........ccccccovvvviviiinnnnnn. D-2
D-2 HP/MRI IEEE-695 Obiject-file Representation of
High-level TYPeS......uceeiiiiieieeecce e D-5
D-3 HP/MRI IEEE-695 Object-file Built-in Types.............. D-8
D-4 Processor NameS........coeiiiiiuiieiiiiiiaieeeeii e eeii e D-12
D-5 Attribute Definitions for the AD Extension Part.......... D-15
D-6 Attribute Definitions for the Environmental Part......... D-16
D-7 Attribute Definitions for the External Part D-18
D-8 Summary of Permitted Block Nesting............ccceeeeee... D-22
D-9 Attribute Numbers, Blocks, and Descriptions D-27
D-10 Miscellaneous Record Codes.............cooevvviiiiiiiiicnnnns D-46

Xiv

Overview

This chapter introduces the i96@rocessor software utilities and their
documentation. It also describes the conventions used throughout this
manual.

Software Utilities and Related Tools

The 1960 processor software utilities are part of a toolset for developing
embedded applications for the i960 Sx, Kx, Cx, Jx, Hx, and RP processors.

This toolset contains a C compiler, several libraries, an assembler, a
debugger, and the utilities described in this manual and in on-line
hypertext. For information on all the related documentation, including the
tools hypertext, see yo@etting Started with the 1960 Processor
Development Toolsanual.

Each utility also has a help option that displays a summary of the utility's
invocation options.

Table 1-1 lists the software utilities that are described in this manual.

11

1960 Processor Software Utilities User's Guide

Table 1-1

1960 Processor Software Utilities

Utility

archiver

converters

coverage
analyzer

dumper/
disassembler

linker

macro
processor

munger

name lister

ROM image
builders

section-size
printer

statistical
profiler

stripper

Names

arc960,
gar960

cof960
/objcopy,
cvt960

gcov9o60

dmp960,
gdmp960

gld960,
Ink960

mpp960

gmung960

gnm9o60,
nam960

rom960,
grom960
size960,
gsize960

ghist960

gstrip960,
str960

Function

creates and maintains libraries
and archives.

reorder bytes as big-endian or
little-endian and convert between
b.out format, COFF, ELF, and
IEEE-695 format.

facilitates testing of i960 processor
software applications.

disassembles and displays object
and archive file contents.

combines object files into
executable or relocatable files.

creates and interprets macros.

modifies text section and/or data
section load address(es) in an
object file.

prints object file and library symbol
table information.

create a memory image file from
an object file.

displays section and file sizes of
object files and libraries.

generates information about
application's runtime behavior.

removes symbolic information
from an object file.

See

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

12

Ch.

Ch.

Ch.

3,4

10

11,

13

14

15

Overview

Table 1-2

Compatibility

Code generated by Release 5.1 is fully compatible with code generated
with the Release 5.0 tools. Further, source programs compiled with
Release 5.0 are accepted by Release 5.1 without change. Almost all
environment variables and invocation options are unchanged. Object
modules generated with Release 5.0 can be linked with objects created
with Release 5.1. However, object modules compiled with Release 5.0 for
the RP processor should be recompiled with Release 5.1 in order to
generate objects that are forward compatible with future RP processors.

The software utilities also accept output from CTOOLS960 Release 3.0
and later, and from GNU/960 Release 1.2 and later.

Compatibility Invocation Names

Table 1-2 lists the invocation names to use for backwards compatibility
with GNU/960 Release 1.3 and later, and for backwards compatibility
with CTOOLS960 Release 3.5 and later. (Only tools with more than one
name are listed in this table.)

In some cases, using the alternate invocation name causes the tool to
behave differently. Invocation name details are provided in the chapter for
the tool in question.

Invocation Names for Backwards Compatibility

Utility GNU/960 CTOOLS960 See
archiver gar960 arc960 Ch. 2
b.out / COFF / ELF converter objcopy cof960 Ch. 3,4
dumper/disassembler gdmp960 dmp960 Ch. 6
linker gld960 Ink960 Ch. 7
name lister gnm960 nam960 Ch. 10
section-size printer gsize960 size960 Ch. 13
stripper gstrip960 str960 Ch. 15

1-3

1960 Processor Software Utilities User's Guide

DOS No Longer Supported as a Host

CTOOLS no longer supports DOS as a host. For PC development,
CTOOLS now supports Microsoft* Windows* NT* and 95. These
platforms provide a far more robust development environment, and allow
PC users to run CTOOLS without the PharLap* software required by
previous versions.

Invocation Command-line

The utility programs and tools described in this manual are command-Iline

driven. This means that to use these tools, you must either:

» type invocation commands in at your host system’s command prompt;

» use command scripts, response files, or batch files that can execute on
your host; or

* use atool such as Microsofthake, Opusmake, or UNIX* make.

There are two similar styles of invocation command-line, resembling other
Windows and UNIX program invocation commands. The primary
difference between the Windows and UNIX style command-lines is that
case (upper and lower) is significant in UNIX paths, directories, and
filenames, whereas Windows does not recognize case. The other
difference between Windows and UNIX style command-lines involves
punctuation of pathnames and invocation options, as described below.

Invocation Names

The command-line for each utility consists of a program name (e.g.,
Ink960 or mpp960), options (optional), and filenames identifying tool

input and/or output. Some tools have more than one invocation name, for
compatibility with earlier versions of the tools. (See Compatibility on

page 1-1.)

Overview

Options, Arguments and Modifiers

Invocation command options must be preceded with a special character
that identifies them as options. On Windows, this can be either the hyphen
character~) or the slash/() character. On UNIX, this is the hyphen
character. Case is significant in command options, arguments and
modifiers, unless the argument is a Windows pathname element. Some
invocation options require or accept arguments, and some invocation
options have optional modifiers. Some of the tools can be used without
options, modifiers or filenames, depending on the tool’s default settings.
Refer to the chapter describing the desired software tool for information
on its invocation options.

File System Dependencies

You must observe the conventions and restrictions of your host
environment's file system. Since the example commands in this manual
are from the UNIX environment, they work in Windows only if you use
the backslash § character in pathnames, rather than the slgsh (
character.

1-5

Archiver (arc960, gar960)

[

Invocation

Use the archiver to create and maintain archive files of:

e ASCIl and COFF files (in text or mixed-format archives)
* COFF files (in COFF libraries)

» b.out-format files (in b.out libraries)

e ELF-format files (in ELF libraries)

For information on linking with libraries, see the linker chapter.

NOTE. To ensure correct formatting, delete and recreate b.out-format
libraries created with a GNU/960 archiver before Release 1.3.

Invoke the archiver as:

c960 H option [- maodifier... | archive [name...]

Lgar960 U

arc960 invokes the archiver, providing backwards
compatibility with CTOOLS960 R3.5 or later.

gar960 invokes the archiver, providing backwards
compatibility with the GNU/960 R1.2 or later.

option is one or more options listed in Table 2-1.

modifier is one or more modifiers listed in Table 2-2.

2-1

1960 Processor Software Utilities User's Guide

archive is the archive filename. Unless you specify a
complete pathname, the archive must be in the
current directory.

names is one or more member or external filenames.
Note that when you do not specify a filename or
use the -F option, the archiver creates a COFF

archive.
Table 2-1 Archiver Options
Option Effect See Page
d deletes members from the archive. 2-10
F specifies the desired object module format for the an empty library. 2-10
Object formats are b.out, COFF, and ELF.
h displays help information. 2-11
m moves members to the end of the archive or to the specified 2-13
position.
p prints members in the archive. 2-14
r replaces existing members or adds new members. 2-15
s creates or updates library symbol table. 2-16
t prints member information or the archive table of contents. 2-17
u updates existing members by the modification dates, or adds new 2-18
members.
\% reports the archiver version and continues processing. 2-20
v960 reports the archiver version and stops processing. 2-20
X extracts members to files without modifying the archive. 2-21

z suppresses time stamp in archive header. 2-22

Archiver (arc960, gar960)

Table 2-2 Archiver Option Modifiers

Modifier Used With

apname r,u,orm

b pname r,u,orm
i pname

c roru

I any option

0 X

s any option
or none

u r

\ any option

Effect

adds or positions members after the pname
member.

adds or positions members before the pname
member.

suppresses the archive-creation message.

uses the current working directory for temporary
files.

uses the member last-modified date as the
extracted file-creation date.

creates or updates the library symbol table.

updates members only when the member last-
modified date is older than the file last-modified
date.

reports the archiver progress.

See Page
2-7

2-8

2-9
2-12

2-14

2-16

2-18

2-19

Option and Modifier Arguments

Invoke the archiver with an option and one or more modifiers. Some

modifiers can operate without the option (see Table 2-2).

Some modifiers require arguments. The archiver interprets any string
following such a modifier as the argument. Omitting an argument at the

end of the command line causes an error. For example:

arc960 -rb xy
No archive name specified

2-3

i960 Processor Software Utilities User's Guide

Specifying the Object Module Format

By default the archiver creates libraries in COFF format. However, the
default is overridden when you:

» specify a different format with th& option. (See page 2-10)
» specify a object file on the command line that is not in COFF format.

For example, to create an empty archive in COFF format enter the
command:

gar960 -u libname .a
To create an empty library in ELF format, use -theoption:

gar960 -Felf -u libname .a

However, when you instruct the archiver to add a non-COFF object file to
a new archive, the archiver uses the object file's format. For example, if
you enter the command:

gar960 -u libname .a elf_omf file.o

the archiver creates a new library in ELF format. When you us€ the
option to specify a library format and try to add an object file in a different
format, the archiver uses the format of the object file. For example:

gar960 -Felf -u libname .a coff_omf file.o
creates a new library in COFF format.

Once a library is created, all object files within it must be of the same
format. For example, trying to add an ELF format object file to a COFF
format archive produces an error message.

Archiver (arc960, gar960)

Temporary Directory

The archiver creates and deletes temporary files. You can choose the
temporary working directory:

Specify the locall() modifier with a directory argument in the
archiver invocation.

Define theTMPDIRenvironment variable. When you do not usel the
moadifier, the archiver uses the directory specifietniPDIR

Without eithert or TMPDIR, the archiver uses the directory specified
in P_tmpdir , defined in thestdio.h standard C header file.

Option and Modifier Reference

You can provide the archiver with the names of external files that you
would like added to the archive, or you can tell the archiver the names of
any archive members that you would like extracted into external files.

Use the options and modifiers for the following operations:

To create an archive or to modify the archive members, ose
(see Figure 2-1).

To modify an archive without modifying the members or external
files, usemors.

To delete the members, use

To modify the external files, use

To print information about the archive and its members without
modifying the archive contents, usert .

To display the archiver operation, use

To display the archiver version information, wuser v960 .

2-5

i960 Processor Software Utilities User's Guide

2-6

Figure 2-1

Archive Member Replace and Update Operations

(roru)

Add New
Member to
Archive

No

Create
Archive

Y Y

Capture Next
> Filename in

Namelist

v

Last
Filename
Processed?

Filename =
Any Member?

Yes

File More

(u Only)

Recent Than
Member?

<
N

Yes

No

(r Only)

End

Replace
Existing Member
in Archive

A

(u Only)

OSD308

Archiver (arc960, gar960)

This section describes the options and modifiers alphabetically.

a: After

Modifier: Positions
members after a
specified member

a pname

pname is the name of an archive member used as a
positional reference.

Discussion

By default, the archiver places new members at the end of the archive. To
place new archive members immediately after an existing member, use
with replace () and updateu). To reposition existing members, use

with move ().

If you specify more than one position modifier, the last one takes effect.

Examples

1. The following example placé&2.0 immediately aftefilel.o in
libx.a

arc960 -ma filel.o libx.a file2.0

2. The following example replaces existing membefi®dm with
corresponding files from the current working directory, positioning
any new members immediately aftiérl.o

arc960 -ra filel.o libo.a *.0

2-7

i960 Processor Software Utilities User's Guide

2-8

Related Topics

Before Move Update
Insert Replace

b: Before
I; Insert

Modifier: Positions
members before a
specified member.

b pname

i pname

pname is the name of the archive member used as a
positional reference.

Discussion

By default, the archiver places new members at the end of the archive. To
place new archive members immediately before an existing member, use
ori with replace () and updateu). To reposition existing members, use

b ori with move ().

If you specify more than one position modifier, the last one takes effect.

Examples

1. The following commands both plaie2.o immediately before
filel.o inlibx.a

arc960 -mb filel.o libx.a file2.0
arc960 -mi filel.o libx.a file2.0

Archiver (arc960, gar960)

2. The following example replaces existing membefi®dm with
corresponding files from the current working directory, positioning
any new members immediately befdrel.o

arc960 -rb filel.o libo.a *.0

Related Topics

After Move Update
Insert Replace

c: Create

Modifier: Suppresses
the archive creation
message

Discussion

To suppress the archive creation message, specify

Using the replace | or update () option with a nonexistent archive
filename creates a new archive. The archiver displays a message such as
the following onstdout

arc960: creating archive
archive is the name of the new archive that you
specified.

2-9

i960 Processor Software Utilities User's Guide

Example

Assuming thatibx.a does not already exist, the following example
creates an emptipx.a archive without displaying an archive creation
message:

arc960 -rc libx.a

d: Delete

Option: Deletes archive
members

Discussion

To delete all members specified on the command-linej.use

Example

The following example deletéig1.0 fromlibx.a
arc960 -d libx.a filel.o

2-10

Archiver (arc960, gar960) 2

F: Library Format

Option: Specifies the
OMF for an empty

library
F{elf | coff | bout}
Discussion
This option specifies the desired object module format for the empty
library. Object formats are b.out, COFF, and ELF.
Example
The following example creates an ELF archive with member libx.c.
arc960 r -Felf libx.a libx.c
h: Help
Option: Displays help
information

Discussion

To display help information for the archiver, use lihaption.

2-11

i960 Processor Software Utilities User's Guide

2-12

I: Local

Modifier: Places
temporary files in the
current directory

Discussion

To put temporary files in the current directory, useThe archiver selects
a temporary working directory as described in “Specifying the Object
Module Format

By default the archiver creates libraries in COFF format. However, the
default is overridden when you:

» specify a different format with th& option. (See page 2-10)
» specify a object file on the command line that is not in COFF format.

For example, to create an empty archive in COFF format enter the
command:

gar960 -u libname.a
To create an empty library in ELF format, use the -F option:

gar960 -Felf -u libname.a

However, when you instruct the archiver to add a non-COFF object file to
a new archive, the archiver uses the object file's format. For example, if
you enter the command:

gar960 -u libname.a elf_omf file.o

the archiver creates a new library in ELF format. When you use the -F
option to specify a library format and try to add an object file in a different
format, the archiver uses the format of the object file. For example:

gar960 -Felf -u libname.a coff_omf file.o

Archiver (arc960, gar960)

creates a new library in COFF format.

Once a library is created, all object files within must be of the same
format. For example, trying to add an ELF format object file to a COFF
format archive produces an error message.

Temporary Directory” on page 2-4.

Example

The following example replacéig1.0 andfile2.o inlibx.a , using
the current directory for temporary files:

arc960 -rl libx.a filel.o file2.0

m: Move

Option: Repositions
archive members

Discussion

To reposition members within the archive, useTo move members

relative to another member, specify the aftgr hefore), or insert ()
modifier. Omitting the position modifier moves the members to the end of
the archive.

Example

The following example place#1.0 at the end ofbx.a

arc960 -m libx.a filel.o

2-13

1960 Processor Software Utilities User's Guide

o: Output Date

Modifier: Extracts a
member using the last-
modified date

Discussion

When extracting a member to a file, the archiver uses the current time and
date as the file-creation time stamp. To use the member last-modification
time and date, specifywith x (extract).

Example

The following example extracts thie.o member, creating thée.o
external file with the time and date tfie.o member was last modified:

arc960 -xo libx.a filel.o

p: Print
Option: Prints archive
members

Discussion

To display the member contents@adout , usep. To display all the
members, specify no member name.

To display each member name before its contents, specify(ttegbose)
modifier.

2-14

Archiver (arc960, gar960)

Example

The following example displays theurcel.s member ofib.src

arc960 -pv lib.src sourcel.s

r: Replace

Option: Replaces
existing archive
members and adds new
members

Discussion

To replace or add a member, regardless of the last-modification dates, use
r. Existing members specified on the command line are replaced. New
members specified on the command line are added. To replace existing
members from all filenames in the current directory, specify no member
names.

To designate a location for new members relative to existing members, use
the after §), before), or insert () position modifier.

To create an archive, specifyfor an archive that does not exist. The
following creation message appears:

arc960: creating archive
archive is the name of the archive created.
You can suppress the creation message with the crgatedifier.

Creating an archive includes creating the new archive symbol table.

2-15

i960 Processor Software Utilities User's Guide

Examples

1. The following example addis=1.0 beforefile2.o inlibx.a
arc960 -rb file2.0 libx.a filel.o

2. The following example archives all files in the current working
directory by adding to or replacing memberstina . The verbose
(v) option displays messages on the terminal screen, indicating
whether members are added () or replacedr(-).

arc960 -rv libx.a *.o0

r - hello.o

I - proto.o

r - prog_84a.o
a-str b.o

a - str_eg2.0
a - str_eg3.o
a - str_eg4.o

s: Symbol Table

Option and modifier:
Rebuilds the archive
symbol table

Discussion

To rebuild the symbol table, use You need not specify with thed, r
or u option, since the archiver updates the symbol table automatically.

Thes option has no effect on text archives.

2-16

Archiver (arc960, gar960)

Example

The following example rebuilds the symbol tableiaf.a

arc960 -s libo.a

t: Table of Contents

Option: Lists the
member names

t[names]

Discussion

To list all the members in an archive or to list specified members, use
The names argument lists the members for which you want information.
To print a table of contents for all members, omities.

The information about specified members appearsdont

To list the names, permissions, sizes, dates and times of the specified
members, specify the verbosg Option. Otherwise, the archiver displays
only the member names.

Example

The following example copies tlies.a table of contents to
contents.txt in the current working directory:

arc960 -t libs.a > contents.txt

2-17

1960 Processor Software Utilities User's Guide

u: Update

Option or Modifier:
Updates archives by
comparing the file and
member dates

Discussion

To add or replace members with newer versions, specifyist specific
members to add or replace. Omitting the member list updates only the
members with corresponding external filenames in the current directory.

Updating replaces a member only when the date and time stamps on the
external file are newer than on the member.

7 NOTE. Theu option has the same effect both as a separate option and as
R a modifier of the replace | option.

Examples

1. The following example places all files from the current working
directory intolibo.a . Existing members are updated and new
members are added.
arc960 -u libo.a *.0

2. The following example usesas a modifier for the replace)(option,
updatingfile.o only if the external file is more recent than the
archived version:

arc960 -ru libx.a /newfiles/file.o

2-18

Archiver (arc960, gar960)

Related Topic

Replace

v: Verbose

Modifier: Prints the
archiver progress

information
v
Discussion
For complete information about the archiver operation, specifjhe
verbose information is specific to the option you specify, as shown in
Table 2-3.

Table 2-3 Verbose Modifier Information Display
Control Screen Display Meaning
d (delete) d - name removes a member
m (move) m - name moves a member within the archive
r (replace) andu r - name replaces a member
(update) a - name adds a member
X (extract) X - name extracts a member into an external file
p (print) prints the member name and contents
t (toc) prints the archive table of contents

NOTE: name is the name of the processed archive member.

2-19

i960 Processor Software Utilities User's Guide

Example

The following example replaces existing membetgita with the
corresponding files in the current directory, placing new members before
filel.o . As new members are added and existing members replaced, the
archiver generates appropriate messages.

arc960 -vrb filel.o libx.a *.0

On a Windows host, the output is:

r - filel.o
a-to

a - file2.0
a - file3.o
a - filed.o

V, v960: Version

Option: Displays the
archiver version number
and creation date

LD
] imi

960

Discussion

To display a sign-on message during archiving,wusAfter displaying
the message, the archiver continues processing.

To display the message without archiving, & . You need not
provide any other input. After displaying the message, the archiver stops.

The message includes the version number of the archiver and the date and
time the archiver was created.

2-20

Archiver (arc960, gar960)

Example

The following command displays the archiver version information and
continues processing:

arc960 -V

The following is a sample message:

Intel 80960 Archiver n.n, Thu Oct 19 15:14:07 EDT 199n

X: Extract

Option: Extracts
archive members to files

Discussion

To copy members to external files in the current directoryxuseo

extract all members, list none on the command line. The contents of the
copied archive member are not affected.

The archiver overwrites files in the working directory with the same
names as the copied members. If no such files exist, the archiver creates
them. The extracted files retain the file attributes stored in the archive,
including the modification date and time. To retain the time stamp of
when the file was recorded in the library, usedhugption.

Example

The following example extracts all membersief.a into the current
directory. The verbose) modifier displays the name of each member
extracted.

arc960 -xv libs.a

2-21

1960 Processor Software Utilities User's Guide

z: Suppress Time Stamp

Option: Suppresses
time stamp in the
archive header

Discussion

To suppress the time stamp in the archive header, useottteon.

Example

arc960 -z libs.a

2-22

COFF/ELF/b.out Converter
(cof960/0bjcopy)

cof960 and objcopy convert header information in object files to allow
greater portability between hosts. Note that cof960/objcopy does not
change the data portion of a file. The converter takes an input file and
creates an output file with one of these conversions:

big-endian byte order to little-endian or vice-versa.
e COFF to b.out format or vice-versa.

e ELF to b.out or vice-versa.

e ELF to COFF or vice-versa.

Or you can instruct the converter to remove relocation and symbolic
information to reduce code size of debugged objects.

Changing the byte order may be necessary for symbolic debugging, and
for examination with common object format library (COFL) tools and
other utilities. In such cases, COFF object-file byte order may need to
match the host system's byte order. For example, certain debuggers
require it, as do the tools COFL and cvt960.

NOTE. The converter does not initialize the space between ELF sections.
Although this does not affect the validity of the ELF file, it can produce
unexpected differences between otherwise identical files. Use the
dumper/disassembler (gdmp960/dmp960) with-theption to determine

the location of these gaps in an object file.

3-1

i960 Processor Software Utilities User's Guide

3-2

Invocation
Invoke the cof960/objcopy converter as:
%:Of%o %[tion] input [output]
. - option ... inpu outpu
cPbjcopy P p P
cof960 invokes the converter for backwards
compatibility with CTOOLS960 R3.5 and later.
objcopy invokes the converter for backwards
compatibility with GNU/960 R1.3 and later.
option is any option listed in Table 3-1.
input is the input file.
output names the output file. Without an output
filename specification, the converter overwrites
the input file.
Table 3-1 cof960 / objcopy Options
Option Effect
b generates big-endian output, regardless of the input byte order.
c copies the file rather than moving it.
C strips CCINFO from output.
Fbout specifies the output format, regardless of the input format.
Feoff « Fbout generates b.out-format output.
Felf ¢ Fcoff generates COFF output.
¢ Felf generates ELF output.
Omitting F leaves the format unchanged. Changing the file format removes the
relocation information and symbol table.
h generates an output byte order matching the host-system byte order, regardless of
the input byte order.
help displays help information and exits.

continued [

COFF/ELF/b.out Converter (cof960/objcopy)

Table 3-1 cof960 / objcopy Options (continued)
Option Effect
J Compresses the symbol table, merges duplicate tags, and compresses the string

- QO T

table (COFF files only).

generates little-endian output, regardless of the input byte order.
overwrites the input files with the converted output.

suppresses printing status information during conversion.

converts little-endian input to big-endian output. Using r with big-endian input
causes an error.

removes all relocation and symbol-table information. Do not use S when
converting a library or other relocatable files, as it renders the files useless.

displays progress information during the conversion (converter lists the action
taking place).

displays (on stdout) the converter version number and the date and time the
converter was created, then continues processing.

displays (on stdout) the converter version number and the date and time the
converter was created, then stops processing.

removes the local symbols generated by the gcc960 compiler.

uses Time Zero instead of the current time and date for the COFF output-file time
stamp. Time Zero is 4:00, 31 December, 1969.

Output File Specification

You can direct the converted output either to overwrite the input or to

produce a different file:

« To put the converted output in another file, preserving the input file,
follow the input filename with the output filename in the invocation.
For example, the following puts the big-endian conversion of
Ifile.o into bfile.o

cof960 -b Ifile.o bfile.o

3-3

i960 Processor Software Utilities User's Guide

3-4

» To overwrite the input files, specify tipeoption. When converting

the file contents in place, you can provide multiple input files for each
converter invocation. Separate the input files with spaces. For
example, the following converigel.0 ,file2.0 , andfile3.o

from little-endian to big-endian:

cof960 -bp filel.o file2.o file3.0

COFF to IEEE-695
Converter (cvt960)

Invocation

The COFF-to-IEEE converter (cvt960) converts files in Common Object
File Format (COFF) to IEEE-695 format. The IEEE-695 format conforms
to thelEEE-695 Object Module Format SpecificatjdRevision 4.0,
Copyright 1987-1989, by Microtec Research Incorporated and Hewlett-
Packard. Note that cvt960 cannot translate b.out or ELF format files into
IEEE-695 format.

cvt960 requires that the input COFF file provided for translation be in
host-endian orientation. Use objcopy/cof960 to translate the input file into
host-endian orientation prior to executing cvt960.

To convert files in common object file format (COFF) to IEEE-695
format, invoke cvt960 with the following syntax:

cvt960 [- option ...
cvt960 invokes the converter.

option is one or more of the options listed in Table 4-1.

NOTE. To convert a file namedout , putting the IEEE-695 format
output ina.x , invoke the converter with no options.

4-1

i960 Processor Software Utilities User's Guide

4-2

Table 4-1 cvt960 Options

Option Effect

a converts files for use with the MRI Xray user interface (pre-X263 and earlier
versions).

Aarch specifies an 80960 architecture tag for the IEEE-695 output file. Valid arch
values are COREO, CORE1, CORE2, CORES3, SA, SB, KA, KB, CA, CF, JA,
JD, JF, HA, HD, HT, and RP. See Getting Started for a description of the new
COREO0-CORES3 group architecture options.

c specifies emitting column zero for line entries rather than one.

h displays help information.

i input specifies an input COFF file. The default input filename is a.out.

o output names the IEEE-695 output file. The default output file is the input filename
with the extension replaced by .x. When the input filename has no suffix, the
converter appends .X.

s suppresses the IEEE-695 public and debug parts. The converted file contains
no line number, symbol table, or debug information.

\% displays converter version information and continues processing.

v960 displays converter version information and stops processing.

w suppresses warning messages.

z writes constant time stamp (Time Zero) and command line to output file. Time

Zero is 4:00, 31 December, 1969.

Examples

1. The following converta.out toax :
cvt960

2. The following displays the converter version information and
translatesipx.in into hpx.x in/e/asm_tests/cvt 960

cvt960 -V -i /e/lasm_tests/cvt_960/hpx.in

3. The following translates.out into hpx.out , stripping the debug
information:

cvt960 -s -0 /e/asm_tests/cvt_960/hpx.out

COFF to IEEE-695 Converter (cvt960)

Limitations

This section describes parts of the COFF, the converter, or the IEEE-695
format that can cause conversion problems.

Position-independent Code, Data, and Symbols

The converter translates position-independent code and data correctly, but
position-independent code symbols and position-independent data symbols
lose the flags that mark them as position-independent.

Archives and Relocatable Objects

Use the converter only on COFF absolute-executable load modules. The
converter does not translate archives or relocatable objects.

Unreferenced Types

The converter does not produce type definitions for high-level types that
are not referenced. This omission helps to reduce the size of the
IEEE-695 module where the#hclude mechanism has produced a
large number of unreferenced type definitions, such as structure tags.

Global Uninitialized Symbols

With IEEE-695, every symbol is owned by some source module. The
structure of the COFF symbol table, however, dictates that symbols for
global, uninitialized variables belong to no specific source module. In
order to translate COFF global variables, the converter produces a module
in .bss strictly for symbols that are not accounted for in any other

module. This module is nameglobal non_init . A single-module

section is produced foglobal_non_init , which extends from the
lowest-addressed symbol in the module to the end obthe section.

1960 Processor Software Utilities User's Guide

Compilation/Assembly Information

COFF does not include source file path information, and the compiler and
assembler tools before V3.0 do not supply the time of compilation and
assembly for source modules. The converter does not supply this
information.

COFF Line Numbers

COFF does not provide column information for source coordinates and the
converter does not provide that information. Column numbers in the
IEEE-695 output module are 0.

The converter translates each COFF line-number record to a IEEE-695
ATN/ASN pair, possibly causing one-to-many mappings in the output
module numbers, as in the following examples:

» COFF source-line information provides the same code address for the
line of a function block's token and the first executable line of code.
Using the code fragment below, for example, the converter puts the
line containing and the line containingt foo =1 (lines 2 and 4) in
the COFF symbol table with the same code address.

1. main()

2: |

3:

4: int foo = 1;

» COFF source-line information provides multiple addresses for the
same source line under some conditions. For exampiélea loop
associates the source line of threle statement with the machine
address of the branch to the loop-condition test at the end of the loop.
The machine code associated with the loop-condition test produces an
additional line-number entry with the same row number as the branch.
These two line number groups are translated fowthie loop with
the same line number and different addresses.

COFF to IEEE-695 Converter (cvt960) I

COFF Symbol Translation

The compiler prefixes most C language names with an undersgore (

when creating COFF symbols. When the converter finds a symbol with an
initial underscore and .d@e symbol ending inc or.i , it treats the

symbol as a C name with the underscore prefix. The converter strips out
the initial underscore and places the symbol in the B3 block corresponding
to that COFF module. The B3 block describes high-level debug
information.

COFF symbols that come from any source modules wkiese symbol

does notendirt or.i are considered assembly language symbols. The
converter leaves any initial underscores intact and places the symbols in
the B10 block, which describes assembly-level debug information. The
symbols are given IEEE-695 assembler-static attributes and built-in types.

IEEE-695 Built-in Types

Table 4-2 lists the translation of COFF symbols of scalar and pointer types
to IEEE-695 built-in types. The Valid in Public Part column indicates
types produced for symbols in the IEEE-695 public part.

4-5

1960 Processor Software Utilities User's Guide

Table 4-2 Mappings Between COFF and IEEE-695 Built-in Types

IEEE-695 Valid in

Code COFF Concept Meaning Public Part Notes
0 T_NULL unknown type yes

1 T_VOID void-return no

2 T_CHAR 8-bit signed yes

3 T_UCHAR 8-bit unsigned no

4 T_SHORT 16-bit signed no

5 T_USHORT 16-bit unsigned yes

6 T_INT,T_LONG 32-bit signed no

7 T_UINT,T_ULONG 32-bit unsigned yes

8 n/a 64-bit signed no

9 n/a 64-bit unsigned no

10 T_FLOAT 32-bit float yes

11 T_DOUBLE 64-bit float yes

12 T_LNGDBL extended float yes 1
13 n/a 128-hit float no

14 n/a quoted string no

15 C_LABEL code address yes

16 n/a stack push no

17 n/a stack push no

18 n/a stack push no

19-24 n/a alias for above no

25 n/a 64-bit BCD float no 3
26-31 reserved no

continued [

4-6

COFF to IEEE-695 Converter (cvt960)

Table 4-2 Mappings Between COFF and IEEE-695 Built-in Types (continued)

IEEE-695 Valid in

Code COFF Concept Meaning Public Part Notes
32 DT_PTR p.unknown type no

33 DT_PTR p.void-return no

34 DT_PTR p. 8-bit signed no

35 DT_PTR p. 8-bit unsigned no

36 DT_PTR p. 16-bit signed no

37 DT_PTR p. 16-bit unsigned no

38 DT_PTR p. 32-bit signed no

39 DT_PTR p. 32-bit unsigned no

40 n/a p. 64-bit signed no

41 n/a p. 64-bit unsigned no

42 DT_PTR p. 32-bit float no

43 DT_PTR p. 64-bit float no

44 DT_PTR p. extended float no 1
45 n/a p. 128-bit float no

46 n/a p. quoted string no

47 DT_PTR p. code address no

48 n/a p. stack push no

49 n/a p. stack push no

50 n/a p. stack push no

51-56 n/a alias for above no

57 n/a 64-bit BCD float no 3
58-255 reserved

Notes:

1 Although ic960 allocates a 128-bit cell with base address to 2*forthe C "long double" type, the
actual datum is 12 bytes long (manipulated by load-and-store triple word instruction). Thus, the
ic960 long double type maps to IEEE-695 built-in type #12, even though its memory alignment
might suggest built-in type #13.

2 These types correspond to stack pushes. The converter does not produce them because the 1960
processor family does not have explicit push instructions.

3 Theigeo processor family has no BCD-float support.

i960 Processor Software Utilities User's Guide

4-8

IEEE-695 Converter Warning Messages

The warning messages appeastierr . After a warning, the translation

completes, but the output can be unusable.

No public/debug info produced: no .file symbols in COFF

symbol table
The converter must find at least afie symbol in the COFF
symbol table to establish a starting point for translation. When no
such symbol is found, the IEEE-695 public and debug parts are not
included in the output module.

COFF section id number is type COPY;symbol/data conflicts

possible in output
The converter found @oPYsection in the COFF file. The IEEE-695
format has no direct analog of@PYsection, so the conversion could
confuse the user.

COFF section id number is type DSECT; symbol conflicts

possible in output
The converter issues this message because some linkages may
produce symbol tables where two or more symbols point to the same
memory. Some emulators cannot handle this, and reject loading such
files. The converter gives you this information here to prevent your
waiting until an emulator fails to load the files.

lllegal register value (number) at symbol index number

The value of the COFF symbol at the indicated index does not
represent an i960 processor register. The IEEE-695 translation
contains an invalid i960 processor register index.

COFF argument symbol at index number is ignored,;

addressing path too complicated for IEEE-695
The converter cannot process any COFF symbol whose addressing
path is more complicated thastfset (register). This limitation
only affects C function arguments that are allocated in the caller's
argument block.

COFF to IEEE-695 Converter (cvt960)

One or more COFF symbols (index number) have invalid tag

index number
The converter encountered COFF symbols of a tag typet(|,
union , orenum) with no reference to their COFF type information.
The IEEE-695 information for these symbols is not correct.

4-9

Coverage Analyzer (gcov960)

Invocation

The gcov960 test coverage analysis tool performs basic block execution
coverage analysis of instrumented programs.

To use gcov960, first compile your program with the gcd60
instrumentation option, then execute the program with appropriate input
data. (For more information on profiling, sie 1960 Processor Compiler
User’s Guide) Executing your instrumented program causes the
compilation system to update the program database and create a profile
data file flefault.pf , by default). You can then use the options
described in this chapter to create a variety of reports showing how your
program behaves with various inputs.

Invoke the coverage analyzer using the syntax:

gcovo60 [control ... [file [= module, ..]]... [option 1] ...
control is one of the controls listed in Table 5-1.
file identifies a source file, from the profiled

program represented in the program database.
Specifyingfile restricts the operation of
gcov960 to the file.

module identifies a module withim/e

option is one or more of the options listed in Table 5-2.

5-1

1960 Processor Software Utilities User's Guide

If you supply the optionatle [= module ,..] input along with therl

option, gcov960 reads the source and produces an annotated listing of the
source along with the coverage datdilin .cov . In the annotated

source, each statement within a basic block is prefixed with the number of
times it has been executed. Lines that have not been executed are prefixed
With #HHHHHHHE .

Note that in this chaptertzsic blockrefers to a single entry, single exit
code region containing no branching mechanisms. The number of lines
marked witha######## may not equal the number of blocks listed in the
gcov9e60 report.

Table 5-1 gcov960 Controls

Control Argument Effect

c p produces program-level coverage report.
m produces module- and program-level coverage report.
f produces function-, module-, and program-level coverage report.
s produces a source- and module-level coverage report.
f n produces the n most frequently executed lines (when n is positive) or

least frequently executed (when n is negative).

g h produces a call-graph listing of the program. The h argument is
optional; it attaches to the report an explanation of how to interpret
the call-graph listing.

n new_profile compares two profiles. The new profile is compared to the default or
the profile specified with the p or iprof option, and just-hit or just-
missed lines are reported. Multiple instances of this control and
argument are supported; The profiles specified are automatically
merged together.

Q n ignores hits from functions whose profiles are of increasing accuracy
(decreasing levels of interpolation). nis 0..9. The default is Q9,
which ignores hits for all functions except those with perfect profiles.
QO ignores hits for any functions, even those with completely
guessed profiles.

continued [

Coverage Analyzer (gcov960)

Table 5-1 gcov9o60 Controls (continued)

Control Argument Effect

r I
h

produces annotated source listing.

produces the line numbers within the basic blocks that were hit. You
can also use the | option to specify the directories searched.

produces the line numbers within basic blocks that were missed. You
can use the | option to specify the directories searched.

Table 5-2 gcov960 Options

Option Argument
C

h

| search_dir

p or iprof file

—

Effect
calculates the total number of execution counts in a profile.
prints help information.
adds directory to list that gcov960 searches for source files.

identifies profile to be used. Default is default.pf. Multiple
instances of this option and argument are supported. The profiles
specified are automatically merged together.

Ignores hits except from functions whose profiles are at least <n>
accurate. The valid range for <n> is 0-9. The default is -Q9, which
ignores profile information for functions that have had source code
changes since the profile was collected. -QO tells gcov960 to use
a profile even for functions with profile information that is
completely interpolated. A profile's quality gradually drops as
changes are made to the code from which it was collected and
interpolation is done to make it useable by gcc960, ic960, and
gcdm960.

suppresses display of version, copyright, profile, and program
database used.

truncates displayed names to keep them within column widths.

prints version and continues.

continued [

5-3

i960 Processor Software Utilities User's Guide

5-4

Table 5-2 gcov960 Options (continued)

Option Argument Effect
v960 prints version and exits.

4 pdb_dir identifies program database directory. Default is directory
identified by G960PDB (gcc960) or 1960PDB (ic960). See the
Getting Started manual for more information on environment

variables.
7 NOTE. The reports produced by gcov960 may give misleading
& information about functions that are inlined. The reports may indicate

that the code of the inlined function has never been executed, or may show
execution counts that are unexpectedly low. This occurs because the
inlined code fragments are treated as part of the function they are inlined
into and not as part of the original function.

Examples

The following examples assume that you compile and execute the
following source file namedompare.c .
/* compare.c */
#include <stdio.h>
main(argc, argv)
int argc;
char *argv(];
{
int nl, n2;
if (argc != 3)
{
printf("Usage: compare nl n2\n");
exit(0);
}
nl = atoi(argv[l]);
n2 = atoi(argv[2]);
if ((n1<=0) || (n2<=0))

Coverage Analyzer (gcov960)

{
printf("Use integers larger that zero\n");
exit(0);
}
if (n1 ==n2)
printf("\n%d equals %d\n", n1, n2);
else
{
if (N1 <n2)
printf("\n%d is less than %d\n", n1, n2);
else
printf("\n%d is greater than %d\n", n1,
n2);
}

}
To compilecompare.c use the command:
gcc960 -Fcoff -fprof -Z pdb -ACF -Tmcycx compare.c

The above command creates the directaiy (if it doesn’t exist already)
to store the program database information and generates an absolute
module named.out , which can be downloaded and executed on a
Cyclone board with a i960 CF processor module.

The following command creates the file containing the profile information
using mondb.

mondb -ser a.out 10 10

This command creates a file callédault.pf . Once you have the
default.pf file you can copy it to a file with a different name such as
default.old . You can then use mondb again to create a new profile with
a different set of data, for example:

mondb -ser a.out 10 20

5-5

i960 Processor Software Utilities User's Guide

Example 1
e The gcov960 invocation:
gcov960 -c -Z pdb
» produces the coverage report shown below.
Intel 80960 Coverage Analyzer n.n.nnn
Copyright (C) 1996 Intel Corporation. All rights reserved.

Coverage Analysis
Program Summary

No. No. Blocks No. Block
Blocks Hits Misses Coverage
13 7 6 53.85%

Program database: /ffs/a/joe/tmp/pdb
Program profile: /ffs/a/joe/tmp/default.pf

Example 2
» The gcov960 invocation for an instrumented progeampare.c
gcov9e0 -rl -Z pdb

produces the output in filmpare.cov shown below. The numbers on
the left are the execution count for the basic blocks associated with the
statement.

#include <stdio.h>

main(argc, argv)
int argc;
char *argv([];
1->{
int nl, n2;

1-> if(argc!=23)
{
B> printf("Usage: compare n1 n2\n");
> exit(0);
}

Coverage Analyzer (gcov960)

1-> nl=atoi(arv[1]);
1-> n2=atoi(arv[2)]);
111-> if((nl<=0)][(n2<=0))

{
#HHHE-> printf("Use integers larger than zero\n®);

> exit(0);

}

1-> if(nl==n2)

1-> printf("\n%d equals %d\n", n1, n2);
else
{

#HH-> if (N1 < n2)
> printf("\n%d is less than %d\n", n1, n2);

else
> printf("\n%d is greater than %d\n", n1, n2);
}
}
No. of Blocks: 13
Blocks Hit: 7

Blocks Missed: 6

Source Coverage: 53.85%

Program database: /ffs/a/joe/tmp/pdb
Program profile: /ffs/a/joe/tmp/default.pf

Example 3

The gcov960 invocation to compare two profile filest{ult.pf and
default.old) created after running the instrumented program
compare.c

gcov960 -rim -n default.pf -p default.old -Z pdb
e produces filecompare.cov containing the output shown below.
#include <stdio.h>
main(argc, argv)
int argc;
char *argv([];

{

int n1, n2;

5-7

i960 Processor Software Utilities User's Guide

5-8

if (argc !=3)

{
printf("Usage: compare n1 n2\n");
exit(0);

nl = atoi(argv[1]);

n2 = atoi(argv([2]);

if ((n1<=0) || (n2<=0))

{
printf("Use integers larger than zero\n");
exit(0);
}
if (N1 ==n2)
printf("\n%d equals %d\n", n1, n2);
else
{
#HH-> i (N1 < n2)
> printf("\n%d is less than %d\n", n1, n2);
else
printf("\n%d is greater than %d\n", n1, n2);
}
}

Lines Just Missed: 2

No. of Blocks: 13

Blocks Hit: 9

Blocks Missed: 4

Source Coverage: 69.23%

Program database: /ffs/a/elvis/tmp/pdb
Program profile: /ffs/a/elvis/tmp/default.old
Other program file: /ffs/a/elvis/tmp/default.pf

Dumper/Disassembler
(dmp960, gdmp960)

Invocation

The dumper/disassembler displays object or archive (library) files in
COFF, ELF, and b.out formats.

It displays object file contents, including:

» file, section, and COFF optional headers

* line-number entries

* relocation entries

» symbol and string tables

» contents of the sections as assembly language

» contents of the sections as hexadecimal bytes, in little-endian byte
order

Invoke the dumper as:

Emp960 O) i

Egdmp%og[— option ... ilenames

dmp960 invokes the dumper for backwards compatibility
with CTOOLS960 Release 3.5 and later.

gdmp960 invokes the dumper for backwards compatibility
with GNU/960 Release 2.0.1 and later.

option an option listed in Table 6-1. Invoking the

dumper without any options disassembles the
contents of all sections.

6-1

1960 Processor Software Utilities User's Guide

filenames

one or more filenames, separated by spaces,
indicating files to be displayed. You can specify
complete pathnames.

Table 6-1 dmp960/gdmp960 Options

Option

a

A{SA|SB|KA |
KB|CA|CF|JA|
JD|JF|HA|HD |
HT |RP |
COREO | CORE1 |
CORE2 | CORE3 |
ANY}

c
d

f

F function

6-2

Effect

disassembles all sections in an object file. Use this to
examine the raw DWARF information in a file.

Specifies architecture for which you are disassembling.
This options does not currently affect disassembly.

displays the string table.

disassembles all sections loaded into target memory.
Unless otherwise specified, text sections appear as
assembly language, and data sections appear as
hexadecimal bytes. When no options are specified
when invoking the dumper, -d is assumed as the default
option.

disassembles sections as hexadecimal bytes,
regardless of the section type. The physical address of
every fourth word appears at the beginning of each line.

applies all command line options to each member of an
archive file.

displays the file headers.
disassembles the specified COFF or ELF function.

continued [

Dumper/Disassembler(dmp960, gdmp960)

Table 6-1

dmp960/gdmp960 Options (continued)

Option
glarg]...

O filename

Effect

dumps one or more .debug_* sections. The default
argument is i (.debug_info). Use the following
arguments to specify a different section, or multiple
sections:

dump .debug_info (default argument)
dump .debug_line

dump .debug_frame

dump .debug_pubnames

dump .debug_aranges

dump .debug_macinfo

dump all .debug_* sections

>30T ™ —

displays the section headers.
displays help information and exits.
displays the COFF optional header.

displays the line numbers.
displays the memory map (section layout) of the file.

displays the requested information for only the specified
section.

displays the requested information for only the specified
file within an archive.

displays the disassembled addresses in octal. The
default is hex.

suppresses all the header displays, producing a
parseable output.

queries the file and displays its type.

displays the relocation information.

used with d, puts symbols in the disassembly in place of
addresses.

continued [

6-3

1960 Processor Software Utilities User's Guide

6-4

Table 6-1

dmp960/gdmp960 Options (continued)

Option Effect

S Instructs the disassembler to output symbol labels
rather their values for any symbols for which you have
specified the absolute address. This option works in
conjunction with the -s (lowercase) option, which
instructs the disassembler to perform symbolic
disassembly.

t displays the object file symbol-table entries, or an
archive’s symbol list.

T displays the disassembled section as assembly
language, regardless of the section type.

\% displays the dumper version and creation date, and
continues processing.

v960 displays the dumper version and creation date, and
stops processing.

X is ignored unless used with -t. Displays the symbol-
table entries as hexadecimal numbers instead of a
symbolic translation of debug information. By default,
the dumper produces symbolic information.

z suppresses the translation of zeros into .word directives
for text-type disassembly.

Dumper/Disassembler(dmp960, gdmp960)

Dumping Absolute Symbols

The-s option instructs the disassembler to output symbol labels rather
than their values for any symbols for which you've specified the absolute
address. This option works in conjunction with the(lowercase) option,
which instructs the disassembler to perform symbolic disassembly. For
example, with an object file created with the following instructions:

.globl procl

.set procl,0xc

callx procl

callx Oxc
addi procl,r5,r6

If you use the following gdmp960 command line:
gdmp960 t2.0 -s

you would see the output:

Section ".text":

0: 8600000c callx Oxc
4: 8600000c callx Oxc
8: 5931488c addi 12,r5,r6

Notice that in the second lingpc1 from the source code is converted to
Oxc , the user-specified address foscl .

Adding the-s option to the command line instructs the disassembler to
display the symbol name instead of its address. For example, this
command line:

gdmp960 t2.0 -s -S
produces the following output:

Section ".text":

0: 8600000c callx procl
4: 8600000c callx procl
8: 5931488c addi 12,r5,r6

Notice that in the bothallx ~ statementsyrocl now appears instead of
oxc . Using the's option causes the disassembler to display the symbol
name for all calls to that address.

6-5

i960 Processor Software Utilities User's Guide

L)

Examples

NOTE. This option was supported in the rev. 5.0 disassembler as the
undocumentedA switch. This option has been renamed

The examples that follow show how you can extract information from
object files with dmp960. The filec is a simple C program that is first
compiled then assembled.

int arr[12] ={3,4};
static int index;
main()
{
int tempt = func(arr[index]);
}
ic960 -S -g t.c
catt.s

Command line (ic960): ic960 -S -g t.c # Command line
[ffs/pl/dev/sund/lib/cc1.960 -ic960 -ffancy-errors -sinfo
Itmp/ica02371.sin -fno-builtin -quiet -Fcoff -mkb -mic3.0-compat
-fsigned -char -w1 -bname_tmp /tmp/ica02371.btm -OO0 -g -dcmd
"ic960 -S -g t.c" -dumpbase t /tmp/ica02371.i -0 t.s .file "t.c"
ic_name_rules.:

gcc2_compiled.:

___gnu_compiled_c:

(ccl):

.globl _arr
.data

align 4
_arr:

.word 3
.word 4
.space 40
text

align 4
.def _main; .val _main; .scl 2; .type Ox44;
.endef

.globl _main

Function 'main’

Dumper/Disassembler(dmp960, gdmp960)

Registers used: g0 g4 g5 g6 g7 g14 fp r4*
_main:
def .bf; .val
n 1
addo 16,sp,sp
#Prologue stats:
Total Frame Size: 16 bytes
Local Variable Size: 16 bytes
Register Save Size: 0 regs, 0 bytes #End Prologue#
mov gl4,r4
.def _temp; .val 64; .scl 1, .type Ox4; .en

., .scl 101; .ine 5; .endef

def

In 2

Id _index,g4
Id _arr[g4*4],g0
callj _func

mov g0,g4
mov g4,95

st g5,64(fp)
In 3
#EPILOGUE:
ret

def .ef, wal ., .scl 101; .ine 3; .endef

.def _main; .wal ., .scl -1; .endef

.def _index; .val _index; .scl 3; .type Ox4;
.endef

.bss _index,4,2

.def _arr; wal _am; .scl 2; .dim 12; .size

48; .type 0x64; .endef

asm960 t.s -0 -t.o

6-7

i960 Processor Software Utilities User's Guide

6-8

dmp960 t.o

Section ".text"
0: 59084810 addo 16,sp,sp
4: 5c20161e mov gl4r4
8: 90a03000 00000060 Id 0x60,94
10: 90803914 00000030 Id 0x30[g4*4],g0
18: 09ffffe8 call Ox0
1c:5ca01610 mov ¢0,g4
20:5ca81614 mov g4,05
24:92afe040 st g5,0x40(fp)
28: 02000000 ret
Section '.data":
30: 03000000 04000000 00000000 00000000
40: 00000000 00000000 00000000 00000000
50: 00000000 00000000 00000000 00000000

Here is the same example, but with symbolic disassembly enabled. Note
how much more closely the disassembly resembles the assembly source
code.

dmp960 -s t.o
Section ".text':
_main:

0: 59084810 addo 16,sp,sp
4: 5c20161le mov gl4ra

8: 90a03000 00000054 Id _index,g4
10: 90803914 00000024 Id _arr[g4*4],90
18: 09ffffe8 call _func

1c: 9287e040 st g0,0x40(fp)

20: 0a000000 ret

Section ".data":
24: 03000000 04000000 00000000 00000000
34: 00000000 00000000 00000000 00000000
44: 00000000 00000000 00000000 00000000

Dumper/Disassembler(dmp960, gdmp960)

Here are the relocations that are passed to the linker.
dmp960 -r t.o

*** RELOCATION INFORMATION ***
Section ".text":

Vaddr Type Name
0x0000000c RELLONG.bss
0x00000014 RELLONG.data
0x00000018 IPRMED_func
0x00000018 OPTCALL_func

Section ".data":
Section '.bss"

And here is part of the COFF symbol table. Note the use ofi tbption
to make the dumper display only symbols from.tlke section.

dmp960 t.o -t -n .bss

*** SYMBOL TABLE INFORMATION ***
[Index] m1 Name/Offset Value Scnum Flags Type Sclass Numaux Name

[Index] a0 Word1l Shortl Short2 Short3 Short4 Short5 Short6é Tv
[Index] a1 Fname

[Index] a2 Tagndx Fsize Lnnoptr Endndx Tvndx
[Index] a3 Scnlen Nreloc Nlinno

[Index] a4 Tagndx Lnno Size Dim[0] Dim[1] Dim[2] Dim[3]
[Index] a5 Identification String Date/Time

[12] m1 _index 0x00000060 3 0x1000 int static O

_index

[17] ml1 .bss 0x00000060 3 0x1200 static 1 .bss

[18] a3 0x00000004 0x0000 0x0000

6-9

i960 Processor Software Utilities User's Guide

6-10

Index Value

0 0x00000000
1 0x00000000
2 0x00000000
3 0x00000000
4 0x00000000
5 0x00000000
6 0x00000000
7 0x00000000
8 0x00000000
9 0x00000000
10 0x00000000
11 0x00000000
12 0x00000000
13 0x00000000
14 0x00000000

Here is part of the b.out symbol table. ®heolumn identifies the section,
as in gnm960 output. Thecolumn indicates whether each symbol is
ordinary ©), a leaf entry pointL(), or a system procedure entry poig}. (

gcc960 -c -Fbout t.c; gdmp960 -t t.o
*»** BOUT SYMBOL TABLE ***

Value | S| O | Symbol Name
E R S
0x00000000 | t |
0x00000000 | t |

0x00000030 | D |

| gcc2_compiled.
| ___gnu_compiled_c
| _arr

0x00000000 | T| |_main
0x00000060 | b| | _index
0x00000000 | U | | _func
0x00000000 [t] | .text
0x00000030 | d | | .data
0x00000060 | b| |.bss

Here is part of the ELF symbol table. For more information on ELF
symbol tables, refer to tt80960 Embedded Application Binary Interface
(ABI) Specification

gcc960 -c -Felf t.c
gdmp960 -t t.o

Size Binding Type Section Oth Name
O LOCAL NONE UNDEFINED 0x0
0 LOCAL SECTION .text 0x0 .text
0 LOCAL SECTION .data 0x0 .data
0 LOCAL SECTION .bss 0x0 .bss
O LOCAL SECTION .shstrtab 0x0 .shstrtab
0 LOCAL SECTION .strtab 0x0 .strtab
0 LOCAL SECTION .symtab 0x0 .symtab
O LOCAL SECTION .rel.text 0xO .rel.text
OLOCAL FILE ABSOLUTE 0x0 t.c
0 LOCAL NONE .text 0x0 gcc2_compiled.
O LOCAL NONE .text 0x0 __ gnu_compiled_c
O LOCAL NONE .bss 0x0 _index _
0 GLOBAL NONE .data 0ox0 _arr
0 GLOBAL NONE text 0x0 _main
0 GLOBAL NONE UNDEFINED 0x0 _func

Dumper/Disassembler(dmp960, gdmp960)

The last example shows the dumper's display of the COFF section headers:
dmp960 t.o -h
*** SECTION HEADERS ***

Name Paddr Vaddr Scnptr Relptr Lnnoptr
Align Size Nreloc NInno Flags

.text 0x00000000 0x00000000 0x00000098 0x000000f4 0x00000124
0x00000010 0x0000002c 4 4 REG, TEXT

.data 0x00000030 0x00000030 0x000000c4 0x00000000 0x00000000
0x00000010 0x00000030 0 0 REG, DATA

.bss 0x00000060 0x00000060 0x00000000 0x00000000 0x00000000
0x00000010 0x00000004 0 0 REG, BSS

Archive Support

With release 5.1, gdmp960 supports dumping of archive files and archive

file members. Previous versions of the dumper only worked with object

files. Archive support allows you to dump:

» all members of an archive

e one or more object files within an archive

» information on the structure of an archive (e.g., the archive symbol
list)

The table below lists the options that allow archive support:

Option Description

e’ applies all options on the command line (e.g., -1 ,
-f) to each member of an archive.

-m displays a map of the archive contents. See the first
example later in this section.

-0 filename * applies all command line options to the named
archive member file only.

-p suppresses headers.

-q queries the archive file and displays its object

module format and host byte order.

-t displays the archive symbol list.

* Indicates a new dumper option.

6-11

i960 Processor Software Utilities User's Guide

6-12

Displaying Archive Structure Information

The examples that follow show an archive fiilea that contains the
object filesa.o , b.o , andc.o , in that order.

This first set of examples show how the dumper can display information
on the structure of an archive file using the-m, and-t options.

This example demonstrates the behavior of the dumper when querying an
archive file for its type. The command:

gdmp960 -q lib.a

produces the output:

File: lib.a

OMF: elf archive
Host Byte Order: big
Target Byte Order: unknown

In the next example, the dumper maps the internal structure of an archive
file. The command:

gdmp960 -m lib.a

produces the following output:
HEX DEC OCT

e +0 0 0

| Magic String |

[0x8(8) I

e +8 8 10

| Symbol List HDR |

| 0x3c (60) |
Ao +4 68 104
| Symbol List |

| Ox64 (100) |
oo + a8 168 250
| a.0 HDR |

| 0x3c (60) |
o +ed 228 344
I a.o I

| 0x2934 (10548) |
Ao +2al8 10776 25030
| b.o HDR |

| 0x3c (60) |

Dumper/Disassembler(dmp960, gdmp960)

e +2a54 10836 25124

I b.o I

| O0x253c (9532) |

oo +4f90 20368 47620
c.0 HDR

| 0x3c (60) |

e + 4fcc 20428 47714

I c.0 I

| Ox7b74 (31604) |

e +ch40 52032 145500
END OF FILE |

| 0x0(0) I

e +ch40 52032 145500

The-t option of the dumper permits dumping of the archive symbol list
information. For example, the command:

gdmp960 -t lib.a

produces the output:

Name Offset Filename
_dwarf_init 168 a.o
_dwarf_tag 10776 b.o
__dw_build_a_die 20368 c.0
__dw_build_tree 20368 c.0
__dw_build_cu_list 20368 c.0

6-13

i960 Processor Software Utilities User's Guide

6-14

Dumping the Contents of Archive Members

The dumper lets you disassemble or display information about a file within
an archive by using the and-O options in combination with other
command line switches. In the example below -theption applies all
command line options to each member of an archive:

gdmp960 -q -e lib.a

a.o:
File: a.o
OMF: elf

Host Byte Order: big
Target Byte Order: little

b.o:
File: b.o
OMF: elf

Host Byte Order: big
Target Byte Order: little

c.o:
File: c.0
OMF: elf

Host Byte Order: big
Target Byte Order: little

Dumper/Disassembler(dmp960, gdmp960)

The example below shows how tlte option lets you apply all command
line options to the named object file only. The command:

gdmp960 -q -Oa.o -Oc.o lib.a

produces the following output:

a.o:
File: a.o
OMF: elf

Host Byte Order: big
Target Byte Order: little

c.o:
File: c.0
OMF: elf

Host Byte Order: big
Target Byte Order: little

6-15

Linker (Ink960, gld960)

Overview

The linker lets you combine unlinked or partially linked object files and

libraries into programs for debugging or execution on any i960 processor.

Linking can include:

» configuring a program for the target memory, including the addresses
and section combinations

» searching libraries to resolve external references

e adding, preserving, or removing symbolic debugging information

» defining or redefining global symbols

e changingecallj andcallix to branch-and-link or system calls

» patching all relocatable instructions, data and debug information (in
ELF/DWARF)

Though you can specify most of the linker options to perform these
functions on the command line, most users use a combination of command
line options and a linker directive file to provide input to the linker.
CTOOLS provides a number of linker directivie () files in the

[$G960BASE| $1960BASE \lib directory. Typically, users store most
commands for allocating memory blocks and configuring memory in the
linker directive file. They then use the command line to invoke the linker,
specify the object files to be linked, specify the linker directive file, and
include any command line options needed to add to or override the settings
in the linker directive file.

7-1

1960 Processor Software Utilities User's Guide

This chapter focuses on teaching you how to use the linker by providing
the following:

* Some basic information about how the linker allocates memory blocks
and sections.

« A sample linker directive file that you can edit to match the
requirements of your target execution environment.

» Instructions on how to invoke the linker, specify your linker directive
file, object files, and other command line options.

» Sample command lines using additional linker features such as
callj /callix link time optimization that you may want to use in
your software development.

» A complete reference of all linker command line options.

Understanding Memory Blocks and Sections

With the linker, you can specify the portions of i960 processor’s address
space are available and where within that space the sections of your
program will be located. Once you have defined configured memory, all
other areas in the address space are left unconfigured, and are unavailable
for linking.

A section is the smallest relocatable unit of an object file. The linker
supports COFF, b.out, and ELF object module formats. A b.out-format
program contains exactly three standard sections:

text is the standard text-type section, containing
instructions and by default starting at addiess

.data is the standard data-type section, containing
initialized data and by default followxt

bss (block started by symbol) is a unigue section,
containing uninitialized data and by default
follows .data .

Linker (Ink960, gld960)

Figure 7-1

A COFF or ELF program contains at least the three standard sections
(containing up to 65535 lines or relocation entries each) COFF section
names are restricted to eight or fewer characters; ELF section names can
be any length. For information on the COFF file format see Appendix C.
For more information on the ELF format, see 80860 Embedded
Application Interface Specificatigiintel order number 631999).

The following example includes two global declarations and an
assignment. The translated assignment code is storesgtin, thei
variable in.data , and theabc variable in.bss , as shown in Figure 7-1.

int abc[200]; /* in the .bss section, because abc is
not initialized in the .data */

int i=100 /* section because i is initialized */
int f() { */

abcli] = 0; /* instructions are placed */
} [* in the .text section */

C Program Storage

Contents Memory Section
/\—/

Instruction abcf[i]=0; text

Variable i 100 .data

Value Assigned

Variable abc abc[200] .bss
No Value Assigned

-

0OsD312

7-3

i960 Processor Software Utilities User's Guide

You can define and link the sections in any order. In your assembly
source text and linker directive files, you can create and name additional
text-type, data-type and BSS-type sections for COFF and ELF programs.
You can also specify section and global-symbol addresses and overlap or
suppress some sections.

ELF/DWARF Sections

ELF/DWARF sections are placed in non-allocated sections. The linker
concatenates and relocates these sections, but allocates no memory for
them. These sections are all allocated to memory address 0. This
includes, among other sectionssbug_info and.debug_abbrev . For
more information on the ELF format, see 860 Embedded

Application Interface Specificatigiintel order number 631999).

Named BSS Sections

Named Block Started by Symbol (BSS) sections are supported by the
linker. When the linker detects the symbol

___clear_named_bss_sections in the linkage, the linker generates

code to resolve this symbol. By default, the code is composectiof a
instruction only. However, when the linker detects any number of named
bss sections in its output, it generates code to clear the sections and places
this code in the clear named_bss_sections code.

Working with Linker Directive Files

The sample linker directive file below is for the Cyclone i960 Cx
processor-based evaluation board. By default, the installation program
places this file in:

[$G960BASE| $1960BASE J\lib\cycx.Id

The commands under tiveEMORWirective define the areas of memory

that are available and the type of memory that resides there. This platform
has two memory blocks defined: a DRAM region that begins at address
0xA0008000 and isoxiffsooo bytes in length, and an SRAM region that

Linker (Ink960, gld960)

begins at addressaoo00100 and isox300 bytes long. Notice that the
DRAM address range allows room for the RAM space required by the on-
board monitor.

The commands iBECTIONSspecify where the linker places the different
program sections in memory.

MEMORY
{
dram : org = 0xA0008000, len = 0x1ff8000 /* 32M less monitor */
isram : org = 0x00000100, len = 0x300

}

SECTIONS
{

text:

{

} >dram

.data :

{

} >dram

.bss :

{

} >dram

/* Arithmetic controls location when using floating point library. */
SFP_AC:

fpem_CA_AC =
} >isram

}

/* Bounds of heap: */

/* The heap may be placed in a separate memory region, if desired. */
_heap_size = 0x20000;

_heap_base = (_end + 0xf) & ~Oxf;

_heap_end = _heap_base + _heap_size - 1;

/* _stackbase marks base of user stack */

/* stack is allocated following the heap. */

[* The stack may be based in a separate memory region, if desired. */
_stackbase = (_heap_end + 0x10) & ~0x0f;

STARTUP ("crto60*")
HLL ()

SYSLIB ("libmn*")
SYSLIB ("libll*")
FLOAT

7-5

i960 Processor Software Utilities User's Guide

The remaining options specify the floating point and other libraries used.
_heap_size , _heap_base , _heap_end , and_stackbase are global

symbols that define the heap and stack. For more information on the linker
directives used in this sample file, see Appendix A.

Linker Invocation

Once you have set up your linker directive file, you are ready to link your
object modules. To run the linker, use the syntax:

fnko60 [_ fi

Elgl d960 B[— options | filenames

Ink960 invokes the linker, providing backwards
compatibility with CTOOLS960 Release 3.5 or
later.

gld960 invokes the linker, providing backwards
compatibility with GNU/960 Release 2.2 or later.

options is one or more of the options listed in Table 7-1.

filenames is one or more object, library, or linker-directive
filenames.

For example, to link the fileel.0 ,file2.0 using the linker
directives incycx.ld , enter the command:

Ink960 filel.o file2.0 cycx.ld

The linker provides many options that let you customize the linking
process. Table 7-1 lists these options.

Linker (Ink960, gld960)

Table 7-1 Linker Options
Name Option Effect Default Action
Architecture A{SA|SB|KA| specifies architecture. The uses the KB libraries.
KB|CA|CF|JA COREO-3options let you
|ID|JF|HA| generate code that is
HD | HT | RP | compatible with a group of
COREQ | CORE1 processors. The types of i960
| CORE2 | processors supported by each
CORE3} COREswitch are:
COREO Jx, Hx, RP
CORE1l All 80960
architectures
CORE2 Jx, Hx, RP
CORE3 Cx, JX, Hx

Section start

Bsection addr

assigns section addresses.

locates the sections

address T {bss | data | consecutively in the
text} addr default sequence.

Startup C suppresses any STARTUP uses the startup routine

alternative directive. specified with STARTUP

in the directive file.

Circular c searches libraries circularly. searches libraries once.

search

Inhibit CAVE D prevents the linker from linker compresses CAVE

compression compressing CAVE sections. sections.

Define dc reserves space for common does not reserves space

common dp symbols, with the same effect for common symbols.

symbol space

as a FORCE_
COMMON_ALLOCATION
directive (see Appendix A).
Useful only when combined
with -r.

continued [

7-7

1960 Processor Software Utilities User's Guide

Table 7-1

Linker Options (continued)

Name Option

Define symbol defsym name =

expr

Entry point esymbol

Format Fcoff
Fbout
Felf

Fill fvalue

Big-endian G
target

Decision gcdm
maker

Sort common H

symbols
Help h
Compress J

Library search Ldir
path

7-8

Effect

defines an absolute symbol.

defines the primary entry
point.

selects COFF, b.out, or ELF
as the output format.

initializes the gaps within a
section.

specifies that input files and
output files are for a big-
endian target. Valid only for
COFF or ELF files.

invokes gcdm960 optimization
decision maker.

sorts common symbols by
size.

prints help and terminates.

merges duplicated tags, and
compresses string table.
(COFF only).

adds a directory to the library
and directive-file search path.

Default Action

uses the beginning of
.text as the entry point.

defaults to b.out for
gld960 and COFF for
Ink960.

initializes the memory
between sections to 0.

little-endian target files.

does not invoke
gcdom960.

does not sort common
symbols.

uses no compression.

uses a search path
determined by the output
format and invocation
name.

continued [

Linker (Ink960, gld960)

Table 7-1 Linker Options (continued)
Name Option Effect Default Action
Library input labbr specifies a library-filename takes no action.
abbreviation.
Memory map m writes a memory map to generates no memory
stdout. map.
Name map file Nfile places memory map in file. sends memory map (if
Useful only with -m. generated) to stdout.
Noinhibit n produces an output file for most errors,
output regardless of errors. suppresses the output
file.
Optimization Ob inhibits the branch-and-link or optimizes the callj and
inhibit Os system-call optimizations. calljx pseudo-instructions.
Output ofilename names the output file. produces a.out for COFF
filename output, b.out for b.out-
format output, and e.out
for ELF format output.
Profiling P adds profiling initialization adds no profiling
code. This option is useful instrumentation.
only when combined with -r.
Position p{b|c|d} marks the output as position- does not mark output as
independence independent (PIC/PID), position-independent.
issuing a warning for non-
PIC/PID input. Uses libraries
with PIC (-pc), PID (-pd) or
both (-pb).
Read symbols Rfilename includes only the symbols includes the entire file.

only

Relocation

r

from the specified object file.

retains the relocation entries
in the output file.

removes the relocation
entries.

continued [

7-9

1960 Processor Software Utilities User's Guide

7-10

Table 7-1 Linker Options (continued)
Name Option Effect Default Action
Strip S,s -S removes only the debug retains the symbolic

Section start
address

Target

Suppress
multiple
definition
symbol
warnings

Unresolved
symbol

Version

Verbose

Version; stop

Warnings

Bsection addr
T {bss | data |
text} addr

Tfilename

usymbol

v960

information from the output
file. -s removes all symbolic
information from the output
file.

assigns section addresses.

uses the full search path for
directive filename, with the
same effect as a TARGET
directive.

suppress warnings of multiple
symbol definitions, even if
they differ in size.

puts an unresolved symbol in
the symbol table.

displays linker version
information.

displays linker progress.

displays the linker version
information and stops linking.

suppresses warnings except
symbol table warnings.

information.

locates the sections
consecutively in the
default sequence.

searches only the current
directory.

displays all warnings.

suppress warnings of
multiple symbol
definitions even if they
differ in size. No
unresolved symbols
added to file.

displays no version
information.

displays no progress
information.

displays no version
information and stops
linking.

displays all warnings.

continued [

Linker (Ink960, gld960)

Table 7-1 Linker Options (continued)

Compress X removes the local symbols retains local symbols.
beginning with a dot (.) or L.

Compress X removes the local symbols. retains local symbols.

Trace symbol y sym traces a symbol, indicating does not trace symbols.

Program
database

Time stamp
suppression

each file where it appears, its
type, and whether the file
defines or references it.

Z pdb_dir specifies location of program linker uses location
database. defined with variable
$G960PDB if defined.

z puts Time Zero in the output uses current time stamp.
time stamp.

Specifying Object Files

When you specify the input-object and library files on the command line

or in the directive files, provide the full object filenames, with the

filename extensions. The linker processes the input object and library files

in the following order:

1. afile designated with therARTUPdirective (theC optionsuppresses
the STARTUP directive).

2. the object files and libraries listed individually in the invocation, in the
order appearing on the command line.

3. the object files and libraries listed individually in the linker-directive
files, in the order encountered.

4. the libraries listed with theLL directive.

5. the libraries listed with theySLIB directive.

7-11

i960 Processor Software Utilities User's Guide

7-12

Specifying Libraries

To resolve a library reference, list the library after all object files
containing the reference. Only required library members are linked. The
libraries are opened and searched once (unless you usedp#on).
Specify a library file:

« with no option, using the full filename with its extension.

« with thel option and a standard library-filename abbreviation, as
described in th&ibrary Naming Conventions and Search Paths
section on page 7-21.

« with theHLL directive, for the standard high-level support libraries.

« with thesysLIB directive, for the libraries (such as low-level support
libraries) to be linked last.

The following example links thigel.o andfile2.o object files. The
user-defined libraryibu.a resolves referencesfitel.o . Any
unresolved referencesiite2.o that could be resolved iihu.a cause
the link to fail.

Ink960 filel.o -lu file2.0

Using thec option to perform a circular library search resolves all
symbols.

Specifying Linker-directive Files

A linker-directive file can contain input object and library filenames,

directives, options, and other directive filenames.

» To restrict the directive-file search path to the current directory,
specify the filename alone on the command line or with. UDEin
another directive file with a restricted search path.

» To use the full search path, use theption or theTARGETdirective.
INCLUDE directives in a file included with or TARGETalso use the
full search path.

Linker (Ink960, gld960)

The following example links thigel.o andfile2.o object files. The
object files and thak12.ld directive file are in the current directory.
Instructions and data frofitel.o are given lower addresses,
respectively, than instructions and data frive2.0 , unless otherwise
specified in the directive file.

Ink960 filel.o file2.0 Ink12.ld

For more information on linker directive files, see Appendix A.

Naming the Output File

Unless you specify otherwise, the output file is named:

a.out for COFF output
b.out for b.out-format output
e.out for ELF output

The linker overwrites existing files with the default output names. To
preserve an existingout , b.out ore.out file, use theo option or the
OuTPUTdirective to specify an output filename.

Incremental Linking

You can use the output of the linker as input to subsequent linker sessions.
To generate relocatable linked files for such incremental linking, invoke
the linker with ther option.

Linking a non-relocatable input file generates a warning message. For
successful linking, non-relocatable input files must:

» have no unresolved external references
* be located at the same address as in previous linker invocations

7-13

] 1960 Processor Software Utilities User's Guide

Object Module Format Compatibilities

You can link b.out-format, COFF or ELF object files and libraries, in any
combination. To determine a file format, the linker examines the first two
bytes of the file. An unrecognized value indicates a linker-directive file.

This feature is useful when using third-party archives with the Intel-
supplied runtime libraries and your application code. The runtime libraries
are shipped in ELBnly (effective with CTOOLS R5.0 and later). Each
archive can have a different Object Module Format (OMF), and the
linkage still completes without error.

When the linker generates a different output format than the input, the
linker does not copy the debug information from the input file to the
output file. For example, if you include a b.out OMF file in a linkage
where the output file OMF is COFF, the linker does not copy any of the
debug information from the b.out file to the output COFF file. Ideally, you
should use one OMF consistently.

However, the following symbol information is translated and incorporated
into the output OMF file:

» Leaf procedures

» System Procedures (sysprocs)

» Common (global uninitialized variables)

» Locals (statics) in any section (typicaltyxt , .data , or.bss)

* Globals in any section

» Absolutes

The linker ignores any other type of symbol when the output OMF is

different from the input, including:

* Type Information (e.gx is a structure containing elemegtandz).

» Line Information (e.g., functior, comes from filex.c , and ranges
from lines 123-456. Line 235 is at ip 0x12345678).

 Weak Symbols. ELF supports a third granularity of symbol type.
None of the other OMFs supports it.

7-14

Linker (Ink960, gld960)

Some OMFs are not as rich as others and therefore cannot accommodate
the features of other OMFs. Some examples follow:
1. Sections The b.out OMF accommodatesly .text ,.data , and
.bss sections. If you create a b.out output file and attempt to use the
linker to create a section with any other name, the linker terminates
with an error. There is a workaround for this in the normal linker
directive language. Suppose you have an ELF file calledfile.o
with a section calledther code _section . You can use the
following linker directives to include the contents of this section in the
.text section of the b.out output file:

SECTIONS {
text : {
elf_file.o(Other_code_section)
}
}

Also, COFF accommodates only sections with names that are up to
eight characters long, whereas ELF can have arbitrary length section
names. When incorporating an ELF section into COFF output, the
linker shortens the name to eight characters.

2. Relocation types b.out does not support ELRs960_SUB
relocation type. If you try to create a relinkable output file with one of
these relocations in it, and the output OMF is b.out or COFF, an error
occurs. Note, however, thadt making a relinkable file does not
create a problem. The linker relocates it, and throws the relocation
directives away.

3. System procedure (sysproc) indicesThe b.out OMF accommodates
only system procedure indices that are greater than zero and less than
254. If you have aysproc symbol in a COFF or ELF symbol table
whose system procedure index value exceeds the bounds that b.out
supports, and you attempt to include this file in a b.out linkage, an
error occurs.

7-15

i960 Processor Software Utilities User's Guide

Note that when aeafproc ~ crosses from ELF or COFF into b.out, the
leaf entry point is produced from the call symbol. For example:

Jeafproc x,LO
X:
Ida 0,90
LO:
ret
$ gas960e t.s
$ gld960 -r t.o -Fbout -o t.bout.o
$ gnm960 t.bout.o

Symbols from t.bout.o:

0x00000000 t x
0x00000004 t x$LF

Symbolx appears, and also symbsLF (which corresponds to the leaf
entry point ofx.).

Link-time Optimization

When the linker performs relocation, it chang&/calljx pseudo
instructions intaal/balx instructions when the target of the
callj/calljx is a leaf procedure. It also changes the instruction to a

calls when the target is a system procedure index. In your assembly

source, use thaallj andcallix pseudo-instructions, to be replaced as

shown in Table 7-2:

* When the pseudo-instruction argument is a leaf procedure, the linker
substitutes a branch-and-link, which is faster than a call.

» For system procedures, the linker substitutes system calls, providing
convenient access to a set of kernel services.

» To prevent these optimizations, use theoption.

7-16

Linker (Ink960, gld960)

Table 7-2

Branch-and-link and System-call Optimization

Pseudo-instruction Storage Class Replaced By
callj external, static call
leaf external bal
system call calls
calljx external, static callx
leaf external balx
system call Ida index, g13; calls g13

For a system call, the processor refers to a system-procedure-table index,

provided as thealls argument:

* For anindex frono to 31 with callj , the linker generatescalls
with a literal index constant.

* For anindex frono to 259 with callix , the linker generates
instructions to load the index into registes and perform the call as
follows:

Ida index, g13
calls g13

Since registeg13 is used, avoid returning a structure longer than 16 bytes
from a system procedure. Instead, return pointers to a structure.

The following cause out-of-range errors:

e usingcallj with an index greater thaa

e usingcallix with an index greater thas9 for COFF programs

e usingcallix with an index greater tha%7, or less than, for b.out
format programs

For link-time optimization, design any hand-coded assembly language leaf
procedures for both cakk4llj /callx) and branch-and-linkoél /balx)
access. Then, the linker can optimize the call while protecting any indirect
procedure accesses that are not recognized as optimizable.

7-17

i960 Processor Software Utilities User's Guide

7-18

The following example provides both branch-and-link and call access:

Jleafproc ~ _name,_second
__nhame: lda retlbl,g14
_second: mov 914,913
The subroutine appears here.

bx (g13)
retlbl: ret

Branch-and-link instructions place the address of the next instruction

in g14 before branching.

Thelda instruction at thename: label places theetlbl address of

theret instruction ing14.

The first.leafproc ~ argument, name, is used as theall andcallx

entry point.

The secondeafproc argument, second , used as theal and

balx entry point.

The branch destination ig3, whose contents are determined by the

contents ofj14, which vary depending upon the entry point. In either

case, the routine returns correctly whentthénstruction is executed:

O Thelda instruction at name placesetlbl in g14 when the
routine is entered byname and by acall orcallx instruction.

O Thegl4 register contains the address of the instruction after the
bal orbalx when the routine is entered byecond and by a
bal orbalx instruction.

For more information on theallj andcallix pseudo-instructions, see
thei960 Processor Assembler User's Guide

Linker (Ink960, gld960)

Using calljx with the i960 RP Processor

When using aalljx pseudo instruction with the newrP option,

callix uses a different syntax. For example, insertinglg

instruction while using thendD setting might produce the following
linker output depending upon whether the target is a default call, leaf
procedure, or system call:

Default Call Leaf Procedure System Call
callx _target balx _target,g14 Ida _sysprocindex,g13
calls (g13)

When using aalljx with the newARP option,callix uses the syntax:
calljx _target, tmpreg

wheretmpreg is a local or global register. This change results in the
following sequences in the linker:

Default Call Leaf Procedure System Call
Ida _target,tmpreg Ida _target,tmpreg Ida _sysprocindex,g13
callx (tmpreg) balx (tmpreg),gl4 calls (g13)

Notice that with the 80960RRilljx format all three call types result in
a three-word instruction sequence, whereas with other architectures the
previouscallix format requires only two words.

Binding Profile Counters to Non-standard Sections

When compiling for two-pass compilation, the compiler places profile
counters in your code. These are COMMON variables, but are allocated
jointly; therefore, all profile counters occupy a contiguous stream of
memory. By default, these profile counters are allocated to the same
memory as other common variables, but they can be allocated to any
memory using the wildcard linker section directive.

7-19

i960 Processor Software Utilities User's Guide

7-20

Environment Variables

Environment variables set default operating parameters, such as search
paths and the target architecture. Define the environment variables before
invoking the linker. UNIX users must define the environment variables

with theset orsetenv command at the operating system prompt, in

script files, or in a bootup file such ashrc , .login , or.profile

Windows users define the environment variables at the operating system
prompt, in batch files, in theutoexec.bat file, or using the Control

Panel.

For more information on the environment variables used by the 1960
processor assembler and software utilities, se®@teProcessor
Assembler User's Guidd-or more information on defining environment
variables, see your host system documentation.

The linker requires you to define the following environment variables:

G960BASE specifies base directory for invoking the linker as
gld960 .

I960BASE specifies base directory for invoking the linker as
Ink960 .

G960ARCH specifies the target-architecture libraries for the
gld960 invocation.

I960ARCH specifies the target-architecture libraries for the
Ink960 invocation.

G960LIB specifies an additional directory for the960 -
invocation library and directive-file search path.

G960LLIB library and directive-file search path.

1960LIB specifies additional directories for tm&960 -
invocation.

1960LLIB library and directive-file search path.

Linker (Ink960, gld960)

For more information on how setting these environment variables affects
the linker, see theibrary Naming Conventions and Search Paghstion
on page 7-21.

Library Naming Conventions and Search Order

Thel abbr option specifies an abbreviation for one of the four standard
library types (standard ANSI, math, floating-point, and low-level). The
linker combines the abbreviation for the type with the architecture option
and big-endian and position-independent code and data options, if any, to
generate a list of candidate library names.

abbrqual .a

lib abbrqual .a

abbrarchqual .a
lib abbrarchqual .a

abbr is the argument of the option, one of:

c which contains the standard ANSI C functions.

m which contains the standard ANSI math
functions.

h which contains the accelerated floating-point

functions for processors without on-chip
floating-point support.

I which contains a MON960 low-level library.

qual is null unless big-endian, PIC or PID options are specified on the
linker command line. Themual is one of:

_borb which selects a big-endian library for Cx, Jx, and
Hx applications.

_porp which indicates that the library contains position-
independent data (PID).

_eore which indicates a PID and big-endian library for
Cx, Hx, and Jx applications.

7-21

i960 Processor Software Utilities User's Guide

arch is the architecture option specified by the linker command line. Itis

one of:

ca for i960 Cx, Hx, and Jx processor-based
applications.

jx for 1960 Jx processor-tuned floating-point
libraries.

ka for i960 KA and SA processor-based
applications.

kb for i960 KB and SB processor-based
applications.

p for 1960 RP processor-based applications.

The linker searches for each library name along a library search path
determined by the linker invocation.

When you invoke the linker agi960 , the search path is:
any path given with the option

any path given with theEARCH_DIRdirective

the path given with thegeoLIB environment variable
the path given with thege0LLIB environment variable
the path given with the960BASEenvironment variable
the current working directory

ok wnNE

When you invoke the linker ask960 , the search path is:

any path given with the option

any path given with theEARCH_DIRdirective

the path, if any, given with th@0LIB environment variable
the path, if any, given with th@0LLIB environment variable

thelib subdirectory of the path given with th@0BASE
environment variable

6. the current working directory

abrwnhE

The following example shows a linker search path, using the glash (
UNIX directory syntax:

Ink960 -L/ffs/qqq -Ixyz objects.o -Tpath2

7-22

Linker (Ink960, gld960)

Thepath2.ld directive file containSEARCH_DIR(/abc) .

For the default (KB) architecture, the linker constructs the following
library filenames:

Xyz.a
libxyz.a
xyzkb.a
libxyzkb.a

The linker searches the following directories:

/ffs/lqgg/xyz.a
/abc/xyz.a
$1960LIB/xyz.a
$1960LLIB/xyz.a
$I960BASE/lib/xyz.a
Ixyz.a
[ffs/qqq/libxyz.a
/abc/libxyz.a
$1960LIB/libxyz.a
$1960LLIB/libxyz.a
$1960BASE/lib/libxyz.a
Jlibxyz.a
[ffs/qqa/xyzkb.a
/abc/xyzkb.a
$1960LIB/xyzkb.a
$1960LLIB/xyzkb.a
$I1960BASE/lib/xyzkb.a
Ixyzkb.a
[ffs/qqg/libxyzkb.a
/abcllibxyzkb.a
$1960LIB/libxyzkb.a
$1960LLIB/libxyzkb.a
$1960BASE/lib/libxyzkb.a
Jlibxyzkb.a

7-23

i960 Processor Software Utilities User's Guide

7-24

Library Search Order When 1960 RP Architecture Is
Selected

When a non-i960 RP architecture is specified, the linker searches first for
architecture-neutral libraries, then for architecture-specific libraries. For
example, when the linker looks for the 1960 KA processor library, it

first tries to findlibc.a and, if the library is not found, the linker looks
forlibcka.a . Because files targeted for the 1960 RP processor require
target-specific libraries, the linker looks first for architecture-specific
libraries (e.g.libcrp.a), and, if those libraries are not found, the linker
looks for architecture-neutral libraries (elgps.a).

Linker Options Reference

This section describes the linker command-line options in alphabetical
order.

Linker (Ink960, gld960)

A: Architecture

Selects libraries;
identifies instruction set

Aarchitecture

architecture is SA, SB, KA, KB, CA CA DMACEF, JA, JD, JF, HA
HD HT, RP, COREO, CORE1, CORE2, or
CORE3

Discussion

Specifying the architecture:
» selects the libraries for your target i960 processor
» identifies the instruction set used in the input object files

To specify the architecture, use theption. This overrides any
OUTPUT_ARCIHdirective and th€60ARCH or G960ARCHenvironment
variable.

Some pairs of arguments have identical effects:
* SAis the same asA

* SBis the same asB

e CAis the same asF andCA DMA

You can prepare several levels of default values for the architecture and
standard libraries. Omittinguses the architecture specified by
OUTPUT_ARCIN the linker-directive file. Omitting both and
OUTPUT_ARCHSses the default architecture for the linker invocation and
the architecture environment variables (described ihithrary Naming
Conventions and Search Patbesction on page 7-21):

* Invoking the linker withnk960 uses thé960ARCH environment
variable.

* Invoking the linker withgld960 uses the&960ARCHenvironment
variable.

7-25

i960 Processor Software Utilities User's Guide

7-26

* With 1960ARCH or G960ARCHuUNndefined, the default architecture is
KB, regardless of the invocation command.

SpecifyingA with no valid argument causes a fatal error.

New Architecture Options

The linker now accept®\RP, -ACOREQ -ACORE], -ACORE2 and-ACORE3
architecture switches or environment variable settings. The following
table shows the input/output compatibilities of all supported architectures.

Table 7-3 Supported Input/Output Architecture Combinations
Output
SA/ SB/
KA KB Cx J Hx RP CORE0O COREl1 CORE2 CORE3
SA/KA C C NA | NA NA NA NA NA NA NA
SB/KB NA C NA | NA NA NA NA NA NA NA
I Cx NA NA C NA | NA | NA NA NA NA NA
n JIx NA NA NA C C NA NA NA C NA
p Hx NA | NA NA NA C NA NA NA NA NA
u RP NA NA NA C C NA C NA
t COREO | NA | NA NA C c c c NA c NA
CORE1 C C C C C NA NA C C C
CORE2 NA | NA NA C c NA NA NA C NA
CORE3 NA | NA C C C NA NA NA C C

C = compatible.

NA = incompatible. Warning issued.

Linker (Ink960, gld960)

Libraries

The linker uses the architecture-specific standard libraries ferian
directive without arguments. The provided directive files, such as
eva.ld , contain the appropriate library directives. The designated
architecture also affects the library names generated from(theary)
option.

Example

The following linksproto.o for a KA target.
Ink960 -AKA proto.o

Related Topic
| (Library Input)

B, T: Section Start Address

Assigns a section
starting address

Bsection addr

ss
T[data [] addr

Oext O
section is a section name. The space betweerion
andaddr is required.
bss identifies thebss section.
data identifies thedata section.
text identifies thetext section.

7-27

i960 Processor Software Utilities User's Guide

7-28

addr is a hexadecimal integer constant foor an
octal, decimal, or hexadecimal expressiongor

Put no space betweerandbss, data , ortext . Do not start thess,
data , ortext argument ta with a dot ().

A space between and the section name is optional. Use the full section
name, including any leading dot.

Discussion

To specify a section starting address, Bisaverriding any other default or

directive-file section starting address. Edur , you can use:

* an octal constant starting with

» adecimal constant starting with any digit other than

» ahexadecimal constant starting with

e an expression that can contain octal, decimal, and hexadecimal
constants and symbols defined in linker directive files or with the
defsym option.

For backward compatibilityr is supported, with the following restrictions:

» Specifyaddr as a hexadecimal constant. Expressions are not
evaluated. Regardless of the leading character or dimiterprets
the address as hexadecimal.

» UseT for only thetext ,.data , and.bss sections.

Examples

* The following startsdata at the addresg00 hexadecimal and starts
the section namedydata at the address: hexadecimal:

Ink960 -Tdata 0x1000 -Bmydata 0x24 filel.o file2.0

* WhenB andT locate the same section naa@verridesr. The
following startstext atoxc:

Ink960 -Ttext 0xfO filel.o file2.0 -B.text Oxc

* The starting address efct1 in the following command can be
expressed as12750 octal,5608 decimal, o0x15e8 hexadecimal:

Ink960 -Bsectl 0x1000+1000+01000 filel.o file2.0

Linker (Ink960, gld960)

C: Startup Alternative

Suppresses any
STARTUP directive in
the linker directive file

C

Discussion

By default, the first object file or library specified on the command line is
linked first. To link a different file first, use. TheC option overrides the
STARTUPdirective and returns to the default.

Example

For example, thew-targ.ld file contains &TARTUP(crtest.o)
directive. The following linksiewstart.o first instead ofrtest.o

Ink960 -C -Tmy-targ newstart.o filel.o

c: Circular Library Search

Searches libraries
circularly

Discussion

By default, the linker processes libraries in order, reading from left to right
on the command line. In most cases, this approach works well.
Occasionally, however, libraries contain circular references. In such
cases, you can use the linker'®ption to search libraries iteratively to

7-29

i960 Processor Software Utilities User's Guide

7-30

resolve these references. This does, however, slightly change the
semantics of links; formerly undefined symbols may be defined by other
libraries in the loop.

Example

libl andiib2 interrelate as follows:

libl defines references object file
X a X.0
y y.0
lib2 defines references object file
a y a.o

If you link using:
gld960 -ux libl.a lib2.a

the linker opengbil.a first, finds symbok resolved in the.o object
file, and reads it in. It finds no other references to symbols it needs, so it
closesibl.a

The linker then open®2.a and resolves the symbolkeferenced in the
x.0 file (fromlibl.a). Itreads inthe.o object file. It finds no other
symbols it can resolve, so it closieg.a

However, symboy is left unresolved, because it is definedina and
referenced im.o (fromlib2.a) . This is a circular definition.

Thec option resolves circular definitions by iterating through the list of

libraries and fetching object files from them as needed for each loop. The

search is complete when:

» there are no more undefined symbols, OR

» neither the number of global symbols nor the number of undefined
symbols has changed from the previous iteration.

Linker (Ink960, gld960)]

D: Inhibit CAVE section compression

Prevents the linker from
compressing CAVE
sections

D

Discussion

By default the linker compresses any sections set up for Compression
Assisted Virtual Execution (CAVE) by the user. Using braption

prevents the linker from performing this processing. For more information
on CAVE, see th@60 Processor Compiler User’'s Guide

d: Define Common Symbol Space

Allocates common
symbols to .bss even
when doing -r links

dc
dp

¢ andp have identical effects.

Discussion

To assign common-symbol space in an output file linked withrthe
(Relocation) option, uséc ordp. This option has the same effect as the
FORCE_COMMON_ALLOCATIdirective. (It places common symbols by
default into thebss section.)

The final link automatically allocates space for common symbols.

7-31

i960 Processor Software Utilities User's Guide

7-32

Example

The following assigns space in thes section of.out for common
symbols and retains relocation information for later re-linking:

Ink960 -rdc dcomm.o filel.o

defsym: Define a Symbol

Defines an absolute

defsym name=expr

name names the symbol.
expr initializes the symbol.
Discussion

To define a symbol on the linker command line, diseym . You can
reference the symbol in your source text, in a directive file, or on the
linker command line.

Example

The following resolves any referencesitoum1 infilel.o or
file2.o . Its value is zero (absolute).

Ink960 -defsym filenum1=0 filel.o file2.0

Related Topic

R (Read symbols only)

Linker (Ink960, gld960)

e: Entry Point

Defines the primary

entry point
esymbol
symbol is a symbol name in a text-type section in the
output file.
Discussion

To define the primary entry-point symbol in the output file, aise

The linker uses the following order of precedence to select an entry point:
1. e onthe command line
2. withe unspecifiedENTRYin the linker directive file
3. withe andENTRYunspecified, the first appearancesaft or_main
in your program
4. withstart and_main undefined, the first address.iaxt

Example

The following command linksle.o for execution on a Cx target and
specifies the symbohidpoint as the entry point:

Ink960 -Tmepcx -e midpoint file.o

7-33

i960 Processor Software Utilities User's Guide

7-34

F: Format

Specifies the COFF,
ELF or b.out format for

the output
Fcoff specifies COFF output.
Felf specifies ELF output.
Fbout specifies b.out output.
Discussion

To specify an output format, use theption.

gld960 oOrgld960 -Fbout generates b.out format output. The
Fbout option is not valid when the
linker is invoked withink960 .

gld960 -Fcoff 0riInk960 generates COFF output.
gld960 -Felf o0Orink960 -Felf generates ELF output.

The output format generates the default output filename (sédntter
Invocationsection and the option in this section). The default format for
gld960 is b.out; the default format for Ink960 is COFF.

Example

The following generates a COFF program:
gld960 -Fcoff filel.o file2.0

Linker (Ink960, gld960)

f: Fill
Sets the fill value for

unused memory in an
output section

f value

value is a two-byte hexadecimal constant in C-style
notation.

Discussion

Use this options to initialize blocks of memory in sections of an output
file.

You can prepare several levels of default fill values:

« AFILL directive inside a section (valid only for parts of the section
defined aftefFILL is encountered) definition is used first.

* With no fill value inside a section definition, the linker usesrihe
directive at the end of the current section definition, inside the
SECTIONSdirective.

« With no fill value defined in the directive file, the linker usesfthe
option.

e With bothf andFILL omitted, the linker usesaafill value.

Filler is used to ensure alignments between input sections:

a.s b.s text0
.align 4 .align 4 Ida 0,90
Ida 0,00 lda 0,90 Filler
Ink960 a.o b.o Ida 0,90

7-35

i960 Processor Software Utilities User's Guide

Example

The following command linkslel.o ,file2.o , andfile3.o to
produce an executable image namedt . The linker placesxFFFF in
all gaps between the input sections in the output file.

Ink960 -f OXFFFF filel.o file2.0 file3.0 file.o xxx.ld
SECTIONS {

one: {

first.o (.text)

. += 0x1000; /*filler*/

second.o (.text)

}

G: Big-endian Target

Produces a COFF or
ELF file for a big-
endian target

G

Discussion

To link big-endian instructions and data, invoke the linker and:

» SpecifyG, to select the big-endian search path and libraries, as
described in th&ibrary Naming Conventions and Search Paths
section on page 7-21.

» SpecifyFcoff orFelf , for COFF or ELF output.

e Select the 1960 Cx, Jx, or Hx architecture.

7-36

Linker (Ink960, gld960)]

7 NOTE. Big-endian code is supported for COFF or ELF on the i960 Cx,

R Jx and Hx processors only. Memory regions must be either all big-endian
or all little-endian. The linker emits warnings when you attempt to mix
big- and little-endian code.

Example

The following links with a user-defined library (abbreviatednasa) for a
big-endian CA target. The linker uses theor b qualifiers first when
searching for the library indicated byyca .

gld960 -ACA -G -Fcoff fcab.o fcag.o -obigca.o -lcg -Im -Imyca

The objects must have been produced using the assembtastion.

gcdm: Decision maker

Invoke gcdm960
optimization decision
maker

gcdm

Discussion

See Chapter &@cdm Decision Maker Optigim your compiler manual for
more information on this option.

7-37

v

1960 Processor Software Utilities User's Guide

7-38

h: Help

Displays help
information

Discussion

To display help information for the linker, use theoption.

H: Sort common symbols

Sorts common symbols
based on size.

Discussion

To use the linker to sort common symbols based on size, usé tption.
For each input file in the linkage, the common symbols defined in that file
are sorted based on the size of the symbol.

Linker (Ink960, gld960)]

J: Compress

Merges duplicated tags
from COFF symbol
tables, compresses
string table

Discussion

This option merges duplicated COFF symbol tags from output symbol
tables.

Linking with theJ option eliminates such duplicated tags. The resulting
symbol table has tag indices that cross .file scope boundaries. The file has
F_COMP_SYMTA®Red into the flags of the file header structure (see

coff.h). The string table is also compressed with this option.

L: Library Search Path

Changes the path for
library searches

Ldir

dir is a directory name.

Discussion

To extend the linker search path (described ir_theary Naming
Conventions and Search Patbesction on page 7-21), use You can use

L multiple times on the command line. Theption has the same effect as
SEARCH_DIR but directories specified withare searched before
directories specified with th@&EARCH_DIRdirective.

7-39

1960 Processor Software Utilities User's Guide

7-40

|: Library Input

Specifies an input

library

| abbr

abbr is an abbreviated form of a library name. Only
oneabbr can accompany each

Discussion

See thd.ibrary Naming Conventions and Search Pathstion on page 7-
21 for information on this option.

Only the first filename found is used. Once closed, a library is reopened
only when specified again on the command line or in a linker directive
file, or if the-c is used.

You can use the option to create an unresolved reference to a symbol in
the desired library member before specifying the library.

NOTE. Because the linker processes libraries and files in order, the
appearance order of theoption on the command line is significant. For
examplegld960 f.o -lh differs fromgldo6o -lh f.o , andgld960

-lh -lc differs fromgld960 ... -lc -lh .

Linker (Ink960, gld960)

Examples

In the following example:

* Inputfilel.o refers to thesBCsymbol, defined in memberof
libckb.a

* Inputfile2.0 refers to thexyz symbol, defined in memberof
liba.a

« Both input files refer to theCNexternal function, defined in member
1 of both libraries.

The command line is:
Ink960 filel.o -la file2.0 -Ic

TheFCNreferences are satisfied liya.a , member.; ABCis obtained
fromlibckb.a , memben; andXYZremains undefined, since the library
liba.a is searched beforge2.0 is specified.

To repair this, consider changing the command line to:
Ink960 filel.o0 -u_XYZ -la file2.0 -Ic

You can create an unresolved reference from the command line with the
option. Such references link archive members needed to resolve the
undefined symbol, even when the input does not explicitly reference the
symbol. The following command creates an undefined symbol, called
routl , in the global symbol table:

Ink960 -u routl filel.o -la

The linker extracts the first member of libraipp.a that definesout1 .
With no other references tba.a members, the linker would link only
the member resolvingutl .

7-41

] 1960 Processor Software Utilities User's Guide

M: Multiple Definition Warning

Included for backwards
compatibility, No effect

M

Discussion

This option is supported for backwards compatibility, but has no effect.

Related Topic

t (Multiple definition warning)

m: Memory Map

Provides a memory map
of the linked executable

Discussion

To write a memory map of the linked executablettout , specifym
which lists:

» the symbol locations

» the global common storage allocation

7-42

Linker (Ink960, gld960)

For information orstdout , see your host system documentation. You
can redirect map information to a file using theption.

Related Topic

N (Name memory map file)

N: Name Memory Map File

Specifies a filename for
writing the memory map

Nfile

Discussion

Redirects the linker memory map to the specifiedffite . When this

option is not specified but theoption is given, map information is written

to standard output. This option allows you to separate the linker map from
other information written to standard output, such as verbose messages
and warnings.

Example

The following command linkso with verbose messages, and redirects
the linker map to a fileapfile . Verbose messages are still sent to
standard output.

Ink960 -m -Nmapfile t.o -v

Related Topic

m(Memory map)

7-43

1960 Processor Software Utilities User's Guide

n: Noinhibit Output

Writes an output file
regardless of errors

Discussion

To produce an output file even when the linker encounters non-fatal
errors, specifyi. By default, any error suppresses the output file.

Example

The following command produces an output file namegkrr.o
regardless of non-fatal errors:

Ink960 -n proto.o -ohaserr.o

O: Optimization of Calls Inhibited

Inhibits branch-and-link
or system call
optimizations

O{b|s}

b inhibits the replacement ofillj andcalljx
pseudo-operations with branch-and-link
instructions.

s inhibits the replacement ofillj andcalljx

pseudo-operations with system call instructions.
call instructions remain.

7-44

Linker (Ink960, gld960)

Discussion

To inhibit branch-and-link optimizations, specify. To inhibit system
call optimizations, specif@gs. By default, the linker performs both types
of call optimization.

Note that if a function declared witlpragma systemproc lacks a
function definition,-Os causes the linker to issue a fatal error.

Example

The following command inhibits system call optimizations but allows
branch-and-link optimizations:

Ink960 -Os proto.o

0: Output Filename

Names the output object
file

ofilename

filename names the output file. You can include a full or
partial pathname.

Discussion

To specify an output filename other than the defaultpusehe default
output filenames are:

a.out for COFF output
b.out for b.out format output
e.out for ELF output

7-45

i960 Processor Software Utilities User's Guide

Example

The following command linksle.o , creatingproto.out in the
ftestdir directory:

Ink960 -Texv -o /testdir/proto.out file.o

Related Topic

F (Format)

P: Profiling

Puts profiling code in
the linker output to

support the
two-pass optimizing
compiler
P
Discussion

This option adds the profiling startup code used by the compiler. This
option is useful only when combined with . By defaultP is not included
when using the option,

Example

The following command links for profiling optimization and makes the
output relocatable:

gld960 -P -r file.o

7-46

Linker (Ink960, gld960)

p: Position-independence
Marks the linker output

file as position-

independent

p{bfc|d}

Discussion

To link and mark the output file for position-independent code or data,
invoke the linker withnk960 and specify, as follows:

pb selects libraries with position-independent code
and data.
pc selects libraries with position-independent code.

Currently, all the libraries provided with your
1960 processor software toolset contain position-
independent code.

pd selects libraries with position-independent data.

For more information on library selection, seeltif@ary Naming
Conventions and Search Patbesction on page 7-21 and theption in
this section.

By default, files are linked as position-dependent. If you use these
switches and the files are not marked as position independent, the linker
issues a warning message.

For information on generating position-independent code and data, see
your compiler user's guide. For information on marking unlinked object
files for position independence, see the assembler user's guide. For
information on the position-independent and position-dependent libraries,
see the library supplement.

When the linker directive file contaimg.L() , the linker chooses default
libraries according to the position-independent flag.

7-47

1960 Processor Software Utilities User's Guide

7-48

R: Read Symbols Only

Includes only the
symbols from an object
file

R

Discussion

To read all the symbol names and addresses from an input object file,
specifyR. The rest of the input file is not relocated or included in your
linked output. WithRr, your output file can refer symbolically to non-
relocatable locations defined in other programs.

Example

The following command links only symbols fraie1.0 and includes
all of file2.o in the linked output:

Ink960 -R filel.o file2.0

Linker (Ink960, gld960)

r: Relocation

Keeps relocation entries
in the output object file

Discussion

With ther option, relocation entries remain in the output object file for a
subsequent linker call, and the linker issues no warnings about unresolved
references.

Relocation requires symbol table entries that you can remove with the
option. The linker accepts no command line containing both ttzend
-s options.

Example

In the following incremental links, the first invocation links1.o and
file2.o to produce the relocatable output fileout . The second links
file3.0 andfile4.o to produce2.out . The third links the two
relocatable files to producene.out and writes a link map tgidout

Ink960 -r -o f1.out filel.o file2.0
Ink960 -r -o f2.out file3.0 filed.o
Ink960 -m -0 done.out f1.out f2.out

7-49

1960 Processor Software Utilities User's Guide

7-50

Related Topics

x, X (Compress) dc, dp (Define common-symbol space)
s (Strip)

S, s: Strip

Removes debugging or
symbolic information
from the object file

Discussion

For a smaller output file, strip symbol information with (lower case),

removing:

» the line number entries

» the symbols

» the symbol-table information

* In ELF output, this eliminates all non-allocated sections (e.g.,
.debug_info , .debug_line).

Usings (uppercase) retains the symbol table but removes debug symbols.
This option is supported in COFF and ELF only. In ELF, this removes all
non-allocated sectionsiébug* sections). By default, all information
remains in the output file.

Since relocation requires the symbol table, usimgth the relocation
option) terminates the linker with an error.

Linker (Ink960, gld960)

Related Topics

x, X (Compress)
r (Relocate)

T: Target

Searches for the linker
directive file in the
linker search path

Tfilename

filename is the linker directive filename. You need not
specify ald extension.

Discussion

To find a linker directive file in a directory other than the current one,
specify the file witht. Providing the directive filename withotutimits
the linker to searching in the current directory.

The linker searches for boitename andfilename .1d .

With T, the linker searches for the directive file along the search path
described in th&ibrary Naming Conventions and Search Paghstion on
page 7-21.

TheT option has the same effect asfRGETdirective.

For information on the linker command language used in linker directive
files, see Appendix A.

7-51

1960 Processor Software Utilities User's Guide

7-52

7 NOTE. You must add thel extension when specifying any directive
& filenames that are the same as the standard section names:

text.ld useTtext.ld

data.ld useTdata.ld

bss.ld useTbss.ld

You cannot use theoption to find a directive file nameekt , data , or
bss. You can use the namest.ld ,data.ld , orbss.d , but you must
append the filename and its extension when you usedpgon.

Related Topics

A (architecture) B
L (library directory) Ttext , Tdata

t: Suppress Multiple Definition Symbol Warnings

Suppresses warning of
multiple symbol
definitions.

Discussion

Use this option to suppress warnings of multiple symbol definitions, even
if they differ in size

Related Topic

w(Warnings)

Linker (Ink960, gld960)

u: Unresolved Symbol

Places unresolved
external symbol in the
symbol table

usymbol

symbol names the symbol.

Discussion

When creating programs of libraries only, such as run-time libraries, build
the symbol table withh. This option introduces an unresolved external
symbol into the output file symbol table. The linker resolves the reference
with the first module defining the symbol. This option is useful when
libraries are to be traversed in an order that prevents your application from
linking.

Example

The following example shows how to fetch the closure of components of
printf

Ink960 -rvu printf -oprintf.o -Ic

7-53

] 1960 Processor Software Utilities User's Guide

v: Verbose

Displays linker progress

Discussion

To display the files sought by the linker as the linker search progresses,
specifyv. The search messages appeattdsut .

V, v960: Version

Displays the linker
version number and
creation date

\%
v960

Discussion

To display a sign-on messagewtout during linking, use/. After
displaying the message, the linker continues processing.

To display the message without linking, wseo . You need not provide
any other input. After displaying the message, the linker stops.

The message includes the version number of the linker, and the date and
time it was created.

7-54

Linker (Ink960, gld960)]

W: Warnings

Suppresses warnings

w

Discussion

The linker provides warning messages about non-standard conditions
arising during the link. Using/suppresses the warnings.

Related Topic

T (Suppress Multiple Definition Symbol Warnings)

X, x: Compress

Omits local symbols
from the output symbol
table

X

Discussion

Delete local symbols from the output symbol table as follows:
X removes all local symbols.

X removes all local symbols beginning wittor a dot ().

When generating a compressed output file, you can also remove symbolic
information with the strip optiorsj.

7-55

1960 Processor Software Utilities User's Guide

By default, all information remains in the output symbol table for symbolic
debugging.

Related Topic
S,s (Strip)

y: Trace Symbol

Traces the specified
symbol

y symbol

symbol identifies the symbol.

Discussion

The linker traces the symbg}mbol , indicating each file where it appears,
its type, and whether the file defines or references it. You can trace
multiple symbols by using multiple options. Ifsymbol comes from a C
program, you must precede it with an underscore.

7-56

Linker (Ink960, gld960)]

Z: Program database

Specifies location of
program database

Z PDB_directory

Discussion

Use this option to specify the location of the program database. For
information on the program database, used when performing whole-
program or profile-driven optimization, see your compiler manual.

z: Time Stamp Suppression

Suppresses the time
stamp in the COFF

output file
V4
Discussion
For COFF files, the linker notes the current time and date in the output-file
header. To put Time Zero in place of the current time stamp, specify
Time Zero is 4:00, 31 December, 1969.

r/K NOTE. Neither b.out format nor ELF files have a time stamp.

7-57

Macro Processor (mpp960)

The mpp960 macro processor copies its input to its output, expanding
macros as it goes. The macros are either built-in or user-defined and can
take any number of arguments. mpp960 has built-in functions for
including named files, running UNIX commands, performing integer
arithmetic, manipulating text in various ways, doing recursion, and
performing other tasks. mpp960 can be used as a stand-alone macro
processor or as a front-end to a compiler or assembler.

mpp960 is compatible with the UNIX System V, Release 3 m4 utility, with
some minor differences. See tBempatibility with Other Macro
Processorssection in this chapter for more details.

mpp960 Message Prefixes

This chapter contains many examples of mpp960 input and output. Output
from mpp960 is prefixed by the string. For example:

=>Qutput line from mpp960

Error messages are prefixed by the steimgr-->

error-->and an error message

mpp960's predefined macros are described by a prototype call of the
macro using descriptive names as arguments.

regexp(string , regexp ,[replacement 1)

All mpp960 macro arguments are strings, but some strings are interpreted
as numbers, filenames, or regular expressions.

8-1

i960 Processor Software Utilities User's Guide

The[] characters around the third argument shows that this argument is
optionaldl when it is left out, it is taken to be the empty string. An

ellipsis (..) last in the argument list means that any number of arguments
can follow.

Invoking mpp960

The format of thenpp960 command is:
mpp960 [- option ... macro-definition 1 [input-file]...

where-option is any of the following:

Dname Enters name into the symbol table, before any
input files are read. When =value is missing, the
value is taken to be the empty string. The value
can be any string, and the macro can be defined
to take arguments just as if defined from within
the input.

dflags Sets the debug-level according to thes .
The debug-level controls the format and amount
of information presented by the debugging

functions.

a Shows the actual arguments in each
macro call.

c Shows several trace lines for each
macro call.

e Shows the expansion of each macro
call, if it is not void.

f Shows the name of the current input

file in each trace output line.

[Prints a message each time the current
input file is changed.

| Shows the current input line number in
each trace output line.

Macro Processor (mpp960)

efile

Hn

| dir

| num

Nn

P Prints a message when a named file is
found through the path search
mechanism, giving the actual filename
used.

q Quotes actual arguments and macro
expansions in the display with the
current quotes.

t Traces all macro calls made in this
invocation of mpp960.

X Adds a unique macro call id to each
line of the trace output.

\% Shorthand for all the debug flags.

Redirects debug and trace output to the named
file. Error messages are still printed on the
standard error output.

Suppresses all mpp960 extensions that are not
supported by the UNIX System V m4 tool.

Sets the size of the internal hash table for symbol
lookup n entries. The number should be prime.
The default is 509 entries.

Makes mpp960 searctir for included files that
are not found in the current working directory.

Makes this invocation of mpp960 interactive.
This means that all output is unbuffered and
interrupts are ignored.

Restricts the size of the output generated by
macro tracing taum bytes.

Allows for up ton diversions to be used at the
same time. The default is 10 diversions.

Suppresses warnings about missing or
superfluous arguments in macro calls.

8-3

i960 Processor Software Utilities User's Guide

v960

B,S T

Generates synchronization lines for use by the C
preprocessor or other similar tools. This is
useful, for example, when mpp960 is used as a
front end to a compiler. Source filename and
line number information is conveyed by lines of
the form#line linenum " filename " that are
inserted as needed into the middle of the input
(but always on complete lines by themselves).
Such lines mean that the following line
originated or was expanded from the contents of
input file filename at linelinenum . filename

may be omitted when the filename did not
change from the previous synchronization line.

Displays the version number of the program.
Displays the version number and exits.

Provides for compatibility with UNIX System V
m4, but these options do nothing in this
implementation.

Macro definitions and deletions can be made on the command line, by
using theD andu options. They have the following format:

Dname= value |

Uname

t name

Entersnameinto the symbol table before any
input files are read. Whetvalue is missing,

the value is taken to be the empty string. The
value can be any string, and the macro can be
defined to take arguments, just as if defined from
within the input.

Deletes any predefined meanimgne might
have. Only predefined macros can be deleted in
this way.

Entersnameinto the symbol table as undefined
but traced. The macro is consequently traced
from the point it is defined.

Macro Processor (mpp960)

The remaining arguments on the command line are taken to be input
filenames. If no names are present, standard input is read. A filename of
- is also taken to mean standard input.

The input files are read in the sequence given. The standard input can be
read only once, so the filenameshould appear only once on the
command line.

Lexical and Syntactic Conventions

mpp960 separates its input intikens A token is either a name, a quoted
string, or any single character that is not a part of either a name or a string.
Input to mpp960 can also contain comments.

Names

A name is any sequence of letters, digits, and the underscore chargcter (
where the first character is not a digit. If a name has a macro definition it
is subject to macro expansion.

Examples of legal names afeo , _tmp, andname0L1.

Quoted Strings

A quoted string is a sequence of characters surrounded by quotes; the
number of start and end quotes within the string must balance. The so-
called start and end quote characters are the backqyated apostrophe
('), respectively. The value of a string token is the text, with one level of
guotes stripped off. Thus, is the empty string andquoted" is the
string: “quoted'

The quote characters can be changed at any time using the built-in macro
changequote .

8-5

i960 Processor Software Utilities User's Guide

Other Tokens

Any character that is neither a part of a name nor part of a quoted string is
a token by itself.

Comments

Comments in mpp960 are normally delimited by the charattansl

newline. All characters between the comment delimiters are ignored, but
the entire comment (including the delimiters) is passed through to the
output.

Comments cannot be nested, so the first newline aftemals the
comment. The begin comment character can be included in the input by
guoting it.

The comment delimiters can be changed to any string at any time, using
the built-in macrahangecom .

How to Invoke Macros

This section describes macro invocation, macro arguments and how macro
expansion is treated.

Macro Invocation

Macro invocations have one of these forms:
macroname

which is a macro invocation without any arguments, or:
macroname(argl , arg2, .. , argN)

which is a macro invocation witkiarguments. Macros can have any
number of arguments. All arguments are strings, but different macros
might interpret the arguments in different ways.

Macro Processor (mpp960)

The opening parenthesis must follow thecroname directly, with no

spaces in between. If it does not, the macro is called with no arguments at
all. For a macro call to have no arguments, the parentheses must be left
out. The macro call:

macroname()

is a macro call with one empty string argument, rather than a call with no
arguments.

Macro Arguments

A name that has a macro definition is expanded as a macro. If the name is
followed by an opening parenthesis, the arguments are collected before the
macro is called. If too few arguments are supplied, the missing arguments
are taken to be the empty string. If there are too many arguments, the
excess arguments are ignored.

Normally, mpp960 issues warnings when a built-in macro is called with an
inappropriate number of arguments, but it can be suppressed with the
command line option. For user defined macros, there is no check of the
number of arguments given.

Macros are expanded normally during argument collection, and whatever
commas, quotes and parentheses that might show up in the resulting
expanded text defines the arguments as well. Thiis, iExpands to

b,c , the macro call:

bar(a foo,d)

is a macro call with four arguments; b, ¢ andd.

Quoting Macro Arguments

Each argument has leading unquoted white space removed. Within each
argument, all unquoted parentheses must match. For exaniple,iffa
macro:

foo(() () ()

is a macro call, with one argument, whose valug i§) (.

8-7

i960 Processor Software Utilities User's Guide

8-8

It is common practice to quote all arguments to macros, unless you are
sure you want the arguments expanded. To use this convention, you
would change the above command to:

foo("() (0 ()

Macro Expansion

When any arguments to a macro call have been collected, the macro is
expanded and the expansion text is pushed back unquoted onto the input
and reread. The expansion text from one macro call might therefore result
in more macros being called, if the calls are included, completely or
partially, in the first macro call's expansion.

Taking a very simple example,fifo expands tdar , andbar expands to
Hello world. , the input:

foo
expands first tobar' , and when this is reread and expanded, into:

Hello world.

How to Define New Macros

Macros can be defined, redefined, and deleted in several different ways. It
is also possible to redefine a macro without losing a previous value.
Previous values can be brought back at a later time.

Defining a Macro

The normal way to define or redefine macros is to use the buidfiire

define(name, expansion)
which definesiame to expand texpansion .

The expansion ofefine is void.

Macro Processor (mpp960)

The following example defines the madso to expand to the text
"Hello World. ".

define(*foo', "Hello world.")

=>

foo

=>Hello world.

The empty line in the output is there because the newline is not a part of
the macro definition and it is consequently copied to the output. You can
avoid this by using thenl macro.

Arguments to Macros

Macros can have arguments. Ttb argument is denoted By in the
expansion text, and is replaced by Mib actual argument, when the

macro is expanded. Here is a example of a macro with two arguments. It
simply exchanges the order of the two arguments.

define(Cexch’, "$2', "$1")

=

exch(argl, arg2)

=>arg2, argl

This can be used, for example, if you like the argumentsfigze to be
reversed.

define("exch’, "$2, $1")

=>

define(exch("“expansion text", “"macro"))

=>

macro

=>expansion text

For an explanation of the double quotes,@aeting Macro Arguments
mpp960 allows the number following theo consist of one or more
digits, allowing macros to have any number of arguments.

8-9

i960 Processor Software Utilities User's Guide

8-10

As a special case, argument ze®, is always the name of the macro
being expanded.

define(‘test’, “"Macro name: $0")
=>

test

=>Macro name: test

If you want quoted text to appear as part of the expansion text, remember
that quotes can be nested in quoted strings. Thus, in:

define(‘foo', “"This is macro ‘foo’ |

=>

foo

=>This is macro ‘foo’.

Thefoo in the expansion text is not expanded, since it is a quoted string,
and not a name.

Special Arguments to Macros

There is a special notation for the number of actual arguments supplied
and for all the actual arguments. The number of actual arguments in a
macro call is denoted by in the expansion text. Thus, a macro to
display the number of arguments given can be:

define("nargs', "$#")

=>

nargs

=>0

nargs()

=>1

nargs(argl, arg2, arg3)

=>3

The notatiors* can be used in the expansion text to denote all the actual
arguments, unquoted, with commas in between. For example:
define(‘echo’, "$*')

=>

echo(argl, arg2, arg3, arg4)

=>argl,arg2,arg3 ,arg4

Macro Processor (mpp960)

Use the notatios@when each argument should be quoted. It is just like
$*, except that it quotes each argument. This is a simple example:
define('echo’, "$@")

=>

echo(argl, arg2, arg3, arg4)

=>argl,arg2,arg3 ,arg4

Where did the quotes go? They were removed when the expanded text
was reread by mpp960. To show the difference, try:

define("echol’, "$*)

=>

define("echo?’, "$@")

=>

define(‘foo', " This is macro foo.")

=>

echol(foo)

=>This is macro This is macro foo..

echo2(foo)
=>This is macro foo.

A $ sign in the expansion text that is not followed by anything that
mpp960 understands is simply copied to the macro expansion, as is any
other text.

define(‘foo’, "$$$ hello $$$")
=

foo

=>$$$ hello $$$

If you want a macro to expand to a value suchias put a pair of quotes
after thes. This prevents mpp960 from interpreting thgign as a
reference to an argument.

Deleting a Macro

A macro definition can be removed withdefine

undefineC namé)

which removes the macrmme. The macro name must be quoted, since it
is expanded otherwise.

8-11

i960 Processor Software Utilities User's Guide

8-12

The expansion afndefine is void.

foo

=>foo

define(*foo', "expansion text')
=>

foo

=>expansion text
undefine(*foo')

=>

foo

=>foo

It is not an error fonameto have no macro definition. In that case,
undefine does nothing.

Renaming Macros

It is possible to rename an already defined macro with the buidttin:

defn(C name)

which expands to the quoted definitionmafne. If the argument is not a
defined macro, the expansion is void.

If nameis a user-defined macro the quoted definition is simply the quoted
expansion text. lhameis a built-in, the expansion is a special token that
points to the built-in's internal definition.

This token is meaningful only as the second argumeitfitee (and
pushdef) and is ignored in any other context. Its normal use is best
understood through an example that shows how to repnaieéne to
zap:

define("zap', defn("undefine"))

=>

zap(‘undefine’)

=>

undefine("zap')

=>undefine(zap)

Macro Processor (mpp960)

In this way,defn can be used to copy macro definitions and definitions of
built-in macros. Even if the original macro is removed, the other name
can still be used to access the definition.

Temporarily Redefining Macros

It is possible to redefine a macro temporarily, reverting to the previous
definition at a later time. This is done with the built4inshdef and
popdef :

pushdefC namé,” expansion ')
popdef(" namé)
which are quite analogous define andundefine

These macros work in a stack-like fashion. A macro is temporarily
redefined withpushdef which replaces an existing definition @fme
while saving the previous definition before the new one is installed. If
there is no previous definitiopyshdef behaves exactly likeefine

If a macro has several definitions (of which only one is accessible), the
topmost definition can be removed witbpdef . If there is no previous
definition, popdef does nothing.

If a macro with several definitions is redefined witline , the topmost
definition is replaced with the new definition. If it is removed with
undefine, all the definitions are removed, not only the topmost one.

It is possible to temporarily redefine a built-in witlshdef anddefn .

Indirect Call of Macros
Any macro can be called indirectly wiiltir
indirC name, ...)

This results in a call to the mactieme which is then passed the rest of the
arguments. You can uselir to call macros with "illegal”" names
becauselefine allows such names to be defined.

8-13

i960 Processor Software Utilities User's Guide

8-14

(Some macro packages have private macros that can be called only
through the built-inndir)

Indirect Call of Built-Ins
Built-in macros can be called indirectly withiltin
builtin(C name, ...)

This results in a call to the built-tmme which is then passed the rest of
the arguments. This can be usedifie has been given another definition
that has covered the original.

Conditionals, Loops and Recursion

mpp960 macros can contain tests and other elements that cause them to
evaluate differently at run time.

Testing Macro Definitions

There are two different built-in conditionals in mpp960. The first is
ifdef

ifdefC name,” string-1 ', [string-2 ')

which makes it possible to test whether a macro is defined or naimdf
is defined as a macridjef expands tatring-1 ; otherwise to

string-2 . If string-2 is omitted, it is taken to be the empty string
(according to the normal rules).

ifdef(‘foo’, ““foo' is defined', “*foo' is not defined’)

=>foo is not defined

define("foo’, ™)

=>

ifdef(‘foo’, ““foo' is defined', “*foo' is not defined’)

=>foo is defined

Macro Processor (mpp960)

Comparing Strings

Theifelse conditional is much more powerful thasef . You can use
ifelse as a way to introduce a long comment, as an if-else construct, or
as a multibranch, depending on the number of arguments supplied:

ifelse(’ comment')
ifelse(’ string-1 '," string-2 ',° equal ',[| not-equal ')
ifelse(’ string-1 '," string-2 '," equal ', ..)

Whenifelse is used with only one argument, it discards the argument
and produces no output. This is a common mpp960 idiom for introducing
a block comment, as an alternative to repeatedly uising This special
usage is recognized, so that in this case the warning about missing
arguments is never triggered.

If called with three or four argumentglse expands inta@qual (if
string-1 andstring-2 are equal character for character), otherwise it
expands taot-equal

ifelse(foo, bar, “true’)

=>

ifelse(foo, foo, “true’)

=>true

ifelse(foo, bar, “true', “false’)

=>false

ifelse(foo, foo, “true’, “false")
=>true

However,felse can take more than four arguments. If given more than
four argumentsfelse works like a case or switch statement in
traditional programming languages.sifing-1 andstring-2 are
equal,ifelse expands intequal , otherwise the procedure discards the
first three arguments discarded and repeats. For example:

ifelse(foo, bar, “third", gnu, gnats, “sixth’, “seventh’)
=>seventh

A common use ofelse is in macros implementing loops of various
kinds.

8-15

i960 Processor Software Utilities User's Guide

8-16

Loops and Recursion

There is no direct support for loops in mpp960, but macros can be
recursive. There is no limit on the number of recursion levels, other than
those enforced by your hardware and operating system.

Loops can be programmed using recursion and the conditionals described
previously.

The built-in macrashift can iterate through the actual arguments to a
macro:
shift(....)

It takes any number of arguments and expands to all but the first
argument, separated by commas, with each argument quoted.

How to Debug Macros and Input

Macro debugging in mpp960 is described below.

Displaying Macro Definitions
The built-indumpdef shows what a name expands into:
dumpdef(...)

This macro accepts any number of arguments. If called without any
arguments, it displays the definitions of all known names; otherwise it
displays the definitions of the names given. The output is printed directly
on the standard error output.

The expansion afumpdef is void.

define(*foo', "Hello world.")
=>

dumpdef(*foo")

=>foo: Hello world.

=>

dumpdef("define")
=>define: <define>

=>

Macro Processor (mpp960)

The last example shows how built-in macro definitions are displayed.

Tracing Macro Calls

It is possible to trace macro calls and expansions using the built-ins
traceon andtraceoff

traceon(...)

traceoff(...)

When called without any argumentsceon andtraceoff — enables or
disables tracing, respectively, for all defined macros. When called with
arguments, only the named macros are affected.

The expansion afaceon andtraceoff is void.

The call is displayed whenever a traced macro is called and the arguments
have been collected. The expansion can be displayed after the call if the
expansion of the macro call is not void. The output is printed directly on
the standard error output.

define(*foo', "Hello World.")

=>

define(‘echo’, "$@")

=>

traceon(*foo', “echo’)

=>

foo

error-->mpptrace: -1- foo

=>Hello World.

echo(gnus, and gnats)

error-->mpptrace: -1- echo

=>gnus,and gnats

The number between dashes is the depth of the expansion. The depthis 1
most of the time, signifying an expansion at the outermost level, but it
increases when macro arguments contain unquoted macro calls.

See thel option (next topic) for information on controlling the details of
the debug display.

8-17

1960 Processor Software Utilities User's Guide

Controlling Debugging Output

Thed option to mpp960 controls the amount of detail presented when
using the macros described in the preceding sections.

Theflags following thed option can be one or more of the following:

a Show the actual arguments in each macro call. This applies to all
macro calls if the flag is used, otherwise only the macros covered by
calls oftraceon

c Show several trace lines for each macro call. A line is shown when
the macro is seen, but before the arguments are collected; a second
line is shown when the arguments have been collected, and a third line
is shown after the call is complete.

e Show the expansion of each macro call if it is not void. This applies
to all macro calls if the flag is used; otherwise it applies only to the
macros covered by calls oficeon

f Show the name of the current input file in each trace output line.

i Print a message each time the current input file is changed, giving
filename and input line number.

| Show the current input line number in each trace output line.

p Print a message when a named file is found through the path search
mechanism, giving the actual flename used.

g Quote actual arguments and macro expansions in the display with the
current quotes.

t Trace all macro calls made in this invocation of mpp960.

x Add a unique macro call id to each line of the trace output. This is
useful in connection with theflag above.

VvV A shorthand for all of the above flags.

The default iseq if no flags are specified with theoption. The
examples in the previous two sections assumed the default flags. The
built-in macrodebugmode allows on-the-fly control of the debugging
output format:

debugmode([flags])

8-18

Macro Processor (mpp960)

Theflags argument should be a subset of the letters listed above. There

are three special cases:

1. |If the argument starts with+athe flags are added to the current
debug flags.

2. If the argument starts with-athe flags are removed.

3. If no argument is present, the debugging flags are set to zered(as if
was not given), and with an empty argument the flags are reset to the
default.

Saving Debugging Output

Debug and tracing output can be redirected to files using either the
option to mpp960, or with the built-in maatebugfile

debudfile([filename 1)

sends all further debug and trace outputdeame . If filename is

empty, debug and trace output are discardedeblfgfile is called

without any arguments, debug and trace output are sent to the standard
error output.

Input Control

This section describes various built-in macros for controlling the input to
mpp960.

Deleting Whitespace in Input

The built-indnl reads and discards all characters up to and including the
first newline:

dnl

It is often used in connection witlefine to remove the newline that
follows the call to define. Thus:

define(*foo', "Macro “foo'.")dnl A very simple macro, indeed.
foo
=>Macro foo.

8-19

i960 Processor Software Utilities User's Guide

8-20

The input up to and including the next newline is discarded.

Usually,dnl is immediately followed by an end of line or some other

white space. mpp960 produces a warning diagnostic ifs followed by

an open parenthesis. In this case, collects and processes all

arguments, looking for a matching close parenthesis. All predictable side
effects resulting from this collection take placel returns no output.

The input following the matching close parenthesis up to and including the
next newline, on whatever line containing it, is still discarded.

Changing the Quote Characters

The default quote delimiters can be changed with the built-in
changequote :

changequote([start 1,[end])

wherestart is the new start-quote delimiter aadd is the new end-

guote delimiter. If any of the arguments are missing, the default quotes
and' are used instead of the void arguments.

The expansion afhangequote is void.
In this example, thg and] characters are the new quote characters:

changequote([,])
=>

define([foo], [Macro [foo].])
=>

foo

=>Macro foo.

Macro Processor (mpp960)

If no single character is appropriatesrt andend can be of any length.

changequote([[,]])
=>

define([[foo]], [[Macro [[[foo]]].]])
=>

foo

=>Macro [foo].

Changing the quotes to the empty strings effectively disables the quoting
mechanism, leaving no way to quote text.

define(*foo', "Macro "FOQ".")

=>

changequote(,)

=>

foo

=>Macro 'FOO'.

“foo’

=>Macro 'FOO'.

There is no way in mpp960 to quote a string containing an unmatched left
guote, except usinghangequote to change the current quotes.

Neither quote string should start with a letter gunderscore), as they are
confused with names in the input. Doing so disables the quoting
mechanism.

Changing Comment Delimiters

The default comment delimiters can be changed with the built-in macro
changecom:

changecom([start],[end])

wherestart is the new start-comment delimiter asd/ is the new end-
comment delimiter. If any of the arguments are void, the default comment

delimiters ¢ and newline) are used instead of the void arguments. The
comment delimiters can be of any length.

The expansion afhangecom is void.

8-21

i960 Processor Software Utilities User's Guide

8-22

Comments are copied to the output, much as if they were quoted strings.
If you want the text inside a comment expanded, quote the start comment
delimiter.

Calling changecom without any arguments disables the commenting
mechanism completely.

Saving Input

It is possible to save some text until the end of the normal input has been
seen. Text can be saved to be read again by mpp960 when the normal
input has been exhausted. This feature is normally used to initiate cleanup
actions before normal exit, as when deleting temporary files.

Use the built-inmppwrap to save input text:
mppwrap(string , ...)

This storesstring and the rest of the arguments to be reread when end of
input is reached.

The saved input is reread only when the end of normal input is seen, but
not if mppexit is used to exit mpp960.

It is safe to calmppwrap from saved text, but then the order in which the
saved text is reread is undefined mifpwrap is not used recursively, the
saved pieces of text are reread in the opposite order in which they were
saved (LIFOO lastin, first out).

File Inclusion

mpp960 allows you to include named files at any point in the input.

Including Named Files

There are two built-in macros in mpp960 for including files:
include(filename)

sinclude(filename)

Macro Processor (mpp960)

Both of these cause the file nam#éshame to be read by mpp960.
When the end of the file is reached, input is resumed from the previous
input file. The expansion afclude andsinclude is therefore the
contents ofilename

It is an error for an included file not to exist. If you don't want error
messages about non-existent files, diseude to include a file, if it
exists. It expands to nothing if it does not exist.

Normally, file inclusion is used to insert the contents of a file into the input
stream. The fact thatclude andsinclude expand to the contents of

the file can be used to define macros that operate on entire files. The use
of include is important, as files can contain quotes, commas and
parentheses that can interfere with the way the mpp960 parser works.

Searching for Include Files

mpp960 allows included files to be found in directories other than the
current working directory. If a file is not found in the current working
directory, and the filename is not absolute, mpp960 searches for the file in
a specified search path.

The directories specified with theoption are searched first, in the order
found on the command line.

If the 1960INC environment variable is set, it is expected to contain a
colon-separated list of directories, which are searched in order.

If the automatic search for include-files causes troublep thebug flag
can help isolate the problem.

Diverting and Undiverting Output

Diversions are a way of temporarily saving output. The output of mpp960
can at any time be diverted to a temporary file, and can be reinserted into
the output stream later, undiverted.

8-23

i960 Processor Software Utilities User's Guide

8-24

mpp960 supports up to ten numbered diversions (numbered from 0O to 9).
Diversion number 0 is the normal output stream. The number of available
diversions can be increased with theption.

Diverting Output
Usedivert to divert output:
divert(number])

wherenumber is the diversion to be used. ifmber is left out, it is
assumed to be zero.

The expansion dfivert is void.

Diverted output that has not been explicitly undiverted is undiverted when
all the input has been processed.

divert(1)

This text is diverted.

divert

=>This text is not diverted.

=>This text is not diverted.

"D

=>

=>This text is diverted.

Several calls oflivert with the same argument do not overwrite the
previous diverted text, but append to it.

Output diverted to an non-existent diversion is discarded. This can be
used to suppress unwanted output. A common example of unwanted
output is the trailing newlines after macro definitions. Here is how to
avoid them:

divert(-1)

define(foo, Macro foo.)

define(bar, Macro bar.)

divert

=>

Macro Processor (mpp960)

This is a common programming idiom in m4.

Undiverting Output

Diverted text can be undiverted explicitly using the built+idivert

undivert([number], ...)

which undiverts the diversions given by the arguments in the order given.
If no arguments are supplied, all diversions are undiverted in numerical
order.

The expansion afndivert is void.
divert(1)

This text is diverted.

divert

=>This text is not diverted.

=>This text is not diverted.

undivert(1)

=>

=>This text is diverted.

=>

Notice the last two blank lines. One of them comes from the newline

following undivert , the other from the newline that followed the
divert ! A diversion often starts with a blank line like this.

When diverted text is undiverted it is not reread; it is copied directly to the
current output, and it is therefore not an error to undivert into a diversion.

8-25

i960 Processor Software Utilities User's Guide

8-26

When a diversion has been undiverted, the diverted text is discarded, and
it is not possible to bring back diverted text more than once.

Attempts to undivert the current diversion are silently ignored. mpp960
allows named files to be undiverted. Given a non-numeric argument, the
contents of the file named are copied, uninterpreted, to the current output.
This complements the built-include . To illustrate the difference,

assume the file foo contains the word :

Diversion Numbers

The built-indivnum expands to the number of the current diversion.

Discarding Diverted Text

Often it is not known when output is diverted whether the diverted text is
actually needed. A method of discarding a diversion is needed because all
non-empty diversions are brought back when the end of input is seen. If
all diversions should be discarded, the easiest way is to end the input to
mpp960 withdivert(-1)

No output is produced.

Macros for Text Handling

There are built-in macros for manipulating text in various ways, extracting
substrings, searching, substituting, and so on.

Calculating Length Of Strings

The length of a string can be calculatedédoy:

len(string)

which expands to the length of string, as a decimal number.

Macro Processor (mpp960)

Searching For Substrings

Useindex to search for substrings.

index(string , substring)

expands to the index of the first occurrencewfstring in string
The first character intring has index 0. lfubstring does not occur
in string , index expands tda. .

Searching for Regular Expressions

Use the built-iregexp to search for regular expressions:
regexp(string , regexp ,[replacement 1)

which searches foegexp instring . (The syntax for regular
expressions is the same as in GNU Emacs.)

If replacement is omitted,regexp expands to the index of the first
match ofregexp instring . If regexp does not match anywhere in
string , it expands tel . For example:

regexp(GNUs not UNIX, \<[a-z]\w+)

=>5

regexp(GNUs not UNIX, \<Q\w*)

=>-1

If replacement is suppliedregexp changes the expansion to this
argument, with& substituted bytring , and\N substituted by the text

matched by thélth parenthesized sub-expressionegfexp ,\0 being the
text the entire regular expression matched.

regexp(GNUs not UNIX, \WA(\W+\)$, xxx \Q *xx \])

:>*** UNIX *kk nIX *kk

8-27

i960 Processor Software Utilities User's Guide

8-28

Extracting Substrings

Usesubstr to extract substrings.
substr(string , from ,[length 1])

expands to the substring &fing which starts at indexom and extends
for length characters, or to the endafing , if length is omitted. The
starting index of a string is alwags

Translating Characters

Character translation is done withnslit
translit(string , chars , replacement)

expands tatring , with each character that occursciars translated
into the character fromeplacement with the same index.

If replacement is shorter thamhars , the excess characters are deleted
from the expansion. Heplacement is omitted, all characters #wing
that are present ithars are deleted from the expansion.

Both chars andreplacement can contain character-ranges such-as
(meaning all lowercase letters)®@e (meaning all digits). To include a
dash- in chars orreplacement , place it first or last.

It is not an error for the last character in the range to be larger than the
first. In that case, the range runs backwasds:indicates the string
9876543210 .

Substituting Text by Regular Expression
Global substitution in a string is done jmtsubst
patsubst(string , regexp ,[replacement 1)

This searchestring for matches ofegexp and substitutes
replacement ~ for each match. (The syntax for regular expressions is the
same as in GNU Emacs.)

Macro Processor (mpp960)

The parts obtring that are not covered by any matchafexp are

copied to the expansion. Whenever a match is found, the search proceeds
from the end of the match so a character feoimg is never substituted
twice. If regexp matches a string of zero length, the start position for the
search is incremented, to avoid infinite loops.

To make a replacement:

1. Insertreplacement into the expansion.

2. Substitutestring for\&.

3. Substitute the text matched by Mt parenthesized sub-expression of
regexp (\0 being the text the entire regular expression matched) for
\N.

Thereplacement argument can be omitted, in which case the text
matched byegexp is deleted.

Formatted Output

Useformat to format output.

format(format-string) eer)

works much like the C functiomintt . The first argument is a format
string that can contaimspecifications and the expansiorf@fat is the
formatted string.

The built-informat is modeled after the ANSI @intf ~ function. It
supports the normabspecifiers, s, d, o, x, X, u, e, Eandf ; It also
supports field widths and precisions and the modifiers 0, #, h and! .
For more details oprintf , seeC: A Reference Manual

8-29

i960 Processor Software Utilities User's Guide

Macros for Doing Arithmetic

Integer arithmetic using a C-like syntax is included. There are built-in
macros for simple increment and decrement operations.

Decrement and Increment Operators

The built-insincr anddecr support the increment and decrement of
integers:

incr(number)

decr(number)

which expand to the numerical valueroinber incremented or
decremented, respectively, by one.

Evaluating Integer Expressions
Useeval to evaluate integer expressions:
eval(expression, radix, [width 1)
expands to the value ekpression

Expressions can contain the following operators, listed in order of
decreasing precedence.

- Unary minus

N Exponentiation

* | o Multiplication, division and modulo
+ - Addition and subtraction

== I= > >= < <= Relational operators

! Logical negation

& Bitwise and

| Bitwise or

&& Logical and

I Logical or

8-30

Macro Processor (mpp960)

All operators, except exponentiation, are left associative. Numbers can be
given in decimal, octal (starting with), or hexadecimal (starting withx).
Parentheses may be used to group subexpressions whenever needed. For
the relational operators, a true relation returns 1, and a false relation
returns O.

eval does not handle macro names, even if they expand to a valid
expression or part of a valid expression. All macros must be expanded
before they are passeddaml .

If radix is specified, it specifies the radix to be used in the expansion.
The default radix is 10. The resultesfal is always taken to be signed.
Thewidth argument specifies a minimum output width. The result is
zero-padded to extend the expansion to the requested width.

Note thatradix cannot be larger than 36 in the current implementation.
Any radix larger than 36 is rejected.

Running Host Commands

This section describes the mpp960 macros that let you run host system
commands from within mpp960.

Executing Simple Commands

Usesyscmd to execute any shell command:

syscmd(shell-command)

executesshell-command as a shell command. The expansioayetmd
is void.

The expansion is not the output from the command! Instead the standard
input, output and error of the command are the same as those of mpp960.
This means that output or error messages from the commands are not read
by mpp960 and might get mixed with the normal output from mpp960,
producing unexpected results. It is therefore a good habit to always
redirect the input and output of shell commands usedsyitind .

8-31

i960 Processor Software Utilities User's Guide

8-32

Reading the Output of UNIX Commands

Useesyscmd if you want mpp960 to read the output of a UNIX
command:

esyscmd(shell-command)
This expands to the standard output of the shell command.

The error output ofhell-command is not a part of the expansion. It
appears along with the error output of mpp960.

Note that the expansion efyscmd has a trailing newline.

This is not available on Windows hosts.

Exit Codes

Usesysval to see whether a shell command succeeded:

sysval

This expands to the exit status of the last shell command rurywitid
or esyscmd .

This is not available on Windows hosts.

Making Names for Temporary Files

Commands specified tgyscmd oresyscmd might need a temporary file
for output or for some other purpose. Use the built-in maet@temp to
make temporary filenames.

maketemp(template)

This expands to a name of a non-existent file made from the string
template, which should end with the stringkxxxx The sixxs are then
replaced, usually with something that includes the process ID of the
mpp960 process, in order to make the filename unique.

Macro Processor (mpp960)

Several calls ofnaketemp might expand to the same string, since the
selection criteria is whether the file exists or not. If a file has not been
created before the next call, the two macro calls might expand to the same
name.

Printing Error Messages

You can print error messages usingprint

errprint(message, ...)

which simply printsnessage and the rest of the arguments on the standard
error output. The expansion@fprint is void.

errprint("lllegal arguments to forloop

)
error-->lllegal arguments to forloop

=>

A trailing newline is not printed automatically, so it must be supplied as
part of the argument, as in the example.

Two utility built-ins make it possible to specify the location of the error.
_file__

__line__

expand to the quoted name of the current input file and the current input
line number in that file.

errprint(Cmpp960:'_file__: line__: “Input error

error-->mpp960:56.errprint:2: Input error

=>

8-33

i960 Processor Software Utilities User's Guide

8-34

Exiting from mpp960

If you need to exit from mpp960 before the entire input has been read, use
mppexit :

mppexit([code])

This causes mpp960 to exit, with exit cadee. If code is left out, the
exit code is zero.

define("fatal_error', “errprintCmpp960:' _ file_ : line__:

fatal error: $*")mppexit(1)")

fatal_error("This is a BAD one, buster’)
error-->mpp960: 57.mppexit: 5: fatal error: This is a BAD one,

buster

After this macro call, mpp960 exits with exit code 1. This macro is only
intended for error exits, since the normal exit procedures are not followed,
e.g., diverted text is not undiverted, and saved textfgperap) is not

reread.

Compatibility with Other Macro Processors

This section describes the differences between mpp960 and the UNIX
System V, Release 3, m4 macro processor.

Extensions in mpp960

mpp960 contains a some facilities that do not exist in UNIX System V m4.
These extra facilities are all suppressed by using thtion, unless
overridden by other command line options.

* Inthe$N notation for macro argumentscan contain several digits,
while UNIX System V m4 accepts one digit only. This allows
mpp960 macros to take any number of arguments, not only nine.

Macro Processor (mpp960)

* When files included witinclude andsinclude are not found in the
working directory they are sought in a user-specified search path. The
search path is specified by th@ption and thé960INC environment
variable.

» Arguments taindivert can be non-numeric, in which case the
named file is included uninterpreted in the output.

» Formatted output is supported throughtthewat built-in which is
modeled after the C library functigmintf

» Searches and text substitution through regular expressions are
supported byegexp andpatsubst

e On UNIX (but not in Windows), the output of shell commands can be
read into mpp960 withsyscmd .

e There is indirect access to any built-in macro witttin
» Macros can be called indirectly throughir

» The name of the current input file and the current input line number
are accessible through the built-ingile_ and__line__

» The format of the output fromumpdef and macro tracing can be
controlled withdebugmode.

» The destination of trace and debug output can be controlled with
debudfile

In addition to the above extensions, mpp960 implements the following
command line options, d, |, o, N, andt . For a description of these
options, see thimvoking mpp96&ection.

Also, the debugging and tracing facilities in mpp960 are much more
extensive than in most other versions of m4.

8-35

1960 Processor Software Utilities User's Guide

8-36

Facilities in UNIX System V m4 not in mpp960

There are a few incompatibilities between mpp960 and the UNIX System
V m4 tool:

UNIX System V m4 supports multiple argumentsi¢én . This is not
implemented in mpp960.

When text is being diverted mpp960 implements sync lines differently
from UNIX System V m4. mpp960 outputs the sync lines when the
text is being diverted, and UNIX System V m4 outputs it when the
diverted text is being brought back.

The problem is determining which lines and filenames should be
attached to text that is being, or has been, diverted. UNIX System V
m4 regards all the diverted text as being generated by the source line
containing theindivert call, whereas mpp960 regards the diverted
text as being generated at the time it is diverted.

Invoking mpp960 without the option defines the macrognu__ to
expand to the empty string.

On UNIX systems, mpp960 without tlesoption defines the macro
__unix__ ; otherwise the macnaix . Both expand to the empty
string.

Munger (gmung960)

The gmung960 utility modifies text section and/or data section memory
load addresses in an object file. Use gmung960 to load text and/or data at
an address other than where it was linked. For example, some code must
copy its data from ROM to RAM before execution. In this case, the data

is linked at the RAM address, but it must be loaded at the ROM address
from which it will be copied. The file’s data load address corresponds to
the RAM address at link time. After link time, you can modify the data

load address to correspond to the ROM address. This lets the ROM burner
or loader know the correct address to place the section’s contents.

Invoke the munger as:

gmung960 [- option]... file
option is one of the options listed in Table 9-1.
file identifies the object file to be munged. It must

be a linked, executable file.

9-1

1960 Processor Software Utilities User's Guide

9-2

Table 9-1

gmung960 Options

Option
D [addr]

h
T [addr]

v960

Effect

Changes the load address of the file’s data section to addr . addr
is interpreted as a decimal, unless preceded by Ox (hex indicator).
If addr is omitted, the load address is the first available address
following a previously-specified address.

gives a help message.

changes the load address of file's text section to addr . addr is
interpreted as a decimal number, unless preceded by 0x (hex
indicator). If addr is omitted, the load address is either zero or the
first available address following a previously-specified address.

writes gmung960 version information to stdout and exits without
doing anything.

NOTE. The section specification optionsandD are processed in the
order they appear in the invocation.

Name Lister (ghm960, nam960)

[

NOTE. Before using the name lister, make sure your object file or
archive is in host-endian byte order. To determine byte order, use
gdmp960/dmp960 described in Chapter 6. To change the byte order, use
the cof960/objcopy converter described in Chapter 3.

To display symbolic information ofidout , invoke the name lister for:
» relocatable object files

* non-relocatable object files

» libraries

* library members

Unless you specify otherwise, the symbols appear in the order
encountered.

Invoke the name lister as:

tham960d _ i

Egnm%og[— option ... [ilename...]

nam960 invokes the name lister for backwards
compatibility with CTOOLS960 Release 3.5 and
later.

gnm960 invokes the name lister for backwards
compatibility with GNU/960 Release 2.1 and
later.

10-1

1960 Processor Software Utilities User's Guide

10-2

option

filename

is any option listed in Table 10-1.

specifies the name(s) of one or more files
(separated with spaces), whose symbol tables
you want the name lister to display. If you do not
specify a filename, the name lister tries a.out.
You can specify complete pathnames. On
UNIX, case is significant in flenames and
pathnames.

The symbolic information appears swout . The display includes:

Code

Name

Value

the section code, as listed in Table 10-2, in
lowercase for local symbols and in uppercase
otherwise

the symbol name

the symbol value

Name Lister (gnm960, nam960)

Table 10-1

gnm960/nam960 Options

Option
a
d

e

v960

Effect
displays the debug information.
displays the addresses in decimal.

displays only the global (external) and static symbols, including the
leaf-procedure names.

displays all the symbols, including redundant symbols (such as
.text, .data, and .bss) that are usually suppressed. This option
overrides the g or e option.

is the same as e.

suppresses the output-header display.

displays help information.

sorts the symbols alphabetically by name. This option overrides v.
displays the addresses in octal.

displays the information in a three-column parseable format (the
b.out and ELF format default).

Reverses the symbol sorting order of the n or v options (sorts in
descending order).

displays the names of the files defining or referencing each
symbol.

displays the library symbol map.
truncates the symbol names to fit the display-column widths.

displays only the undefined symbols. This option overrides g, e,
orf.

displays the name-lister version and creation date on stdout
and continues processing.

sorts the symbols ascending numerically by value.
displays the version and creation date, and stops processing.

displays the addresses in hexadecimal (the default).

10-3

1960 Processor Software Utilities User's Guide

Table 10-2 Section Codes

Code Symbol Type

u undefined symbol

Q

absolute (non-relocatable) symbol

text-type-section symbol (instructions)

data-type-section symbol (initialized data and constants)
.bss symbol (uninitialized data)

common symbol

any other type section symbol (COFF or ELF only)

filename symbol

N ™ O O T o

debugger symbol-table entry

The COFF display also includes:

Class a storage class, suctkessrn for an external
symbol orfcn for the beginning and end of a
function block

Line the source line number defining the symbol, for
object files containing debug information

Type the type and derived type, for object files
containing debug information

Size the size in bytes, for object files containing
debug information

To suppress the additional COFF information, specifyptbption.

Symbols are displayed in the order in which they appear in the symbol
table, preserving the scoping information. You can sort the symbols by
name or address with theR, andv options.

10-4

Name Lister (gnm960, nam960) 1 O

Examples

1.

The following displays the symbols from each of the members of the
archivesample.a . The name lister displays the filename where each
symbol is found. This example uses theoptions to truncate symbol
names, which keeps the output columns equally spaced.

nam960 -r -T sample.a

Symbols from symbol.a[hello.o]:

hello.o

Name Value Class Type Size Line Section
hell*:gcc2_compiled.|0x00000000|label | | | |-text
h*:__ gnu_compiled_c|0x00000000|label | | | |-text

hello.o:_main

|0x00000010|extern| ()|0x0018| |.text

hello.o:_printf ~ |0x00000000|extern| | |

Symbols from symbol.a[byte.o]:

byte.o

Name Value Class Type Size Line Section
bye.o:gcc2_compiled.|0x00000000|label | | | |-text
b*:__ gnu_compiled_c|0x00000000|label | | | |-text
bye.o:_main |0x00000010|extern| ()|Ox0018| |.text

bye.o:_printf |0x00000000|extern| | []

2.

The following suppresses the header. No column labels appear in the
output.

nam960 -h hello.o

hello.c | |file| I
_main | Olextern| int()] 16| |.text
_printf | Olextern| | | |

10-5

i960 Processor Software Utilities User's Guide

3. The following displays thgroto.o symbols in parseable format:

nam960 -p proto.o

f proto.c
00000000 T _main
00000352 T _watering
00000368 T _is_time
00000416 T _watered
00000000 U _printf
00000000 U _scanf
00000000 U _init_bentime
00000000 U _exit
00000000 U _bentime
00000000 U _srand48
00000000 U _Irand48

4. The following displays only the external symbols:

nam960 -e hello.o
Symbols from hello.o:

Name Value Class Type Size Line Section
_main | Olextern| int()| 16| |.text
_printf | Olextern| | | |

5. The following displays the full output:

nam960 -f hello.o
Symbols from hello.o:

Name Value Class Type Size Line Section
hello.c | | file | |1

_main | Olextern| int()] 16| |[.text

text | Olstatic| | 2] 3|.text

.data | 16|static| | | |.data

.bss | 32|static| | | |.bss

_printf | Olextern| | |

10-6

Name Lister (gnm960, nam960)

6. The following sorts the symbols by name:

nam960 -n proto.o
Symbols from proto.o:

Name Value Class Type Size Line Section
_bentime | Olextern| | |

_exit | Olextern| [
_init_bentime | Olextern| [
_is_time | 368|extern| int()|] 44| |.text
_lrand48 | Olextern| [

_main | Olextern| int()] 348] |.text
_printf | Olextern| [

_scanf | Olextern| | |]
_srand48 | Olextern| | |]
_watered | 416|extern| int()] 36] |.text
_watering | 352|extern| arg()| 4| |.text
proto.c | | file | | |]

7. The following sorts the symbols by value:

nam960 -v proto.o

Name Value Class Type Size Line Section
proto.c | | file | | |

_bentime | Olextern| | |

_exit | Olextern| | |
_init_bentime | Olextern| | |
_Irand48 | Olextern| | |

_main | Olextern| int()] 348| |.text
_printf | Olextern| | | |

_scanf | Olextern| | |
_srand48 | Olextern| | |
_watering | 352|extern| arg()| 4] |.text
_is_time | 368|extern| int()] 44| |.text
_watered | 416|extern| int()] 36| |.text

10-7

ROM Image Builder (grom960)

grom960 extracts the text (executable code) and data sections from one or
more object files, places them in specified locations in a binary image, and
converts the binary image into one or more files in Intel hex format
suitable for submission to a PROM programmer. grom960 also provides
options that allow bytes from the binary image to be interleaved into
multiple banks of PROMs. grom960 accepts ELF, COFF, or b.out object
file formats as input.

Invocation

The invocation command is:

grom960 [- option ... section_spec

option is one of the options listed in Table 11-1.
Numeric arguments are interpreted as decimal,
unless preceded lyx (hex).

section_spec specifies the placement of a text or data section
into the binary image. Multiple specifications
are allowed; they are processed in the order
encountered. There are four types, listed in
Table 11-2.

111

1960 Processor Software Utilities User's Guide

Table 11-1 grom960 Options

Option
20

An

bn
c16|32
En

f

h

0 name

Sn

v960

wn

Effect

generates extended address records in 20-bit format (e.g., as
used by the 8086), if the ROM is larger than 64K. The default
is to generate 32-bit format records. This option is included
primarily for compatibility with old ROM burner software that
does not support 32-bit format.

sets checksum storage address to n. Default = 0x10000.
generates images for n banks of ROMs. Default = 1.
generates a 16-bit or 32-bit (CRC) checksum.

sets checksum end address to n. Default = Oxffff.

dumps a full image and does not skip records with all ones.
displays help output and exits.

suppresses generating hex output files. Instead, dumps the
raw binary image to output file image.

generates images for ROMs that are n bytes long. The default
is 0x10000 (64K).

writes a map of the binary image to stdout.

specifies the base name of the output file(s). When the i
option is used, the output file contains the binary image.
(Default filename is image.) When the i option is not used, a
series of files named namexy.hex contain the hex ROM
images. (Default is a series of files named romxy.hex.)

sets the checksum start address to n. Default is 0xO.
prints the version number and continues.

produces a map, as with the m option, and summarizes the
ROM configuration settings.

writes grom960 version information to stdout and quits.

generates ROMs that are n bytes "wide" (the default is 1).
grom960 writes n bytes at a time from the binary image to
each bank of ROM, before moving on to the next ROM bank.
The combination of the b and w options controls interleaving of
ROMs.

11-2

ROM Image Builder (grom960)

Table 11-2

Section Specifications

[

Section
Specification

filenamel[,addr]

B filename[,addr]

D filename[,addn]

T filename[,addr]

Effect

places the text section of the specified file at address
addr , relative to the start of the image, and places
the data section immediately following the text
section.

also places both the text and data sections of the
specified file at address addr , relative to the start of
the image. However, the order of the text and data
sections is the same as in the input file (i.e., the one
linked at the lower address comes first); and any gap
between the sections is preserved in the output
image.

places the data section of the specified file at address
addr .

places the text section of the specified file at address
addr .

NOTE. Theaddr argument is always optional. Omitting the address
places the specified section(s) immediately after the one in the preceding
specification (or at address 0 in the binary image, in the case of the first
section specification).

Using grom960

Generating ROM images is a two-step process:
1. creating a binary image, and
2. converting the image to a ROM image (Intel hex) files.

11-3

1 1 i960 Processor Software Utilities User's Guide

Creating Binary Images

Regardless of the addresses where the code was linked, all bytes in a ROM
image appear in a contiguous address space relative to the ROM's base
address. For instance, a 64K ROM based at address 0xffff0000 has a
ROM address space of [0,0xffff], byte 0 of the ROM being the byte that is
addressed at 0xffff0000 at run time.

The binary image is generated by extracting the text and data sections of
the input files and placing them at the specified locations in the ROM
address space. Unused address space bytes are initialized to Oxff, the
value of a byte in an erased PROM.

Converting the Image to Hex Files

After a single binary image is created, it is interleaved according to the
ROM width and the number of banks requested. If the widthasd the
number of banks is, the firstwbytes in the image are written to the first
bank of ROMs, the secondbytes are written to the second bank, and so
on. After the bth bank has been written, output resumes at the first bank.
For example, if the number of banks is four, the ROM width is two, and
the first sixteen bytes of the image are:

0x00112233445566778899aabbccddeeff

then the four banks would begin with the following values:

bank 0:0x00118899...
bank 1:0x2233aabb...
bank 2:0x4455ccdd...
bank 3:0x6677eeff...

Each bank corresponds to at least one ROM. Every time the amount of
data written to a bank exceeds the specified ROM length, a new ROM
image file is started.

Each output file is in Intel hex format and corresponds to a single ROM
device. The output files are nam@tsenamexy .hex , wherey is the bank
number and is the sequence number within the bank. Botimdy are

11-4

ROM Image Builder (grom960)

numbered from 0. For example, if the number of banks is four, the ROM
length is 64K, and the total image size is 512K, then the following hex
files would be output:

bank 0:rom00.hex, rom10.hex
bank 1:rom01.hex, rom11.hex
bank 2:rom02.hex, rom12.hex
bank 3:rom03.hex, rom13.hex

Example 1

This example converts the executable b.out into ROM images, with text
followed immediately by data, with even bytes in one bank and odd bytes
in another, for a ROM with 128-Kbyte capacity.

grom960 b.out -b 2 -1 0x20000

If the binary image is less than 256 Kbytes, there are two output files:
rom00.hex (even bytes) anmo0l.hex (odd bytes).

Example 2

This example assumes two b.out files as inputit contains the text and
data for an i960 CA processor, and contains the Initial Memory Image
(data that must appear at locatixfffff00 when the processor powers
up). Assume that the total binary image is under 64 Kbytes, and that the
ROM will be installed at addressffff0000

grom960 b.out imi,0xff00 -o ca

A single output file, namech00.hex , is created.

Example 3

This example makes the same assumptions as Example 2, but data (other
than the Initial Memory Image) should appear at location 0x8000 in the
ROM (Oxffff8000 in the runtime address space).

grom960 -T b.out -D b.out,0x8000 imi,0xff00 -0 ca

11-5

ROM Image Builder (rom960)

This chapter describes using the rom960 rommer to convert ELF, COFF,
or b.out object files to unformatted executable images.

As shown in Figure 12-1, you can prepare code for a specific target
environment. The linker generates object files for a downloader. rom960
facilitates rearrangement of section descriptions so that the code can be
programmed into programmable read-only memory (PROM) devices.

Figure 12-1 rom960 Rommer Operations

rom960

Convert to Rgigﬁgr?e Create Absolute [— 1 PROM
—>| ROM-able Description Memory Image M Loadable
code (mkimage) f—————] Code

(move)

0101
Executable
Code Debug and
Run
gdb960

A0021-01.eps

12-1

1960 Processor Software Utilities User's Guide

To place code in ROM, code sections must be located at the PROM device

addresses. Translating a formatted object file into an unformatted

executable image, may include any of the following steps:

» re-ordering the bits to match machine requirements.

e organizing the images to fit the target ROMs.

» calculating a checksum and incorporating it in the image.

« outputing the image in Intel hexadecimal format for a PROM
programming device.

Figure 12-2 shows an example of the rommer translation of a COFF file.

Figure 12-2 Data Placement in Memory Image

COFF Memory Image
Headers
Raw Data 1 > Data
Raw Data 2
Raw Data 3 \ Data
Data
— l—

0OSD1702

12-2

ROM Image Builder (rom960)

Rommer Invocation

Use this syntax to invoke the rommer:
rom960 -[option][dfile [arglist 1]]

whereoption is any of the following:

h displays help.

\% displays the version number and copyright date.

v960 displays version information and exits.

dfile specifies a rommer directive file namgde .1d .

arglist is up to 10 directive-file arguments, separated by
spaces.

[

NOTE. You must either speciffile in the invocation or supply the
directives interactively after entering then960 command. To end an
interactive session, typeit , quit , Ctrl-z (in Windows), ocCtrl-d

(on UNIX) at the rommer prompt.

Directive Files

The rommer directive filename must havéda extension. When you run the
rommer, you specify the base filename without.ithe extension. Table 12-1
lists the rommer directives. For information on using the directives, see the
Directive Reference section.

12-3

1960 Processor Software Utilities User's Guide

12-4

Table 12-1

rom960 Directives

Directive
checksum
help

ihex

map

mkfill

mkimage
move
patch
permute
rom

sh

split

Operation

computes and stores a checksum.
Displays help information and exits.
translates an image to an Intel hexadecimal format.

reports the section addresses, section sizes, and the image file
size to stdout.

translates a COFF executable file into a memory image
containing an image of the program as it would appear when
downloaded.

creates an image of the executed file.

rearranges the sections.

changes the image contents.

rearranges the address (permute_a) or data (permute_d) bits.
specifies the address space length and width.

executes a host-system command.

splits one image into smaller images of the specified size.

ROM Image Builder (rom960)

You can put rommer directives in your linker-directive files:

» Use only lowercase letters for the rommer directives.

« Start rommer-directive lines witkr in columns 1 and 2, putting no
space between the and the rommer directive.

» Separate the rommer directives from the rest of the linker-directive
file with /+ and* . The linker processes no lines between‘thand
* .

You can write directive files for use with different sets of input. Use the
parameters0 throughs$9 in a directive file to accept arguments
sequentially from the rommer invocation. For example, the following uses
therom.ld directive file first to buildnypgm.r from mypgm.o, then to

build pgm2.r frompgm2.0:

rom960 rom.ld mypgm.o mypgm.s First invocation
rom960 rom.ld pgm2.0 pgm2.s Second invocation

Here is a sample linker-directive file that produces a ROM image:

_intr_stack = 0x00040000;
ram_ = 0x30000000;
MEMORY {
rom: 0=0x00000000,/=0x40000
ram: 0=0x301f0000,/=0x40000
}
SECTIONS {
dext: {}>rom
.data : {} >ram
.bss : {} >ram
}
/*
#move $0
#*mkimage $0 $1
#*split $1 65536 16 65536 8 $1
#*ihex $1.00 $1.eve
#*ihex $1.01 $1.odd
*/

The linker processes the assignment statements amttherand
SECTIONSdirectives.

12-5

1960 Processor Software Utilities User's Guide

The rommer directives appear between/th@nd*/ characters and each
rommer-directive line starts with- (note that only section headers are
changed; no relocation is performed):

move places thedata section immediately after
text

mkimage prepares an image of the data to be programmed
into PROMS.

split divides the image into the two eight-bit-wide

units. The first unit contains even-numbered
bytes (0, 2, 4 ...); the second contains
odd-numbered bytes (1, 3,5 ...).

ihex converts the split images into the hexadecimal
format required for a PROM programming
device.

The$0 and$1 characters represent arguments from the rommer
invocation.

Directive Reference

This section describes the rommer directives alphabetically. Note that
example commands are those that you would place in a linker directive
(.Id) file or enter at the rommer command prompt.

12-6

ROM Image Builder (rom960)

checksum
Computes and stores a
checksum
checksum image start-addr end-addr checksum-addr [16 |
32]
image is the name of the file in which the checksum is
placed.
start-addr is the checksum starting address.
end-addr is the checksum ending address.
checksum-addr is the checksum result address.
[16 | 32] is an option argument to specify a 16- or 32-bit
checksum. The default is a 16-bit checksum.
Discussion

To compute a 16- or 32-bit checksum (CRC) over a specified address
range in the image file, useecksum . The result appears in the image at
the checksum-addr you specify.

A checksum address beyond the end of the image extends the image,
padding any additional intervening bytes wiff .

12-7

i960 Processor Software Utilities User's Guide

12-8

Example

The following inserts three successive 32-bit checksums in the image
crctest . The first checksum result is used for the second and the second
result is used for the third.

rom 32767 8

move hello

mkimage hello crctest

checksum crctest 0 8191 8192 32
checksum crctest 8192 16534 16535 32
checksum crctest 16535 32766 32767 32

Related Topic

mkimage

ihex
Translates an image to

an Intel hexadecimal
format

ihex bin hex-file mode

bin is the name of the file to be translated.
hex-file is the name of the hexadecimal output file.
mode specifies the hexadecimal address record format

(described below).

ROM Image Builder (rom960) 1 2

Discussion

For downloading to an intelligent EPROM programmer, translate a binary
image into either of two Intel hexadecimal formats vilithx . For the
address record format, specifynade as follows:

model6 specifies a hexadecimal object file format with
extended segment address records. This format is
used on Intel's 8086 series of 16- or 32-bit
processors, and also required by some PROM
programmers.

mode32 specifies a hexadecimal object file format with
extended linear address records. This format is
used on Intel's i960 processors.

Example

The following translates a file namendry into an executable image
nameddhryston , splits thedhryston image into two parts, and translates
the two parts into new files in hexadecimal format for the PROM
programming device:

move dhry

mkimage dhry dhryston

split dhryston 65536 16 65536 8 dhryston

ihex dhryston.00 dhryston.even
ihex dhryston.01 dhryston.odd

Related Topics

mkimage
split

12-9

i960 Processor Software Utilities User's Guide

map

Reports the section
addresses, section sizes,
and the image size

map infile

infile is the filename to be placed in ROM.

Discussion

Usemapto show how the rommer has restructured the file. nfde
directive displays the following on tlelout standard-output device:

» the address and size of each file section
» the size, in bytes, of the projected ROM image

You can usenap to display information while building a ROM image
interactively or from a directive file.
Examples

1. The following shows thelata section located in the input file
immediately after theext section:

#*map a.out

Section name Physical address Size

.text 0x040000000 0x5b90

.data 0x040005h90 0x938

.bss 0x600000000 0x118c

Image made from a.out will be 25800 (decimal) bytes
long

12-10

ROM Image Builder (rom960)

2. The following shows theext section placed at addressnd.data
still at 0x40005b90 . When created withhkimage, the space between
the sections is filled with zeroes (note the image size):

#*move a.out .text Ox0
#*map a.out

Section name Physical address Size

text 0 0x5b90

.data 0x40005b90 0x938

.bss 0x60000000 0x118c

Image made from a.out will be 1073767624 (decimal)
bytes long

3. The following showslata moved to a location that is again
immediately aftertext , producing a smaller image size:
#*move a.out
#*map a.out

Section name Physical address Size

text 0 0x5b90

.data 0x5b90 0x938

.bss 0x60000000 0x118c

Image made from a.out will be 25800 (decimal) bytes
long

Related Topic

move

12-11

i960 Processor Software Utilities User's Guide

mkfill

Translates a COFF file
into a memory image

mkfill object-input image-output fill-character

object-input
image-output

fill-character

Discussion

This command translates a COFF executable file into a memory image
containing an image of the program as it would appear when downloaded.

mkimage

Creates an executable
image

mkimage infile image
infile
image

section

12-12

[section1 [section2 ..]]
is the object filename.
is the converted image filename.

is the name of the section in théle
converted into the image.

to be

ROM Image Builder (rom960) 1 2

Discussion

This option translates a file into a memory image for downloading or
burning into ROMs or PROMs. This directive puts only the raw data of
text-type and data-type sections in the image, without the bss-type section,
and pads any space between the sections with 0xff.

By default, all text and data sections are translated. However, you may
specify sections to translate in theimage command.

The text-type and data-type section addresses determine the size of the
image. The image starts with the lowest-address text-type or data-type
section and ends after the highest-address such section.

Examples
The following translates the filesllo to the binary imagesmhello
mkimage hello romhello

The following translates only the three input sections from the file:

mkimage file file.image .text .textl foo

The following uses ankimage command after &@m command specifying
the target ROM configuration.

mkimage hello romhello

rom 32767 16 2

Related Topic

move

12-13

i960 Processor Software Utilities User's Guide

12-14

Rearranges the sections

move infile [section { phys-addr | after section '}]

infile is the input filename.

section is a linked section name.

phys-addr is the new memory section physical address.
Discussion

Changes the addresssaf:tion in the object file to the specified physical
addresshys-addr). The physical address may be specified in hex, or
using the keyworddfter " followed by a section name. For example:

move myfile bigblock after .data
Themove directive changes only the header informatiomfite, without
relocating any symbols. Useve to prepare a file for thekimage

directive or (for example) to change the physical address for a particular
EPROM.

Themovecommand writes the changesdrtfile.

CAUTION. After the input file has been modified withve, the

application must contain executable startup code to copy each section
that is moved back to its original address, as defined in the linker
directive file. Without such executable startup code, the application may
execute incorrectly when downloaded, since inter-section references may
no longer be valid.

ROM Image Builder (rom960)

Example

In the following, the firstnove directive starts theext section at.6383:

move hello .text 16383
Related Topics

Related Topic

map
mkimage

packhex

Compresses a hex file
by repacking the data
records

packhex hex-file

hex-file Name of the hex file to repack.

Discussion

This command compresses a hex file by re-packing the data records. The
hex is converted in-place. This operation should be done before using a
split command.

Example

packhex myfile

12-15

i960 Processor Software Utilities User's Guide

12-16

patch

Overwrites the image
contents with that of a
new file

patch image infile addr

image is the executable binary filename.

infile is the patch filename.

addr is the patch starting address in the binary file.
Discussion

To overwrite part of an executable binary file with the contents of a patch
file, usepatch . Specify theaddress offset in the binary file where the
patch is to start. The length of the patch file determines how much of the
binary file is overwritten.

Example

The following overwrites code in theitfile file with the contents of the
newbyte file, beginning at addres800 of patfile

move hello
mkimage hello patfile
patch patfile newbyte 1000

Related Topic

mkimage

ROM Image Builder (rom960)

permute

Rearranges the data or
addresses in a binary
file

permute-a infile order outfile
permute-d infile order outfile

infile is the binary filename to be permuted.

order is a series of integers separated by spaces
indicating the order of the bits to be permuted.

outfile is the name of the file containing the permuted
image.

Discussion

Rearrange the address bits or the data bits in a ROM image as follows:

To reorder data bits, upermute-d . Bits are repositioned within data

items that are the width of the ROM image. Specify the output bit location
for each input bit from the least-significant to the most-significant input

bit.

To reorder address bits, yusemute-a . Bits are repositioned within
32-bit addresses. Specify the new bit location for each address bit from
least- to most-significant input bit.

In interactive mode, the rommer prompts for the new location of each bit.

Usepermute-a or permute-d after arom command describing the target
ROM configuration. Theermute-a command uses the length and width
specifications from theem command to define the working address space.

12-17

i960 Processor Software Utilities User's Guide

Examples

1. The following reorders data bits O through Tein and places the
new image irbldrom :

rom 64000 8

move hello

mkimage hello test

permute-d test02 4 6 1 35 7 bldrom

2. The following reverses address bits 16 through 31, placing the new
image inhello2

rom 120000 32

move hello

mkimage hello romhello
permute-aromhello01234567891011121314
1531 3029 28 27 26 2524 23 222120 19 18 17 16
hello2

Related Topics

mkimage split
rom

rom

Specifies the image
length and width

rom length, width, [count]

length is the number of bytes in the ROM image.
width is the width of the ROM image, in bits.
count is the maximum number of ROM images.

12-18

ROM Image Builder (rom960)

Discussion

Use this option to specify the length, width, and number of ROM images
before using @aermute command. Figure 12-3 shows an eight-ROM
memory image and an example of the command required to specify it.

If you specify acount , the rommer issues a warning message for any
mkimage output greater than the expected memory size (in bytes). To
determine the expected memory size, use the formula:

length * count

Thepermute-d command usesidth andpermute-a uses bothength
andwidth as the number of bits to be permuted.

12-19

1960 Processor Software Utilities User's Guide

Figure 12-3 Dimensions of a Memory Image

16 Bits Wide

8 Bits Wide

1,000 Bytes

4,000 16-bit
ROM Image Words Long

Memory Image

ROM command required to use either the
permute-a or permute-d command:

rom 1000 8 8

LH— Quantity needed to fill the memory image

Description of one ROM
A0123-01

Examples

1. The following sets the length 3a767 bytes and the width t® bits
for individual ROM images:

rom 32767 8

12-20

ROM Image Builder (rom960) 1 2

2. The following sets the length ¢6536 bytes and the width t® bits;
and, by specifying four ROM images of those dimensions, establishes
262144 bytes as the expected image size:

rom 65536 8 4

Related Topics

mkimage
permute
sh
Executes a host-system
command

sh command

command is the host-system command to be executed.

Discussion

To execute a command on your host systemsiuséaVhen the command
completes, the rommer continues executing.

Examples

1. The following lists the current directory on UNIX:
shls -l

2. The following lists the current directory in Windows:
sh dir

12-21

i960 Processor Software Utilities User's Guide

12-22

split

Specifies the output

image sizes

split image m-length m-width r-length r-width name

image is the binary filename to be split.

m-length is the length, in bytes, of the memory image to be
split.

m-width is the width, in bits, of the memory image to be
split.

r-length is the ROM image length, in bytes.

r-width is the ROM image width, in bits.

name is a base name for the various images produced.

Discussion

To split a memory image into smaller ROM images,use . Each
output ROM image filename is of the formme.nm:
n indicates the vertical position of the ROM image, froifthe

lowest part of the memory address rangeytaeqgth / r-length).
m indicates the horizontal position of the ROM image, frofthe

first block of -width bits in them-width -bits-wide data path)

to (m-width | r-width).
Subsequentermute directives use the ROM imagéeength and
r-width

Example

The following produces four files namednm as shown in Figure 12-4:

mkimage hello a.image
split a.image 262144 32 65536 8 a

ROM Image Builder (rom960)

Figure 12-4 split Command Example

. a.image As It Is Understood
a.image As It Is Stored

. 32 Bits
8 Bits A

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 . _ :)

4

5 |l 262144

6 Bytes \L \L \L i

7

8

9 0 1 2 3
4 5 6 7 65536
8 9 10 11 |(Bytes

a.00 a.0l a.02 a.03
ROM Images Created

0OSD1701

Related Topics

mkimage
permute-d

12-23

Section-size Printer
(gsize960, siz960)

[

Invocation

This chapter describes the section-size printer, used for displaying the
sizes of archive members, object-file sections, and entire files.

NOTE. Before using this tool, make sure your object file or archive is in
host-endian byte order. To change the byte order, use the cof960/objcopy
converter described in Chapter 3.

Invoke the section-size printer as:

Giz960 [_ fi

Egsize%o %[— options | filenames

siz960 invokes the section-size printer for backwards
compatibility with CTOOLS960 Release 3.5 and
later.

gsize960 invokes the section-size printer for backwards
compatibility with GNU/960 Release 2.1 and
later.

options is one or more of the options listed in Table 13-1.

filenames is one or more filenames, separated with spaces,

for which the symbol tables are to be displayed.
You can specify complete pathnames.

13-1

1960 Processor Software Utilities User's Guide

13-2

Table 13-1

gsize960/siz960 Options

r

Option Effect

displays total size of common symbols.

displays the sizes and addresses in decimal.
displays help information and exits.

Includes unallocated sections in the size calculation.
displays the sizes and addresses in octal.

Suppresses header display.

< T O S T a o

displays the section-size printer version and creation date and
continues processing.

v960 displays the section-size printer version and creation date and
stops processing.

X displays the sizes and addresses in hexadecimal.

By default, sizes are displayed in decimal and addresses in hexadecimal.
For example, the following displays the version information and continues
processing:

siz960 test.o

test.o:

Section Size Address
text 52 0x00000000
.data 4 0x00000034
.bss 0 0x00000038
Total 56

NOTE. With release 5.1, tha option includes ELFdebug sections in

the size calculation. Note that usisgo60/gsize960 with the-n

option produces output that is identical to that produced by version 5.0 of
the sizer.

Statistical Profiler (ghist960)

This chapter provides information on the ghist960 statistical profiler,
including a description of the program, instructions on invoking ghist960,
and a list of command line options.

The ghist960 utility facilitates statistical analysis of the execution behavior
of programs containing debug information. The ghist960 tool can process
b.out, COFF and ELF files, in either big- or little-endian byte order.
ghist960 presents information collected from a data file created during
execution of your program using representative inputs.

To use ghist960, first compile your program with theg(Debug) compiler
driver option. Then, link it with the specialhis profiling library.

Execute the program with appropriate inputs. Executing your
instrumented program causes the compilation system to create a profile
data file ghist.dat , by default). You can then use the controls and
options described in this section to create a variety of reports showing how
your program behaves with various inputs.

Note that statistical profiling differs from the precise profiling that is
described in thé©60 Processor Compiler User’s Guide

14-1

1 I 1960 Processor Software Utilities User's Guide

Invocation

Invoke the statistical profiler with:

ghist960 [option]... program [data_file]
option is one of the options listed in Table 14-1.
program identifies the application (object file) for which

you are creating the report.

data_file names the execution profile data file
(ghist.dat by default).

The ghist960 tool processes the object file by:

1. Building an internal database of function entry and line number
symbols.

2. Processing the profile data, matching "bucket" hit counts to their
associated symbols and line number entries. A bucket is a range of
addresses. The range of addresses corresponding to a bucket is
determined by the number of address bytes in the bunkekét size

3. Printing the internal database for each syniba entry, which
includes:

» the percentage of hits for this particular symbol/address range
» the function name associated with the symbol

» the source file line number of the symbol

» the file where the symbol resides

» the address of the symbol

Optionally, you can use theoption to obtain the actual number of hits in
the address range.

14-2

Statistical Profiler (ghist960)

Table 14-1

ghist960 Options

Option

a

vo60

Effect

prints all buckets with one or more hits. (Normally, only buckets
with 1% or more of the hits are printed.)

prints ghist960's internal symbol table and the standard data.

tallies function information. Counts the number of hits for each
line in a function and associates the sum with line zero of the
function.

displays help output and exits.

prints the number of hits for each bucket, in addition to the
standard data.

suppresses the printing of miscellaneous header and footer
information and format lines.

writes version information to stdout and continues.

writes version information to stdout and exits.

14-3

1960 Processor Software Utilities User's Guide

14-4

Table 14-2

ghist960 Buckets

Argument

__buck_size

__timer_freq

__prof_start

__prof_end

_heap_size

Effect

Number of text space bytes per bucket. Default is 64.
Available memory is an important factor in determining bucket
size. A smaller bucket size require more buckets and more
heap space to count bucket hits. See _heap_size for details.

Timer interrupt frequency. Default is one millisecond. The IP
address is recorded at every timer interrupt. Since profiling
depends on asynchronous timer interrupts, interrupt frequency
greatly affects data granularity. Use one of the following
settings. (Any other setting resets the default.)

defsym interrupt frequency
__timer_freq=0x01 500 microseconds
__timer_freq=0x02 1 millisecond (default)
__timer_freq=0x03 2 milliseconds
__timer_freq=0x04 5 milliseconds

Note: Profiling requires complete control of the target board's
timer. If the program being profiled uses the timer, the profile
data is incorrect or misleading. You must disable all timer
accesses.

The low address in the range of instruction addresses to
profile. (Default is the start of program address space:
__Btext.) Changing this parameter directly affects heap space
requirements. See _heap_size for details.

The high address in the range of instruction addresses to
profile. (Default is the end of program address space: _etext.)
Changing this parameter directly affects heap space
requirements. See _heap_size for details.

Memory allocated for heap space (MON960). Heap space is
where the raw profile data is kept for later dumping to the host.
Default is 8KB (0x2000); usually insufficient for profiling. To
determine the extra heap size you need for profiling, use the
formula:

_heap_size += ((__prof_end - __prof_start) / __bucket_size) * sizeof (int)

Stripper (gstrip960, stro960)

The stripper removes symbol-table and line-number information from
your files. In most cases, you will want to use the stripper after debugging
to reduce the code size by removing debug symbols.

[

NOTES.
— The stripper overwrites the input file with the stripped file.
— You cannot link or symbolically debug a stripped file.

Invoke the stripper as:

Gstr960 g _ i

Egstrip%o %[— option ... ilename...

Stro60 invokes the stripper for backwards compatibility
with CTOOLS960 Release 3.5 and later.

gstrip960 invokes the stripper for backwards compatibility
with GNU/960 Release 1.2 and later. On
Windows hosts, the invocation command is:
gstrip96

option is one or more of the options listed in Table 15-1.
Use the options only for stripping COFF or ELF
files. For b.out files, specify no options.

filename is one or more files to be stripped.

NOTE. To strip all debugging information for COFF, b.out, or ELF,
specify no options. Also, you can interleave the options and filenames in
any order.

15-1

1960 Processor Software Utilities User's Guide

To strip a file while preserving and re-indexing the relocation entries for
incremental linking, use theoption. Without , the relocation
information inhibits the stripper.

When you use the stripper on an ELF/DWARF file, all sections that lack
the SHF_ALLOCDit in the section header table are removed from the output
file. The one exception to this rule is thiestrtab section, which is not
removed.

Table 15-1 str960/gstrip960 Options

Option Effect

a strips all symbols. This is the default.

b strips the local symbols and line numbers only, retaining the block
information.

C strips CCINFO only.

h displays help information and exits.

I Stips line numbers only.

r strips files containing relocation information, revising the remaining
relocation indexes. External and static symbols remain.

Vv displays the stripper version number and the date and time the
stripper was created, then continues processing.

v960 displays the stripper version number and the date and time the
stripper was created, then stops processing.

X strips all except static and external symbol information.

z suppresses writing a time-stamp in the COFF header file.

Partial stripping is supported by thecC, | ,r andx options. For ELF

files, these options are equivalent: Both remove debugging information
from the output file. All sections namettbug* are removed from the
output file, but the file remains relocatable because bothithes and
rel* sections are retained.

15-2

Linker Command Language

Introduction

The linker command language lets you control the linking process. You

can use the linker command language to:

» Define and allocate memory.

» Specify files and libraries to be linked.

« Group sections in memory.

* Place input files' input sections (the smallest relocatable pieces of
object files) into output sections (sections in linker output files).

» Resolve global symbols to absolute addresses.

* Calculate checksums.

The linker command language consists of keywords called linker
directives. These directives are placed in linker directive files, which are
also known as link scripts and configuration files in some environments.
Linker directive files typically use the extensiti . You specify linker
directive files when you run the linker, either directly or indirectly (via a
compiler invocation).

Most of this appendix is devoted to a description of the linker directives.
The last section of this appendix, provides some details on linker directive
files and sample linker directive files. (The toolset includes linker
directive files for various common i960 processor evaluation boards.)

Before using the information in thénker Directives Referencction,
you should be familiar with the information in the next section, which
discusses other directive file elements, such as expressions and operators.

1960 Processor Software Utilities User's Guide

A-2

Expressions and Operators

Table A-1

You can use global symbols, constants, and C-language operators in
expressions in linker directive files. Names can contain uppercase or
lowercase letters, numbers, dollar sigsls &nd underscores); All

numbers are long integers. As in C, constants are in decimal format unless
preceded by for octal orox for hexadecimal.

The value of a symbol corresponds to the value in the symbol table after
the link is complete.

Table A-1 shows the operators in order of precedence. Operators on the
same level have the same precedence and are processed as encountered.

Order of Precedence for Operators

Precedence Operators Associativity
1 (highest) I - ~ (unary) left
2 * | % left
3 + - left
4 >> << left
5 == l= > < <= >= left
6 & left
7 | left
8 && left
9 Il left
10 ?: right
11 (lowest) &= *= |= += = /= right

To define symbols and assign values to them, use assignment statements
with the following syntax:

symbol [op]= expression ;
symbol is the symbol name.

op is one of the operatoss, *,| ,+,- ,or/ . Not
all assignments require an operator.

Linker Command Language

= is the assignment operator.

expression is a valid expression. For example:
start + 10

NOTE. The final semicolon is required for all assignment statements.

Assignment statements are processed in the order they are input to the
linker and are evaluated after allocation. However, for symbols used in
theexpression , the evaluation addresses reflect the symbol addresses in
the output object file. Subsequent symbol references access the latest
assigned values.

For conditional statements, use the following C syntax:

condition ? t-expr : f-expr ;

condition evaluates to true (1) or false (0). The question
mark () is required.

t-expr is evaluated when thendition evaluates to
true.

f-expr is evaluated when thendition evaluates to
false. The colon: () separates theexpr from
the t-expr

A-3

1960 Processor Software Utilities User's Guide

Linker Directives Reference

L)

Table A-2

Use linker directives to:

« Configure your target memory.

* Include library files and other directive files.
» Provide the start-up routine.

NOTE. In this section, the curly braces$ @nd}) are part of the
directive syntax and must be entered as shown. Square brackets
([and]) and ellipses.() indicate optional and repeatable elements.

Linker Directives

Directive
ADDR
ALIGN

CHECKSUM
DEFINED

ENTRY
[NOJFLOAT

FORCE_COMMON _
ALLOCATION

HLL
INCLUDE

Operation
returns a non-relocatable section address.

assigns non-relocatable values to symbols. This
operation is different from the ALIGN keyword of
the SECTIONS directive. This option is
synonymous with NEXT.

generates a checksum for the bus confidence test.

returns whether a symbol is defined in the global
symbol table.

specifies the first executable instruction address.

specifies whether to use the extended-arithmetic
and floating-point libraries.

forces allocation of space for common symbols,
even for non-final (relocatable) linking.

specifies the high-level support libraries.

locates and processes the specified directive file.

continued [

Linker Command Language

Table A-2

Linker Directives (continued)

Directive
INPUT

MEMORY

NEXT
OUTPUT

OUTPUT_ARCH

PRE_HLL

SEARCH_DIR
SECTIONS

SIZEOF

STARTUP
SYSLIB
TARGET

Operation

provides backward compatibility with GNU R2.0.1
(required in that release for naming linker input files
inside a directive file). Later versions of the linker
allow naming input files without using the INPUT
directive.

specifies the available target memory and defines
configured and unconfigured memory.

synonomous to ALIGN.

names the output file.

specifies the target 80960 architecture for the
current link. Overrides $G960ARCH and is

overridden by the A linker option. Default
architecture is KB.

Lets the user specify libraries that are processed
immediately before the high-level language libraries
specified with the HLL() directive.

extends the library search path (like L dir).

defines the contents, configuration, and location of
the output sections.

returns a section size.

specifies the first file to be linked.
specifies the low-level support libraries.

uses the search path to find the specified directive
file, with the same effect as the T option.

MEMORY:: Configuring Memory Regions

Use thevIEMORHirective to:

» Specify the target-memory size.

» Designate configured and unconfigured memory regions.
» Prepare memory regions for specific sections.

A-5

i960 Processor Software Utilities User's Guide

A-6

Omitting MEMOR¥¢onfigures a singlewxlregion fromoxo through
OXFfffffff

The syntax is:

MEMORY {
name[(attr)]: origin = expr , length = expr
[-]

}

name is a symbol for an address range.

(attr) is one or more of the attributes listed in
Table A-3. The parentheses are required when
you specifyattr

origin is a keyword assigning the region starting
address. You can abbreviat@&gin toorg or
0. Use either a space or a comma to separate
origin andlength

length is a keyword assigning the region size, in bytes.
You can abbreviatength tolen orl.

expr is a decimal, octal, or hexadecimal expression in

C syntax.

NOTE. When you prepare memory regions for sections or groups with
(attr), theMEMORattribute list must exactly match the corresponding
SECTIONSattribute list. Omitting the attribute list gives the memory
region therwxI attributes.

Linker Command Language

Table A-3

Memory and Section Attributes

Attribute Characteristic

R indicates a readable region.

W indicates a writable region.

X indicates an executable region.

I, L indicate a region that can be initialized.

NOTE. Specifying more memory than is actually contained in your
system causes a fatal error.

For more information on assigning sections and groups to memory
regions, see thBECTIONS: Defining Output Sectiogection.

Examples

1. The following example prevents any code from being located in the
first 0x10000 words of memory:
MEMORY {
valid : org = 0x10000, len = 0xffff0000
}
2. In the following example the largest configured regiaxiso00
bytes:
MEMORY {
meml: o =0x00000 |= 0x02000

mem2: o = 0x40000 | = 0x05000
mem3: o0 = 0x20000 | = 0x10000

}
Default Linker Allocation

The term allocation refers to the process the linker uses to locate input
sections into output sections and then to assign the output sections to
actual memory addresses.

A-7

i960 Processor Software Utilities User's Guide

A-8

Omitting aSECTIONSdirective puts all input sections with the same name
in an output section of that name, in the order shown below. For example,
linking several object files, each containing tlhet , .data , .mysect ,
and.bss input sections, creates the combineg: , .data , .mysect |,
and.bss output sections. The linker allocates the output sections in the
following order when &ECTIONSdirective is not supplied:

« text atthe lowest available address

» other text-type sections aftesxt

« the.data section after all the text-type sections

« other data-type sections aftesta

» other types of sections after all the text-type and data-type sections
* .bss after all other sections

If you provide aSECTIONSdirective, the linker first locates any sections
you specify, then puts unassigned sections into suitably configured
memory on a first-fit basis, keeping groups intact.

You should carefully study the link map after you link your executable. If
you do not like the arrangement, use the techniques discussed below to
give the linker explicit directions on how to allocate your application.

You can use the linker option to display the order in which it allocates
output sections and the addresses it chooses for the sections.

SECTIONS: Defining Output Sections

Use thesSECTIONSdirective to:

« combine the input sections into output sections
» locate the output sections in memory

» create and initialize symbols

* initialize unassigned memory

* locate the entry point

Linker Command Language

The syntax is:

SECTIONS {
[GROUP [addr-spec 1]: {] # opens an optional GROUP block
o-section [addr-spec][ns-type]:{

[statements]
Y= fill][> mem-attr]

[-]
B[mem-attr 1] # closes the optional GROUP block

(-]
}

GROUP specifies sections to be treated as one unit. See
Table A-4.

addr-spec is a starting address. For more information on
this subject see the description for thandT
section start address options in Chapter 7.

o-section defines an output section. The colon is required.

ns-type is theDSECT NOLOARor COPYnonstandard type
(these may have optional parentheses).

statements describe the section contents, including
filenames, input-section names, keywords (listed
in Table A-4), assignments, and other
expressions (described in thimker Command
Languagesection).

The braces are required, even with no
statements. An empty output-section definition
contains all otherwise-unallocated input sections
with the same name-section) as the output
section.

fill is a two-byte initialization value for spaces
between input sections in the output section.

A-9

1960 Processor Software Utilities User's Guide

A-10

L)

mem-attr specifies a memory region either by name or by
attribute, as described in tMEMORY::
Configuring Memory Regioreection. The is
required. For a list of the attributes, see
Table A-4.

NOTES. Specify a starting address or a memory region (or neither), but
not both. Conflicting group and section specifications cause syntax
errors.

In aSECTIONSdirective, you can use the keywords summarized in
Table A-4.

Table A-4 SECTION Keywords

Keyword Operation

ALIGN returns the next address that fits the specified boundary.

BYTE puts a byte value at the current address.

COMMON locates uninitialized data.

COPY copies output-section data to the output file without
relocating the section or allocating any memory.

CREATE_OBJECT_SYMBOLS creates a symbol for each input file.

DSECT creates an empty section, allocating no memory (but
processing contained symbols).

ENTRY locates the entry point.

FILL specifies the value used to fill gaps in an output section.

GROUP specifies sections to be treated as a unit.

LONG puts a 4-byte (word) value at the current address.

NOLOAD allocates memory and locates the output section, but
copies no data to the output file.

SHORT puts a two-byte (half-word) value at the current address.

Linker Command Language

The sample below showssaCTIONSdirective where alkext , .data ,
and.bss sections are allocated to DRAM.

SECTIONS

{

text :

{

} >dram

.data :

{

} >dram

.bss :

{

} >dram

}
Combining Input Sections Into Output Sections

By default, the linker combines sections as follows:

« Combine all input sections of each name together into one output
section with the input-section name. In each output section, sequence
the input sections in the order encountered in the input files.

You can build an output section from specific input sections. List the
input filenames and sections in an output-section definition as:

[filename ([i-sections 1)
filename is an input filename.

i-sections is one or more input-section names, separated
with commas or spaces.

You can use the wildcard charactey for the filename. For example:
*(.text) specifies all input filetext sections.

A-11

i960 Processor Software Utilities User's Guide

A-12

Common Sections (COMMON)

The term common section refers to global uninitialized variable space.
The following are examples of common variables:

int x,y[20];

With respect to impact on external linkage, this term is used exactly as it is
in the FORTRAN programming language. COMMON symbols are
overridden by a larger definition of the same name, or by a definition that
is initialized. For example:

int x; defined in x.0
double x; defined iny.o
char x ='a’ defined in z.o

would each override each other resulting in a global variable nartred

is an initialized character variable. To designate an output section for
common sections of input files, use themMmMoOkeyword anywhere in an
output-section definition. To include the common symbols from specific
input sections, useoOMMOalfter the input-section statement. For example:

foo.0(COMMON) /* COMMON section from foo.o */

Similarly, the wildcard can be used:
(COMMON) / Place ALL COMMON sections here. */

commotells the linker where to locate variables not assigned to another
section. It can refer to all such variables or just to the unassigned
variables from specific input files.

You can list the input files in the output symbol table. To create a symbol
for each input file in an output section, spedfyEATE_OBJECT_SYMBOLS
at the beginning of the output-section definition, after the opening brace:

o-section [addr-spec]:{CREATE_OBJECT_SYMBOLS
{[statements 1]}

}

Linker Command Language

Note that:(section_name) and[section_names] mean that if any
input sections namegtction_name exist, and are not already placed in
an output section, place them in this output section. For example, the
following code produces an erromifr.o is the only input object file.

SECTIONS {
foo {bar.o}
junk : { *(COMMON) }

}

However, the following example does not produce an error because as it is
evaluatings(COMMON) bar.o(COMMON) is available.
SECTIONS {

junk : { *(COMMON) }
foo:{bar.o}

}

Files and sections are bound top to bottom, and left to right in linker
directive files.

Splitting COFF Output Sections

The common object file format (COFF) allows only 65535 line-number
entries and 65535 relocation entries for any section within an object file.
The linker creates additional output sections whenever adding another
input section to an existing output section overflows the line number entry
table or the relocation entry table.

To split a section, the linker:

» creates a new section with the original section name, starting with the
first input section that does not fit completely in the original section.

» assigns a new name to the original output section by appending a
number to the original section name, truncated as necessary to limit
the new section name to eight characters.

For example:

» Splitting the.mybgtxt section once assigns the namgbgtx0 to
the original output section and creates a new section caledtxt
for the remaining input-section contents. More than 10 splits create
section names such asybgt10 and.mybgtll .

A-13

i960 Processor Software Utilities User's Guide

A-14

« A .text section of 196700 bytes splits into four sections named
text0 (containing the first input sectionsgxtl , .text2 , and
text (containing the last input sections).

The linker notifies you of each section split with a warning message unless
you suppress all warnings by using thiénker option. You receive no

other indication of section splits unless you produce a memory map by
using themlinker option.

NOTE. The linker treats the new sections created under the same linker
directives that applied to the original section. Do not put the new names
into the directive file.

Examples

1. The following creates an output section namedxt , containing
the inputtext sections from all the available input files, all the input
sections from thabn.o file, the.atxt and.atxtq sections from
afile.o , and.btxt frombfile.o , located as described in the
MEMORY: Configuring Memory Regiossction.

SECTIONS {
.ab_txt: {
*(.text)
abn.o
afile.o(.atxt .atxtq)
bfile.o(.btxt)
}
}

2. The following puts all of the common symbols from all the input files

into themycomoutput section:

SECTIONS {
mycom: {{COMMON]}
}

Linker Command Language

3. To placecommoskections from a specific file into a particular section,
use this form:

SECTIONS {
xxx : { flename.o(COMMON) }

}

4. The following puts a symbol in the output symbol table for each file
that contributes axt input section to thaitxt output section:
SECTIONS {

.utxt: {
CREATE_OBJECT_SYMBOLS
*(.txt)

}

}

If coMmMOis not in the linker directive file in a final link, uninitialized
variables are placed by default into thes section.

Allocating the Output Sections (> region , ALIGN, GROUP)

You can allocate an output section by:
» explicit addresses

e alignment

* memory region name

* memory attribute

When allocating the output sections, the linker maintains the default or
specified alignment. The linker processes the output sections in the
following order:

1. output sections with explicit starting addresses.

2. output sections with memory-region names or attributes, placing each
section into the first appropriately configured, unallocated region of
sufficient size.

3. output sections with no location specifications, placing each section
into the first appropriate unallocated region of sufficient size.

For information on configuring memory regions, seeNlEEMORY':
Configuring Memory Regiorsection.

A-15

1960 Processor Software Utilities User's Guide

A-16

By default, the linker uses the largest alignment of any input section in the
output-section definition for the entire output section. You can specify a
larger output-section alignment, which then overrides the input section's
alignment specifications.

Specify the section alignment or address (not both) after the name of an
output-section specification, before the colon and the opening brace:

LIGN(align-expr)
o-section ddr-expr @{[statements]}

align-expr evaluates to a power of 2.
addr-expr evaluates to an address in configured memory.

Instead of allocating the output sections by an address, you can assign an
output section to a specific memory region by name or by attribute. For a
region name, use theoperator and the name after the output-section
definition:

o-section :{[statements 1}[> region]

region is a memory-region name or attribute list, as
defined in auEMORirective. The> is required.
For more information on matching sections and
memory regions by attribute, see iEMORY:
Configuring Memory Regiorsection.

NOTE. You cannot specify both an address and a memory region.

Treating Output Sections as a Unit (GROUP)

You can specify a set of output sections to be treated as a unit, including:
e contiguous memory locations, with the order of the sections preserved
* homogeneous attributes, kept together in a single memory region

Linker Command Language

Put the output sections inGROUMIock in theSECTIONSdirective. You
can define multiple groups:
GROUP [addr-spec] {
section-defs
1> mem-spec]

addr-spec specifies an alignment or address. For more
information on this subject see the description for
theB andT section start address options in

Chapter 7.
section-defs is one or more output-section definitions.
mem-spec specifies a memory region by name or attributes.

The> is required.

NOTE. Specify the address or memory region for a group the same as for
a section. Specify no such locations for the individual sections within a
group.

An output section or group that does not fit at the specified address causes
an error.

Although the linker does not ensure that the sections are an even number
of bytes in length, you need not align the individual input sections within

an aligned output section. The assembler and compiler create sections that
are multiples of four bytes in length.

Examples

1. The following aligns theutsec output section on an address that is a
multiple of 0x20000 (addres®x0, 0x20000 , 0x40000 , etc.)

SECTIONS { outsec ALIGN(0x20000): { } }

A-17

i960 Processor Software Utilities User's Guide

2. The following assignsext the starting addre$s040000000
.data the first available addressiiiem] and.bss the first memory
location big enough hold it:

MEMORY {

mem1: o = 0x10000000, | = 0x20000
mem2: o = 0x40000000, | = 0x40000

}
SECTIONS {

.text 0x040000000: {}
.data: {} > mem1
.bss: {}

}

3. The following keeps the=xt ,.data , and.bss sections together in
themembase memory region. Note that all of the sections are aligned
per the input section requirements and that immediately
follows .text , and.bss immediately followsdata .

SECTIONS {

GROUP: {
dext 1 {}
.data :{}

.bss :{}
} >membase

}

Creating Gaps and Defining Symbols in Output Sections
(ALIGN, BYTE, FILL, LONG, SHORT, dot)

A section gap contains no information. To create a gap:

1. Change the location counter, represented by the gsyihbol, to
insert a gap of any length filled with a repeated two-byte value.

2. Use an initialization keyword to insert a byte, half-word, or word
value.

A-18

Linker Command Language

Assign a new value to the location counter with either:

.[operator 1= size-expr ;
.= ALIGN(align-expr);

operator is an+, -, *, or/ operator.

size-expr evaluates to an offset address, relative to the
beginning of the output section, or to a value to
be used by the operator.

align-expr evaluates to a power of 2.

ALIGN returns the next address, within the output section, that is divisible
by thealign-expr

To specify a repeating two-byte initialization value for the gaps in a
section, assign the fill value after the closing brace of the output-section
definition (or userILL () within a section definition):
o-section [addr-spec]:{

[statements |
Y[= fill][mem-spec]

The phrasefill designates the fill value for thesection output
section.

For one-, two-, or four-byte gaps, use the initialization keywords:

BYTE(expr)
SHORTExpr)
LONG(expr)

expr is a byte, half-word, or word value, respectively.
For any value that is longer than the keyword
requires, the linker uses the least-significant byte,
half-word, or word.

A-19

i960 Processor Software Utilities User's Guide

The location counter within an output-section definition is an offset

relative to the base address of the output section. Any address or
alignment you specify is relative to the beginning of the output section.

To find or specify the location counter absolutely, specify the base address
by explicitly locating the output section, as described in_tieating the

Output Sectiong>region, ALIGN, GROUP) section.

Examples

1. The following puts two gaps in theatsec output section:
O A 0x1000 byte gap is left at the beginning of thesec output

section. Thel.o(.text) input section begins after the gap.
O Thef2.0(.text) input section begins ak100 bytes after the
end offl.o(.text)
O Thef3.o(.text) input section begins on the next word

boundary with respect to the beginningofsec .
O The gaps are filled with the two-byte value020 .

SECTIONS {
outsec: {
.+= 0x1000;
f1.0(.text)
.+= 0x100;
f2.0(.text)
.= ALIGN (4);
f3.0(.text)
}=0x0020

}
2. The following quad-word-alignsitsec :

SECTIONS {
outsec ALIGN(16): {
.+= 0x1000;
f1.0(.text)
.+= 0x100;
f2.0(.text)
f3.0(.text)
}
}

A-20

Linker Command Language

3. Inthis example:

O Thes2_ start symbol points to the beginning ofile2(ss2)
(sectionss2 from input fileinfile2)

0 Thes2_end symbol points to the last byte iafile2(ss2)

SECTIONS {
outscl: {
infilel(ssl)
s2_start = .
infile2(ss2)
s2_end = .-1;
}
}

4. In this example, the symbehkrk points to the first full word beyond
the end of thedata section ofilel.o . Four bytes are reserved by
the. +=4; statement for a run-time initialization of;symbol ,
representing a long integer.

SECTIONS {
outscl: {
filel.o (.data)
. = ALIGN(4);
mysymbol = .;
. +=4;
file2.0 (.data)
}
}
5. This example does the following:
O aligns thedata output section on the next2000 -byte
boundary after theext output section
O defines theals symbol to point to the nexkso00 -byte
boundary after thelata input sections
SECTIONS {
text {}
.data ALIGN(0x2000): {

*(.data)
als = ALIGN(0x8000);

}
}

A-21

i960 Processor Software Utilities User's Guide

A-22

Defining Non-standard Sections (DSECT, COPY, NOLOAD)

You can create output sections that:

» overlay other sections

» contain complete and exact copies of the input sections
* contain no data

Specify the non-standard section keywords (with or without parentheses)
immediately before the colon and opening brace of an output-section
definition:

SECT

o-section [addr-spec | OPY ={]
OLOAI%

With DSECT you can locate the symbols in an output section without
writing any object code to the output file or allocating any memory. The
global symbols defined in@SECTsection are relocated normally, are
resolved as needed from the libraries, and are available to other sections.
For example, usBSECTto create an overlay section that, during

execution, can re-use a memory region no longer needed by a prior
section. Overlay section data can be read in from peripheral storage
during execution.

statements]}

To exclude the input-section contents from the output sectiomQseAD

A NOLOADDutput section has no data in the object file, but occupies
memory and appears in the memory map. For example|QiseAno

reserve a memory region for a section that is linked and located separately.

To copy the input-section contents and all associated information to the
output file, useCOPY A COPYoutput section is not located and occupies
no memory.

Linker Command Language

Example

The following allocates one of each nonstandard output-section type:

SECTIONS {
namel 0x200000 DSECT: { filel.0 }
name2 0x400000 COPY: { file2.0 }
name3 0x600000 NOLOAD: { file3.0}

}

COFF Binary Representations

The COFF binary representations of th@.OADDSECTandCOPYsections
are detailed in the table below:

Table A-5 COFF Binary Representation of NOLOAD, DSECT, COPY Sections
ALLOC RELOCATED scnptr size flags LOADED

NOLOAD N NA 0 S NOLOAD N

DSECT N NA 0 0 DSECT N

COPY N S S COPY Y

ORDINARY Y Y S S 0 Y

TheALLOCcolumn indicates whether or not the linker allocates memory
for it.

RELOCATEDNdicates whether the section is relocated or not. Since the
DSECTandNOLOAsections do not have section contents, it is not
applicable to them. Note that thepPysections are not relocated, but
copyed verbatim.

If scnptr is0 in COFF, there are no section contents for it, even if there is
size of the sections indicates that thecnptr corresponds to the file

seek address of the section contents. See Appendix C for information on
the the COFF OMF.

If size is0, the output section for that element is fillied with zeros.
S indicates that the section size is retained for your information.

A-23

i960 Processor Software Utilities User's Guide

A-24

Some of the sections set some special flags into the section's flagword.
The table above indicates which flags are set.

A loader can load anything from the OMF file but, according to the
semantics defined here, the loader loads only those marked withthe
table above.

ELF Binary Representations

The ELF binary representations of theLOADPDSECTandCOPYsections
are detailed in the table below:

Table A-6 ELF Binary Representation of NOLOAD, DSECT, COPY Sections
SHF_ALLOC RELOCATED SHT_PROGBITS SIZE HAS_PROGRAM_HDR
NOLOAD N NA N S N
DSECT N NA N 0 N
COPY Y Y S Y
ORDINAR Y Y Y S Y
Y

SHF_ALLOCindicates whether or not the section is allocated memory by
the linker. It also indicates that the output flag word contains this output
flag.

RELOCATEDNdicates whether the section is relocated or not. Since the
DSECTandNOLOAsections do not have section contents, it is not
applicable to them. Note that thepPysections are not relocated, but
copyed verbatim.

Each section contairsiT_PROGBITSor SHT_NOBITS Y indicates that the
section is &HT_PROGBITSwhile N indicates it iISHT _NOBITS

If size is0, the output section has zeroed that elemenihdicates that
the section size is retained for your information.

If the column foHAS PROGRAM_H@@RNtains &, the section should be
loaded by a memory loader utility.

Linker Command Language

FORCE_COMMON_ALLOCATION: Allocating
Space for Common Symbols

To assign common-symbol space in the output data, use
FORCE_COMMON_ALLOCATIORhis directive has the same effect asdthe
option. You can UseORCE_COMMON_ALLOCATI@Ken generating either
relocatable or non-relocatable linked files. However, this feature is most
useful when using relocatable links.

DEFINED: Finding Symbols

To determine whether a global symbol is defined, RIS&NED:
DEFINED(symbol)

symbol is the symbol name.

Finding the symbol in the global symbol table returns 1.

In the following example, the value iefgin is preserved ibegin
already exists in the global symbol table; otherwisgin is set to the
location counter.():

begin = DEFINED(begin) ? begin : . ;

ADDR, ALIGN, NEXT: Finding Addresses

To find the absolute beginning address of a sectionADB&
ADDR(section)

section is the name of a located section.

For an address aligned after the current location countepLUSE or
NEXT.

ALIGN(expr)
NEXT(expr)

expr is an alignment factor.

A-25

i960 Processor Software Utilities User's Guide

A-26

For memory with no unconfigured regions,|GN andNEXTare

equivalent. ALIGN returns the next address in configured memory that fits
the specified boundaryNEXTreturns the next unallocated address that fits
the boundary.

Examples

1. The following locates thesecl output section in theemimemory
region and assigns theecl beginning address to thegin_1
symbol:

SECTIONS {
osecl : { *(.osecl) } >meml
begin_1 = ADDR(osecl);

}

2. The following assigns the first word-aligned address after the location
counter to thenarkl symbol. If osec1 completely fillsmem3 the
markl value is0x02000 , in unconfigured memory:

MEMORY {

mem1: o = 0x00000 | = 0x02000
mem3: 0 = 0x40000 | = 0x05000
}
SECTIONS {
osecl: {} >meml
markl = NEXT(4);
}

3. The following assigns the first word-aligned address after the location
counter to thenarkl symbol. If osec1 completely fillsmem3 the
markl value is0x40000 , in the next configured memory region:

MEMORY {
mem1: o = 0x00000 | = 0x02000
mem3: 0 = 0x40000 | = 0x05000
}
SECTIONS {
osecl: {} >meml
markl = ALIGN(4);

}

Linker Command Language

SIZEOF: Finding Section Sizes

To find the size, in bytes, of a section, §$e=0F:
SIZEOF(section)

section is the name of a located section.

The following example locates and sizes.thel output section. The
outszl andoutsz2 symbols acquire identical values.

SECTIONS {
.outl: {
st 01=.;
*(.out)
end_ol=.;
}
outsz1l = end_ol - st_ol;
outsz2 = SIZEOF(.outl);
}

STARTUP: Specifying a Startup File

The syntax for the TARTUPRdirective is:

STARTUP(filename)

filename specifies the file to be linked first.

Specifying a file withsSTARTUHRInks the file first. This is similar to
SYSLIB, except that witlsYSLIB the file is linked after all other object
files and libraries. See page A-31 for more informatioiso8LIB.

To find the file specified witlsTARTUR the linker follows the search
algorithm described in th&earch Pathsection.

Thec (startup) linker option overrides tlsg ARTUPdirective, as described
in the Option Referenceection.

A-27

i960 Processor Software Utilities User's Guide

A-28

You can also use an asterisk to instruct the linker to search multiple
libraries. For example, if you specify:

STARTUP yourlib*

the linker searches fgourlib , yourlib_ b, yourlib p , and
yourlib_e

ENTRY: Defining the Entry Point

The linker selects an entry point with the following order of precedence:
the symbol you specify with theoption

the symbol you specify with tlENTRYdirective

thestart symbol, if defined

the_main symbol, if defined

the first address imext

the address

ok wnNE

You can assign the entry point WEhENTRY or an assignment toart
or _main . For example:

start = _my_start_function;

You can us&NTRYanywhere in your directive file, including inside an
output-section definition.

PRE_HLL(): Specifying Libraries to be Processed
Before the High-level Libraries

The syntax for the new directive is:

PRE_HLL(libraries)

libraries is one or more high-level support libraries to be
linked prior to those specified with aL()
directive.

Linker Command Language

The linker directiveeRE_HLL() allows the user to specify libraries that are
processed immediately before the high-level language libraries specified
with theHLL() directive. The linker now loads the object files and
libraries in the following order:

1. The filename specified withTARTUP

2. All the object files and libraries listed individually in the invocation, in
the order listed.

3. All the object files and libraries listed individually in the directive
files, in the order listed.

4. All the libraries specified witRRE_HLL

5. All the libraries specified withLL or default libraries in response to
HLL() .

6. All the libraries specified witBYSLIB.

HLL: Specifying High-level Libraries

The syntax for the directive is:
HLL([libraries 1)

libraries is one or more high-level support library
filenames. The parentheses are required.

If you do not specify libraries, the default HLL libraries are used.

Specify multiple libraries by entering more than ene directive or by
entering multiple filenames separated by spaces or commas. To use the
default libraries, entefiLL() .

The libraries and search path foundHiy. depend on the linker
invocation and the output format. ¢hi960 invocation for COFF treats
theHLL arguments the same as thiinker option arguments, with the
search algorithm described in tBearch Pathsection. The default COFF
library abbreviations forLL() are:

e cg for the KB and SB architectures

e cg andfpg for the KA, SA, C-series, and J-series architectures

A-29

i960 Processor Software Utilities User's Guide

Invoking the linker a; k960 has the following effect oALL:

« Any arguments you specify must be the full library filenames.

» The linker uses the search pathif@p60 invocations, as described
in the Search Pathsection.

* When you specifyiLL() with no arguments, the linker includes a
high-level C library abbreviated &sc . Also, specifyingFLOAT
includes:

O theliom high-level math library abbreviation, for all
architectures.

O Thelibh floating-point library abbreviation, for the 1960 KA,
SA, Cx, Jx, Hx, and RP architectures.

Without FLOAT, or withNOFLOAT the linker usebmstub.a instead
of anylibm library and includes no floating-point library.

To form the library filenames, the linker appends the following to the
libc ,libm , andiibh abbreviations:

1. the two-letter architecture abbreviation

2. _p, for position independence

3. .a, the standard library-filename extension

For example:
e The C library for a non-position-independent KB program is
libckb.a

* The math library for position-independent KB program, with
FLOAT specified, igibmkb_p.a

» The floating-point library for position-independent KA output,
with FLOAT specified, isibhka_p.a

The linker loads the object files and libraries in the following order:
1. the gap specified with STARTUP.

2. all the object files and libraries listed individually in the invocation, in
the order listed.

3. all the object files and libraries listed individually in the directive files,
in the order listed.

A-30

Linker Command Language

4. all the libraries specified with HLL or default libraries in response to
HLL().
5. all the libraries specified with SYSLIB.

SYSLIB: Specifying Low-level Libraries

The syntax for the directive is:
SYSLIB(libraries)

libraries is one or more libraries to be linked last.

Specify multiple libraries by entering more than enveLIB directive or

by entering multiple names separated by commas or spaces. You must put
parentheses around the filenames. The linker follows the search algorithm
described in th&earch Pathsection. You can also use an asterisk to

instruct the linker to search multiple libraries. For example, if you specify:

SYSLIB yourlib*

the linker searches fgourlib , yourlib_ b, yourlib p , and
yourlib_e

[NO]JFLOAT: Supporting Floating-point Operations

The syntax for the directive is:
FLOAT | NOFLOAT

FLOAT specifies support for floating-point operations.
The linker loads special emulation libraries for
the 1960 KA, SA, Cx, Jx, Hx, and RP processors,
which have no on-chip floating-point support.

For all processors, the linker also loads an
extended math support library. For information
on the floating-point and math library names, see
theDirectives Referencgection.

A-31

i960 Processor Software Utilities User's Guide

A-32

NOFLOAT indicates no need for floating-point operations.
The linker links theibmstub.a rudimentary
math library and no emulation libraries.
NOFLOATis the default.

SEARCH_DIR: Extending the Search Path

To extend the linker search path, $§&\RCH_DIR
SEARCH_DIR(path)

path is a directory to be searched for libraries.

For a complete description of the library search path, segelieh Paths
section.

TheL option has the same effect as #®\RCH_DIRdirective.

INCLUDE: Including Additional Directive Files

The syntax for the directive is:
INCLUDE(config-file)

config-file is the name of the linker directive file.

You can specify the file to be included with a full pathname or with a
filename. The search algorithm differs according to the way you enter the
file specification. When you enter a full or relative pathname, the linker
searches only the specified directory for the file. When you enter only a
filename, the linker searches for the file as follows:

» ThelNCLUDEdirective is within a target file, that is, a file specified
with the TARGETdirective or ther (target) linker option. The linker
searches for the file according to the algorithm described in the
Search Pathsection.

« ThelNCLUDEdirective is in any other directive file. The linker
searches only the current directory for the specified file.

Linker Command Language

TARGET: Using the Search Path for Directive Files

The syntax for the directive is:
TARGET (filename)

filename is the directive filename for your target system.

The linker follows the search algorithm described inSbarch Paths
section to find a directive file.

The TARGETdirective has the same effect as tHanker option.

CHECKSUM: Preparing for the Bus
Confidence Test

The syntax for the directive is:
last-check-word=CHECKSUM(expr,...)

expr identify the checksum component values.

Use this directive to obtain the value for the final checksum word to
complete the bus confidence test, as explained in your processor user’'s
manual. Typically, you want to load the first few check words with bit
patterns that expose possible bus failure symptamgCcksulets you

load the final check word with a value that results in zero when the
processor performs an add-with-carry on all words in the initialization
boot record (IBR).

TheCHECKSUMirective takes a variable number of arguments, depending
upon the target processor's requirements. You define the values in the
directive file for your program.

A-33

i960 Processor Software Utilities User's Guide

For example, on an i960 CA processor, suppose the IBR contains the
following word directives:

_init_boot_record:

.word BYTE_O (BUS_CONFIG)
.word BYTE_1 (BUS_CONFIG)
.word BYTE_2 (BUS_CONFIG)
.word BYTE_3 (BUS_CONFIG)
.word _start

.word _rom_prch

.word cwd1

.word cwd?2

.word cwd3

.word cwd4

.word cwd5

.word cwd6

In the directive file, you definewd1 throughcwds, then use the
CHECKSUMirective to determine the value @fd6, as follows:

cwdl = Oxa5a5a5a5;

cwd?2 = Oxffffffff;

cwd3 = 0x55555555;

cwd4 = Oxaaaaaaaa;

cwd5 = 0x5a5a5aba;

cwd6 = checksum(_start,_rom_prcb,cwd1,cwd2,cwd3,cwd4,cwd5);

For theCHECKSUMEefinition for a particular target processor, see the
chapter on initialization in the appropriate processor user’'s manual.

OUTPUT: Naming the Output File

To specify an output filename other than the defaultQuseeuT
OUTPUT (ilename)

filename is the output filename.

A-34

Linker Command Language

The default output filenames are:

a.out for COFF format output
b.out for b.out format output
e.out for ELF format output

TheouTPuUTdirective has the same effect as dHaker option.

Linker Directive Files

To avoid reentering a long or often used invocations, keep options and
filename information in a text file containing linker directives. Linker
directive files typically use the extensia . For example, the following
specifiesilel.o ,file2.o , andfile3.0 in the linker invocation:

Ink960 -f Oxffff filel.o file2.o file3.0

The following directive file, namedkcmd.ld , specifies the same
filenames and option:

-f Oxffff

filel.o

file2.0
file3.0

Usinginkemd.ld shortens the linker invocation:
Ink960 Inkcmd.txt

You can put options, object filenames, and library filenames in directive
files. To nest directive files, useCLUDE. Precede options in directive
files with a hyphen-(), not a slash/(), regardless of your host system.
The linker processes filenames andLUDE directives in the order
encountered.

Linker directive files support comments that are delimited bgnd*/
(just as in C).

A-35

i960 Processor Software Utilities User's Guide

[/‘ NOTE. You cannot use a hypher) @s the first character of a filename.
In the following example, thile.txt file contains:
file3.0
filed.o

Linking occurs in the ordeitel.o, file3.0, file4.o, file2.0
when you enter:

Ink960 filel.o ifile.txt file2.0

Example

The following is an example linker directive file suitable for use with a
fictitious target board. See the other linker directive files shipped with the
tools located irs1960BASE/lib/*.Id and$G960BASE/lib/*.Id for

more examples.

/* You can include invocation options at the beginning of
the linker directive file, for shorter, more
consistent linker invocations. */
-ACA /* Produce code for an Intel 960 CA processor. */
-m /* Produce a map file. */

-N map.out /* Write the map file to the file map.out */
-V /* Produce verbose output. */

/* You can specify input modules at the beginning of the
directive file, to be processed as if on the
invocation line. You can also include in the
invocation a separate text file containing only input
filenames, one per line, to be processed as if on the
invocation line or at the beginning of the directive
file. */

filel.o

file2.0

file3.0

A-36

Linker Command Language

MEMORY {
ibr: 0=0xffffff00,I=0x00ff /* The Intel 80960 CA
Initial Boot Record.
*/
rom: 0=0xffff8000,I=0x7800 /* Assume a bank of ROM
exists at this address.
*/
ram: 0=0xe0ff9000,|I=0x6000 /* Assume some RAM exists
at this address. */

}
SECTIONS {

/* We allocate the ibr to ibr memory. Assume the code
for the ibr is in the input section .text in the file
named ca_ibr.o. */
ibr: {
ca_ibr.o(.text)
}>ibr

/* Assume we want the executable code and constants found
in the .text input sections allocated to the rom memory
*/

text: {*(.text) } > rom
/* We allocate the .data sections to ram. */
.data : {

*(.data)
}>ram

/* We allocate the .bss section to ram (following the end
of .data. We also place all common variables here.
Lastly, note how we save off the addresses of the start
of bss and the end of bss, for possible later use at
runtime. */

A-37

i960 Processor Software Utilities User's Guide

.bss : {_start_bss =
*(.bss)

[COMMON]
_end_bss=.;
}>ram

}

SYSLIB(mylibca.a) /* We include a system library in the
linkage. */

A-38

Finding Information
In Object Files

Using the Common Object File Library: COFL

Table B-1

To use a function from th#ld960.a ~ common object file library

(COFL), call the function from your C source text and link the assembled
object file with the COFL. Put the following lines in your C source text
before the first COFL function call:

#include <stdio.h>
#include "ldfcn.h"

Add the directory containingfcn.h to your host-system compiler

search path. For more information on your host-system compiler, see your
host-system documentation. For more information onnthieeader files

and directories, see ti@60 Processor Library Supplement

The COFL includes the functions listed in Table B-1.

Common Object File Library (COFL) Functions

Function Definition
Idaclose Closes the object file or archive.
Idahread Reads an archive member header.
Idaopen Opens the object file or archive for reading.
Idclose Closes the object file or archive member.
Idfhread Reads the file header.
Idgetname Retrieves a name from the object file symbol table.
[dlinit Prepares the object file for reading line number entries via
[dlitem.
continued [

B-1

1960 Processor Software Utilities User's Guide

B-2

Table B-1

Common Object File Library (COFL) Functions (continued)

Function
Idlitem
IdIread
IdIseek
Idniseek
ldnrseek
Idnshread
ldnsseek
Idohseek
Idopen
Idrseek
Idshread
Idsseek
Idtbindex

Idtbread
Idtbseek

Definition

Reads the line number entry from the object file after Idlinit.
Reads the line number entry from the object file.

Seeks to the line number entries.

Seeks to the line number entries, given the section name.
Seeks to the relocation entries, given the section name.
Reads the section header, given the section name.

Seeks to the section, given the section name.

Seeks to the optional file header.

Opens the object file or archive member for reading.
Seeks to the relocation entries.

Reads the section header, given the section number.
Seeks to the section.

Returns the long index of the symbol table entry at the current
position.

Reads a specific symbol table entry.

Seeks to the symbol table

Extracting File Header Information

To extract COFF file-header information, use one of the macros listed in
Table B-2. Each header information macro takes as an argument an
Idfile structure returned by a call ittopen .

Finding Information in Object Files

Table B-2 Common Object File Interface Macros
Macro Definition
TYPE Returns the file type number. For archive files, TYPE
returns ARTYPE, as defined in Idfcn.h
IOPTR Returns the file pointer opened by Idopen and used by the C
library 1/0 functions.
OFFSET Returns the object file beginning address. The address is
zero except for archive file members.
HEADER Obtains the COFF file header structure.
Function Reference
This section describes the COFL functions alphabetically. Closely related
functions are described together. For exampleldtihe andiditem
functions are grouped withiread
|dahread

Reads an archive-
member header

#include <stdio.h>
#include "ldfcn.h"

int Idahread (Idptr, arhead)
LDFILE *Idptr;
ARCHDR *arhead;

Discussion

To read an open archive header, ldseread . The header of the
archive currently associated wittptr is put into memory beginning at
arhead .

B-3

i960 Processor Software Utilities User's Guide

B-4

Theldahread function returnSUCCESr FAILURE, defined in
Idfen.h . FAILURE indicates either:

e TYPE(dptr) does not represent an archive file.

e Theldahread function cannot read the archive header.

Idclose, Idaclose

Closes an object file or
an archive member

#include <stdio.h >
#include "ldfcn.h"

int Idclose (Idptr)
LDFILE *Idptr;

int Idaclose (ldptr)
LDFILE *Idptr;

Discussion

For uniform access to both object files and archive members, use:
ldclose for files opened withdopen
Idaclose for files opened withdaopen

To close an archive member, keeping the archive opemnjoise . The
Idclose function returnSUCCES®r FAILURE, defined indfcn.h

FAILURE whenTYPE(ldptr) represents an archive file
and the archive contains more members. The
Idclose function sets the offset afptr to the
next member file address and prepadgs for
a subsequemdopen call.

Finding Information in Object Files

SUCCESS when the archive contains no more members, or
whenTYPE(Idptr) represents an individual
object file.

To close an archive or object file regardless ofttheE(ldptr) , use

Idaclose . Theldaclose function:

» closes the file

» frees the memory allocated to theFILE structure associated with
Idptr

* returnsSUCCESS

dfhread

Reads the file header

#include <stdio.h>
#include "ldfcn.h"

int Idahread (Idptr, filehead)
LDFILE *Idptr;
FILHDR *filehead;

Discussion

To read an open file header, useread . The object-file header
associated withdptr is put into memory beginning @éithead . The
Idfhread function returnSUCCES®r FAILURE, defined indfcn.h
indicating whether the read operation is successful.

To access file-header fields without a function call, WSeDER(Idptr)
defined inidicn.h . The macro returns no value.

B-5

i960 Processor Software Utilities User's Guide

B-6

ldgetname

Retrieves a name from
the object-file symbol
table

#include <stdio.h>
#include "ldfcn.h"

char *ldgetname (Idptr, symbol)
LDFILE *Idptr;
SYMENT *symbol,

Discussion

To retrieve a name from the string table, dgetname . The returned
address points to a static buffer localdgetname . To save the name,
copy the static buffer, since the néxfetname call overwrites the static
buffer.

A NULL returned address indicates that the name cannot be retrieved,

when:

» The string table cannot be found.

* The name is too long for the amount of memory allocated to the string
table.

* The string table appears not to be a string table. For example, an
auxiliary entry passed tdgetname can apparently refer to a name in
a nonexistent string table.

» The offset into the string table is beyond the end of the string table.

For example, you can cadigetname immediately after a successful call
toldtbread to retrieve the name associated with the new symbol table
entry.

Finding Information in Object Files

IdIread, Idlinit, Idlitem

Locates and reads the
function line-number

entries

#include <stdio.h>
#include "ldfcn.h"

int Idlread(ldptr, fcnindx, linenum, linent)
LDFILE *Idptr;

long fcnindx;

unsigned short linenum;

LINENO *linent;

int Idlinit(Idptr, fcnindx)
LDFILE *Idptr;
long fcnindx;

int Idlitem(ldptr, linenum, linent)
LDFILE *Idptr;

unsigned short linenum;
LINENO *linent;

Discussion

To locate and read line-number entries:

IdIread locates and reads a line-number entry for the
function specified by thizindex symbol-table
entry.

Idlinit locates the line-number entries for the specified
function.

ldlitem locates and reads a line-number entry for the

current function.

B-7

i960 Processor Software Utilities User's Guide

B-8

Usingldlinit followed byldiitem is the same as usintjread alone.
You can find the beginning of a series of line number entries with

[dlinit orldiread , then usedlitem to retrieve the subsequent entries
in the same function. For line number entries in a different function, call
[dlinit oridiread with a differentfcindex

You need not know an exact line number when caltingad or
Idlitem . Both functions read the entry with the smallest line number
equal to or greater thainenum into linent

To specify the function for line number entry searches without reading a
line number entry inténent , useldlinit . To specify a new function
and read a line number entry, udecad

To find and read a line number entry without respecifying the function to
be searched, usditem

Theldlinit ,Idlitem , andidiread functions returrsUCCESSr
FAILURE, defined indfcn.h . Failure can indicate:

Condition Function

The object file contains no line Idlread , Idlinit
number entries.

The fcnindx matches no symbol Idlread , Idlinit
table function entry.

No line number is equal to or greater Idlread , Idlitem
than linenum .

Finding Information in Object Files

IdIseek, ldnlseek

Seeks to the line-number
entries of an object-file
section

#include <stdio.h>
#include "ldfcn.h"

int Idlseek (ldptr, sectindx)
LDFILE *|dptr;
unsigned short sectindx;

int Idnlseek (ldptr, sectname)
LDFILE *Idptr;
char *sectname;

Discussion

Theldlseek function seeks to the line-number entries of the section
specified bysectindx of the COFF file currently associated wiidhtr
Theldniseek function seeks to the line-number entries of the section
specified bysectname .

Theldlseek andldniseek functions returrsUCCESSr FAILURE,

defined inidfcn.h

e Theldlseek function fails when the variabkectindx is greater
than the number of sections in the object file.

» Theldnlseek function fails when no section name corresponds with
*sectname .

» Either function fails when the specified section has no line-number
entries or when the function cannot seek to the specified entries.

The first section index is.

B-9

i960 Processor Software Utilities User's Guide

Idohseek

Seeks to the COFF
optional file header

#include <stdio.h>
#include "ldfcn.h"

int Idohseek (Idptr)
LDFILE *Idptr;

Discussion

Theldohseek function seeks to the optional file header of the COFF file
currently associated withptr

Theldohseek function returnSUCCESr FAILURE, defined in
Idfcn.h . Failure occurs when:

» The object file has no optional header.

» The function cannot seek to the optional header.

ldopen, Idaopen

Opens an object file or
archive member for
reading

#include <stdio.h>
#include "ldfcn.h"

LDFILE *ldopen (filename, Idptr)
char *filename;
LDFILE *Idptr;

LDFILE *Idaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

B-10

Finding Information in Object Files

Discussion

Theldopen andlidclose functions provide uniform access to both simple
object files and object files that are members of archive files.

Whenldptr iSNULL, Idopen :

» opens the file indicated biyename

» allocates and initializes theFILE structure

e returns a pointer to that structure to the calling program

Whenldptr is valid andrYPE(Idptr) is an archive-file type number,
Idopen reinitializesLDFILE for the nextilename archive-file member.

Useldopen andidclose together. Thélclose function returns

FAILURE, defined indfcn.h , only whenTYPE(ldptr) is the archive

magic number and the archive contains other members to be processed. In
such cases, cdtlopen with the current value ofiptr . In all other

cases, especially when a new file is opened)calén with aNULL

ldptr argument.

For example:
/* for each file name to be processed */
Idptr = NULL;
do {
if ((Idptr = Idopen(filename, Idptr)) '=NULL) {
[* Check the file-type number. */
[* Process the file. */

}
} while (Idclose(ldptr) == FAILURE);
Whenoldptr is notNULL, Idaopen :
e opensilename as a new file
e allocates and initializes a neWFILE structure
» copies ther'YPE OFFSET andHEADERfields fromoldptr

B-11

i960 Processor Software Utilities User's Guide

Theldaopen function returns a pointer to the newFILE structure,
independent ofldptr . You can use both pointers concurrently to read
separate parts of the object file. For example, use one pointer to step
sequentially through the relocation information and the other to read
indexed symbol-table entries.

Bothidopen andidaopen open the specified file for reading and return
NULL when the file cannot be openedLOILE structure memory cannot

be allocated. A successful open operation does not ensure that the file is a
COFF file or an archived obiject file.

Idrseek, ldnrseek

Seeks to the file-section
relocation entries

#include <stdio.h>
#include "ldfcn.h"

int Idrseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnrseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

Discussion

Theldrseek function seeks to the relocation entries of the section
specified by theectindx of the COFF file associated witiptr

Theldnrseek function seeks to the relocation entries of the section
specified bysectname .

B-12

Finding Information in Object Files

Theldrseek andldnrseek functions returrsUCCESSr FAILURE, as

defined inidfcn.h

* Theldrseek function fails whersectindx is greater than the
number of sections in the object file.

» Theldnrseek function fails when no section name corresponds with
*sectname .

« Either function fails when the specified section has no relocation
entries or when the function cannot seek to the specified relocation
entries.

The first section index is.

ldshread, ldnshread

Reads an indexed or
named file section
header

#include <stdio.h>
#include "ldfcn.h"

int Idshread(ldptr, sectindx, secthead)
LDFILE *Idptr;

unsigned short sectindx;

SCNHDR *secthead;

int Idnshread(ldptr, sectname, secthead)
LDFILE *Idptr;

char *sectname;

SCNHDR *secthead;

Discussion

Theldshread function reads the section header specifieddayndx

of the COFF file associated wilkptr into memory beginning at

secthead . Theldnshread function reads the section header specified by
*sectname into memory beginning atcthead

B-13

i960 Processor Software Utilities User's Guide

Theldshread andldnshread functions returrsUCCESSr FAILURE,
defined inidfcn.h

* Theldshread function fails whersectindx is greater than the
number of sections in the object file.

* Theldnshread function fails when no section name corresponds with
*sectname .

» Either function fails when it cannot read the specified section header.
The first section-header indexis

ldsseek, ldnsseek

Seek to an indexed or
named file section

#include <stdio.h>
#include "ldfcn.h"

int Idsseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnsseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

Discussion

Theldsseek function seeks to the section specifiedsbytindx of the
common object file currently associated withir

Theldnsseek function seeks to the section specifieddctname .

B-14

Finding Information in Object Files

Theldsseek andldnsseek functions returrsUCCESSr FAILURE,

defined inidfcn.h

» Theldsseek function fails when the variabkectindx is greater
than the number of sections in the object file.

» Theldnsseek function fails when no section name corresponds with
*sectname .

» Either function fails when the specified section has no section data or
when the function cannot seek to the section data.

The first section index is.

Idtbindex

Computes the symbol-
table-entry index

#include <stdio.h>
#include "ldfcn.h"

long Idtbindex (Idptr)
LDFILE *Idptr;

Discussion

Theldtbindex function returns the index of the symbol-table entry at the
current position of the COFF file associated withr . The index is a
long integer.

You can use the index in subsequent callsttoead . Calling

ldtbindex immediately after reading a particular symbol-table entry
returns the next entry index, becauseindex returns the index of the
symbol-table entry that begins at the current position of the object file.

B-15

i960 Processor Software Utilities User's Guide

B-16

Theldtbindex function fails when the object file contains no symbols or
when the object file is not positioned at the beginning of a symbol-table
entry.

The first symbol index in the symbol tabledis

|dtbread

Reads an indexed
symbol-table entry

#include <stdio.h>
#include "ldfcn.h"

int Idtbread (Idptr, symindex, symbol)
LDFILE *Idptr;

long symindex;

SYMENT *symbol,

Discussion

Theldtbread function reads theymindex symbol-table entry of the
COFF file associated withiptr ~ into memory beginning aymbol .

Theldtbread function returnSUCCESr FAILURE, defined in

Idfen.h . Failure occurs whesymindex is greater than the number of
symbols in the object file or wheditbread cannot read the symbol-table
entry.

Finding Information in Object Files

|dtbseek

Seeks to the symbol

table

#include <stdio.h>
#include "ldfcn.h"

int Idtbseek (Idptr)
LDFILE *Idptr;

Discussion

Theldtbseek function seeks to the symbol table of the object file
associated withiptr

Theldtbseek function returnSUCCESr FAILURE, defined in

Idfcn.h . Theldtbseek function fails when the symbol table has been
stripped from the object file or when the function cannot seek to the
symbol table.

B-17

Common Obiject File Format
(COFF) and Common
Archive File Format (CAFF)

This chapter describes the 1960 processor common object file format
(COFF) and the associated common archive file format (CAFF) standards.

Characteristics of COFF

COFF applies to two kinds of files: relocatable binary files and executable
files. Relocatable binary files are produced by the assembler and by some
linker options. Executable files are created from relocatable binary files

by the linker.

Figure C-1 shows the relation of headers to the information in COFF.

rlk NOTE. The only optional header the assembler uses is the execution
header.

When you link a program with the linker's strip option, relocation
information, line numbers, the symbol table, and the string table are
deleted. Or you can remove line number information, the symbol table,
and the string table with the stripper.

Line numbers do not appear unless the program is compiled with the
compiler's debug control. If all external references are resolved at link-
time, no relocation information is included. The string table is also
omitted when the source file contains no symbols with names longer than
eight characters.

C-1

1960 Processor Software Utilities User's Guide

Figure C-1 Object File Format

File Header 0 Required Header Information
24 Optional Header Information

Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n

Relocation Info. for Sect. 1

Relocation Info. for Sect. n

Line Numbers for Sect. 1

Line Numbers for Sect. n
Symbol Table
String Table

0sSD317

Definitions and Conventions

Be sure you are familiar with these definitions and conventions before
using COFF. You can find additional terms in the glossary.

Sections

A section is the smallest portion of an object file that can be relocated and
treated as a separate entity by the linker. By default, an object file has
three sections that are loaded into memory when the file is executed. The
sections and their contents are:

text the executable code for each instruction
.data initialized data variables
.bss uninitialized data variables

C-2

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Additional sections can accommodate multiple text or data blocks, shared
data blocks, or user-specified sections.

For a linked file, each COFF section in that file has a begin and an end
symbol. Generally, Bnameis the begin symbol for each section and
__Enameis the end symbol, wherame matches the COFF section name.
The begin and end symbols are limited to a length of 8 characters.

Physical and Virtual Address

In most COFF files, the physical address and virtual address of each
section or symbol are the same, even though the section heading contains
an address field for both. For example, on a system with paging, the
address is located relative to address zero of virtual memory and the
operating system performs another address translation.

File Header

The file header contains 20 bytes of information about the object file.
Table C-1 shows the contents of the file.

Thef_opthdr field contains the size of the optional header information.

The 1960 processor utilities, such as the dumper, work properly on any
common object file because they use the contents ofdhiadr field to

locate the end of the optional header information and seek past the header.

1960 Processor Software Utilities User's Guide

C-4

Table C-1

File Header Contents

Bytes
0-1
2-3

4-7

8-11

12-15

16-17

18-19

Declaration Name
unsigned short f_magic

unsigned short f_nscns

long int f_timdat
long int f_symptr
long int f_nsyms

unsigned short f_opthdr

unsigned short f_flags

Description
file type number

number of section headers
(equals the number of sections)

time and date stamp indicating
when the file was created
relative to the number of elapsed
seconds since 00:00:00 GMT,
January 1, 1970

file pointer containing the
starting address of the symbol
table

number of entries in the symbol
table

number of bytes in the optional
header

flags

File Header Declaration

The C structure declaration for the file header is inctifieoff.h
header file. Example C-1 shows the declaration format.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-1 File Header Declaration

Table C-2

struct filehdr {
unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of section */

long f_timdat; /* and date stamp */
long f_symptr; /* ptr to symbol table */
long f_nsyms; /* number entries in

symbol table */
unsigned short f_opthdr; /* size of optional
header */
unsigned short f_flags; /* flags */

I3

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

File Header Flags

The file header flags describe the type of the object file. Table C-2
provides definitions of the flags.

File Header Flags

Mnemonic Definition

F _RELFLG indicates whether relocation information was stripped
out.

F_EXEC set if the file is executable and has no unresolved
external references.

F_LNNO set if line numbers were stripped out.

F_LSYMS set if local symbols were stripped out.

F_AR32WR set if byte ordering is little-endian.

F_AR32W set if byte ordering is big-endian.

F_PIC set if the file contains position-independent code.

continued [

i960 Processor Software Utilities User's Guide

C-6

Table C-2 File Header Flags (continued)
Mnemonic Definition
F_PID set if the file contains position-independent data.
F_LINKPID set if the file is suitable for linking with position-

independent code or data.

F_BIG_ENDIAN_T setif target information is in big-endian byte order.
F_SECT_SYM set in symbols representing section names.
The upper four bits of the flag's word contains the architecture type.
Table C-3 lists the flag names.

Table C-3 Architecture Types of File Header Flags

Mnemonic Definition

F_1960CORE architecture common to all i960 processors
F_1960KB or architecture common to KB and SB processors
F_1960SB

F_1960XA architecture common to KA, SA, and CA processors
F_1960CA architecture common to CA and CF processors
F_1960KA or architecture common to KA and SA processors
F_1960SA

File Type Numbers

In the file header, the first two bytes indicate the target on which the
object file can be executed. These file type numbers are defined as
follows:

#define I960ROMAGIC 0x0160 /* read-only text segments */
#define I960RWMAGIC 0x0161 /* read-write text segments */

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-4

Execution File Header Declaration

The execution file header is the first data structure in the optional file
header that immediately follows the required header information. See
Table C-1 for the location and size of execution information in the file
header.

The C language structure declaration for the i960 processor-executable
(a.out) file header is in theoff.h header file. Refer to Table C-4 for
the declaration's fields.

Standard Output (a.out) File Header

Bytes Declaration Name Description

0-1 short f_magic magic number

2-3 short vstamp version stamp

4-7 unsigned long tsize text size in bytes, padded to full
word boundary

8-11 unsigned long dsize initialized data size

12-15 unsigned long bsize uninitialized data size

16-19 unsigned long entry entry point

20-23 unsigned long text_start base of text for this file

24-27 unsigned long data_start base of data for this file

28-31 unsigned long tagentries number of tag entries to follow

Thetagentries field is always zero because none of Intel's development
tools use tag entries.

Section Headers

A table of section headers specifies the layout of data within the file.
Table C-5 shows the section header format. The size of a section is
padded to a multiple of 4 bytes.

C-7

1960 Processor Software Utilities User's Guide

C-8

Table C-5

Section Header Contents

Bytes
0-7

8-11

12-15
16-19
20-23
24-27
28-31
32-33
34-35
36-39
40-43

Declaration Name Description

char S_name 8-character section name,
padded with zeros

long int s_paddr physical address of section

long int s_vaddr virtual address of section

long int s_size section size in bytes

long int s_scnptr file pointer to raw data

long int s_relptr file pointer to relocation entries

long int s_Innoptr file pointer to line number entries

unsigned short s_nreloc number of relocation entries

unsigned short s_ninno number of line entries

long int s_flags flags

unsigned long s_align alignment of the section to the

int specified byte boundary

NOTE. The Intel 80960 assembler rounds section sizes to the next higher
4-byte word boundary.

Section Header Declaration

The C structure declaration for the section headers is ivtite header
file. Example C-2 shows the declaration format.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-2 Section Header Declaration

struct scnhdr

{

char s_name|[8]; /* section name */

long s_paddr; /* physical address */

long s_vaddr; /* virtual address */

long S_size; [* section size */

long s_scnptr; /* file ptr to section
raw data */

long s_relptr; /* file ptr to
relocation */

long s_Innoptr; /* file ptr to line
number */

unsigned short s_nreloc; /* number of
relocation entries */
unsigned short s_nlnno; /* number of line

entries */
long s_flags; /* flags */
unsigned long s_align; /* section alignment */

I3
#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Section Header Flags

Section header flags indicate the section type. Table C-6 shows the flag
format.

The flag field occupies one byte. The value in the first five bits of the byte
indicates the section type. The value in the last three bits indicates the
contents of the section. Figure C-2 shows the flag field for a regular text
section.

C-9

1960 Processor Software Utilities User's Guide

Figure C-2 Flag Field Values

Section Section
Contents Type

0OSD1134

Table C-6 Section Header Flags

Mnemonic
STYP_REG
STYP_DSECT

STYP_NOLOAD

STYP_GROUP
STYP_PAD

STYP_COPY

STYP_TEXT
STYP_DATA
STYP_BSS

Flag

0x00
0x01

0x02

0x04
0x08

0x10

0x20
0x40
0x80

Definition

regular section (allocated, relocated, loaded)

dummy section (not allocated, relocated, not
loaded)

noload section (allocated, relocated, not
loaded)

grouped section (formed from input sections)

padding section (not allocated, not relocated,
loaded)

copy section (for a decision function used in
updating fields; not allocated, not relocated,
loaded, relocation and line number entries
processed normally)

section contains executable text
section contains initialized data

section contains uninitialized data

C-10

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Relocation

Table C-7

Sections

The raw data for each section follows the list of section headers. If a
section has data, tkescnptr field in its section header points to it (see
Figure C-2). For a section with no raw dataga section, for example),
thes scnptr field contains a null value.

A relocation entry is used by the linker. It consists of the address at which
relocation should occur, the index of the relevant symbol in the symbol
table, and the type of relocation required. Table C-7 shows relocation
entry format.

Relocation Entry Format

Bytes Declaration Name Description

0-3 long int r_vaddr address of reference
4-7 long int r_symndx symbol table index
8-9 unsigned short r_type relocation type
10-11 char padder[2] padding---not used

Table C-8 contains relocation types defined for the i960 processor.

C-11

i960 Processor Software Utilities User's Guide

Table C-8 Relocation Types

Decimal Hexadecimal

Mnemonic Value Value Definition
R_RELLONG 17 0x0011 direct 32-bit relocation
R_RELSHORT 22 0x0016 direct 12-bit relocation
R_IPRSHORT 24 0x0018 unimplemented
R_IPRMED 25 0x0019 IP-relative relocation
R_IPRLONG 26 0x001A 32-bit IP-relative relocation
R_OPTCALL 27 0x001B optimizable call (callj)
R_OPTCALLX 28 0x001C optimizable call (calljx)
R_GETSEG 29 0x001D unimplemented
R_GETPA 30 0x001E unimplemented
R_TAGWORD 31 0x001F unimplemented

Relocation Entry Declaration

The structure declaration for relocation entries is irctiien header
file. Refer to Example C-3 for the declaration format.

Example C-3 Relocation Entry Declaration

struct reloc

{
long r_vaddr; /*virtual address of
reference */
long r_symndx; /* symbol tableindex

into symbol table */
unsigned short r_type; /* relocation type */
char padder[2] /* padding */
¥

#define RELOC struct reloc
#define RELSZ sizeof(RELOC)

C-12

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Direct Relocation

In direct relocation, the linker adds the 32-bit address of the requested
symbol to the value at a given location. In this example, the assembler
places the value 4 at locatierand issues B_ RELLONGequest for

fumble . At link-time, linker adds the value afmble to the word ak.

.glob fumble
X: .word fumble+4

IP-relative Relocation

In IP-relative relocation, the linker adds the value of the following
expression to the offset in the instruction specified by the relocation entry.

addr(symbol) - (base address of current segment)

Thebranch instruction takes a 24-bit IP-relative offset. In the following
example, the assembler places the negation of the current location counter
in the branch instructions offset field (in this exampiégifffo) and

issues am_iprmed relocation request for this branch instruction. At link-
time, the linker adds the valuefafnble and subtracts the value of

tstart ~ from the branch instruction's offset. The result is the true
IP-relative offset ofumble . The branch address must be within 24 bits.

.globl fumble

text

tstart:

.Space 0x10

x: b fumble

/* disassembly for r.0 */
[* section text */

text

0: 00000000 .word 0x0
4: 00000000 .word 0x0
8: 00000000 .word 0x0
¢: 00000000 .word 0x0
10: 08fffffo b 0x0

C-13

i960 Processor Software Utilities User's Guide

C-14

RELOCATION INFORMATION
Vaddr Symndx Type Name
r.0:
text:
0x00000010 10 IPRMED fumble
.data:
.bss:

Line Number Entry

Invoke the compiler with the debug option to get a listing of line numbers
where you can place breakpoints to make debugging easier. All line
numbers in a section are grouped by function, as shown in Example C-4,
and are relative to the beginning of a function. Thenoptr field in

the section header points to the first line number entry for that section.

Example C-4 Line Number Grouping

symbol index 0
physical address line number
physical address line number
symbol index 0
physical address line number
physical address line number

The first entry for each section has line number zero and contains the
symbol table index of the function name. Each following entry associates
each line number with the address of the code generated for it.

The structure declaration for line number entries is ircdfien header
file. Example C-5 shows the structure declaration for line number entries.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-5 Line Number Entry Declaration

struct lineno

{ .
union
{
long |_symndx; /* symbol table index
of func name*/
long |_paddr; /* paddr of line
number*/
}1_addr;
unsigned short |_Inno; /* line number */
char padding[2] /* not used */
¥

#define LINENO struct lineno
#define LINESZ sizeof(LINENO)

Symbol Table

The symbol table consists of at least one fixed-length entry per symbol,
with some symbols followed by auxiliary entries. Each entry includes the
value, the type, and other information. Example C-6 shows the order in
which symbols are listed. symstr in the file header points to the
beginning of the symbol table. Theisyms field in the file header

contains the total number of entries in the symbol table.

C-15

i960 Processor Software Utilities User's Guide

Example C-6 COFF Symbol Table

file name 1

function 1

local symbols for function 1
function 2

local symbols for function 2

static variables

file name 2
function 1
local symbols for function 1

static variables

defined global symbols
undefined global symbols

Symbol Table Entries

The symbol table consists of two general kinds of entries, each 24 bytes
long. The first type is the main entry, representing a symbol. The format
of the main entry is shown in Table C-9. The second type of entry is an
auxiliary entry, whose format varies depending on how it is used.

C-16

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-9

Symbol Table Entry Format

Bytes Declaration Name Definition

0-7 n the name of a pointer or of a symbol

8-11 long int n_value symbol value; storage class
dependent

12-13 short n_scnum section number of symbol

14-15 unsigned short n_flags pic, pid flags for the module
containing the symbol, flag when
symbol is a section name

16-19 unsigned long n_type basic and derived type specification
20 char n_sclass storage class

21 char n_numaux number of auxiliary entries

22-23 char pad2[2] padding to force alignment

Structure for Symbol Table Entries

Example C-7 shows the C language structure declaration for the symbol
table entry that can be found in thef.h header file.

Example C-7 Symbol Table Entry Declaration

#define SYMNMLEN 8 I* Number of characters in a
symbol name */
struct syment {
union {
char _n_name[SYMNMLEN]; /* symbol name */
struct {
long _n_zeroes; /* zero - name in string table */
long _n_offset; [* offset into string table */

}_n_nm;

char *_n_nptr[2]; /* allows for overlaying */
bom

long n_value; * value of symbol */

short n_scnum; [* section number */

continued [

C-17

i960 Processor Software Utilities User's Guide

Example C-7 Symbol Table Entry Declaration (continued)

unsigned short n_flags; /* copy of "flags" from */
/* input file header if */
/* not a section symbol./*
unsigned long n_type; /* type and derived type */

char n_sclass; /* storage class */
char n_numaux; /* number of aux. entries */
char pad2[2]; /* force alignment */

h

#define n_name _n._n_name
#define n_nptr _n._n_nptr[1]
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n_n._n_offset

#define SYMENT struct syment
#define SYMESZ sizeof(SYMENT)

Symbols and Inner Blocks .bb/.eb

A block is a compound statement, and an inner block is a block that occurs
within a function that is itself a block.

For each inner block that uses local symbols, the symibohppears in

the symbol table right before the first local symbol of that block, and the
symbol.eb appears right after the last local symbol. The sequence is
shown here:

.bb
local symbols for that block
.eb

Example C-8 is a C language example that shows nestingothend.eb
pair and associated symbols.

C-18

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-8 Nested Blocks

{
inti;
char c;

long a;

int x;

long i;

/* block 1 */

/* block 2 */

/* block 3 */

/* block 3 */
/* block 2 */

/* block 4 */

/* block 4 */
/* block 1 */

Example C-9 shows the format of the symbol table for these nested blocks.

Example C-9 Example of a Symbol Table

.bb for block 1
i
c

.bb for block 2
a

.bb for block 3
X

.eb for block 3

.eb for block 2

.bb for block 4
i

.bb for block 4

.eb for block 1

C-19

i960 Processor Software Utilities User's Guide

C-20

Symbols and Functions .bf/.ef, .target

In the symbol table, the symbol appears between the function name
and the first local symbol of the function, and the symigolappears
right after the last local symbol. The sequence is shown here:

function name
.bf

local symbol
.ef

When the return value of the function is a structure or union, the compiler
creates aarget symbol for storing the function-return. This symbol is
an automatic variable of the typeinter ~and has a value field of zero. It
appears in the symbol table between the function name and the symbol
.bf , as shown here:
function name

arget

.bf

local symbols
ef

Special Symbols

The symbol table contains special symbols that are generated by the
assembler, the compiler, and other utilities. Table C-10 shows a list of
these symbols.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-10

Special Symbols in the Symbol Table

Symbol Definition

file filename

text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

target pointer to the structure or union returned by a function
Xxfake dummy tag name for structure, union, or enumeration
.eos end of members of structure, union, or enumeration
_etext next available address after the output section .text
_edata next available address after the output section .data
_end next available address after the output section .bss

_ _Bname address of beginning of name

_ _Ename address of end of name

The symbols _Bnameand_ _Ename are generated by the linker as a
convenience to the user._Bname marks the beginning of a section
denoted asame and_ _Ename marks the byte following the last byte of
the section.

NOTE. These symbol names are preceded by a double underscqre (
These symbol names cannot exceed 8 characters in length.

Cc-21

i960 Processor Software Utilities User's Guide

C-22

When_ _Bnameand_ _Ename mark the beginning and end of thext
data , and.bss sections, the initial period in the filenames is dropped.
Thus, the sectionsext and.data would be delimited by _Btext

_ _Etext ,__Bdata , and_ _Edata . The initial period in any
user-defined section, however, is retained. A user file callegkc |, for
example, would be delimited by B.mysec and_ _E.mysec .

Six special symbols come in pairs. Thie and.eb pair indicates the
boundaries of inner blocks. The& and.ef pair brackets each function.
The. xfake and.eos pair names and defines the limit of unnamed
structures, unions, and enumerations;. ‘Ehe symbol also appears after
named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
invents a symbol table namexfake; , wherex is an integer greater than
zero. Several unnamed items are tagged consecutively, as follows:
.1fake ,.2fake ,.3fakellfake ,.12fake , etc.

For each section the assembler creates, it generates a symbol table entry in
which bit 0x200 in the symbol flags field is set. This creates a signature
recognized by the tools that process COFF files.

The linker does not generate symbols for the sections it creates.

Symbol Name

The symbol name structure is actually a union declared like this:

union {
char n_name[8];
struct string_table_pointer {
long n_zeroes;
long n_offset;

h

If a symbol name is less than eight characters long, it is storeddme,
padded if necessary with nulls. If the symbol name is longer than 8
characters;)_zeroes is set to andn_offset is set to the offset into the
string table at which the symbol name is stored.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-11 Symbol Name Field
Bytes Declaration Name Description
0-7 char n_name null-padded symbol name
0-3 long_int n_zeros zero in this field indicates that the

name is in the string table

4-7 long_int n_offset offset of the name in the string table
Storage Classes
Storage class is associated with each symbol by the compiler or assembler
and stored in the_sclass field. However, the following are used only
externally: C_EFCN C_EXTDEFRF C_ULABEL C_USTATIC, andC_LINE.
Table C-12 provides definitions of the storage classes.

Table C-12 Storage Classes

Mnemonic
C_EFCN
C_NULL
C_AUTO
C_EXT
C_STAT
C_REG
C_EXTDEF
C_LABEL
C_ULABEL
C_MOS
C_ARG

C_STRTAG

Decimal
Value

'
[

© 00 N o o~ W N PP O

=
o

Hexadecimal

Value Storage Class
physical end of a

0x0000 unknown

0x0001 automatic variable

0x0002 external symbol

0x0003 static variable

0x0004 register variable

0x0005 external definition

0x0006 label

0x0007 undefined

0x0008 member of structure

0x0009 function argument in an argument
block

0x000A structure tag

continued [

C-23

1960 Processor Software Utilities User's Guide

C-24

Table C-12

Storage Classes (continued)

Decimal Hexadecimal

Mnemonic Value Value Storage Class

C_MOU 11 0x000B member of union

C_UNTAG 12 0x000C union tag

C_TPDEF 13 0x000D type definition

C_USTATIC 14 0x000E uninitialized static variable

C_ENTAG 15 0x000F enumeration tag

C_MOE 16 0x0010 member of enumeration

C_REGPARM 17 0x0011 function argument in a register

C_FIELD 18 0x0012 bit field

C_AUTOARG 19 0x0013 function argument in the callee's
frame

C_BLOCK 100 0x0064 beginning and end of

C_FCN 101 0x0065 beginning and end of

C_EOS 102 0x0066 end of

C_FILE 103 0x0067 filename

C_LINE 104 0x0068 used only by utility programs

C_ALIAS 105 0x0069 duplicated tag

C_HIDDEN 106 0x006A used to avoid name conflicts

C_SCALL 107 0x006B reached by a system call

C_LEAFEXT 108 0x006C global leaf procedure: can be
called with BAL

C_LEAFSTAT 113 0x0071 static leaf procedure: can be

called with BAL

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-13

Storage Classes for Special Symbols

Restricted storage classes, used only for certain symbols, are given in
Table C-13.

Restricted Storage Classes

Storage Class Special Symbol
C_BLOCK .bb, .eb
C_FCN .bf, .ef
C_EOS .eos

C_FILE file

Call Optimization

Call optimization occurs when the linker matcheRa@PTCALL
relocation request with a symbol of storage ctassCALL C_LEAFSTAT,

or C_LEAFEXT When the storage classdsSCALL the linker replaces the
call instruction with acalls instruction to the appropriate system
procedure index. For the LEAFEXTor C_LEAFSTATstorage classes, the
linker replaces theall with a branch-and-link instruction to a special
entry point in the destination procedure.

C_SCALLIis the storage class associated with names of routines that can be
called with thecalls instruction. Symbols of type_SCALLhave two

auxiliary entries, the second of which contains the index of the destination
procedure in a table of system calls.

TheC_LEAFEXTstorage class is associated with routines that can be called
with the branch-and-linkbél) instruction. Such routines can have two
entry points. The address of the first, the entry, is given as the value

of the routine name and supports access vid a instruction. The

address of the second is contained in the second auxiliary entry.

C-25

1960 Processor Software Utilities User's Guide

C-26

Table C-14

TheC_LEAFSTATstorage class also is associated with routines to be called
with bal , but the assembler optimizes the functions instead of the linker
because the routine is of source module scope.

Symbol Value Field

The value of a symbol depends on its storage class. This relationship is
summarized in Table C-14.

Symbol Value Field

Storage Decimal
Class Value
C_AUTO 1
C_EXT 2
C_STAT 3
C_REG 4
C_LABEL 6
C_MOS 7
C_ARG 8
C_STRTAG 9
C_MouU 11

C_UNTAG 12
C_TPDEF 13
C_ENTAG 15
C_MOE 16
C_REGPARM 17

C_FIELD 18
C_AUTOARG 19

Hexadecimal

Value

0x0001
0x0002
0x0003
0x0004

0x0006
0x0008
0x0009
0x000A
0x000B
0x000C
0x000D
0x000F
0x0010
0x0011

0x0012
0x0013

Argument Value

frame pointer offset in bytes
relocatable

relocatable address

register number: r0 = 0,...,r15 = 15,
g0 =16,...,g15 =
31

relocatable address
offset in bytes
argument block offset
Zero

zero

zero

zero

zero

enumeration value

register number r0 = 0,...,r15 = 15,
g0 =16,...,g15 =
31

bit displacement

frame pointer offset in bytes

continued [

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-14

Symbol Value Field (continued)

Storage Decimal Hexadecimal

Class Value Value Argument Value

C_BLOCK 100 0x0064 relocatable address

C_FCN 101 0x0065 relocatable address

C_EOS 102 0x0066 size

C_FILE 103 0x0067 symbol table entry index for next
file symbol

C_ALIAS 105 0x0069 tag index

C_HIDDEN 106 0x006A relocatable address

A symbol with storage class FILE has a value that points to the next

file symbol in the symbol table, or the beginning of the global symbols
in the case of the laste symbol. Before files are linked, the value of
the.file symbolis zero.

Relocatable address symbols have a value equal to the address of the
symbol. When the linker relocates the section, the value of the symbol
changes.

Section Number Field

The section number field indicates the section in which a symbol is
defined. Table C-15 shows the defined constants used to refer to this field.

C-27

1960 Processor Software Utilities User's Guide

C-28

Table C-15

Section Number Field

Section
Symbol Name Number Definition
N_DEBUG -2 symbolic debugging symbol, including tag
names for structures, unions, or
enumerations, typedefs, and name of file
N_ABS -1 absolute symbol, not relocatable
N_UNDEF 0 undefined external symbol
N_SCNUM any integer >0 section number in which symbol is defined

Absolute symbols include automatic and register variables, function
arguments, angtos symbols. Thetext ,.data , and.bss symbols
default to section numbers 1, 2, and 3 respectively.

A section number of zero indicates a relocatable external symbol that is
undefined in the current file. However, a multiply-defined external
symbol (i.e., an uninitialized variable defined outside a function in C) has
a section number of zero and a positive value, which gives the symbol
size.

When files with multiply defined external symbols are combined, the

linker combines all input symbols into one symbol and assignsdhe

section number. The size of the combined symbols determines how much
memory is allocated, and the value becomes the address of the symbol.

Section Numbers and Storage Classes

Symbols with certain storage classes are restricted to certain section
numbers. This relationship is summarized in Table C-16.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-16

Section Number and Storage Class

Storage
Class

C_AUTO
C_EXT

C_STAT
C_REG
C_LABEL

C_MOS
C_ARG
C_STRTAG
C_MOoU
C_UNTAG
C_TPDEF
C_ENTAG
C_MOE
C_REGPARM
C_FIELD
C_BLOCK
C_FCN
C_EOS
C_FILE
C_ALIAS

Section
Number

-1

-1,0,1to
77777

1to Q77777
-1

-1,0,1to
77777

1to 077777
1to 077777

Hexadecimal
Value

0x0001
0x0002

0x0003
0x0004
0x0006

0x0008
0x0009
0x000A
0x000B
0x000C
0x000D
0x000F
0x0010
0x0011
0x0012
0x0064
0x0065
0x0066
0x0067
0x0069

Symbol Names
N_ABS

N_ABS, N_UNDEF,
N_SCNUM

N_SCNUM
N_ABS

N_UNDEF, N_SCNUM,
N_ABS

N_ABS
N_ABS
N_DEBUG
N_ABS
N_DEBUG
N_DEBUG
N_DEBUG
N_ABS
N_ABS
N_ABS
N_SCNUM
N_SCNUM
N_ABS
N_DEBUG
N_DEBUG

C-29

i960 Processor Software Utilities User's Guide

C-30

Type Entry

The type field in the symbol table entry contains information about the
basic and derived type for the symbol. The compiler generates this
information when the debug option is used. Each symbol has one basic or
fundamental type but can have more than one derived type.

The format of the 32-bit type entry is:
d13..d6 d5 d4 d3 d2 di type

Bit order is from bit 31 on the left to bit 0 on the right. Bits 4 through O,
indicated above bype , specify one of the fundamental types given in
Table C-17. Fundamental types are determined by the user input type.
Bits 5 through 30 are arranged as thirteen 2-bit fields referreddto as
throughd13. These fields represent levels of the derived types with the
values shown in Table C-18.

Two examples demonstrate the interpretation of the symbol table entry
representingype .

In the first example, the functidanc returns a pointer to a character.

char *func();

The fundamental type is 2 (character), dhdfield is 2 (function), and the
d2 field is 1 (pointer). Therefore, the type word in the symbol table for
func contains the hexadecimal numbec?2, indicating a function that
returns a pointer to a character.

In the second example, thevptr identifier is a three-dimensional array
of pointers to short integers.

short *tabptr[10][25][3];

The fundamental type edbptr is 3 (short integer); theéx, d2, andds3

fields each contain a 3 (array), and thefield is 1 (pointer). Therefore,
the type entry in the symbol table contains the hexadecimal number
OxFE3, indicating a three-dimensional array of pointers to short integers.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-17 Fundamental Types
Decimal Hexadecimal
Mnemonic Value Value Definition
T_NULL 0 0x0000 not assigned
T_VOID 1 0x0001 void
T_CHAR 2 0x0002 character
T_SHORT 3 0x0003 short integer
T_INT 4 0x0004 integer
T_LONG 5 0x0005 long integer
T_FLOAT 6 0x0006 floating point
T_DOUBLE 7 0x0007 double word
T_STRUCT 8 0x0008 structure
T_UNION 9 0x0009 union
T_ENUM 10 0x000A enumeration
T_MOE 11 0x000B member of enumeration
T_UCHAR 12 0x000C unsigned character
T_USHORT 13 0x000D unsigned short
T_UINT 14 0x000E unsigned integer
T_ULONG 15 0x000F unsigned long
T_LNGDBL 16 0x0010 long double
Table C-18 Derived Types Field Values
Decimal Hexadecimal
Mnemonic Value Value Definition
DT_NON 0 0x00000 no derived type
DT_PTR 1 0x0001 pointer
DT_FCN 2 0x0002 function
DT_ARY 3 0x0003 array

C-31

1960 Processor Software Utilities User's Guide

Type Entries and Storage Classes

Table C-19 shows the derived type entries that are legal for each storage
class.

Table C-19 Type Entries by Storage Class

Storage Class Function Array Pointer Basic Type
C_AUTO no yes yes any except T_MOE
C_EXT yes yes yes any except T_MOE
C_STAT yes yes yes any except T_MOE
C_REG no no yes any except T_MOE
C_LABEL no no no T_NULL
C_MOS no yes yes any except T_MOE
C_ARG yes no yes any except T_MOE
C_STRTAG no no no T_STRUCT
C_MOU no yes yes any except T_MOE
C_UNTAG no no no T_UNION
C_TPDEF no yes yes any except T_MOE
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM no no yes any except T_MOE
C_FIELD no no no T_ENUM
T_UCHAR
T_USHORT
T_UNIT
T_ULONG
C_BLOCK no no no T_NULL
C_FCN no no no T_NULL
continued [

C-32

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-19

Type Entries by Storage Class (continued)

Storage Class Function Array Pointer Basic Type
C_EOS no no no T_NULL
C_FILE no no no T_NULL
C_ALIAS no no no T_STRUCT
T_UNION
T_ENUM

Conditions for thei entries apply tal1 throughd13, except that you
cannot have two consecutive derived types of function, that is, you cannot
have a function returning a function.

Although function arguments can be declared as arrays, the compiler
changes them to pointers by default. Therefore, a function argument
cannot have array as its first derived type.

Auxiliary Table Entries

The auxiliary table entry or entries for a symbol have 24 bytes each.
Every symbol has an auxiliary table entry with the same number of bytes
as the symbol has in the symbol table entry. Table C-20 provides a
summary of the auxiliary symbol table format. The formats are discussed
in detail in subsequent sections.

C-33

1960 Processor Software Utilities User's Guide

----Type of Entry----
d1i typ

DT_NON T_NULL

DT_NON T_NULL

DT_NON T_NULL

DT_NON
DT_FCN

T_NULL

T_MOE.
DT_ARY
T_MOE.

DT_NON
DT_NON
DT_NON

T_NULL
T_NULL
T_NULL

DT_PTR
DT_ARR
DT_NON

T_UNION
T_ENUM

Table C-20 Auxiliary Symbol Table Entries
Storage
Name Class
file C_FILE
text,.data, C_STAT
.bss
tagname C_STRTAG
C_UNTAG
C_ENTAG
.eos C_EOS
function name C_EXT
C_STAT
array name C_AUTO
C_STAT
C_MOSs
C_MOouU
C_TPDEF
.bb C_BLOCK
.eb C_BLOCK
.bf,.ef C_FCN
name related C_AUTO
to structure, C_STAT
union, C_MOS
enumeration C_MOU
C_TPDEF

Any except

Any except

T_STRUCT

Auxiliary
Entry Format

filename - possibly
followed by compiler
or assembler
identification

section

tag name

end of structure

function

array

beginning of block
end of block

beginning and end of
function

name related
to structure,
union,

enumeration

A tagname is a symbol name that includes the special symbak .
The classe&name andarrname represent any symbol name.

C-34

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-21

Filenames

Filenames can be any length. Filenames larger than 14 characters go into
the string table. Shorter filenames are padded with zeros.

The file symbol contains a until the object file is linked. At the time,

it either points to the file header for the next file in the chain or the start of
the global storage area. Eafilk entry generates one, two, or three
auxiliary table entries. The first entry lists the name provided with the

file directive. If the program is a compiled source file, the second entry
contains theident information from the compiler, such as the compiler's
name and version with the present date and time. The third entry contains
the assembler information, such as assembler identity and version.

NOTE. All entry information is controlled by the environment variable
[960IDENT . If thel960IDENT variable is not set, the assembler
generates nddent entries.

If the source file is an assembly file, the second auxiliary table entry
contains the assembler information and the symbol table contains no third
entry.

Sections

The auxiliary table entries for a section have the format shown in
Table C-21.

Format for Auxiliary Table Entries

Bytes Declaration Name Description

0-3 long int x_scnlen section length

4-5 unsigned short x_nreloc number of relocation entries
6-7 unsigned short x_nlinno number of line numbers
8-23 - - unused (filled with zeros)

C-35

1960 Processor Software Utilities User's Guide

Tag Names

The auxiliary table entries for a tag name have the format shown in
Table C-22.

Table C-22 Tag Name Entries

Bytes Declaration Name Description

0-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of structure, union, and
enumeration

8-11 - - unused (filled with zeros)

12-15 long int x_endndx index of next entry beyond this
structure, union, or enumeration

16-23 - - unused (filled with zeros)

End of Structure

The auxiliary table entries for the end of structure have the format shown
in Table C-23.

Table C-23 Table Entries for End of Structure

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of , union, or enumeration
8-23 - - unused (filled with zeros)
Functions

The auxiliary table entries for a function have the format shown in
Table C-24.

C-36

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-24 Table Entries for Function
Bytes Declaration Name Description
0-3 long int x_tagndx tag index
4-7 long int x_fsize size of function (in bytes)
8-11 long int x_Innoptr file pointer to line number
12-15 long int x_endndx the end index for functions
points to the symbol table entry
for the next function, except the
last function for the .file scope,
which points at the first static
symbol in the .file scope.
16-23 unsigned short x_tvndx unused (filled with zeros)
Arrays
The auxiliary table entries for an array have the format shown in
Table C-25.
Table C-25 Table Entries for Array

Bytes Declaration Name

0-3 long int x_tagndx
4-5 unsigned short x_Inno

6-7 unsigned short x_size

8-9 unsigned short x_dimen][0]
10-11 unsigned short x_dimen[1]
12-13 unsigned short x_dimen[2]
14-15 unsigned short x_dimen[3]
16-23 - -

Description

tag index

line number of declaration
size of array

first dimension

second dimension

third dimension

fourth dimension

unused (filled with zeros)

C-37

1960 Processor Software Utilities User's Guide

C-38

End of Blocks and Functions

The auxiliary table entries for the ends of blocks and functions have the
format shown in Table C-26.

Table C-26 End of Block and Function Entries
Bytes Declaration Name Description
0-3 - - unused (filled with zeros)
4-5 unsigned short x_Inno number of lines in block
6-23 - - unused (filled with zeros)
Beginning of Blocks and Functions
The auxiliary table entries for the beginning of blocks and functions have
the format shown in Table C-27.
Table C-27 Beginning of Block and Function Entries

Bytes Declaration Name Description

0-3 - - unused (filled with zeros)

4-5 unsigned short x_Inno line number in source where
function begins

6-11 - - unused (filled with zeros)

12-15 long int x_endndx index of next entry past this
block

16-17 - - unused (filled with zeros)

Names Related to Structures, Unions, and
Enumerations

The auxiliary table entries for structure, union, and enumerations symbols
have the format shown in Table C-28.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-28 Entries for Structures, Unions, and Enumerations

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of the structure, union, or
numeration

8-17 - - unused (filled with zeros)

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is
given in Example C-10. This declaration can be found in the header file
coff.h

Example C-10Auxiliary Symbol Table Entry

/*
* AUXILIARY ENTRY FORMAT
*/
union auxent {
struct {
long x_tagndx; /* str, un, or enum tag indx */
union {
struct {
unsigned short x_Inno;/* declaration line number */
unsigned short x_size;/* str, union, array size */
} x_Insz;
long x_fsize; /* size of function */
} x_misc;
union {

struct { [*if ISFCN, tag, or .bb */

long x_Innoptr; /* ptr to fcn line # */

long x_endndx; /* entry ndx past block end */
} x_fen;

struct { [*if ISARY, up to 4 dimen. */

continued [

C-39

i960 Processor Software Utilities User's Guide

C-40

Example C-10Auxiliary Symbol Table Entry (continued)

unsigned short x_dimen[DIMNUM];
}x_ary;
} x_fenary;
unsigned short x_tvndx; /* transfer vector index
(not used)*/

}x_sym;

union {

char x_fname[AUXFILNMLEN]; /* File name for .file
symbol */

struct {

long x_zeroes; /* zero indicating offset valid */
long x_offset; /* symbol string table offset */
}x_n;

} x_file;

struct {

long x_scnlen; /* section length */
unsigned short x_nreloc; /* number of relocation

entries */
unsigned short x_nlinno; /* number of line numbers */
} x_scn;
struct {
long x_tvfill; /*tv fill value */
unsigned short x_tvlen; /* length of .tv */
unsigned short x_tvran[2]; /*tvrange */
} x_tv; /*info about .tv section (in auxent of
symbol .tv) */
/*
** j960 processor-specific *2nd* aux. entry formats
*

struct {

long x_stindx; /* sys. table entry */

} x_sc; [* system call entry */
struct {

unsigned long x_balntry; /* BAL entry point */
} x_bal; [* BAL-callable function */

continued [

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-10Auxiliary Symbol Table Entry (continued)

/*

** 1960 processor 2nd and 3rd aux. entry formats

*/

struct {

unsigned long x_timestamp; /* identification time
stamp?*/

char x_idstring[20]; /* producer identity string */

} x_ident;

char a[sizeof(struct syment)]; /* force aux to

syment size */

h

#define AUXENT union auxent
#define AUXESZ sizeof(AUXENT)

String Table

Symbol table names longer than eight characters are stored next to each
other in the string table; each symbol name is delimited by a NULL byte.
The first four bytes of the string table are the size of the string table in
bytes; offsets in the string table are therefore 4 or more.

In this example, the file has two symbols whose names are longer than
eight charactersgng_name_1 andanother_one . Thus, the string table
has the format shown in Figure C-3.

C-41

1960 Processor Software Utilities User's Guide

C-42

String Table
Index
0 28
4 I o' n' g
8 - n' ‘a' m
12 ‘e’ 1 o'
16 a' n e} t
20 h' e r
24 o n' e \0'

0OsD321

The size of the string table in Figure C-3 is 28 bytes, which is equal to 4
bytes plus one byte for each character including the null terminator. The
index oflong_name_1 in the string table is 4 and the index of

another_one is 16.

Access Routines

Access routines, found in the common object file library, can be used for
reading a common object file. These routines insulate the calling program
from having to know the structure of the object file.

Archive Library Format

Figure C-4 represents a typical archive. The figure shows an object
library consisting ofi members.

The definitions of four elements constitute the common archive file format
(CAFF):

» archive identification string

e 0one or more members

* symbol table

* name or spelling pool

The following sections describe each of these elements in greater detail.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Figure C-4 An Archive Library

Archive Identification String

Archive Header

Member 0 Symbol Table

Archive Header

Member 1
Extended Filename Table
Member 2 Archive Header
Member Data
Member K

Member n-1

0OsSD319

The Archive Identification String

The archive identification string identifies a file as an archive. Each
archive library begins with a special string. For example, these two lines
define the archive identification string:

#define ARMAG "l<arch>\n"
[*archive identification string*/
#define SARMAG 8
[*length of archive identification string*/

C-43

1960 Processor Software Utilities User's Guide

C-44

This string appears as the first eight characters in an archive. This string
must be present, or the archiver cannot recognize this file as common
archive file format (CAFF).

Archive Members

Figure C-5

Archives can contain the following combinations of file types:
* COFF and ASCII text

 COFF only

e b.out format only

Archive members are arranged in sequential order within the library.

Figure C-5 represents a typical member, such as Member K of the archive
shown in Figure C-4.

An Archive Member

Archive Header

+ Member name
» Text size

+ File information

Contents

Padding Character
("\n" pad to even byte)

0OSD320

Common Object File Format (COFF) and Common Archive File Format (CAFF)

The member header begins with the member name to identify the module
within the archive. Several additional entries, containing control
information, follow this string. A special trailer string terminates each
archive member header.

The structure in Example C-11 defines the archive member header:

Example C-11 Archive Member Headers

#define ARFMAG "\n" [*header trailer string*/
struct ar_hdr /*member header*/
{
char ar_name[16]; [*I-terminated member name*/
char ar_date[12]; [*member date*/
char ar_uid[6]; /*member user id*/
char ar_gid[6]; /*member group id*/
char ar_mode|[8]; /*member mode(octal)*/
char ar_size[10]; /*member size*/
char ar_fmag|[2]; [*header trailer string*/
¥

Numeric information in the member header is stored in decimal format,
except forar_mode , which is formatted in octal. You can look at the
information stored in the member headers of an archive by using the
archiver's table-of-contents control with the verbose modifier on the
command line.

Table C-29 lists archive member headers, their sizes, and their contents.

C-45

1960 Processor Software Utilities User's Guide

Table C-29 Size and Contents of Archive Member Headers

Bytes Field Contents

0-15 ar_name; field contains the name of the member, padded
with a slash (/) followed by blanks. The archiver
derives this name from the pathname of the
external file when it adds the member to the
archive. The member name cannot be changed,
although the member may be replaced, deleted,
or moved within the archive.

16-27 ar_date field shows the date and time of the external file
when initially archived or updated in the archive.
This date is returned from a system call; format
of the date is system-dependent.

28-33 ar_uid fields contain the user and group identification

34-39 ar_gid numbers of the user owning this member. On
Windows hosts, these fields contain zero.

40-47 ar_mode field is derived from the system and contains an
octal representation of the file permissions on the
external file at archival time.

48-57 ar_size field contains the size, in bytes, of the member.
The member's size does not include the extra
byte of padding, if present at the end of the
archive member. Each archive file member
starts on an even byte boundary, with a single
new-line pad between members, if necessary.
An archive member may not contain any empty
areas.

58-59 ar_fmag field contains the header trailer string ('\n).

When you add members with long names using the replace or update
command, the archiver creates an extended filename table to store
member names longer than 14 characters. If the archiver creates the
extended filename table, the table follows the second archive header. If
you strip the symbol table, the extended filename table follows the first
archive member (see Figure C-4).

C-46

Common Object File Format (COFF) and Common Archive File Format (CAFF)

The Symbol Table

The first part of an archive (designated Member 0 in Figure C-4) is the
archive symbol table. The archiver generates this structure when you add
the first COFF or b.out format file to the archive. It is updated whenever
necessary to reflect the current contents of the archive.

The symbol table is transparent to the user and inaccessible to a user of the
archiver. Itis implemented as a member of the archive, with a standard
archive header. The symbol table has a hame of zero length, that is:

ar_name[0]=="\0" (\0' means NULL, the string terminator)

Thear_date field in the symbol table header reflects the date of the
archive's creation. Figure C-6 illustrates an archive symbol table.

The symbol table consists of the following fields:

e Total number of symbols in the archive: 1 word.

» Array of offsets to member headers: 1 word per symbol.

» String table of null-terminated external symbols: 1 string per symbol.

The symbol table enables the linker to make a more efficient pass over
object libraries.

C-47

1960 Processor Software Utilities User's Guide

Figure C-6 The Archive Symbol Table

member 0 header

Symbol Table Header
4 (with zero-length name)

Number of Symbols
in Archive

Offsets to Members
(one per symbol)

member O test

Name String Table
(one per symbol)

["\n" pad to even byte] member 0 padding
(if necessary)

0OsD318

C-48

HP/MRI IEEE 695
Obiject File Format

This chapter describes the Microtec Research Inc./Hewlett-Packard
Company version of IEEE-695 object module format, supporting
assemblers, compilers, linkers and debuggers.

The material for this chapter is taken from He/MRI IEEE-695 Object

Module Format SpecificatigiRev. 4.0, August 16, 1989. This chapter

contains only those parts of the HP/MRI IEEE-695 specification that you

need to understand output for the COFF to IEEE-695 converter (cvt960).

This chapter omits the following:

» Target-specific information not pertinent to the i960 family of
processors.

» Translator output information for high-level languages other than C.

* Memory location information for relocatable modules. Only position-
dependent (absolute) modules are described.

» Any other information not relevant to debugging and using output
from the cvt960 utility.

If you need a complete IEEE-695 object module specification, you should
consult the IEEE or MRI/HP version, as appropriate for your application.
The Related Publications section in Chapter 1 provides ordering
information for both.

The IEEE Trial Use 695 standard describes both an ASCII and a binary
version of the format. MRI and HP implement the more compact binary
form. Derived from the IEEE Trial Use Standard 695, the HP/MRI
specification includes extensions and limitations required to support MRI
and HP products.

D-1

1960 Processor Software Utilities User's Guide

Terminology

The IEEE specification defines a term that is redefined in this chapter.
The term applies to the basic division of an object file that is referred to as
a "command". Since this conflicts with the IEEE-695 use of command, the
basic unit is renamed to be a "record". Object module records are
predefined with a record type byte in the rafige throughsFF. The

term library is used throughout to mean a single file with more than one
relocatable module. The term MAU is used throughout to mean minimum
addressable unit; e.g. a byte (8 bits) on the i960.

Table D-1 shows the initial bytes of IEEE formats described in this
section.

Table D-1 Initial Bytes of IEEE Elements

Prefix Description

$00-$7F Simple number in the range 0 to 127, or 7-bit ASCII string with
length 0 to 127.

$80-$84 Number larger than 127 or negative. O to 4 bytes follow. $80 is
used as a place holder and indicates that the value was not
provided.

$89-$9F Unused.

$BE-$BF Function values.
$CO-$DA Variable letters (null, A-Z).
$DB-$DD Unused.

$DE-$DF Extension length. If DE, the next byte is the length of an 8-bit
string between 0 and 255 bytes long. If DF, the next two bytes
in high-order/low-order format are the length of an 8-bit string
between 0 and 65535 bytes long.

$EO-$FA Record headers.
$FB-$FF Unused.

HP/MRI IEEE 695 Object File Format

Nomenclature

The following nomenclature is used throughout this chapter:

e Braceg } surround a required field.

» Bracketg] surround an optional field.

« Dollar Signs §) precede character representations of hexadecimal
numeric values.

Number Format

Numbers are used to define byte counts for fields and to specify numeric

parameters. These specifications can have two forms:

e |f the value is between 0-127 decimal, the numbgo-is7F .

« If the value is greater than 127 decimal, then the number must be
defined by 1 byte of count with the high order bit seb{ followed
by the indicated number of bytes of numeric data with the most
significant byte first. The range for the count is usually 0-4
(i.e.$80-$84) and can be 0-8 on some installations. This form is also
valid for numbers in the range 0-127.
For example$7FFF is encoded a$82H{$7F}{$FF} (3 bytes).
0 can be encoded &0} or{$81}{$00} . 232 can be encoded as
{$85H01}{00}{00){00}{00} , etc.

« Omitted optional fields in records may be represented by a byte count
of zero. Example[$80}

* Numeric fields are represented in the chapténjasand{x} .

* Numeric fields in miscellaneous records are representgd as

Name Format

Name fields are represented in this chapteiid)y and consist of 1 byte

of count (0-127) followed by the indicated number of ASCII characters.
The HP/MRI format extends the IEEE specification to allow the use of

any printable ASCII character in a name. Characters are represented as
hexadecimal values in the file but are represented as quoted characters in
this chapter for improved readability, as follows:

name "ABCD" = {$04H{$41H{$42}{$43}{$44}

D-3

1960 Processor Software Utilities User's Guide

Name fields in miscellaneous records are represent@d as

The IEEE format allows only for printable strings. This implementation
allows for non-printable strings.

An extension byte allows for more than 127 characters. If the reader
encounters a DE character, the next one byte is the string length. The one
byte length allows strings from 0 to 255 characters. If the reader
encounters a DF character, the next two bytes are the string length. The
two byte string allows 0 to 65535 characters.

Information Variables

Information variables convey information to a symbolic debugger or linker
about various constructs within the program. The information conveyed
relates to symbols, section addresses and lengths, starting addresses, and
current PC value. These are represented by an alphabetic letter optionally
followed by a number:
G Execution starting address.
In Address of public symbal.
Nn Address of local symbal.
Pn The program counter for sectianimplicitly changes with each

LR, LD, or LT that applies to sectionin the Data part.
Sn The size, in minimum address units (MAUS), of a section
Whn nis O through 7; W is the file offset, in bytes, of théth part of

the object file from the beginning of the file.

The number, if present for symbol definitions, identifies which of several
variables of the same type is referenced. This number is referred to as an
"index" in the discussion that follows. There are 3 different series of
indices: external reference indices, section indices and public
name/type/local name indices. Indices must be unique within a module for
each series and must be included with all variable specifications except G.
Public/local (I/N) type symbol indices between 0 and 31 are reserved for
special class symbols. Normal symbol indices begin at 32. Therefore,
"13" represents public symbol number 3 in the current module.

HP/MRI IEEE 695 Object File Format

Specification of G variables must not include an index. The IEEE

standard has been extended to require index values for L, S, and P
variables (these are all section indices). The binary encoding for the letters
A-Z is $C1-$DA respectively.

Line Numbers

Object modules can have a significant number of line number records
included in typical situations. To minimize the impact upon the size of the
object module, the HP/MRI standard defines only one NN record per
source file. A line number is specified by ATN and ASN records only.

Types

Symbol types supply information to debug and analysis tools to aid in
determining the size, organization, and type of program object referenced
by the symbol. Each symbol has an associated type number and/or a
mnemonic "code letter" that serves as a shorthand identifier for the type in
the object file and elsewhere.

Complex Types strt

Table D-2 identifies the supported high level complex types. These types
must be explicitly defined using an IEEf " directive (see the Define

Types (TY) section) in order to correctly represent the use of the symbol
type in the high-level language source code. Table D-2 shows what
parameters are used to define the type, where these parameters appear in
the IEEE, and the NN and TY records which define the type.

Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types
Definition Type-parameters IEEE Record/Field
Unknown type (sized) 'type name' NN/{Id}
Mnemonic: ! I ($21) TY/{n3}
size in MAUs TY/An4}
generalized C language ‘enum-tag-name’ NN/{1d}
continued [

1960 Processor Software Utilities User's Guide

Table D-2
(continued)

HP/MRI IEEE-695 Object-file Representation of High-level Types

Definition
enumeration
Mnemonic: N

32 bit pointer to another type
Mnemonic: P (pointer)

data structure
Mnemonic: S (structure)

union of members
Mnemonic: U (union)

D-6

Type-parameters

N ($4E)
0

size of enumeration in MAUs

1st enum constant name
1st enum constant value
additional names/values
(name or null-name)

P ($50)

type index of pointer target

'structure-tag-name'
S ($53)

size of structure (in MAUS)

member 1 name
member 1 type index
member 1 MAU offset
member 2 name
member 2 type index
member 2 MAU offset
[additional members]
‘'union-tag-name'

U ($55)

size of union (in MAUS)
member 1 name
member 1 type index
member 1 MAU offset
member 2 name
member 2 type index
member 2 MAU offset

[additional members]

IEEE Record/Field

TYAn3}
TYHn4}
TYKn5}
TY/{n6}
TYAnT}
[.]
NN/{Id}
TY/n4}
TY/n4}
NN/Id}
TY/n3}
TY/{n4}
TY/{n5}
TY/{n6}
TY/n7}
TY/{n8}
TY/n9}
TY/{n10}
[.]
NN/{Id}
TY/n3}
TYHn4}
TY/{n5}
TY/{n6}
TY/n7}
TY/{n8}
TY/{n9}
TY/{n10}
[.]

continued [

HP/MRI IEEE 695 Object File Format

Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types
(continued)

Definition Type-parameters IEEE Record/Field
C array with lower bound = 0 (name or null-name) NN/{Id}
Mnemonic: Z (zero based array) A ($5A) TY/{n3}

type index of component TY/An4}

high bound (note 1) TY/{n5}
Bitfield type 'type name' NN/{Id}
Mnemonic: g g {$67} TYHn3}

signed (0O=unsigned,1=signed) TY/n4}

size (in bits, 1 through n) TY/{n5}

base type index TY/n6}
procedure with compiler 'procedure-name’ NN/{1d}
dependencies X ($78) TY/{n4}
Mnemonic: x (executable) attribute (note 2) TY/{n4}

frame_type (note 4) TY/{n5}

push_mask (note 5) TY/{n6}

return_type TY/n7}

of arguments (note 3) TY/{n8}

[1st argument type] TY/[n9]

[2nd argument type] TY/[n10]

[additional argument types] TY/[n11 thru nN]

level (note 6) TY/{n9 or TY/nN + 1}

NOTE 1: When the upper limits in array types A and Z are unknown, as for external references, the number of elements
should be set to -1.

NOTE 2: The attribute parameter of the function type (X or x) is bit mask of:

Bit Meaning Bit Meaning

0 Unknown frame - Set if this 5 PASCAL nested (always clear)
is a leaf procedure 6 no push mask available

1 Near (always clear) (always set)

2 Far (always clear) 7 Interrupt (always clear)

3 Re-entrant (always set) 9-32 To be defined

4 ROMable (always set)

NOTE 3: # of arguments (-1 if unknown).

NOTE 4: The 'frame-type’ indicates the type of stable frame used by the routine. cvt960 sets the frame-type to 0.
NOTE 5: The 'push_mask' is always set to 0.

NOTE 6: the 'level' parameter is always set to 0.

D-7

1960 Processor Software Utilities User's Guide

Table D-3

Built-in Types

Table D-3 identifies the implicit or "built-in" types supported by the

cvt960 program. The built-in types represent C type definitions for
common scalar types (and pointers to common scalar types) that are
implicit to the compiler, assembler, linker, and debugger. As for complex
types, the type number or mnemonic letter code for built-in types implies
the size and organization of the program object. The type number also
specifies a default type name for use by HP or MRI debugging tools in
referring to the built-in type.

Built-in types normally do not require additional information other than

the type number to completely describe them. Only the number of the
built-in type is used in an ATN record describing a symbol having one of
the implicit types. It is also the number used in the definitions for more
complex types that have elements that are of built-in type. The shorthand
notation for implicit types is intended to minimize the size of object
modules by providing a short notation for the common subsets of more
general types.

The interpretation of built-in types hyt960 is shown in Table D-3.

The following assumptions relating to typedefs are made by HP and MRI
tools:
» Type "char" is assumed to be signed.
» The size assumed for a pointer is the natural size for the target
(i.e. 1960 = 4 minimum address units).

HP/MRI IEEE-695 Object-file Built-in Types

Mnemonic Definition Default Type Name

0 ? unknown type 'UNKNOWN TYPE'

1 V (void) procedure returning void 'void'

2 B (byte) 8-bit signed 'signed char’

3 C (char) 8 bit unsigned ‘'unsigned char'

4 H (halfword) 16 bit signed 'signed short int'
continued [

HP/MRI IEEE 695 Object File Format

Table D-3

HP/MRI IEEE-695 Object-file Built-in Types

(continued)

10
11
12

15
26-31
32
33

34
35
36
37
38
39
42
43
44

58-255

Mnemonic

I (int)

L (long)

M

F (float)

D (double)
K (king size)

J (jump to)

Definition

16 bit unsigned

32 bit signed

32 bit unsigned

32 bit floating point
64 bit floating point

extended precision
floating point

code location
reserved for future use
pointer to unknown type

pointer to procedure
returning void

pointer to 8 bit signed
pointer to 8 bit unsigned
pointer to 16 bit signed

point to 16 bit unsigned

point to 32 bit signed

pointer to 32 bit unsigned
pointer to 32 bit floating point
pointer to 64 bit floating point

pointer to extended precision
floating point

reserved for future use

Default Type Name
‘'unsigned short int'
'signed long'
'unsigned long'
‘float’

‘double’

'long double'
(see note 1)

'instruction address'

'UNKNOWN TYPE'

'void

'signed char’
‘'unsigned char'
'signed short int'
‘'unsigned short int'
'signed long'
'unsigned long'
‘float’

‘double’

'long double'
(see note 1)

D-9

i960 Processor Software Utilities User's Guide

Object File Components

An object file is divided into seven component parts. Each partis a
contiguous group of bytes within the file. The component parts may occur
in any order within the file with the exception that the Header must occur
first and the Module End must occur last. The Header part contains
information pointing to the location of the other parts within the file.
Therefore, the various file parts do not necessarily have to be read in the
order in which they appear. The component parts listed below are
described in the following sections:

Header Part

Module Beginning (MB) $E0

Address Descriptor (AD)$EC

Assign Value to Variable W0 (ASWO)X£E2D700
Assign Value to Variable WI (ASW1)$£2D701
Assign Value to Variable W2 (ASW2)%$£2D702
Assign Value to Variable W3 (ASW3)£2D703
Assign Value to Variable W4 (ASW4)$£E2D704
Assign Value to Variable W5 (ASW5)X£2D705
Assign Value to Variable W6 (ASW6)$£2D706
Assign Value to Variable W7 (ASW7)%$£2D707

AD Extension Part (ASWO)

Variable Attributes (NN) $F0
Variable Attributes (ATN) $F1CE
Variable Values (ASN) $E2CE

Environment Part (ASW1)

Variable Attributes (NN) $F0
Variable Attributes (ATN) $F1CE
Variable Values (ASN) $E2CE

Section Definition Part (ASW2)

Section Type (ST) $E6
Section Size (ASS)$E2D3
Section Base Address (ASL¥E2CC

D-10

HP/MRI IEEE 695 Object File Format

External Part (ASW3)

Public (External) Symbol (NI) $E8
Variable Attribute (ATI) -$F1C9
Variable Values (ASI) $E2C9

Debug Information Definition Part (ASW4)

Declare Block Beginning (BB)$F8

Declare Type Name, filename, line numbers, function name, variable
names, etc.

(NN) - $F0

Define Type Characteristics (TY}F2

Variable Attributes (ATN) $F1CE

Variable Values (ASN) $E2CE

Declare Block End (BE) $F9

Data Part (ASW5)
Current Section (SB)$E5
Current Section PC (ASPXE2D0
Load Constant MAUs (LD) $ED
Repeat Data (RE)$F7

Trailer Part (ASW6)

Execution Starting Address (ASG}E2C7
Module End (ME) $E1

Header Part

The header part contains information pointing to the location of other parts
within the file.

Module Begin (MB)

The MB record must be the first record in the module.

{$EOHIdL}{1d2}

$EO Record type
Id1 Processor (e.g. "80960CORE")
ld2 Module name

D-11

1960 Processor Software Utilities User's Guide

D-12

Table D-4

Table D-4 shows the 1960 processor names that tools consuming
HP/MRI IEEE-695 object files recognize in thie field of the MB
record.

Processor Names

Name Processor Family
80960CORE Intel 1960 core architecture
80960KA Intel i960 KA, SA

80960KB Intel i960 KB, SB

80960CA Intel i960 CA, CF

80960JX Intel 1960 JA, JD, JF, JL, RP
80960HX Intel i960 HA, HD, HT

Address Descriptor (AD)

The AD record describes the characteristics of the target processor.

{$SECH8){4}{$CC}

$EC Record type

8 Number of bits/minimum address unit

4 Number of minimum address units constituting the largest

address form
$CC (L") Low address of field contains least significant byte

Assign Value To Variable WO (ASWO0)

The ASWO record contains a file byte offset pointer to the AD Extension
record relative to the beginning of the file. A zero (0) value indicates that
this extension is not included in the file.

{$SE2H{$D7HO0H n}

n Byte offset in file in number format (see the AD Extension Part
section)

HP/MRI IEEE 695 Object File Format

Assign Value To Variable W1 (ASW1)

The ASW1 record contains a file byte offset pointer to the Environmental
record relative to the beginning of the file. A zero (0) value indicates that
this extension is not included in the file.

{$E2H{$D7HO1K n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W2 (ASW2)

The ASW?2 record contains a byte offset pointer to the module Section part
relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{SE2H{$D7H$02}{ n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable (ASW3)

The ASW3 record contains a byte offset pointer to the module External
part relative to the beginning of the module. A zero (0) value indicates
that this part is not included in the module.

{$SE2H{$D7H$03}{ n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W4 (ASW4)

The ASW4 record contains a byte offset pointer to the module Debug
Information definition part relative to the beginning of the module. A zero
(0) value indicates that this part is not included in the module.

{$E2H{SD7H$04H n}

n Byte offset in file in number format (see the AD Extension Part
section)

D-13

i960 Processor Software Utilities User's Guide

D-14

Assign Value To Variable W5 (ASWS5)

The ASWS5 record contains a byte offset pointer to the module Data part
relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{SE2HDTHO5{ n}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W6 (ASW6)

The ASW6 record contains a byte offset pointer to the module Trailer part
relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{SE2H$SD7H$06Y N}

n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable (ASW7)

The ASW?7 record contains a byte offset pointer to the ME record relative
to the beginning of the module.

{$E2H{SD7HSO7TH n}

n Byte offset in File in number format (see the AD Extension Part
section)

AD Extension Part

The AD Extension Part contains information describing how the object
module was created. This part is located after the header part and the AD
record. Itis pointed to by the WO portion of ASWO0. An NN record with a
unique index associates ATN records defining the additional information.
For more information on the syntax of records in the AD Extension Part,
see the HP/MRI IEEE 695 Format Object File Semantics section. The AD
Extension Part has the following format:

NN: {$FOHN1}Id}
ATN: {$FIHSCEHn1Hn2{n3}x1][x2][ld]

HP/MRI IEEE 695 Object File Format

Table D-5

$FO
nl

$F1CE
nl

n2
n3

NN record type

Symbol name (NN record) type

Symbol name

ATN Record type

Symbol name index (must be the same index as was specified for
the NN record)

Symbol type index (unused, set to 0)

Attribute definition: The attribute definitions for the AD

Extension Part appear in Table D-5.

Attribute Definitions for the AD Extension Part

n3
37

38

39

Description

Object format version number; requires two extra fields [x1] and [x2]
defining the version number and revision level respectively.
The current HP/MRI version supported is 4.0.

Object format type; requires one extra field [x1] defining the type:
1 Absolute (not relinkable)

Case sensitivity; requires one extra field [x1].
2 Do not change the case of symbols

Environmental Part

The Environmental Part contains information relating to the host
environment where the object module was created. It is located after the
Header Part and is pointed to by the W1 portion of ASW1. The
organization of this part is similar to the AD Extension part described
earlier. For more information on the syntax of records in the
Environmental Part, see the HP/MRI IEEE 695 Format Object File
Semantics section. The ATN records have the following format:

NN:
ATN:

FO
nl

{$FOHn}Id}
{$F1HSCEKNIHN2Kn3}xL[x2[x3[x4[x5[x6[Id]]II
NN record type

Symbol name (NN record) type

D-15

1960 Processor Software Utilities User's Guide

D-16

Id Symbol name

$F1CE ATN record type

nl Symbol name index (must be same index as specified for its
associated record)

n2 Symbol type index (0 = unspecified)

n3 Attribute definition: The attribute definitions for the

Environmental Part appear in Table D-6 below.

Table D-6 Attribute Definitions for the Environmental Part
n3 Description
50 Creation date and time; requires one extra field [x1[x2[x3[x4[x5[x6]]]]]]:

51

52

53

54

55

x1 Year (e.g., 1990)

x2 Month (1 - 12)

x3 Day(1 - 31)

x4 Hour(0 - 23)

x5 Minute (0 - 59)

x6 Second (0 - 59)

The date and time are derived from the date and time of the COFF file. The year
is encoded as a decimal number, not four hexadecimal digits. There is no ASN
record.

Command line text; requires one extra field [Id] containing the command line. The
command line is derived from the cvt960 command line. There is no ASN record.

Execution status; requires one extra field [xl]: 0 Success
There is no ASN record.

Host environment; requires one extra field [x1]: 4 HP-UX
There is no ASN record.

Tool and version number used to create the module; requires three extra fields
[x1], [x2], and [x3] defining the tool, version, and revision number. An optional
fourth field [x4] is an ASCII character that defines the revision level (e.g. A, B, etc).
The [x1] field contains 210, the cvt960 tool code. There is no ASN record.

Comments; requires one extra field [Id] specifying the comment string. There is no
ASN record.

HP/MRI IEEE 695 Object File Format D

External Part

The External part contains records used to define global symbols from
COFF. Variable miscellaneous records are also allowed in the External
part. For more information on the syntax of records in the External and
Public parts, see the HP/MRI IEEE 695 Format Object File Semantics
section.

Public (External) Symbol (NI)

The Public Symbol provides for Public symbol definition and is optionally
included in a module. Public symbol indices begin at 32. Indices 0
through 31 are reserved.

{$B8Y n}HId}

$B8 Record type

n Public name index number, unique within an object file (must
be> 31,0 - 31 reserved)
Id Symbol name

Attribute Records (ATI)
{$F1I{$CIHn1Kn2H{n3Kn4}
$F1C9 ATl record type

nl Symbol name index (this must be the same index as specified for
the M record)
n2 Symbol type index as follows:

0 Unspecified
2 Initialized data byte
5 Initialized data word
7 32 bit double word
10 32 bit floating point
11 64 bit floating point
12 10 or 12 byte floating point
15 Instruction address
n3 Attribute definition: The attribute definitions are described in
Table D-7.

D-17

i960 Processor Software Utilities User's Guide

D-18

Table D-7

n4 If n2 is non-zero, number of elements in the symbol type
specified im2

Attribute Definitions for the External Part

n3 Description

19 Static symbol generated by assembler. There is an ASI record
specifying the address value.

Value Records (ASI)

The ASI record defines values for variables.

{$SE2H{$COHn1}{n2}

$E2C9 Record type

nl Symbol index (this must be the same index as specified for the
NI record)

n2 value of symbol

Section Part

The Section part contains information defining the sections of the module.
A "section" in this context is a contiguous area of memory. It may be
absolute or relocatable, and may or may not have a name. All data
minimum address units must be defined in a section.

For more information on the syntax of records in the Section Part, see the
HP/MRI IEEE 695 Format Object File Semantics section.

Section Type (ST)

Each section must have exactly one section type record.

ASL and ASS records must appear after the ST record they refer to.
${E6Hn1HI}1d][n2][n3][n4]

$E6 Record Type

nl Section index (index must be greater than zero and unique to this
module)

HP/MRI IEEE 695 Object File Format

Section type (only the new section types are described here)

AS {$C1}{$D3} normal attributes for absolute sections.
Sections from different modules with these attributes,
whether they have the same name or not, are considered
to be unrelated.

ASP {$C1}{$D3}{$D0} absolute code

ASD {$C1}{$D3}{$C4} absolute data

Section Size (ASS)

The ASS record is required for all sections and defines the size for this
section.

{$SE2H{$D3}{n1}{n2}

$E2D3 Record type

nl Section index An ST record must have occurred before this ASS
record.

n2 Section size (in minimum address units). This expression must

be a simple number.

Section Base Address (ASL)
ASL records specify the section base address.

{$SE2H{$CCHn1}{n2}

$E2CC Record type

nl Section index (this must be the same index as specified for the
ATN record)

n2 Section Base address (in minimum address units)

Debug Information Part

The Debug Information part contains records that define how to determine
the symbol related information for a module at execution time. This is
required for debuggers that provide high-level debugging capabilities.

For information on the syntax of records in the Debug Information Part,
see the HP/MRI IEEE 695 Format Object File Semantics section.

D-19

1960 Processor Software Utilities User's Guide

D-20

Block Begin (BB)

The BB records are an extension to the IEEE-695 Trial Use standard.
They provide definitions of debugging information related to the high

level language definitions for types, scope and line numbers. They also
provide assembly level language definitions for modules and local
symbols. A block beginning with a BB is terminated with a BE record.

BB records can be nested according to rules described below. Nested BB
blocks can be used to capture scoping information. The types of BB
blocks include:

BB1
BB3

BB4
BB5
BB6
BB10
BB11

Type definitions local to a module.

A module. A non-separable unit of code, usually the result of a
single compilation, i.e. the symbols associated with a COFF
file symbol.

A global subprogram.

A source file line number block.

A local (static) subprogram.

An assembler debugging information block.

The module portion of a section.

The following list describes features of some of the blocks.

« BB1, BB3 and BB5 blocks usually occur together and in that order.

BB1 blocks can be absent for modules that declare no local types.
BB5 blocks immediately follow BB3 blocks in this implementation.

A BB5 cannot occur without a BB3.

Consecutive BB3 and BB5 blocks must refer to the same module.

HP/MRI IEEE 695 Object File Format

Block Nesting . For a summary of block nesting rules, see Table D-8
below.

Module-Scope Type Definitions (BB1)
NN and TY records
Module-Scope Type Definitions End (BE1)

High Level Module Block Begin (BB3)
Global Variables (NN, ATN8, ASN)
Module-Scope Variables (NN, ATN3, ASN)

Module-Scope Function Block Begin (BB6)
Local Variables (NN, ATN, ASN)
Module-Scope Function Block End (BEG)
Global Function Block Begin (BB4)
Local Variables (NN, ATN, ASN)
Local Function Block Begin (BB6) High level
Local Variables (NN, ATN, ASN) Module Block
Local Function Block End (BE6) (one for each
Global Function Block End (BE4) high-level
High Level Module Block End (BE3) module)
Source File Block Begin (BB5)
NN,ASN,ATN, line numbers in source
Source File Block End (BE5)
Assembly Module Block Begin (BB10)
Compiler Generated Global/External
Variables (NH, ATK16, ASK)
Compiler Generated Local Variables (NH,
ATK16, ASK)
Assembler Section Block Begin (BB11)
Assembler Section Block End (BE11)
Assembler Section Block Begin (BB11)
Assembler Section Block End (BE11)
Assembly Module Block End (BE10)
Assembly Module Block Begin (BB10)
Global/Extern Variables (KN,ATN19,ASN)
Local Variables (KK, ATN19, ASN)
Assembler Section Block Begin (BBIl) Assembly Level
Assembler Section Block End (BEIl) Module Block
(one for each
Assembler Section Block Begin (BB11) assembly level
Assembler Section Block End (BEIl) module)
Assembly Module Block End (BE10)

D-21

1960 Processor Software Utilities User's Guide

D-22

Table D-8 below illustrates which of the blocks under Inner can be nested
within the blocks listed under Outer. Some of the blocks require an outer
block. For example, a BB4 block requires that its outer, enclosing block be
a BB3. Similarly, a BB1 or BB2 block requires that its outer, enclosing
block be the Debug Part, or debug.

Table D-8 Summary of Permitted Block Nesting

Inner Outer

BB1 BB2 BB3 BB4 BB5 BB6 BB10 BB11 debug
BB1 no no no no no no no no yes
BB2 no no no no no no no no *
BB3 no no * * no * no no yes
BB4 no no required no no no no no no
BB5 no no no no * no no no yes
BB6 no no yes yes no * no no no
BB10 no no no no no no * no yes
BB11 no no no no no no required no no

* Supported by HP/MRI-695 but not produced by cvt960.

The format for each block type is described below:

Block Type 1 - unigue type definitions for module
{$F8H$01KO0){Id}

$F8 Record type

$01 Block Type 1 - unique typedefs for module
0 Block size in bytes (0 = unknown)

Id Module name (from COFFle symbol).

Block Type 3 - high level module scope beginning
{$F8H$03K0KId}

$F8 Record type
$03 Block Type 3 - high level module scope beginning

HP/MRI IEEE 695 Object File Format D

0 Block size in bytes (0 = unknown)

Id Module name (must be the same name as specified for BB1)
Block Type 4 - global function

{$F8H{$04HOHIdH{OKn3Kn4}

$F8 Record type

$04 Block Type 4 - global function

0 Block size in bytes (0 = unknown)

Id Function name

0 Number of bytes of stack space required for local variables
(in minimum address units) (0 = unknown)

n3 Type index for return value parameter and function information
(X' type), (0 = unknown)

n4 The absolute address of the beginning of the code block.

Block Type 5 - filename for source line numbers

{$F8H$SO5K0KId}

$F8 Record type

$05 Block Type 5 - filename for source line numbers
0 Block size in bytes (0 = unknown)

Id Source filename

Block Type 6 - local function
{$F8H$S06HOKIdHNn2}[n3]{n4}
$F8 Record type

$06 Block Type 6 - local function (static)

0 Block size in bytes (0 = unknown)

Id Function name

n2 Number of bytes of stack space required for local variables (in
minimum address units)

n3 Type index for return value parameter and function information
('x' type) (0 = unspecified)

n4 Offset (in minimum address units). The offset is the absolute

address of the beginning of the code block.

D-23

i960 Processor Software Utilities User's Guide

D-24

If the function name does not exist (length = 0), this is an unnamed block
used for variable scoping only.

Block Type 10 - assembler module scope beginning
{$F8H{SO0AKOKIdKId}n2][Id][n3[n4[n5[n6[n7[n8]]111]

$F8 Record type

$0A Block Type 10 - assembler module scope beginning

0 Block size in bytes (0 = unknown)

Id Name of the source file (COFF .file symbol)

Id Zero length string

n2 Tool type: if a.global_non_init module, this field contains

210 (tool code for the cvt960). Otherwise, if the assembler
outputs an asmid this field contains 209 (tool code for the
asm960) or if there is no asmid there isnpo

Id Version and revision in string format:rif is 210, the version
and revision of cvt960 is given;ii is 209, the version and
revision of asm960 is given. If there isim there is nod .

n3 Year (e.g., 1988) (if produced by COFF)
n4 Month (1-12) (if produced by COFF)

n5 Day(1-31) (if produced by COFF)

né Hour (0-23) (if produced by COFF)

n7 Minute (0-59) (if produced by COFF)

ng Second (0-59) (if produced by COFF)

The first Id field in the BB10 record holds the value of the symbol
from COFF; either & filename or ammsm filename.

Block Type 11 - module section

{$F8H{$0BHOKIdHNn2}{n3Kn4}[n5]

$F8 Record Type

$0B Block Type 11 - module section

0 Block size in bytes (0 = unknown)

Id Zero length name (section name already defined)
n2 Section type

0 Mixture of code, data, etc.

HP/MRI IEEE 695 Object File Format

n3 Section index
n4 Offset (in minimum address units)

Optional fields may be null; but if any field is null and a later field is
present, the omitted field must be filled with feo} construct. The
relationship of blocks to variable attribute and variable value records (NN,
ASN, ATN records) is preserved in the file. For variables that have an
NN, ASN, ATN triple, these records must be together in the block
structure definition (i.e., there can be no BB nor BE records between
them). Block definitions may be nested.

Variable Names (NN)

These NN records declare variable names, type names and line numbers.
The IEEE-695 Trial Use standard has been extended to allow duplicate
local symbols to be defined, as long as the indices and the scoping are
different.

This provides symbol definitions that are local to a specific section.
{$FOH{ n}HId}
$FO Record type

n Name index number (must be> 31,0-31 are reserved)
Id Name

Define Types (TY)

The TY record specifies that a type name represents an explicit type
definition other than the implicit types predefined for use with HP/MRI
language variables. Different types with the same name may be declared.
This is supported by this specification by having multiple NN, TY pairs
with the same name in the NN.

{$F2HnIHSCEHN2}[Nn3][n4]...
$F2 Record type

nl Type index unique within module (>255) (0-255
reserved for implicit types)

$CE Record type

D-25

D i960 Processor Software Utilities User's Guide

n2 Local name index for symbol defined by NN
record

n3,n4... Variable number of fields specifying additional
type information as defined in Tables D-7 and
D-8.

Attribute Records (ATN)
Each ATN record is associated with an NN record and defines a valid

symbol.

NN record: {$SFOH{nI}{Id}

ATN record: {$F1I{$CEHN1H{n2}{n3}[x1][x2][x3][x4]
[x5][x6][ld]

ASN record: {$E2H{$CE}n1}{h2}

$FO NN record type

nl Symbol name (NN record) type

Id Symbol name

$F1CE ATN record type

nl Symbol name index (this must be the same index
as specified for the NN record)

nl Symbol type index (0=untyped)

nl The numbers representing the attributes, the
blocks they can appear in, and their descriptions
are illustrated in Table D-9.

x1..... 1d Optional features, described for each attribute.

$E2CE ASN record type

nl Symbol name (NN record) index

n2 Symbol value

D-26

HP/MRI IEEE 695 Object File Format

Table D-9

Attribute Numbers, Blocks, and Descriptions

n3 Block Description

1 4,6

3 3,4,6
5

8 3

10 4,6

19 10

37, 38,

39, 50,

51, 52,

53, 54, 55

Automatic variable; requires an additional field [x1]
defining the stack offset (in minimum address units) .
There is no ASN record.

Compiler defined static variable. There must be an ASN
or ASI record specifying the address value.

External variable definition. There is no ASN record.

Line number; requires two extra fields giving the line
number and column number. Two optional fields [x3]
and [x4] are reserved and should be omitted. The line
and column number represent the end of a group of one
or more lines in a statement. A column number of 0
represents the end of the line and reflects the fact that
cvt960 cannot get this information from COFF. Line
numbers do not have to be in ascending order, and it is
the consuming tool's responsibility to handle numbers
that are "out of order."” There must be an ASN record
specifying the address.

Compiler global variable. There must be an ASN record
specifying the address value.

Defines a variable name as a locked register; requires
an extra field, [x1], to define the index of the register
name. There is no ASN record.

Static variable generated by assembler; may be global in
scope. There must be an ASN record specifying the
address/value. There is one required field [x1], which
indicates the number of elements of type n2 described
by the symbol, and [x2], which is a local/global indicator.
[x2]=omitted or O indicates local. [x2]=1 indicates global.

See the AD Extension Part section and the
Environmental Part section.

continued [

D-27

1960 Processor Software Utilities User's Guide

Table D-9 Attribute Numbers, Blocks, and Descriptions (continued)

n3 Block Description

62 4.6 Procedure block misc.; followed by two fields that
describe the most recent procedure block. The first field
Ix1] is the pmisc. type identification number, the second
[x2] is the number of additional ATN 65 or ASN records
associated with this directive. See the Miscellaneous
Records section for the codes associated with this
directive.

63 3,4,6 Variable misc.; followed by two fields that describe a
variable. The first field [x1] is the vmisc. type
identification number, the second [x2] is the number of
additional ATN 65 or ASN records associated with this
directive. See the Miscellaneous Records section for
the codes associated with this directive.

64 3 Module misc.; followed by two fields that describe the
current module block. The first field [x1] is the mmisc.
type identification number, the second [x2] is the number
of additional ATN 65 and ASN records associated with
this directive. See the Miscellaneous Records section
for the codes associated with this directive.

65 3,4,6 Misc. string; requires one field that is a string value for
miscellaneous records 62, 63 and 64.

Value Records (ASN)
The ASN records are used to define values for variables.

{$E2H{S$CEHnI}{n2}

$E2CE Record type

nl Symbol name index (must be the same as specified for the
record)

n2 value for symbol (in minimum address units if it is an address)

Stack relative symbols and register-based symbols must not have an ASN
record since the value is defined at execution time.

D-28

HP/MRI IEEE 695 Object File Format D

Compiler Id

This section is applicable if the assembler recognizes the ic960 compiler's
ident directive. Compiler Id Codes directly follow the BB3 record. A
dummy NN record precedes the initial ATN record in order to produce a
symbol name index. One ATN record defines that this is a module
miscellaneous directive. It is followed by three ASN records for tool

code, type checking code, and default pointer size in minimum address
units. These are optionally followed by one ATN for the version number
and up to six ASNs for the date and time.

{$F1LHSCEHN1IKOH64H50n5{ASNIHOKAHATNI][ASNA[ASNS
[ASNG[ASNT7[ASNS[ASNOIIIIIII

$F1CE ATN Record type

nl Symbol name index produced by an NN record.

0 Symbol type index

64 Attribute definition of 64 for module misc.

50 Module misc. type identification number of 50 (ATN record)

n5 Miscellaneous record count (based on number of date values,
etc.)

ASN1 Tool code definition. The tool code is either 208 for the ic960
compiler or 210 for the cvt960 converter.

ASN2 Type code

0 Transparent type checking (structural type equivalence)

4 Default pointer size for module (in minimum address units).

ATN1 Version number of tool

ASN4 Year (e.g. 1990)

ASN5 Month (1-12)

ASN6 Day (1-31)

ASN7 Hour (0-23)

ASN8 Minute (0-59)

ASN9 Second (0-59)

D-29

1960 Processor Software Utilities User's Guide

D-30

Block End (BE)

The BE record extends the IEEE standard and is used in conjunction with
a BB record. The BE record for type 4,6, and 11 BB records are different
than others as indicated in the following definitions:

Block End - General

{$F9}

$F9 Record type

Block End - for block types 4 and 6

{$F9}Hn1}
$F9 Record type
nl Expression defining the ending address of the function (in

minimum address units)
Block End - for block type 11

{$F9}Hn1}
$F9 Record type
nl Expression defining the size in minimum address units of the

module section

Data Part

The data part contains records defining fixed data for the module and is
always loaded at the current PC value in the current section. The current
section is defined by the SB record and the PC is defined by the ASP
record. If no SB record is defined, the current section is specified as 0. If
no ASP record is defined, the PC for a section is initially set to the start of
the section.

HP/MRI IEEE 695 Object File Format

NOTE. Section 10.1 of the IEEE Trial Use Standard says that the current
section is 0 before any SB records are encountered. Section 10.2 specifies
that if no ST record is present for a section, the type is absolute and shall
have an assignment to its L variable. Taken together, these statements
imply that the example module in Section 4.1 of the standard is illegal. HP
and MR follow the definition as stated in Section 10.1 of the IEEE Trial

Use Standard.

Set Current Section (SB)

The SB record defines the current section. SB has no effect on the P
variable.

{$E5HNn1}
$ES5 Record type
ni Section index

Set Current PC (ASP)

The ASP record sets a new value for the current PC. An ASP record is
required after an SB record to reset the value of the P variable.

{$SE2H{$DO}{n1}{n2}

$E2D0 Record type

ni Section index

n2 Expression defining new value (in minimum address units)

Load Constant Bytes (LD)

The LD record specifies the number of minimum address units to be
loaded as constant data.
{$EDHn1K...}
$ED Record type
nl Number of minimum address units (1-127)
(n1 x minimum address unit size) data bytes

D-31

i960 Processor Software Utilities User's Guide

D-32

Repeat Data (RE)
The RE record specifies data initialization in a compact form.

{$F7Hnl}
$F7 Record type
nl Expression defining number of times to repeat the following LD

or LR record data. The IEEE-695 standard has been extended to
include repeating LD records. The length of data that can be
repeated is limited to 128 bytes.

Trailer Part

The Trailer part contains the records described below.

Starting Address (ASG)

The ASG record is optional and defines the execution starting address.
This expression requires $BE/$BF delimiters.

{$BE}{N1}{$BF}
$E2C7 Record type
nl Value defining the execution starting address (in minimum

address units)

Module End (ME)

The ME record defines the end of the module and must be the last record
in the module.

{ME}

HP/MPI IEEE-695 Format Object File Semantics

This section describes the HP/MRI IEEE-695 format object file semantics.
The format shows the records by record header (for example, NN is a
name index record). Records enclosed in square bracketn@ 1 ") are
optional; records enclosed in curly bracgs @nd % ") are repeatable 0 or
more times.

HP/MRI IEEE 695 Object File Format

AD Extension Part and Environment Part

The AD Extension part and the Environment part constitute attribute
records describing the file, its contents, and its creation. The format of the
two sections is shown below:

{INNJATN[ASN]}

where at least one NN must be present before any ATN, and the name
index for the ATN must be the same as the last NN.

Public/External Part

The Public/External part contains records describing public and external
symbols, by name, type, and address. The format of the records is shown
below:

Public: {NI[ATI ASI]}

where the name index for the NI, ATI and ASI records must match in each
triplet. It is not possible to have more than one ATI or ASI record for any
name. A vmisc may follow any public.

Section Part

The Section part describes the different sections in the file. It describes
the combined sections after linkage.

The format of these records is shown below:
{ST [ASS][ASL]}

where the section index for the ST, ASS, or ASL records must match for
each group. Itis not possible to have more than one ASS or ASL record
for any section name.

D-33

1960 Processor Software Utilities User's Guide

D-34

Debug Part

In the Debug part, there are two types of main groups: high-level blocks
created by a compiler, and assembly language blocks created by the
assembler. The high level blocks contain all compiler symbol information,
as described In the HP/MRI IEEE-695 specification. The format for the
Debug part is shown below:

{ ((BB1] BB3 [BB5] [BB10]) or BB10 }

where the first enclosing parenthesis shows a high-level group: The
module names for BB1, BB3, and BB10 must match; the filename in the
BB5 is related to the module name. The BB10 block provides backward
compatibility. The lone BB10 block is the assembly level group. Itis
created when there is no high-level information.

BB1 Block

A BB1 block contains type information for high-level symbols; it is
described eatrlier in this document. The block is formatted as shown
below:

{NN {TY}}

where any number of types with the same name is allowed. The name
index must match between the TY record and the last NN record.

BB3 Block

A BB3 block contains the symbolic information for all symbols except
types and lines. It represents one compilation unit (a full compilation
module, with include files). It is formatted as shown below:

{{BB4] [BB6] NN ATN[ASN]}

where BB4 blocks are global functions and BB6 blocks are static functions
or unnamed blocks. The NN, ATN, ASN pairings are public, static, or
external symbols (locals are in BB4 and BB6 blocks). The name index for
NN, ATN and ASN records must match.

HP/MRI IEEE 695 Object File Format

BB4 and BB6 Blocks

BB4 and BB6 are scoping blocks and represent functions (procedures).
They contain all local symbols to the function. BB6 blocks may nest
inside of BB4 and BB6 blocks. If the BB6 block has a null name, itis a
scoping block only (" blocks in C). The BB4 and BB6 blocks are
formatted as shown below:

{[BB6] (INN] ATN) or (NN ATN[ASN]) }

where at least one NN record must be present for each ATN and ASN
name index used. The optionality of NN records is available only for
special ATN records (register lifetime). A local variable with the same
name as another symbol in an outer block must still have a new NN
record. The NN, ATN, or ASN records that describe a symbol must all
reside within the same BB/BE scope; their affiliation cannot cross BB or
BE boundaries. The optionality of ASN records is defined earlier in this
document.

BB5 and BB10 Blocks

A BB5 block carries the source file information, such as the source
filename, include filenames, and lines. It is formatted as shown below:

{ [BB5] [[NN] ATN ASN] } [BB10]

The BB10 block is created by the assembler to hold assembly language
information, such as assembly language source filename, and local section
information (R_Label sections); it is not intended to have assembler
symbols such as a lone BB10 block.

The cvt960-createdlobal _non_init module, however, has many
assembler-level globals in B10.

The BB10 block is placed after the BB5 block. The HP/MRI specification
allows other BB5 blocks to be nested inside, interspersed in the line
information. These are usualh¢lude files. The cvt960 converter does
not produce nested BB5s becauseide file information is not

available from COFF.

D-35

1960 Processor Software Utilities User's Guide

D-36

The line information must have at least one NN record before any ATN or
ASN records, and the index for the ATN and ASN must be the same as the
last NN. Only lines that have code associated with them need to be
present. All readers can assume that any missing lines are associated with
the next line specified.

The column offset parameter indicates the position of the high level source
line. The offset is taken to mean the column position of the last token of
the source text associated with the machine instructions immediately
following the code position indicated by ATN 7.

Source file columns are numbered starting with 1. The special column
offset value of 0 is defined to indicate the position of the last column on
the line. Because column information is not available from COFF, the
column is O.

The BB10 block carries the information derived by the assembler from a
file not produced by a compiler (or one that did not put in debug
information). The BB10 block has the section information on a module
basis (as opposed to the linker's combined sections); this allows a tool to
know the part of a section that came from a particular module. Also, any
local or global assembly language symbols are shown here. It is formatted
as shown below:

{BB11 }{[BB10] NN ATN ASN}
where the BB11 block contains the section information as described

earlier in this manual. BB10 blocks may be nestechfarde files. The
name index for the NN, ATN and ASN records must match.

NOTE. COFF lacks module-membership information for global
uninitialized variables, so cvt960 produces the pseudo-module
.global_non_init for them.

HP/MRI IEEE 695 Object File Format

Miscellaneous Records

Miscellaneous records provide a flexible and extensible method for
communicating information generated by a compiler or other language
translator directly to a debugger or other consumer tool via the object file.
Information in miscellaneous records is classified according to a coding
system defined below. The content and meaning of each miscellaneous
information category can be defined to suit a wide range of information
needs, and new miscellaneous information categories can be defined as
needed. Thus, miscellaneous records allow the IEEE-695 object module
format to evolve in an orderly manner as new debugging features and
requirements emerge.

One of the main advantages of miscellaneous records is that, in general,
they are processed in a generic, content-independent manner by
intermediate language system tools such as assemblers and linkers. That
is, assemblers and linkers need not interpret or manipulate in any special
way the contents of miscellaneous records, except to resolve, in the
standard manner, the values of relocatable expressions that may be present
in these records. As a result, there is no need to modify assemblers or
linkers when new classes of miscellaneous information are defined.

Three classes of miscellaneous records have been defined: module
miscellaneous records for augmenting the debugging information for
program modules, procedure miscellaneous records for decorating code
blocks, and variable miscellaneous records for decorating data objects.
The three kinds of miscellaneous records differ primarily with regard to

the scope within which the record's information applies. The affiliation of

a miscellaneous record with the object or objects it describes is determined
primarily by the relative position within the object file of the

miscellaneous record and the object or objects it describes. These
positional relationships are explained in more detail below.

D-37

1960 Processor Software Utilities User's Guide

D-38

Module Miscellaneous Records

Module miscellaneous records convey information about a program
module. For high level modules, module miscellaneous records appear
within a BB3/BE3 scope. For assembly modules, module miscellaneous
records appear within a BB10/BE10 scope. The information in a module
miscellaneous record applies to the module within whose scope the record
is enclosed. For example, the information in the module miscellaneous
record having code 50 (compiler Id, type checking rules, and compilation
time) applies to the entire module and all objects in the module.

Multiple miscellaneous records can coexist within the same module scope,
especially if the records have different classification codes. However,
some module miscellaneous record types (e.g., code 50) allow at most one
record of a given classification code within any single program module
scope.

Specific object file readers may impose further restrictions on the position
of module miscellaneous records. For example, if the information in a
module miscellaneous record influences the interpretation of the
debugging information of other objects in the module scope, specific
consuming tools may require that the module miscellaneous record occur
before any other debug information. This is strictly a requirement of the
consuming reader tool, however, and not the object module format.

Variable Miscellaneous Records

The information in a variable miscellaneous record applies to the most
recent data object declared using a normal NN/ATN/ASN cluster, as
described in Chapter 3. For example, variable miscellaneous code defines
the register shadowing parameters for the specific data object immediately
preceding the variable miscellaneous record.

HP/MRI IEEE 695 Object File Format

Procedure Miscellaneous Records

The information in a procedure miscellaneous record applies to the entire
code block within whose scope the record is enclosed. The traditional
scope for a procedure miscellaneous record has been a procedure or
function code block, that is, BB4/BE4 or BB6/BE6. For example,
procedure miscellaneous code 1 conveys the address of the exit (return)
instruction of a procedure.

However, in anticipation of supporting future lexical features such as Ada
tasks and package scopes, and to limit the proliferation of terminology
associated with decoration of code blocks, the definition of the enclosing
scope for a procedure miscellaneous record is broadened to include other
kinds of code blocks, some of which are yet to be defined. There is no
ambiguity regarding the scope of each procedure miscellaneous record,
because the relevant enclosing scope had to have been agreed to both by
the producer and consumer of the procedure miscellaneous information
when the classification number was assigned.

Thus, by definition, each procedure miscellaneous record's classification
number also implies the record's relevant code block scope.

General Syntax Rules

Miscellaneous records are composed of groups of NN, ASN, and ATN
records that together form a cluster or packet of information The
miscellaneous record cluster can be thought of as a list of parameters, the
first of which constitutes a classification number that dishes each cluster
from all others. Remaining parameters are the information conveyed by
the record cluster.

Parameters In Miscellaneous Records

Parameters in miscellaneous records may be character strings, numerical
constants, compiler labels, or relocatable expressions. The object module
format constrains neither the number of parameters a miscellaneous record
may have, nor which of the permissible parameter types is to be used in

D-39

i960 Processor Software Utilities User's Guide

D-40

any of the individual parameter slots, except the first slot. The first slot
must be the numerical information classification code. The number and
composition of the remaining parameter slots is completely determined by
the syntax specification for each miscellaneous record. However, the
following rules apply to individual parameter values:

1. Numerical constants may be signed and have absolute values between
0 and 31-1.
2. Floating point constants must be represented as quoted strings.

Every parameter that is a number or relocatable expression is represented
in the miscellaneous record cluster by an individual ASN record and every
parameter that is a string is represented by an individual ATN.

Examples

The following example illustrates how a module miscellaneous record
having the classification code (chosen for illustration) would be
documented in this specification, and how it would be encoded in the
IEEE-695 object module.

code 99, valuel, value2, “stringl', value3, “string2'

The miscellaneous record cluster would be represented in this document as
follows:

NN: {$FO0Kindex}{null_name}

ATN: {$F1H$CENindex}{$00H$40{$63}{5}
ASN: {$E2H{$CE}index}{valuel}

ASN: {$E2H{$CE}index}{value2}

ATN: {SF1H{$SCEKindex}{$S00}{$41}stringl}
ASN: {$E2H{$CE}index}{value3}

ATN: {SF1}{$CE}index){$00}{$41}{string2}

HP/MRI IEEE 695 Object File Format

The parameters of the NN and first few ATN and ASN records have the
following meanings:

NN: {$FO0}index}{null-name}
index unique index within the current BB3 block
null-name $00 (i.e., null name string)

ATN: {$F1H$CE}index}{n2K{n3}{n4Kn5}

index unique index within the current BB3 block (the ATN index must
match the index of the most recent NN record)

n2 $00 symbol type undefined

n3 $40 ATN type 64 - module miscellaneous information (mmisc)
record

n4 $63 = module miscellaneous information code 83 (hex = 99
decimal)

n5 $05 = number of additional ASN/ATN records (5) associated

with this mmisc cluster

ASN: {$E2H{$CE}index}{n2}
index as above
n2 expression for valuel (etc.)

A special case is where the first parameter in the miscellaneous record
cluster (after the classification code) is a string. In this case, the initial
string is encoded in the first ATN of the miscellaneous record cluster right
after the parameter indicating the number of additional ATN/ASN records
in the cluster. A procedure miscellaneous record cluster matching this
description, with illustrative classification code, is illustrated below.

code 99, 'stringl’, valuel

The miscellaneous record would be represented in this specification as
follows:

NN: {$FO0}(index}{null_name}
ATN: {$F1HS$CEXindex}{$00}{$3E}$63}{1}{string1}
ASN: {$E2H{$CE}index}{valuel}

D-41

i960 Processor Software Utilities User's Guide

D-42

NOTE. string2 is included in the first ATN record of the cluster.

Optional Parameter Fields

Some miscellaneous records have optional parameters. These are denoted
in the parameter list agparameter]. If some optional parameters in a

record are present but others are not, all of the optional parameter slots
preceding a supplied optional parameter must be accounted for. Missing
optional parameter(s) whose values are numbers are indicated using the
IEEE-695 "unknown" codesg0) in the slot corresponding to the missing
parameter. If the missing optional parameter is a strifig) dength

string would appear in the ATN record corresponding to the missing

string. Omitted optional parameters that follow the last supplied

parameter need not be explicitly included in the miscellaneous record.

For example, in the following variable miscellaneous record, optional
value2 is missing:

code 99, valuel [,value2] [,value3]

The miscellaneous record cluster would be represented in this document as
follows:

NN: {$FO0}index}{null_name}

ATN: {$F1{SCENindex{$00H$3FH$63H5}
ASN: {$E2H{$CE}indexXvaluel}

ASN: {$SE2}{$CE}index}{$80}

ASN: {$E2){$CE}index}{value3}

HP/MRI IEEE 695 Object File Format

As another special case, it is permissible to omit the NN record when a
variable miscellaneous directive immediately follows the variable
NN/ATN/ASN that it modifies. In this case, the variable miscellaneous
directive ATNs and ASNs would all use the same NN index as the actual
variable:

NN index
ATN index info... Original Variable
ASN index expression

ATN index 0 64 misc_code count
Variable Misc. Information
ASN/ATN index...

Codes for Miscellaneous Records

Each module, procedure, and variable miscellaneous directive is assigned
an ID number from a common index pool. For example, there is only one
miscellaneous directive with ID code 1.

The first 50 codes (0-49) are reserved for miscellaneous directives in
which the assembler needs to correlate the argument information with
other debug information. Codes greater than 49 are used for
miscellaneous directives where the assembler only needs to encode the
parameters of the miscellaneous directive into the relocatable object
module.

Policies for Adding and Modifying Miscellaneous
Records

Adding new miscellaneous records to the object module format is
straightforward, but requires agreement between the producers and
consumers of the miscellaneous information. To supplement the
debugging information for some program object, the compiler designer
need only agree with the consumer tool designer on the miscellaneous
record classification code to identify the new information category, and
output the appropriate miscellaneous record and parameters using the
general rules described below.

D-43

1960 Processor Software Utilities User's Guide

D-44

Clearly, even when there is agreement between producers and consumers
of IEEE-695 object modules, wholesale modification of existing
miscellaneous records is undesirable, because older versions of object
module reader tools can become confused by the new record syntax, and
the backward compatibility of new object files with older consumer tools
could suffer.

Policies for Generating and Reading Miscellaneous
Records

The following policies are set forth to ensure that miscellaneous
information records are created, modified, and consumed in an orderly
manner:

1. (For object module producers) Adding new required fields to an
existing miscellaneous record is prohibited. Adding new optional
fields to an existing miscellaneous record is permissible only if (a) the
new information is related to the information already in the record,
and (b) the new information does not alter in any way the
interpretation of the information already in the record. If the new
information violates any of these conditions, the new information
should go into a new miscellaneous record classification.

2. (For object module consumers) When a miscellaneous record having
an unknown classification is encountered, the object file reader should
first consult the version number of the object module format in the
ATN code 37 record of the Environment Part (see Chapter 3). If the
object module version is newer than the reader was designed to
consume, the reader should provide an indication to the user to this
effect. Readers might then either (a) continue reading the object file,
simply ignoring the information, or (b) abort reading the object file
with a message that continuing would result in potentially ignoring
important information about symbols in the object module. If
behavior (b) is implemented, the reader might be designed so that the
user can force it to read the object file anyway, thereby allowing the
user to get some benefit from the object file, while being fully aware
of the consequences of ignoring some information.

HP/MRI IEEE 695 Object File Format

When a miscellaneous record having an unexpected optional
parameter is encountered, the situation is somewhat different.
Assuming the unexpected optional parameters conform to the
producer rules above, that is, they do not alter the interpretation of the
information already in the record, they are truly discretionary, and the
reader probably can safely proceed with reading the object module,
perhaps after printing a warning (after checking the object module
version number) to the effect that unexpected fields were encountered
while reading a miscellaneous record.

Lastly, if the version number of the object file is one the reader was
designed to consume, and either new miscellaneous codes or
unexpected fields are encountered, the object module is either
defective or a producer has broken the rules for that object module
version. In either case, the reader should treat the remainder of the
object file with the same (or perhaps greater) suspicion than when the
object module version is newer than that supported by the reader.

The behavior in the face of all these contingencies is, of course, left to the
implementor of the consumer tool.

The currently defined miscellaneous information records are documented
in Table D-10.

D-45

1960 Processor Software Utilities User's Guide

D-46

Table D-10

Miscellaneous Record Codes

Misc.
Type Code Meaning
module 50 Compiler Id and date stamp.

Syntax: code 50, tool_code, type_rule, pointer_size
[,'compiler_version_string'] [,date]

NN:

ATN:

ASN:
ASN:
ASN:
ATN:

ASN:
ASN:
ASN:
ASN:
ASN:
ASN:

{$FOKindex}{null_name}
{$F1H$CEKindex{$00}H$401{$32H# _of ATN/ASNs
- currently between 3 and 10 inclusive}
{$E2}{$CEHindex}{tool_code}
{$E2H{$CEHindex}{type_rule}
{$E2}{$CEKindex}{pointer_size}
($FLHSCENindex}H$00H$41}
{compiler_version_string}
{$E2}{$CEHindex}{year}
{$E2}{$CEHindex}{month}
{$E2}{$CEHindex}{day}
{$E2}{$CEKindex}{hour}
{$E2}{$CEHindex}{minute}
{$E2}{$CEKindex}{second}

continued [

HP/MRI IEEE 695 Object File Format

Table D-10 Miscellaneous Record Codes (continued)

Misc.

Type Code Meaning

variable 63 Call optimization information (i960-)
procedure Purpose/meaning:

Holds the .sysproc/.leafproc information for the most
recent public or external.

Position:
In the Public/External Part after NI/ATI/ASI triples or
after NX records in relocatable files.
Syntax: Code 63, proc_type, system_index | bal_address
NN: {$FOKindex}{null_name}
ATN: {$F1H{$CEXindex{$00K$3FH$3F}
{#_of _ATN/ASN's (1 or 2)}
ASN: {$E2H$CEHindex}{proc_type}
ASN: {$E2H{$CEHindex}bal_address}
Parameter meanings:
proc_type: 0 if unknown
1 if leaf procedure
2 if system table procedure
system_index: index into the system_table
(used only if proc_type == 2)
bal_address: branch and link address (used only if
proc_type == 1)

For more information on compiler identification, see thent directive
in thei960 Processor Assembler User's Guide

D-47

Index

A

a (After) archiver option modifier, 2-7
A (architecture) linker option, 7-25
arc960 command, 2-1
archiver, 2-1
a (After) option modifier, 2-7
b (Before) option maodifier, 2-8
c (create) option modifier, 2-9
d (Delete) option modifier, 2-10
F (Library Format) option modifier, 2-11
h (Help) option modifier, 2-11
i (Insert) option modifier, 2-8
| (Local) option modifier, 2-12
m (Move) option modifier, 2-13
0 (Output Date) option modifier, 2-14
options summary, 2-2
p (Print) option modifier, 2-14
r (Replace) option modifier, 2-15
s (Symbol Table) option modifier, 2-16
t (Table of Contents) option modifier, 2-17
u (Update) option modifier, 2-18
v (Verbose) option modifier, 2-19
V (Version) option modifier, 2-20
v960 (Version) option modifier, 2-20
x (Extract) option modifier, 2-21

Z (Suppress Time Stamp) option modifier,
2-22

B

b (Before) archiver option modifier, 2-8

B (section start address) linker option, 7-27
b.out / COFF / ELF converter, 3-1

options summary, 3-2
backslash (\) character, use with tools, 1-5
BSS sections, linker, 7-4

C

c (circular library search) linker option, 7-29

c (Create) archiver option modifier, 2-9
C (startup alternative) linker option, 7-29
CAFF format for i960 processors, C-1
callj/calljx, link time optimization, 7-16
checksum rom960 directive, 12-7
cof960 command, 3-2
object converter, 3-1
COFF / b.out / ELF converter, 3-1
options summary, 3-2
COFF format for i960 processors, C-1
COFF symbol translation, cvt960, 4-5
COFF to IEEE-695 converter, 4-1
options summary, 4-2
Common Object File Library (COFL), B-1
compatibility of mpp960, 8-1
conversion tools for object files, 3-1, 12-1

Index-1

1960 Processor Software Utilities User's Guide

converter, 3-2 section headers, 6-11
output file, 3-3 symbol tables, 6-9
coverage analyzer, 5-1 with symbolic disassembly, 6-8
controls summary, 5-2, 5-3 dmp960 / gdmp960
option summary, 5-3, 5-4 options summary, 6-2 thru 6-4
CTOOLS 5.1 compatibility, 1-3 dmp960 invocation, 6-1
cvt960 invocation, 4-1 dumper
cvt960 object converter, 4-1 archive support, 6-11
archives and relocatable objects, 4-3 displaying archive structure, 6-12
COFF line numbers, 4-4 options summary, 6-2, 6-3
compilation/assembly information, 4-4 dumper / disassembler, 6-1
global uninitialized symbols, 4-3 dumping absolute symbols, 6-5
IEEE-695 built-in types, 4-5 dumping archive member contents, 6-14
IEEE-695 converter warning messages, 4-8
Position-independent code, data, and E
symbols, 4-3 -
unreferenced types, 4-3 e (entry point) linker option, 7-33

ELF / b.out / COFF converter, 3-1
options summary, 3-2
ELF/DWARF sections, linker, 7-4

d (define common symbol space) linker environment variables, linker, 7-20
option, 7-31

D

d (Delete) archiver option, 2-10
D (inhibit CAVE section compression) linker F

option, 7-31 f (fill) linker option, 7-35

debugging macros, 8-16-8-19 F (format) linker option, 7-34

defsym (define a symbol) linker option, 7-32 F (Library Format) archiver option, 2-11

Displaying archive structure, 6-12

dmp960
archive support, 6-11 G
displaying archive structure, 6-12 G (big-endian target) linker option, 7-36
dumping absolute symbols, 6-5 gar960 command, 2-1
dumping archive member contents, 6-14 gcdm (decision maker) linker option, 7-37
examples, 6-6 gcov960 invocation, 5-1

Index-2

Index

gdmp960
archive support, 6-11
displaying archive structure, 6-12
dumping absolute symbols, 6-5
dumping archive member contents, 6-14
invocation, 6-1
ghist960
invocation, 14-2
options, 14-3
gld960 linker invocation, 7-6
global uninitialized symbol, IEEE-695, 4-3
gmung960 command, 9-1
gnm960 command, 10-1
grom960, 11-1
converting image to hex files, 11-4
creating binary images, 11-4
invocation, 11-1
options summary, 11-2
section specification, 11-2
gsize960 command, 13-1
gstrip960 command, 15-1

H

h (Help) archiver option, 2-11

h (help) linker option, 7-38

H (sort common symbols) linker option, 7-38
HP/MRI IEEE 695 object file format, D-1
hyphen (-) character, use with tools, 1-5

I-J

i (Insert) archiver option modifier, 2-8
IEEE-695

built-in types, cvt960, 4-5
converter warning messages, cvt960, 4-8
object file format, D-1

ihex rom960 directive, 12-8

invocation, conventions, 1-4

J (compress) linker option, 7-39

L

| (library input) linker option, 7-40

L (library search path) linker option, 7-39
| (Local) archiver option modifier, 2-12
library naming conventions and search order
linker, 7-21
linker, 7-1-7-57
B (section start address) option, 7-27

binding profile counters to non-standard
sections, 7-19

¢ (circular library search) option, 7-29

C (startup alternative) option, 7-29

calljx, i960 RP processor, 7-19

d (define common symbol space) option,
7-31

D (inhibit CAVE section compression)
option, 7-31

default allocation, A-7

defsym (define a symbol) option, 7-32
directives, A-4

e (entry point) option, 7-33
ELF/DWARF sections, 7-4
environment variables, 7-20

f (fill) option, 7-35

F (format) option, 7-34

G (big-endian target) option, 7-36

Index-3

i960 Processor Software Utilities User's Guide

Index-4

linker (continued)

gcdm (decision maker) option, 7-37

h (help) option, 7-38

H (sort common symbols) option, 7-38
incremental linking, 7-13

J (compress) option, 7-39

| (library input) option, 7-40

L (library search path) option, 7-39

library naming conventions and search
order, 7-21

link time optimization, 7-16
linker directive files, specifying, 7-12
m (memory map) option, 7-42

M (multiple definition warning) option,
7-42

memory block and section allocation, 7-2
N (name memory map file) option, 7-43
n (noinhibit output) option, 7-44

named BSS sections, 7-4

O (optimization of calls inhibited) option,
7-44

o (output filename) option, 7-45

Object Module Format (OMF)
compatibilities, 7-14

options reference, 7-24

output file, naming, 7-13

p (position-independence) option, 7-47
P (profiling) option, 7-46

R (read symbols only) option, 7-48

r (relocation) option, 7-49

S (strip) option, 7-50

T (section start address) option, 7-27

t (suppress multiple definition symbol
warnings) option, 7-52

T (target) option, 7-51

u (unresolved symbol) option, 7-53

v (verbose) option, 7-54

V (version) option, 7-54

v960 (version) option, 7-54

W (warnings) option, 7-55

X (compress) option, 7-55

y (trace symbol) option, 7-56

Z (program database) option, 7-57

z (time stamp suppression) option, 7-57

linker command language, 7-51

assignments, A-2
expressions and operators, A-2
introduction, A-1

linker directive files, A-35

command language, A-1
described, 7-4

sample, 7-5

specifying, 7-12

linker directives

ADDR, A-25
ALIGN, A-25
CHECKSUM, A-33
DEFINED, A-25
ENTRY, A-28
FLOAT, A-31
FORCE_COMMON_ALLOCATION,
A-25
HLL, A-29
INCLUDE, A-32
MEMORY, A-5

linker directives (continued)

NEXT, A-25

Index

OUTPUT, A-34 munger, 9-1

PRE_HLL, A-28 options summary, 9-2

SEARCH_DIR, A-32

SECTIONS, A-8 N

SIZEOF, A-27 R —

STARTUP, A-27 N (name memory map file) linker option, 7-43
SYSLIB, A-31 n (noinhibit output) linker option, 7-44
TARGET, A-33 nam960 command, 10-1

linker options summary, 7-7 name lister, 10-1

linking, incremental, 7-13 options summary, 10-3

Ink960 linker invocation, 7-6 namer tool, 10-1

names of utilities, 1-3

M
0]

m (memory map) linker option, 7-42 —
O (optimization of calls inhibited) linker

option, 7-44
o (Output date) archiver option modifier, 2-14

m (Move) archiver option, 2-13

M (multiple definition warning) linker option,
7-42

macro processor, 8-1 o (.output filename) linker option, 7-45
controlling input, 8-19 objcopy
debugging macros, 8-16 command, 3-2

diverting output, 8-23 object converter, 3-1

including files, 8-22 options summary, 3-2
object file conversion tools, 3-1, 12-1
Object Module Format (OMF)

archives, 2-4

processor options, 8-2
map rom960 directive, 12-10
mkfill, 12-12

mkimage rom960 directive, 12-12 compatibilities, 7-14

move rom960 directive, 12-14 optimization, link time, 7-16

mpp960
command, 8-2

output files, linker
naming, 7-13

message prefixes, 8-1

Index-5

1960 Processor Software Utilities User's Guide

P

p (position-independence) linker option, 7-47
p (Print) archiver option, 2-14

P (profiling) linker option, 7-46

packhex rom960 directive, 12-15

patch rom960 directive, 12-16

permute rom960 directive, 12-17

profile (p) option, gcov960, 5-3, 5-4

Q-R
R (read symbols only) linker option, 7-48
r (relocation) linker option, 7-49
r (Replace) archiver option, 2-15
rom rom960 directive, 12-18
rom960
checksum directive, 12-7
directives summary, 12-4
ihex directive, 12-8
invocation, 12-1, 12-3
map directive, 12-10
mkfill directive, 12-12
mkimage directive, 12-12
move directive, 12-14
packhex directive, 12-15
patch directive, 12-16
permute directive, 12-17
rom directive, 12-18
sh directive, 12-21
split directive, 12-22
rommer, rom960, 12-1

S

S (strip) linker option, 7-50

s (Symbol Table) archiver option modifier,
2-16

section size printer, 13-1
options summary, 13-2
sh rom960 directive, 12-21
siz960 command, 13-1
slash (/) character, use with tools, 1-5
split rom960 directive, 12-22
statistical profiler, 14-1
buckets, 14-4
str960 command, 15-1
stripper, 15-1
options summary, 15-2

T

T (section start address) linker option, 7-27

t (suppress multiple definition symbol
warnings) linker option, 7-52

t (Table of contents) archiver option, 2-17
T (target) linker option, 7-51
temporary files, archiver, 2-5
test coverage analysis tool, 5-1
controls summary, 5-2, 5-3
option summary, 5-3, 5-4
tool names, 1-3
tools, list of, 1-2

Index

U

u (unresolved symbol) linker option, 7-53

u (Update) archiver option and modifier, 2-18

UNIX command line, 1-4
utilities, list of, 1-2

utility names, 1-3

\%

v (Verbose) archiver option modifier, 2-19
v (verbose) linker option, 7-54

V (Version) archiver option, 2-20

V (version) linker option, 7-54

v960 (Version) archiver option, 2-20
v960 (version) linker option, 7-54

W-X

W (warnings) linker option, 7-55
Windows command line, 1-4

X (compress) linker option, 7-55
x (Extract) archiver option, 2-21

Y-Z
y (trace symbol) linker option, 7-56

Z

Z (program database) linker option, 7-57

z (Suppress time stamp) archiver option, 2-22
z (time stamp suppression) linker option, 7-57

Index-7

	i960® Processor Software Utilities User's Guide
	Disclaimer
	Contents
	Chapter 1 Overview
	Software Utilities and Related Tools
	Compatibility
	Compatibility Invocation Names

	DOS No Longer Supported as a Host
	Invocation Command-line
	Invocation Names
	Options, Arguments and Modifiers
	File System Dependencies

	Chapter 2 Archiver (arc960, gar960)
	Invocation
	Option and Modifier Arguments
	Specifying the Object Module Format
	Temporary Directory

	Option and Modifier Reference

	Chapter 3 COFF/ELF/b.out Converter (cof960/objcopy)
	Invocation
	Output File Specification

	Chapter 4 COFF to IEEE-695 Converter (cvt960)
	Invocation
	Limitations
	Position-independent Code, Data, and Symbols
	Archives and Relocatable Objects
	Unreferenced Types
	Global Uninitialized Symbols
	Compilation/Assembly Information
	COFF Line Numbers
	COFF Symbol Translation

	IEEE-695 Built-in Types
	IEEE-695 Converter Warning Messages

	Chapter 5 Coverage Analyzer (gcov960)
	Invocation

	Chapter 6 Dumper/Disassembler (dmp960, gdmp960)
	Invocation

	Chapter 7 Linker (lnk960, gld960)
	Overview
	Understanding Memory Blocks and Sections
	ELF/DWARF Sections
	Named BSS Sections

	Working with Linker Directive Files
	Linker Invocation
	Specifying Object Files
	Specifying Libraries
	Specifying Linker-directive Files
	Naming the Output File
	Incremental Linking

	Object Module Format Compatibilities
	Link-time Optimization
	Using calljx with the i960 RP Processor

	Binding Profile Counters to Non-standard Sections
	Environment Variables
	Library Naming Conventions and Search Order
	Library Search Order When i960 RP Architecture Is Selected

	Linker Options Reference

	Chapter 8 Macro Processor (mpp960)
	mpp960 Message Prefixes
	Invoking mpp960
	Lexical and Syntactic Conventions
	Names
	Quoted Strings
	Other Tokens
	Comments

	How to Invoke Macros
	Macro Invocation
	Macro Arguments
	Quoting Macro Arguments
	Macro Expansion

	How to Define New Macros
	Defining a Macro
	Arguments to Macros
	Special Arguments to Macros
	Deleting a Macro
	Renaming Macros
	Temporarily Redefining Macros
	Indirect Call of Macros
	Indirect Call of Built-Ins

	Conditionals, Loops and Recursion
	Testing Macro Definitions
	Comparing Strings
	Loops and Recursion

	How to Debug Macros and Input
	Displaying Macro Definitions
	Tracing Macro Calls
	Controlling Debugging Output
	Saving Debugging Output

	Input Control
	Deleting Whitespace in Input
	Changing the Quote Characters
	Changing Comment Delimiters
	Saving Input

	File Inclusion
	Including Named Files
	Searching for Include Files

	Diverting and Undiverting Output
	Diverting Output
	Undiverting Output
	Diversion Numbers
	Discarding Diverted Text

	Macros for Text Handling
	Calculating Length Of Strings
	Searching For Substrings
	Searching for Regular Expressions
	Extracting Substrings
	Translating Characters
	Substituting Text by Regular Expression
	Formatted Output

	Macros for Doing Arithmetic
	Decrement and Increment Operators
	Evaluating Integer Expressions

	Running Host Commands
	Executing Simple Commands
	Reading the Output of UNIX Commands
	Exit Codes
	Making Names for Temporary Files

	Printing Error Messages
	Exiting from mpp960
	Compatibility with Other Macro Processors
	Extensions in mpp960
	Facilities in UNIX System V m4 not in mpp960

	Chapter 9 Munger (gmung960)
	Chapter 10 Name Lister (gnm960, nam960)
	Chapter 11 ROM Image Builder (grom960)
	Invocation
	Using grom960
	Creating Binary Images
	Converting the Image to Hex Files

	Chapter 12 ROM Image Builder (rom960)
	Rommer Invocation
	Directive Files
	Directive Reference

	Chapter 13 Section-size Printer (gsize960, siz960)
	Invocation

	Chapter 14 Statistical Profiler (ghist960)
	Invocation

	Chapter 15 Stripper (gstrip960, str960)
	Appendix A Linker Command Language
	Introduction
	Expressions and Operators
	Linker Directives Reference
	MEMORY: Configuring Memory Regions
	Default Linker Allocation
	SECTIONS: Defining Output Sections
	FORCE_COMMON_ALLOCATION: Allocating Space for Common Symbols
	DEFINED: Finding Symbols
	ADDR, ALIGN, NEXT: Finding Addresses
	SIZEOF: Finding Section Sizes
	STARTUP: Specifying a Startup File
	ENTRY: Defining the Entry Point
	PRE_HLL(): Specifying Libraries to be Processed Before the High-level Libraries
	HLL: Specifying High-level Libraries
	SYSLIB: Specifying Low-level Libraries
	[NO]FLOAT: Supporting Floating-point Operations
	SEARCH_DIR: Extending the Search Path
	INCLUDE: Including Additional Directive Files
	TARGET: Using the Search Path for Directive Files
	CHECKSUM: Preparing for the Bus Confidence Test
	OUTPUT: Naming the Output File

	Linker Directive Files

	Appendix B Finding Information in Object Files
	Using the Common Object File Library: COFL
	Extracting File Header Information
	Function Reference

	Appendix C Common Object File Format (COFF) and Common Archive File Format (CAFF)
	Characteristics of COFF
	Definitions and Conventions
	Sections
	Physical and Virtual Address

	File Header
	File Header Declaration
	File Header Flags
	File Type Numbers
	Execution File Header Declaration

	Section Headers
	Section Header Declaration
	Section Header Flags
	Sections

	Relocation
	Relocation Entry Declaration
	Direct Relocation
	IP-relative Relocation

	Line Number Entry
	Symbol Table
	Symbol Table Entries
	Structure for Symbol Table Entries
	Symbols and Inner Blocks .bb/.eb
	Symbols and Functions .bf/.ef, .target
	Special Symbols
	Symbol Name
	Storage Classes
	Storage Classes for Special Symbols
	Call Optimization
	Symbol Value Field
	Section Number Field
	Section Numbers and Storage Classes
	Type Entry
	Type Entries and Storage Classes

	Auxiliary Table Entries
	Filenames
	Sections
	Tag Names
	End of Structure
	Functions
	Arrays
	End of Blocks and Functions
	Beginning of Blocks and Functions
	Names Related to Structures, Unions, and Enumerations
	Auxiliary Entry Declaration

	String Table
	Access Routines
	Archive Library Format
	The Archive Identification String
	Archive Members
	The Symbol Table

	Appendix D HP/MRI IEEE 695 Object File Format
	Terminology
	Nomenclature
	Number Format
	Name Format
	Information Variables
	Line Numbers
	Types

	Object File Components
	Header Part
	AD Extension Part
	Environmental Part
	External Part
	Section Part
	Debug Information Part
	Data Part
	Trailer Part

	HP/MPI IEEE-695 Format Object File Semantics
	AD Extension Part and Environment Part
	Public/External Part
	Section Part
	Debug Part
	BB1 Block
	BB3 Block
	BB4 and BB6 Blocks
	BB5 and BB10 Blocks

	Miscellaneous Records
	Module Miscellaneous Records
	Variable Miscellaneous Records
	Procedure Miscellaneous Records
	General Syntax Rules
	Parameters In Miscellaneous Records
	Optional Parameter Fields
	Codes for Miscellaneous Records
	Policies for Adding and Modifying Miscellaneous Records
	Policies for Generating and Reading Miscellaneous Records

	Index

