
i960 Processor
Assembler User’s Guide
Order Number: 485276-005

Revision Revision History Date

-001 Original Issue. 12/92

-002 Minor corrections. 09/93

-003 Revised for CTOOLS960 R4.5 and GNU/960 Tools R2.4. 05/94

-004 Revised for Release 5.0. 02/96

-005 Revised for Release 5.1 01/97

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales
office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product.
No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure
is subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government,
in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

* Other brands and names are the property of their respective owners.

printed on
recycled paper Copyright  1992 - 1994, 1996, 1997. Intel Corporation. All rights reserved.

Contents

iii

Chapter 1 Overview
i960 Processor Assembler and Related Tools1-1
Compatibility and Standards ..1-2
About This Manual ...1-2

Target Audience ..1-3
Conventions ..1-3

Customer Service...1-5

Chapter 2 Invoking the Assembler
Invocation Command ...2-1

Specifying Option Arguments ..2-2
Specifying Single and Multiple Options2-3
Using Uppercase and Lowercase..................................2-3
Naming the Object File ..2-4
Providing Source Input ..2-5

Environment Variables ...2-6
Selecting the Instruction Set and Libraries2-7
Defining a Base Directory Path2-7
Defining an Identification String.....................................2-8
Redirecting Error and Warning Message Output2-8
Building a Search Path for Include Files........................2-8
Building the Search Path for the Assembler
Executable...2-9

Chapter 3 Option Reference
A: Architecture ...3-3
D: Define symbol..3-6

i960 Processor Assembler User's Guide

iv

d: Debug symbols ..3-7
G: Big-endian target ...3-8
I: Include-file search path ...3-9
I: Input from stdin ...3-10
L: Generate a listing ...3-11
n: No compare-and-branch replacement............................3-17
o: Object filename ..3-18
p: Position independence...3-19
V, v960: Version...3-20
W: Warnings...3-21
x: Allow mixed architectures...3-21
z: Time stamp...3-22

Chapter 4 Directives
Syntax ..4-2
Specifying the Input..4-3
Controlling the Location Counter..4-3

Setting the Location Counter to a Specific Value4-3
Moving the Location Counter to a Section.....................4-4

Initializing Data...4-5
Initializing Byte, Ordinal, and Integer Data4-6
Initializing Floating-point Data..4-6
Initializing String Data..4-6

Initializing Blocks of Memory ..4-7
Defining Symbols ...4-7
Providing Debugger Information...4-8
Optimizing ..4-9
Marking Position Independence...4-10
Controlling the Listing...4-10
Directives Reference ..4-10

Chapter 5 Messages

Contents

v

Chapter 6 Assembly Language
Assembly Language Statement Format6-1
Character Set...6-2
Tokens and Separators..6-3
Identifiers ...6-3
Constants...6-3

Simple Constants ..6-3
Representing Floating Point Numbers...........................6-4
Character Constants..6-5
String Constants..6-6

Labels ..6-6
Name (Global) Labels..6-7
Numeric (Local) Labels..6-7

Expressions ...6-7
Operators ..6-8
Expression Types..6-10
Type Propagation in Expressions..................................6-13

Comments..6-14
Summary of Core Instructions..6-15

Data Movement ...6-15
Load..6-16
Store ...6-16
Move...6-17
Select..6-17

Ordinal and Integer Arithmetic.......................................6-18
Basic Arithmetic ..6-18
Extended Arithmetic..6-19
Conditional Arithmetic ...6-19
Remainder and Modulo...6-21
Shift and Rotate..6-21

i960 Processor Assembler User's Guide

vi

Logical ...6-22
Bit, Bit Field, Byte ..6-24

Bit Operations ...6-24
Bit Field Operations ..6-25

Byte Operations...6-25
Comparison ...6-25

Compare and Conditional Compare..........................6-26
Compare and Increment or Decrement.....................6-27

Branch ...6-27
Unconditional Branch..6-28
Conditional Branch..6-28
Compare and Branch..6-29

Call and Return..6-30
Fault ..6-31
Debug..6-32
Processor Management...6-32
Synchronous (K-series only)..6-34
Atomic..6-35

Summary of On-chip Numerics Instructions6-35
Data Movement ...6-35
Sign Copying ...6-37
Data Type Conversion...6-37
Basic Arithmetic ...6-38
Decimal..6-39
Comparison and Classification6-40
Trigonometric Functions ..6-41
Logarithmic, Exponential, and Scale6-42

Contents

vii

Chapter 7 Pseudo-instructions
Syntax..7-1
Branch Pseudo-instructions ...7-2
Conditional Faults Pseudo-instructions7-3
Load Pseudo-instructions...7-3
Call Pseudo-instructions ..7-3
Compare-and-jump Pseudo-instructions............................7-3
Pseudo-instructions Reference ..7-6

Chapter 8 Example Programs
Examples Using the Core Instruction Set...........................8-1

Enable and Count Interrupts From 8259A.....................8-2
Send an IAC to the Processor8-8
Perform a BitBlt Operation...8-9
Perform Matrix Multiplication ...8-11
Compare Strings..8-13

Examples Using Floating-point Instructions8-14
Optimize a Numerics Application...................................8-14
Perform Matrix Multiplication ...8-16

Assembly Code...8-16
C Code..8-18

Perform Basic Numerics Operations..............................8-19
Exponentiate With an Arbitrary Exponent......................8-19
Convert Between Coordinate Systems..........................8-20
Retrieve Fault Record Pointer8-21

Glossary

Index

i960 Processor Assembler User's Guide

viii

Examples
6-1 Example of Constants and Literal Values..................6-5
6-2 Forward-reference External Symbol in Expressions..6-8
6-3 Example of Register Usage.......................................6-13

Figures
8-1 IAC Message Structure ...8-8
8-2 Stack For Fault Handler...8-21

Tables
2-1 Assembler Environment Variables.............................2-6
3-1 Assembler Options ..3-1
3-2 CORE0-3 Architecture Compatibilities.......................3-4
4-1 Functions Performed by Directives............................4-1
6-1 Assembly Language Character Set...........................6-2
6-2 Prefixes for Floating-point Constants6-4
6-3 Floating-point Literals ..6-5
6-4 Character Constants ...6-6
6-5 Expression Operators..6-9
6-6 Operator Precedence ..6-9
6-7 Predefined Register Symbols6-12
6-8 Unary Operation ..6-23
6-9 Binary Operations..6-23
6-10 Binary Operations Continued6-23
6-11 Supported Processor Management Instructions........6-33
7-1 Branch Real Pseudo-instructions7-2
7-2 Compare-and-jump Pseudo-instructions7-5
7-3 Call Pseudo-instruction Substitutions7-9
7-4 Compare and Jump Substitutions7-12

Overview

1-1

1
This chapter of the i960 Processor Assembler User's Guide introduces
you to the i960 processor assembler and to this manual.

This chapter describes:

• using the assembler with other i960 processor software tools
• the standards and conventions used by the assembler and in this

manual
• the trademarks and copyrights pertaining to this manual

i960 Processor Assembler and Related Tools

The i960 processor assembler is part of a complete set of software and
hardware tools for developing embedded applications for the i960
processors. Use ic960 or gcc960, the i960 processor assembler, and the
i960 processor software utilities to translate, link, and format source text
into executable or PROM-programmable code. You can write assembly
source text directly in a text editor or compile a C program to produce
assembly output. To create object files, you can assemble your source text
or the assembly output from the C compiler. Disassembled text from the
dumper is for debugging only and cannot be reassembled. For more
information on how the software tools work together, see the Getting
Started manual.

i960 Processor Assembler User's Guide

1-2

1
Compatibility and Standards

The assembler described in this manual supports the i960 Sx, Kx, Cx, Jx,
Hx, and RP processors.

The assembler accepts output from Release 3.0 and later of the
CTOOLS960 compiler and from Release 1.2 and later of the GNU/960
compiler.

You can specify the assembler object file output format as either
common object file format (COFF), b.out or ELF format. The output
format depends on the assembler invocation command, as shown:
• For b.out format, invoke the assembler with the gas960 command.
• For COFF format, invoke the assembler with the gas960c or asm960

command.
• For ELF format, invoke the assembler with the gas960e command.

For backwards compatibility with your existing script or batch files, the
directory structures and search paths used by the assembler depend on the
invocation name, as shown:

• For behavior similar to the GNU/960 (Release 1.2 or later) assembler,
invoke the assembler with gas960 , gas960c , or gas960e .

• For behavior similar to the CTOOLS960 (Release 3.5) assembler,
invoke the assembler with asm960.

Note that when you invoke the assembler as asm960 you can generate the
COFF output format only.

About This Manual

This manual, the i960 Processor Assembler User's Guide, is part of the
i960 processor software development tools manual set. See Getting
Started with the i960 Processor Software Development Tools for a list of
all manuals in the i960 processor development tools library.

Overview

1-3

1
The i960 Processor Assembler User's Guide provides operating
instructions for the assembler. This manual does not teach development
techniques.

Target Audience

To use the assembler effectively, you must be familiar with the i960
architecture and the development process.

This manual does not provide detailed information about the target
processor. The processor manuals listed in Getting Started with the i960
Processor Software Development Tools contain information such as:

• a description of the i960 architecture
• the processor theory of operation and descriptions of the on-chip

devices
• information about low-level programming for particular processors

For additional information about these topics, order the relevant
publications listed in Getting Started with the i960 Processor Software
Development Tools.

Conventions

In addition to the standard typographical conventions listed on the front
inside cover, this manual uses the following notation and format
conventions.

Case is significant for directives, functions, options, and option arguments.
On UNIX*, case is also significant for invocation names and filenames.

Arguments and operands are in italics. The operand names indicate the
function of the operands (for example, filename , expr).

Directive and pseudo-instruction operands use the following notation:

addr represents an address.

align represents an exponent of 2, used as an
alignment factor.

i960 Processor Assembler User's Guide

1-4

1
data represents ordinal, integer, or floating-point data;

the format of the data depends on the instruction
or directive.

int represents a positive integer.

name represents a symbol or label.

size represents an integer, used as a size factor.

string represents a sequence of ASCII characters.

expr indicates an expression.

Special characters, delimiters, and other punctuation used with the
operands, such as quotation marks and commas, are explicitly shown.

Notation for registers is one or more letters indicating the kind of register
and a number between 0 and 15, as follows:

global register a register g0 through g14 , and fp .

local register a register pfp , sp , rip , and r3 through r15 .

special function register a register available only on the i960 Cx and
Hx processors: sf0-sf2 (Cx) and

sf0-sf4 (Hx) .

floating-point register a register available only with on-chip floating-
point support: fp0 , fp1 , fp2 , and fp3 .

For more information on the registers, see the processor manuals listed in
Getting Started with the i960 Processor Software Development Tools.

Target expressions (targ) representing a memory address are assembled
as a signed displacement value representing an IP-relative address:

Format Displacement Target (targ)

COBR -210 : 210-1 -212 : 212-4 from IP

CTRL -221 : 221-1 -223 : 223-4 from IP

Overview

1-5

1
For convenience in cross-referencing material, the notation used in the
reference sections follows that of the processor manuals listed in Getting
Started with the i960 Processor Software Development Tools.

Customer Service

If you need service or assistance, see Getting Started with the i960
Processor Software Development Tools.

Invoking the Assembler

2-1

2
This chapter discusses the assembler invocation syntax, options, input, and
output and explains how to automate assembly. You can invoke the
assembler from the operating system prompt or from a script or batch file.

Invocation Command

Invoke the assembler as follows:

asm960 | gas960 [c | e] [- option]... [source]... [...]

asm960 or gas960c invokes the assembler to generate COFF output.
The dual syntax provides backwards
compatibility with previous versions of the
iC-960 and gcc960 C compilers.

gas960 invokes the assembler to generate b.out format
output.

gas960e invokes the assembler to generate ELF format
output.

option is an invocation option (described in Chapter 3)
affecting assembler input, operation, and output.
Arguments can follow some options. Case is
significant.

Precede the options with a hyphen (-). In
Windows, you can use a slash (/) instead of the
hyphen.

source is an assembly source filename. You can
provide a complete path name for each source
file. The default search path is the current
directory.

i960 Processor Assembler User's Guide

2-2

2
You can interleave options and source filenames.

NOTES. To use options relevant for COFF output, invoke the assembler
with the asm960 or gas960c command. To use options relevant for b.out-
format output, invoke the assembler with the gas960 command. To use
options relevant for ELF output, invoke the assembler with the gas960e

command.

On UNIX, case is significant for all parts of the assembler invocation
syntax. In Windows, case is significant only for the options and option
arguments.

Examples throughout this manual use a UNIX host system and the
gas960e invocation command and directory structures, unless otherwise
noted.

The b.out assembler does not support the i960 RP Processor.

Specifying Option Arguments

Some options require arguments. The assembler interprets any string
following such an option as the option argument. Omitting an option
argument at the end of the command line causes an error. For example:

gas960e myprog.as -o
gas960: Expected a filename after -o.

You can put a space between an option and its argument. The following
are both correct:

gas960e myprog.as -omyprog.o
gas960e myprog.as -o myprog.o

An incorrect argument causes an error message appropriate to the option.
See Chapter 3, Option Reference, for information on the valid arguments
for each option.

Invoking the Assembler

2-3

2
Specifying Single and Multiple Options

Precede options with a hyphen (-):

gas960e myprog.as -o myprog.obj -W -V

On Windows* 95/Windows NT*-based machines, you can use a slash (/)
instead of the hyphen.

Any string that does not begin with a hyphen and is not positioned as an
option argument is interpreted as a source filename. The following
example shows the message caused when the V option is specified without
a hyphen and no file named V is in the search path:

gas960e -W V myprog.as
Can't open V for reading.
No such file or directory.

Some options consist of a single character with no arguments. You can
specify two or more such options as an option group with a single hyphen:

gas960e myprog.as -o myprog.obj -WV

Using Uppercase and Lowercase

Depending on your host system, case can be significant in the assembler
invocation name. For example, on Windows, entering ASM960 is the same
as entering asm960. On UNIX, you can invoke the assembler with
asm960 but not with ASM960.

Regardless of your host system, case is significant in the options and
arguments. For example, an uppercase W is valid, but a lowercase w causes
the following message:

Unrecognized option: w

i960 Processor Assembler User's Guide

2-4

2
Naming the Object File

After a successful assembly, the assembler produces an object file in
common object file format (COFF), b.out or ELF format. To generate a
COFF object file, invoke the assembler with asm960 or gas960c . To
generate a b.out format object file, invoke the assembler with gas960 . To
generate an ELF file, use gas960e . For a description of the COFF file
format, see your utilities user's guide. For a description of ELF, see the
Intel 80960 EABI specification (Intel Literature order number 631999)
listed in Getting Started.

When you specify a source file with the .s or .as extension, the
assembler creates an object file with the extension .o . When you specify
a file with any other extension (or none) the assembler creates an object
file with full source filename (including its original extension) with .o

appended.

When you provide the first block of input interactively, the object
filename is a.out for COFF output, b.out for b.out format output, and
e.out for ELF output. For example, the following produces a single
object file named ex1.o :

gas960e ex1.s ex2.s ex3.s

To specify the object filename, use the o option. For example, the
following creates or replaces an object file named ex1.o :

gas960e example.src -o ex1.o

The assembler can overwrite an existing file unless the filename ends in
.s , .as , or .asm . To ensure your source files are not accidentally
overwritten, use the protected filename extensions. For example, if ex1.s

exists, the following stops assembly with an error:

gas960e example.s -o ex1.s
FATAL: Output file will overwrite existing protected file.

You can use assembler directives, as described in Chapter 4, Directives, to
specify the contents of the object file. Additional software utilities are
available to read and reformat the object file, as described in the i960
Processor Software Utilities User's Guide.

Invoking the Assembler

2-5

2
Providing Source Input

You must provide source text from at least one of:

• a file named in the assembler invocation command
• stdin , such as the keyboard or the redirected output of another

command

For information on stdin , see your host operating system documentation.

An assembly source file is an ASCII file of assembly language instructions
and assembler directives. You can write the assembly source using a text
editor or generate an assembly file with the C compiler.

For interactive input, specify the i option and provide lines of assembly
source from stdin (for example, lines entered from the keyboard or piped
from another application). The following example pipes the output of a
script named mybuild (invoked with the UNIX C shell primitive source

command) into the assembler:

source mybuild | gas960e -i

For information on piping, see your host operating system documentation.

To end keyboard input, type the Ctrl-d key combination on a new line.
The following keyboard-entry example assembles five lines, naming the
output object file e.out :

gas960e -i
roundr g0, fp0
subr fp0, g0, g0
expr g0, g0
addr 1.0, g0, g0
scaler g1, g0, g0
^d

In the invocation command, list sources in the order in which you want
them assembled. The assembler concatenates all source files and
interactive input, then assembles instructions and data into sections by
order of appearance in the source text.

i960 Processor Assembler User's Guide

2-6

2
The following example assembles source from ex1.s , then from
interactive input (the i option), then from ex2.s . Program elements from
any one block of the input (for example, ex1.s) are available to any other
block of the input (for example, ex2.s) as if all the input were in a single,
sequential file.

gas960e ex1.s -i ex2.s

You can use other assembler options and source files with interactive
input. The following example displays the assembler version and begins
interactive input from the keyboard:

asm960 -V -i

To ensure your source files are not accidentally overwritten, use the .s ,
.as , or .asm protected filename extensions, as described in Naming the
Object File on page 2-4.

Environment Variables

Environment variables set default operating parameters, such as search
paths and the target architecture. For a list of environment variables and
their uses, see your Getting Started manual. Define the environment
variables before invoking the assembler.

The assembler supports all I960 and G960 environment variables,
preferring those that match the invocation style. For example, when you
invoke the assembler as asm960, the assembler looks first for I960

environment variables, and for those settings not found, looks for G960

environment variables. The environment variables used by the assembler
are listed in Table 2-1 below.

Table 2-1. Assembler Environment Variables

gnu Tools Name CTOOLS Name Purpose

G960ARCH I960ARCH Specifies target architecture.

G960IDENT I960IDENT Allows use of the COFF .ident directive.

G960INC I960INC Specifies include directory path.

G960BASE I960BASE Specifies base environment directory.

Invoking the Assembler

2-7

2
For more information on environment variables, see your host operating
system documentation.

Selecting the Instruction Set and Libraries

The assembler reports an error for any instruction in your source text that
is not valid for your target processor instruction set. To assemble for a
specific i960 processor, you can define the I960ARCH or G960ARCH

architecture environment variable. Then, you need use the A option
(described in Chapter 3) only to override the environment variable.
Leaving the environment variable undefined and omitting the A option
assembles for the i960 KB architecture.

To specify the default instruction set, define the architecture environment
variable as SA, SB, KA, KB, CA, CF, JA, JD, JF, RP, HA, HD or HT. For
example, the following specify SA instructions unless a different
processor is specified with the A option:

csh setenv I960ARCH SA

sh or ksh I960ARCH=SA;export I960ARCH

Other i960 processor software tools also use the architecture environment
variable, as described in Getting Started.

Defining a Base Directory Path

You can set an environment variable to the assembler and utilities base
directory. Such a value can be useful for setting other search-path
environment variables. The following defines a base-directory
environment variable named G960BASE:

csh setenv G960BASE /usr/local/intel960

sh or ksh G960BASE=/usr/local/intel960;export G960BASE

i960 Processor Assembler User's Guide

2-8

2
Defining an Identification String

To put assembler identification and information from the .ident directive
into a COFF object file, define the I960IDENT or G960IDENT environment
variable to any non-null value, as shown in the following example:

csh setenv I960IDENT 1

sh or ksh I960IDENT=1;export I960IDENT

Redirecting Error and Warning Message Output

The I960ERR variable lets you specify whether messages are directed to
stdout or stderr . When I960ERR is not set, messages go to stdout .
When I960ERR is set to a non-null string, the output goes to stderr . This
variable functions under Windows only.

Building a Search Path for Include Files

You can extend the search path as follows for files included with
.include :

• The assembler always searches the current directory first.
• You can specify additional directories with the I option, described in

Chapter 3, Option Reference.
• You can specify a default list of directories, separated with colons (:),

with I960INC or G960INC. When you do not use the I option, the
assembler searches the directories specified by I960INC or G960INC.

Note that when you use both the I option and the I960INC or G960INC

variables, the environment variable setting takes precedence.

The following commands set G960INC to
/usr/local/intel960/include :

csh setenv G960INC /usr/local/intel960/include

sh or ksh G960INC=/usr/local/intel960/include;export G960INC

Invoking the Assembler

2-9

2
Building the Search Path for the Assembler
Executable

To invoke the assembler from any directory, add the assembler directory
to your PATH environment variable. Once the directory is in your PATH,
you need not use the directory path name to invoke the assembler.

For example, with I960BASE set to your assembler base directory, you can
augment your PATH as follows:

csh setenv PATH $I960BASE/bin:$PATH

sh or ksh PATH=$I960BASE/bin:$PATH;export PATH

Option Reference

3-1

3
This chapter describes the assembler options alphabetically. Table 3-1
summarizes the option names, arguments, effects, and defaults.

The following notation is used in this chapter:

{item|item} Select one of the items listed between braces. A
vertical bar (|) separates the items.

[items] Items enclosed in brackets are optional.

Table 3-1 Assembler Options

Option Effect of the Option
Default Action of the
Assembler

A { SA | SB |
KA | KB | CA |
CF | JA | JD | JF
| RP | HA | HD |
HT | CORE0 |
CORE1 | CORE2
| CORE3 |
ANY }

selects the instruction set. uses the instruction set
specified by the I960ARCH or
G960ARCH environment
variable, if defined; otherwise,
uses KB.

D sym[=value] defines an absolute symbol.
Symbols defined in this way
can be used in .if and .ifdef
expressions.

symbols must be defined in
the source text.

d retains debug information
for local symbols beginning
with L or a dot (.).

discards symbolic information
for local symbols beginning
with L or a dot (.).

G generates big-endian COFF
or ELF code.

generates little-endian code.

h Help: prints a brief
description of each option.

no help text is printed.

continued ☛

i960 Processor Assembler User's Guide

3-2

3
Table 3-1 Assembler Options (continued)

Option Effect of the Option
Default Action of the
Assembler

I directory path adds directories to the
search path for include files.

searches in the current
directory and uses the
I960INC or G960INC
environment variable.

i reads source from stdin . reads source from files.
L list_options generates a listing. Listing

sub-options modify the
listing behavior.

no listing is generated.

n do not replace compare-
and-branch instructions.

replaces compare-and-branch
instructions.

o objfile specifies an object filename. uses a.out, b.out, e.out, or a
filename derived from the first
source filename.

p {c | d | b} generates
position-independent
instructions and/or data.

generates position-dependent
code and data.

V displays a version message
and continues the
assembly.

displays no version message.

v960 displays a version message
and stops the assembly.

displays no version message;
the assembly proceeds.

W suppresses the warning
messages.

displays the warning
messages.

x generates warnings about
architecture mismatches.

generates error message
when it encounters
architecture mismatch.

z suppresses the object file
header time-and-date stamp
for COFF assembler.

writes the assembly time and
date in the object file header.

Option Reference

3-3

3
A: Architecture
Select the architecture
(instruction set)

A arch

arch is SA, SB, KA, KB, CA, CF, JA, JD, JF, RP, HA, HD,
HT, CORE0, CORE1, CORE2, CORE3, or ANY.

Discussion

To select your i960 processor instruction set, specify the A option. The
assembler displays an error message for each instruction in the source text
that is invalid for the selected architecture, or a warning when you use the
x option.

Some pairs of A arguments have identical effects:

• SA is the same as KA.
• SB is the same as KB.
• CA is the same as CF.

Without the A option, the assembler uses the instruction set specified by
the I960ARCH or G960ARCH environment variable. If the architecture
environment variable is undefined, the assembler uses the KB instruction
set.

New CORE Architecture Options

With CTOOLS release 5.1, the assembler supports architecture settings to
allow the generation of code that is compatible with multiple i960
processor types. These settings are referred to as core architectures.
Table 3-2 shows the types of i960 processors that are supported by each
core architecture.

i960 Processor Assembler User's Guide

3-4

3
Table 3-2. CORE0-3 Architecture Compatibilities

-A Switch Used Compatible Architectures

CORE0 Jx, Hx, RP

CORE1 Kx, Sx, Cx, Jx, Hx

CORE2 Jx, Hx

CORE3 Cx, Jx, Hx

i960 RP Architecture Available Instructions

With CTOOLS 5.1, the -ARP architecture option provides a subset of the
80960Jx instruction set. These restrictions are enforced by the assembler
and other tools when the -ARP switch is used or when the RP architecture
is specified using the I960ARCH or G960ARCH environment variables.

The following 80960Jx instructions are not supported with the -ARP

architecture:
addi halt remo

addi<cc> intctl shli

atadd ldt shrdi

atmod mark spanbit

cmpdeci modac stib

cmpdeco modi stis

cmpinci modify stt

cmpinco modtc subi

concmpi movl subi<cc>

concmpo movq sysctl

eshro movt test<cc>

extract notor xnor

fault<cc> remi

Option Reference

3-5

3
i960 RP Architecture Address Mode Restrictions

The following addressing mode restrictions exist for MEM format
instructions when specifying an 80960RP target:

• Indexed addressing modes are not available.
• IP-relative addressing is not available.
• Two-word MEM-format is not available for the following

instructions:
 ldl
 stl
 ldq
 stq
 bx
 callx

• The balx instruction may only use register-indirect addressing (no
offsets or displacements allowed).

Other consequences of using the RP output architecture are:

• The calls instruction may use register g13 or a literal as its target
only.

• For the modpc instruction, the mask cannot specify the same register
as the src/dst register.

• The calljx pseudo-instruction requires a second argument – a
temporary register into which the address of the first argument can be
loaded. See Chapter 7 for information on the use of calljx with the
RP architecture.

Examples
1. Floating-point instructions are invalid for the CA. In the following, line

5 of the fp.s source file contains a roundr floating-point instruction:

gas960e fp.s -ACA
fp.s:5: Opcode is not in target architecture: "roundr".

2. The following sets I960ARCH to SA. Invoking the assembler without A

uses the SA instruction set, which is identical to the KB.

setenv I960ARCH SB
gas960e fp.s

i960 Processor Assembler User's Guide

3-6

3
D: Define symbol
Define an absolute
symbol from the
command line

D symbol [= value]

symbol is the name of the symbol you want to create.

value is any valid non-relocatable expression.

Discussion

This option is intended to be used with the .if and .ifdef directives for
conditional assembly. It resembles the similar compiler preprocessor
option. If =value is left blank, then the value of name is set to 1. If you
want to include spaces anywhere with symbol =value , then the entire
symbol =value must be quoted.

Examples

The following creates a symbol called foo and sets its value to 1:

gas960 -D foo file.s

Within file.s , both of the following would evaluate to true:

.if foo

.ifdef foo

gas960 -D "foo = bar * 12" file.s

Within file.s , the symbol bar must be defined and be non-relocatable.

gas960 -D foo=0 file.s

Option Reference

3-7

3
Within file.s , the expression

.ifdef foo

is true, but the expression

.if foo

is false. (See the discussion of .if and .ifdef in Chapter 4.)

d: Debug symbols
Keep debugging
information about
assembler temporary
symbols

d

Discussion
The assembly output from the compiler contains local symbols beginning
with an L, as generated by a gcc960 invocation of the compiler, or a dot
(.), as generated by an ic960 invocation of the compiler. To retain such
symbols in the object-file symbol table, specify the d option. Without d,
the assembler removes all such local symbols.

Examples

The following shows the original C source text and the corresponding
assembly output with the local symbols generated by a gcc960 invocation
of the compiler:

if (a==b)
hi=b;

else
hi=c;

i960 Processor Assembler User's Guide

3-8

3
The compiler assembly output (in the file cmset.s) is:

 cmpi g0,g1
 be L1
 b L2
L1: st g1,hi
 b A1
L2: st r6,hi
A1:

The following puts L1 and L2 in the object-file symbol table:

gas960c -d cmset.s

G: Big-endian target
Produce a COFF or
ELF file for a big-
endian target

G

Discussion

You can configure COFF or ELF program text-type and data-type sections
in either big-endian or little-endian byte order. For big-endian instructions
and data, specify the G option when:

• assembling for the C-series, J-series, or H-series architecture
• invoking the assembler with asm960 or gas960c (COFF only) or

gas960e (ELF only)

Note that the i960 RP processor does not support big-endian byte order,
even though its core processor is an 80960Jx.

For byte-order information, see C: A Reference Manual.

Option Reference

3-9

3
Example

The following produces a COFF file for a big-endian target. The .text-
and .data-style sections of the COFF file is in the host byte order,
regardless of the G option.

gas960c -G -ACA big.a

I: Include-file search path
Augment the search
path for include files

I path

path is a directory pathname.

Discussion

The assembler always searches the current directory for .include

filenames. You can augment the search path by:

• defining the I960INC or G960INC environment variable (described in
Chapter 2) before invoking the assembler

• using the I option once or more when invoking the assembler

The search path sequence is:

1. the current working directory
2. any directories specified by I960INC or G960INC, in the order defined
3. any directories specified with I , in the order on the command line

i960 Processor Assembler User's Guide

3-10

3
Example

The following line in the mathr.s source file includes the /mylib/fp.s

source file:

.include "fp.s"

when invoked as:

asm960 mathr.s -I/mylib

i: Input from stdin
Include keyboard or
redirected input

i

Discussion

You must provide source text from at least one of:

• a filename specified on the command line
• the keyboard, the redirected output of another command, or any other

device designated as stdin

For stdin input, use the i option once in the assembler invocation. To
assemble keyboard input, after entering the command line, enter lines of
source text from the keyboard. To end the keyboard input, enter the
Ctrl-d key sequence on a new line. To assemble redirected output from
another application, pipe the application output into the assembler
invocation. You need not enter Ctrl-d to end the redirected input.

You can use both the i option and zero or more source filenames. The
assembler processes the stdin input in sequence with any source files.

Option Reference

3-11

3
When stdin is the first or only source specified on the command line, the
default object filename is a.out for a COFF object file, b.out for a b.out-
format object file, and e.out for an ELF format objet file. Use the o

option to specify a different object filename.

For information on piping and on stdin , see your host system manual.

Examples

1. The following assembles several lines of code from the keyboard after
the source text from the predef.s file:

gas960e predef.s -i
 roundr g0, fp0
 subr fp0, g0, g0
 expr g0, g0
 addr 1.0, g0, g0
 scaler g1, g0, g0
^d

2. The following assembles the output from the getpatch script
(invoked with the csh primitive source command) between src1.s

and src2.s :

source getpatch | gas960e src1.s -i src2.s

L: Generate a listing
Print an assembly listing
on the screen or into a
file

L [option [option-arg]]

option is one of the following:

a list all lines, ignoring .nolist directives.

e list text and data in target-endian byte order.

i960 Processor Assembler User's Guide

3-12

3
f print the listing into a file. option-arg is the

name of the file.

n do not list files included with .include.

t use option-arg as the listing title. If the
title contains spaces, then it must be quoted.
This option overrides .title directives in the
source.

z do not print the listing header.

Discussion

With no options, the listing is printed on the standard output and all listing
defaults are in effect. Options that do not take arguments can be catenated
together (with no spaces) after a single L option. Space is optional
between an option that takes an argument and the argument.

The byte order of the listing is always target-endian when listing data
sections. For text sections, instructions are printed big-endian ("left-to-
right") unless you specify Le, and then they are printed in target-endian
byte order.

Examples

Several example listings follow. Where appropriate, the contents of the
assembly language file is also shown. The first example shows the
simplest listing invocation.

The file listex1.s contains:

.title "Listing Example 1"
.text

mov g0,g1
.data

.short 0x1234

The assembler invocation command is:

$ gas960e -L listex1.s

Option Reference

3-13

3
Listing Example 1

ASSEMBLER VERSION: Intel 80960 ELF Assembler, 5.1.5002, Thu Sep 26
23:25:43 MST 1996

TIME OF ASSEMBLY: Mon Oct 21 23:48:16 1996 COMMAND LINE: gas960e -L
listex1.s

Number of errors: 0

Number of warnings: 0

Source File: listex1.s

1 000000 .title "Listing Example
1"

2 000000 .text

3 000000 5c881610 mov g0,g1

4 000004 .data

5 000004 3412 .short 0x1234

The next example shows -Lz , (don't print the listing header), and -Lf ,
(print listing in a file).
$ gas960 -Lz -Lf listex1.L listex1.s

The file listex1.L contains:
Source File: listex1.s
 1 000000 .title "Listing Example 1"
 2 000000 .text
 3 000000 5c881610 mov g0,g1
 4 000004 .data
 5 000004 3412 .short 0x1234

The next example shows the effect of the .nolist directive on the listing.
The file listex2.s contains:

.title "Listing Example 2"
.text

mov g0,g1
.data

.short 0x1234
.nolist

.asciz "Skip strings in the listing"

.asciz "Skip this one too"
.list

.word 0x12345678

i960 Processor Assembler User's Guide

3-14

3
The assembler command is:

$ gas960e -L listex2.s

Listing Example 2
ASSEMBLER VERSION: Intel 80960 ELF Assembler, 5.1.5002, Thu Sep 26
23:25:43 MST 1996
TIME OF ASSEMBLY: Mon Oct 21 23:51:23 1996 COMMAND LINE: gas960e -L
listex2.s

Number of errors: 0
Number of warnings: 0

Source File: listex2.s
1 000000 .title "Listing Example 2"
2 000000 .text
3 000000 5c881610 mov g0,g1
4 000004 .data
5 000004 3412 .short 0x1234
6 000006 .nolist
7 000006 .list
8 000006 7856 3412 .word 0x12345678

The .nolist directive can be defeated from the command line with -La :
$ gas960c -Lza listex2.s

Source File: listex2.s
 1 000000 .title "Listing Example 2"
 2 000000 .text
 3 000000 5c881610 mov g0,g1
 4 000004 .data
 5 000004 3412 .short 0x1234
 6 000006 .nolist
 7 000006 536b 69702073 .asciz "Skip strings in the
listing"
 7 00000c 7472696e 67732069
 7 000014 6e207468 65206c69
 7 00001c 7374696e 6700
 8 000022 536b .asciz "Skip this one too"
 8 000024 69702074 68697320
 8 00002c 6f6e6520 746f6f00
 9 000034 .list
 10 000034 78563412 .word 0x12345678

Option Reference

3-15

3
Normally, text sections are listed in big-endian byte order. This matches
left-to-right ordering of instructions in manuals. You can override this
behavior on the command line with -Le . Note in the next example that the
listing show the exact ordering of bytes in the object file:

$ gas960c -Lze listex2.s

Source File: listex2.s
 1 000000 .title "Listing Example 2"
 2 000000 .text
 3 000000 1016885c mov g0,g1
 4 000004 .data
 5 000004 3412 .short 0x1234
 6 000006 .nolist
 9 000034 .list
 10 000034 78563412 .word 0x12345678

Here is another example that shows big-endian byte order in both the text
and data sections:

$ gas960c -ACA -G -Lze listex2.s

Source File: listex2.s
 1 000000 .title "Listing Example 2"
 2 000000 .text
 3 000000 5c881610 mov g0,g1
 4 000004 .data
 5 000004 1234 .short 0x1234
 6 000006 .nolist
 9 000034 .list
 10 000034 12345678 .word 0x12345678

The next example shows the effect of the .include directive on the
listing. The file listex3.s contains:

.title "Listing Example 3"
.text

mov g0,g1
.ifdef INCLUDE4
.include "listex4.s"
.endif
.data

.short 0x1234

i960 Processor Assembler User's Guide

3-16

3
The file listex4.s contains:

foo:
ldconst -1, g6

The assembler command is:

$ gas960 -Lz -D INCLUDE4 listex3.s

Source File: listex3.s
 1 000000 .title "Listing Example 3"
 2 000000 .text
 3 000000 5c881610 mov g0,g1
 4 000004 .ifdef INCLUDE4
 5 000004 .include "listex4.s"

Source File: ./listex4.s
 1 000004 foo:
 2 000004 59b01901 ldconst -1, g6

Source File: listex3.s
 6 000008 .endif
 7 000008 .data
 8 000008 3412 .short 0x1234

You can tell the assembler to not list include files with -Ln :

$ gas960 -Lzn -D INCLUDE4 listex3.s

Source File: listex3.s
 1 000000 .title "Listing Example 3"
 2 000000 .text
 3 000000 5c881610 mov g0,g1
 4 000004 .ifdef INCLUDE4
 5 000004 .include "listex4.s"
 6 000008 .endif
 7 000008 .data
 8 000008 3412 .short 0x1234

The last example shows how to override the .title directive from the
command line with -Lt :

$ gas960e -Lt "LISTING EXAMPLE 247" listex3.s

Option Reference

3-17

3
LISTING EXAMPLE 247
ASSEMBLER VERSION: Intel 80960 ELF Assembler, 5.1.5002, Thu Sep 26
23:25:43 MST 1996
TIME OF ASSEMBLY: Mon Oct 21 23:54:54 1996
COMMAND LINE: gas960e -Lt LISTING EXAMPLE 247 listex3.s

Number of errors: 0

Number of warnings: 0

Source File: listex3.s
1 000000 .title "Listing Example 3"
2 000000 .text
3 000000 5c881610 mov g0,g1
4 000004 .ifdef INCLUDE4
5 000004 .include "listex4.s"
6 000004 .endif
7 000004 .data
8 000004 3412 .short 0x1234

n: No compare-and-branch replacement
Do not replace
compare-and-branch
instructions

n

Discussion

For short conditional branches and jumps, you can save execution time
and space by using a single compare-and-branch (COBR) instruction. The
branch address can be any expression that evaluates to a 13-bit value.

To stop the assembler with an error when the branch address is out of
range, specify the n option. Without n, the assembler replaces the short-
range compare-and-branch instruction with two instructions.

i960 Processor Assembler User's Guide

3-18

3
Examples

1. In the following, n prevents the assembler from expanding the cmpibe

instruction for the undefined external m1. The assembler displays an
error message.

$ gas960e -i -n
cmpibe g0,g1,ml
^D
can't use COBR format with external label

2. Without n, and with the s option, the following replaces cmpibe :

0: 5a046090 cmpi g0,g1
4: 12fffffc be m1

o: Object filename
Name the object file

o objfile

objfile is a valid filename.

Discussion

To specify the object filename, use the o option with a filename or a
complete pathname. The default object filename is in the current
directory:

• a filename based on the first source filename on the command line,
replacing any .s or .as source-filename extension with .o or appending
.o to any other source filename after the extension.

• a.out, when you invoke the assembler with asm960 or gas960c (for
COFF output) with interactive input as the first or only source.

• b.out, when you invoke the assembler with gas960 (for b.out-format
output) with interactive input as the first or only source.

• e.out, when you invoke the assembler with gas960e (for ELF output)
with interactive input as the first or only source.

Option Reference

3-19

3
To avoid accidentally overwriting your source files, use a protected .s ,
.as , or .asm source-filename extension (the assembler does not overwrite
existing files with one of these extensions).

Example

The following names the output file prog1.o :

asm960 myprog.asm -o prog1.o

p: Position independence
Mark the COFF or ELF
object file as containing
position-independent
code or data

p type

type is one of the following:

c indicates position-independent code.

d indicates position-independent data.

b indicates both position-independent code and
data.

Discussion

To indicate position-independent code or data in the COFF or ELF file,
use the p option. You can also use the .pic , .pid , and .link_pix

directives, described in Chapter 4.

Example

The following marks the object file as position-independent:

asm960 -pb mypi23.s

i960 Processor Assembler User's Guide

3-20

3
V, v960: Version
Display the assembler
version number and
creation date







V

v960

Discussion

To display a version message on stdout during assembly, use V. After
displaying the message, the assembler continues. For information on
stdout , see your host system manual.

To display the message without assembling, use v960 . After displaying
the message, the assembler stops.

The message includes the assembler version number and the assembler
creation date and time.

Example

The following shows a sample version message:

$ gas960e myprog.asm -v960

Intel 80960 ELF Assembler, 5.1.5002, Thu Sep 26 23:25:43
MST 1996

Option Reference

3-21

3
W: Warnings
Suppress the warning
messages

W

Discussion
To suppress the warning messages, use W. The error messages continue to
appear on stderr . For information about the message formats, see
Chapter 5. For information on stderr , see your host system manual.

Example
The following suppresses the warning messages during assembly:

asm960 myprog.asm -W

x: Allow mixed architectures
Allow architecture
mismatches

x

Discussion
Using the x option causes the assembler to generate warnings (not errors)
when it encounters mixed architectures (e.g., opcode not in target
architecture).

i960 Processor Assembler User's Guide

3-22

3
z: Time stamp
Suppress the time stamp
in the COFF output file

z

Discussion
The assembler puts the current time and date in the file header of the
COFF output file. On most UNIX systems, to put Time Zero in place of
the current time stamp, specify z . Time Zero is 4:00, 31 December, 1969.

The z option has no effect on b.out or ELF format output.

Example

The following command specifies Time Zero for the time stamp:

gas960e -z file1.s

Directives

4-1

4
This chapter describes how to use the assembler directives in your source
text. The Directives Reference section, which begins on page 4-10
provides an encyclopedia of the directives.

Table 4-1 Functions Performed by Directives

Category Function Directives

The input-specification
directives

specify how the assembler
finds and reads input and
controls conditional
assembly.

.if, .else, .endif, .ifdef,

.ifndef, .ifnotdef, .include

The location-counter
control directives

change the location
counter and specify
program sectioning.

.align, .bss, .data, .org,

.section, .text

The data and memory
initialization directives

assemble data in integer,
ordinal, and real formats
and initialize strings and
memory blocks.

.ascii, .asciz, .byte,

.double, .extended, .fill,

.float, .single, .int, .long,

.word, .short, .hword,

.space

The symbol and
debugger-support
directives

define symbols and
provide source and
symbolic information for
debugging.

.comm, .def, .endef,

.desc, .elf_size,

.elf_type, .equ, .global,

.globl, .set, .lsym, .file,

.lcomm, .line, .ln, .stabd,

.stabn, .stabs, .scl,

.size, .tag, .type, .val

The optimization
directives

optimize memory
addressing and procedure
calls.

.leafproc, .lomem,

.sysproc

continued ☛

i960 Processor Assembler User's Guide

4-2

4
Table 4-1 Functions Performed by Directives (continued)

Category Function Directives

The identification
directive

identifies the assembly. .ident

The abort directive stops the assembly. .ABORT

The position-
independence
directives

mark object files as
position-independent.

.pic, .pid, .link_pix

The listing directives control listing behavior. .list, .nolist, .title, .eject

NOTE. To assemble directives relevant for COFF development, invoke
the assembler as asm960 or gas960c . For directives relevant for b.out-
format development, use gas960 . For directives relevant to ELF
development, use gas960e .

Syntax

For the directives in your source text, use the following syntax:

. name arg_string

name is the directive keyword. The leading dot (.) is
required.

arg_string is zero or more arguments, according to the
requirements of the directive.

Directives

4-3

4
Specifying the Input

When invoking the assembler, you must specify a source file on the
command line, as described in Chapter 2. For additional source text, you
can include the contents of other files with the .include directive. The
assembler inserts the included source text in place of the .include line.

You can specify blocks of source text to be assembled or ignored based on
conditions determined during assembly. To delimit text for conditional
assembly based on expression evaluations, use the .if , .else , and
.endif directives. To delimit text for conditional assembly based on
symbol definitions, use the .ifdef , .ifndef , and .ifnotdef directives.
These directives are especially useful when used in combination with the D

option (described in Chapter 3).

Controlling the Location Counter

The assembler uses the location counter to determine the address of each
instruction or data item. The location counter begins at zero and increases
by one for each byte assembled. A dot (.) symbolically represents the
location counter.

Setting the Location Counter to a Specific Value

To manipulate the location counter directly:

.align increments the location counter to the next
address boundary fitting the alignment factor.
Also stores the largest alignment found per
section into the output file for later use by the
linker.

.org sets the location counter to the address you
specify.

. (dot) is the location-counter symbol for expressions
and assignments.

i960 Processor Assembler User's Guide

4-4

4
To align data and instructions, use .align . The assembler starts the next
instruction or data item on an address that fits the specified alignment,
padding the intervening bytes with zeros or with a value you provide.

To set the location counter to a specific address, use .org or an
assignment statement. The assembler gives the location counter the value
you provide. You can express the new address in terms of the current
location counter, represented by the dot (.). For example, the following
advances the location counter by four bytes:

.org . + 4

The following example uses the location counter (.) as an operand
behaving just like a local label:

 lda ., g5
 lda . - 4, g5
 lda . + 6, g7

alab: b blab
blab: cmpojne 0, 0, alab

 lda . - alab, g6
.set symname, . - alab

.data

.word .

.word . + 4

.word . - 16

Moving the Location Counter to a Section

In COFF and ELF programs, you can define multiple sections of
executable code (text-type sections), initialized data (data-type sections),
or uninitialized data (bss-type sections). In b.out-format programs, you
can define one .bss section, one .text text-type section, and one .data

data-type section. For more information on section types and object-file
formats, see the utilities user's guide.

Directives

4-5

4
You can start a new section or continue a previous section at any point in
your source text with the section directives:

.text puts executable code into a section named
.text .

.data puts initialized data into a section named .data .

.bss puts uninitialized data into a section named
.bss .

.section for COFF and ELF programs only, puts
executable code, initialized data, or uninitialized
data into a section that you name.

COFF and ELF programs contain three or more sections; b.out-format
programs contain exactly three sections. All object files contain at least
the standard .text , .data , and .bss sections.

The order of sections in any program and the names and number of
sections in a COFF or ELF program depend on the section definitions in
your source text. Omitting the.text , .data , or .bss section directives
creates the standard sections with zero size.

The first section directive creates the section and points the location
counter to the beginning of the section. Later in the program, you can
append text or data to existing sections with additional .text , .data , or
.bss section directives or (for COFF and ELF programs) with additional
.section directives specifying the same section names.

Initializing Data

To define data in memory, use the data-initialization directives according
to the size of the memory block to be initialized and the data format:

• a single memory location with byte, ordinal or integer data
• a single memory location with real data types
• a memory block with string data
• a memory block with specified values or zeros

i960 Processor Assembler User's Guide

4-6

4
Initializing Byte, Ordinal, and Integer Data

To initialize data in byte, ordinal, and integer formats, use:

.byte for byte-aligned data (8 bits or shorter).

.short , .hword for half-word-aligned data (16 bits or shorter).

.int , .long , .word for word-aligned data (32 bits or shorter).

You can specify a bit field of up to 32 bits with arguments to the byte-
initialization, half-word initialization, and word-initialization directives.
For more information, see the Directives Reference on page 4-10.

Initializing Floating-point Data

To initialize data in real or floating-point formats, use:

.float , .single for 32-bit real data.

.double for 64-bit real data.

.extended for 80-bit real data (stored in 12 bytes).

How the processor treats real data depends on whether floating-point
instructions are supported. The KB and SB include on-chip floating-point
support and can use the accelerated floating-point (AFP-960) library. The
other i960 processors emulate floating-point arithmetic in software.

For more information on floating-point support, see the AFP-960 library
supplement and the processor handbooks.

Initializing String Data

To define character strings, use:

.ascii for a string.

.asciz for a null-terminated string.

For information on characters and escape sequences allowed in character
strings, see Chapter 6.

Directives

4-7

4
To terminate the string with a null character (ASCII 0), for C language
compatibility, use the .asciz directive. Using .ascii does not append a
null character.

You can use .byte with a set of character constants in place of .ascii .
For example, the following assemble the same data:

.ascii "cat" # assemble an ascii string

.byte 'c', 'a', 't' # assemble 3 ascii bytes

Initializing Blocks of Memory

To put a repeated value into a block of memory, use:

.fill fills the block with a value you specify.

.space fills the block with zeros.

Defining Symbols

To define symbols, use:

.globl , .global for global symbols in the object-file symbol
table.

.comm for common symbols in the object-file symbol
table.

.lcomm for local common symbols.

.set , .equ , .lsym for non-relocatable symbols.

You can make a symbol external implicitly. Using a symbol without
defining it adds it to the symbol table as an undefined external symbol.
The symbol type and other symbolic information are derived from the
context in which you use the symbol.

The assembler uses an internal symbol table that is not retained in the
object file. To define and initialize non-relocatable symbols for the
internal symbol table, use the .set , .equ , or .lsym directives.

i960 Processor Assembler User's Guide

4-8

4
With the optimization and debugging directives, you need use no
additional symbol-definition directives. For more information on
debugging and optimizing, see the Providing Debugger Information
(page 4-8) section and the Optimizing section (page 4-9).

Providing Debugger Information

For COFF debugging, the compiler puts the following directives in the
assembly output:

.def begins a symbol definition.

.dim specifies the array dimensions.

.endef ends a symbol definition.

.line sets a line number.

.ln specifies a line number and the associated
address.

.scl declares a storage class.

.size specifies the symbol size.

.tag specifies an associated tag.

.type declares a symbol type.

.val declares the symbol value.

For b.out-format debugging, the compiler puts the following directives in
the assembly output:

.desc sets the symbol descriptor.

.lsym creates and initializes a debugging symbol with
no additional symbolic information.

.stabd creates a debugging symbol for the location
counter.

Directives

4-9

4
.stabn creates and initializes a debugging symbol

named the empty string ("").

.stabs creates and initializes a debugging symbol with
all possible symbolic information.

For ELF-format symbol table embellishment, the compiler puts the
following directives in the assembly output:

.elf_size sets the size of the symbol to the given quantity.

.elf_type sets the ELF type of the symbol to the given
type.

NOTE. For ELF-format object files, the compiler provides debugging
information in DWARF format in separate sections. See the 80960
Embedded ABI (Intel order #631999) for more information on DWARF
format.

For more information on the symbol table, see the i960 Software Utilities
User’s Guide.

Optimizing

To optimize leaf and system procedures, use:

.leafproc identifies a procedure for branch-and-link
optimization.

.sysproc identifies a procedure for system-call
optimization.

i960 Processor Assembler User's Guide

4-10

4
Marking Position Independence

To mark object files as position-independent, use:

.pic indicates position-independent code.

.pid indicates position-independent data.

.link_pix indicates a position-dependent file intended for
linking with position-independent code or data.

Controlling the Listing

When you request a listing, with the L command-line option, you can use
these directives in the source text:

.nolist turn off listing until the next .list directive.

.list turn listing on again after a .nolist .

.title specify the listing title.

.eject add a form feed to the listing.

Directives Reference

This section describes the assembly directives alphabetically.

.ABORT
Abort the assembly

.ABORT

Discussion

Use .ABORT to stop assembly immediately, suppressing the object file.

Directives

4-11

4
Example

If MAX_ERRS is defined, assembly stops at the .ABORT line:

.ifdef MAX_ERRS

.ABORT

.endif

.align
Align the location
counter

.align align_expr [, data_expr]

align_expr specifies the location-counter alignment. This
expression is non-relocatable, non-negative, and
evaluates to 31 or less.

data_expr optionally specifies a byte value for filling bytes
between the old and new location-counter
addresses.

Discussion

To align the location counter on byte, word, double-word, or quad-word
boundaries, use .align . The assembler does the following:

• Increments the location counter to the next value evenly divisible by
2align_expr.

• Puts data_expr in any unused bytes between the previous and newly
aligned location-counter values. Omitting data_expr fills the
intervening bytes with zeros.

• The align directive also updates the output section’s alignment field in
the section header to be the largest alignment per section. This field is
used by the linker to enforce alignments of input sections.

i960 Processor Assembler User's Guide

4-12

4
• When not specified, the default alignments for the following OMFs

are as follows:

b.out COFF ELF

.text 2 0(1) 2

.data 0 0(1) 2

.bss 0 4(1)(2) 4

.section text NA 0(1) 2

.section data NA 0(1) 2

.section bss NA 4(1)(2) 4

(1) The COFF assembler emits sections that are multiples of at least 32-bit words. Therefore
the smallest default alignment is 2.

(2) The smallest alignment for bss sections in COFF is 4. Anything less is ignored.

Example

The following sets the location counter to 14 hexadecimal and increments
it to 18 hexadecimal, the next address evenly divisible by 823 The
bytes between 0x14 and 0x18 are filled with zeros.

.org 0x14

.align 3

.ascii, .asciz
Assemble ASCII string
data

.ascii " string "

.asciz " string "

string is the character string to assemble. The
quotation marks are required.

Directives

4-13

4
Discussion

To define a character string, use .ascii or .asciz . The first character
occupies the address indicated by the location counter. Successive
characters occupy sequential byte locations.

The .asciz directive ends the string with a null character; ascii does
not.

Use a backslash (\) for special characters, as described in Chapter 6.

Examples

1. The following example assembles a string without a null end (13 bytes
of information are assembled).

.ascii "Name\tAddress\n"

2. The following example assembles the same string with a null end
(14 bytes of information are assembled).

.asciz "Name\tAddress\n"

.bss
Identify a symbol for
uninitialized data
storage

.bss name , size_expr , align_expr

name is the symbol name.

size_expr specifies a non-negative symbol size, in bytes.

align_expr aligns the symbol. This expression is non-
relocatable, non-negative, and evaluates to 31 or
less. The assembler assumes a zero alignment if
you specify a negative alignment.

i960 Processor Assembler User's Guide

4-14

4
Discussion

To create uninitialized symbols, use .bss . The name appears in the
symbol table. The assembler extends the .bss section by reserving
size_expr bytes, aligned on the next address evenly divisible by
2align_expr . You can create any number of sections of uninitialized data
in a COFF or ELF program. (Use .section name,bss to create another
one). You can use any number of .bss directives to extend the .bss

section.

For programs with no uninitialized data, the assembler inserts a .bss

section of zero size.

Example

The following example, with the location counter starting at 0x14 , defines
an uninitialized-data symbol named buffer at 0x18 , which is the next
boundary evenly divisible by 8 (23). The assembler reserves 256 words
(4 bytes each) in the .bss section.

.org 0x14

.bss buffer, 256 * 4, 3

Related Topic
.section

.byte
Assemble byte data

.byte [int_expr :] data_expr [, ...]

int_expr is the number of bits (up to 8) to reserve for the
data.

data_expr is the byte value to assemble.

Directives

4-15

4
Discussion

To define byte or bit-field data, use .byte . The first byte or bit field is
byte-aligned on the address indicated by the location counter. Successive
bytes and bit fields occupy sequential locations and do not cross byte
boundaries.

Each data_expr must evaluate to an eight-bit (one-byte) or shorter value.
For a bit field shorter than eight bits, specify int_expr . The assembler
truncates data_expr to int_expr number of bits. When the bit field
cannot fit into the current byte, the assembler pads the current byte with
zeros and aligns the bit field on the next eight-bit boundary.

Examples

1. The following allocates three bit fields from the least-significant to the
most-significant bit within the byte. No bit field is allocated to the bits
marked z, which contain zeros. The first byte is allocated at the
address contained in the program counter (pc); the second byte is at
the subsequent address (pc + 1).

.byte 3:1,2:1,5:1

bit number: 7 6 5 4 3 2 1 0

pc z z z 0 1 0 0 1

pc + 1 z z z 0 0 0 0 1

Assembling for a big-endian target with the G option (see Chapter 3)
allocates the bit fields from the most-significant to the least-
significant bit within the byte:

bit number: 7 6 5 4 3 2 1 0

pc 0 0 1 0 1 z z z

pc + 1 0 0 0 0 1 z z z

2. The following assembles three characters:

.byte 'a','b','c'

i960 Processor Assembler User's Guide

4-16

4
.comm
Declare a common
symbol

.comm name, data_expr [, elf_comm_alignment]

name is the symbol name.

data_expr specifies a non-negative symbol size, in bytes.

elf_comm_alignment In ELF, you can optionally specify the alignment
of common symbols.

Discussion

To use a common symbol in more than one module, add the symbol to the
object-file symbol table with .comm. Specify the size of the symbol in
bytes with the data_expr argument. The assembler creates the symbol as
an undefined external type. The linker resolves any references to the
symbol from other modules.

The default alignment of a common symbol is determined by the log
(base 2) of the size of the symbol:

Size Default Alignment

0,1 0

2 1

3,4 2

5,6,7,8 3

>= 9 4

When you include a alignment expression, you override the default
behavior. The alignment expression is useable only in the ELF assembler.

Directives

4-17

4
Examples

The following directives define three common symbols: _a occupies four
bytes, _b occupies two bytes, and _c occupies one byte.

.comm _a,4

.comm _b,2

.comm _c,1

Another example: you have a table of 100 characters, and 100 shorts, and
100 words. You are using the ELF assembler and RAM space is critical
so you align them manually:

.comm chars,100,0

.comm shorts,200,1

.comm words,400,2

.data
Create or extend a data-
type section

.data

Discussion

To initialize variables, use .data . When a .data section already exists,
this directive sets the location counter to the end of that section.

Omitting .data inserts a .data section of zero size.

Example

The following lines resume or begin the data section of a program:

.data

.word 0

.double 0d2.5e10

i960 Processor Assembler User's Guide

4-18

4
Related Topics
.bss
.section
.text

.def, .endef
Provide symbolic
information for COFF
debugging

.def name

name is the symbol to be described.

Discussion

When you compile a high-level language program for COFF symbolic
debugging, the compiler puts symbol descriptions in the assembly output.
Such descriptions start with .def and end with .endef .

Example

The following is C language source text:

main() {
 int a;
}

The compiler produces the following symbol description for the debugger.
The _a automatic variable appears on the stack 0x40 bytes from the
integer frame pointer.

.def _a; .val 0x40; .scl 1; .type 0x4; .endef

Directives

4-19

4
Related Topics
.dim
.line
.scl

.size

.tag

.type

.val

.desc
Set the symbol
descriptor for b.out-
format debugging

.desc name, abs_expr

name is the symbol name.

abs_expr evaluates to a non-relocatable value.

Discussion

Compiling a high-level program for b.out-format symbolic debugging adds
.desc symbol descriptors as the low-order 16 bits of abs_expr .

.dim
Declare the dimensions
of an array for COFF
debugging

.dim size_expr [, size_expr [, size_expr [, size_expr]]]

size_expr evaluates to a positive integer for an array
dimension.

i960 Processor Assembler User's Guide

4-20

4
Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (.def ,
.endef pairs) for any arrays in the assembly output. The .dim directives
specify up to four dimensions for each array.

Related Topics
.def , .endef
.line
.scl

.size

.tag

.type

.val

.double
Assemble double-
precision (64-bit)
floating-point values

.double double_const [, double_const] ...

double_const is a non-relocatable 64-bit floating-point
constant, or one of the following:

nan or qnan generates a quiet nan value

snan generates a signalling nan value

+inf generates positive infinity

-inf generates negative infinity

Discussion

To define double-precision floating-point data, use .double . The first
value occupies the address indicated by the location counter. Successive
values appear in sequential locations. To align the data on particular
address boundaries, use the .align directive.

Directives

4-21

4
To ensure correct double-precision floating-point evaluation, precede each
literal value in the expression with 0d.

Example

The following line assembles the 64-bit value 3.14159 :

.double 0d3.14159

Related Topic
.float .extended

.eject
Put a page break into
the listing

.eject

Discussion

Use this directive in the source text to insert a page break (formfeed
character) in the listing.

Related Topics
.list
.title

.nolist

i960 Processor Assembler User's Guide

4-22

4
.elf_size
Adds the given size to
the named ELF symbol
table entry

.elf_size name, size_expr

Discussion

The .elf_size directive applies only to the ELF assembler. This
directive adds the given size to the ELF symbol table. You can view the
ELF symbol table with the dumper/ disassembler (use [g]dmp960 -t).
This information is not used in DWARF.

Example
.text
foo:
lda 0,g0
ret
Lendfoo:
.elf_size foo,Lendfoo - foo

Related Topic
.elf_type

Directives

4-23

4
.elf_type
Adds the given type to
the named ELF symbol
table entry

.elf_type name,{ function | object }

Discussion

The .elf_type directive applies only to the ELF assembler. This
directive adds the given type to the ELF symbol table entry. You can
view the ELF symbol table with the dumper/ disassembler (use
[g]dmp960 -t). This information is not used in DWARF.

Example
.text
foo:
lda 0,g0
ret
Lendfoo:
.elf_size foo,Lendfoo - foo
.elf_type foo,function

Related Topic
.elf_size

.else
See .if

i960 Processor Assembler User's Guide

4-24

4
.endef
See .def

.endif
See .if

.equ, .lsym, .set
Set the value of a
symbol







.equ

.lsym

.set
 name, data_expr

name is the symbol name.

data_expr evaluates to a constant during assembly and is
assigned to the symbol. The expression must be
non-relocatable.

Discussion

To assign a new value to a symbol, use .equ , .lsym , or .set . The value
you specify defines or redefines the symbol type.

You may use the same name in more than one .set set per assembly.

A symbol defined with .equ , .lsym , or .set does not appear in the
symbol table unless the assembler finds a .global for the symbol name.

Directives

4-25

4
Examples

1. The following defines an integer symbol named useful with an initial
value of 3:

.equ useful, 3

2. The following defines a global symbol named x , then specifies x as an
integer with an initial value of 1:

.global x

.set x, 1

3. The following sets the temporary symbol xbase to 10 and then to 24:

.lsym xbase, 10

.lsym y, xbase

.lsym xbase, (2*y)+4

.extended
Assemble extended-
precision (80-bit)
floating-point data

.extended float_expr [, float_expr]...

float_expr is the 80-bit floating-point value to assemble, or
one of the following:

nan or qnan generates a quiet nan value

snan generates a signalling nan value

+inf generates positive infinity

-inf generates negative infinity

i960 Processor Assembler User's Guide

4-26

4
Discussion

To define extended-precision floating-point data, use .extended . The
first value occupies the address indicated by the location counter.
Successive values appear in sequential locations. To align the data on
particular address boundaries, use the .align directive.

To simplify addressing, the 80-bit floating-point data items defined with
.extended occupy 12 bytes (96 bits) instead of 10 bytes. The additional
two bytes are padded with zeros.

Example

The following line assembles the 80-bit value 3.14159 :

.extended 3.14159

Related Topics
.double
.float

.file
Identify the source file

.file " string "

string is a source filename, without a pathname. The
quotation marks are required.

Discussion

When you compile a high-level language program, the compiler puts a
.file directive in the assembly source output to identify the primary
high-level language source filename. Source debuggers use the .file

information to identify the original C source file in b.out and COFF.

Directives

4-27

4
Source debuggers using ELF/DWARF obtain source file information
from DWARF. However, in ELF, the .file directive modifies the ELF
symbol table. You can view the ELF symbol table with the
[g]dmp960 -t command.

Example

The following line identifies the source filename as example.c :

.file "example.c"

.fill
Initialize a memory
block

.fill int_exp , size_expr , data_expr

int_expr is a non-relocatable expression specifying how
many times to repeat the fill data.

size_expr is a non-relocatable expression specifying the
size, in bytes, of the fill data (up to eight bytes).

data_expr is a non-relocatable expression specifying the fill
data. This expression must evaluate to a byte
value.

Discussion

To initialize a memory block with a repeated value, use .fill . The
assembler puts data_expr into memory int_expr times, beginning at the
current location counter. The memory block occupies (int_expr *
size_expr) bytes.

To align the memory block on a particular address boundary, use the
.align directive.

i960 Processor Assembler User's Guide

4-28

4
Specify the size of data_expr with size_expr , up to eight bytes. When
size_expr is larger than needed by data_expr , the excess high-order
bytes contain zeros.

Examples

1. The following example initializes a memory block of 16 words, filling
each word with 0x0f (decimal 15).

.fill 16, 4, 2*8-1

2. The .fill and .space directives are similar. The following lines
have identical effects, initializing 4 bytes with the value 1 in each
byte:

.fill 4, 1, 1

.space 4, 1

Related Topic
.space

.float, .single
Assemble
single-precision (32-bit)
floating-point data





.float

.single
 float_const [, float_const] ...

float_const is a 32-bit floating-point value to be assembled,
or one of the following:

nan or qnan generates a quiet nan value

Directives

4-29

4
snan generates a signalling nan value

+inf generates positive infinity

-inf generates negative infinity

Discussion

To define single-precision floating-point data, use .float or .single .
The first value occupies the address indicated by the location counter.
Successive values appear in sequential locations. To align the data on
particular address boundaries, use the .align directive.

Examples

1. The following line assembles the 32-bit value 3.14159 :

.float 3.14159

2. The .float and .single directives have identical effects. The
following lines assemble the 32-bit value 3.14159 twice:

.float 3.14159

.single 3.14159

Related Topics
.double
.extended

.global, .globl
Declare a global symbol

.global name

.globl name

name is the name of the external symbol.

i960 Processor Assembler User's Guide

4-30

4
Discussion

To make the defined symbol name an external symbol, use .globl or
.global . The linker resolves any references to the symbol from other
modules.

Example

The following example makes the label _exit a global symbol:

.globl _exit

.hword
See .short

.ident
Include identification,
date, and time in the
object file

.ident ident_str [, time_value]

ident_str identifies the compiler.

time_value is the time value returned by the time function.

Directives

4-31

4
Discussion

To put compiler information in the symbol table, use the .ident directive
and the I960IDENT environment variable. Add an identification string
with ident_str . Put a specific time and date in the symbol table with
time_value . Omitting time_value puts the assembly time and date in
the symbol table.

Assembly language output from the compiler includes a .ident line.

Example

The following identifies the compiler at 10:20, 13 November, 1991:

.ident "iC960 V4.0X, 0x29216cde"

.if, .ifdef, .ifndef, .ifnotdef, .else, .endif
Identify blocks of source
text for conditional
assembly









.if cond_expr







.ifdef

.ifndef

.ifnotdef
symbol

 stmt_block [.else stmt_block] .endif

cond_expr evaluates to a non-relocatable constant during
assembly. The condition is false when
cond_expr is zero and true otherwise.

symbol is a symbol name.

stmt_block is a block of one or more assembly statements.

i960 Processor Assembler User's Guide

4-32

4
Discussion

To conditionally assemble a block of source text, begin the block with
.if , .ifdef , .ifndef , or .ifnotdef and end the block with .endif .
The assembler selects the block to assemble as follows:

with .if when cond_expr is non-zero

with .ifdef when symbol is defined

with .ifndef when symbol is not defined
or .ifnotdef

with .else when the preceding .if , .ifdef , .ifndef , or
.ifnotdef block is not selected

The .else directive ends an .if , .ifdef , .ifndef , or .ifnotdef block
and the .endif directive ends any conditional-assembly block. You can
nest conditional-assembly blocks.

These directives are best used in combination with the D option (described
in Chapter 3).

Example

The following code assembles a double-precision floating-point value
when UseDouble is nonzero and a single-precision floating-point value
otherwise:

.if UseDouble

.double 3.14159

.else

.float 3.14159

.endif

Directives

4-33

4
.include
Insert source text from a
file

.include " filename "

filename is the include filename. The quotation marks are
required.

Discussion

To insert source text from a file, use the .include directive. The
contents of the included file are assembled in place of the .include

statement.

To include a file from elsewhere than the current directory, you can:

• provide the complete pathname for the file
• use the I option (described in Chapter 3)
• define the I960INC or G960INC environment variable (described in

Chapter 2).

Example

The following includes the source files gen_d.asm and gen_e.asm in the
stdin input:

asm960 -i
.equ UseDouble, 1
.include "gen_d.asm"
.ifdef D_ERR
.ABORT
.endif
.include "gen_e.asm"
^d

i960 Processor Assembler User's Guide

4-34

4
.int
See .word

.lcomm
Declare a local common
symbol

.lcomm symbol , size_expr

symbol names the symbol.

size_expr evaluates to the length, in bytes, of the symbol.

Discussion

To declare a local common symbol, use the .lcomm directive. The
assembler allocates space in the .bss (uninitialized-data) section for the
symbol. The symbol appears in the symbol table as static.

Example

The following declares a 4-byte (1-word) local common symbol named
mycom:

.lcomm mycom, 4

Directives

4-35

4
.leafproc
Declare a leaf
procedure

.leafproc name[, bal_entr]

name is the leaf procedure name, as used in the high-
level-language procedure reference.

bal_entry is the branch-and-link entry-point label.

Discussion

You can optimize some procedure calls by substituting branch-and-link
(bal or balx) instructions for call (call or callx) instructions. Identify
such procedures with .leafproc . Specify the call entry point with name

and the branch-and-link entry point with bal_entry .

A leaf procedure must meet the following requirements:

• The procedure must use registers minimally. Available registers are
g0 through g7 for the first eight words of an argument list, g8 through
g11 for an additional four words, and g13.

• The procedure can call no other procedures.
• The procedure can have no stack requirements, because no stack

frame is allocated for leaf procedures.
• The procedure can have no argument block because register g14

contains the calling-procedure return address.
• The procedure cannot accept a variable argument list.

A leaf procedure has two entry points. The entry point for call instructions
must provide a return sequence (prolog and epilog). The entry point for
branch-and-link instructions must skip the return sequence.

i960 Processor Assembler User's Guide

4-36

4
When you compile a high-level language program for leaf-procedure
optimization, the compiler identifies the leaf procedures, inserts the
.leafproc directives, and generates the calling-convention blocks. For
the call entry point, the compiler adds a single underscore (_) to the
beginning of the procedure name. For the branch-and-link entry point, the
compiler appends the suffix .lf .

If you don't specify a branch-and-link entry point, the assembler assumes
that the branch-and-link entry point and the name entry point are the same.

Example

Compiling the following C source code produces the _add entry point:

int add(a, b)
int a,b;
{
 return(a+b);
}

The resulting assembly code is:

 .align 4
 .def _add; .val _add; .scl 108; .type 0x44; .endef
 .globl _add
 .leafproc _add, add.lf
_add:
 lda LR2, g14
add.lf:
 mov g14, g7
 addi g0, g1, g0
 mov 0, g14
 bx (g7)
LR2 ret
 .ln 3
 .def _add; .val .; .scl -1; .endef

The .scl 108 storage-class indicates an external leaf procedure. The
_add is the call entry point. The add.lf is the branch-and-link entry
point.

Since this example is compiled for source debugging, the compiler adds
the .def directives.

Directives

4-37

4
.line
Identify the line number
of a COFF debugging
symbol

.line int_expr

int_expr evaluates to a positive integer to be used as a line
number.

Discussion

Compiling for COFF source debugging puts .line directives in the
symbol definitions (.def , .endef pairs). The int_expr is the line
number for the line defining the symbol declared in the .def block.

Related Topics
.def
.endef

.ln

.link_pix
See .pic

i960 Processor Assembler User's Guide

4-38

4
.list
Re-enable listing after a
.nolist

.list

Discussion

Listing resumes on the instruction or directive immediately following this
directive. This option is useful in combination with .nolist when you
want to list only part of the source text.

Related Topics
.nolist
.eject

.title

.ln
Specify a line number
within a function

.ln int_expr [, addr_expr]

int_expr evaluates to a positive integer to be used as a line
number.

addr_expr is the address of a line.

Directives

4-39

4
Discussion

Compiling for source debugging puts .ln directives in the source text to
reset the source line numbers relative to the beginning of functions.

The assembler numbers the line containing the .ln directive as int_expr

and the subsequent line as (int_expr + 1). Omitting addr_expr uses the
location counter (.).

The .ln directive appears outside of any debugging symbol definition
(.def , .endef pair).

Example

The following specifies line number 10 for the current position of the
location counter:

.ln 10, .

Related Topic
.line

.lomem
Generate short memory-
access instructions

.lomem name

name identifies a symbol.

i960 Processor Assembler User's Guide

4-40

4
Discussion

This directive identifies a symbol’s address as falling within the range
0 - 0xfff. This is the range of addresses that can be reached with the
absolute offset of a MEMA format instruction. The assembler uses
MEMA format for all MEM format instructions that reference the symbol.
This yields a space savings of 4 bytes per instruction over MEMB format.

The symbol’s .lomem declaration must appear before the first use of the
symbol in a MEM format instruction. Otherwise the assembler defaults to
MEMB format.

To declare an entire section’s symbols “lomem” use the lomem attribute to
the .section directive.

Example

The following example declares the symbol foo to be “lomem” and then
loads its contents into a register. The ld instruction that follows is 4 bytes
long.

foo:
.lomem foo
ld foo, r4

Related Topic
.section

.long
See .word

Directives

4-41

4
.lsym
See .equ

.nolist
Turn listing off

.nolist

Discussion

Listing stops immediately, and does not resume again until a .list

directive is seen. This option is useful in combination with .list when
you want to list only part of the source text. The assembler ignores this
directive when you use the La option on the command line.

Related Topics
.list
.eject

.title

.org
Set the location counter

.org addr_expr [, abs_expr]

addr_expr is an integer expression.

abs_expr is a non-relocatable byte value to be used as a fill
value.

i960 Processor Assembler User's Guide

4-42

4
Discussion

To point the location counter to a specific address, relative to the start of
the current segment, use .org . Specify the new address with addr_expr .
The assembler puts zeros in the bytes between the old and new addresses.
You can specify a value other than zero with abs_expr .

The assembler does not issue a warning for large addr_expr values. Note
that such use can fill up a hard disk quickly.

Example

The following example advances the location counter (.) by four bytes:

.org . + 4

Related Topics
.align
.bss
.data

.section

.text

.pic, .pid, .link_pix
Mark the object file as
compatible with
position-independent
modules







.link_pix

.pic

.pid

Directives

4-43

4
Discussion

For position-independent programs, you must ensure consistent position
independence of the object code and data across the object files. The
linker examines each object file header and issues warning messages for
mismatches. To suppress the warning messages, put one of the following
directives at the beginning of your source text:

.pic indicates a file containing position-independent
code.

.pid indicates a file containing position-independent
data.

.link_pix indicates compatibility with position-independent
code, data, or both.

For more information on position independence, see your compiler
manual.

.scl
Declare the storage
class for COFF
symbolic debugging

.scl int_expr

int_expr evaluates to a positive integer indicating the
storage class.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (.def ,
.endef pairs) in the assembly output. The .scl directives specify the
storage class for each symbol so described.

i960 Processor Assembler User's Guide

4-44

4
Example

The following example specifies the 113 storage class, indicating a static
leaf procedure, for the add procedure:

.def _add; .val _add; .scl 113; .type 0x44; .endef;

Related Topics
.def
.dim
.endef

.line

.size

.tag

.type

.val

.section
Creates or extends a
COFF or ELF program
section

.section name, [, attribute_list]

name identifies the section.

attribute_list identifies the attribute(s) associated with this
section.

Discussion

To create or extend a program section that you name, use .section .
When the named section already exists, .section sets the location
counter to the end of the named section. You can create multiple sections
of instructions (text-type) or initialized data (data-type) or uninitialized
data (bss-type) in a COFF or ELF program but not in a b.out-format
program.

Directives

4-45

4
You can have any number of attributes for any given section. Attributes
can be duplicated. An empty attribute list is allowed and means the
section does not have any of the attributes. The attributes apply to both
COFF and ELF unless otherwise indicated. If a COFF-only attribute is
given to the ELF assembler, it is silently ignored and vice versa.

The attributes and their effects are:

alloc The section should cause the linker to allocate
memory (e.g., DWARF sections are not allocated).

bss The named section takes on the same attributes as
the .bss section.

data The named section takes on the same attributes as
the .data section.

exec The named section contains executable code.
info The section contains information only. (COFF

only)
lomem The named section is intended to be located in low

memory. References to labels in this section will
be via MEMA format instructions. (See .lomem

for more information about MEMA format
instructions.)

msb The section is generated in big-endian byte order.
(ELF only)

pi The named section is position independent. (ELF
only)

read The section contains readable memory. (ELF only)
super_read
super_write
super_exec

The memory space where the section resides
corresponds to memory that is readable, writeable,
or executable when the processor is in supervisor
mode only. (ELF only)

text The named section takes on the same attributes as
the .text section.

write The section contains writeable memory. (ELF
only)

i960 Processor Assembler User's Guide

4-46

4
Note that for the super_read , super_write , and super_exec attributes,
the assembler ORs the following bits into the corresponding section header
flag word: SHF_960_SUPER_READ, SHF_960_SUPER_WRITE,
SHF_960_SUPER_EXECINSTR. See the 80960 ABI specification (Intel
order #631999) for more information. The linker passes these bits on from
input files to the output file, ORing all of the flagwords together. The
runtime does not ensure that these semantics are enforced. These bits are
here for convenience, and to let you specify code bound for supervisor
mode.

Example

The following lines begin a data section named sram that is bound for low
memory, create another data section named mydata that is position-
independent, and then continue sram :

.section sram, data, lomem

.globl _a
_a: .space 4

.section mydata, data, pi

.globl _b
_b: .word 444

.section sram, data

.globl _d
_d: .word 44

Related Topics
.bss
.data

.text

.lomem

.set
See .equ

Directives

4-47

4
.short, .hword
Assembles 16-bit data







.short

.hword
 [int_expr] data_expr [, ...]

int_expr is the bit-field length, up to 16 bits.

data_expr is a 16-bit value to be assembled.

Discussion

To define half-word or short-integer data, use the .short or .hword

directive. The first value occupies the address specified by the location
counter. Successive values occupy sequential two-byte locations. To
align the data on particular address boundaries, use the .align directive.

For a bit field, specify the number of bits with int_expr . The assembler
truncates the data_expr value to int_expr number of bits. When the bit
field cannot fit into the current half-word, the assembler fills the remaining
bits of the current half-word with zeros and begins the bit field on the next
16-bit boundary.

Examples

1. The .short and .hword directives have identical effects. The
following assembles two half-words of data:

.hword 0xFEFE

.short 0xEFEF

2. The following allocates three bit fields from the least-significant to the
most-significant bit within the half-word. No bit field is allocated to
the bits marked z, which contain zeros. The first half-word is
allocated at the address contained in the program counter (pc); the
second word is at the subsequent address (pc + 2).

.hword 3:3, 6:62, 9:21

i960 Processor Assembler User's Guide

4-48

4
bit number: 7 6 5 4 3 2 1 0

pc 1 1 1 1 0 0 1 1

pc + 1 z z z z z z z 1

pc + 2 0 0 0 1 0 1 0 1

pc + 3 z z z z z z z 0

Assembling for a big-endian target (with the G option) allocates the bit
fields from the most-significant to the least-significant bit within the
byte:

bit number: 7 6 5 4 3 2 1 0

pc 0 1 1 1 1 1 1 1

pc + 1 0 z z z z z z z

pc + 2 0 0 0 0 1 0 1 0

pc + 3 1 z z z z z z z

Related Topics
.ascii
.asciiz
.byte
.double

.extended

.float

.int

.long

.octa

.quad

.single

.word

.single
See .float

Directives

4-49

4
.size
Declare the size of a
symbol for COFF
debugging

.size size_expr

size_expr is the size of a symbol, up to 64 kilobytes (65535

in decimal or 0xFFFF in hexadecimal). The
expression must evaluate to a positive integer.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (.def ,
.endef pairs) in the assembly output. The .size directive defines the
size of a symbol so described. For structures and arrays, .size specifies
the total extent of the symbol.

Due to COFF limitations, specifying too large a symbol size generates
invalid debug information.

Related Topics
.def
.dim
.endef

.line

.scl

.tag

.type

.val

i960 Processor Assembler User's Guide

4-50

4
.space
Initialize a memory
block with byte values

.space size_expr [, data_expr]

size_expr is the number of bytes to be initialized. The
expression must evaluate to a positive integer.

data_expr is a byte value to be put repeatedly into the
memory block.

Discussion

To increment the location counter and initialize the intervening bytes, use
.space . This directive advances the location counter by size_expr

bytes and fills the bytes between the old and new locations with the
data_expr value. Omitting data_expr fills the intervening bytes with
zeros.

Examples

1. The following example initializes 64 bytes with zeros:

.space 16 * 4

2. The .fill and .space directives are similar. Using .space has the
same effect as using .fill with a data size of 1 byte. The following
lines have identical effects, initializing 4 bytes with the value 1 in
each byte:

.fill 4, 1, 1

.space 4, 1

For more examples, see Chapter 8.

Related Topic
.fill

Directives

4-51

4
.stabd, .stabn, .stabs
Create b.out-format
debugging symbols

.stabd type, other, desc

.stabn type, other, desc, value

.stabs name, type, other, desc, value

name is the new symbol name, with any characters
except \000 .

value is a non-relocatable expression initializing the
symbol.

type is a non-relocatable expression for the symbol
type.

other is a non-relocatable expression.

desc is a non-relocatable expression for the symbol
descriptor.

Discussion

For symbolic debugging, you can create symbols that cannot be referenced
by name during assembly. Such symbols can have the following
attributes:

value To record the location counter during assembly,
define a symbol with .stabd . For any other
initial value, use .stabn , or .stabs .

type Provide the symbol type as the low-order eight
bits of a non-relocatable expression.

name Since the symbol name can contain almost any
character, a debugger can use this field for
additional information.

i960 Processor Assembler User's Guide

4-52

4
other The debugger can use this attribute for any

purpose. For .stabd , .stabn , and .stabs ,
provide the initial other value as the low-order
eight bits of a non-relocatable expression.

desc Provide the symbol descriptor as the low-order
16 bits of a non-relocatable expression.

.sysproc
Declare a system
procedure

.sysproc name, int_expr

name is the procedure name.

int_expr is the system-procedure table index. The
expression must evaluate to an integer between
zero and 259, inclusive.

Discussion

To use the i960 processor system-call feature, identify functions as system
procedures with the .sysproc directive. You need specify any function
as a system procedure only once in your program.

Assign each system procedure an int_expr index number in the system
procedure table, as follows:

• For b.out-format programs, the index must be between 1 and 253,
inclusive.

• For COFF and ELF programs, the index must be between zero and
259, inclusive.

If you don't provide an index number, the assembler assigns the special
index number -1. This number tells the linker to look for the real index
number in another module. You must supply the real index number in at
least one assembly source file or your application will not link.

Directives

4-53

4
For more information on system calls and the system procedure table, see
your processor manual.

Example

The following example specifies _add as a system procedure with an
index of 29:

 .align 4
 .globl _add
 .sysproc _add, 29
_add:
 addi g0, g1, g0
 ret
 .ln 3

Related Topic

.leafproc

.tag
Declare a tag for a
COFF debugging
symbol

.tag string

string is the symbol name.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (.def ,
.endef pairs) in the assembly output. References from within a symbol-
description block to a previous block use the .tag directive. The string

is the name of the symbol defined in the previous block.

i960 Processor Assembler User's Guide

4-54

4
In a structure or union symbol-description block, the .tag identifies a
structure or union defined in a previous block.

Related Topics
.def
.dim
.endef

.line

.scl

.size

.type

.val

.text
Create or extend a text-
type section

.text

Discussion

To create a program section for instructions, use the .text directive. If a
.text section already exists, this directive sets the location counter to the
end of that section. Omitting .text inserts a .text section of zero size.

Example

The following lines resume or begin the .text section of a program:

.text
mov r3, r4
ldconst 0xff, g5

Related Topics
.bss
.data

.section

Directives

4-55

4
.title
Specify the listing title

.title " string "

string is the title you want to appear in the listing. The
quotation marks are required.

Discussion

Use this directive anywhere in the source text to specify the listing title.
Only the first such directive has meaning. This directive is ignored when
you also give the Lt command-line option.

Related Topics
.list
.eject

.nolist

.type
Declare the COFF
debugging-symbol type

.type int_expr

int_expr evaluates to a positive integer specifying a COFF
type.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (.def ,
.endef pairs) in the assembly output. The .type directive adds type
information to the symbol description.

i960 Processor Assembler User's Guide

4-56

4
Related Topics
.def
.dim
.endef

.line

.scl

.size

.tag

.val

.val
Declare a debugger-
symbol value

.val data_expr

data_expr is the value of the symbol.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (.def ,
.endef pairs) in the assembly output. The .val directive initializes the
symbol.

Example

The following example shows .val and other debugging directives in a
symbol-description block describing the myfcn function:

myfcn:
.def myfcn; .val myfcn; .scl 2; .type 0x44; .endef

Related Topics
.def
.dim
.endef

.line

.scl

.size

.tag

.type

Directives

4-57

4
.word, .int, .long
Assemble word data







.int

.long

.word
 [int_expr :] data_expr [, ...]

int_expr is the length of the data field, up to 32 bits.

data_expr is the 32-bit integer value to be assembled.

Discussion

To define word-aligned integer, word, or bit-field data, use .int , .long ,
or .word . The first value occupies the address specified by the location
counter. Successive values occupy sequential locations. To align the first
value on a particular address boundary, use the .align directive.

For a bit field, specify the number of bits with int_expr . The assembler
truncates the data_expr value to int_expr number of bits. When the bit
field cannot fit into the current word, the assembler fills the remaining bits
of the current word with zeros and begins the bit field on the next 32-bit
boundary.

Examples

1. The .int , .long , and .word directives have identical effects:

.int 5

.long 5

.word 5

2. The following allocates three bit fields from the least-significant to the
most-significant bit within the word. No bit field is allocated to the
bits marked z, which contain zeros. The first word is allocated at the
address contained in the program counter (pc); the second word is at
the subsequent address (pc + 4).

.int 16:1,10:1,8:1

i960 Processor Assembler User's Guide

4-58

4
bit number: 7 6 5 4 3 2 1 0

pc 0 0 0 0 0 0 0 1

pc + 1 0 0 0 0 0 0 0 0

pc + 2 0 0 0 0 0 0 0 1

pc + 3 z z z z z z 0 0

pc + 4 0 0 0 0 0 0 0 1

pc + 5 z z z z z z z z

pc + 6 z z z z z z z z

pc + 7 z z z z z z z z

Assembling for a big-endian target (with the G option) allocates the bit
fields from the most-significant to the least-significant bit within the
byte:

bit number: 7 6 5 4 3 2 1 0

pc 0 0 0 0 0 0 0 0

pc + 1 0 0 0 0 0 0 0 1

pc + 2 0 0 0 0 0 0 0 0

pc + 3 0 1 z z z z z z

pc + 4 0 0 0 0 0 0 0 1

pc + 5 z z z z z z z z

pc + 6 z z z z z z z z

pc + 7 z z z z z z z z

Related Topics
.ascii
.asciiz
.byte

.double

.extended

.float

.hword

.short

.single

Messages

5-1

5
Assembler error and warning messages appear on stderr as:

source , [n]: message

source is the source filename.

n is the line number of the error, appearing only
for source-assembly errors. File, I/O, and
command-line errors do not have source line
numbers.

message is the text of the message.

Error messages report file-specification or syntax errors during assembly.
In addition to producing a message, the assembler acts on the severity of
the error as follows:

• For fatal errors, assembly stops. No object file is produced.
• For non-fatal errors, assembly continues to the end of the input, but no

object file is produced.
• For warnings, assembly continues and an object file is produced.

Assembly Language

6-1

6
This chapter provides:

• an overview of assembly language directive and instruction syntax
• a description of the assembly language elements
• a description of the assembly language statement syntax

Assembly Language Statement Format

Assembly language source is a sequence of statements separated with
newline characters or semicolons. A valid assembly language statement
follows this syntax:

[label] [keyword] [operands]

A keyword can be any of the following:

Directives affect the assembly, as explained in
Chapter 4.

Instructions specify processor operations.

Pseudo-instructions (also called pseudo operations) are
replaced with machine instructions by
the assembler or linker.

You can write null statements, including empty lines and lines with only a
semicolon. For null statements, the assembler generates no machine code,
allocates no storage, and does not change the location counter.

A statement can contain one or more labels. Place labels before
instruction keywords, as described in the Labels section of this chapter.
One or more operands can follow the keyword, as needed.

i960 Processor Assembler User's Guide

6-2

6
Lexical elements are the building blocks of assembly language statements,
used to construct labels, keywords, and operands. The lexical elements
supported by the assembler are:

• the character set
• tokens and separators
• identifiers
• constants
• labels
• operators
• expressions
• comments

Character Set

The character set used in assembly language programming is a subset of
the ASCII character set. Table 6-1 shows the valid character set.

Table 6-1 Assembly Language Character Set

Characters Comment

ABCDEFGHIJKLMNOPQRSTUVWXYZ alphabetic, UPPERCASE

abcdefghijklmnopqrstuvwxyz alphabetic, lowercase

0123456789 numbers

characters

+ - * / () [] < > ; ' . " _ : ? @ $ & #
\ | % ! ~ ^

special characters

space tab newline1 delimiters

1 In Windows, a newline is a carriage return-linefeed combination while on UNIX it is a linefeed only.

The assembler is case-sensitive. You can write labels and comments in
uppercase or lowercase, but references to a label must match the case in
the label definition. For example, the label ZZ is different from the label
zz . instruction mnemonics and most directives use only lowercase
characters.

Assembly Language

6-3

6
Tokens and Separators

The assembler processes statements constructed of tokens and separators.
Assembly language tokens include identifiers (symbols or names),
constants, operators, and keywords.

The keywords are directives, instruction mnemonics, and pseudo-
instructions. Statement syntax depends on the keyword. Directives are
described in Chapter 4. Machine instructions are described in this chapter
briefly, and in greater detail in the processor user’s manuals. Pseudo-
instructions are described in Chapter 7.

Separate identifiers or constants with at least one blank space or tab
character. You can also use a blank or tab to separate other tokens such as
operators or keywords. Put no blanks or tabs within tokens.

Identifiers

An identifier is a sequence of alphanumeric characters, including the
underscore (_), dollar sign ($), and period (.). The first character in an
identifier must not be numeric. Identifiers can have up to 255 significant
characters.

Constants

There are three kinds of constants: simple, character, and string.

Simple Constants

Simple constants are either numeric or single-character. The digits in
numeric constants are:

0123456789
abcdef
ABCDEF

i960 Processor Assembler User's Guide

6-4

6
Digits 0 through 9 represent corresponding numeric values, depending on
the current number base (octal, decimal, or hexadecimal). The digits a, b,
c , d, e, and f are identical to A, B, C, D, E, and F, representing hexadecimal
values corresponding to the decimal values 10 through 15. Integer and
ordinal constants are 32-bit-wide, two's-complement numbers.

The following types of constants are formed:

octal An octal constant is a sequence of the digits 0

through 7 with a leading 0. For example, 012

represents decimal 10.

decimal A decimal constant is a sequence of the digits 0

through 9 without a leading 0. For example, 10

represents decimal 10.

hexadecimal A hexadecimal constant is a sequence of the
digits 0 through 9, a, b, c , d, e, f , or A, B, C, D, E,
F with a prefix of 0x or 0X. For example, 0x1a

represents the decimal value 26.

floating-point A floating-point constant consists of one or more
characters that the C library function atof

recognizes as a floating-point number, preceded
by an optional prefix listed in Table 6-2.

Representing Floating Point Numbers

All floating-point constants are represented according to the IEEE
Standard for Binary Floating-point Arithmetic.

Table 6-2 Prefixes for Floating-point Constants

Prefix Used for

0f or 0F Single-precision value, 32 bits

0d or 0D Double-precision value, 64 bits

0e or 0E Extended-precision value, 80 bits

Assembly Language

6-5

6
The characters e, E, d or D designate the exponent field. You can use only
.0 and 0.0 as floating-point literals with numerics instructions, as shown
in Table 6-3.

Table 6-3 Floating-point Literals

Representation Value Assembled

0.0 0f+0.0

1.0 0f+1.0

Example 6-1 uses numeric constants and literal values in assembly
language instructions.

Example 6-1 Example of Constants and Literal Values

 /* example of numeric constants */

mov 31,g5 /* decimal */

mov 037,g5 /* same in octal */
mov 0x1f,g5 /* same in hex */
movr 0.0,g5 /* float literal */
movrl 0f1.0,g4 /* float literal */
addr 0.0,1.0,g0 /* together */

Character Constants

A single-character constant is an ASCII character enclosed within
apostrophes ('). (The apostrophe is ASCII decimal character 39.)

The value of an ASCII character constant is either the ASCII code for the
character or the C language interpretation of an escape sequence,
beginning with a backslash, as shown in Table 6-4.

i960 Processor Assembler User's Guide

6-6

6
Table 6-4 Character Constants

Escape Sequence Interpretation

\b backspace

\f form feed

\n new-line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\' apostrophe

\" quotation mark

\octal constant ASCII value of constant

String Constants

A string constant has the same syntax and semantics used in the C
language. Each string begins and ends with a quotation mark ("). All C
language conventions for the backslash are observed. See Table 6-4 for a
summary.

Strings are identified by value and length. However, the assembler does
not implicitly end strings with a null byte, unlike the C compiler. For
information on adding ASCII string data to your assembly files, see the
.ascii and .asciz directive entries in Chapter 4.

Labels

A label is a symbol with a location counter value and type. The assembler
recognizes the following kinds of labels:

global is an alphanumeric identifier, also called a name.

local is a single decimal digit (0 to 9), also called a
numeric label.

Assembly Language

6-7

6
Global labels are uniquely defined and remain in the output symbol table
unless the label name begins with a period (.) or an L. Labels beginning
with a period (.) or an L can be included in the symbol table by using the
assembler -d option. See Chapter 3 for more information.

Name (Global) Labels

A global label consists of an identifier followed by a colon (:). In effect, a
name label assigns the current value and section (e.g., .text or .data) of the
location counter to the name. A global label is referenced by its name.
Global labels beginning with a dot (.) or an L are discarded from the
output symbol table, unless you use the -d option.

The assembler generates an error if a symbol is multiply defined.

Numeric (Local) Labels

A numeric label consists of a digit 0 to 9 followed by a colon (:).
Numeric labels define temporary symbols of the form nb and nf , where n
is the numeric digit of the label. References to symbols of the form nb

refer to the first numeric label n: backward from the reference; nf

symbols refer to the first numeric label n: forward from the reference.

As with global labels, a numeric label assigns the current value and section
(e.g., .text or .data) of the location counter to a symbol. Unlike global
symbols, which you can define only once within an assembly, numeric
labels are local symbols. Therefore, programs can define several identical
numeric labels (the same digit) within an assembly.

Expressions

An expression is a sequence of symbols representing a calculated value.
An expression can consist of identifiers, constants, operators, and other
expressions. Each expression has a type. Expressions can be grouped by
enclosing them within parentheses.

i960 Processor Assembler User's Guide

6-8

6
Integer quantities appearing in arithmetic expressions are represented
internally as two's-complement numbers with 32-bit precision. You can
add only one forward-referenced external symbol to an expression.
Further, you can subtract only one forward-referenced external symbol
from an expression. The exception to these rules is that the difference
expression of backwards-reference external symbols in the same section is
treated as a constant value (see Example 6-2).

Example 6-2 Forward-reference External Symbol in Expressions

/* LEGAL: Forward (+) Reference to a symbol */

.word _label

/* LEGAL: A single (+) and single (-) forward reference */

_label4:
_label5:

_label6:
_label7:

/* LEGAL: The difference expression of two labels in the
 * same section is treated as a constant, allowing for
 * other (+) or (-) references, up to 1 each maximum.
 */
.word (_label5 - _label4) + (_label7 - _label6) - _label8 + _label9

Operators

The assembler recognizes certain operators that you can use to form valid
expressions. These operators and the operations they represent appear in
Table 6-5.

Assembly Language

6-9

6
Table 6-5 Expression Operators

Symbol Operation

+ addition

- subtraction

* multiplication

/ division

% modulo

& bitwise and

| bitwise or

~ one's complement

^ bitwise exclusive or

>> logical right shift

<< logical left shift

< <= > >= less than, less than or equal to, greater than,
greater than or equal to

== != equals, not equals

&& logical and, does not short circuit

|| logical or, does not short circuit

! !a == if (a) then 0 else 1; (logical negation)

In Table 6-6, operators are listed in order of precedence from highest to
lowest.

Table 6-6 Operator Precedence

Type Operators

unary -, +, !, ~

binary *, /, %

binary +, -

binary <<, >>

continued ☛

i960 Processor Assembler User's Guide

6-10

6
Table 6-6 Operator Precedence (continued)

Type Operators

binary <, <=, >, >=

binary ==, !=

binary &

binary ^

binary |

binary &&

binary ||

All binary operators with the same precedence are evaluated from left to
right in the expression, except for any evaluation order enforced by
parentheses.

Expression Types

The assembler deals with several types of symbols and expressions. The
assembler recognizes the following expression types:

absolute An absolute symbol is defined ultimately from a
constant. Applying the linker to the output file
does not affect the value of absolute symbols or
expressions.

bss The value of a .bss symbol is measured as the
number of bytes from the beginning of the .bss

section of a program. Like .text and .data

symbols, the value of a .bss symbol can change
on different linker runs.

data The value of a .data symbol is measured as the
number of bytes from the origin of the .data

section. Like .text symbols, the value of
.data symbols can change on different linker
runs. After the first .data statement, the value
of the location counter 0 of the .data section.

Assembly Language

6-11

6
external absolute Symbols can be declared as .globl but defined
text, data, or bss within an assembly as absolute .text , .data , or

.bss symbols. These symbols are used exactly
as if they were not declared as globals.
However, their value and type are available to
the linker so that the program can be combined
with others that reference these symbols.

register The assembler recognizes the predefined register
symbols shown in Table 6-6.

text The value of a .text symbol is measured as a
number of bytes from the beginning of the .text

section of the program. When assembler output
is linked, .text symbols can change in value.
Most .text symbols are labels in the assembly
that define data or instruction locations. At the
start of an assembly, the value of the location
counter 0 of the .text section.

undefined When the assembler identifies a new symbol
during assembly, the symbol is considered
undefined. It becomes defined when it is
assigned a value or location. A symbol can
subsequently become undefined again if assigned
an undefined expression. Undefined operands
are not permitted with certain operators. A
symbol that remains undefined after assembly is
considered an undefined external.

undefined external A symbol declared .globl but not defined in the
current assembly is an undefined external. If you
declare such a symbol, use the linker to combine
the assembler's output with another routine that
defines the undefined reference.

i960 Processor Assembler User's Guide

6-12

6
Table 6-7 Predefined Register Symbols

Registers Symbol Alias Purpose

local r0* pfp previous frame pointer

r1* sp stack pointer

r2* rip return instruction pointer

r3 through r15 general-purpose

global g0 through g13 general-purpose

g14 linkage for bal instruction

g15* fp frame pointer

floating-point fp0 through fp3 general-purpose

special function sf0 through sf4 registers for architecture-
specific functions such as
DMA or cache control. See
your processor user’s
manual.

processor state ip instruction pointer

ac arithmetic controls

pc process controls

tc trace controls

* You must use the aliases, not the symbols, for registers r0, r1, r2, and g15.

Example 6-2 uses local, global, floating-point registers, and the instruction
pointer and is valid only for processors with the numerics architecture
(i960 SB or KB processors). Users targeting the KA, SA, CA, CF, JA, JF,
JD, HA, HD, HT, or RP processor can use the AFP-960 library for
emulated floating-point operation, which is described in the i960
Processor Library Supplement. In the assembly source, the register names
must not be capitalized.

Assembly Language

6-13

6
Example 6-3 Example of Register Usage

 /* example of fp register usage */
 movr 1.0, fp0 # set fp0 = 0f+1.0
 movr fp1, r6 # convert real formats
 ld 0(g14), r0 # load based on g14
 addrl 1.0, fp1, g8 # g8:g9 = fp1 + 0f+1.0
 st g5, 4(ip) # store based on ip
 lda (ip), g14 # g14 = value of ip

As shown in the example, the instruction pointer register can be used only
to indicate indirection in instructions that allow an IP indirect addressing
mode. You cannot use ip as an operand specifier by itself; it is not a
general-purpose register. See the Memory-addressing Modes section in
this chapter for additional information on memory addressing modes.

The special function registers sf0 through sf2 are defined in the i960
processor architecture but implemented only on the CA and CF
processors. The i960 Hx processor supports special function registers sf0

through sf4 . For more information about these registers, see your
processor manual.

Type Propagation in Expressions

When operands are combined using operators, the resulting expression is
assigned a type that depends on the types of the operands and on the
operator. For purposes of expression evaluation, the assembler recognizes
these types:

• undefined
• absolute
• text
• data
• bss
• undefined external

i960 Processor Assembler User's Guide

6-14

6
When the assembler evaluates an expression with operands of different
types, the type of the resulting expression is determined by the following
rules:

• When one of the operands is undefined, the result is undefined.
• When both operands are absolute, the result is absolute.
• When an absolute is combined with a type that is not absolute

(relocatable), the result is the same type as the non-absolute operand.

These rules apply to the following binary operators. At least one operand
must be absolute; any other combination is illegal:

+ When one operand is a relocatable .text , .data , or .bss symbol or
an undefined external symbol, the result has the postulated type: the
other operand must be absolute.

− When the first operand is a relocatable, the result is relocatable.

When both operands are absolute, the result is absolute.

Comments

The assembler recognizes the following as comments:

• Standard comments introduced by the # character.
• C-style comments placed between /* and */ characters.

The # character introduces a comment that extends through the end of the
line on which it appears.

The assembler also recognizes C-style comments, introduced with /* and
ending with */ . C-style comments cannot be nested. The first */ token
terminates the comment, regardless of the number of /* tokens preceding
it. C-style comments can extend across multiple lines.

Assembly Language

6-15

6
Summary of Core Instructions

The core instruction set implements ordinal and integer arithmetic
operations along with program and processor control functions that
support the architecture. In this manual, the core instruction set is divided
into these categories:

Data manipulation These instructions move data, convert between
and processing different data types, and perform basic arithmetic

and boolean operations.

Program control These instructions alter the normal execution
sequence based upon specified conditions.
These instructions include ordinal and integer
comparisons, branching, and procedure call and
return.

Processor support These instructions explicitly or implicitly make
use of features of the i960 processor: including
fault, trace, and process controls words, IAC
messages, and multiprocessor design support.

Data Movement

The data movement instructions transfer integer and ordinal data between
memory and the global and local registers (load and store instructions) and
between registers (move instructions). The mnemonic opcodes indicate
the size and type of data.

Besides moving data, the data movement instructions implicitly convert
between different data types. For example, the load integer short
instruction (ldis) copies a half-word (16 bits) from memory into a
register. The ldis instruction implicitly converts the half word to a full
word in the register, and the processor automatically sign-extends the
high-order 16 bits.

i960 Processor Assembler User's Guide

6-16

6
Load

These instructions copy data from memory to selected registers or register
groups:

ld load

ldob load byte ordinal

ldos load short ordinal

ldib load byte integer

ldis load short integer

ldl load long

ldt load triple

ldq load quad

lda load address

All the load instructions use the MEM instruction format. Except for load
address, which stores the memory location address itself in the designated
register, the load instructions copy data from the addressed location to a
specified register or successive registers.

Byte and short ordinal operands are zero-extended when loaded; byte and
short integers are automatically sign-extended. Multi-register operations
require appropriate register alignment. Besides moving data, these
instructions are used for implicit data type conversions.

Store

These instructions copy data from selected registers or register groups to
memory:

st store

stob store byte ordinal

stos store short ordinal

stib store byte integer

stis store short integer

Assembly Language

6-17

6
stl store long

stt store triple

stq store quad

All the store instructions use the MEM instruction format. The store
instructions copy data from the specified register or successive registers to
the addressed location. The processor reformats short and byte ordinal
and integer operands for the smaller memory location. Multi-register
operations require appropriate register alignment.

Move

The move instructions copy data from a selected register or register group
to another register or register group:

mov move word

movl move long

movt move triple

movq move quad

To move data in real format between the global or local registers and the
floating-point registers, the numerics architecture of the KB and SB
processors provides a set of move real instructions. Multi-register
operations require appropriate register alignment.

Select

These data movement instructions are available on the i960 Jx, Hx, and RP
processors. They select one of two source registers to copy into a
destination register, based on the status of the condition code. All are REG
format instructions.

selno select based on unordered

selg select based on greater

sele select based on equal

selge select based on greater or equal

i960 Processor Assembler User's Guide

6-18

6
sell select based on less

selne select based on not equal

selle select based on less or equal

selo select based on ordered

Ordinal and Integer Arithmetic

Core instructions that perform ordinal, integer, and decimal arithmetic
belong to the following categories:

• basic arithmetic
• extended arithmetic
• conditional arithmetic
• remainder and modulo
• shift and rotate

All the instructions in this category use the REG instruction format.

Basic Arithmetic

These instructions perform the basic arithmetic operations: add, subtract,
multiply, and divide:

addo add ordinal

addi add integer

subo subtract ordinal

subi subtract integer

mulo multiply ordinal

muli multiply integer

divo divide ordinal

divi divide integer

The basic arithmetic operations are carried out on ordinal and integer word
operands contained in global or local registers. Use the load and store
instructions to move data between memory and the registers.

Assembly Language

6-19

6
Extended Arithmetic

The extended arithmetic instructions support operations on single- or
dual-word operands:

addc add ordinal with carry

subc subtract ordinal with carry

emul extended multiply

ediv extended divide

In the add and subtract with carry instructions, the carry bit in the
condition code (CC) of the arithmetic controls word (AC) participates in
the operation. The integer overflow flag in the AC (used with the integer
overflow mask) is set to indicate whether or not an overflow condition
resulted from the operation. These two instructions facilitate
multiple-precision addition and subtraction in assembly language
programs.

The extended multiply (emul) instruction multiplies two ordinals in
registers and copies the result into an aligned dual-register group. The
extended divide (ediv) instruction performs the inverse operation,
dividing a long ordinal (double-word) by an ordinal (word) resulting in a
quotient and remainder (both ordinals) in a dual-register group.

Conditional Arithmetic

The conditional arithmetic instructions are available on the i960 Jx and Hx
processors. They combine addition or subtraction with checking the
condition code. They add or subtract the two source registers and copy the
result into the destination, but only if the status of the condition code is
correct for the given instruction. All are REG format instructions.

addono add ordinal if ordered

addog add ordinal if greater

addoe add ordinal if equal

addoge add ordinal if greater or equal

addol add ordinal if less

i960 Processor Assembler User's Guide

6-20

6
addone add ordinal if not equal

addole add ordinal if less or equal

addoo add ordinal if ordered

addino add integer if ordered

addig add integer if greater

addie add integer if equal

addige add integer if greater or equal

addil add integer if less

addine add integer if not equal

addile add integer if less or equal

addio add integer if ordered

subono subtract ordinal if ordered

subog subtract ordinal if greater

suboe subtract ordinal if equal

suboge subtract ordinal if greater or equal

subol subtract ordinal if less

subone subtract ordinal if not equal

subole subtract ordinal if less or equal

suboo subtract ordinal if ordered

subino subtract integer if ordered

subig subtract integer if greater

subie subtract integer if equal

subige subtract integer if greater or equal

subil subtract integer if less

Assembly Language

6-21

6
subine subtract integer if not equal

subile subtract integer if less or equal

subio subtract integer if ordered

Remainder and Modulo

These arithmetic instructions divide the operands and retain the remainder
of the operation, discarding the quotient:

remi remainder integer

remo remainder ordinal

modi modulo integer

In the remainder instructions, the result has the same sign as the dividend.
The result of the modulo instruction has the same sign as the divisor.

Shift and Rotate

The shift and rotate instructions implicitly perform arithmetic functions by
shifting the bits in a register operand:

eshro extended shift right ordinal (i960 Cx, Jx, and Hx
processors only)

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate bits

The shift instructions discard bits shifted out of the high-order or
low-order bits of the register. The rotate instruction replaces bits shifted
out of the high-order bits of the operand in the vacated low-order bit
positions.

i960 Processor Assembler User's Guide

6-22

6
The shift right integer instruction does not correctly divide negative
operands by powers of two arithmetic, although it does perform a
conventional shift operation. To divide negative integer operands
correctly, use the shift right dividing integer (shrdi) instruction instead of
the shift right integer (shri) instruction.

The extended shift right ordinal instruction (eshro) is the equivalent of an
extended divide by a power of 2, which produces no remainder.

Logical

These instructions perform the bitwise boolean (logical) functions on word
operands in the specified registers. The only unary operation is carried out
by the not instruction, which negates the bits in the src operand,
represented by A in the list below.

In describing the remaining logical instructions, the letter A represents a
bit in the src2 operand and B represents the corresponding bit in the src1

operand.

NOTE. The binary logic functions process the source operands in
reverse order.

not not A

and A and B

notand (not A) and B

andnot A and (not B)

nand not (A and B)

or A or B

notor (not A) or B

ornot A or (not B)

Assembly Language

6-23

6
nor not (A or B)

xor not (A = B)

xnor A = B

Tables 6-8 through 6-10 show the operands and results of the binary
logical operations. The unary not instruction simply complements bits
(clears bits that are set and sets bits cleared to 0) in a bitwise fashion for
each of the 32 bits of the src operand.

Table 6-8 Unary Operation

A not

0 1

1 0

Table 6-9 Binary Operations

A B and notand andnot nand or

0 0 0 0 0 1 0

0 1 0 1 0 1 1

1 0 0 0 1 1 1

1 1 1 0 0 0 1

Table 6-10 Binary Operations Continued

A B notor ornot nor xor xnor

0 0 1 1 1 0 1

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 1 1 1 0 0 1

i960 Processor Assembler User's Guide

6-24

6
Bit, Bit Field, Byte

The bit and bit field instructions perform operations on a contiguous series
of bits within an ordinal word. As with the arithmetic instructions, the bit
and bit field instructions operate only on data placed in global or local
registers. Use the data movement instructions to transfer data between
memory and the registers. The processor also provides two byte
operations, scanbyte and bswap .

Bit Operations

These instructions operate on a single specified bit in a global or local
register.

setbit set bit

clrbit clear bit

notbit not bit

chkbit check bit

alterbit alter bit

scanbit scan for bit

spanbit span over bit

The setbit , clrbit , and notbit instructions set, clear, or complement
the specified bit in an ordinal word. The chkbit instruction sets the
condition code (CC) in the arithmetic controls word (AC) according to the
state of the specified bit. The alterbit instruction changes the state of
the bit based on the condition code setting.

The scanbit and spanbit instructions return the bit number of the
most-significant set and clear bit in the source operand, respectively.

Assembly Language

6-25

6
Bit Field Operations

Two instructions operate on a bit field, specified by the bit position of the
least-significant bit in the field and the length of the field:

extract extract bit field

modify modify under mask

The extract instruction shifts the specified bit field to the right and fills
the vacated high-order positions with zeros. The modify instruction
copies the specified bit field in one register to another, under control of a
mask. This instruction preserves bits corresponding to masked bit
positions.

Byte Operations

The scanbyte instruction compares two ordinals on a byte-by-byte basis,
testing whether or not any two corresponding bytes in the ordinals are
equal. The scanbyte instruction then sets the condition code (CC)
according the outcome: successful (TRUE) or unsuccessful (FALSE).

The bswap instruction, available only on i960 Jx, Hx, and RP processors,
reverses the byte order within a 4-byte word. Bytes 0 and 3 are swapped,
and bytes 1 and 2 are swapped. This is a REG format instruction.

Comparison

Several types of instructions facilitate the comparison of instruction
operands. These instructions often are used for program decision-making
and can result in a subsequent call or branch. Compare and conditional-
compare instructions, as well as compare-and-increment or compare-and-
decrement instructions, are included in the core architecture.

The comparison instructions use REG format and operate on the following
types of data:

• ordinal
• integer
• real

i960 Processor Assembler User's Guide

6-26

6
This chapter discusses comparison of ordinal and integer data types; the
real data types and related operations are discussed in your processor
manual.

Compare and Conditional Compare

The following instructions compare the specified operands, in global or
local registers, and set the condition code (CC) in the arithmetic controls
word (AC) according to the results of the test:

cmpi compare integer

cmpo compare ordinal

concmpi conditional-compare integer

concmpo conditional-compare ordinal

cmpob compare ordinal byte

cmpib compare integer byte

cmpos compare ordinal short

cmpis compare integer short

The byte and short versions of this instruction are available only on the
i960 Jx and Hx processors.

The cmpi and cmpo instructions simply test the operands and set the
condition code. The concmpi and concmpo instructions first examine the
status bit (bit 2) of the condition code and compare the operands only if
the status bit is not set. If the status bit is set, no further action occurs.

These instructions optimize two-sided range comparisons, to test whether
a given value lies between two others. A compare instruction (cmpi or
compo) checks one side of the range and a conditional-compare instruction
(concmpi or concmpo) checks the other, based upon the result of the first
comparison.

Assembly Language

6-27

6
Compare and Increment or Decrement

The following compare-and-increment or compare-and-decrement
instructions compare two specified source operands and set the condition
code based on the result:

cmpinci compare and increment integer

cmpinco compare and increment ordinal

cmpdeci compare and decrement integer

cmpdeco compare and decrement ordinal

These instructions either increment or decrement the destination register
by 1. The compare-and-increment or compare-and-decrement instructions
provide a convenient way to control iterative program loops.

Branch

The branch instructions direct the processor to continue executing a
program's instructions at another memory address, sometimes
conditionally. To accomplish this end, these instructions modify the
current instruction pointer (IP). The new value of the IP can be specified
as a displacement applied to the instruction pointer (COBR and CTRL
instruction formats), or defined using several memory addressing modes
(MEM instruction formats).

The branch instructions provide the following program control functions:

• unconditional branch
• conditional branch
• compare and branch

In addition to these machine instructions, Chapter 7 describes several sets
of pseudo-instructions to simplify coding branch instructions.

i960 Processor Assembler User's Guide

6-28

6
Unconditional Branch

The following instructions direct the processor to continue executing
instructions from a supplied address under any condition:

b branch

bx branch extended

bal branch and link

balx branch and link extended

The branch (b) instruction uses the CTRL format, with a limited
addressing range, while the branch extended (bx) instruction uses MEM
format with a full addressing range and corresponding memory address
modes.

Like the branch instructions, the bal and balx instructions use CTRL and
MEM formats, respectively. These instructions save the address of the
next sequential instruction and branch unconditionally to the specified
address.

Typically, the branch-and-link instructions are used to pass control to local
program procedures. (Local procedures are procedures that do not require
the processor's call-and-return mechanism.)

Conditional Branch

The following instructions direct the processor to continue executing
instructions from a supplied address depending on the status of the
condition code (CC) bits in the arithmetic controls (AC) word:

be branch if equal

bne branch if not equal

bl branch if less

ble branch if less or equal

bg branch if greater

Assembly Language

6-29

6
bge branch if greater or equal

bo branch if ordered

bno branch if unordered

These instructions also use the CTRL format and specify the target
memory address as a displacement from the current instruction pointer
(IP). Use the branch if ordered (bo) and branch if unordered (bno) to
compare real number operands.

A set of branch real pseudo-instructions supplement the bo and bno

instructions to include comparisons of real numbers. In addition, the
branch if true (bt) and branch if false (bf) directives provide convenient
mnemonics for branching on specific conditions. See Chapter 7 for more
information on the branch pseudo-instructions.

Compare and Branch

The ordinal and integer compare-and-branch instructions compare the two
source operands, set the condition code (CC), and branch to the specified
address depending on the result. These instructions are:

cmpobe compare ordinal and branch if equal

cmpobne compare ordinal and branch if not equal

cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal

cmpobg compare ordinal and branch if greater

cmpobge compare ordinal and branch if greater or equal

cmpibo compare integer and branch if ordered

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal

cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal

i960 Processor Assembler User's Guide

6-30

6
cmpibg compare integer and branch if greater

cmpibge compare integer and branch if greater or equal

cmpibno compare integer and branch if not ordered

Two other compare and branch instructions operate on a single-bit
operand in an ordinal word in a global or local register:

bbc branch on bit clear

bbs branch on bit set

All compare-and-branch instructions use the COBR instruction format,
implying a limited address range. See also the compare-and-jump
pseudo-instructions, described in Chapter 7.

Call and Return

For programming convenience, i960 processors provide various
mechanisms for making procedure calls. The following instructions
support the processor's call-and-return mechanism:

call call to local procedure using 24-bit addressing

callx call to procedure using full 32-bit addressing

calls call to a system procedure

ret return

Like the branch instructions, the call instruction uses the CTRL format,
with a limited addressing range, while the callx instruction uses MEM
format with a full addressing range and corresponding memory address
modes.

The calls instruction provides a supervisor call capability, deriving the
procedure address from the system procedure table, using a specified
index number to determine the correct table entry to reference. The table
entry determines whether procedures in the table can execute in supervisor
mode. Upon return from the called procedure, the processor resumes its
previous execution mode.

Assembly Language

6-31

6
The assembler provides two pseudo-instructions which are optimized by
the linker:

callj stands for a call , bal , or calls instruction

calljx stands for a callx , balx , or calls instruction

With the callj and calljx pseudo-instructions, you can make symbolic
references to a variety of function types without using an explicit call or
branch-and-link instruction. The linker chooses the appropriate instruction
or instruction sequence for the symbol type and performs call
optimization, if possible. For additional information on call optimization,
see the i960 Processor Software Utilities User's Guide.

Fault

Normally, the processor implicitly generates faults when exceptions occur
and handles them automatically through the programmer-defined fault
table. The address of the fault table is supplied to the processor at
initialization time. You can inhibit certain faults by using the fault
controls, or masks.

The following fault-if instructions allow a running program to raise a fault
condition explicitly:

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal

faultg fault if greater

faultge fault if greater or equal

faulto fault if ordered

faultno fault if unordered

The processor services a fault generated by one of these instructions as if
it were generated implicitly, as a result of an exception. See your
processor-manual for information on enabling and masking faults.

i960 Processor Assembler User's Guide

6-32

6
Chapter 7 explains the fault if true (faultt) and fault if false (faultf)
assembler pseudo-instructions that provide a mnemonic method for
generating faults based on logic conditions.

Debug

Several processor instructions support the processor's on-chip debugging
facilities. These facilities include a trace controls word and associated
masks, allowing the program to enable or disable specific types of trace
functions. The debug instructions are:

modtc modify trace controls

mark mark a breakpoint

fmark force mark a breakpoint

The modtc instruction allows a running program to change the bits in the
processor's trace controls word. The mark and fmark instructions
generate a breakpoint trace event: the mark instruction generates the
event if the breakpoint trace mode is enabled by the trace controls word,
while the fmark instruction generates an unconditional breakpoint event.

See your processor manual for information on the trace mechanism and
associated controls.

Processor Management

The following instructions read or modify bits in the arithmetic and
processor controls words:

modac modify arithmetic controls

modpc modify process controls

sysctl perform system control function on the i960 Cx,
Jx or Hx processors

Assembly Language

6-33

6
Note that with there are special rules for using a modpc instruction with
the i960 RP architecture . The syntax for using the modpc instruction with
any i960 architecture other than RP is:

modpc src, mask, src/dst

With the i960 RP architecture, the first and third arguments must be the
same. If these arguments are not the same, the assembler generates a
warning.

Another instruction that is useful for processor management is the
flushreg instruction. flushreg saves all but the current local register set
ensuring that the local register save areas contain the same data as the
processor's local register sets.

The following processor management instructions are specific to the i960
Jx, RP and Hx processors:

Table 6-11 Supported Processor Management Instructions

Instruction Description 80960Jx 80960RP 80960Hx

intdis global interrupt disable Yes Yes Yes

inten global interrupt enable Yes Yes Yes

intctl global enable and disable of
interrupts

Yes No Yes

icctl icache control Yes Yes Yes

dcctl dcache control Yes Yes Yes

halt halt CPU Yes No No

dcinva data cache invalidate by
address

No No Yes

The following test-if instructions allow programs to examine the bits of the
condition code, which can then be used to redirect program flow:

teste test if equal

testne test if not equal

testl test if less

i960 Processor Assembler User's Guide

6-34

6
testle test if less or equal

testg test if greater

testge test if greater or equal

testo test if ordered

testno test if unordered

Synchronous (K-series only)

On K-series processors, the synchronous instructions move data from a
register to memory or from one memory location to another.

synld synchronous load

synmov synchronous move

synmovl synchronous move long

synmovq synchronous move quad

The synld instruction copies a word from a register into memory. The
synchronous move instructions transfer data from one location in memory
to another.

Normally the processor executes store instruction asynchronously with
respect to the memory controller. That is, after placing information on the
data bus for storage in memory, the processor assumes that bus control
logic carries out the operation and continues with the next instruction. In
contrast, the synchronous instructions perform store and move operations
synchronously with memory.

When executing any of the synchronous instructions, the processor must
wait until that instruction and any other pending memory access
instructions are completed before executing the next instruction.

The processor indicates that a synchronous instruction is complete by
setting the condition code bit (CC) in the arithmetic controls word (AC).
Use these instructions when you must be sure that memory operations are
completed before further processing takes place, as in multiprocessor
designs. See also the section on atomic instructions below.

Assembly Language

6-35

6
Also, the synchronous instructions can be used as a mechanism to avoid
interrupts when sending interagent communication (IAC) messages.

Atomic

An atomic access is a processor read-modify-write operation on a 32-bit
word of memory. In multiple-processor designs, while one processor
performs an atomic access, other processors in the system cannot access
the same memory block until the original operation is complete. The
atomic instructions are:

atadd atomic add

atmod atomic modify

The atadd and atmod instructions add or modify the data in a specified
memory location and guarantee the integrity of the operation.

Summary of On-chip Numerics Instructions

Floating-point instructions have at least one operand that is a real data
type. They include the following functional categories of instructions:

• data movement instructions
• sign copying instructions
• data type conversion instructions
• comparison and classification instructions
• basic arithmetic instructions
• trigonometric functions
• logarithmic, exponential, and scale instructions
• decimal data manipulation instructions

The following sections summarize the instructions in each group.

Data Movment

Several ordinal and integer load and store instructions (ld/st , ldl/stl ,
ldt/stt , ldq/stq) move 4, 8, 12, or 16 bytes of data between memory
and local or global registers without regard to data type. The core
architecture move instructions (mov, movl , movt , movq) can then transfer

i960 Processor Assembler User's Guide

6-36

6
the contents of 1 to 4 local or global registers to another non-overlapping
group of 1 - 4 local or global registers without changing formats: real
values remain real, integer values remain integer, and so on.

Three move real instructions are provided in the numerics architecture:

movr move real

movrl move long-real

movre move extended-real

The movr and movrl instructions are most often used to transfer real-
valued data between global and local registers and floating-point registers
when a format change is desired. This technique implicitly converts
32-bit, 64-bit, or 96-bit real data to 80-bit extended-real format and vice
versa.

The following procedure converts 32-bit real data to a 64-bit real
representation:

1. Move a 32-bit real data word into a floating-point register using the
movr instruction. This step implicitly converts the real value into an
extended-real value.

2. Move the extended-real value from the floating-point register to two
global or local registers using the movrl instruction. The processor
explicitly converts the extended-real number into a 64-bit long-real
value in two global or local registers.

To convert implicitly from real and long-real to extended-real data format,
use the floating-point registers as operands in arithmetic, trigonometric,
logarithmic, and exponential operations.

The movre instruction copies extended-real values between a 80-bit
floating-point register and a triple global or local register group (96 bits).
The instruction does not alter the data type. However, when moving data
from a floating-point register to a register group, the movre instruction
inserts 16 zeros in the high-order bit positions to pad the third data word.
When moving the contents of the register group to a floating-point
register, this instruction deletes the most significant 16 bits of the word in
the third register.

Assembly Language

6-37

6
Sign Copying

The numerics architecture provides two sign-copying instructions:

cpysre copy sign extended-real

cpyrsre copy reverse sign extended-real

These instructions enable you to copy the sign of one extended-real value,
or its reverse, to another. Both operate exclusively on extended-real data
types, and at least one of the values must be in a floating-point register.
To copy the signs of real or long-real values, use the chkbit and
alterbit instructions.

Data Type Conversion

To convert between floating-point formats, for example between real and
extended-real formats, use the move real instructions described in the Data
Movement section. To convert between integer and real number formats,
the numerics architecture provides these explicit instructions:

cvtir convert integer to real

cvtilr convert long integer to real

cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer

cvtzril convert truncated real to long integer

The cvtir and cvtilr instructions can change their 32-bit and 64-bit
data types to 80-bit extended-real values or 32-bit real values,
respectively. The move real instructions can then convert the result to
64-bit long-real format if desired.

The cvtri and cvtril instructions change 32-bit real or 80-bit extended-
real numbers to integers. Hence, to convert a 64-bit long-real value to an
integer, first convert it to an extended-real format using the appropriate
move real instruction. Then use one of the convert real instructions to
transform the extended-real value to the desired integer format.

i960 Processor Assembler User's Guide

6-38

6
The cvtzri and cvtril instructions allow efficient implementation of
FORTRAN or C-style truncation semantics. They ignore the rounding
mode bits in the arithmetic controls word, and round toward zero always.

Basic Arithmetic

The following instructions perform the basic arithmetic operations
specified in the IEEE standard:

addr add real

addrl add long-real

subr subtract real

subrl subtract long-real

mulr multiply real

mulrl multiply long-real

divr divide real

divrl divide long-real

remr remainder real

remrl remainder long-real

roundr round real

roundrl round long-real

sqrtr square root real

sqrtrl square root long-real

These instructions correspond to many of the core architecture instructions
in the same functional category. However, in the numerics architecture all
arithmetic operations require real or long-real data types as operands and
result in real numbers.

The results and operands of instructions such as addr , subr , mulr , etc.,
can be 32-bit real, or 80-bit extended-real values. Similarly, results and
operands of the arithmetic long-real instructions, such as addrl , subrl ,
and mulrl , can be 64-bit long-real, or 80-bit extended-real values.

Assembly Language

6-39

6
The add, subtract, multiply, divide, and square root instructions represent
relatively standard, straight-forward mathematical functions performing
the operations their names imply.

The remr and remrl instructions divide the contents of a register or dual-
register group by the value in another register (or pair) and produce the
remainder of the quotient; the quotient itself is ignored. For example, if
the real number 987.34 is divided by 185.769, the quotient is 5.31488...
and the remainder is the fractional portion of the quotient, .31488... These
instructions differ from the IEEE standard by the way in which the integer
portion of the quotient is determined.

The roundr and roundrl instructions convert a real or long-real operand
to an integer value based on the current rounding mode. The integer result
remains in floating-point format. The current rounding mode is
determined by the setting of the rounding mode bits in the arithmetic
controls word (AC).

For example, the real-valued result 137.85 is rounded to 137.0 if the
rounding controls are set to round toward zero. The same number is
rounded to 138.0 if the rounding controls are set to round to infinity.

Decimal

The decimal instructions operate on 32-bit operands that contain an
ASCII-coded decimal digit in the least-significant 8 bits of the data word.

dmovt decimal move and test

daddc decimal add with carry

dsubc decimal subtract with carry

The dmovt instruction moves a 32-bit word from one register to another
and tests the least-significant byte of the operand to determine if it is a
valid ASCII-coded decimal digit (001100002 through 001110012,
corresponding to the decimal digits 0 through 9). For valid digits, the
condition code (CC) is set to 0002; otherwise the condition code is set to
0102.

i960 Processor Assembler User's Guide

6-40

6
The daddc and dsubc instructions operate on two decimal digits. Bit 1 of
the condition code indicates a decimal carry-in or carry-out condition. For
example, you can use the decimal instructions iteratively to validate ASCII
digit strings and to add or subtract ASCII-coded decimal values.

Note that with CTOOLS release 5.1, the assembler no longer accepts
decimal instructions when assembling for a KA or an SA target, since
decimal instructions are not supported by those processors.

Comparison and Classification

To compare and classify floating-point values, use the numerics
instructions:

cmpr compare real

cmprl compare long-real

cmpor compare ordered real

cmporl compare ordered long-real

classr classify real

classrl classify long-real

The cmpr and cmprl instructions compare the contents of two registers
and set the condition code bits (CC) in the arithmetic controls word (AC)
to indicate the results of the comparison. For floating-point operands,
when at least one comparand is a NaNs, the condition code indicates
unordered.

The cmpor and cmporl instructions set the invalid-operation flag for an
unordered condition.

Use the core-architecture branch-ordered (bo) and branch-unordered
(bno) instructions to test the floating-point comparison results, with
conditional branching if an ordered or unordered condition is detected.

The classr and classrl instructions determine the class of a real or
long-real operand as zero, denormalized finite, normalized finite, infinite,
SNaN, or QNaN. The AC arithmetic status bits indicate the result.

Assembly Language

6-41

6
Trigonometric Functions

For the common trigonometric functions, use the numerics instructions:

sinr sine real

sinrl sine long-real

cosr cosine real

cosrl cosine long-real

tanr tangent real

tanrl tangent long-real

atanr arctangent real

atanrl arctangent long-real

All the trigonometric functions require real or long-real operands and yield
floating-point results. The values of angles must be given in radians.

The results and operands of instructions such as sinr , cosr , and tanr can
be 32-bit real or 80-bit extended-real values. Similarly, results and
operands of the trigonometric long-real instructions, such as sinrl ,
cosrl , and tanrl , can be in 64-bit long-real or 80-bit extended-real
format.

The atanr and atanrl instructions return a result in radians. As well as
supplying the inverse tangent of the argument, these instructions facilitate
conversion from rectangular to polar coordinates.

If the operands of trigonometric functions are computed using pi, then the
full 66-bit representation for pi given in your processor-specific manual
must be used. Truncated values are permissible when accuracy is not
crucial.

i960 Processor Assembler User's Guide

6-42

6
Logarithmic, Exponential, and Scale

For logarithmic, exponential, and scale functions, use the numerics
instructions:

logbnr log binary real

logbnrl log binary long-real

logr log real

logrl log long-real

logepr log epsilon real

logeprl log epsilon long-real

expr exponent real

exprl exponent long-real

scaler scale real

scalerl scale long-real

All these functions require real or long-real operands and yield floating-
point results.

The results and operands of instructions such as logr , expr , and scaler

can be 32-bit real or 80-bit extended-real format. Similarly, results and
operands of the trigonometric long-real instructions, such as logrl ,
exprl , and scalerl can be in 64-bit long-real or 80-bit extended-real
format.

The logbnr and logbnrl instructions compute the logarithm to the base 2
of the source operand and retain only the integer component. The result is
an integer that is the binary log of the given number. For instance, log2
3249 = 11.65532..., but the binary log function returns the value 11
(decimal) in floating-point format. The logbnr and logbnrl instructions
determine the order of magnitude of a specified number.

Assembly Language

6-43

6
The logr and logrl instructions compute the logarithm to the base 2 of
one source operand (src1) and scale the result by a second operand
(src2), to obtain the result (dst):

dst = src1 * log 2 src2

By carefully specifying the src2 operand, logarithms to any base can be
computed using these instructions. For instance, by specifying a scale
factor of src1 = .30102... , the logarithm base 10 (common log) is
obtained.

The logepr and logeprl instructions compute the logarithm to the base 2
of 1.0 plus the src1 operand and scale (src2 operand) the result to obtain
the result (dst):

dst = src2 * log 2 (1.0 + src1)

The src1 operand is restricted to values near zero which yields maximum
accuracy for 1.0 + src1 near unity (i.e., the src1 operand is close to
zero). This condition, for instance, is commonly encountered when
computing compound interest. By carefully choosing the src2 operand,
logarithms to any base can be computed.

The expr and exprl instructions compute the value:

dst = 2 src - 1

The src must be in the range -.5 to +.5 . The scale and scalerl

instructions multiply the src2 operand by 2 to an integer power, denoted
by the src1 operand, for the result (dst):

dst = src2 * 2 src1

The exponent and scale instructions can be used together to create an
algorithm for computing the value of 2 to any power by noting that:

2Y = 2 (X + I) = 2 I * [(2 X - 1) + 1]

The Y is an arbitrary exponent: I and X represent the integer and fractional
portions of the exponent, respectively.

Pseudo-instructions

7-1

7
This chapter describes the pseudo-instructions (pseudo-ops) recognized by
the assembler.

Pseudo-instructions appear in the assembly file like valid machine
instructions. In actuality, the assembler substitutes one or more
machine-level instructions for them. For example, when you enter the
optimized load constant or ldconst , the assembler selects the fastest
instruction available to place the specified value in the designated register.
This instruction can be a move, add, subtract, shift, or load-address,
depending on the given value.

For convenience, the assembler provides pseudo-instructions that are
synonyms for certain branch, fault, load, and compare-and-branch
instructions, as described in the following sections. These pseudo-
instructions are functions of the assembler and not of any particular
processor implementation. In general, you can use them in any assembly
language source file. Any implementation-dependent differences are
noted.

Syntax

Pseudo-instructions use the same syntax for operands as machine
instructions.

The operand names describe the function of the operands (for example,
src , dst , targ).

i960 Processor Assembler User's Guide

7-2

7
Branch Pseudo-instructions

The assembler recognizes the pseudo-instructions bt (branch if true) and
bf (branch if false) as synonyms for the instructions bo (branch if ordered)
and bno (branch if not ordered), respectively.

For convenience in checking the results of real number (floating-point)
comparisons, several branch pseudo-instruction are available. Table 7-1
lists these pseudo-instructions with the equivalent instructions.

Table 7-1 Branch Real Pseudo-instructions

Directive Operation Instruction

bre branch real if equal be

brg branch real if greater bg

brge branch real if greater or equal bge

brl branch real if less bl

brle branch real if less or equal ble

brlg branch real if less or greater bne

bro branch real if ordered bo

bru branch real if unordered bno

brue branch real if unordered equal be,bno

brug branch real if unordered greater bg,bno

bruge branch real if unordered greater or equal bge,bno

brul branch real if unordered less bl,bno

brule branch real if unordered less or equal ble,bno

brulg branch real if unordered less or greater bne,bno

Pseudo-instructions

7-3

7
Conditional Faults Pseudo-instructions

The assembler also has equivalent pseudo-instructions that help with
conditional faults. The assembler recognizes faultt (fault true) and
faultf (fault false) as synonyms for the instructions faulto and
faultno . These pseudo-instructions have the same syntax as the machine
instructions

Load Pseudo-instructions

The ldconst pseudo-instruction automatically optimizes loading of
integer and ordinal immediate constant values. Immediate values that
cannot be expressed as literals must be explicitly loaded into a register
before they can be used as operands for machine instructions. For integer
and ordinal operands, loading can be done using the ldconst directive.
The ldconst directive generates different instructions for several
different immediate values, based on architecture performance concern.
For a list of ldconst substitutions, see the Example section of the
alphabetical reference entry for ldconst later in this chapter.

Call Pseudo-instructions

The callj and calljx pseudo instructions let you assemble a call
instruction, allowing the linker to perform call optimization, when
possible. The linker transforms call pseudo-instructions into the
appropriate instruction at link time, depending on the type (default, leaf, or
system) of the called procedure. See page 7-8 for more information.

Compare-and-jump Pseudo-instructions

For compare-and-branch instructions, the assembler provides a
convenient, symbolic way to specify the operation by using a set of
compare-and-jump pseudo-instructions.

i960 Processor Assembler User's Guide

7-4

7
In the compare (ordinal or integer) and branch-on-condition instructions
(such as the cmpobe instruction), the branch target must be fewer than 212

bytes from the instruction pointer (IP). As an alternative, you can use the
compare-and-jump pseudo-instructions provided by the assembler. These
pseudo-instructions generate a compare-and-branch (e.g., cmpobe)
instruction if the target is fewer than 212 bytes away, or separate compare
and branch instructions otherwise.

Form the compare-and-jump pseudo-instructions by substituting a j for
the b in the corresponding instruction's mnemonic. For example, the
instruction be becomes pseudo-instruction je ; cmpobe becomes cmpoje .
As another example, when you used the pseudo-instruction:

cmpije r5, r6, target

the assembler generates:

compibe r5, r6, target

if the label is within 212 bytes, or:

compi r5, r6
be target

otherwise.

NOTE. These pseudo-instructions never generate a branch-extended
instruction. If you cannot guarantee that the branch address is fewer than
223 bytes away from the instruction pointer, you must use the equivalent
extended instruction sequence.

Pseudo-instructions

7-5

7
The compare-and-jump pseudo-instructions appear in Table 7-2. Each
pseudo-instruction is paired with the operation it performs.

Table 7-2 Compare-and-jump Pseudo-instructions

Pseudo-instruction Full Function Name

cmpije compare integer and jump if equal

cmpijg compare integer and jump if greater

cmpijge compare integer and jump if greater or equal

cmpijl compare integer and jump if less

cmpijle compare integer and jump if less or equal

cmpijne compare integer and jump if not equal

cmpoje compare ordinal and jump if equal

cmpojg compare ordinal and jump if greater

cmpojge compare ordinal and jump if greater or equal

cmpojl compare ordinal and jump if less

cmpojle compare ordinal and jump if less or equal

cmpojne compare ordinal and jump if less not equal

Two pseudo-instructions never branch:

cmpijno compare integer and jump if not ordered.

cmpojno compare ordinal jump if not ordered. The
equivalent instruction is cmpibno .

Two pseudo-instructions always branch:

cmpijo compare integer and jump if ordered.

cmpojo compare ordinal and jump if ordered. The
equivalent instruction is cmpibo .

Ordered relationships apply only to real numbers on i960 processors with
on-chip floating-point capability. The branch instructions for ordered and
unordered numbers are consistent ways to provide null operations
(no-ops).

i960 Processor Assembler User's Guide

7-6

7
Pseudo-instructions Reference

This section describes the pseudo-instructions in alphabetical order.

The syntax descriptions use the placeholder targ for any operand that is
an expression representing a memory address. The assembler treats a
targ operand as a signed displacement value representing an IP-relative
address, as follows:

Format Displacement in Words

COBR -210 through 210-1

CTRL -221 through 221-1

BRANCH
Branch if false or
branch if true

bf targ
bt targ

targ specifies the branch target.

Discussion

Both the bt (branch if true) and bf (branch if false) directives check the
condition code and branch to the location specified by targ based upon
the result of the test.

The assembler recognizes the following correspondence:

Directive Instruction

bt (branch if true) bo (branch if ordered)

bf (branch if false) bno (branch if unordered)

The syntax for the two directives is the same as the syntax for the
corresponding machine instructions.

Pseudo-instructions

7-7

7
Example

The assembler changes the pseudo-instruction below to the instruction bo

process :

bt process

BRANCH REAL
Branch on the result of
a floating-point
comparison

bre branch real if equal

brg branch real if greater

brge branch real if greater or equal

brl branch real if less

brle branch real if less or equal

brlg branch real if less or greater

bro branch real if ordered

bru branch real if unordered

brue branch real if unordered equal

brug branch real if unordered greater

bruge branch real if unordered greater or equal

brul branch real if unordered less

brule branch real if unordered less or equal

brulg branch real if unordered less or greater

br* targ specifies the branch target

targ

i960 Processor Assembler User's Guide

7-8

7
Discussion

The branch real directives check the results of floating-point comparisons
and branch to the location specified by targ based upon the result of the
test. These instructions generate the appropriate compare instructions for
unordered cases.

Table 7-1 shows the correspondences between pseudo-instructions and
machine instructions.

Use the same syntax for pseudo-instructions you do for the corresponding
machine instructions.

Example

The assembler changes the pseudo-instruction below to the instruction bno

process :

bru process

callj, calljx
Optimizable linker calls

callj targ

calljx targ

targ is the name of the procedure to be called.

Discussion

The callj and calljx pseudo-instructions assemble a call or callx

instruction, respectively, and a relocation entry instructing the linker to
perform call optimization, when possible. The linker can also be
instructed to ignore call optimization. See the utilities user's guide for
more information about linker controls.

Pseudo-instructions

7-9

7
When the referenced procedure, represented by targ , is a .leafproc , the
linker replaces the pseudo-instruction with a branch-and-link (bal or
balx) instruction. When the target is a .sysproc , the linker replaces the
pseudo-instruction with a calls instruction.

For example, inserting a calljx instruction while using the -AJD setting
might produce the following linker output depending upon whether the
target is a default call, leaf procedure, or system call:

Table 7-3 Call Pseudo-instruction Substitutions

Default Call Leaf Procedure System Call

callx _target balx _target,g14 lda _sysprocIndex,g13

calls (g13)

Since callj and calljx are optimized at link time, examination of the
object module generated by the assembler with the disassembler (dumper)
displays the assembled instruction as a call instruction.

The assembler optimizes callj or calljx to bal or balx , respectively,
when the referenced procedure is a C language static function.

callj can be optimized during assembly when the target of the callj is
in the same object module and section as the call site.

Example

This sample optimizes a call for procedure _subx .

callj _subx

i960 Processor Assembler User's Guide

7-10

7
Changes to the calljx Pseudo Instruction with the
i960 RP Architecture

When used with the -ARP option, calljx uses the syntax:

calljx _target, tmpreg

where tmpreg is a local or global register. This change results in the
following sequences in the linker:

Default Call Leaf Procedure System Call

lda _target,tmpreg

callx (tmpreg)

lda _target,tmpreg

balx (tmpreg),g14

lda _sysprocIndex,g13

calls (g13)

Notice that with the 80960RP calljx format all three call types result in a
three-word instruction sequence, whereas the previous calljx format
requires only two words.

Related Topics

bal

balx

.leafproc

.sysproc

Compare-and-jump
Branch to specified
target

cmpije compare integer and jump if equal

cmpijg compare integer and jump if greater

cmpijge compare integer and jump if greater or equal

cmpijl compare integer and jump if less

Pseudo-instructions

7-11

7
cmpijle compare integer and jump if less or equal

cmpijne compare integer and jump if not equal

cmpijno compare integer and jump if not ordered

cmpijo compare integer and jump if ordered

cmpoje compare ordinal and jump if equal

cmpojg compare ordinal and jump if greater

cmpojge compare ordinal and jump if greater or equal

cmpojl compare ordinal and jump if less

cmpojle compare ordinal and jump if less or equal

cmpojne compare ordinal and jump if less not equal

The syntax for these pseudo-instructions is:

cmpij* src1 , src2 , targ
cmpoj* src1 , src2 , targ

src1 specifies a global or local register, or literal value

src2 specifies a global or local register

targ specifies the branch target

Discussion

Both the integer and ordinal compare-and-jump directives check the
results of a comparison of the contents of the source operands and branch
to the location specified by targ based upon the resulting condition code
(CC). Shown below are the instructions assembled as a result of each of
these directives. The assembler recognizes the following
correspondences:

i960 Processor Assembler User's Guide

7-12

7
Table 7-4 Compare and Jump Substitutions

Directive When Target is < 2 12 Bytes
When Target is ≥≥ 212 Bytes
Away

cmpije cmpibe cmpi + be

cmpijg cmpibg cmpi + bg

cmpijge cmpibge cmpi + bge

cmpijl cmpibl cmpi + bl

cmpijle cmpible cmpi + ble

cmpoje cmpobe cmpo + be

cmpojg cmpobg cmpo + bg

cmpojge cmpobge cmpo + bge

cmpojl cmpobl cmpo + bl

cmpojle cmpoble cmpo + ble

As Table 7-4 shows, the assembler only generates a compare integer or
compare ordinal followed by a branch instruction when the destination is
212 bytes or more away.

Two pseudo-instructions never branch:

cmpijno compare integer and jump if not ordered.

cmpojno compare ordinal and jump if not ordered. The
equivalent instruction is cmpibno .

Two pseudo-instructions always branch:

cmpijo compare integer and jump if ordered.

cmpojo compare ordinal and jump if ordered. The
equivalent instruction is cmpibo .

Pseudo-instructions

7-13

7
Ordered relationships apply only to real numbers on i960 processors with
on-chip floating-point capability. The branch instructions for ordered and
unordered numbers are consistent ways to provide null operations
(no-ops), when not used with floating-point values.

The syntax for these directives is the same as the syntax for the
corresponding machine instructions in the core architecture.

Example

This sample pseudo-instruction uses compare and branch

cmpije r4, g4, process

During assembly, the pseudo-instruction becomes the following:

cmpi r4, g4
be process

FAULT
Fault if false or fault if
true

faultf
faultt

Discussion

The faultt (fault if true) and faultf (fault if false) directives raise a
fault condition based upon a test of the condition code.

i960 Processor Assembler User's Guide

7-14

7
The assembler recognizes the following correspondence:

Directive Instruction

faultt faulto

(fault if true) (fault if ordered)

faultf faultno

(fault if false) (fault if not ordered)

The syntax for the two directives is the same as the syntax for the
corresponding machine instructions in the core architecture.

Example

The following pseudo-instruction becomes faultnof during assembly:

faultf

ldconst
Load constant

ldconst src , dst

src is an expression specifying a constant value to
load.

dst specifies a global or local register.

Discussion

Immediate values that cannot be expressed as literals must be explicitly
loaded into a register before they can be used as operands for machine
instructions. For integer and ordinal operands, this loading can be done
with the ldconst directive.

Pseudo-instructions

7-15

7
The assembler selects the most efficient instruction available to place the
value in the register. This instruction can be a move, add, subtract, shift,
or load address, depending on the value of src .

NOTE. The listing file generated by the assembler does not indicate what
instruction (in the object module) substitutes for the ldconst directive
specified in the source file. To determine what is assembled, display the
instruction in the object module with the disassembler (dumper).

Example

In the following lines, you can see some of the various ways to load
constants with this pseudo-instruction:

ldconst and assembled instruction
 ldconst 0, g5 /* mov 0,g5 */
 ldconst 31, g5 /* mov 31,g5 */
 ldconst 32, g5 /* addo 1,31,g5 */
addr:
 ldconst 62, g5 /* addo 31,31,g5 */
 ldconst 3<<8, g5 /* shlo 8,3,g5 */
 ldconst 0x1234, g5 /* lda 0x1234,g5 */
 ldconst -1, g5 /* subo 1,0,g5 */
 ldconst -31, g5 /* subo 31,0,g5 */
 ldconst addr, g5 /* lda addr,g5 */

Example Programs

8-1

8
This chapter contains sample code, in two sections. The examples in the
first section use the core instructions, and those in the second section use
floating-point instructions. See the processor user’s manuals for complete
lists of the instructions supported by each i960 architecture.

Note that the code shown in this chapter has not been tested on the current
version of the assembler toolset. Therefore it is shown for general
learning purposes only, and is not provided on the distribution media.

Examples Using the Core Instruction Set

The examples in this section use the core instructions described in
Chapter 6. The example programs show:

• Code to enable interrupts to the i960 processor from an 8259A
Programmable Interrupt Controller.

• Sending a breakpoint IAC message to the processor using an assembly
language block in a C routine.

• Performing a bitblt code routine.
• Matrix multiplication with core instructions only.
• C-style string comparisons speed-optimized for a K-series i960

processor.

i960 Processor Assembler User's Guide

8-2

8
Enable and Count Interrupts From 8259A

The following source code shows how to initialize an 8259A
Programmable Interrupt Controller to interrupt the i960 processor. The
routine counts the number of interrupts generated.

/**** Enable Interrupts ****/

.globl _enable_ints
_enable_ints:

 lda cr0_address, r3 /* cntrl stat reg addr */
 ldos (r3), r4 /* cr0 is a 16 bit reg */
 lda 0xff7f, r5 /* mask for enints# bit */
 and r5, r4, r4 /* set enints# bit low */
 stos r4, (r3)
 ret

/* NOTE:the EXV complements and rotates the data bus */
/* left 3 bits. This is compensated for in 8259 read */
/* and write routines. The bits below are those that */
/* 8259 must see. */

/*---*/
/* Initialize the 8259 */
/*---*/

.globl _init_8259
_init_8259:

/* Write ICW1: ICW4 req., 1 8259 level triggered */
 lda ICW1_ADR, g0
 lda ICW1_DATA, g1
 call _write_8259

/* Write ICW2: Vector base of 08 */
 lda ICW2_ADR, g0
 lda ICW2_DATA, g1
 call _write_8259

/* Write ICW4: 86/88 mode, normal EOI, non-buffered
 not special fully nested */
 lda ICW4-ADR, g0
 lda ICW4-DATA, gl
 call _write_8259

Example Programs

8-3

8
/* Write OCW1, this is the interrupt mask register, a 0
in a bit in this register means that the interrupt is
enabled. */
 lda OCW1_ADR, g0
 lda OCW1_DATA, g1
 call _write_8259
 ret

/*---*/
/* WRITE 8259 ROUTINE */
/*----------------------- -----------------------------*/
/* Write_8259 routine. Pass 8259 port address in g0 and
the data as it should appear to the 8259 in the lower
byte of g1. This routine will invert and rotate the
data, write it to the 8259 and pause so that any
subsequent accesses to the 8259 will not violate the
recovery time. */

_write_8259:
 lda 0x000000ff, r3 /* mask to clear bytes 1,2,3 */
 and r3, g1, g1
 shlo 03, g1, g1 /* shift data left 3 bits. */
 lda 0x00000700, r3 /* mask all bits but 8,9,10 */
 and r3, g1, r3 /* bits 8,9,10 become bits 0,1,2 */
 shro 08, r3, r3 /* shift bits down to byte 0 */
 or r3,g1, g1 /* combine upper 5 bits in g1 */
 not g1, g1 /* invert data */
 stob g1, (g0) /* write byte to the 8259 */
 bal waiting_loop /* wait so 8259 recovery time
 guaranteed */
 ret

.globl _write_count
_write_count:
 lda cra_address, r3
 lda 0x2a, r4
 stob r4, (r3)
 bal waiting_loop

 lda cra_address, r3
 lda 0x3a, r4
 stob r4, (r3)
 bal waiting_loop

i960 Processor Assembler User's Guide

8-4

8
 lda cra_address, r3
 lda 0x1a, r4
 stob r4, (r3)
 bal waiting_loop
 lda mra_address, r3
 lda 0x02, r4
 stob r4, (r3)
 bal waiting_loop

 lda mrb_address, r3
 lda 0x07, r4
 stob r4, (r3)
 bal waiting_loop

 lda crb_address, r3
 lda 0x2a, r4
 stob r4, (r3)
 bal waiting_loop

 lda crb_address, r3
 lda 0x3a, r4
 stob r4, (r3)
 bal waiting_loop

 lda crb_address, r3
 lda 0x1a,r4
 stob r4, (r3)
 bal waiting_loop

 lda mra_address, r3
 lda 0x02, r4
 stob r4, (r3)
 bal waiting_loop

 lda mrb_address, r3
 lda 0x07, r4
 stob r4, (r3)
 bal waiting_loop

 lda sra_address, r3
 lda 0xbb, r4
 stob r4, (r3)
 bal waiting_loop

Example Programs

8-5

8
 lda srb_address, r3
 lda 0xbb, r4
 stob r4, (r3)
 bal waiting_loop

 lda input_port_address, r3
 lda 0xf4, r4
 stob r4, (r3)
 bal waiting_loop
 lda acr_address, r3
 lda 0xf0, r4
 stob r4, (r3)
 bal waiting_loop

 lda imr_address, r3
 lda 0x44, r4
 stob r4, (r3)
 bal waiting_loop

 lda ctur_address, r3
 lda ctur_data, r4
 stob r4, (r3)
 bal waiting_loop

 lda ctlr_address, r3
 lda ctlr_data, r4
 stob r4, (r3)
 bal waiting_loop

 lda cra_address, r3
 lda 0x05, r4
 stob r4, (r3)
 bal waiting_loop

 lda CLOCK_ADR, r3 /* zero out clock count */
 lda 0, r4
 st r4, (r3)
 ret

/*
 Wait loop required after each access to DUART registers.
*/

i960 Processor Assembler User's Guide

8-6

8
waiting_loop:
 lda sr0_address, r8 /* BST access;
 DUART recovery time */

waiting_loopl:
 ldob (r8), r8
 bx (gl4) /* bal return */
#include "fractal.h"
#include "ints.h"
#include "mp_system.h"

 .text
.globl _clock_int
_clock_int:
 mov g14, r14 /* save bal register */
 lda cr0_address, r3
 ldos (r3), r4
 lda 0x20, r5
 or r4, r5, r4
 stos r4, (r3)

 /* update clock */

 lda CLOCK_ADR, r6
 atadd r6, 1, r7
 bal waiting_loop

 not r5, r5
 and r5, r4, r4
 stos r4, (r3)

/*
 check clock, if time is 1 second, then signal somebody
*/

 lda SECONDS_DIVIDE, r10
 modi r10, r7, r7
 cmpibne 0, r7, cont_here

 lda 0xffffffff,r7
 lda 8(r6), r10
 lda 24(r6), r8
 stl r10, 24(r6) /* store to previous answer */
 subc r8, r10, r8
 subc r9, r11, r9

Example Programs

8-7

8
 ldl 16(r6), r10
 ldl 32(r6), r4
 stl r10, 32(r6) /* store to previous answer */
 subc r4, r10, r4
 subc r5, r11, r5
 addc r4, r8, r4
 addc r5, r9, r5
 /* do the fp shuffle --- */

 movrl fp3, r8
 cvtilr r4, fp3
 movrl fp3, r4

 lda 40,r11
 addo r11, r6, r11
 atmod r11, r7, r4 /* cumulate idle time */

 movrl r8, fp3
 lda 44, r11

 addo r11, r6, r11
 atmod r11, r7, r5 /* cumulate idle time */
 lda CLOCK_PORT,r10
 signal r10

/* acknowledge to 8259 that all is well */

cont_here:
 lda ADJUSTED_EOI, r4
 lda OCW2_ADR, r5
 stob r4, r5)
 mov r14, g14
 ret

waiting_loop:
 lda sr0_address, r8

waiting_loop1:
 ldob (r8), r8
 bx (g14)

.globl _no_int
_no_int:
 lda BASE_ADR, r5
 lda ADJUSTED_EOI, r4
 stob r4, (r5)
 ret

i960 Processor Assembler User's Guide

8-8

8
Send an IAC to the Processor

Although written in the C language, this source listing includes an ASM
block that actually sends a breakpoint IAC to the processor. The code
assumes that breakpoint trace mode is set in the trace controls word and
that the trace enable flag of the process controls word is also set.

Figure 8-1 shows the format of the data structure used in the program.

Figure 8-1 IAC Message Structure

31 2423 1615 0

Message Type Field 1 Field 2

Field 3

Field 4

Field 5

Message Format

OSD1137

/* iac structure */
struct x iac_msg {
 unsigned short field2;
 unsigned char field1;
 unsigned char message_type;
 unsigned int field3;
 unsigned int field4;
 unsigned int field5;
} iac_struct;

/* This routine issues an IAC message to the local
processor on which the program resides. It accepts a
pointer to a preformed IAC message as input, and uses the
synmovq instruction to send the IAC to the processor. */

asm send_iac (struct iac_msg * base_msg)
{
 %reglit base_msg; tmpreg myreg;

Example Programs

8-9

8
 lda 0xff000010, myreg /* load local IAC address */
 synmovq myreg, base_msg
 /* issue IAC message */

 %error;
}

/**/
/* Send a breakpoint IAC to the processor */
/* */
/* (don't forget to turn on breakpoints in the */
/* trace control register) */
/**/
set_breakpt(addr1, addr2)
unsigned int addr1;
unsigned int addr2;
{
 iac_struct.message_type = 0x8f;
 iac_struct.field3 = addr1;
 iac_struct.field4 = addr2;
 send_iac(&iac_struct);
}

Perform a BitBlt Operation

The following example shows a bitblt code routine. The typical size of
a character stored in memory is 32 x 40 bits. Optimization techniques
include:

• use of the ldconst pseudo-instruction
• use of ldq and stq to move data blocks
• register bypassing for the or instructions within the loop
• instructions are placed between compare-and-branch; the branch

instruction therefore uses 0 clocks
• register loading is done before the data is actually used; other

instructions are executed while waiting for the load

i960 Processor Assembler User's Guide

8-10

8
.text
.globl _main

_main:
 lda 0x30000, r4 /* source address in r4 */
 lda 0x40000, r5 /* destination address in r5 */
 ldconst 7, r6 /* word count in r6 */
 divi 4, r6, r7 /* quad count in r7 */
 modi 4, r6, r6 /* remainder word count in r6 */
 ldconst 4, r8 /* offset in r8 */
 ldq (r4), g0
 addi 0x10, r4, r4 /* increment source addr 4 words */
 ldconst 32, r9
 subo r8, r9, r9 /* 32 - offset */
 ldconst 0, g4 /* clear g4 for carry in */

 cmpibge 0, r7, single
 /* no quad words jump to single */

loop:
 shro r9, g4, g5 /* shift carry rt. by 32-offset */
 shlo r8, g0, g6 /* shift src1 left by offset */
 or g5, g6, g8 /* combine */
 shro r9, g0, g12 /* shift src1 right by 32-offset */
 shlo r8, g1, g13 /* shift src2 left by offset */
 or g12, g13, g9 /* combine */
 shro r9, g1, g13 /* shift src2 right by 32-offset */
 shlo r8, g2, r14 /* shift src3 left by offset */
 or g13, r14, g10 /* combine */
 shro r9, g2, g7 /* shift src3 right 32-offset */
 shlo r8, g3, g11 /* shift src4 left by offset */
 mov g3, g4 /* save src 4 for carry in */
 ldq (r4), g0 /* start next load */
 or g7, g11, g11 /* combine */
 addi 0x10, r4, r4 /* increment src addr by 4 words */
 subi 1, r7, r7 /* decrement quad count */
 cmpi 0, r7 /* test if done */
 stq g8, (r5) /* store 4 words in dest */
 addi 0x10, r5, r5 /* increment dest addr 4 words */
 bl loop /* if not done loop back */

 cmpibge 0, r6, end /* if no remainder jump to end */
single:
 subi 0xc, r4, r4 /* get rid of extra loads */

Example Programs

8-11

8
cont:
 shro r9, g4, g5 /* shift carry right by 32-offset */
 mov g0, g4 /* save src for carry in */
 shlo r8, g0, g6 /* shift src left by offset */
 ld (r4), g0 /* start next load */
 addi 0x4, r4, r4 /* increment src addr */
 or g5, g6, r14 /* combine */
 subi 1, r6, r6 /* decrement remainder */
 cmpi 0, r6 /* test if done */
 st r14, (r5) /* store word in dest */
 addi 0x4, r5, r5 /* increment dest addr */
 bl cont /* if not done loop back */

end: ret
 fmark
 .word 0x00000000
 .word 0x00000000

Perform Matrix Multiplication

The following example shows an optimized version of a 1 x 3 matrix
multiply, using only ordinal and integer arithmetic.

/*
 g7 input image vector pt
 g3 output sum
 r12 output line vector pt
 g0-2 a11,a12,a13 (kernel)
 g4-6 a21,a22,a23
 g8-10 a31,a32,a33
 r8-10 i1,i2,i3 (input image vector)
*/

.text

.globl _fast3x3
_fast3x3:
 mov g0, r8 /* 3x3 vector */
 mov g1, g7 /* image pointer */
 subo 1, g2, r3 /* image size */
 mov g3, r12 /* output vector point */

i960 Processor Assembler User's Guide

8-12

8
 ldt (r8), g0 /* input 3x3 kernel */
 ldt 16(r8), g4
 ldt 32(r8), g8

.loop1:
 ldob (g7), r8 /* load in image and convolve */
 xor g3, g3, g3
 muli r8, g0, g3
 ldob 1(g7), r9
 muli r9, g1, r4
 addi r4, g3, g3
 ldob 2(g7), r10
 muli r10, g2, r4
 addi r4, g3, g3

 ldob 640(g7), r8
 muli r8, g4, r4
 addi r4, g3, g3
 ldob 641(g7), r9
 muli r9, g5, r4
 addi r4, g3, g3
 ldob 642(g7), r10
 muli r10, g6, r4
 addi r4, g3, g3

 ldob 1280(g7), r8
 muli r8, g8, r4
 addi r4, g3, g3
 ldob 1281(g7), r9
 muli r9, g9, r4
 addi r4, g3, g3
 ldob 1282(g7), r10
 muli r10, g10, r4
 addi r4, g3, g3

 addo 1, g7, g7 /* increment image pointer */
 addo 1, r12, r12 /* increment output line pointer */
 cmpi 0, g3 /* if sum < 0, sum = 0 */
 ble cont
 lda 0, g3
cont:
 stob g3, (r12)
 cmpdeco 0, r3, r3
 bl .loop1
 ret

Example Programs

8-13

8
Compare Strings

The following subroutine compares two C-style null-terminated strings
and returns an indication of the outcome of the comparison. The
application uses the scanbyte instruction to search for the null string
terminator.

 .globl _strcmp
 .leafproc _strcmp,__strcmp
 .align 2

.rett:
 ret
_strcmp:
 lda .rett,g14
__strcmp:
 ld (g0), g5 # fetch first word of source_1
 mov g14,g7 # preserve return address
 ldconst 0,g14 # conform to register conventions
 ldconst 0xff,g4 # byte extraction mask
.wloop:
 addo 4,g0,g0 # post-increment source_1 byte ptr
 ld (g1), g3 # fetch word of source_2
 scanbyte 0,g5 # does word have a null byte?
 mov g5,g2 # save a copy of the source_1 word
 be .cloop # branch if null byte encountered
 cmpo g2,g3 # are the source words the same?
 addo 4,g1,g1 # post-increment source_2 byte ptr
 ld (g0), g5 # fetch ahead next word of source_1
 be .wloop # fall thru if words are unequal

.cloop:
 and g4,g2,g5 # extract and compare individual bytes
 and g4,g3,g6
 cmpobne g5,g6,.diff # if they diff, go return 1 or -1
 cmpo 0,g6 # they are the same. Are they null?
 shlo 8,g4,g4 # position mask for next extraction
 bne .cloop # loop if null not encountered

i960 Processor Assembler User's Guide

8-14

8
 mov 0,g0 # return equality
 bx (g7)
.diff:
 bl .neg
 mov 1,g0
 bx (g7)
.neg:
 subi 1,0,g0
.exit:
 bx (g7)

Examples Using Floating-point Instructions

The examples in this section use the on-chip numerics instructions
described in Chapter 6. The examples show:

• code optimization by reordering
• matrix multiplication with real arithmetic
• basic numerics operations using load, move, and store
• exponentiate with arbitrary exponent using rounding and scaling
• rectangular to polar conversions using trigonometric functions
• a call to the fault handler

Optimize a Numerics Application

This example shows two programs. The second, _testfast , is a
speed-optimized version of the first routine, _testslow .

 .text
 .align 4
 .globl _testslow
_testslow:
 ldconst 999999, g3
 mov g0, g13 # load address pointer
 mov g1, r12 # load address pointer
 ldconst 0, r3 # store loop counter
 ldl (g13),r14
 ldl three_point_four,r10

Example Programs

8-15

8
loop_begin:

 ldl (g13), r14
 mulrl r14, r10, r8
 stl r8, (r12)
 ldl 8(g13),r6
 mulrl r6, r10, r4
 stl r4, 8(r12)
 addo 1,r3,r3
 cmpi r3,g3
 ble loop_begin
 ret

 .data
 .align 4
three_point_four:
#
below value is 3.4 in 64 bit real format
#
 .word 858993459
 .word 1074475827
 .text
 .align 4
 .globl _testfast
_testfast:
 ldconst 999999, g3
 mov g0, g13 # load address pointer
 mov g1, r14 # load address pointer
 ldconst 0, r3 # store loop counter
 ldl (g13),r12
 ldl three_point_four,r10

loop_begin:

 ldl 8(g13), r4
 mulrl r10, r12, r8
 stl r8, (r14)
 mulrl r4, r10, r6
 stl r6, 8(r14)
 ldl (g13), r12
 addo 1,r3, r3
 cmpi r3, g3
 ble loop_begin
 ret

i960 Processor Assembler User's Guide

8-16

8
 .data
 .align 4
three_point_four:
#
below value is 3.4 in 64 bit real format
#
 .word 858993459
 .word 1074475827

Perform Matrix Multiplication

The following source code shows an optimized version of a 1 x 4 matrix
multiply routine using real-valued arithmetic. The C program in the
example sets up a sample matrix and uses the C version of the matrix
multiply. Compare the C and assembly language versions.

Assembly Code
/*
 r3 no. of vectors
 g7 input vector pt
 g3 output vector pt
 g0-2 a11,a12,a13,a14
 g4-6 a21,a22,a23,a24
 g8-10 a31,a32,a33,a34
 r4-7 a41,a42,a43,a44 / translation vectors /
 r8-11 i1,i2,i3,i4 /input vector/
 r12-15 o1,o2,o3,o4 /output vector/

 fast1x4 does translation and rotation of the
 image supplied
*/

.text

.globl _fast1x4
_fast1x4:
 mov g0,r8 /* 4x4 vector */
 subo 1,g2,r3 /* image size */
 movrl g4,fp0 /* translate x */
 movr fp0,r4
 movrl g6,fp0 /* translate y */

Example Programs

8-17

8
 movr fp0,r5
 movrl g8,fp0 /* translate z */
 movr fp0,r6
 mov g1,g7 /* image pointer */
 ldt (r8), g0
 ldt 16(r8), g4
 ldt 32(r8), g8

 mov r4,r4

.loop:
 ldt (g7),r8

 mulr r8, g0, fp0
 mulr r9, g4, fp1
 addr fp1, fp0, fp0
 mulr r10, g8, fp1
 addr fp1, fp0, fp0
 addr r4, fp0, r12

 mulr r8, g1, fp2
 mulr r9, g5, fp3
 addr fp3, fp2, fp2
 mulr r10, g9, fp3
 addr fp3, fp2, fp2
 addr r5, fp2, r13

 mulr r8, g2, fp0
 mulr r9, g6, fp1
 addr fp1, fp0, fp0
 mulr r10, g10, fp1
 addr fp1, fp0, fp0
 addr r6, fp0, r14

 stt r12, (g3)
 addo 12, g3, g3
 addo 12, g7, g7
 cmpdeco 0, r3, r3
 bl .loop

 ret

i960 Processor Assembler User's Guide

8-18

8
C Code
#include <stdio.h>
main ()
{
static float a[4][4] = {
 {0.0, 0.1, 0.2, 0.3},
 {1.0, 1.1, 1.2, 1.3},
 {2.0, 2.1, 2.2, 2.3},
 {3.0, 3.1, 3.2, 3.3}};

static float b[4] = {0.0, 0.1, 0.2, 0.3};
float c[4];

 fast1x4(a, b, c);

}

/**/
/* FAST1X4 */
/* outer loop is the index for each column */
/* of the kernel */
/* */
/* inner loop is the index for each row of */
/* the kernel, and the index for the source */
/* matrix */
/* */
/* results are stored in a 1x4 matrix */
/* */
/* input: kernel - 4x4 matrix */
/* source - 1x4 matrix */
/* */
/* output: dest - 1x4 matrix */
/**/
fast1x4 (kernel, source, dest)
float kernel [4][4];
float source[];
float dest[];
{
int i,j;
float temp;

Example Programs

8-19

8
 for (i=0; i<=3; i++) {
 temp = 0.0;

 for (j=0; j<=3; j++) {
 temp += source[j] * kernel[j][i];
 }
 dest[i] = temp;
 }
}

Perform Basic Numerics Operations

This example represents a source code fragment that does many of the
basic numerics operations.

Assume: src1 = 32-bit real value in memory
src2 = 96-bit extended real
dst uninitialized in .bss section
(all should be appropriately aligned)
 ld src1, g0 # load 32-bit real
 ldt src2, g4 # load 96-bit extended real
 movr g0, fp0 # convert 32 to 80-bit
 cpysre fp2, g4, fp3 # copy sign
 movrl fp3, g0 # convert 80 to 64-bit real
 stl g0, dst # store dual register long

Exponentiate With an Arbitrary Exponent

This example shows an assembly language code fragment to handle
exponentiation with an arbitrary exponent.

Assume register g0 = real exponent
 roundr g0, fp0 # fp0 = integer part
 subr fp0, g0, g0 # g0 = fractional part
 expr g0, g0 # g0 = 2^g0 - 1
 addr 1.0, g0, g0 # compensate for -1
 cvtri fp0, g1 g0 # exponentiate integer
 # and scale result

i960 Processor Assembler User's Guide

8-20

8
Convert Between Coordinate Systems

This source code fragment converts from a rectangular to a polar
coordinate system and vice-versa. These routines use several of the real
arithmetic and trigonometric functions.

Rectangular to polar conversion
Assume x, y are 64-bit reals in memory
r, theta are quad-aligned 96-bit locations

rect_to_polar:
 ldl x, g0 # load x coordinate
 ldl y, g2 # load y coordinate
 atanrl g0, g2, fp0 # fp0 = arctan y/x
 mulrl g0, g0, g0 # square x
 mulrl g2, g2, g2 # square y
 addrl g0, g2, g4 # g4 = x^2 + y^2
 sqrtrl g4, fp1 # fp1 = sqrt g4
 movre fp0, g8 # convert theta to 96-bit
 movre fp1, g12 # convert r to 96-bit
 stt g8, theta # store extended angle
 stt g12, r # store extended radius
 ret
#
Polar to rectangular conversion
Assume:
r, theta quad-aligned 64-bit real values
x, y are 96-bit locations in memory

polar_to_rect:
 ldl r, g0 # load radius
 ldl theta, g2 # load angle
 cosrl g0, fp0 # fp0 = cos theta
 sinrl g0, fp1 # fp1 = sin theta
 mulrl fp0, g0, fp0 # fp0 = r cos theta
 mulrl fp1, g0, fp1 # fp1 = r sin theta
 movre fp0, g8 # convert x to 96-bit
 movre fp1, g12 # convert y to 96-bit
 stt g8, x # store extended x
 stt g12, y # store extended y
 ret

Example Programs

8-21

8
Retrieve Fault Record Pointer

The following routine demonstrates how to retrieve the fault record from
the stack after a floating-point fault has occurred. The fault handler calls
this routine immediately after the fault is signaled. The routine continues
execution at the point of interruption afterwards.

The procedure return_fault_ptr returns the information caused by a
fault to the programmer, as follows:

• The procedure returns a pointer to the fault record.
• The procedure copies all global/local registers at the time of the fault

into a global structure. This structure is an array of 32 unsigned
integers, which contain g0 through g15 and r0 through r15. Use a
global structure to avoid passing parameters and corrupting the
registers. The programmer assumes that this routine is called directly
by the fault handler so it uses that knowledge to unwind the stack.

• The stack provides the linkage that you use to find the fault data, as
shown in Figure 8-2.

Figure 8-2 Stack For Fault Handler

Fault Data

Fault Handler

The Procedure

PFP

OSD1136

i960 Processor Assembler User's Guide

8-22

8
 .globl _return_fault_ptr
_return_fault_ptr:
 lda 0x001f0000, r8 # load pc mask
 lda 0x001f0001, r9 # load pc mask
 modpc r8, r9, r8 # set priority to MAX
 # to avoid interrupts
 flushreg # make stack current

 lda _register_set, r5
 stq g0, (r5) # store global registers
 stq g4, 16(r5)
 stq g8, 32(r5)
 stq g12, 48(r5)
 lda 0xffffffc0, r13 # PFP mask

 ld (pfp), r6 # chain back past previous call
 and r6, r13, r6 # mask off return bits
 ldq (r6), r8 # load local registers
 stq r8, 64(r5) # store local registers
 ldq 16(r6), r8 # load local registers
 stq r8, 80(r5) # store local registers
 ldq 32(r6), r8 # load local registers
 stq r8, 96(r5) # store local registers
 ldq 48(r6), r8 # load local registers
 stq r8, 112(r5) # store local registers

 ldconst 48, r3 # length of fault record
 subo r3, pfp, g0 # store start of fault to g0
 ldq 32(g0), r8 # get pc, ac, ip
 stl r8, 128(r5) # store pc, ac
 st r11, 136(r5) # store ip
 ldconst 0xffffffff, r13 # load mask
 ldconst 0, r14 # turn off tracing in monitor
 modtc r13, r14, r14 # get old trace controls
 st r14, 140(r5) # and store to memory
 ret # and return it to handler

 .globl _begin
_begin:

 ldconst _register_set, r5
 ldconst 0xffffffff, r6 # load mask
 ld 140(r5), r14 # load program trace
 modtc r6, r14, r14 # set trace controls

Example Programs

8-23

8
 ldconst 1, r7 # load bit
 modpc r7, r7, r7 # and restore

 callx (g0) # vector off to routine
 ret # should never return,
 # but just in case

 .globl _continue_execution
_continue_execution:
 call restore_state
 ret # return to procedure

restore_state:

 flushreg # make stack current
 # AND.. Invalidate cache
 lda _register_set, r5
 ld 60(r5), r15 # get frame ptr

 lda 0xffffffff, r6 # load mask
 ld 132(r5), r7 # bring in stored ac
 modac r6, r7, r7 # and restore
 st g0, 8(r15) # store ip in return ptr
 ldq (r5), g0 # load 1st 4 globals
 ldq 16(r5), g4 # load next 4 globals
 ldq 32(r5), g8 # load next 4 globals
 ldq 48(r5), g12 # and restore
 ret

 .data

 .globl _register_set

_register_set:
 .space 160 # reserve storage for registers

Glossary

Glossary-1

absolute expression A valid assembly language symbol or expression that, when
evaluated, produces a value that does not change with
relocation at link time.

absolute value A fixed number directly calculated by the assembler and
used in the assembly. Absolute values can be used in
assembly language expressions.

address space The range of addresses available to a process.

addressing modes Methods available for instructions to specify a memory
address as an operand. The range of addressing modes for
each instruction depends on the instruction type.

alignment (memory) The allocation of data in memory relative to appropriate
boundaries for efficient processing. For example, data
words (4 bytes) must be located at memory addresses
divisible by 4.

alignment (register) When a single instruction accesses a dual-register group, the
register specified in the instruction must be even numbered
(e.g. g0, r2 , g6). If an instruction accesses a triple- or
quad-register group, the number of the register specified
must be a multiple of four (e.g. g0, g4, r8).

ASCII-coded decimal A data word containing a decimal digit (0 - 9) encoded in the
four low-order bits.

assembler directive A source code statement that indicates assembly information
other than machine instructions to the assembler (e.g., debug
information and data entries).

i960 Processor Assembler User's Guide

Glossary-2

big-endian architecture The bytes follow a left-to-right order from the most
significant bit to least significant bit (example: HP 9000
Series 300 workstations).

bit field A contiguous series of up to 31 bits in a data word, specified
by the starting bit position and field length.

burst access A technique that allows the processor to execute multiple
data cycles after a single address cycle.

calling convention The set of instructions inserted in the object code by a
language processor to handle parameter passing, stack and
register use, and return values in a function call.

COFF (Common Object
File Format)

A format for storing file and section headers, relocation
information, symbol tables, and other components of an
object file. When you invoke the assembler as gas960c , the
assembler generates output in this format.

comparand Instruction operand used in a comparison that sets the
condition code.

condition code Three bits that can be set by the processor as a result of
comparisons and other operations. The condition code bits
can be tested by running programs.

core architecture A set of processor features available across all i960
processors for supporting ordinal and integer arithmetic,
faults, interrupts, etc.

directive See assembler directive.

double-word 64 bits of data. Double-word data is also called long data,
and must be aligned to 8 byte boundaries for efficient use by
load and store instructions.

Glossary

Glossary-3

ELF (Executable and
Linkable Format)

The Intel 80960 ABI-compliant object module format.
When invoked with the gas960e command, the assembler
emits this format.

exception An unusual condition that detected by the processor as the
result of instruction execution. See also fault.

extended-real IEEE standard 80-bit real number that can be processed in
an 80-bit floating-point register. A 96-bit extended-real
value is the same as the 80-bit extended-real value with the
most-significant 16 bits ignored. A 96-bit extended-real
value can be loaded into an aligned global or local
triple-register group.

external reference A symbol in an object module that refers to a location in
another object module. The linker resolves external
references when creating an executable module.

fatal error An error encountered during assembly that terminates the
assembly process without producing object code.

fault An event that the processor generates to indicate that, while
executing a program, a condition arose that could cause the
processor to go down a wrong and possible disastrous path.
One example of a fault condition is a divisor operand of zero
in a divide operation: another example is an instruction with
an invalid opcode.

floating-point format IEEE standard formats for floating-point, or real, numbers.
See also real number formats.

floating-point literals The values +0.0 and +1.0.

floating-point register 80-bit registers fp0 through fp3 , available on the i960 KB
processor only.

global register 32-bit registers g0 through g15 .

i960 Processor Assembler User's Guide

Glossary-4

half-word 16-bit integer or ordinal value. Half-word data is also called
short data. Half-word data must be aligned on even
boundaries for efficient use by the load and store
instructions.

identifier A symbol or name used in the source code for any purpose.

Immediate value A value that is contained in the machine instruction itself
(e.g., the value 10 in the instruction mov 10, r5) The value
must be known at assembly time (i.e., cannot be unresolved).

in-circuit emulator A software/hardware product used to debug embedded
applications or hardware systems by emulating a particular
processor.

include file A source text file inserted by the assembler into the primary
source text file.

instruction pointer An internal processor register that contains the address of
the instruction currently being executed.

instruction set The set of executable instructions in a given i960
architecture.

integer A positive or negative whole number or zero. The range of
values that an integer can represent depends on its width (for
example, short, word, or double-word).

interactive mode An assembler mode of operation that allows direct input
from the standard input device.

interrupt A signal to the processor that an external condition requires
immediate attention. An interrupt initiates a predefined
handler, defined in the interrupt table, to service the
condition.

J bit In IEEE real number formats, a bit which is set (1) for zero
and denormalized finite numbers and clear (0) otherwise.
This bit can be used to detect invalid real numbers.

Glossary

Glossary-5

leaf procedure A local procedure that can be executed by a branch and link
instruction because it doesn’t require that local registers be
saved (rather than a call instruction).

linker A utility used in preparing object code for execution by
combining object files and resolving external references.

list file A text file generated by the assembler, containing source
code listing, symbol information, and other information.

literal value A value in a source operand that can be used as immediate
data in the instruction.

little-endian architecture The bytes follow a right-to-left order from the most
significant bit to least significant bit, as they do on Intel
processors.

local register 32-bit registers r0 through r15 .

location counter The current address of an instruction. The location counter
starts at zero and is incremented by the length of each
instruction or data value in the program.

long data 64-bit integer or ordinal value. Long data is also called
double-word data.

long-real IEEE standard 64-bit floating number that can be loaded into
an aligned global or local register pair.

numerics architecture Processor architecture supporting hardware floating-point
arithmetic and trigonometric operations available on the i960
SB/KB processors.

object code Instructions and associated data for a program, in binary
format. This is the output generated by the assembler and
consumed by the linker.

i960 Processor Assembler User's Guide

Glossary-6

object file The file containing the object module generated by the
assembler when assembly is successful. The output can be
in different formats based on how you invoke the assembler
(COFF for gas960c , ELF for gas960e , and b.out for
gas960).

object module The formatted object code resulting from assembly.

opcode The portion of each machine language instruction that
determines the action caused by the instruction.

operand The argument of an assembly language directive or
instruction that represents data used in the operation.

ordinal An unsigned whole number or zero. The range of values
that an ordinal can represent depends on its width (for
example, short, word, or double-word).

physical address The address of a specific hardware memory location, as sent
over the bus.

pipelining A technique that allows the processor to output the address
of the next bus request during the current data cycle,
maximizing bus efficiency.

position-independent code
and data

The code (.text section) or data (.data or .bss section) is
loaded at a run-time address that is computed as an offset
from a specific location in memory.

precision A measure of the accuracy with which a real number can be
represented.

preprocessor A program that processes an assembly language source file
before the actual assembly process (for example, the macro
processor mpp960).

process An executable module that represents a complete task to the
system.

Glossary

Glossary-7

program sections Parts of a program containing code (text section), initialized
data (data section), and uninitialized data (bss section).
Each section is handled separately by the linker.

protected extension Filename extensions that protect the file from being
overwritten by the assembler. The assembler-protected
extensions are: .s , .as , and .asm .

quad-word 128 bits of data. Quad-word data must be aligned on
16-byte boundaries for efficient use by load and store
instructions.

real IEEE standard 32-bit real value that can be loaded into a
single global or local register.

real number formats IEEE standard formats for floating-point, or real, numbers:
32-bit (real), 64-bit (long-real), 80- and 96-bit
(extended-real).

register Any global register (g0 - g15), local register
(r0 - r15), floating-point register (fp0 - fp3), or special
function register (sf0 - sf4).

register group A set of 2, 3, or 4 registers that participate in an instruction.
See also alignment (register).

search path A list of directories used as possible pathnames to a file.

short data 16-bit integer or ordinal value. Short data is also called
half-word data. Short data must be aligned on even byte
boundaries for efficient use by the load and store
instructions.

source directory The directory containing your primary source file.

source file The assembly language input to the assembler.

special function register A 32-bit register (sf0 - sf4) used to control specific sections
of the processor. These registers can be manipulated like any
other register, but the contents affect the processor’s
behavior directly.

i960 Processor Assembler User's Guide

Glossary-8

stack A portion of memory used by the processor to store call and
return information.

stack frame A portion of the stack allocated by a procedure for storing
temporary values until the procedure returns.

symbol table A table in the object file containing information about the
symbols used in a program.

system procedure A procedure executed by a call system (calls) instruction.
The entry point for each system procedure appears in the
system procedure table.

triple-word 128 bits of data. Triple-word data must be aligned on
16-byte boundaries for efficient use by load and store
instructions.

warning An indication of an unusual condition encountered during
assembly. In these situations, the assembler issues a
message but continues processing the source file.

word 32 bits of data. Word data must be aligned on 4-byte
boundaries for efficient use by the load and store
instructions.

Index

Index-1

- (hyphen), 2-1, 2-3

. (dot), location counter symbol, 4-3

/ (slash), 2-1, 2-3

A

A (Architecture) option, 3-3

.ABORT directive, 4-2, 4-10

a.out object filename, 2-4

absolute expression, defined, Glossary-1

absolute value, defined, Glossary-1

address space, defined, Glossary-1

addressing modes, defined, Glossary-1

.align directive, 4-1, 4-3, 4-11

alignment (memory), defined, Glossary-1

alignment (register), defined, Glossary-1

Allow mixed architectures (x) option, 3-21

Architecture (A) option, 3-3

architectures supported by the assembler, 1-2

arguments in assembler invocation command,
2-2

arithmetic instructions, 6-18, 6-38

ASCII-coded decimal, defined, Glossary-1

.ascii directive, 4-1, 4-6, 4-12

.asciz directive, 4-1, 4-6, 4-12

asm960 assembler invocation command, 2-1

assembler

directive, defined, Glossary-1

invocation command, 2-1

search path, default, 2-1

assembling, 2-1–2-9

invoking the assembler, 2-1

specifying input files, 2-1

using assembler options, 2-1

assembly language

character set, 6-2

comments, 6-14

constants, 6-3

expressions, 6-7

identifiers, 6-3

labels, 6-6

statement format, 6-1

tokens and separators, 6-3

atomic instructions, 6-35

B

b.out object filename, 2-4

b.out output format

and assembler invocation command, 2-1

default filename, 2-4

Big-endian (G) option, 3-8

big-endian architecture, defined, Glossary-1

i960 Processor Assembler User's Guide

Index-2

bit and bit field instructions, 6-24

bit field, defined, Glossary-2

branch instructions, 6-27

branch pseudo-instructions, 7-2

.bss directive, 4-1, 4-4, 4-13

bswap instructions, 6-25

burst access, Glossary-2

.byte directive, 4-1, 4-6, 4-7, 4-14

byte instructions, 6-24

C

call and return instructions, 6-30

calling convention, defined, Glossary-2

case significance

in assembler invocation command, 2-3

in options, 2-1

in UNIX and DOS, 2-2

significance, 1-3

character constants, 6-5

COFF (Common Object File Format), defined,
Glossary-2

COFF output format

and assembler invocation command, 2-1

default filename, 2-4

.comm directive, 4-1, 4-7, 4-16

comparand, defined, Glossary-2

compare and branch instructions, 6-29

compare-and-branch instructions

related option, 3-17

compare-and-jump pseudo-instructions, 7-3

comparison and classification instructions,
6-40

comparison instructions, 6-25

compatibility, of assembler invocation syntax,
2-1

of releases, 1-2

with compilers, 1-2

compiler

debugging output, 4-8

compiling

for debugging, 4-8

condition code, defined, Glossary-2

conditional arithmetic instructions, 6-19

conditional branch instructions, 6-28

conditional faults pseudo-instructions, 7-3

core architecture, defined, Glossary-2

core instructions, summary, 6-15–6-35

Ctrl+d key combination, 2-5

customer service, 1-5

D

d (Debug symbols) option, 3-7

D (Define symbol) option, 3-6

data directive, 4-4, 4-17

data movement instructions, 6-15, 6-35

data type conversion instructions, 6-37

debug instructions, 6-32

Debug symbols (d) option, 3-7

debugging, directives for, 4-8

decimal constants, 6-4

decimal instructions, 6-39

default

assembler options, 3-1, 3-2

instruction set, 3-3

output filenames, 2-4

search path, 2-1

Index

Index-3

.def directive, 4-1, 4-8, 4-18

Define symbol (D) option, 3-6

delimiters, 1-4

.desc directive, 4-1, 4-8, 4-19

.dim directive, 4-8, 4-19

directives

defined, Glossary-2

for controlling the location counter, 4-3

for defining symbols, 4-7

for initializing data, 4-5

for initializing memory, 4-7

for listing control, 4-10

for optimizing, 4-9

for position independence, 4-10

for providing debugger information, 4-8

for specifying the input, 4-3

syntax, 4-2, 4-10

table of, 4-1, 4-2

documents, related, 1-2

dot (.), location counter symbol, 4-3

.double directive, 4-1, 4-6, 4-20

double-word, defined, Glossary-2

E

.eject directive, 4-2, 4-10, 4-21

ELF output format

and assembler invocation command, 2-1

default filename, 2-4

.elf_size directive, 4-1, 4-22

.elf_type directive, 4-1, 4-23

.else directive, 4-1, 4-3, 4-23, 4-31

.endef directive, 4-1, 4-8, 4-18, 4-24

.endif directive, 4-1, 4-3, 4-24, 4-31

environment variables

G960ARCH, 3-3

I960ARCH, 2-7, 3-3

I960BASE, 2-7, 2-9

I960IDENT, 2-8

I960INC, 2-8, 3-9

PATH, 2-9

using, 2-6

e.out object filename, 2-4

error messages, 3-21, 7-1

.equ directive, 4-1, 4-7, 4-24

example code, 7-1–8-23

exception, defined, Glossary-2

exponential instructions, 6-42

expressions, types of, 6-10

extended arithmetic instructions, 6-19

.extended directive, 4-1, 4-6, 4-25

extended-real, defined, Glossary-3

extensions

for assembly source filenames, 2-4

for file protection, 2-4

for object filenames, 2-4

external reference, defined, Glossary-3

F

fatal error, defined, Glossary-3

fault instructions, 6-31

fault, defined, Glossary-3

.file directive, 4-1, 4-26

i960 Processor Assembler User's Guide

Index-4

files

object files, 2-4

output, specifying filename, 2-4

source files, 2-5, 2-8

.fill directive, 4-1, 4-7, 4-27

.float directive, 4-1, 4-6, 4-28

floating-point

constants, 6-4

format, Glossary-3

literals, 6-5

defined, Glossary-3

register, defined, Glossary-3

G

G (Big-endian) option, 3-8

gas960 assembler invocation command, 2-1

gas960c assembler invocation command, 2-1

gas960e assembler invocation command, 2-1

Generate listing (L) option, 3-11

.global directive, 4-1, 4-7, 4-29

global register, defined, Glossary-3

.globl directive, 4-1, 4-7, 4-29

H

half-word, defined, Glossary-3

Help option (h), 3-1

hexadecimal constants, 6-4

.hword directive, 4-1, 4-6, 4-30, 4-47

hyphen (-), 2-1, 2-3

I

I (Include-file search path) option, 3-9

i (Interactive input) option, 3-10

.ident directive, 4-2, 4-30

identifier, defined, Glossary-3

.ifdef directive, 4-1, 4-3, 4-31

.if directive, 4-1, 4-3, 4-31

.ifndef directive, 4-1, 4-3, 4-31

.ifnotdef directive, 4-1, 4-3, 4-31

immediate value, Glossary-3

in-circuit emulator, defined, Glossary-4

.include directive, 4-1, 4-3, 4-33

include file, defined, Glossary-4

Include-file search path (I) option, 3-9

input

interactive, 2-5

source files, 2-5

instruction pointer, defined, Glossary-4

instruction set, defined, Glossary-4

instructions

core, 6-15 thru 6-35

numeric, 6-35 thru 6-43

.int directive, 4-1, 4-6, 4-34, 4-57

integer

constants, 6-4

defined, Glossary-4

interactive

input, 2-6

mode defined, Glossary-4

Interactive input (i) option, 3-10

interrupt, defined, Glossary-4

Index

Index-5

J-L

J bit, defined, Glossary-4

.lsym directive, 4-1, 4-7, 4-8, 4-24, 4-40

L (Generate listing) option, 3-11

.lcomm directive, 4-1, 4-7, 4-34

.leafproc directive, 4-1, 4-9, 4-35

leaf procedure, defined, Glossary-4

.line directive, 4-1, 4-8, 4-37

.link_pix directive, 4-2, 4-10, 4-37, 4-42

linker, defined, Glossary-4

.list directive, 4-2, 4-10, 4-38

list file, defined, Glossary-4

listing control, directives for, 4-10

literal value, defined, Glossary-4

little-endian architecture, defined, Glossary-5

.ln directive, 4-1, 4-8, 4-38

load instructions, 6-16

load pseudo-instructions, 7-3

local register, Glossary-5

location counter

defined, Glossary-5

symbol (.), 4-3

logarithmic instructions, 6-42

logical instructions, 6-22

.lomem directive, 4-1, 4-39

long data, defined, Glossary-5

.long directive, 4-1, 4-6, 4-40, 4-57

long-real, defined, Glossary-5

.lsym directive, 4-1, 4-7, 4-8, 4-24, 4-40

M

manuals, related, 1-2

memory address, notation, 1-4

messages, 3-21, 5-1

modulo instructions, 6-21

move instructions, 6-17

N

n (No compare-and-branch replacement)
option, 3-17

name labels, 6-7

.nolist directive, 4-2, 4-10, 4-41

numeric labels, 6-7

numerics architecture, defined, Glossary-5

numerics instructions, summary, 6-35 thru
6-43

O

o (Object filename) option, 3-18

object code, defined, Glossary-5

object file, defined, Glossary-5

Object filename (o) option, 3-18

object module, defined, Glossary-5

octal constants, 6-4

opcode, defined, Glossary-5

operand, defined, Glossary-5

operator precedence, 6-9, 6-10

operators, 6-8

optimizing, directives for, 4-9

options

Allow mixed architectures (x), 3-21

and arguments, 2-3

i960 Processor Assembler User's Guide

Index-6

options (continued)

Architecture (A), 3-3

Big-endian (G), 3-8

Debug symbols (d), 3-7

Define symbol (D), 3-6

Generate listing (L), 3-11

Help (h), 3-1

in assembler invocation command, 2-1

Include-file search path (I), 3-9

Interactive input (i), 3-10

multiple, 2-3

No compare-and-branch replacement (n),
3-17

Object filename (o), 3-18

Position independence (p), 3-19

table of, 3-1, 3-2

Time stamp (z), 3-22

Version (V, v960), 3-20

Warnings (W), 3-21

ordinal constants, 6-4

ordinal, defined, Glossary-5

.org directive, 4-1, 4-3, 4-41

P

p (Position independence) option, 3-19

physical address, defined, Glossary-6

.pic directive, 4-2, 4-10, 4-42

.pid directive, 4-2, 4-10, 4-42

pipelining, defined, Glossary-6

position independence, directives for, 4-10

Position independence (p) option, 3-19

position-independent code and data, defined,
Glossary-6

precision, defined, Glossary-6

preprocessor, defined, Glossary-6

process, defined, Glossary-6

processor, instruction set selection, 2-7

processor management instructions, 6-32

program sections, defined, Glossary-6

protected extension, defined, Glossary-6

pseudo-instructions, 7-1 thru 15

reference, 7-6 thru 15

publications, related, 1-2

punctuation, 1-4

Q-R

quad-word, defined, Glossary-6

real number formats, defined, Glossary-6

real, defined, Glossary-6

register group, defined, Glossary-7

register, defined, Glossary-6

registers, notation, 1-4

remainder instructions, 6-21

rotate instructions, 6-21

S

scale instructions, 6-42

scanbyte instruction, 6-25

.scl directive, 4-1, 4-8, 4-43

search path

default, 2-1

for assembler, 2-9

include files, 2-8

defined, Glossary-7

.section directive, 4-1, 4-4, 4-44

Index

Index-7

select instructions, 6-17

.set directive, 4-1, 4-7, 4-24, 4-46

shift instructions, 6-21

short data, defined, Glossary-7

.short directive, 4-1, 4-6, 4-47

sign copying instructions, 6-37

.single directive, 4-1, 4-6, 4-28, 4-48

.size directive, 4-1, 4-8, 4-49

slash (/), 2-1, 2-3

source directory, defined, Glossary-7

source files

defined, Glossary-7

description, 2-5

interactive input, 2-5

protection, 2-6

space between options and arguments, 2-2

.space directive, 4-1, 4-7, 4-50

special characters, 1-4

special function register, Glossary-7

.stabd directive, 4-1, 4-8, 4-51

.stabn directive, 4-1, 4-9, 4-51

.stabs directive, 4-1, 4-9, 4-51

stack, defined, Glossary-7

stack frame, defined, Glossary-7

standards, 1-2

store instructions, 6-16

string constants, 6-6

symbol table, defined, Glossary-7

synchronous instructions, 6-34

.sysproc directive, 4-1, 4-9, 4-52

system procedure, defined, Glossary-7

T

.tag directive, 4-1, 4-8, 4-53

target expression, notation, 1-4

.text directive, 4-1, 4-4, 4-54

Time stamp (z) option, 3-22

.title directive, 4-2, 4-10, 4-55

trigonometric instructions, 6-41

triple-word, defined, Glossary-7

type conversion instructions, 6-37

.type directive, 4-1, 4-8, 4-55

type propagation in expressions, 6-13

typographical conventions, 1-3

U-V

unconditional branch instructions, 6-28

V (Version) option, 3-20

v960 (Version) option, 3-20

.val directive, 4-1, 4-8, 4-56

version (V, v960) options, 3-20

W

W (Warnings) option, 3-21

warning, defined, Glossary-7

Warnings (W) option, 3-21

word, defined, Glossary-7

.word directive, 4-1, 4-6, 4-57

X-Z

x (Allow mixed architectures) option, 3-21

z (Time stamp) option, 3-22

	i960® Processor Assembler User's Guide
	Disclaimer
	Contents
	1 Overview
	i960® Processor Assembler and Related Tools
	Compatibility and Standards
	About This Manual
	Target Audience
	Conventions

	Customer Service

	2 Invoking the Assembler
	Invocation Command
	Specifying Option Arguments
	Specifying Single and Multiple Options
	Using Uppercase and Lowercase
	Naming the Object File
	Providing Source Input

	Environment Variables
	Selecting the Instruction Set and Libraries
	Defining a Base Directory Path
	Defining an Identification String
	Redirecting Error and Warning Message Output
	Building a Search Path for Include Files
	Building the Search Path for the Assembler Executable

	3 Option Reference
	A: Architecture
	D: Define symbol
	d: Debug symbols
	G: Big-endian target
	I: Include-file search path
	i: Input from stdin
	L: Generate a listing
	n: No compare-and-branch replacement
	o: Object filename
	p: Position independence
	V, v960: Version
	W: Warnings
	x: Allow mixed architectures
	z: Time stamp

	4 Directives
	Syntax
	Specifying the Input
	Controlling the Location Counter
	Setting the Location Counter to a Specific Value
	Moving the Location Counter to a Section

	Initializing Data
	Initializing Byte, Ordinal, and Integer Data
	Initializing Floating-point Data
	Initializing String Data

	Initializing Blocks of Memory
	Defining Symbols
	Providing Debugger Information
	Optimizing
	Marking Position Independence
	Controlling the Listing
	Directives Reference
	.ABORT
	.align
	.ascii, .asciz
	.bss
	.byte
	.comm
	.data
	.def, .endef
	.desc
	.dim
	.double
	.eject
	.elf_size
	.elf_type
	.else
	.endef
	.endif
	.equ, .lsym, .set
	.extended
	.file
	.fill
	.float, .single
	.global, .globl
	.hword
	.ident
	.if, .ifdef, .ifndef, .ifnotdef, .else, .endif
	.include
	.int
	.lcomm
	.leafproc
	.line
	.link_pix
	.list
	.ln
	.lomem
	.long
	.lsym
	.nolist
	.org
	.pic, .pid, .link_pix
	.scl
	.section
	.set
	.short, .hword
	.single
	.size
	.space
	.stabd, .stabn, .stabs
	.sysproc
	.tag
	.text
	.title
	.type
	.val
	.word, .int, .long

	5 Messages
	6 Assembly Language
	Assembly Language Statement Format
	Character Set
	Tokens and Separators
	Identifiers
	Constants
	Simple Constants
	Representing Floating Point Numbers
	Character Constants
	String Constants

	Labels
	Name (Global) Labels
	Numeric (Local) Labels

	Expressions
	Operators
	Expression Types
	Type Propagation in Expressions

	Comments
	Summary of Core Instructions
	Data Movement
	Ordinal and Integer Arithmetic
	Logical
	Bit, Bit Field, Byte
	Byte Operations
	Comparison
	Branch
	Call and Return
	Fault
	Debug
	Processor Management
	Synchronous (K-series only)
	Atomic

	Summary of On-chip Numerics Instructions
	Data Movment
	Sign Copying
	Data Type Conversion
	Basic Arithmetic
	Decimal
	Comparison and Classification
	Trigonometric Functions
	Logarithmic, Exponential, and Scale

	7 Pseudo-instructions
	Syntax
	Branch Pseudo-instructions
	Conditional Faults Pseudo-instructions
	Load Pseudo-instructions
	Call Pseudo-instructions
	Compare-and-jump Pseudo-instructions
	Pseudo-instructions Reference

	8 Example Programs
	Examples Using the Core Instruction Set
	Enable and Count Interrupts From 8259A
	Send an IAC to the Processor
	Perform a BitBlt Operation
	Perform Matrix Multiplication
	Compare Strings

	Examples Using Floating-point Instructions
	Optimize a Numerics Application
	Perform Matrix Multiplication
	Perform Basic Numerics Operations
	Exponentiate With an Arbitrary Exponent
	Convert Between Coordinate Systems
	Retrieve Fault Record Pointer

	Glossary
	Index

