intgl. AP-732

APPLICATION
NOTE

/O APIC Emulation Software
for the 1960° RP Microprocessor

Warren Gilbert Intel Corporation

Intel Technical Marketing Engineer Mail Stop CH6-319
5000 W. Chandler Blvd.

Chandler, Arizona 85226

May 31, 1996

I Order Number: 272905-001

Information in this document is provided in connection with Intel products. No license, expressed or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's
Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any
expressed or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating
to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual
property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to these specifications and product descriptions at any time, without notice.
*Third party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683
COPYRIGHT © INTEL CORPORATION 1996

i n-tel AP-732
®

I/0 APIC Emulation Software for the i960 ® RP Microprocessor

1.0 INTRODUGCTION. . ..ottt ettt sttt ettt ettt sttt sb e e st e sab e et e e eaneenneeneeas 1
1.1 Terminology Used in this Document w1
2.0 APIC OVERVIEW ..ottt ettt ettt 1
3.0 I/O APIC ON THE 1960 RP PROCESSOR.......cccctiitiiiiiiiieitie ittt 2
4.0 [/O APIC EMULATION ...ttt ittt ettt ettt sttt bttt eenne e e 3
5.0 I/O APIC EMULATION SOFTWAREcoiiiiiiieiiinit ettt 3
5.1 INPUL INEEITUDES ...ttt 5
5.2 T C=Tg g F= U] (=] 0T o €SS 7
5.3 APIC Messaging UNit REQISIEIS.ccciuuiiieiiiiiiiie ettt 7

54 I/O APIC Logical Registers Accessed via Messaging Unit
54.1 Logical /0 APIC ID Register

54.1.1 APIC Version Register
5.4.1.2 Redirection Table Entries (RDTE)

5.5 APIC Bus Interface Unit (BIU) Registersccvveen....

5.6 Data Structures and Redirection Table...........ccccoiiiiiiiiiii i
5.6.1 Global Data SITUCIUIEccvviiiiie et
5.6.2 The Redirection Tableoocoviiiii i

5.7 INILAIIZALION ... s
5.7.1 Initializing Core Processor for Input INterruptscccceeveiiieneieiiiiiieeeees
5.7.2 Initializing the Primary Address Translation Unit (PATU)ccccooiiiiineeininns 16
5.7.3 Initializing the Messaging Unit (MU)cooiiiiiiiiiiiiiiee e 17
5.7.4 Initializing the APIC BIUcoooiiiiiieieee et 18
5.7.5 Initializing RDT & Software Data StruCIUIeSccccviieeeiiiiieeeeeeiiiieee e 18
5.7.6 Initialization CheCKIIStccooiiiiii e

5.8 APIC Interrupt Service Routine (ISR)

5.8.1 APIC ISR Top Level Pseudo Code

5.8.2 Handling PCI Input Interrupt PSeudo Codecccouiieeiiiiiieiieeiiiiieeeees 19

5.8.3 Handling Message Sent INTErrUPLueiiiiiiiiiiie e 20

5.8.4 Handling EOI Received Interrupt Pseudo Codeccccooiuiieeiiiiiiiiieeeenns 20

5.85 Handling Register Select Interrupt Pseudo Codecoocvveeeiiiiiiiieeeennins 21

5.8.6 Handling Window Register Interrupt Pseudo Codeccccceeeiiiiiiieeeninninnes 22
5.9 DESIGN DECISIONS ...ttt ettt ettt et e e e e 22

AP-732

6.0 APIC ISR PERFORMANCEcociiiiiiiiiiiiiii e

7.0 A CHECKLIST FOR WRITING APIC ISR

8.0 SO

FTWARE DEVELOPMENT TOOLS ..ottt s

9.0 SUMMARY e e e
10.0 FOR MORE INFORMATION ... e

APPENDIX A
Issues on Handling More than Four INput INtEITUPES.......cc.vvveveieiiiiiie e A-1

FIGURES
Figure 1.
Figure 2.
Figure A-1.

TABLES
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.

EXAMPLES
Example 1.
Example 2.
Example 3.
Example 4.
Example 5.
Example 6.
Example 7.
Example 8.
Example 9.
Example 10.

APIC AIrChIECIUIE ..ottt et et 1
1960 RP Processor’s I/O APIC Emulation Diagram.........ccccccccvveeeeeiviiiineessiiiiee e e 4
External Hardware Implementation..............ccuuveeiiiiieiiee e A-1

PCIINtErrupt MapPingcvvveeieeeiiiiee e st e ettt e e s e e e e s e e e e e e s an e e e e e s s nnreaeeenns 6
Relevant i960 RP Processor Interrupt REgISterscceeiviiiiieeiiiiiiiee e 6
Relevant i960 RP Processor’'s Messaging Unit REQIStErsccccvvvevviiiereeeeninnnen. 8
1/0 APIC Logical Registers
Logical APIC ID REQISLENceiiiieieiieiiee ettt e e e e e e e eanneeas
APIC VErsion REQISLENcoiiiiiiiiiie ittt e et e e e e e eaeee e e e e enneaeeaeeaas
Logical Even RDTE Register
Logical Odd RDTE REQISIEN........uviiiieiiiiiiiee ettt e e e a e
Valid APIC Programming Combinationscoovvviiiieiiiiiiiie e
1960 RP Processor’s APIC BIU Registers
Relevant Address Translation Unit REQISIErSccueeiiiiiiiiiiiiei e 17

Global Data StrUCIUIE.........cocviiiiiiiie ittt
Redirection Table ENLHESooiuiiiiie e
Redirection Table SiZecooi i
Return from Level-detect INTEITUPLcc.eeeiiiie e
APIC ISR Top Level PSeUdo COEcceeviiiiiiieiiiiiiie e evaeee e
PCI Interrupts Pseudo Code

Message Sent Interrupt Pseudo Code
EOI Received Interrupt Pseudo Code
Register Select Interrupt PSeudo COde..........c.oeeeiiiiiiiiiiieeieeee e 21
Window Register Interrupt PSeudo Codecooiiiiiiiiiiiiiiieeee e 22

intal.

1.0 INTRODUCTION

This application note describes how to program the I/O
APIC (Advanced Peripheral Interrupt Controller) port
integrated on the i960® RP microprocessor. The 19960 RP
processor provides a hardware port that requires emulation
software to achieve full I/O APIC functionality.

This application note supplements existing information
available on APIC and the 1960 RP processor’s implemen-
tation of I/O APIC. To implement I/O APIC on the 1960
RP processor, refer to the documents listed in Section 10
of this document.

Before getting into the details of programming the I/O
APIC on the 1960 RP processor, an overview of APIC
architecture is presented. After the APIC overview the
application note presents details on the /O APIC imple-
mentation on the 19960 RP processor. Detail information is
provided on the emulation software, the hardware port and
initialization requirements, and pseudo code for the
Interrupt Service Routine.

11 Terminology Used in this Document
* 80960RP - the 1960 RP processor

» Core processor - the 1960 Jx processor integrated into
the 80960RP

* APIC, I/O APIC - the Advanced Peripheral Interrupt
Controller port on the 80960RP

AP-732

2.0 APIC OVERVIEW

The APIC is based on a distributed architecture in which
interrupt control functions are distributed between two
basic functional units, the local unit and the I/O unit, as
shown in Figure 1. The local and I/O units communicate
through a bus — the APIC bus — as shown in the figure.
In a multiprocessor system, multiple local and I/O APIC
units operate together as a single entity, communicating
via the 3-wire APIC bus. The APIC units are collectively
responsible for delivering interrupts from sources to
interrupt destinations throughout the multiprocessor
system.

APICs exist in many forms; it is integrated in Intel
processors such as the Pentium 735/90, 815/100 and 1960
RP processors. APICs are also available in discrete form in
the Intel 82489DX APIC.

This application note concerns itself with the I/O APIC as
implemented on the 80960RP.

Pentium®/
Pentium Pro CPU
Processor
Local APIC Local APIC
A ! APIC Bus
Y y
- })) -
Y Y Y
1/0 APIC 1/0 APIC 1/0 APIC
i960® RP CPU
Input Interrupts

Figure 1. APIC Architecture

AP-732

The APICs help achieve the goal of scalability by:

* Off-loading interrupt-related traffic from the memory
bus, making the memory bus more available for
processor use.

* Helping processors share the interrupt processing load
with other processors.

The APIC architecture’s main features are:

* APIC provides multiprocessor interrupt management
for Intel Architecture CPUs such as the Pentium®
Processors, providing both static and dynamic
symmetric interrupt distribution across all processors.

* Dynamic interrupt distribution includes routing of the
interrupt to the lowest-priority processor.

* APIC works in systems with multiple I/O subsystems,
where each subsystem can have its own set of
interrupts.

* APIC provides inter-processor interrupts, allowing any
processor to interrupt any processor or set of
processors, including itself.

*+ Each APIC Interrupt Input pin is individually
programmable by software as either edge or level
triggered. The Interrupt Vector and Interrupt Steering
information can be specified per pin.

* APIC supports a naming/addressing scheme that can
be tailored by software to fit a variety of system archi-
tectures and usage model.

* APIC supports system-wide processor control
functions related to Non-Maskable Interrupts (NMI),
INIT, and System Management Interrupt (SMI).

* APIC co-exists with the 8259A Programmable
Interrupt Controller (PIC) to maintain PC compati-
bility.

* APIC provides programmable interrupt priority
(vectors) for each Interrupt Input pin. Since the APIC
programming interface consists of two 32-bit memory
locations, I/0 APIC functionality can be emulated by
the 1960 core processor in the 80960RP.

intal.

I/0 APIC ON THE i960 RP
PROCESSOR

3.0

As described in the i960® RP Microprocessor User’s
Manual (272736), the 80960RP is a single-chip intelligent
Input/Output subsystem. It consists of the following
functional units:

* 1960 JF microprocessor core (the “core processor”)
* PCIto PCI Bridge Unit (BU)

* Address Translation Unit for direct access between
PCI and the 80960 local bus

* Memory Controller

* Messaging Unit

* PCI arbiter for secondary PCI bus
+ DMA Controller

* I/O APIC Interface (BIU)

« I’C Interface

* Interrupt Routing

The I/O APIC unit provides interrupt pins on which I/O
devices send interrupts into the system. The 80960RP
interrupt pins (S_INT[D:AJ#/ XINT7:0#) require
level-sensitive interrupt detection. Because of this, APIC
Delivery Modes requiring edge-sensitive Input Interrupts
are unavailable. When an application requires Delivery
Modes that use edge-sensitive Input Interrupts, external
hardware is required. The external hardware must latch the
edge-sensitive Input Interrupt so it appears as
level-sensitive at the XINT7:4# pins. The external
hardware must also provide the capability for software to
clear this interrupt after it has been serviced. As is the case
with all 80960RP input level-sensitive interrupts, software
must clear the interrupt’s bit in the IPND register.

The I/0O APIC port on the 80960RP is a Bus Interface Unit
(BIU), which provides for communication between the
local bus and the 3-wire APIC bus. It provides two basic
functions:

« It gives the core processor the ability to send an
interrupt message out onto the APIC bus and
optionally be interrupted when the message has been
sent. The 1960 core processor then reads the resulting
status of the message transmission to check for errors.

* It can also receive End Of Interrupt (EOI) messages
from the APIC bus and optionally interrupt the 1960
core processor to inform it that an EOI vector is
available.

intal.

The 80960RP is a dual-function PCI device, and informs
PCI configuration software of its dual-functionality by
providing two PCI device Configuration Headers. One
header is for the 80960RP’s PCI-to-PCI bridge and the
other header is for its Address Translation Unit (ATU). To
make the I/O APIC’s existence on a PCI bus known to PCI
initialization and operating system software, the APIC has
been given a PCI Class Code. To use the APIC PCI Class
Code, the /0O APIC "pirates" the ATU’s Configuration
Header. It does this by writing the I/O APIC’s PCI Class
Code into the Class Code field of the ATU’s Configuration
Header. Now PCI configuration software sees the
80960RP as a dual-function device:

* A PCI-to-PCI Bridge
« AnAPIC

The overall control of the I/O APIC is handled by
emulation software executing within the 80960RP.

4.0 1/0 APIC EMULATION

A basic I/O APIC unit is emulated by the 80960RP with
the APIC BIU and emulation software. The I/O APIC unit
consists of:

* A set of interrupt pins
* Interrupt Redirection Table

* An I/O APIC BIU for sending and receiving APIC
messages from the APIC bus

The I/O APIC BIU is a dedicated hardware unit in the
80960RP and acts as an interface from the 80960RP local
bus to the APIC bus. The I/O APIC BIU provides the
Interrupt Input pins on which I/O devices inject interrupts
into the system. The I/O APIC also contains a Redirection
Table (RDT) with an entry for each Interrupt Input pin.
Each entry in the RDT can be individually programmed as
to what vector and priority the interrupt has, which of all
possible processors should service the interrupt, and how
to select that processor (statically or dynamically). The
information in the table is used to broadcast a message to
all Local APIC units. I/O APIC software disables the Input
Interrupt on the 80960RP that caused the APIC message to
be sent. After the processor services the interrupt it clears
the source of the interrupt and sends an APIC End Of
Interrupt (EOI) message to the /O APIC. When EOI
interrupts are enabled, reception of an EOI message causes
an interrupt on the 80960RP. Software then reads the EOI
vector from the APIC BIU’s EOI Vector Register (EVR).

AP-732

When the EVR vector matches the vector for the message
just sent, software re-enables servicing of that PCI
interrupt. Thus, overall control of the /O APIC is handled
by emulation software executing within the 80960RP.

The /O APIC has two registers implemented in the
80960RP Messaging Unit. These registers are the APIC
Register Select Register (ARSR) and the APIC Window
Register (AWR). These are the only I/O APIC registers
directly visible to host software and are only accessible
from the primary PCI bus. A primary PCI based host can
initialize the RDT, read selected I/O APIC registers for
status, and enable I/O APIC servicing of Input Interrupts
using these two registers.

When an ARSR in the Messaging Unit is written from the
primary PCI bus, an interrupt is asserted to the 80960RP
and the Messaging Unit locks out all other PCI accesses to
the two Messaging Unit APIC registers. The emulation
software then reads the logical APIC register at the offset
contained in the ARSR and stores the value back into the
AWR. The emulation software then clears the interrupt and
the Messaging Unit releases the interlock mechanism to
allow additional accesses to the APIC registers. The
emulation software must also keep the value of the AWR
updated when the Redirection Table changes due to
interrupt activity.

When the AWR is written, an interrupt is asserted to the
1960 core processor and the Messaging Unit locks out all
other PCI accesses to the two Messaging Unit APIC
registers. The emulation software reads the values of the
ARSR and AWR, updates the appropriate register, and
then clears the interrupt to release the interlock.

5.0 1/0 APIC EMULATION SOFTWARE

The scope of this application note is limited to an I/O APIC
implementation that supports up to four PCI Input
Interrupts. To handle more than four Input Interrupts,
hardware external to the 80960RP is required. For
information on the issues of implementing more than four
Input Interrupts, refer to Appendix A of this document. The
example emulation software confines itself to an
environment in which the 80960RP is dedicated to the I/O
APIC application. In such an application, the 80960RP
may be configured as a PCI Bridge with the 1960 core
processor executing only I/O APIC emulation software.

The example emulation software is layered on the MON960
monitor. MON960 handles 1960 core processor initialization

3

AP-732

that sets up an environment for the emulation software.
When your implementation does not use MON960, it is
necessary to perform initialization functions done by
MON960, such as setting up the Initial Memory Image and
the Process Control Block. Refer to the i960® RP Micropro-
cessor User’s Manual (272736) for initialization details.

The diagram in Figure 2 shows the 80960RP’s /O APIC in a
system environment, with Primary and Secondary PCI

intal.

buses, and the APIC Bus as interfaced to other system
components. The host processor, shown on the primary PCI
bus, is a generalization of functions residing on the primary
PCI bus that need access to the I/O APIC. The host may be
PCI configuration software in the form of the system BIOS,
it may be part of the operating system, or it may be custom
system software. As shown in Figure 2, the 80960RP’s
Messaging Unit provides the host access to the /O APIC.

APIC Bus
_________ a
i960 RP Processor |
r-— — — — 1
| i960® RP Processor | |
External Memory |
| | ~
| 2
| Redirection Table | - *3”3
| | &5
Interrupt | - 5O
| Servicg % Core | g %
| Routine | Processor -+ g.g
o
| S/W Structure | £9
2
L - —

Messaging Unit

Register Select
Register
II/ O.t.A:.D e Window
Iz S Register

PROCESSOR

Primary PCI Bus

71960 RP Processor
Hardware

Figure 2. 1960 RP Processor’s /0O APIC Emulation Diagram

PCI configuration software needs to know of the existence
of the I/O APIC. The PCI configuration software does this
by reading the PCI Class Code from the 80960RP’s PCI
Configuration Header and determining that the PCI class
code is that of the I/O APIC. I/O APICs are mapped to give
shared access from all processors. I/O APIC devices are

4

mapped in system memory between addresses
FECO0 0000-FECF FFFFH. The default base address of the
first I/O APIC is FECO 0000H with subsequent I/O APIC
addresses assigned in 4 Kbyte increments. The host also
needs to know where the Messaging Unit exists in the PCI
address space and the size of it. It can determine this by

intal.

using a Type O configuration command to read Base
Address 0 (Primary Inbound ATU Base Address) from the
80960RP’s Configuration Header. The first 4 Kbytes of the
inbound address translation window of the primary ATU
are reserved for the Messaging Unit. The two APIC
registers that are accessible to the host are located in the
Messaging Unit address space. Also, the PCI configuration
software needs to know the mapping of Input Interrupts to
Redirection Table entries. For the emulation software, this
is a compile time definition and therefore must be part of
an overall system definition that is made visible to the PCI
configuration software (Refer to the Intel Multiprocessor
Specification for details on creating a multiprocessor
configuration table).

Another I/0 APIC system interface is the Secondary PCI
bus. This is the source of PCI interrupts. In the application
note these interrupts are S_INT[D:A]#/ XINT3:0#. Before
being configured by the host to handle these PCI interrupts,
the 80960RP routes these interrupts to the Primary PCI bus
(P_INT[D:AJ#). In this state, the host is able to handle
S_INT[D:A]#/ XINTO:0# interrupts until it enables the /O
APIC.

The remaining 80960RP interface is to the APIC bus. The
APIC bus is a 3-wire synchronous bus connecting all
APICs (all I/O APIC Units and all Local APIC Units). Two
of these wires are used for data transmissions, and one wire
is the clock. For bus arbitration, the APIC uses only one of
the data wires. The maximum APIC bus speed is 16 MHz.

The 80960RP’s architecture lends itself to an interrupt
driven implementation of APIC emulation software.
Interrupts, in general, allow the 1960 core processor to
execute other software, only stopping to service interrupts
when told to do so by the device itself. When servicing is
complete, the 80960RP resumes executing code exactly
where it left off, prior to the interrupt.

The example solution is implemented as a single Interrupt
Service Routine (ISR). The ISR services only 1/O APIC
related interrupts such as the following:

« S_INT[D:AJ# XINT3:0# (IPND.xip3-0)
+ XINT7# (IPND.xip7)

The above interrupts are reported in the IPND register
along with other 80960RP interrupts. S_INT[D:A]# are
used to receive PCI interrupts from the secondary PCI bus.
XINT7# receives internal interrupts from the APIC BIU
and the Messaging Unit. In the example solution, all I/O

AP-732

APIC interrupts have the same priority and do not interrupt
each other. To avoid unwanted side effects, the ISR must
take care to affect only those shared register bits that are
peculiar to the operation of the I/O APIC.

The 80960RP’s I/O APIC emulation software consists of
an Initialization Routine and an Interrupt Service Routine
(ISR). Upon reset APIC hardware and software
components are set to their initialized state. XINT7#
interrupts are enabled and S_INT[D:AJ# XINT3:0#
interrupts are bypassed to the host. A host on the Primary
PCI Bus, through the Messaging Unit, initializes the
Redirection Table (RDT) thus enabling the servicing of
Input Interrupts. The RDT contains a number of entries
(RDTE) which are equal to the number of Input Interrupts,
which in the example solution is four (4). Each RDTE
contains all the information necessary to send a message on
the APIC bus.

After initialization, control of the I/O APIC is handled by the
ISR. The ISR accesses Memory-Mapped Registers when
handling interrupts and controlling the APIC BIU. The
software data structures and the RDT, located in the
80960RP’s external memory, are accessed by the ISR during
normal operation. The Interrupt Input pins are either just the
80960RP input pins S_INT[D:AJ#/ XINT3:0#, XINT7:4#,
and NMI# or are expanded through external hardware,
feeding into the 80960RP. The APIC Bus Interface Unit is
dedicated hardware in the 80960RP and acts as an interface
from the 80960 local bus to the APIC bus.

When the 1960 core processor receives an Input Interrupt
that it determines should be sent as an APIC message, it
vectors to the ISR. The ISR looks up the information
related to that interrupt in the Redirection Table, and writes
that information to the APIC Bus Interface Unit which then
sends the correct message on the APIC bus.

5.1 Input Interrupts

The Emulation Software must handle the
S_INT[D:AJ#/ XINT3:0# (IPND.xip3-0) Input Interrupts.
For correct operation of the 80960RP, the i960 core
processor external interrupt pins (S_INT[D:AJ# XINT3:0#
AND XINT7:4#) must be programmed for Dedicated Mode
of operation, level-sensitive interrupts, and fast Sampling
Mode. With the 1960 core processor in the Dedicated Mode,
each external interrupt pin can be assigned a vector number.
This vector number, not to be confused with the vector
number in the Redirection Table, is used to invoke the
Interrupt Service Routine associated with that interrupt. In

AP-732

the example solution, all PCI Input Interrupts are
programmed to invoke the same ISR. The ISR reads the
IPND register to get the event(s) that caused the interrupt. It
then uses the event to select the information stored in the
Redirection Table to generate an APIC message.
S_INT[D:AJ# XINT3:0# and XINT7# are programmed as
level-sensitive Input Interrupts and, as such, their signal
remains asserted until the source of the interrupt is serviced
and the interrupt signal is ultimately cleared.
S_INT[D:A]#/ XINT3:0# interrupts are cleared by the host.
XINT74# interrupt sources are cleared by the ISR. To ensure
proper the operation of the I/O APIC, the emulation software
must selectively disable S_INT[D:AJ# XINT3:0# interrupts
until the host has handled and cleared the
S_INT[D:AJ# XINT3:0# interrupt. The ISR disables
level-sensitive interrupts by masking their respective bits in
the IMSK register. Failure to mask these level-sensitive
interrupts could cause the 80960RP to spend all its time
jumping in and out of the ISR.

The core processor must be programmed to map Input
Interrupts to the ISR that processes the interrupt. With
level-sensitive interrupts the ISR can read IPND to
determine which input caused the interrupt. Input Interrupts
must be associated with Redirection Table entries. Table 1
shows the association of Input Interrupts with Redirection
Table entries in our example solution. To associate Input
Interrupts with RDT entries, the programmer must have
knowledge of the overall interrupt architecture.

intal.

Table 1. PCI Interrupt Mapping

Input Interrupt RDT Entry

S_INTA#/ XINTO#

S_INTB#/ XINT1#

0
1
S_INTC#/ XINT2# 2
S_INTD#/ XINT3# 3

NOTE: The interrupt mapping in Table 1 is for demon-

stration purposes only, and does not necessarily
represent a practical implementation. The
mapping implies four devices are on the
secondary PCI bus, and that each device has a
dedicated interrupt line. The probability of each
PCI device having a dedicated interrupt line is
not likely, since in a PCI environment all
devices on the PCI bus could be single-function
devices. The PCI specification requires that
single-function PCl devices must use the
INTA# interrupt (never INTB#, INTC#, or
INTD#). Therefore, when there are, for
example, four single-function devices on the
PCI bus they all share INTA# interrupt and are
not distributed across INT[D:A]#. Refer to the
PCI Local Bus Specificatiorfor additional
information on PCI interrupt related issues.

Table 2 lists initialize and control interrupt registers.

Table 2. Relevant i960 RP Processor Interrupt Registers

Register Name Description Local Bus Address
IMAPO Interrupt Map Register 0 FFOO0 8520H
IMAP1 Interrupt Map Register 1 FF0O0 8524H
IMAP2 Interrupt Map Register 2 FF0O0 8528H
ICON Interrupt Control Register FFO0 8510H

IPND Interrupt Pending Register FFOO 8500H
IMSK Interrupt Mask Register FFO0O0 8504H
X7ISR XINT7 Interrupt Status Register 0000 1704H
PIRSR PCI Interrupt Routing Select Register 0000 1050H

NOTE: Addresses 0000 1000H through 0000 17FFH are Peripheral Memory-Mapped Registers (PMMR) and provide
full accessibility from the Primary and Secondary ATU, and the i960 core processor. Addresses FFO0 0000H
through FFFF FFFFH are reserved for specific Memory-Mapped Registers.

intal.

The following descriptions are for Table 2 register names:

ICON - a Memory-Mapped Control Register that sets up
the Interrupt Controller. It is used to select Interrupt Mode,
Signal-Detection Mode, enable/disable interrupts, mask
operations, vector cache enable, and set Sampling Mode. It
is automatically loaded at initialization time, from the
control table, in external memory. Software can also
manipulate this register with load/store type instructions.

IMSK - this Interrupt Mask Register selectively masks
hardware-requested interrupts. It provides a mechanism for
masking individual bits in the IPND register. Software
should use atomic-modify type instructions when
accessing this register.

IPND - the Interrupt Pending Register posts
hardware-requested interrupts. In the Dedicated Mode,
interrupts are those originating from the eight external
dedicated sources and the two timer sources. Software must
use the ATMOD instruction when accessing this register.

IMAP - used to program the vector associated with the
interrupt source, when the source is connected to a
Dedicated Mode input. In Dedicated Mode, IMAPO and
IMAPI1 contain mapping information for the external
interrupt pins.

PIRSR - PCI Interrupt Routing Register used to route PCI
inputs to either the 1960 core processor or to the primary
PCI bus.

X7ISR - XINT7 Interrupt Status Register shows current
pending XINT7 interrupts (e.g., Messaging Unit, APIC
CSR, etc.).

5.2 Internal Interrupts

The emulation software must handle I/O APIC events that
cause XINT7 interrupt to be asserted in the IPND register.

APIC Message Sent Interrupt - an event notifying
emulation software that an APIC message was sent (APIC
CSR Bit 6).

APIC EOI Received Interrupt - an event notifying
emulation software that a level-sensitive interrupt has been
serviced by the host; it signifies the EOI (not all EOIs
Received will be for this I/O APIC [APIC CSR Bit 15]).

APIC Register Select Interrupt - an event notifying
emulation software that the host wants to READ selected

AP-732

APIC registers or Redirection Table data (Inbound
Interrupt Status Register [IISR] Bit 7).

APIC Window Interrupt - an event notifying emulation
software that the host wants to WRITE selected APIC
registers or Redirection Table data (IISR Bit 8).

The order of accessing the interrupt registers is significant.
The interrupt structure is hierarchal, IPND is at the top
level as it contains all external interrupts. IPND .xip3:0 are
interrupts XINT3:0 which correspond to PCI interrupts
S_INT[D:AJ# XINT3:0#. IPND.xip7 is XINT7# which,
when set, means that software must read X7ISR to
determine the event that caused the interrupt. Applicable
X7ISR events are APIC CSR and Message Unit interrupts.
For APIC events, the APIC CSR is read to determine if the
interrupt is due to an APIC Message Sent or EOI Received.
On the other hand, if the XINT7# interrupt was due to
Message Unit Interrupt, the Inbound Interrupt Status
Register (IISR) is read to determine if the event was a
Window Register Interrupt and Register Select Register
Interrupt. The emulation software pseudo code shows the
order in which interrupt registers are read to determine the
event(s) causing the interrupt.

5.3 APIC Messaging Unit Registers

The 80960RP Messaging Unit contains two registers
accessible to the host via the primary PCI bus. These
registers are the APIC Register Select (ARSR) and the
APIC Window Register (AWR). All of the Redirection
Table and the following APIC registers are accessible to
host software through the ARSR and AWR.

* I/O APIC ID Register
* I/O APIC Version Register
* 1/O APIC Arbitration ID Register

The ARSR is used to select which I/O APIC register or
Redirection Table Entry (RDTE) appears in the AWR
register. A write to the ARSR causes an interrupt to be
generated to the 1960 core processor. The APIC emulation
software is responsible for updating the contents of the
AWR register. This includes updating the AWR when the
Redirection Table is changed due to interrupt activity.

As described above, a register number must be written to
the ARSR prior to access. With a read access, the contents
of the specified register can then be read by the host in the
AWR. Once a register number is placed in the ARSR, that
register number remains valid for subsequent read or write

AP-732

operations. So the value in the ARSR is valid for several
consecutive operations on the same register.

To prevent multiple accesses to APIC registers before the
I/O APIC emulation software has a chance to update the
register contents, the Messaging Unit implements a
hardware interlock for PCI accesses to the APIC Registers.
When the interlock is set, all subsequent PCI accesses to
either of the APIC Registers are signalled a PCI Retry

intal.

until the interlock is cleared. Emulation software clears the
interlock when clearing the source of the interrupt, by
writing to the IISR. Note that the hardware interlock
mechanism is disabled when the APIC BIU is disabled.
Also, failure of the software to clear the interlock may
result in a deadlock.

APIC-related Messaging Unit Registers are those listed in
Table 3.

Table 3. Relevant i960 RP Processor’s Messaging Unit Registers

Register Description Local Bus Address

IIMR Inbound Interrupt Mask Register 0000 1328H

ISR Inbound Interrupt Status Register 0000 1324H

ARSR APIC Register Select Register 0000 1300H

AWR APIC Window Register 0000 1308H
NOTE: The two APIC registers provide an external PCI interface for accessing the 1/0 APIC Registers. They are part

of the Messaging Unit which occupies the first 4 Kbytes of the ATU Primary Inbound PCI Address Space.

The following descriptions are for Table 3 registers:

IIMR - the Inbound Interrupt Mask Register selectively
masks Messaging Unit Interrupts. Each bit in this register
corresponds to an interrupt in the IISR. In our example,
usage bits [8:7] are set to zero to unmask the ARSRs and
AWRs.

IISR - the Inbound Interrupt Status Register posts
interrupts generated by the Messaging Unit, Doorbell
Registers, and Circular Queues. I/O APIC is only
concerned with Messaging Unit interrupts in the IISR.
Emulation software reads this register to determine when
the interrupt is due to a write to the ARSR or AWR. All
IISR interrupts are routed to XINT7# interrupt of the 1960
core processor.

ARSR - APIC Register Select Register selects which
APIC register or RDTE data appears in the APIC Window
Register. While this is implemented as a 32-bit register, [/O
APIC uses only bits [7:0] to hold the index. A write to this
register from the PCI bus causes an interrupt to be generated
to the 1960 core processor, when interrupts are enabled.

AWR - APIC Window Register contains the value of the
register selected by the Register Select Register. A write to
this register from the PCI bus causes an interrupt to be

generated to the 1960 core processor, when interrupts are
enabled.

The IIMRs and IISRs are used by emulation software for
handling interrupts caused by the host software accessing
the RSRs and WRs. In general, when an interrupt bit is
read-only, the interrupt must be cleared through another
register.

intal.

5.4 I/O APIC Logical Registers

Accessed via Messaging Unit

The host, residing on the Primary PCI bus, uses the
80960RP Messaging Unit to initialize the I/O APIC and to
read I/O APIC status. Bits [7:0] of the ARSR are used for
selecting the data to be displayed in the AWR. These eight
bits allow the host to access I/0O APIC registers and the
Redirection Table listed in Table 4. Using the 8-bit index
provides the mapping of the logical registers, which can

AP-732

be selected by the ARSR. In implementing this interface,
emulation software must not allow the host to write any
read-only (RO) fields. When the host attempts to write a
RO field the emulation software must not comply. In
addition to not writing the RO field, emulation software
must correct the value written by the host to the AWR.
Note that logical register counterparts may be
implemented on the 80960RP as either Memory-Mapped
Hardware Registers, as is the APIC ArbID Register, or as
software data structures, as is the Redirection Table.

Table 4. 1/0 APIC Logical Registers

Register Offset
Written to the
1/0 Register Logical Register Name Register details
Select Register
: See section 5.4.1 Logical I/O APIC ID
00H 1/0 APIC ID Register Register
01H 1/0 APIC Version See section 5.4.1.1 APIC Version Register
T~ : See section 5.5 APIC Bus Interface Unit
02H I/O APIC Arbitration ID Register (BIU) Registers
Reads to these registers should always
03H-OFH Reserved return zero. Writes have no effect.
10H Redirection Table Entry 0 See section 5.4.1.2 Redirection Table
Bits 31:0 Entries (RDTE)
11H Redirection Table Entry 0 See section 5.4.1.2 Redirection Table
Bits 63:32 Entries (RDTE)
12H Redirection Table Entry 1 Does the same as RDTE 0 Bits 31:0 but
Bits 31:0 for entry 1
13H Redirection Table Entry 1 Does the same as RDTE 0 Bits 63:32 but
Bits 63:32 forentry 1
These logical registers allow access to
the rest of the software data structure
14H - FFH Redirection Table Entries 2-120 Redirection Table entries. Reads to
unimplemented entries return 0 and writes
have no effect.

The Physical ID Register is different from the Logical ID
Register, which is visible to the host. Therefore, emulation
software must make necessary changes when exchanging
data between these two registers. Logical Registers
represent the Host’s viewpoint of APIC registers and
Redirection Table entries. The Physical Registers are those

as seen by the emulation software. In some cases these
registers have the same physical as logical implementation,
but in some cases they are different. Since the emulation
software deals with both types, it needs to understand the
differences and make adjustments as required.

AP-732

5.4.1 Logical /0 APIC ID Register

The Physical I/O APIC ID Register is implemented
differently from the Logical APIC ID Register. Therefore,
emulation software must make these differences
transparent to the host. It does this by making the necessary
changes when moving data between the two ID registers.

intal.

The Logical Register (Table 5), consists of a 4-bit
read/write field in (bits 27:24), for the APIC ID. The rest of
the register contains reserved bits, which always return
zero when read. The four defined bits are cleared on reset.

The Physical APIC ID Register is implemented as a
Memory-Mapped Register on the 80960RP and the APIC
ID field is in (bits 3:0). All other bits are reserved and
return zero when read.

Table 5. Logical APIC ID Register

31

28 24 20 16 12 8 4 0
Bit Default R/W Description
31:29 000, RO Reserved Bits
27:24 0000, RO 4-bit APIC ID
24:00 0000000y RO Reserved Bits

54.1.1 APIC Version Register

Each I/O APIC Unit contains a version register that
identifies different implementations of APIC and their

versions. The host reads this register to determine the
maximum number of RDTEs allowed on the I/O APIC.

Table 6 shows the APIC Version Register. All fields are
Read-Only (RO).

Table 6. APIC Version Register

31 28 24 20 16 12 8 4 0
Bit Default R/W Description
31:24 004 RO Reserved Bits
23:16 00y RO Maximum entry in Redirection Table (#interrupts -1)
15:08 004 RO Reserved Bits
07:00 174 RO Version Number (17H)

The following are for Table 6 descriptions:

Version Number - The version number is 17H for 1/0
APIC on the 80960RP.

10

Max Redir Entry - This is the entry number of the highest
entry in the Redirection Table. Entry numbers are zero
based. This number is equal to the number of Input
Interrupts minus one. The entry number range is
0 through 239.

intal.

54.1.2 Redirection Table Entries

(RDTE)

The Physical Redirection Table is implemented
differently from the Logical Redirection Table known to
the host. Emulation software implements Physical
Redirection Table entries as single 32-bit entity. Bits
[17:00] of an entry have a 1-to-1 correspondence in both
implementations. The emulation software however,
"pirates" reserved bits [31:24] for the 8-bit Destination

AP-732

field. Therefore, physical implementation basically
overlays one logical register on the other.

The host sees a Redirection Table entry consisting of two
32-bit entities, as shown in Table 7 and Table 8.

The I/O APIC treats an entry as the single 32-bit entity, as
shown in Section 5.6.2.

Emulation software must make the differences between
the Physical and Logical Redirection Table transparent to
the host processor.

Table 7. Logical Even RDTE Register

| I
31 28 24 20 16 12 8 4 0
Bit Default R/W Description
31:17 00000y RO Reserved
16 1, RW Mask Bit
15 0, RW Trigger Mode
14 0, RW Remote IRR Bit
13 0, RW Interrupt Input Pin Polarity
12 0, RW Delivery Status
11 0, RW Destination Mode
10:08 000, RW Delivery Mode
07:00 00y RW APIC Vector
Table 8. Logical Odd RDTE Register
63 60 56 52 48 44 40 36 32
Bit Default R/W Description
63:56 00y RW 8-bit Destination Field
55:32 000000y RO Reserved

11

AP-732

The following descriptions are for Table 7 and Table 8:

APIC Vector - The vector field is an 8-bit field containing
the Interrupt Vector for this interrupt. Vector values range
between 10 and FEH.

Delivery Mode - is a 3-bit field that specifies how the
APIC listed destination field should act upon reception of
this signal. Note that certain Delivery Modes only work
when used in conjunction with a specific Trigger Mode.
The Delivery Modes are: 000 (Fixed), 001 (Lowest
Priority), 010 (SMI), 100 (NMI), 101 (INIT), and 111
(ExtINT).

Destination Mode - This field determines the interpre-
tation of the Destination Field. The destination modes are
“0” (physical) and “1” (logical).

Delivery Status - Delivery Status is a 1-bit field that
contains the current status of the delivery of this interrupt.
Two states are defined: “0” (Idle) and “1” (Send Pending).
Send Pending indicates that the interrupt has been injected,
but its delivery is temporarily held up due to APIC bus
being busy or the inability of the receiving APIC unit to
accept that interrupt at this time.

Interrupt Input Pin Polarity - This bit specifies the
polarity of each interrupt signal connected to the input pins
of the I/O APIC. A value of “0” means the signal is active
high and a value of “1” means the signal is active low.

intal.

Remote IRR - This bit is used for level-triggered
interrupts; its meaning is undefined for edge-triggered
interrupts. For level-triggered interrupts, this bit is set
when the Local APICs accept the level interrupt sent by the
I/0 APIC. Remote IRR bit is reset when an EOI message is
received from a Local APIC.

Trigger Mode - This field indicates the type of signal on
the interrupt pin that triggers an interrupt. Level “0”
indicates edge sensitive, and “1” indicates level sensitive.

Mask - Use this bit to mask injection of this interrupt.
Level “0” indicates injection of this interrupt is net
masked, while “1” indicates injection of this interrupt is
masked.

Destination - When the Destination Mode of this entry is
Physical Mode, then bits [59:56] contain an APIC ID.
When Logical Mode, then the destination field potentially
defines a set of processors. Bits [63:56] of the Destination
field specify the logical destination.

Table 9 lists Valid APIC programming combinations.

Table 9. Valid APIC Programming Combinations

Trigger Mode Destination Mode Delivery Mode
Edge or Level Physical or Logical Fixed
Edge or Level Physical or Logical Lowest Priority(LP)
Edge Physical or Logical NMI
Edge Physical or Logical INIT
Edge Physical or Logical SMI
Edge Physical or Logical ExtINT
NOTE: External hardware is required to implement edge-triggered interrupts

12

intal.

5.5 APIC Bus Interface Unit (BIU)

Registers

This section describes the programmer’s interface to the
1/0 APIC BIU, on the 80960RP. Full details of the BIU
registers are described in the i960® RP Microprocessor

AP-732

User’s Manual (272736) and are not repeated here. Table
10 lists APIC BIU registers and their memory-mapped
addresses.

Table 10. 1960 RP Processor’s APIC BIU Registers

Register Name Description Local Bus Address
APIC ID APIC ID Register 0000 1780H
APIC ArbID APIC Arbitration ID Register 0000 1784H
APIC EVR APIC EOI Vector Register 0000 1788H
APIC IMR APIC Interrupt Message Register 0000 178CH
APIC CSR APIC Control and Status Register 0000 1790H

The following descriptions are for Table 10 registers:

APIC ID Register - contains the I/O APIC’s unique 4-bit
ID number. The ID servers as the physical name of the
APIC unit. The APIC ID is read-write by emulation
software and must be programmed by the host to a valid ID
value before the APIC bus is used to transmit messages.

APIC ArbID Register - contains the current bus
arbitration priority for the APIC BIU. This register is
written by the 80960RP when the emulation software
writes the APIC ID Register. This ID is used by the BIU
when arbitrating for the APIC bus. Its value changes along
with the activity on the APIC bus.

APIC EVR - the EOI Vector Register contains the APIC
vector of received EOI message. This read-write register is
normally not written by software. EOI Flow Control
should be enabled when vector information in this register
is important.

APIC IMR - the Interrupt Message Register provides the
data to be sent as the APIC interrupt message. When the
RDTE is compressed, as in the example solution, the IMR
has a 1-to-1 correspondence with the fields defined in the
RDTE and the bits sent in the APIC message.

APIC CSR - the BIU control and status register controls
and monitors the status of the APIC BIU. Before enabling
the BIU, software must read this register to verify that the
PICCLK Alive is set. Without this clock the BIU cannot
send or receive messages on the APIC bus. The CSR is
also used for enabling Message Sent and EOI Received
interrupts to the 1960 core processor and clearing those
interrupts once the interrupt is serviced by emulation
software. Transmit status is checked by reading the ACSR
status field. EOI Flow Control can be controlled through
the ACSR.

13

AP-732

5.6 Data Structures and Redirection
Table

Two important software data structures used include:

* Global Data Structure
* Redirection Table

intal.

The following example shows an array of 32-bit entries
and related data structures.

5.6.1 Global Data Structure

Example 1. Global Data Structure

typedef struct

{

bit32 PndIntrpt; [* pending pci interrupts */

bit32 Crntintrpt; [* pci interrupt currently servicing */
bit32 RdtOff; /* current interrupt * sizeof(entry) */
bit32 MsgRetry; /* send apic msg retry flag */

bit32 RSIndex; I* register select register index */
BOOLEAN Enblinput; /* enable i/o apic input interrupts */
}tISRGlobal;

The following are structure field descriptions for Example 1:

PndIntrpt - initially a snapshot of input PCI interrupts.
With multiple interrupts in PndIntrpt, its contents change
as interrupts are serviced and cleared by the emulation
software.

Crntlntrpt - is the interrupt currently being serviced. It
provides quick find capability when accessing the RDTE
associated with current Message Send operation.

RdAtOASf - is an offset into the Redirection Table (CurntInt
times the sizeof an RDTE [4 bytes]).

MsgRetry - is used to track any retrys required during
message transmission (if retrys are implemented).

RSIndex - is a local copy of the last index value written by
the host to the Register Select Register. It is saved to
provide quick access on Window Register writes.

EnblInput - used to indicate whether PCI Interrupt Inputs
are enabled. Also indicates where PCI inputs are routed.

5.6.2 The Redirection Table

The Redirection Table is implemented as a software data
structure in 80960RP’s external memory. The RDT
contains an array of 32-bit entries (RDTE). Each RDTE is
represented by the Example 2 data structure:

Example 2. Redirection Table Entries

/* vector */

typedef union

struct
{
bit32 Vector:8;
bhit32 DIvryMode:3;
bit32 DestMode:1;
bit32 DIvryStatus:1;
bit32 iiPinPol:1;
bit32 RIRR:1;
bit32 TrgrMode:1;
bit32 Mask:1;
bit32 BufFIshEnbl:1;
bit32 rsrvd:6;
bit32 Dest:8;
H
bit32 all;

}t_apicRDT;

[* delivery mode */
/* destination mode */
/* delivery status */
/* interrupt input pin polarity */
/* remote IRR */
[* trigger mode */
/* mask */
/* buffer flush enable */
/* not used */
/* destination field */

[* access entire register */

14

intal.

The field definitions shown here are identical to those
specified for the logical RDTE described see Section 5.6.2,
The Redirection Table (pg. 5-14). As explained previously,
the RDT is an array of entries represented by the
t_apicRDT data type. The size (RDT_SIZE) of the array is
equal to the number of Input Interrupts and is implemented
as a compile-time variable. In Example 3, the solution

AP-732

RDT_SIZE is set to four (4) because there are four Input
Interrupts (S_INT[D:AJ#/ XINT3:0#). The host is
provided this information when the emulation software
writes the maximum entry size (RTDE_SIZE -1) to the
APIC Version Register. During initialization, the host
reads the Version Register to get this information.

Example 3. Redirection Table Size

#define RDTE_SIZE 4

t_apicRDT rdt[RDT_SIZE]; /* Redirection Table */

/* maximum number of expanded RDTEs allowed is 120 */

5.7 Initialization

Several units within the 80960RP require initialization
before system operation. These are the PCI to PCI bridge,
Address Translation Unit, 1960 core processor, Memory
Controller, and the Secondary PCI Bus Arbiter. The order
in which they are initialized is dependent on how the
80960RP is utilized in the system. The initialization
process is generally controlled through either a host
processor or the 1960 core processor. Initialization of the
80960RP for system operation is beyond the scope of this
document. Refer to the 1960 RP Microprocessor User’s
Manual for initialization details.

Certain steps must be taken to install the I/O APIC ISR and
to control interrupt behavior. Also, the 80960RP must be
initialized before a Primary PCI bus module can use the
Messaging Unit to access the APIC Register Select
(ARSR) and Window Registers (AWR). Steps must also be
taken to enable reception of interrupts from the Secondary
PCI bus. Initialization of the 80960RP’s Bridge is not
covered in this application note. Refer to the i960 RP
Microprocessor User’s Manual when initializing the
bridge. The following I/O APIC related initialization is
required to enable I/O APIC emulation:

+ Initializing core processor for Input Interrupts

* Initializing the Address Translation Unit (ATU)
* Initializing Messaging Unit for APIC interrupts
* Initializing BIU interrupts

* Initializing Redirection Table and Software Data
Structures

5.7.1 Initializing Core Processor for Input

Interrupts

To use the processor’s interrupt handling facilities, the user
software must provide the following items in memory:

* Interrupt Table
* Interrupt Service Routines

e Interrupt Stack

User software must also:

e Initialize the Initial Memory Image (IMI) data
structures. The Initial Boot Record (IBR) must point to
the Process Control Block (PRCB) and the PRCB
must point to the Control Table, the Interrupt Table,
the System Procedure Table, etc.

¢ Program the IMAP(0-2) to assign each external
interrupt pin to a vector.

* Foreach ISR, place an instruction pointer to ISR in the
Interrupt Table at the offset of its Interrupt Vector.

* Program the ICON Register to select (00) Dedicated
Mode, (0) low-level activated Signal Detection mode,
and Global Interrupts Enable. This data can be placed
in the Control Table or programmed directly by
software. Note that ICON also allows control of the
Mask operation and Vector Cache Enable.

* Program the Interrupt Mask (IMSK) Register to
selectively mask any of the Dedicated Mode
interrupts.

When an interrupt is programmed to be level-sensitive
detected, the pin’s bit in IPND remains set as long as the
input pin is asserted (low). The 80960RP attempts to clear
the IPND bit on entry into the Interrupt Service Routine;
however, when the active level on the pin is not removed at
the same time, the bit in the IPND Register remains set

15

AP-732

until the source of the interrupt is deactivated and the IPND
bit is explicitly cleared by software. After an interrupt
signal is deasserted, the ISR then clears the interrupt
pending bit for that source before the return from the ISR is
executed. When the pending bit is not cleared, the interrupt
is reentered after the return is executed.

intal.

The example assembly language code below demonstrates
how a Level Detect Interrupt is typically handled. The
example assumes the Id from address “timer 0”
deactivated the Interrupt Input.

Example 4. Return from Level-detect Interrupt

lda IPND_MMR, g1

Id timer_0O, g0

Ida 0x1000, g2
wait:

mov 0, g3

atmod g1, g2, g3

bbs O0xC, g3, wait

ret

#Clear level-detect interrupts before return from handler
Get address of IPND Memory-Mapped Register
Get timer value and clear TMRO

Return from interrupt service routine

The interrupts must be configured such that the PCI
interrupts call the I/O APIC ISR and map Input Interrupts
to RDTE entries. The following steps are performed:

* The Interrupt Table must point to the I/O APIC
Interrupt Service Routine. In the Dedicated Mode, this
is done by programming the interrupt map (IMAP)
Registers. Doing this maps the Interrupt Input pins
(S_INT[D:AJ#/ XINT3:0#) to the Interrupt Service
Routine.

* Each ISR is mapped to a specific entry in the
Redirection Table. Mapping the Input Interrupt to an
RDTE is done by the host software prior to enabling
Input Interrupts.

e Write 0000 0000H to IPND to prevent unwanted
interrupts. This must be done before any mask register
bits are set.

* Write IMAP1:0 with the four most-significant bits of
the vector number for each external interrupt. In the
example solution IMAPI:0 are programmed with the
same vector number because all interrupts are handled
by a single ISR.

* Write 0000 0001H to PIRSR (interrupts routed to
P_INT[D:AJ# pins).

+ Write 0000008FH to IMSK to
S_INT[D:AJ#/ XINT3:0# and XINT7#
interrupts to the 1960 core processor.

enable
external

* Write 0000 4000H to ICON register (fast Sampling
Mode).

16

The ICON and IMAP2:0 control registers are loaded from
the control table in external memory when the processor is
initialized or reset.

Refer to the 1960 RP Microprocessor User’s Manual for
more information on core initialization.

5.7.2 Initializing the Primary Address

Translation Unit (PATU)

The following sequence of events occur when initializing
the ATU for use as an I/O APIC.

* APIC software programs the ATU Class Code
Register (ATUCCR) with APIC Class Code

* APIC software programs the Primary Inbound ATU
Limit Register (PIALR) with I/O APIC window size

* PCI configuration software reads the PCI Class Code
(ATUCCR) to verify APIC function

* PCI configuration software reads I/O APIC window
size from Primary ATU Base Address Register
(PIABAR)

* PCI configuration software writes /O APIC PCI base
address to Primary ATU Base Address Register
(PIABAR)

intal.

APIC software programs ATUCCR with a value of
080010H to set APIC class code. APIC class code fields are:

« Base Class is 08H - Base system peripherals
» SubClass is 00H
* Programming Interface value is 10H - APIC

According to the Multiprocessor Specification, the 1/0
APIC window size is fixed at 4 Kbytes, so the value the
80960RP’s initialization software must program into the
PIALR is FFFF FOOOH.

The Messaging Unit uses the first 4 Kbytes of the primary
inbound translation window in the PATU. So when the
window size is set by 80960RP initialization software to
4 Kbytes, only the Messaging Unit is accessible to the PCI
configuration software. After initialization is complete, the
PCI configuration software can access to the ARSRs and
AWRSs which are located in the 80960RP Messaging Unit.

The PCI configuration software uses Type 0 configuration
commands on the primary PCI interface, to access the
80960RP Primary ATU (PATU) registers. Configuration
software should specify a function number of one (1) and a

AP-732

register number of two (2) when reading PCI Class Code.
PCI Class Code field occupies the upper three (3) bytes of
this four (4) byte register. When accessing the PIABAR,
PCI configuration software should specify a function
number of one (1) and a register number of four (4).

PCI configuration software should read the ATU’s Config-
uration Header to get the size of the primary inbound
translation window so it can map the I/O APIC into the
PCI address space. To get the window size, the PCI config-
uration software writes FFFF FFFFH to the PIABAR. It
then reads the PIABAR and gets back a binary-weighted
value that indicates the window size. For a 4 Kbyte
window the value read back should be FFFF FOOOH. Next
the PCI configuration software determines the starting
address for the I/O APIC and writes this value to the
PIABAR.

The PCI base address for the I/O APIC window is now
contained in the PIABAR. The 80960RP uses the contents
of the PIABAR and the PIALR to determine whether to
claim a PCI address on the primary PCI bus.

Table 11. Relevant Address Translation Unit Registers

Register Description Local Bus Address PCI Address
PATUCMD Primary ATU Command Register 0000 1204H 04H
ATUCCR ATU Class Code Register 0000 1209H 08H
PIABAR Ereig;gtrgrlnbound ATU Base Address 0000 1210H 10H
PIALR Primary Inbound ATU Limit Register 0000 1240H 40H
ATUCR ATU Configuration Register 0000 1288H 88H

The PATUCMD register bit “1” must be set to enable the
ATU to respond to PCI memory addresses.

NOTE:

a value of zero. Therefore, the only /O APIC Messaging
Unit register that requires initialization is the IIMR.

The above discussion describes the minim#rite 7FH to IIMR to mask all Messaging Unit interrupts,

settings of the Table 11 registers required fercept for the ARSR and AWR interrupts. Of course, when
1/0 APIC operation on the 80960RP. Based arther Messaging Unit Registers are used in your appli-
your implementation, it may be necessary tetion, their interrupts must also be unmasked.

program other bits and/or ATU registers.

5.7.3 Initializing the Messaging Unit (MU)

The four Messaging Unit registers used by I/0O APIC are
IISR, IIMR, ARSR, and AWR. All four registers default to

To set the other three APIC Messaging Unit Registers to a
known state:

* Write 0000 0000H to ARSR
Write 0000 0000H to AWR
Write 0000 0180H to IISR

17

AP-732

5.7.4 Initializing the APIC BIU

The default value is zero for the APIC ID Register, ArbID
Register, EOI Vector Register, Interrupt Message Register,
and the APIC Control/Status Register is zero. Therefore,
the only BIU register that requires initialization is the
APIC Control/Status Register.

Write 0000 F260H to the APIC BIU CSR Register to:

* Set EOI Flow Control bit to “1” (Wait) - to enable
flow control.

* Write “1” to EOI Received bit (EOI message received)
- to clear this bit.

* Set EOI Interrupt Enable bit to “1” (EOI message
generates an interrupt).

* Set APIC Bus Interface Enable bit to “1” (Enabled) -
to enable BIU.

* Set APIC Bus Interface Reset bit to “0” (Not Reset) -
to not reset the BIU.

» Set Send Message bit to “0” (Do not send message) -
to not send a message.

* Write “1” to Message Sent bit (Message sent) - to clear
this bit.

* Set Message Sent Interrupt Enable bit to “1” (Enable
interrupt after message sent)

* Write “0” to APIC Message Status field bits[4:0] - to
clear status.

18

intal.

Initializing RDT & Software Data
Structures

575

All entries in the Redirection Table must be initialized. For
each entry all bits with the exception of the Mask bit must
be set to "0". The Mask bit must be set to “1” to mask Input
Interrupts until they are initialized by the PCI configuration
software. To initialize the RDT, write 0001 0000H to each
Redirection Table entry.

The APIC Version Register must be initialized. Because it
is implemented in software, software must set its default
value. To initialize, write 00nn 0017H to the APIC
Version Register (nn = number of Input Interrupts minus
one).

e Set the Version Number field to 17H.

* Write the maximum entry value in the 8-bit Maximum
Entry field in Redirection Table field. This value
differs from application to application, but its value
should always equal the number of Input Interrupts

minus one.

5.7.6 Initialization Checklist

* S_INT[D:AJ# XINT3:0# are routed to Primary PCI
bus

* APIC clock is present

* APIC Register Select and Window Register interlock
is cleared

* Input Interrupts are masked

* APIC EOl interrupt is enabled

* EOI Flow control is enabled (when desired)

* APIC Message Unit Register Interrupts are enabled

* All RDTE are set to 0x00010000 (masked)

* APICID is zero

* Version Register has maximum entry number and

version number fields set

5.8 APIC Interrupt Service Routine (ISR)

Example 5 shows top-level pseudo code for the I/O APIC
ISR. The top-level pseudo code entails handling all events
and shows the order in which interrupts are serviced. This
is followed by pseudo code for handling: (1) Input
Interrupts, (2) message sent, (3) EOI received, (4) register
select, and (5) window register interrupts.

intal.

5.8.1 APIC ISR Top Level Pseudo Code

A snapshot of all pending interrupts is taken and saved on

entering the ISR. All pending interrupts are addressed prior

AP-732

to exiting the ISR. PCI Input Interrupts are handled first,
followed by Message Sent, EOI Received, Register Select,
and the Window Register interrupt.

Example 5. APIC ISR Top Level Pseudo Code

Read and save unmasked IPND interrupts;

IF ipnd eventis xip0-3 THEN
Process pci input interrupts;

ENDIF

IF ipnd eventis xip7 THEN

Read x7isr;

IF x7isr event is APIC interrupt

Read APIC BIU Register;

Process message sent interrupt;
ENDIF
IF APIC BIU event

ENDIF

ENDIF

IF x7isr event is Msg Unit interrupt
Read iisr;

Process register select;
ENDIF

ENDIF
ENDIF
ENDIF
Clear IPND Register;
Exit isr;

IF APIC BIU event is message sent

eoi received

Process eoi received interrupt;

IF iisr event is register select

ELSEIF Jisr event is window register
Process window register interrupt;

THEN

THEN

THEN

THEN

THEN

THEN

5.8.2 Handling PCI Input Interrupt Pseudo

Code

Example 6 shows PCI Interrupt Pseudo Code. PCI
interrupts are disabled, by masking them in IMSK, to
prevent further interrupts until current Input Interrupts are
handled. This is important with level-triggered
Input Interrupts, especially the PCI interrupts

(S_INT[D:AJ#/ XINT3:0#). The source of the PCI
interrupts must be cleared by the host handling the APIC
interrupt message for that Input Interrupt. Only after the
host has handled and cleared the source of the interrupt
should that Input Interrupts be unmasked.

When the BIU is idle, the emulation software programs the
BIU to send the APIC message.

Example 6. PCI Interrupts Pseudo Code

Mask new pci interrupts;
Update interrupt pending list;
IF biu_idle THEN
Send next pending apic interrupt on list;
ENDIF

19

AP-732

5.8.3 Handling Message Sent Interrupt

Example 7 shows Message Sent Interrupt pseudo code.
The Message Sent Interrupt indicates that the BIU
transmitted the APIC message. The status of the transmit
must be checked to determine if the transmit was
successful. The software checks transmit status by reading
the APIC CSR status field. When transmit status is
successful, the Delivery Status field of the active

intal.

Redirection Table entry is changed from Send Pending to
Idle and when the Input Interrupt is level-sensitive, the
Remote IRR bit for that RDTE is set. When transmit status
is failed, the Delivery Status is left unchanged, and the next
pending interrupt is transmitted. The next pending interrupt
may be the same interrupt that just failed or it may be
another pending interrupt. It may be practical to implement
a retry count and discontinue trying to transmit APIC
messages that have failed the last n number of times.

Example 7. Message Sent Interrupt Pseudo Code

Clear message sent interrupt;
IF transmit status success THEN
IF level_sensitive_interrupt
Set RIRR in RDTE;
ENDIF
Clear delivery status;
ENDIF
IF interrupt pending THEN
Send next pending apic interrupt;
ENDIF

THEN

5.8.4 Handling EOI Received Interrupt

Pseudo Code

Example 8 shows EOI Received pseudo code. An End Of
Interrupt (EOI) message has been received and it may or
may not be for this /O APIC. To determine if the EOI is
for this APIC, the software reads the EOI Vector Register
to get the vector associated with the EOI. The vector is
used to scan the Redirection Table looking for all vectors
that match. When there is a match, the software clears the

Remote IRR field of all RDTEs with matching vectors.
This indicates that the interrupt has been serviced by the
host and the source of the interrupt has been cleared. It is
now OK to unmask that Input Interrupt in the IMSK
Register. When that Input Interrupt remains present at this
time, it is treated as a new interrupt. The EOI received bit
of the APIC CSR is written to clear the EOI interrupt.
When interrupts are pending and the BIU is idle, the next
pending Input Interrupt is transmitted. Otherwise all PCI
Input Interrupts are enabled.

Example 8. EOI Received Interrupt Pseudo Code

Clear EOI received interrupt;

Read vector from eoi vector register;

IF eoi vector register matches rdte vector
Clear rirr bit in rdte;
Clear interrupt bit in IPND;

ENDIF
IF int_pnd THEN
IF apic is idle THEN
Send next pending apic interrupt;
ENDIF
ENDIF

Clear pci interrupt mask(s) of interrupt just serviced;

THEN

20

intal.

5.8.5 Handling Register Select Interrupt

Pseudo Code

Example 9 shows the pseudo code for handling Register
Select Interrupts. A Register Select Interrupt is most likely
to occur during initialization time, when the host is
programming the I/O APIC with Redirection Table entries
and enabling 1/0 APIC Input Interrupts. The index written
to the Register Select Register is saved, as a global
variable, to reduce the number of times the register must be
read. The index specifies what APIC Register or RDTE the
host wants to access. It is also used to see when a recently
modified RDTE is in focus by the host. When an RDTE is
modified by the emulation software and it is in focus
(index is in the Register Select Register), then the
emulation software must also update the contents of the
Window Register. The index is also used by the emulation
software when an APIC Window Interrupt occurs.

AP-732

The code in Example 9 expands the RDTEs, stored as
32-bit data on the I/O APIC, to 64-bit RDTE expected by
the host. The first 10 (hexadecimal) indexes are allocated
to 32-bit registers, three of which are currently used. These
registers are not compressed and require no expansion
when being read. The remaining indexes are used to access
RDTEs which are compressed on the /O APIC. (You may
prefer to not compress RDTEs and to deal with 64-bit
RDTESs on the I/0 APIC.) The property of an index being
either odd or even is used when expanding compressed
RDTEs.

A Register Select Interrupt implies a READ, by the host, of
the data specified by the index. The data located at the
index is written, by the emulation software, to the AWR.
Then the ARSR Interrupt is cleared to re-enable the ARSR
interrupt and to release the interlock on the ARSRs and
AWRs. This is done by writing a “1” to bit “7” of the IISR.

Example 9. Register Select Interrupt Pseudo Code

Read register select register into index data structure;
IF index < 10h THEN
Write indexed register to window register;
ELSE
IF index is odd THEN
Put bit 31:24 of indexed rdte in window register;
Zero bits 23:0 in window register;
ELSE
Zero bits 31:24 of window register;
Put bits 23:0 indexed rdte in window register;
ENDIF
ENDIF
Clear register select interrupt;

21

AP-732

5.8.6 Handling Window Register Interrupt

Pseudo Code

Example 10 shows the pseudo code for handling Window
Register interrupts. This interrupt occurs when the host
wants to WRITE data to the I/O APIC in the location
specified by the contents of the ARSR. Index values less
than 10 (hexadecimal) are written as 32-bit entries which

intal.

are handled directly with no data compression required. An
index value of 10 (hexadecimal) or greater is written to an
RDTE which requires data compression on the write. The
property of an index being even or odd is used when
performing data compression. After data is written to the
indexed location on the I/O APIC, the AWR interrupt is
cleared. The Window Register interrupt is cleared by
writing a “1” to bit “8” of the IISR.

Example 10. Window Register Interrupt Pseudo Code

Read data from window register;
IF index < 10h THEN
Write window register to index register;
ELSE
IF

index is odd THEN

ELSE
ENDIF

ENDIF
Clear window register interrupt;

Put window register bits 31:24 in indexed rdte;

Put window register bits 23:0 in indexed rdte;

5.9 Design Decisions

The following decisions were made in the example APIC
emulation software.

Next Active Interrupt - The I/O APIC usually, continu-
ously, scans its Input Interrupts stored in a software data
structure. Interrupts are scanned sequentially (from top to
bottom) in a circular fashion. When it sees an interrupt
active, its delivery status bit is set (i.e., Send Pending), and
software transmits that interrupt on the APIC bus. When
transmission is not successful for any reason, the I/O APIC
does not reset that interrupt’s Delivery Status bit to Idle.
I/0O APIC goes on to the next Input Interrupt and repeats
the above process. Thus, the /O APIC goes back to the
interrupt which requires a Retry only when its turn comes
up in the sequence again. It may be appropriate for the I/O
APIC to maintain a Retry Count and discontinue trying to
send an interrupt after a predetermined number of Retrys
has been reached.

Redirection Table Compression/Expansion is required
when the Redirection Table in the I/O APIC is to consist of
a single 32-bit data entity per RDTE, as opposed to two
32-bit data entities per RDTE accessed by host software.
Handling a single 32-bit entity provides a quicker solution
at run time. The time consumed compressing the
Redirection Table during initialization, is prior to enabling
Input Interrupts and therefore is not considered critical.

22

The index of the ARSR determines the accessing capability
of the host when accessing APICs and the Redirection
Table.

Redirection Table Access time can be improved when
searching for the entry that caused the Message Sent
Interrupt. A quick solution is to maintain a pointer to the
current entry, thus avoiding the need to search the
Redirection Table. Since only one message can be
transmitted at a time only one pointer is needed.

When accessing the Redirection Table due to an EOI
Received event, the received vector is stored by the BIU in
the EVR. A vector match search is performed on all
Redirection Table entries and all entries with a matching
vector have their Remote IRR bit cleared.

When storing Redirection Table entries as a single 32-bit
entity, the emulation software must direct two index values
to a single Redirection Table entry. For example, index
values “0” and “1” refer to RDTEOQ; index values “1” and
“2” refer to RDTEL, and so on. This can be accomplished
by using a simple lookup table method.

intal.

6.0 APIC ISR PERFORMANCE

The 80960RP employs four methods to specifically reduce
interrupt latency:

* Caching Interrupt Vectors on-chip
* Caching interrupt handling procedure code
* Reserving register frames in the local register cache

* Caching the interrupt stack in the data cache

Refer to the 1960 RP Microprocessor User’s Manual for
implementation details on any of the above four methods.

The example code is written in the C Programming
language. If performance is unacceptable in your appli-
cation, you can use your development tools to generate
assembly language code from the C source code. You can
then investigate tuning the assembly language code to
obtain better performance.

The time-space trade-off may also be helpful. Where appro-
priate, substitute either MACROS or Inline functions in
place of functions. Doing this makes the code size larger, but
avoids the overhead associated with function calls.

Decisions on implementation details of the ISR affect
performance. The ISR must check all event bits that could be
set. While code executes this ISR, other required interrupts
could potentially be blocked. It is possible for unmasked
interrupts to be pending immediately following an exit from
the ISR. It is more efficient to check all interrupts at the end
of the ISR, to save the overhead of leaving and reentering
the ISR soon after, but this would increase worst-case
latency. The priority when ISR executes impacts perfor-
mance, since priority determines when the ISR executes in
relationship to other system software.

Locating the RDT in Local RAM, internal to the 80960RP,
reduces access time to the RDT.

7.0 A CHECKLIST FOR WRITING APIC
ISR

The following operations could be overlooked, but are
important for proper operation of the I/O APIC on the
80960RP microprocessor.

¢ The APIC emulation software must keep track of the
register or RDTE being displayed in the AWR, and
whenever that data is updated, the data in the AWR
must also be updated.

AP-732

While the host may, via Messaging Unit, request to
write data to all register and Redirection Table fields,
the emulation software must not permit the host to
write RO fields. When the host attempts to write a RO
field, the emulation software responds by writing only
fields that are R/W to the host. The emulation software
immediately updates the contents of the AWR to
display the actual data written to the selected register.

The emulation software should not route PCI interrupt
pins to the 1960 core processor until the Host enables
the I/O APIC processing, by unmasking at least one
entry in the Redirection Table.

Even when disabled by the host from processing Input
Interrupts, the I/O APIC should enable the processing
of EOI and INIT interrupts.

A write to the ARSR is synonymous with a host
READ. The emulation software must write the
selected data to the Window Register and clear the
interrupt register to release the interlock.

While the Host views RDT entries as 64-bit entities it
is recommended that the emulation software compress
them to 32-bit entities. This eases entry handling by
making an entry essentially a one-to-one correspon-
dence with the IMR fields.

The 80960RP has register bits specified as
READ/CLEAR. This means that the bit is readable. To
clear it, software writes a “1” to that bit. All
READ/CLEAR bits in a register can be cleared by
reading the register and writing the read data value
back to the same register. In registers containing just
Read/Clear and read-only bits, you can just write a “1”
to the bit you are clearing and not affect other bits.

Remember the interlock that occurs when a PCI
transaction writes to either the AWR or the ARSR. All
subsequent PCI accesses to either of the APIC Registers
are signalled a PCI retry until the interlock is cleared.
To minimize Retrys, the software should prudently
clear the interlock. On write transactions, the interlock
can be cleared immediately after the data is copied from
the AWR to internal storage. With a read transaction,
software has to wait until it writes the requested data to
the AWR before clearing the interlock.

EOI received interrupts occur for all EOI messages
seen on the APIC bus, not just for messages resulting
from APIC messages sent by your /O APIC. Also,
EOI received messages are only generated for
level-sensitive Input Interrupts.

23

AP-732

* To immediately retry the last message unsuccessfully
sent, simply clear the Message Sent Interrupt bit in the
CSR and exit the ISR. IMR and CSR contents are still
valid from previous message transmit request.

* Only one message can be sent on the APIC bus at a
time. The emulation software must wait for the current
message transmission to complete, usually resulting in
a Message Sent Interrupt, before attempting to send
another message on the APIC bus.

* EOI Flow control allows the software to throttle the
receipt of EOI Received interrupts. When set to Wait
and an EOI occurs while processing an EOI Received,
then the sender is returned a Retry. When the contents
of the EOI Vector Register is not important in your
application, you may disable EOI Flow control.

+ The PICCLK Alive bit in the CSR should be checked
before requesting the APIC BIU to send a message
over the APIC bus. When the clock is not present and
software programs the BIU to send a message, the
message is not sent and the software does not receive a
Message Sent or EOI Received interrupts. In a reliable
system it should be sufficient to check for the presence
of the APIC bus clock only at initialization time.

* To ensure proper clearing of IPND when dealing with
level-sensitive interrupts, clear the interrupt source
before clearing IPND. You must guarantee interrupt
source clear has occurred before clearing the event in
the IPND register. To do this, clear the interrupt, then
read it back to check that it cleared, or put as much
time as possible from the time you clear the interrupt
source to the time you clear IPND. When software
clears the interrupt source immediately prior to
clearing its bit in IPND, the i960 core processor
might clear IPND before clearing the interrupt
source. This might result in behavior where the
ISR is invoked with an IPND value of zero.

8.0 SOFTWARE DEVELOPMENT TOOLS

The APIC emulation software described in this document
was developed using the GNU960 development tools. The
GNU960 C compiler has an interrupt pragma that is used
to indicate that a function is used as an Interrupt Service
Routine. Using this pragma informs the compiler to
perform operations necessary for a function to perform as
an Interrupt Service Routine. The align pragma is another
valuable function that is used to force alignment of data

24

intal.

required by the 80960RP. Other tool features include code
optimization for size and performance considerations.

9.0 SUMMARY

The 80960RP can be programmed to provide /O APIC
functionality in the APIC architecture. To implement I/O
APIC functionality, software must be written to control the
80960RP’s 1/0 APIC Bus Interface Unit. The 80960RP
hardware nicely lends itself to a totally interrupt driven
software solution. Level-sensitive Input Interrupts such as
PCI S_INT[D:AJ#/ XINT3:0# can be routed to either the
Primary PCI bus or to the 1960 core processor. Interrupts
routed to the core processor result in messages being sent
on the APIC bus to the Local APIC device that service the
interrupt and ultimately clear the source of the interrupt. In
the APIC environment, Local APIC functionality is
provided in an integrated form on Intel processors such as
the Pentium/Pentium PRO processors. Using the APIC in
this manner helps off-load interrupt related traffic from the
memory bus, making the memory bus more available for
processor use. In the multiprocessor environment, the
APIC helps processors share the interrupt processing load
with other processors.

10.0 For More Information

For more information, refer to the following documents:

» 1960 RP Microprocessor User’s Manual, Intel order
number 272736-001

» Multiprocessor Specification, Intel order number
242016-004

+ 82489DX Advanced Programmable Interrupt
Controller (data book), Intel order number 290446

* PCI Local Bus Specification, Product Version,
Revision 2.1, June 1, 1995, can be obtained from:

PCI Special Interest Group
PO Box 10470

Portland, OR 97214

(800) 433-5177

Call (800) 548-4725 to order Intel documents. The
software sources are available on Intel’s home page on the
World Wide Web.

intal.
APPENDIX A

Issues on Handling More
than Four Input Interrupts

When the application requires more than the four (4)
standard Input Interrupts (S_INT[D:AJ#/XINT3:0), then
some external hardware is required. The external hardware
is envisioned to be an FPGA or ASIC device residing on
the local bus and implementing an interrupt register. This

AP-732

hardware would receive interrupts and provide five
independent interrupts on the XINT lines to the 80960RP.
The Interrupt Inputs are mapped into XINT3:0, as defined
by the PCI Bridge Architecture Specification at all times.
The 80960RP then enables these through
S_INT[D:AJ#/XINT3:0 outputs of the 80960RP when the
APIC is not in use. Those interrupts that have their enable
bit in the External Interrupt Register set are all ORed
together and presented on XINT4. Once XINT4 interrupt
is received, software must poll external hardware to find
out which Input Interrupts are active. Figure A-1 illustrates
this concept.

Primary PCI Bus

INT[D:A]

Local Bus

1960 RP
Processor

XINT4:0

Control

Secondary PCI Bus

External Interrupt Register

by 4

8 to 64 Interrupt Signals

Figure A-1. External Hardware Implementation

The programming for an FPGA implementing the External
Interrupt Register is very simple. It must “OR” the proper
Interrupt Inputs into the four outputs, as well as ANDing
each input with its associated enable bit and ORing these
registers together to be presented as XINT4. The External
Interrupt Register must also support parallel read (8 bits
wide is probably sufficient) of N Interrupt Inputs. An
optimization, to minimize the number of reads of the
register, is to map the Interrupt Inputs that are routed to a
single interrupt output into a single byte, so that the proper
byte can always be read by determining which XINT was
asserted.

To ensure that interrupts, which are disabled by the MASK
bit in their Redirection Table entry, do not cause the
80960RP to spend all of its time jumping in and out of the
Interrupt Service Routine, the External Interrupt Register
must also implement a read/write Enable bit for each Input
Interrupt. When the mask bit is set in the Redirection
Table, the emulation software also sets the corresponding
enable bit in the External Interrupt Register, so that no
80960RP interrupt is generated when the Input Interrupt is
active. The current state of the Input Interrupt should be
visible when the register is read, but no interrupt to the
80960RP generates when the mask bit is set. This same bit
should be set for all interrupts with their Redirection Table
mask bit set as well.

A-1

	I/O APIC Emulation Software for the i960 ® RP Microprocessor
	Copyright Page
	CONTENTS
	1.0 INTRODUCTION
	1.1 Terminology Used in this Document

	2.0 APIC OVERVIEW
	3.0 I/O APIC ON THE i960 RP PROCESSOR
	4.0 I/O APIC EMULATION
	5.0 I/O APIC EMULATION SOFTWARE
	5.1 Input Interrupts
	5.2 Internal Interrupts
	5.3 APIC Messaging Unit Registers
	5.4 I/O APIC Logical Registers Accessed via Messag...
	5.4.1 Logical I/O APIC ID Register
	5.4.1.1 APIC Version Register
	5.4.1.2 Redirection Table Entries (RDTE)

	5.5 APIC Bus Interface Unit (BIU) Registers
	5.6 Data Structures and Redirection Table
	5.6.1 Global Data Structure
	5.6.2 The Redirection Table

	5.7 Initialization
	5.7.1 Initializing Core Processor for Input Interr...
	5.7.2 Initializing the Primary Address Translation...
	5.7.3 Initializing the Messaging Unit (MU)
	5.7.4 Initializing the APIC BIU
	5.7.5 Initializing RDT & Software Data Structures
	5.7.6 Initialization Checklist

	5.8 APIC Interrupt Service Routine (ISR)
	5.8.1 APIC ISR Top Level Pseudo Code
	5.8.2 Handling PCI Input Interrupt Pseudo Code
	5.8.3 Handling Message Sent Interrupt
	5.8.4 Handling EOI Received Interrupt Pseudo Code
	5.8.5 Handling Register Select Interrupt Pseudo Co...
	5.8.6 Handling Window Register Interrupt Pseudo Co...

	5.9 Design Decisions

	6.0 APIC ISR PERFORMANCE
	7.0 A CHECKLIST FOR WRITING APIC ISR
	8.0 SOFTWARE DEVELOPMENT TOOLS
	9.0 SUMMARY
	10.0 For More Information
	APPENDIX A Issues on Handling More than Four Input...

	FIGURES
	Figure 1. APIC Architecture
	Figure 2. i960 RP Processor’s I/O APIC Emulation D...
	Figure A-1. External Hardware Implementation

	TABLES
	Table 1. PCI Interrupt Mapping
	Table 2. Relevant i960 RP Processor Interrupt Regi...
	Table 3. Relevant i960 RP Processor’s Messaging Un...
	Table 4. I/O APIC Logical Registers
	Table 5. Logical APIC ID Register
	Table 6. APIC Version Register
	Table 7. Logical Even RDTE Register
	Table 8. Logical Odd RDTE Register
	Table 9. Valid APIC Programming Combinations
	Table 10. i960 RP Processor’s APIC BIU Registers
	Table 11. Relevant Address Translation Unit Regist...

	EXAMPLES
	Example 1. Global Data Structure
	Example 2. Redirection Table Entries
	Example 3. Redirection Table Size
	Example 4. Return from Level-detect Interrupt
	Example 5. APIC ISR Top Level Pseudo Code
	Example 6. PCI Interrupts Pseudo Code
	Example 7. Message Sent Interrupt Pseudo Code
	Example 8. EOI Received Interrupt Pseudo Code
	Example 9. Register Select Interrupt Pseudo Code
	Example 10. Window Register Interrupt Pseudo Code ...

