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1.0 INTRODUCTION

This application note describes the interface between Intel’s
1960° JA/JF/ID microprocessors (referred to herein as the
“i960 Jx processor’) and NEC's uPD98401® Local ATM
Segmentation And Reassembly (SAR) Chip, with 2 Mbytes
of DRAM available to the i960 Jx processor. The interface
provides for single and burst reads/writes to the DRAM and
single reads and writes to the SAR chip, using the 1960 Jx
processor configured with a 32-bit bus. The interface is
controlled by a DRAM controller and a SAR controller.

The DRAM interface features include:
e 32 bit wide bus, allowing 16 and 8 hit accesses
¢« Two-way interleaving

e 72pin, 60ns, 256 Kbyte x 32 hit Fast Page Mode
DRAM SIMMs

e 1-0-0-0 wait state burst reads at 25 MHz
e 1-1-1-1 wait state burst writes at 25 MHz

The pPD98401 SAR chip interface features three wait state
32 bit reads and writes.

This document discusses DRAM controller theory with
interleaving, and a basic slave read/write controller to the
SAR. It aso describes the supporting state machines,
timing diagrams, and PLD equations. The uPD98401 can
operate as a master device, which allows it access to
DRAM. However, when the SAR is a master device, it can
only request and obtain the i960 Jx processor bus, through
the use of the processor’s bus arbitration facilities. In this
case, upon receiving HOLD from the SAR controller, the
processor asserts HOLDA and three-states its signals,
which grants bus control to the SAR.

1.1 Design Goals

The goa of this document is to provide a design aid for
interfacing an i960 Jx processor to an NEC puPD98401
ATM SAR Chip. The application note defines an interface
that was developed and tested on a i960 Jx processor-
compliant platform, and can be plugged into a PCI
expansion slot.

The platform used is the Intel Cyclone i960° Micropro-
cessor PCI-SDK Evaluation Platform (referred to herein as
the “PCI-SDK"), with an ATM Squall module and ai960 Jx
processor CPU module.
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Benefits of using the PCI-SDK include:

e The PCI-SDK plugs directly into a DOS-based
system’'s PCI dot.

e While the user is working on their hardware design,
code (software) for the design can be written concur-
rently, which saves development time.

¢ The design can be implemented on the PCI-SDK
through a Squall module, which enhances testability.

1.2 Overview

The PCI-SDK consists of a base board with connectors
which accept “modules’ (daughter boards) for a CPU
module and a Squall module. Many CPU and Squal
modules are available; refer to Section 6.0, RELATED
INFORMATION (pg. 6-20) for access to additional product
information.

e The CPU modules are interchangeabl e daughter boards
for Intel’sfamily of 1960 processors.

e The Squall modules are interchangeable daughter
boards. Users can use these to design custom applica-
tions, or use one of PCI-SDK'’s existing modules, such
as an Ethernet Squall I1* module.

The PCI-SDK base board features include:

e Two SIMM sockets which support 2, 8, or 32 Mbytes
of DRAM

e OneFlash ROM socket

¢ Three 16-bit counter/timers or one 32-bit and one 16-
bit counter

¢« DIP switch-selectable CPU clock frequency, for
operation from 16 MHz to 50 MHz

¢« DRAM controller which automatically optimizes wait
states to CPU frequency and memory speed

¢ OneRS-232 seria port
e One Centronics compatible parallel download port

e PCI Bus Interface

The configuration used for development of this application
noteis:

CPU Module:

CPU Bus
Frequency:

DRAM:

1960 Jx processor

25 MHz

2 banks of SIMMs: 60 ns, 2 Mbyte

NEC uPD98401® - based ATM
module

Squall Module:
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The chosen configuration simplifies the state machine for
the DRAM controller (compare Figures 7 and 8).

1.3 Page Mode DRAM SIMM

Page mode DRAM allows faster memory access by keeping
the same row address while selecting random column
addresses within that row. A new column addressis selected
by deasserting CAS while keeping RAS active, then
asserting CAS with the new column address valid to the
DRAM. Page mode operation works very well with burst
buses, such as the i960 Jx processor bus, in which a single
address cycle can be followed by up to four data cycles.

The DRAM SIMM has four CAS lines, one for each of
eight (nine) bitsin a 32-bit (36-bit) SIMM module. The four
CAS lines control the writing to individual bytes within
each SIMM.

1.4 DRAM Refresh

To maintain their data, the DRAM must be refreshed every
16 ps. Thisis achieved by a 6-bit refresh counter embedded
in the DRAM controller, driven by a 4 MHz clock. The
4 MHz clock is created by dividing a 16 MHz clock in half,
twice. This corresponds to a refresh every 64 cycles of the
4 MHz clock, or approximately 400 cycles of the 25 MHz
clock. The type refresh used is CAS before RAS (CAS
signal asserted before the RAS signal) for specified lengths
of time. Both banks of DRAM are refreshed at the same
time.

15 Burst Capabilities for a 32-bit Bus

The 1960 Jx processor can access up to four data words per
request. A request starts when the processor asserts ADS in
the address cycle and ends when the processor asserts
BLAST in the last data cycle. Figure 1 shows ADS and
BLAST timings for a quad-word write request.
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Figure 1. Quad-Word Write Request with 2,1,1,1
Wait State Profile

The processor's burst capabilities on a 32-bit bus include:

e Quad-word and triple-word requests start on quad-word
boundaries (A3 =0, A2=0).

*  Double-word reguests start on double-word boundaries
(A3=X,A2=0).

*  Single-word requests can start on any word boundary
(A3=X,A2=X).

e Any request starting on an odd word boundary never
bursts (A3 =X, A2=1).

1.6 Bank Interleaving

Bank interleaving alows the second, third and fourth
accesses of aburst read to occur in zero wait states. The first
data access must still “pay” the entire access penalty. Inter-
leaving significantly improves memory system performance
by overlapping accesses to consecutive addresses. Two-way
interleaving is accomplished by dividing the memory into
two 32-bit banks (also referred to as “leaves’):

» onebank for even word addresses (A2=0)
¢ onebank for odd word addresses (A2=1)

Thetwo banks areread in parallel and the data from the two
banks is multiplexed into the processor’s data bus. Multi-
plexing is implemented via CASAX and CASBx. CAS
signals, in addition to being the Column Address Strobes,
are also output enable signals for the DRAM.

Figure 2 shows DRAM with a 2-1-1-1 quad word burst read
wait state profile interleaved to generate a 2-0-0-0 wait state
system.
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Figure 2. Two-Way Interleaving

1.7 i960 Jx Processor Address Mapping

Figure 3 portrays the memory map for the 960 Jx processor
to SAR interface. The DRAM beginning location is set at
AO0O000000H and the SAR beginning location is set at
C0000000H. When configuring the processor's memory
regions using the PMCON registers, make sure regions
PMCON10_11 and PMCON12_13 are set for 32 bit wide
bus accesses.

00000000H
S 2
AO0000000H
DRAM
C0000000H
SAR
F0000000H i960® Jx Processor
BOOT ROM

Figure 3. 80960Jx Interface Memory Map
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2.0 CIRCUIT DESCRIPTION

Figure 4 shows a block diagram of the i960 Jx processor,
interfaced to DRAM and the SAR. It can be separated into
four logical blocks: clock generation, address latches,
DRAM controller, and SAR slave controller. These blocks
are described in the following subsections.

21

The 25 MHz CPU clock, based on the FREQ[2:0]
frequency switches, is generated from an AV9155-01. The
AV9155-01 feeds the 25 MHz clock into a CY7BB991-7
with an internal PLL. Also, the AV9155-01 directly
generates the 16 MHz clock that is later divided down to 4
MHz, used for DRAM refresh generation.

Clock Generation

Clock distribution is performed by the CY7BB991-7.
Seperate output clocks from this device are distributed back
to the CPU module, Squall |1 Module, and on-board logic.
This device guarantees a maximum skew of +250 ps
between outputs, and +500 ps between the inputs and
outputs. Therefore, all clocks on the board are within +1 ns,
making the design work very straightforward. All clock
signals are terminated with 22 ohm series resistors.

2.2 System Address Latches

The 1960 Jx processor has a multiplexed bus; therefore,
address latches are needed to demultiplex the bus for usein
accessing the DRAM. The latches, shown in Figure 5,
capture the upper 28 address bits of the bus during the
processor’s address cycle, then holds them until the access
is over. ALE provides the signal for latching, and HOLDA
controls the output enables of the latches. HOLDA isolates
the address latches from the system bus when the SAR uses
the bus as a master device. As a master device, the SAR
requests the bus with HOLD; the processor grants the bus
with HOLDA. When HOLDA is high, the outputs to the
latches are three-stated.
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CONTROL DOEABn — o
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Figure 4. i960° Jx Processor to DRAM / NEC pPD98401 SAR Bus Interface




intel

Address Latches

AD[31:4] LA[31:4]
D >
Q
ALE L
HOLDA —
ocC

4 x T4ABT573

Figure 5. System Address Latches

2.3 DRAM Controller

The DRAM controller can be separated into four sections:
control logic, address flow logic, data flow logic, and
DRAM controller state machines and signals. See Figure 4.

2.3.1 Control Logic

The control logic is implemented using an EPX780 FPGA
and a 20V8 PAL. The FPGA, the main component of the
DRAM controller, supplies:
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* RASIlines and read/write signals directly to the DRAM

e address bits to each DRAM bank that increments the
column address

¢ logic to control the address path to the DRAM

The 20V8 PAL, with direction from the FPGA, provides all
the necessary logic to generate the CAS signals for the
DRAM.

2.3.2 Address Flow Logic

Figure 6 shows the DRAM address flow logic. The address
flow logic to the DRAM is controlled by three 74ABT241
octal buffers, configured as a 12-input, two-line to one-line
multiplexer. The MUX select signal, which controls the
multiplexing function, is supplied by the FPGA. The muilti-
plexers divide the latched address bus into two addresses:
the row address consisting of the latched address' higher
order bits, and the column address consisting of the latched
address’ lower order bits.

Both row and column addresses are transferred to DRAM
via the MMA[10:1] address bus. MAOa connects to A0 of
the bank A DRAM, MAOQGb connects to AO of the bank B
DRAM.

LA[24:4] LA[24, 22, 11:4]

LA[23, 21, 19:12,20]

MUX

1A

Column Address MMA [10:1]

2A

Row Address MAOD
10E/20E MAda

LA[31:28, 3:2]

>

MAOb

MAOa

EPX 780

Figure 6. DRAM Address Flow Logic
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2.3.3 DataFlow Logic

As indicated in Figure 4, the data path is fairly smple; it's
connected directly to the DRAM from the processor,
requiring no transceivers or multiplexers to control data
flow between the banks. Data flow is controlled by the CAS
lines. When one bank is selected (CAS lines asserted) the
other bank is de-selected (CAS lines deasserted). Data is
output by the DRAM during a read or accepted by the
DRAM during awrite by the assertion CAS.

2.3.4 State Machines and Signals

Figure 7 shows the DRAM control state machine for the
PCI-SDK; Figure 8 shows a simplified version. The
simplified version is the result of choosing the configuration
discussed in Section 1.2, Overview (pg. 1-1). For this
configuration, the CPU module Frequency Switches are set
to 25 MHz (Positions 1-4 should be OFF, OFF, ON, ON.
This maps to a logic 1,1,0,0. Refer to Cyclone documen-
tation for definitions).

The PD3 pin output from the DRAM SIMM, when sampled
high, indicates 60 ns DRAM. With these frequency and
speed settings, the signal PFO is set high and all the other PF
signals are reset low. The PCI-SDK does not use the
EXTEND signal; itistied high.

The state machine has two major paths: a refresh path and
an access path. The refresh path is taken when the refresh
counter indicates a refresh is needed. The access path is
taken when the processor initiates an access to the address
range dedicated to the DRAM.

When a conflict occurs between an access and arefresh, the
refresh has priority and proceeds; a memory pending bit is
set. When refresh completes, the memory pending bit
causes the access to complete. The same process occurs
when an access is in progress and a request for arefresh is
received. A refresh pending bit is set which causes the
refresh to compl ete when the access compl etes.

The DRAM state machine is developed with Intel’s
PLDshell Plus®. Appendix A, PLDshell FILES contains the
code which implement the DRAM controller.

The state machine transitions described here use the
following PLDshell conventions for logic operators. For all
the following, refer to Figure 8.
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; |Represents active-low in pin declaration;
Boolean NOT elsewhere in file

* Represents Boolean AND

+ |Represents Boolean OR

2.3.4.1 DRAM Control State Machine

The DRAM control state machine, the heart of DRAM
controller, resides in the FPGA. It is controlled with inputs
from the processor and equations from within the controller.
Its outputs are the RAS and REF signals, both are active
low. The RAS signals directly drive the RAS inputs of both
banks and are used to latch the row addresses into the
DRAM. Two identical RAS signals distribute the load
between the two banks. REF provides a bit to the
REFPEND state machine, indicating a refresh has begun.
This resets the REFPEND signal, so it can be set the next
time arefresh isrequired.

The other output functions of the DRAM controller depend
upon which state the DRAM control state machine is in.
The following are the signals that make up the DRAM
controller.

2.3.4.2 SELDRAM Signal

The active high SELDRAM signal is decoded from the
latched address bits LA[31:28]. When these address hits
equal A 15 during the processor’ s address cycle, SELDRAM
is asserted indicating an access to the DRAM memory
region.

2.3.4.3 REFPEND Signal

The active low REFPEND signal is asserted when a refresh
is requested, either during the idle state or a DRAM access.
Its main function is to keep track of when a refresh is
required, so the controller will not skip the refresh if it is
requested during an access. It is also the bit that causes the
refresh to complete first, when in conflict with an access.
Since the refresh counter runs at 4 MHz, and the REFPEND
signal runs on the 25 MHz, the counter output and the
REFPEND signal must be synchronized. The signal used
for synchronization is the REFSYNC (see Table A-1 in
Appendix A) signal embedded in the controller.
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Precharge
s5a

Precharge
Assert/REF [e] s5
s6
A
P — Q)
Precharge/ldle
sO
C

B

Assert/RAS*
Assert/CASEN*
If / W_R*BLAST

assert INCBANK*

T Q
Assert/REF/RAS
s8

R
Assert/REF/RAS
s9
S
Assert/REF/RAS
s10

Assert/RAS*
Assert/CASEN*

assert INCBANK*
s2

Assert/RAS*
If IW_R assert CASEN*
assert INCBANK*
s3

Assert/RAS*
If BLAST assert CASEN

A = ADS If BLAST assert INCBANK
B = /ADS *Sel dram *(PF1 + PF2 + PF3) s4
C = /ADS *Sel dranm PFO
+ | MEMPEND * PFO J = / BLAST*PFO
D = UNCONDI Tl ONAL K = / BLAST*PF3*/ W R
E=/WR?* EPF2+PF3g + | BLAST *PF1
F=_ WR* (PF2 + PF3 + | BLAST *PF2
P L = /BLAST *PF3*WR
G = UNCONDI T1 ONAL M = UNCONDI TI ONAL
H = BLAST*/WR *PF0 N = UNCONDI Tl ONAL
+ BLAST*/ WR *PF1 O = / REFPEND
+ /| EXTEND */ WR P = UNCONDI Tl ONAL
| = BLAST* /WR *PF3 Q = UNCONDI TI ONAL
+ BLAST*/ W R*PF2 R = UNCONDI Tl ONAL
+ BLAST*WR S = UNCONDI TI ONAL
T = UNCONDI TI ONAL

Figure 7. DRAM Control State Machine
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Assert /IREF
s6

Assert /IREF * /RAS
s8

Assert /IREF * |RAS
s9

Assert /REF * /RAS

>
I

s10

w
1

+

@ T mo 0
I

/ BLAST* PFO

Precharge
s5

N

Precharge/ldle
sO

Assert /RAS*
Assert /ICASEN*

assert INCBANK*
s2

Assert /RAS*
If IW_R assert CASEN*
assert INCBANK*
s3

Assert/RAS*
If BLAST assert CASEN
If BLAST assert INCBANK
s4

ADS H = / REFPEND
| ADS* SEL DRAM | = UNCONDI TI ONAL
/ NEMPEND

= UNCONDI TI ONAL
= UNCONDI TI ONAL

J
UNCONDI TONAL K
L = UNCONDI TI ONAL
M
N

UNCONDI TI ONAL

BLAST*/ W R *PFO

= UNCONDI TI ONAL
BLAST*W R

= UNCONDI TI ONAL

Figure 8. Simplified DRAM State Machine

2.3.44 MEMPEND Signal

The active low MEMPEND signal function is similar to the
REFPEND signal, except it keeps track of an access when
the controller is performing arefresh. It is asserted when an
access is requested either during the idle state or arefresh.

2345 MUX Signal

The MUX signal, clocked by the falling edge of the 25 MHz
clock, controls whether a row or column address is input to
DRAM. It is actually a RAS signal delayed by a half clock
cycle. The delay alows enough row address hold time
(tran) Which DRAM requires. When MUX is high, the row
address to DRAM is valid; when MUX is low, the column
addressis valid.
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2.3.4.6 CASEN Signal

The active low CASEN signal provides an output enable
signal to the CA'S state machines, located in the PAL20V8.
Its function is determined by which state the DRAM
Control state machineisin:

e s0: asserted during an address cycle in which one or
more are true:
—  accessisto the DRAM memory region
—  arefreshis not pending
—  anaccessispending
« s2 and s8: CASEN is asserted when the access is a

read. (Remember that PFO is asserted, indicating the
system is operating at 25 MHz with 60 ns DRAM.)

e o4 asserted during a burst read or write access
EXCEPT for the last access of the burst.

2.3.4.7 INCBANK and BANKSEL Signals

The active low BANKSEL signal determines which bank
will have its CASlines driven:

¢« When low, selects bank A
e When high, selects bank B

The active low INCBANK signal, in conjunction with the
BANKSEL signal, creates wait states by controlling the
CAS lines. When asserted low at the end of a clock cycle,
the CAS lines are asserted, thereby selecting each bank.
The INCBANK signal operates based upon which state the
DRAM Control state machineisin.

¢ S0: asserted during an address cycle, in which one or
more are true:
—  accessistothe DRAM memory region
— arefreshisnot pending
— anaccessispending

e S2: asserted if the access is a burst read, EXCEPT for
the last access of the burst.

e oA asserted during a burst read or write access,
EXCEPT for the last access of the burst.

2.3.4.8 CASA[3:0] and CASB[3:0] Signals

The active low CASA and CASB signals connect to the
CAS pins of DRAM banks A and B respectively. They are
enabled by the CASEN and BANKSEL signals. With
BANKSEL low bank A is selected, with BANKSEL high
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bank B is selected. These signals serve two purposes: to
latch the column addresses into the DRAM, and to provide
chip selects for each bank. CASA3 and CASB3 enablesthe
most significant byte, and CASAQ and CASBO enable | east
significant byte. The byte enables, BE[3:0] control which
byte(s) to be transferred within each bank, allowing 8 and
16 bit wide data transfers. BE[3:0] controls bytes 3-0
respectively.

2.3.4.9 MAOB and MAOA Signals

MAOB and MAOA are the least significant column address
bits that increment the address to DRAM banks B and A
respectively, during a burst access. They are decoded from
address bits A3 and A2 of the processor’'s bus, which
increment during a burst.

2.3.4.10 RDYEN Signal

The activelow RDYEN signal enables the three-state buffer
that controls the READY signal. Since the system has two
controllers on it, i.e. a DRAM controller and a SAR
controller, the READY signal of the DRAM controller has
to be three-stated when the SAR controller drives its
READY signal. This prevents contention between the two
ready signals. The RDYEN signal is asserted based upon
which state the DRAM control state machine is in. It's
asserted during states sO, s2, s3 and 4, regardless if
READY is asserted or not.

2.3.4.11 READY Signal

The active low READY signal is connected to the
RDYRCYV pin of the processor. It indicates to the processor
that data can be transferred, and that the address can be
incremented if the access is a burst. It is asserted based
upon which state the DRAM control state machineisin. It
is asserted unconditionally in states s2 and s3. It is asserted
in s4 if the access is a burst read, provided it’s not the last
access of the burst.

2.3.4.12 DWE Signal

The active low DWE signal indicates to the DRAM that the
access is a write, provided the controller is not in refresh.
The write enable signal of the DRAM's must be held high
during refresh.
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2.4 SAR slave controller

The SAR slave controller controls access to the SAR in
slave mode. Reading and writing the SAR in slave mode
accesses 32 bit registers that initialize and control the SAR.
Referring to Figure 4, the SAR slave controller is discussed
in 4 sections: control logic, address flow logic, data flow
logic, and the SAR dlave controller state machines and
signals.

2.4.1  Control Logic

The control logic is implemented using the EPX780 FPGA
and a MACH210 PLD. The FPGA decodes the SAR's
address space, and provides the select signal to the SAR's
access state machine. The MACH210 PLD provides all the
logic that makes up the SAR controller, which controls the
sequencing of the SAR itself, and the signals that control
the SAR's address and data transceivers.

2.4.2 Address Flow Logic

Figure 9 shows the SAR Address Buffers. The address for
the SAR is controlled by two 74ABT16601 universal bus
transceivers. The AOEABN control signal, output from the
SAR controller, enables the latched address bits onto the
multiplexed AD bus of the SAR. When inactive, the outputs
of the transceivers are three-stated, alowing data to be
driven on the data bus without being in contention with the
address bus.

2.4.3 DataFlow Logic

Figure 9 shows the SAR Data Buffers. The datafor the SAR
is controlled by two 74ABT16601 universal bus trans-
ceivers. The DOEABN control signal, output from the SAR
controller, enables the data onto the multiplexed AD bus of
the SAR, when the SAR is being written to. The DOEBAN
control signal, output from the SAR controller, enables the
data onto the AD bus of the processor, when the SAR is
being read. When either control signal isinactive, both sides
A and B of the data buffers are three-stated, allowing the
bus to be used for other functions.
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Figure 9. SAR Address and Data Buffers

2.4.4  State Machine and Signals

The SAR slave controller consists of the SAR access state
machine, and several equations that implement the control
signals. The SAR controller resides in the MACH210 PLD.

The SAR controller is written in MACHXL. Appendix B,
PLD EQUATIONS contain the code which implement the
SAR controller. The state machine transitions described
here follow the MACHXL conventions for logic operators.

/ Represents Boolean NOT

* Represents Boolean AND

+ Represents Boolean OR

0 Represents Substitution (OUT1=A*B*C,
OUT2=A*B*C*D or OUT2={OUT1}*D)
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2.44.1 SELC Signal

The active high SELC signal is decoded from the latched
address bits LA[31:28]. When these address bits equal Cy¢
during the processor's address cycle, SELC is asserted
indicating an access to the SAR memory region.

2.44.2 SELSQO Signal

SELSQO is the select signal (standing for Select Squall
module, remembering that the SAR is on the squall
module) which initiates the SAR Access State Machine
when SELC is asserted.

2.4.4.3 SAR Access State Machine

Shown in Figure 10 is the SAR access state machine. It is
initiated when the SEL SQO select signal from the FPGA is
asserted, due to a request issued to the SAR's memory

region.

The state of the control signals implemented in the
controller, depend upon which state the state machineisin.
The following are the signals that make up the SAR
controller.
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2.445 READYpinn Signal

The READYpinn signal is connected to the RDYRCV pin
of the processor. It can be three-stated and is driven by
READY n. It must be three-stated when an access other than
a SAR access occurs. The READYpinn signal is paired
with the READYn signal, indicated by the brackets around
READYn on the right side of the READY pinn equation.
(see the MACHXL PLD file of Appendix B). Pairing
connects a node signal like READYn, to an output signal
like READY pinn.

2.4.4.6 RDYENnN Signal

RDY ENn controls the three-state buffer that three-states the
READYpinn signal. It is asserted when SELSQO is
asserted.

2447 SARSELn Signal

The SARSELnN signal selects the SAR, enabling it to be

accessed in slave mode.

2.4.4.8 SARASELn Signal

= SELSOn
= / SELSQn
= UNCONDI TI ONAL
= UNCONDI TI ONAL
= UNCONDI TI ONAL

moow >

Figure 10. 80960Jx to SAR Access State Machine

2444 READYn Signal

The READYn signd is asserted on the rising edge of the
clock, at the end of state sB of the SAR access state
machine. At the end of state sC, READYn signals to the
processor the termination of adata transfer.

The SARASELnN signa indicates to the SAR that an
addressisonits AD bus. On thefirst rising clock edge after
SARASELR goes active, the SAR latches the address onto
its AD bus for use during an access.

2449 SARSWRn Signal

The SARSWRn signal determines the direction of the slave
access. 1=read, O=write.
2.4.4.10 AOEABnN Signal

The AOEABN signal enables the B output of the SAR's
address buffers, directing the flow of the latched address
from the PCI-SDK, onto the AD bus of the SAR.

2.4.411 DOEABnN Signal
The DOEABN signal enables the flow of data through the

data buffers from A to B, to the AD bus of the SAR during
awrite.

11
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2.4.4.12 DOEBAn Signal

The DOEBAn signal enables the flow of data through the
data buffers from B to A, to the AD bus of the processor
during aread.

3.0 DRAM CONTROLLER ACCESS FLOW

This section explains how the DRAM controller is
sequenced while reading, writing and refreshing the
DRAM. Examples discussed are:

» singleword read access
e quad word read access

» single word write access
* quad word write access
» refresh

For the following accesses, refer to Figure 8. All accessesto
the DRAM are with the 1960 Jx processor configured with a
32 bit bus.

3.1 Single Word Read and Write Access

Figure 11 shows a single word read timing diagram. In state
s0 of the read when an access has begun, the address bits
from the processor are latched, and held latched throughout
the access. The MUX signal stays deasserted, selecting the
row address via the multiplexer. On the clock edge at the
end of state sO, the DRAM control state machine transitions
to state s2. In the beginning of state s2, the BLAST signal,
MEMPEND bit, INCBANK signal, and all the RAS lines
are asserted. BLAST asserting at thistime indicatesasingle
access, MEMPEND indicates an access is pending,
TNCBANK indicates the next state is a data state, while the
RAS lines load the row address into all the DRAM's. In the
middle of s2 the MUX signal is asserted on the falling edge
of CLK1, selecting the column address.

At the end of state s2, the state machine unconditionally
transitions to state s4. In s4, READY is asserted and the
CAS lines for bank A are asserted, based on the byte
enables. Asserting of the CAS lines enables data from the
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DRAM's onto the AD bus, making state s4 the data state
(T4 On the clock edge at the end of state s4, data is
captured by the processor due to sampling READY
asserted. It is at this point that data put on the AD bus from
the DRAM, must meet the set-up (t;;) and hold (t;;,;) times
of the processor. At the time READY is sampled low,
BLAST is sampled low, causing the state machine to
transition to state sO, completing the access and deasserting
the MEMPEND bit.

Figure 11 shows a single word write timing diagram. This
access seguences in the same manner as the single word
read access did, up until the first data state.

In state sO of the write when an access has begun, the
address bits from the processor are latched, and held latched
throughout the access. The MUX signal stays deasserted,
selecting the row address via the multiplexer. On the clock
edge at the end of state sO, the DRAM control state machine
transitions to state s2, due to the processor access. In the
beginning of state s2, the BLAST signal, MEMPEND bhit,
INCBANK signal, and al the RAS lines are asserted.
BLAST asserting at this time indicates a single access,
MEMPEND indicates an access is pending, INCBANK
indicates the next state is a data state, while the RAS lines
load the row address into all the DRAM's. Also during state
s2, dataisdriven on the AD bus, whereit waits to be written
into the DRAM's. In the middle of s2 the MUX signal is
asserted on the falling edge of CLK1, selecting the column
address.

At the end of state s2, the state machine unconditionally
transitions to state s4. In s4, READY s asserted and the
CAS lines for bank A are asserted, based on the byte
enables. Asserting the CAS lines writes data into the
DRAM's from the AD bus, making state s4 the data state
(Tqo)- It is at this point that data on the AD bus must meet
the set-up (ty) and hold (ty;,) times of the DRAM's. In this
design, tgq, ismost critical, and is met by holding the data on
the AD bus until the end of state s4. On the clock edge at the
end of state s4, READY and BLAST are sampled asserted,
causing the state machine to transition back to state sO,
completing the access and deasserting the MEMPEND hit.
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80960Jx to DRAM 1 Wait State Single Word Read and Write Timing Diagram

13



AP-726

3.2 Quad Word Read Access

Figure 12 shows a quad word read timing diagram. The
guad word read access begins exactly the same way that the
single word read access did, until the clock edge at the end
of state s4. At this point, since a quad word read has 1-0-0-0
wait states, the state machine stays in 4, until a READY
and BLAST are sampled asserted, on the rising clock edge
at the end of state s4. As the state machine spins in 4, the
toggling BANKSEL and the byte enables determine which
CAS signals activate, thereby controlling which leaf of the
DRAM data is transferred from. The toggling of
BANKSEL causes CASA and CASB to activate alternately,
with CASA enabling bank A first. As CASA and CASB
alternate, bits MAOA and MAOB increment, providing two
separate addresses, two for each bank. This is evident by
observing Figure 12, which shows that bit “a’ of MAO[b:a]
toggles from 0 in data state T to 1 in data state T,. Thisis
also true with bit “b”, during data states Ty; and Tgs.
During these data states the MUX signal stays asserted,
only alowing the CA'S address to be changed.

3.3 Quad Word Write Access

Figure 13 shows a quad word write timing diagram. The
quad word write access begins exactly the same way that
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the single word write access did, until the clock edge at the
end of state s4. At this point, since a quad word write has 1-
1-1-1 wait states, the state machine alternates between
states s4 and s3, with s4 being the data state (CAS signals
asserted) and s3 being the wait state (CAS signals
deasserted). The signals that determine which states are the
data and wait states of the DRAM control state machine, are
the CASEN and INCBANK signals. If at the end of 4,
CASEN and INCBANK are deasserted, the CAS lines
deassert and the incrementing address bits MAQ[b:a] are
incremented, preparing for the next data state. If at the end
of s3 CASEN and INCBANK are asserted, the CAS lines
are asserted and address bhits MAQ[b:a] are held constant
until the end of the data state. The incrementing of bits
MAOA and MAOB provide two separate addresses, two for
each bank. This is evident by observing Figure 13, which
shows that bit “a’ of MAQO[b:a] toggles from 0 in data state
Tgo to 1 in data state Ty,. This is aso true with bit “b”,
during data states Ty, and Tya.

If the READY and BLAST signals are sampled asserted on
therising clock edge at the end of state 4, the state machine
transitions back to state sO, where the access is complete.
During these data states the MUX signal stays asserted,
only allowing the CA'S address to be changed.
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Figure 12. 80960Jx to DRAM 1,0,0,0 Quad Word Read Timing
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3.4 CAS before RAS Refresh

Figure 14 shows arefresh cycle timing diagram. As soon as
the PCI-SDK powers up, the refresh counter starts counting,
and cannot be stopped by RESET. The counter is a free-
running divide-by-64 counter, running on a 4 MHz clock.
Its output switches high every 64 cycles of the 4 MHz clock,
giving al16 psinterval for requesting refresh.

On the next 25 MHz clock edge after the output of the
counter switches high, the REFSYNC signal is asserted,
causing the REFCLK and REFCLKD signals to sequence
as shown in Figure 14. When REFCLK is sampled high and
REFCLKD is sampled low on the clock edge, REFPEND is
asserted. When REFPEND is detected low on the next clock
edge, the DRAM control state machine enters state s6
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where refresh begins. At the beginning of s6, REF is sserted
and stays asserted through state s10. On the clock edge at
the end of 6, REF indicates to the REFPEND state machine
that the DRAM refresh is going to be satisfied, causing
REFPEND to be deasserted.

The REF signal serves another purpose. It enables the CAS
state machines during refresh, allowing the CAS signals to
be driven. In states s8-s10, the RAS signals are asserted,
giving a CAS before RAS refresh, since the CAS signals
were asserted back in state s6.

After the state machine transitions out of state s10
completing the refresh, it passes through states s5 and <0,
where the required RAS precharge takes place before
another access can begin

.S0.S0.S0.S0.S6.S7.S8.S9.510.S5.S0.S0.

e LIV

.S0 .S0 S0.S0.S0.S0.S0

RAS2,RASO [ :

eeres Lo e
REFSYNC [ i\ 0 v e
S R R EEER R
gy g e N P
reepEnD [ L\ 1 T

cAsbiz:0L cAsa3:0l [+ 1 . o o+ N . . . o T .

Figure 14. CAS-Before-RAS Refresh Cycle

4.0 SAR SLAVE ACCESS FLOW

This section describes how the SAR controller is sequenced
during a single word read and write access.

All accesses to the SAR are with the 1960 Jx processor
configured with a 32 bit bus.

41 Single Word Read and Write Access

Figure 15 shows the Single Word Read Access Timing
Diagram. The single word access begins with the processor
making a request to the SAR address space. The address is
latched and decoded, asserting the SELSQO select signal.
On the first rising clock edge that SELSQO is low, the SAR
access state machine initiates and unconditionally transi-

tions from state SA through state sC, back into state SWAIT.
The state machine will stay in SWAIT until SEL SQO asserts,
indicating another access.

At the end of state SWAIT when the state machine transi-
tionsto sA, the SAR controller drives SARSWRn high for a
read, and asserts SARSELn, SARASELN, and AOEABN.
As AOEABN asserts, the address buffers place the address
on the SAR's AD bus, where it is latched into the SAR on
the first rising edge of the clock after SARASELN goes low.
On the following clock edge after the address is latched, the
SAR places the data on its AD lines, which is at the
beginning of state sC, provided that SARSELN is low. At
the beginning of state sC with the data placed on the SAR's
AD bus, READYpinn is asserted and DOEBAN activates,
placing the data onto the processors AD bus, through the
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data buffers. At the end of state sC, the processor samples
READY and BLAST asserted, signaling the end of the data
transfer. When READY and BLAST are sampled asserted
during the transition from sC to SWAIT, the SEL SQO signal
deasserts, keeping the SAR access state machine in state
SWAIT.

Figure 15 shows the Single Word Write Access Timing
Diagram. The single word access begins with the processor
making a request to the SAR address space. The address is
latched and decoded, asserting the SELSQO select signal.
On the first rising clock edge that SELSQO is low, the SAR
access state machine initiates and unconditionally transi-
tions from state sA through state sC, back into state SWAIT.
The state machine will stay in SWAIT until SEL SQO asserts,
indicating another access.

At the end of state SWAIT when the state machine transi-
tionsto sA, the SAR controller drives SARSWRn low for a
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write, and asserts SARSELNn, SARASELn, and AOEABN.
As AOEABRN asserts, the address buffers place the address
on the SAR's AD bus, where it is latched into the SAR on
thefirst rising edge of the clock after SARASELn goes low.
On the same clock edge that the address is latched, the
DOEABN signal is asserted, enabling data onto the SAR's
AD bus, through the data buffers. The SAR then completes
the access by latching the data present on its AD bus on the
leading edge of the clock, just before SARSEL n goes high.
The clock edgein this caseis at the end of state sB.

In the beginning of state sC after the access has completed,
the controller asserts READY pinn and deasserts DOEABN,
removing the data from the SAR’s AD bus. At the end of
state sC, the processor samples READY and BLAST
asserted, signaling the end of the data transfer. When
READY and BLAST are sampled asserted during the
transition from sC to SWAIT, the SELSQO signal deasserts,
keeping the SAR access state machinein state SWAIT.
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5.0

CONCLUSION

Application Support BBS.

6.0

RELATED INFORMATION

Toreceive Intel literature, contact:

Intel Corporation

Literature Sales
P.O. Box 7641

Mt. Prospect IL 60056-7641

1-800-879-4683

Table 1. Related Information
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This application note discusses how to interface between an Intel 1960 Jx processor and an NEC pPD98401 Local ATM
SAR Chip. The platform used was a Cyclone Microsystems PCI-SDK evaluation platform, with ai960 Jx processor
module and an ATM Squall module. With the Squall module containing the SAR chip. To support the interface between the
1960 Jx processor and the SAR chip are 2, 8, or 32 Mbytes of DRAM, implemented in two 72 pin SIMM sockets. The
schematics were generated in Future Net. The PLD equations for the DRAM controller were written in PLDshell, and the
SAR controller equations were written in MACHXL. The schematics and PLD files are available through Intel America's

Reference # Document Name Order#
1 Intel Solutions960® catalog Intel 270791
2 i960® Jx Microprocessor Users’'s Manual Intel 272483
3 80960JA/JF Embedded 32-bit Microprocessor Data Sheet Intel 272504
4 pPD98401 LOCAL ATM SAR CHIP User’s Manual NEC IEU-1384
5 pPD98401 LOCAL ATM SAR CHIP Preliminary Data Sheet NEC ID-3392
6 10 ns FLASHIogic FPGA with SRAM Option Data Sheet Altera
7 PLDshell Plus /PLDasm User's Guide V4.0 Intel
8 Cyclone i960® Microprocessor User’s Guide Intel 272577
9 MACHXL Software Users’s Guide AMD
10 MACH 1 and 2 Family Data Book AMD

Y ou can use your PC with modem to download schematics and PLD equations from Intel’s Bulletin Board Service (BBS).

Intel Technical Support Hotline

800-628-8686
44-793-696-000

North America:
Europe:

Intel's Bulletin Board Service (BBS)
for schematics and PLD equations

North America: 916-356-3600

Europe: 44-793-432-955

supports up to 14.4 Kbps (n,8,1,p)

To contact Cyclone Microsystems for additional information about their products:

Cyclone Microsystems
25 Science Park
New Haven CT 06511

Phone: 203-786-5536

FAX: 203-786-5025

e-mail: info@cyclone.com
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APPENDIX A
PLDshell FILES

Table A-1 contains the PLD equations used to build the portion of the DRAM controller, implemented in the Altera
FLASHIogic EPX780 FPGA. Table A-2 contains the PLD equations used to build the portion of the DRAM controller,
implemented in the PAL20V8. The PLD equations were created in PLDshell.

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 1 of 12)

TITLE
PATTERN
REVI SI ON
AUTHOR
COMPANY
DATE

CH P

PI'N 3
PI'N 45
PI'N 51
PI'N a7
PI'N 81
PI'N 55
PI'N 56
PI'N 58
PI'N 60
PI'N 62
PI'N 64
PI'N 32
PI'N 13
PI'N 20
PI'N 75
PI'N 76
PI'N 77
PI'N 78
PI'N 79
PI'N 82
PI'N 1
PI'N 35
PI'N 37
PI'N 8
PI'N 7
PI'N 28
PI'N 74
PI'N 73
PI'N 21
PI'N 1 029

Private DRAM Contr ol
D601 - Conpiled with PLDShel

E

J. Smth

Cyclone M crosystens |nc.

5-10-95

DCTRL

pcl k

cl k16
rst

ads

bl ast
a3l

a30

a29

a28

al9

al8

a3

a2

al

w_r

hol da
sqbrO
pci hol d
| ock
extend
pt2

ptl

ptoO
freg2
freql
freqo
pd3
swaprom
pciinstall
readyin

i FX780_84

;I NP: system cl ock
;I NP: 16MHz cl ock
; INP: reset

; | NP:

;1 NP:

; | NP:

; | NP:

I NP:

7 1 NP:

7 1 NP:

;1 NP:

;I NP: address to increnent
;I NP: sel ect bank cas

;I NP: sel ect bank cas

;I NP: shared w'r

;1 NP:

I NP: Squall O bus request
I NP: PCl 9060 bus request
I NP: 960 | ock

;I NP: squall nopdul e extend dram reads

;I NP: i 960 processor type Pulled hi on board
;I NP: i 960 processor type

;I NP: i 960 processor type

;I NP: i 960 processor freq

;I NP: i 960 processor freq

I NP: 1960 processor freq

;I NP: SI MM PD3 out put 70/ 60ns

; I NP:

; INP: PCI 9060 installed =1

;I NP: shoul d be given same pin #

as ready pin - this is for
pi n feedback
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 2 of 12)

PI'N 1061 muxi n ;I NP: should be given sanme pin #
;as mux pin. nmuxalt when operating @ 33Mhz
PI'N 22 i rquart ; INP: active high uart interrupt
PI'N 83 breqo ; I NP: PCI 9060 i ndi cates deadl ock
PI N 84 bof f REG ; OUT: BOFF* to Cx processors @ deadl ock
PI' N 30 al t READY REG ; OUT: ready during deadl ock
PI' N 54 i rqddl k REG ; OUT: deadl ock interrupt
PI'N 9 raso REG ; OUT:
PI' N 5 ras2 REG ; OUT:
PI'N 63 nmux REG ; OUT: nux output - freq<33 , active |low
PI'N 61 muxal t REG ; OUT: nux output - freg>=33, “ “
PI'N 27 casen REG ; OUT:
PI'N 72 banksel REG ; OUT:
PI'N 70 ma0a REG ; OUT:
PI'N 69 ma0b REG ; OUT:
PI'N 31 dwe REG ; OUT: DRAM write enable
PI'N 12 ready REG ;out: 1960 ready
PI'N 6 ref REG ;out:
PI'N 48 hol d REG ; OUT: hold processor
PI N 49 sqbg0 REG ; OUT: bus grant Squall 0
PI'N 50 pci hl da REG ; OUT: bus grant to PLX 9060
PI N 19 cl k4 REG ; OUT: 4WHz cl ock
PI'N 18 zrd REG ; OUT:
PI'N 16 zwr REG ; OUT:
PI N 15 i or REG ; OUT:
PI'N 14 i ow REG ; OUT:
PI'N 43 selio REG ;
PI N 42 selcio REG ; OUT:
PI'N 41 sel uart REG ; OUT:
PI'N 40 sel pp REG ; OUT: sel ect parallel port
PI N 33 sel pnrom REG ; OUT:
PI'N 34 sel fronD REG ; OUT:
PI'N 36 sel fronl REG ; OUT:
PI'N 39 sel sq0 REG ; OUT: Sel ect Squall Mdul e
PI' N 57 irquartn COvB ; OUT: active low uart interrupt
NODE 1046 alt RDYEN REG ;buried: ready enabl e during deadl ock
NODE 1 028 rdyen REG ;buried: ready enabl e
NODE |1 ™49 stO0 REG
NODE | 44 stl REG
NODE |1 (42 st 2 REG
NODE | 331 bss0O REG ; buried: bank select state O
NODE | Q05 i ncbank REG cburi ed:
NODE 1 007 menpend REG ;buri ed:
NODE 1 G562 sX ;buried: Sx processor is accessing Mem
NODE | 60 pfvl cburi ed:
NODE 1 067 pfv0 ;buri ed:
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 3 of 12)

AP-726

NODE | C64 sel mux ;buri ed:

NODE 1076 refsync REG ; buri ed:

NODE 1 Q06 refclk REG ;buri ed:

NODE 1 008 refcl kd REG ;buri ed:

NODE 1002 r ef pend REG ;buried: refresh pending

NODE 1 067 BOOTRDO REG ;buried: set at reset, clr w ADS
NODE 1 065 BOOTRD1 REG ;buried: set at ADS, clr w bl ast
NODE 1 22 cl k8 REG ;buried: 8WHz cl ock

NODE 1 010 i 0s0 REG ;buried: io control states

NODE 1 013 iosl REG ;buried: io control states

NODE 1 016 io0s2 REG ;buried: io control states

NODE 1 O15 ios3 REG ;buried: io control states

NODE 1 019 i os4 REG ;buried: io control states

NODE 1 G832 ciotrc REG ;buri ed:

NODE | O34 synctrc REG cburi ed:

NODE | G386 count 0 REG ;buried: cio trcv states

NODE 1 O38 count 1 REG ;buried: cio trcv states

NODE 1 079 refcO REG ;buried: refresh counter

NODE 1 O78 refcl REG ;buried: refresh counter

NODE 1 074 refc2 REG ;buried: refresh counter

NODE 1 072 refc3 REG ;buried: refresh counter

NODE 1071 refca REG ;buried: refresh counter

NODE 1 070 refch REG ;buried: refresh counter

NODE |1 012 to0 REG ;buried: tinmeout states

NODE | 014 tl REG ;buried: tinmeout states

NODE | GB5 do REG ;buried: deadl ock states

NODE | 068 di REG :buried: deadl ock states

STRI NG sel4_7 ‘/a3l * a30’ ;regions 4-7
STRI NG sel 8.9 * a31 * /a30 * /a29’ ;regions 8-9
STRI NG sel0_3 ‘/a31 * /a30’ ;region 0-3
STRI NG seldram*‘ a31 * /a30 * a29 * /a28’ ;region A
STRI NG selb ‘a3l * /a30 * a29 * a28’ ;region B
STRI NG selc ‘a3l * a30 * /a29 * /a28’ ;regions C
STRI NG sel d ‘a3l * a30 * /a29 * a28’ ;regions D
STRI NG sel e ‘a3l * a30 * a29 * /a28’ ;region E
STRI NG sel f ‘a3l * a30 * a29 * a28’ ;region F
STRI NG pfo ‘/pfvl * /pfvO’

STRI NG pf1 ‘/pfvl * pfv0’

STRI NG pf2 * pfvl * /pfvO’

STRI NG pf3 * pfvl * pfvO’

STRI NG Cx ‘Ipt2 * ptl * /ptO

STRI NG Jx ‘pt2 * /ptl * /ptO’
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 4 of 12)

intal

T _TAB (freq2 freql freq0 pd3 >> pfvl pfvO )

ckkkkkokk ok ok kK

0
1

1

[En

1
0

0
0

STATE MEALY_MACHI NE
DEFAULT_BRANCH

o0
ol
02
03
o4
o5
06
o7
08
09
ol0
oll
0l2
013
0l4
ol5

0l6 =
0l7 =

018
0l9
020
021
022
023
024
032

o0

=/
=/
=/
=/
=/
=/
=/
=l

+ o+ o+

os4 *

os4
os4
os4
os4
os4
os4
os4
os4
os4
os4
os4
os4
os4

i os4

os4

i os4
i os4

os4
os4
os4
os4
os4
os4
os4
os4

i
/i
/
/
/i
/i
/i
/i

i

/i
i
/
/i
/

o0

0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3
0s3

i 0s3
i 0s3
i 0s3

0s3

i 0s3

0s3
0s3
0s3
0s3
0s3

X
0

0

[y

I/0 Wit

/

0s2
0s2
0s2
0s2
0s2

ios2
i0os2
ios2
ios2
ios2
ios2
ios2

0s2
0s2
0s2
0s2
0s2
0s2
0s2

ios2
ios2
ios2
ios2

0s2
0s2
0s2

X
1

0

x

& ready

iosl
iosl
/iosl
/iosl
/iosl
/iosl
iosl
iosl
iosl
/iosl
/iosl
iosl
iosl
iosl
iosl
iosl
iosl
/iosl
/iosl
/iosl
iosl
iosl
iosl
iosl
/iosl
iosl

0
0

0

o

( /selio * /selcio * ciotrc)
* selcio)
->i 015

( /selio
( /selpnrom)
(tinme3)

->i 015

->io0l

5

0
0

[y

; pf0=16 & 20MHz,
: =25MHz,
; 3111, 3222

; pf1=25MHz,
; =33MHz,
; =40MHz,
; 41111, 42221
;. pf2=40MHz,
; =50MHz,
; 52221, 42221
; pf 3=50MHz,
; 52222, 42221

generation ***

ios0
/i0s0
/i0s0
ios0
i0os0
/i0s0
/ios0
i 0os0
ios0
ios0
/i0s0
/i0s0
/ios0
i0os0
ios0
i 0os0
/i0s0
/i0s0
ios0
ios0
i0os0
ios0
/i0s0
/i0s0
ios0
/i o0s0

-> iol

60 & 70ns
60ns

70ns
60 & 70ns
60ns

70ns
60ns

70ns

; used only on 1st Cx/Hx read.
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AP-726

iol = vcec -> i02

i02 = vce -> i03

i 03 = vce -> i04

i 04 = vcec -> io05

i 05 = vcec -> i06

i 06 = vce -> i07

i o7 = vcec -> i08

i 08 = vce -> i09

i 09 = vce -> i0l0

i0l0 := vcc -> ioll

ioll := vcc -> io0l12

i0l2 := vcc -> i013

i0l3 := vcc -> iol4d

iol4 := vcc -> iolb

i0l5 := vcc -> i016

i0l6 := vcc -> io0l7

i0l7 := vcc -> i018

i0l8 := vcc -> io019

i0l9 := vcc -> i020

i020 := vcc -> io21

io2l := ( BOOTRDL ) -> i032
+ (/BOOTRD1 ) -> i022

i022 := ( blast ) -> io0l5
+ (/blast ) ->i023

i023 := vcc -> i024

i024 := vcc -> io0

i0o32 := ( blast ) -> i032

+ (/blast ) -> i023

; Cx first read, loop & hold ready
; lowuntil Cx asserts blast.

; Sx/ Kx burst read

sAkkxxkkkkExx | gcal bus Ti mEOUL K xR KAk kkk Kk

;8us m ni num tinmeout

STATE MEALY_MACHI NE
DEFAULT_BRANCH HOLD_STATE

time0 = t1* tO
tinel = t1* /tO
tine2 =/t1* /tO
time3 =/tl* tO
time0 = (/sel sq0)
tinmel ;= (/readyin)

+ ( refclk * /refclkd)
tinme2 ;= (/readyin)

+ (refclk * /refclkd)
time3 ;= (/readyin)

on squall cycles.

-> tinel

-> tine0
-> tine2

-> tine0
-> tine3

-> tine0
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 6 of 12)

INn

tel

I EEEEEE R
’

STATE MEALY_MACHI NE

sO
sl
s2
s3
s4
s5
sba
s6
s7
s8
s9
s10

sO

sl
s2

s3
s4

sba
s5
s6
s7
s8
s9
s10

+ 4+ + + 0

N+ + + + + 1

N+ + + 4+ 4+ ++ + + + 1

DEFAULT_BRANCH

ref *
ref *
ref *
ref *
ref *
ref *
ref *
/ref *
[ref *
/ref *
/ref *
[ref *

DRAM Cont r o

s0

rasO * ras2 * /[st2 *
/rasO * /ras2 * [st2 *
/rasO * /ras2 * [st2 *
/rasO * /ras2 * [st2 *
/rasO * /ras2 * [st2 *

rasO * ras2 * /st2 *

rasO * ras2 * st2 *

rasO * ras2 * [st2 *

rasO * ras2 * /st2 *
/rasO * /ras2 * [st2 *
/rasO * /ras2 * st2 *
/rasO * /ras2 * st2 *

(/refpend)

= Vvcce

( refpend * /ads * seldram */(pf0))
( refpend * /menpend */ (pf0))
( refpend * /fads * seldram* (pf0))
( refpend * /nenpend * (pf0))
vce -> s2
(pf2 * /wr) -> s3
(pf2 * w.r) -> s4
(pf3 * /w.r) -> s3
(pf3 * w.r) -> s4
(pfl) -> s4
(pfoO) -> s4
vce -> s4
( blast * /wr * extend * (pf0))
( blast * /wr * extend * pfl)
( blast * /wr * extend * pf2)
( blast * /w.r * extend * pf3)
( blast * wr )
(/ bl ast * extend * (pf0))
(/ bl ast * extend * pfl)
(/ bl ast * extend * pf2)
(/blast * wr * pf 3)
(/blast * /w.r * extend * pf3)
(/extend * /fw.r )
vce -> sb
vce -> s0
vce -> s7 ;refresh
-> s8 ;refresh
vce -> s9 refresh
vce -> s10 ;refresh
vce -> s5 ;refresh

/stl
/stl
/stl

stl

stl
/stl
/stl
/stl
/stl
/stl
/stl
/stl

st
st
/ st
/ st
st
/ st
/ st
st
/ st
/ st
/ st
st

->
->
->
->
->

->
->
->
->
->
->
->
->
->
->
->

R E R R R R R RS

0
0
0
0
0
0
0
0
0
0
0
0

s6
sl
sl
s2
s2

s4
s4
s3
s3
s3
sO
s5
s5
sba
s5
s4

: AP ok

. AP ok
; AP ok
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 7 of 12)

EEEEEEE]
f

DEFAULT_BRANCH sl DLE

;state assignnents
sIDLE = irqgddlk * /dl1 * /dO
sB =/irqddl k * /d1 * /dO
sC=/irqddlk * /d1 * dO
sD =1/irqddlk * d1 * /dO
s = irqddlk * di1 * /dO
sF = irqddlk * di1 * dO
;state transitions
sIDLE := (/breqo ) -> sIDLE
+ ( breqo * Jx ) -> sB
sB : = vce -> sC
sC:= vce -> sD
sD : = vcc -> sE
s := ( blast ) -> sE
+ (/blast ) -> sF
sF := ( breqo ) -> sF
+ (/brego ) -> sIDLE
EQUATI ONS ; *****xxx%*xx EE Contro
ras0.cl kf = pclk ras2.cl kf = pclk

casen. cl kf =pcl k

banksel . cl kf =pcl k
dwe. cl kf =pcl k

sqbgO. cl kf =pcl k

bssO. cl kf =pcl k
rdyen. cl kf

i 0s4. cl kf
i osl. cl kf
zrd. cl kf
ior.clkf

t 1. cl kf

selio. cl kf

sel uart. cl kf =pcl k
sel pp. cl kf =pcl k

st 0. set

f

raso0. setf

i 0s4. setf
iosl. setf

tl.setf

i rgddl k. cl kf
i rgddl k. setf

i ncbank. cl kf = pcl k

maOa. cl kf =pcl k
ready. cl kf =pcl k
pci hl da. cl kf =pcl k
menpend. cl kf =pcl k

= pcl k

pclk io0s3.clkf = pclk
pcl k io0s0.clkf = pclk
pclk zw.clkf = pclk
pclk iow clkf = pclk
pclk t0.clkf = pcl k

= pclk selcio.clkf = pclk

sel pnrom cl kf =pcl k

sel sq0. cl kf =pcl k

/rst stl.rstf
/rst ras2.setf
/rst io0s3.setf
/rst io0s0.setf
/rst tO0.setf

= pcl k

= /rst

/rst
/rst

= /rst
/rst
/rst

bof f. cl kf
boff.setf

Deadl ock State Machine *****x&xx&¥x
STATE MEALY_MACHI NE

wai ting for BREQo=1
start only if Jx processor
\
> | RQDDLK active for 3 clks
/
set READY=0, wait for BLAST=0

wai ting for BREQ=0 before
rearm ng state machine

khkkkkkkkkkkkhkkhkkk*k

ma0b. cl kf =pcl k

hol d. cl kf =pcl k

rdyen. cl kf =pcl k st 0. cl kf =pcl k
stl.clkf = pclk st2.clkf = pclk

ios2.clkf = pclk

sel fronD. cl kf =pcl k
sel froml. cl kf =pcl k

st2.rstf
ref.setf

/rst
/rst

ios2.setf = /rst
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do. cl kf = pclk dl.cl kf = pclk
d0.rstf = /rst dil.rstf = /rst
al t READY. cl kf = pcl k al t RDYEN. cl kf = pcl k
al t READY. setf = /rst al t RDYEN. rstf = /rst

BOOTRDO. cl kf = pcl k
BOOTRDL. cl kf

1

°
i
=~

ckxxxkkkkxxx% Dagd| ock Equations * ok ok ok ok ok ok ok ok ok k

/ al t READY : = sD
+ sE * bl ast
al t READY. trst = alt RDYEN
al t RDYEN : = sC + sD + sE
/boff := Cx * breqo
Cx * /breqo * /boff

+

* pcihold

kXK kkKkkkxkkkk Go| ect Signals kokkokkokkkokkokkokkk

/selio ;= /ads * selb

+ /ads * self * /swaprom
+ /ads * sele * swaprom

+ /ads * seld

+ /ads * sel4_7 * /pciinstall
+ /ads * sel8_ 9 * /pciinstall

+ /selio * /(/blast

/selcio :=/ads * selb */al9
+ /selio * selb */al9
/seluart: = /ads * selb */al9
+ /selio * selb */al9
/ sel pp = /ads * selb * al9
+ /selio * selb * al9

/sel pntrom = swaprom * /ads

* [ready) * rst

* al8
* al8 * ready
* [al8
* [al8 * ready
* [al8
* [al8 * ready

* sel f *

+ swaprom * /sel pnmtom * self * ready *

+ swaprom * /ads

* sel0_3 *

+ swaprom * /selpmom* sel0_3 * ready *

+/ swaprom * /ads
+/ sel pnrom */ (/ bl ast

/sel fronD: = swaprom * /ads *
+ swaprom* /selio *
+/ swaprom * /ads *
+/ swaprom * /selio *
+/ swaprom * /ads
+/ swaprom * /selio *

* sele *
* [ready) *

sel e */al8
sel e */al8 * ready
sel f */al8
sel f */al8 * ready

* sel0_3 */al8

sel 0_3 */al8 * ready

rst
rst
rst
rst
rst
rst

;7 BXXXXXXX
T EXXXXXXX
7 EXXXXXXX
7 DXXXXXXX

; b4000000
; b0O000000

; b8000000

; £0000000

; 00000000

; €0000000

; e0000000
; 10000000

; 00000000
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 9 of 12)

/sel fronl: =
+

+
+
+
+
+

/selsgq0 :=

+

BOOTRDO : =

+

BOOTRDL : =

+

/zrd :

+ o+ + 0

[ zwr

+ o+ o+

/ior

+ 4+ + 0

/iow : =

+

/irquartn=

SX
sel mux

+ + 1

/ menpend

nenpend. se
/ mux
/ muxal t

mux. cl kf

swaprom * /ads * sele * al8 ; €0040000
swaprom * /selio * sele * al8 * ready

/ swaprom * /[ ads * sel f * al8 ; £0040000
/ swaprom * /selio * self * al8 * ready

/ swaprom * /ads * sel0_3 * als8 ; 00040000
/ swaprom * /selio * sel0_3 * al8 * ready

/selfronl * BOOTRD1 * blast * rst

/ads * selc * rst ; 0000000
/selsq0 * /(/blast * /readyin) * rst

/rst * [pt2 * ptl ; set if Cx or Hx
rst * BOOTRDO * ads * [pt2 * ptl ; hold til 1st ads

rst * BOOTRDO * /ads * [pt2 * ptl ; set at ads
rst * BOOTRDL * blast * /pt2 * ptl ; hold til 1st blast

.************l/o COﬂtrOl equatons kkkkkkkk*k
/rst

/selcio * /wr * io2 * rst

/selcio * /wr * io3 * rst

/selcio * /wr * /zrd * ready * rst

/rst

/selcio * wr * io2 * rst

/selcio* wr * io3 * rst

/selcio* wr * /zw * ready * rdyen * rst

/selio * selcio * /w.r * ready * rst
/ sel pmrom * fw.r * ready * rst
/selio * selcio * /wr * /ready * BOOTRDL * blast * rst
/ sel pnrom * /wr * /ready * BOOTRDl * blast * rst

/selio * selcio * wr * ready * rdyen * rst
/ sel pnrom * wr * ready * rdyen * rst

i rquart
;************ COangUrathn Tern-s *kkkkkhkkkkkk
/pt2 * /ptl * /ptO * /holda ;1 960Sx
freqg2 */freql * freqO ; 33MHz
freqg2 * freql * /freqO ;. 40MHz
freq2 * freql * freq0 ;. 50MHz
;************DRAM Contr-ol khkkkkhkkhkkhkkkkhkkhkkk
:= nmenpend * /ads * seldram* rst
+ /menpend * /(/blast * /ready) * rst ;hold till rdy

tf

/rst
/ras0 * rst
/ras0 * rst
/ pcl k
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 10 of 12)

nmux. trst = /sel nmux s MUX tri-stated when operating @ >=33VHz
nmuxal t.clkf = pclk
muxal t.trst = selnmux

/ casen :=s0 * /ads * seldram* (pf0O) * refpend
+ s0 * /menpend * (pf0) * refpend
+ sl
+ s2 * fwr * pf2
+s2 * /wr * pf3
+ s2 * ((pf0O) + (pfl)) * /wr
+ s3 * [wr
+ s4 * bl ast
+ s4 * [extend * /w.r * /blast
/i ncbank =s0 * /ads * seldram* (pfO) * refpend * extend ; JX ok
+ s0 * /nenpend * (pf0) * refpend * extend ;o JX ok
+ sl * [((pf2) + (pf3)) * /wr * blast * extend ; JX ok
+ sl * wr * blast * extend ; ‘
+ s2 * /wr * blast * extend
+s3 * [((pf2) + (pf3)) * /wr * blast * extend ; 1st term
;=1 ow
;o pfo=1
+ s4 * bl ast * extend ; ‘
/ready :=s2 * (pf0)
+ s2 * pfl
+ s2 * pf2 * wr
+ s2 * pf3 * wr
+ s3
+ s4 * (pf0) * /wr * blast
+s4 * pfl * /wr * blast
+s4 * /wr * /blast * /extend
+ i021
+ i 032
ready. trst = /rdyen
/rdyen 1= sl + s2 +s3 + s4
+ 1020 + 1021 + 1022 + i032
/ dwe = owr * oref
mala. d : rasO * /a3 * a2 ; a[3:2] =01
rasO * a3 * /a2 ; “ =10

/rasO * /maOb * banksel * bssO * /ready
/ras0 * nmaOa * /bankse

/ras0 * ma0a * /bssO

/ras0 * ma0a * ready

+ o+ + + +
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maOb.d := ras0O * a3 * /a2 ; a[3:2] =10
+ rasO * a3 * a2 " =11
+ /ras0 * nmmOa * /banksel * bssO * /ready
+ /ras0O * maOb * bankse
+ /ras0O * nmaOb * /bssO
+ /rasO * ma0Ob * ready
mala. rstf = /rst malOb. rstf = /rst
ma0a.trst = /muxin ;output enable active with MJUX or MUXALT | ow
malb. trst = /nmuxin ;muxin | ow when MUX or MUXALT is | ow
;************ DRAM Bank Sel eCt *kkkkkkhkkhkkhkkkk kK
/ banksel .d: = /fads * nenpend * /sx * /a2 * rst ;o JX ok
+ /ads * nenpend * sx * /a2 * [/al * rst
+ /ads * nenpend * sx * /a2 * al * rst
+ /menpend * incbank * /banksel * rst ;hold JX ok
+ /menpend * /incbank * /banksel * rst * /extend ; hol d
+ /menpend * /incbank * /banksel * /bssO * rst * extend
; bs0->bs1
+ /menpend * /incbank * banksel * bssO * rst * extend ; JX ok
VAN 1 bs3->bs0
Il
; oscillates with i ncbank | ow
: bs3->bsl /sx
: bs3->bsl /sx
/ bss0. d = /ads * sx * /a2 * /al * rst
+ /ads * sx * a2 * [al * rst
+ ads * sx * incbank * /bssO * rst :hol d
+ ads * sx * /incbank * /bssO * rst * /extend :hol d
+ ads * sx * /incbank * /banksel * bssO * rst * extend
ibsl ->bs2
+ ads * sx * /incbank * banksel * bssO * rst * extend
; bs3 ->bsO
banksel . setf = /rst bss0.setf = /rst
;************ DRAM Refresh khkkkkkkhkkhkkkkkkkkkk
/refsync = refch ;sync 4MHz count w pclock
/refclk = refsync
/refcl kd = /refclk
/ ref pend = refclk * /refclkd * rst ;set
+ /refpend * ref * rst creset with ref
refcO.t = vce :refresh counter 16us
refcl.t = refcO
refc2.t = refcO * refcl
refc3.t =refcO * refcl * refc2
refc4.t =refcO * refcl * refc2 * refc3
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Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 12 of 12)

refch.t refcO * refcl * refc2 * refc3 * refc4

refcO.aclk = clk4 refcl.aclk = clk4 refc2.aclk = clk4
refc3.aclk = clkd4 refcd.aclk = clk4 refch.aclk = clk4
refsync. cl kf =pcl k refclk.clkf= pclk refclkd.clkf=pclk

ref pend. cl kf =pcl k ref.clkf = pclk
;************ Arbltratlon khkkkkkhkkhkhkhkhkkkkkkkkk
hol d = pcihold * /holda * lock ;hold nmay not be asserted
+ pcihold * holda ;if lock is active, but
+ /sqbrO0 * /holda * |ock ;1 ock maybe asserted by
+ /sqbrO0O * holda ; SQUALL masters once they
;are granted the bus.
/ sqbg0 = holda * hold * /sqgbr0O * /pcihlda
+ /sqbg0 * /sgbr0 * hol da

= holda * hold * pcihold * sgbr0 * sgbg0
+ pcihlda * pcihold * hol da
+ pcihold * /boff

pci hl da

s hkkkkk ok ok ok ok ok kk Ak kkhkkhkkhkhkhkhkkkkkkkkk
; 4 MHz cl ock

cl k8.t 1= vce
cl k8. cl kf = cl k16
clkd.t I = vce
cl k4. acl k = cl k8

s hkkkhkk ok ok ok ok ok kk CIOT recovery Kk kkkkhkkhkkkkkkkk
; Delay 1000ns for trc on the 8536

/ciotrc :=/selcio * /ready * rst ;set
+ /ciotrc * synctrc * rst ;hol d/ reset
/synctrc :=/ciotrc * J/countl * countO * rst ;assert
ciotrc. cl kf = pclk
synctrc.clkf = pclk
/count 1 ;= /ciotrc * countl * /countO * rst ;10 -> 00
+ /ciotrc * /countl * /countO * rst ;00 -> 01
/ count 0 ;= /ciotrc * countl * countO * rst ;11 -> 10
+ /ciotrc * countl * /countO * rst ;10 -> 00
count 1. acl k = cl k4
count 0. acl k = cl k4
count 1. setf = /synctrc * ciotrc
count 0. set f = /synctrc * ciotrc

A-12




INn

tel

Table A-2. DRAM Controller PAL20V8 PLDshell File (Sheet 1 of 2)

AP-726

TITLE
PATTERN
REVI SI ON
AUTHOR
COMPANY
DATE

CH P

PI'N 1
PI'N 2
PI'N 3
PI'N 4
PI'N 5
PI'N 6
PI'N 7
PI'N 8
PI'N 9
PI'N 10
PI'N 11
PI'N 12
PI'N 13
PI'N 14
PI'N 15
PI'N 16
PI'N 17
PI'N 18
PI'N 19
PI'N 20
PI'N 21
PI'N 22
PI'N 23
PI'N 24

Private DRAM Contr ol

D600A

J. Smith

Cycl one

06- 14- 94

CASEN  PAL20V8

pcl k

r eady

casen

banksel

bl ast

be3

be2

bel

be0

ref

nc

gnd

oe

nc

cashO REG
casbhl REG
cash2 REG
cash3 REG
casa0 REG
casal REG
casa2 REG
casa3 REG
nc

vce

Z2z2z2z2z2z2z22z2Z2Z
UUUUUUUUUTUTU

888888888

system cl ock

;plcc pin 3
;plcc pin 4
;plcc pin 5
;plcc pin 6
;plcec pin 7
;plcc pin 9
;plcc pin 10
;plcec pin 11
;plcec pin 12
;plcc pin 13
;plcc pin 14
;plcc pin 16
;plcec pin 17
;plcc pin 18
;plcc pin 19
;plcc pin 20
;plcec pin 21
;plcc pin 23
;plcc pin 24
;plcc pin 25
;plcc pin 26
;plcc pin 27
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Table A-2. DRAM Controller PAL20V8 PLDshell File (Sheet 2 of 2)
EQUATI ONS
/casa0 := /casen /be0 * [banksel * /(/blast * /ready)
/ casal Z ;:;g];‘en /bel * [banksel * /(/blast * /ready)
/casa2 : Z ;:;g];‘en /be2 * [banksel * /(/blast * /ready)
/ casa3 Z ;:;g];‘en /be3 * [banksel * /(/blast * /ready)
+ /ref
/ casb0 := /casen / be0 * banksel * /(/blast * /ready)
/ casbl : : jtr::fsen / bel * banksel * /(/blast * /ready)
+ /ref
/casb2 := /casen / be2 * banksel * /(/blast * /ready)
/ cash3 : : Z(r:::sen / be3 * banksel * /(/blast * /ready)
+/re
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APPENDIX B
PLD EQUATIONS

Table B-1 contains the PLD equations used to build the SAR controller, implemented in an AMD* MACH210* PLD. The
PLD equations were created in MACHXL.

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 1 of 6)

TITLCE NEC SAR (uPD98401) Control
PATTERN H601
REVISION A
AUTHOR Joe Ni ederneyer
COWPANY Cycl one
DATE 6-06-95

CH P H601 MACH210 ;(-12nS tPD req’'d for SARRDYn)

PIN 35 PCLK ;I NP: system cl ock.
PIN 7 RESETn ;I NP: systemreset.
PIN 19 SELSOn ;I NP: squall region decode.
PIN 14 SARATTNn ; I NP: SAR bus request.
PIN 3 SQBGNTn ;I NP: squall bus grant.
PIN 13 S| ZE2 ;I NP: SAR burst | ength MSB.
PIN 11 SIZEl ;I NP: SAR burst length bit.
PIN 10 S| ZEO ;I NP: SAR burst length LSB.
PIN 5 SARDWRn ;I NP: SAR dr/w* (master rd/wr*).
PIN 33 PHYCSn ; I NP: FRAMER chi p sel ect.
PIN 32 PHYWRn ; INP: FRAMER read/ write*.

2 READYpi nn REG ; i 960 ready*.

6 SARASELN REG ; SAR asel *.

41 SARSELnN REG ; SAR sel *.

36 SARSWRn REG
25 SQBREM REG
30 SARGNTn REG
4 BLASTpinn REG
16 ADSpi nn REG
21 CPUMRpi n REG
24  SARRDYn COMB ;

SAR sr/w (slave rd/w*).
squal | bus request.

SAR bus grant.

bl ast* when SAR is bus master.
ads* when SAR is bus master.
w r* when SAR is bus master.
SAR rdy*.

8888288E808E68E88E8888

TUUUITITIIIUIUIITUIIIUIUITIITIIUIUD
2222222222222 222222222Z2
=
©

BEON COvVB be0O* when SAR is bus naster.
20 BEln COMB ; bel* when SAR is bus mmster.
28 BE2n COMB ; be2* when SAR is bus naster.
38 BE3n COMB ; be3* when SAR is bus nmmaster.
26 AOEBAN REG ; ADDR XCVR control, master direction.
40 ACLKENn REG ; ADDR XCVR cl ock enabl e, master direction.
42 AOCEABN REG ; ADDR XCVR control, slave direction.
43 DCEABN REG ; DATA XCVR control, slave wite direction.
17 DOEBAN REG ; DATA XCVR control, slave read direction.
15 DCLKENnN COMB ; DATA XCVR cl ock enable, master read dir.
37 DLEABn REG ; DATA XCVR | atch enable, master wite dir.
39 PHYALE REG ; FRAMER address | atch enabl e.
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Table B-1. SAR Controller MACH210, MACHXL File (Sheet 2 of 6)

NODE 2 READYn REG PAI R READYpi nn
NODE 28 ADSn REG PAIR ADSpi nn
NODE 6 BLASTn REG PAIR BLASTpi nn
NODE 18 CPUWR REG PAIR CPUWRpi n
NODE 23 RDYENn REG ; BRY: ready pin enable.
NODE 11 CNT3 REG ; BRY: burst count MSB.
NODE 7 CNT2 REG ;BRY: burst count bit.
NODE 4 CNT1 REG ; BRY: burst count bit.
NODE 15 CNTO REG ; BRY: burst count LSB.

NODE 3 SARRDYO REG ; BRY: ready*, one clock del ayed.

NODE 14,39 slv[1..0] REG ;BRY: slave states.
NODE 35,22 nst[1..0] REG ;BRY: nmster states.

cokkkhkkhkkkkkhkhkhhkhhkhkhhkhkhkhkhkkkh k-
i 1

;***  Slave State Assignments ***;

cokkkkkhkkkkhkkhkhhkhhkhhkhhkhkhkhkkkkokh k-
i 1

STRING WAIT *‘ #bll *

STRI NG A ' #b01l *
STRI NG B * #b00 °
STRI NG C * #blo
STRING sWAIT * slv[1] * slv[O] °
STRI NG sA * [slv[1l] * slv[O0] °
STRI NG sB * /slv[1] * /slv[O] °
STRI NG sC * slv[1] * /slv[O] °*

cokkkkkkkkkkhkhhkhkhhkhkhkhkhkkhkhkkkk k-
i i

;***  Master State Assignments ***;

cokkkkkkkhkkhhhkhhkhhkhkhkhkhhkhhkhkkkk k-
i i

STRI NG M ¢ #bll

STRI NG ML * #bO1 *

STRI NG M2 #b0O

STRI NG M3 * #b10 °

STRING sMd * nmst[1] * nst[0]
STRING sML * /mst[1] * nst[0] °
STRING sM2 * /mst[1] * /nst[0]
STRING sMB * nst[1] * /nst[0]

GROUP ff slv[1..0] nmst[1l..0] READYn RDYENn
SARASELNn SARSELn SARSWRn SQBREQn SARGNTn
AOEABn AOCEBAn ACLKENn DOEABn DOEBANn DLEABN
ADSn CPUWR SARRDYO BLASTn PHYALE
CNT3 CNT2 CNT1 CNTO

EQUATI ONS
ff.CLKF = PCLK
ff.RSTF = GND
ff.SETF = GND
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Table B-1. SAR Controller MACH210, MACHXL File (Sheet 3 of 6)

AP-726

AR KKK KK KKK KR KKK KK KRKR KR KKK KRKRKK KK KKK -
’ i

;***  Slave State Transitions ***;

Pk kkkkkkkkhk kA kA hkhhkhhkhhkhkhkkhkhkhkkk k-
’ i

I E (/RESETn)
THEN BEG N slv[1..0] = WAIT END
ELSE BEG N CASE (slv[1..0])
BEG N
WAIT: BEG N IF (SELSQn)

THEN BEG N slv[1..0] = WAIT
ELSE BEGIN slv[1..0] = A
END
A BEGN slv[1..0] =B END
B: BEGN slv[1..0] = C END
C. BEGN slv[1..0] = WAIT END
END
END

Pk kkkkkhkkhkkhhkhhkhkhkkhkhkhkk ok k-
’ i

;***  Ready Generation ***;

R R KKK KKk K Kk kA
READYn := /( sB)

READYpi nn : = { READYn }

READYpi nn. TRST = / RDYENn

/ RDYENn : = / SELSCn

Pk kkkkkkkkk kA khhkhkhkhkhkkkk ok koK -
’ i

;***  SAR Sl ave Equations ***;

Pk kkkkkkkkk kA khhkhkhkhkhkkkkokkok -
’ i

/ SARASELn : = sWAIT * / SELSQn

/ SARSELNn := sWAIT * / SELSOn
+ SA

/ SARSWRn := sWAIT * /SELSOn * CPUWRpi n

END
END
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Table B-1. SAR Controller MACH210, MACHXL File (Sheet 4 of 6)

KKK KR KR KKK KR KR KR KRNI R KR KR KR KKK RKRKKRKR KKK KKK -
1 1

;***  Address & Data Buffer Control ***;

ckkkkkkkhkhkkkhkh kA hkhhkkhhkhkkhkkhkhkkhkkhkhkk k.
1 1

/ ACEABn := sWAIT * [/ SELSQn ; SAR Sl ave direction
/ ACEBAN := sML + sM2 + sM3 ; SAR Master direction
/ ACLKENn := sML ; SAR Master direction
/ DOEABn := sA * CPUWRpi n ; SAR Slave Wite
+ sM3 * SARDWRn ; SAR Master Read
/ DOEBANn := sB * / CPUWRpi n ; SAR Sl ave Read
+ sM3 * / SARDWRn ; SAR Master Wite
/ DCLKENn = / READYpi nn * /SQBGNTn * SARDWRN ; SAR Master Read Only
/ DLEABn := sM3 * SARDWRNn ; SAR Master Read Only

ckkkkkhkkhkhkhkhkkhkhk kA hkkhkkh kA hkkkkhkkk kK-
1 1

;***  Master State Transitions ***;

ckkkkkkkhkhkhkkkhhkhk kA hkkhkkhkhkkkkhkkk kK.
1 1

| F (/ RESETn)
THEN BEG N nmst[1..0] = M0 END
ELSE BEG N CASE (mst[1..0])
BEG N
M: BEG N IF (/SQBGNTn * /SARATTNn)

THEN BEG N nst[1..0] = ML END
ELSE BEGN nst[1..0] = M0 END
END
M: BEGN nst[1..0] = M END
M: BEGIN nmst[1..0] = M3 END
MB: BEGIN IF (/BLASTn * /READYpi nn)
THEN BEG N nst[1..0] = M0 END
ELSE BEGN nst[1..0] = M3 END
END
END
END

cokkkhkkkkhkkhkhhkhhkhhkhhkhkhkkhk ok ok k-
i i

;***  Arbitration Equations ***;

cokkkkkkkhkkhkkhkhhkhhkkhkhkhkhhk ok ok k-
i i

/ SOBREQn : = / SARATTNn * RESETn

/ SARGNTN :

/ SOBGNTNn * / SQBREQn * / SARATTNn * RESETn
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Table B-1. SAR Controller MACH210, MACHXL File (Sheet 5 of 6)

R KK KKK KKK KKR KKK KRKRRKRK KKK KKK -
’ 1

;***  Blast Generation ***;

Pk kkkkkhkkhkkkhkhhkhhkhkhkhk ok ok k-
’ 1

; Burst counter needed to generate BLASTn.

; SAR indicates burst length (encoded) on SIZE<2, 1, 0> pins.
; Counter loaded with (SIZE - 1) at ADS*.

; Counter decrenents with each READY*.

; BLASTn asserted when (CNT = 1) and (READY* = 0).

CNT3 := /ADSn * SIZE2 * /SIZE1 * /Sl ZEO ;. LOAD
+ ADSn * READYpinn * CNT3 ; HOLD
+ ADSn * /READYpinn * CNT3 * CNT2 * CNT1 * CNTO ;. DOWN
+ ADSn * /READYpinn * CNT3 * CNT2 * CNT1 * /CNTO ; DOWN
+ ADSn * /READYpinn * CNT3 * CNT2 * /CNT1 * CNTO ;. DOWN
+ ADSn * /READYpinn * CNT3 * CNT2 * /CNT1 * /CNTO ; DOWN
+ ADSn * /READYpinn * CNT3 * /CNT2 * CNT1 * CNTO ;. DOWN
+ ADSn * /READYpinn * CNT3 * /CNT2 * CNT1 * /CNTO ; DOWN
+ ADSn * /READYpinn * CNT3 * /CNT2 * /CNT1 * CNTO ;. DOWN
+ ADSn * /READYpinn * /CNT3 * /CNT2 * /CNT1 * /CNTO ; DOWN
CNT2 := /ADSn * SIZE2 * /SIZE1 * /SIZEO ; LOAD
+ /ADSn * /SIZE2 * SIZE1 * SIZEO ;. LOAD
+ ADSn * READYpinn * CNT2 ; HOLD
+ ADSn * /READYpinn * CNT2 * CNT1 * CNTO ;. DOWN
+ ADSn * /READYpinn * CNT2 * CNT1 * /CNTO ; DOWN
+ ADSn * /READYpinn * CNT2 * /CNT1 * CNTO ;. DOWN
+ ADSn * /READYpinn * /CNT2 * /CNT1 * /CNTO ; DOWN
CNT1 := /ADSn * SIZE2 * /SIZE1 * /SIZEO ; LOAD
+ /ADSn * /SIZE2 * SIZE1 * SIZEO ;. LOAD
+ /ADSn * /SIZE2 * SIZEl1 * [/ SIZEO ; LOAD
+ ADSn * READYpinn * CNT1 ;. HOLD
+ ADSn * /READYpinn * CNT1 * CNTO ; DOWN
+ ADSn * /READYpinn * /CNT1 * /CNTO ;. DOWN
CNTO := /ADSn * SIZE2 * /SIZE1 * /Sl ZEO ;. LOAD
+ /ADSn * /SIZE2 * SIZEl1 * SIZEO ;. LOAD
+ /ADSn * /Sl ZE2 * SIZE1 * /Sl ZEO ;. LOAD
+ /ADSn * /SIZE2 * [SIZE1 * SIZEO ; LOAD
+ ADSn * READYpinn * CNTO ;. HOLD
+ ADSn * / READYpi nn * /CNTO ; DOWN

BLASTn := /( /ADSn * /SIZE2 * /SIZE1 * /SIZEO * RESETn
+ / READYpinn * /CNT3 * /CNT2 * /CNT1 * CNTO * RESETn
+ [/ BLASTn * READYpi nn * RESETn )

BLASTpi nn : = { BLASTn }
BLASTpi nn. TRST = / SQBGNTn
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Table B-1. SAR Controller MACH210, MACHXL File (Sheet 6 of 6)

EEEEEEEEEEEE]
1

;¥**  SAR Mas

ckkkkkkkkokkk Kk
1

ADSn :
ADSpi nn :
ADSpi nn. TRST

CPUVR
CPUVRpI n
CPUMRpi n. TRST

/ SARRDYO : =

/ SARRDYN

+

/ BEOn
/ BE1n
/ BE2n
/ BE3n

BEONn. TRST
BE1n. TRST
BE2n. TRST
BE3n. TRST

sokkkkkok ok ok ok ok ok Kk
i

;***  Physica

sokkkkkokk ok ok ok kk
i

; SAR only ho
; PHY wite ¢
;. PHY has an

; ALE is held

PHYALE : =

ckkkkkkkkkk ok k
1

x**x  End O

ckkkkkkkkkkkok
1

R R R R E R E R R EEEEE R
1

ter Equations ***;

khkkkkkkhkhkkhkhhkhhkkkk.
1

I( sM )
{ ADSn }
= / SQBGNTn

/ SARDVRN
{ CPUMR }
= / SQBGNTn

/ READYpi nn

/ SARRDYO * /SQBGNTn * SARDWRn ; READs pi pel i ned
/ READYpi nn * / SQBGNTn * / SARDWRn ; WRITEs nor nal

VCC
VCC
VvCC
VCC

/ SQBGNTN
/ SQBGNTn
/ SQBGNTN
/ SQBGNTn

khkkhkhkhkhkhkhhhhkkhkkk-
i

I 1/F Equations ***;

khkkhkhkhkhkhkhhhhkkhkkkk-
i

Ilds a valid address for the 1st 6 clocks of a PHY read cycle.
ycl e works OK, as-is.

active H ALE input avail able.

H for wite cycles and pulled LO during reads to latch addr.

/( /PHYCSn * PHYWRn )

kkkkkkkkk -
1

He01 ***;

kkkkkkkk k-
1
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