
A AP-726

Order Number: 272779-001

APPLICATION
NOTE

Interfacing the
i960® Jx Microprocessor to the

NEC µPD98401* Local ATM
Segmentation and Reassembly

(SAR) Chip

Rick Harris

SPG 80960 Applications Engineer

Intel Corporation
Semiconductor Products Group

Mail Stop CH6-311
5000 W. Chandler Blvd.
Chandler, Arizona 85226

September, 21, 1995

A AP-726

Order Number: 272779-001

APPLICATION
NOTE

Interfacing the
i960® Jx Microprocessor to the

NEC µPD98401* Local ATM
Segmentation and Reassembly

(SAR) Chip

Rick Harris

SPG 80960 Applications Engineer

Intel Corporation
Semiconductor Products Group

Mail Stop CH6-311
5000 W. Chandler Blvd.
Chandler, Arizona 85226

September, 21, 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

A AP-726

iii

1.0 INTRODUCTION... 1
1.1 Design Goals... 1

1.2 Overview.. 1

1.3 Page Mode DRAM SIMM .. 2
1.4 DRAM Refresh .. 2

1.5 Burst Capabilities for a 32-bit Bus ... 2

1.6 Bank Interleaving... 2
1.7 i960 Jx Processor Address Mapping... 3

2.0 CIRCUIT DESCRIPTION.. 3
2.1 Clock Generation... 3
2.2 System Address Latches... 3

2.3 DRAM Controller ... 5
2.3.1 Control Logic .. 5
2.3.2 Address Flow Logic ... 5
2.3.3 Data Flow Logic ... 6
2.3.4 State Machines and Signals .. 6

2.3.4.1 DRAM Control State Machine .. 6
2.3.4.2 SELDRAM Signal ... 6
2.3.4.3 REFPEND Signal ... 6
2.3.4.4 MEMPEND Signal .. 8
2.3.4.5 MUX Signal ... 8
2.3.4.6 CASEN Signal .. 9
2.3.4.7 INCBANK and BANKSEL Signals .. 9
2.3.4.8 CASA[3:0] and CASB[3:0] Signals ... 9
2.3.4.9 MA0B and MA0A Signals ... 9
2.3.4.10 RDYEN Signal .. 9
2.3.4.11 READY Signal .. 9
2.3.4.12 DWE Signal .. 9

2.4 SAR slave controller.. 10
2.4.1 Control Logic .. 10
2.4.2 Address Flow Logic ... 10
2.4.3 Data Flow Logic ... 10
2.4.4 State Machine and Signals .. 10

2.4.4.1 SELC Signal ... 11
2.4.4.2 SELSQ0 Signal ... 11
2.4.4.3 SAR Access State Machine .. 11
2.4.4.4 READYn Signal .. 11
2.4.4.5 READYpinn Signal ... 11
2.4.4.6 RDYENn Signal .. 11
2.4.4.7 SARSELn Signal .. 11
2.4.4.8 SARASELn Signal .. 11

AP-726 A

iv

2.4.4.9 SARSWRn Signal ... 11
2.4.4.10 AOEABn Signal .. 11
2.4.4.11 DOEABn Signal .. 11
2.4.4.12 DOEBAn Signal .. 12

3.0 DRAM CONTROLLER ACCESS FLOW .. 12
3.1 Single Word Read and Write Access .. 12

3.2 Quad Word Read Access.. 14
3.3 Quad Word Write Access .. 14

3.4 CAS before RAS Refresh.. 17

4.0 SAR SLAVE ACCESS FLOW... 17
4.1 Single Word Read and Write Access .. 17

5.0 CONCLUSION.. 20

6.0 RELATED INFORMATION ... 20

APPENDIX A
PLDshell FILES

APPENDIX B
PLD EQUATIONS

INDEX

A AP-726

v

FIGURES
Figure 1. Quad-Word Write Request with 2,1,1,1 Wait State Profile...................................... 2

Figure 2. Two-Way Interleaving ... 3

Figure 3. 80960Jx Interface Memory Map.. 3
Figure 4. i960®Jx Processor to DRAM / NEC µPD98401 SAR Bus Interface 4

Figure 5. System Address Latches .. 5

Figure 6. DRAM Address Flow Logic ... 5
Figure 7. DRAM Control State Machine ... 7

Figure 8. Simplified DRAM State Machine... 8

Figure 9. SAR Address and Data Buffers... 10
Figure 10. 80960Jx to SAR Access State Machine.. 11

Figure 11. 80960Jx to DRAM 1 Wait State Single Word Read and Write Timing Diagram ... 13

Figure 12. 80960Jx to DRAM 1,0,0,0 Quad Word Read Timing .. 15
Figure 13. 80960Jx to DRAM 1,1,1,1 Quad Word Write Timing Diagram.............................. 16

Figure 14. CAS-Before-RAS Refresh Cycle... 17

Figure 15. 80960Jx to µPD98401 Single Word Read and Write Timing Diagram.................. 19

TABLES
Table 1. Related Information ... 20
Table A-1. DRAM Controller EPX780 PLDshell File... 1

Table A-2. DRAM Controller PAL20V8 PLDshell File... 13
Table B-1. SAR Controller MACH210, MACHXL File ... 1

A AP-726

1

1.0 INTRODUCTION

This application note describes the interface between Intel’s
i960® JA/JF/JD microprocessors (referred to herein as the
“i960 Jx processor”) and NEC’s µPD98401® Local ATM
Segmentation And Reassembly (SAR) Chip, with 2 Mbytes
of DRAM available to the i960 Jx processor. The interface
provides for single and burst reads/writes to the DRAM and
single reads and writes to the SAR chip, using the i960 Jx
processor configured with a 32-bit bus. The interface is
controlled by a DRAM controller and a SAR controller.

The DRAM interface features include:

• 32 bit wide bus, allowing 16 and 8 bit accesses

• Two-way interleaving

• 72 pin, 60 ns, 256 Kbyte x 32 bit Fast Page Mode
DRAM SIMMs

• 1-0-0-0 wait state burst reads at 25 MHz

• 1-1-1-1 wait state burst writes at 25 MHz

The µPD98401 SAR chip interface features three wait state
32 bit reads and writes.

This document discusses DRAM controller theory with
interleaving, and a basic slave read/write controller to the
SAR. It also describes the supporting state machines,
timing diagrams, and PLD equations. The µPD98401 can
operate as a master device, which allows it access to
DRAM. However, when the SAR is a master device, it can
only request and obtain the i960 Jx processor bus, through
the use of the processor’s bus arbitration facilities. In this
case, upon receiving HOLD from the SAR controller, the
processor asserts HOLDA and three-states its signals,
which grants bus control to the SAR.

1.1 Design Goals

The goal of this document is to provide a design aid for
interfacing an i960 Jx processor to an NEC µPD98401
ATM SAR Chip. The application note defines an interface
that was developed and tested on a i960 Jx processor-
compliant platform, and can be plugged into a PCI
expansion slot.

The platform used is the Intel Cyclone i960® Micropro-
cessor PCI-SDK Evaluation Platform (referred to herein as
the “PCI-SDK”), with an ATM Squall module and a i960 Jx
processor CPU module.

Benefits of using the PCI-SDK include:

• The PCI-SDK plugs directly into a DOS-based
system’s PCI slot.

• While the user is working on their hardware design,
code (software) for the design can be written concur-
rently, which saves development time.

• The design can be implemented on the PCI-SDK
through a Squall module, which enhances testability.

1.2 Overview

The PCI-SDK consists of a base board with connectors
which accept “modules” (daughter boards) for a CPU
module and a Squall module. Many CPU and Squall
modules are available; refer to Section 6.0, RELATED
INFORMATION (pg. 6-20) for access to additional product
information.

• The CPU modules are interchangeable daughter boards
for Intel’s family of i960 processors.

• The Squall modules are interchangeable daughter
boards. Users can use these to design custom applica-
tions, or use one of PCI-SDK’s existing modules, such
as an Ethernet Squall II* module.

The PCI-SDK base board features include:

• Two SIMM sockets which support 2, 8, or 32 Mbytes
of DRAM

• One Flash ROM socket

• Three 16-bit counter/timers or one 32-bit and one 16-
bit counter

• DIP switch-selectable CPU clock frequency, for
operation from 16 MHz to 50 MHz

• DRAM controller which automatically optimizes wait
states to CPU frequency and memory speed

• One RS-232 serial port

• One Centronics compatible parallel download port

• PCI Bus Interface

The configuration used for development of this application
note is:

CPU Module: i960 Jx processor

CPU Bus
Frequency: 25 MHz

DRAM: 2 banks of SIMMs: 60 ns, 2 Mbyte

Squall Module: NEC µPD98401® - based ATM
module

AP-726 A

2

The chosen configuration simplifies the state machine for
the DRAM controller (compare Figures 7 and 8).

1.3 Page Mode DRAM SIMM

Page mode DRAM allows faster memory access by keeping
the same row address while selecting random column
addresses within that row. A new column address is selected
by deasserting CAS while keeping RAS active, then
asserting CAS with the new column address valid to the
DRAM. Page mode operation works very well with burst
buses, such as the i960 Jx processor bus, in which a single
address cycle can be followed by up to four data cycles.

The DRAM SIMM has four CAS lines, one for each of
eight (nine) bits in a 32-bit (36-bit) SIMM module. The four
CAS lines control the writing to individual bytes within
each SIMM.

1.4 DRAM Refresh

To maintain their data, the DRAM must be refreshed every
16 µs. This is achieved by a 6-bit refresh counter embedded
in the DRAM controller, driven by a 4 MHz clock. The
4 MHz clock is created by dividing a 16 MHz clock in half,
twice. This corresponds to a refresh every 64 cycles of the
4 MHz clock, or approximately 400 cycles of the 25 MHz
clock. The type refresh used is CAS before RAS (CAS
signal asserted before the RAS signal) for specified lengths
of time. Both banks of DRAM are refreshed at the same
time.

1.5 Burst Capabilities for a 32-bit Bus

The i960 Jx processor can access up to four data words per
request. A request starts when the processor asserts ADS in
the address cycle and ends when the processor asserts
BLAST in the last data cycle. Figure 1 shows ADS and
BLAST timings for a quad-word write request.

Figure 1. Quad-Word Write Request with 2,1,1,1
Wait State Profile

The processor's burst capabilities on a 32-bit bus include:

• Quad-word and triple-word requests start on quad-word
boundaries (A3 = 0, A2 = 0).

• Double-word requests start on double-word boundaries
(A3 = X, A2 = 0).

• Single-word requests can start on any word boundary
(A3 = X, A2 = X).

• Any request starting on an odd word boundary never
bursts (A3 = X, A2 = 1).

1.6 Bank Interleaving

Bank interleaving allows the second, third and fourth
accesses of a burst read to occur in zero wait states. The first
data access must still “pay” the entire access penalty. Inter-
leaving significantly improves memory system performance
by overlapping accesses to consecutive addresses. Two-way
interleaving is accomplished by dividing the memory into
two 32-bit banks (also referred to as “leaves”):

• one bank for even word addresses (A2=0)

• one bank for odd word addresses (A2=1)

The two banks are read in parallel and the data from the two
banks is multiplexed into the processor’s data bus. Multi-
plexing is implemented via CASAx and CASBx. CAS
signals, in addition to being the Column Address Strobes,
are also output enable signals for the DRAM.

Figure 2 shows DRAM with a 2-1-1-1 quad word burst read
wait state profile interleaved to generate a 2-0-0-0 wait state
system.

CLK1X

ADS

BLAST

Ta Tw Tw Td1 Tw Td2 Td3Tw Tw TrTd4

A AP-726

3

Figure 2. Two-Way Interleaving

1.7 i960 Jx Processor Address Mapping

Figure 3 portrays the memory map for the i960 Jx processor
to SAR interface. The DRAM beginning location is set at
A0000000H and the SAR beginning location is set at
C0000000H. When configuring the processor’s memory
regions using the PMCON registers, make sure regions
PMCON10_11 and PMCON12_13 are set for 32 bit wide
bus accesses.

Figure 3. 80960Jx Interface Memory Map

CLK

Even

Odd

CPU

A

A

A

W

W

W

W

W W D

W

D W

D

D

D

W

D D

D

A = Address W = Wait D = Data

Bank

Bank

DRAM

SAR

F0000000H

C0000000H

A0000000H

00000000H

i960® Jx Processor
BOOT ROM

2.0 CIRCUIT DESCRIPTION

Figure 4 shows a block diagram of the i960 Jx processor,
interfaced to DRAM and the SAR. It can be separated into
four logical blocks: clock generation, address latches,
DRAM controller, and SAR slave controller. These blocks
are described in the following subsections.

2.1 Clock Generation

The 25 MHz CPU clock, based on the FREQ[2:0]
frequency switches, is generated from an AV9155-01. The
AV9155-01 feeds the 25 MHz clock into a CY7BB991-7
with an internal PLL. Also, the AV9155-01 directly
generates the 16 MHz clock that is later divided down to 4
MHz, used for DRAM refresh generation.

Clock distribution is performed by the CY7BB991-7.
Seperate output clocks from this device are distributed back
to the CPU module, Squall II Module, and on-board logic.
This device guarantees a maximum skew of ±250 ps
between outputs, and ±500 ps between the inputs and
outputs. Therefore, all clocks on the board are within ±1 ns,
making the design work very straightforward. All clock
signals are terminated with 22 ohm series resistors.

2.2 System Address Latches

The i960 Jx processor has a multiplexed bus; therefore,
address latches are needed to demultiplex the bus for use in
accessing the DRAM. The latches, shown in Figure 5,
capture the upper 28 address bits of the bus during the
processor’s address cycle, then holds them until the access
is over. ALE provides the signal for latching, and HOLDA
controls the output enables of the latches. HOLDA isolates
the address latches from the system bus when the SAR uses
the bus as a master device. As a master device, the SAR
requests the bus with HOLD; the processor grants the bus
with HOLDA. When HOLDA is high, the outputs to the
latches are three-stated.

AP-726 A

4

Figure 4. i960® Jx Processor to DRAM / NEC µPD98401 SAR Bus Interface

NEC µPD9840 1®
SAR Chip

DRAM SIMM
BANK B

DRAM SIMM
BANK A

Framer,
Transmission
ETC.

74ABT16601

PAL20V8

EPX780

MACH210

DIRECTION
CONTROL

CY7BB991-7

AV9155

i960® Jx Processor

RAS2

RAS0
DWE

CASEN

BANKSEL

SELSQ0
RDYEN
READY

A[31:28]
MA0A

MA0B

MUX

A[3:2]

CONTROL

74ABT241

74ABT573

CASA[3:0]

CASB[3:0]

BE[3:0]

BLAST

CASEN
BANKSEL

A[31:2]

A[31:0]

B[31:0]

AOEABn

A[10:0]
RAS2

CAS[3:0]

RAS0

DWE

D[31:0]

RAS2

RAS0

DWE

CAS[3:0]

A[10:0]

D[31:0]

MMA[10:1]
LA[31:4]

20E/10E

LA31:4

LE

OC

CLK1
CLK2

AD[31:0]

OE

SEL
ASEL
SR/W

SELSQn

RDYEN

READYPINN
SARSELn

SARASEL

SARSWRn

CLK

CONTROL

CLK

25 MHz

ALE

CLKIN

BE[3:0]
BLAST

AD[31:0]

A[3:2]

CONTROL

25 MHz

1XCPU

SCLK22

SCLK21

SCLK20
16 MHz

FREQ2

FREQ1

FREQ0

LATCH

MUX

READY

REF

Transceiver

CLK

ATTN

GNT

RDYRCV

ATTN
GNT

REF

HOLDA
HOLD

HOLDA

AD[31:0]

HOLD

CLK

DOEABn
DOEBAn

25 MHz

A AP-726

5

Figure 5. System Address Latches

2.3 DRAM Controller

The DRAM controller can be separated into four sections:
control logic, address flow logic, data flow logic, and
DRAM controller state machines and signals. See Figure 4.

2.3.1 Control Logic

The control logic is implemented using an EPX780 FPGA
and a 20V8 PAL. The FPGA, the main component of the
DRAM controller, supplies:

HOLDA

LA[31:4]
D

AD[31:4]

Address Latches

Q

LE

OC

ALE

4 x 74ABT573

• RAS lines and read/write signals directly to the DRAM

• address bits to each DRAM bank that increments the
column address

• logic to control the address path to the DRAM

The 20V8 PAL, with direction from the FPGA, provides all
the necessary logic to generate the CAS signals for the
DRAM.

2.3.2 Address Flow Logic

Figure 6 shows the DRAM address flow logic. The address
flow logic to the DRAM is controlled by three 74ABT241
octal buffers, configured as a 12-input, two-line to one-line
multiplexer. The MUX select signal, which controls the
multiplexing function, is supplied by the FPGA. The multi-
plexers divide the latched address bus into two addresses:
the row address consisting of the latched address’ higher
order bits, and the column address consisting of the latched
address’ lower order bits.

Both row and column addresses are transferred to DRAM
via the MMA[10:1] address bus. MA0a connects to A0 of
the bank A DRAM, MA0b connects to A0 of the bank B
DRAM.

Figure 6. DRAM Address Flow Logic

LA[31:28, 3:2]

MUX

LA[23, 21, 19:12,20]

1A

2A

1OE/2OE

MA0b

EPX 780

MMA [10:1]

LA[24, 22, 11:4]

MA0b

MA0a

Column Address

Row Address

MA0a

LA[24:4]

AP-726 A

6

2.3.3 Data Flow Logic

As indicated in Figure 4, the data path is fairly simple; it’s
connected directly to the DRAM from the processor,
requiring no transceivers or multiplexers to control data
flow between the banks. Data flow is controlled by the CAS
lines. When one bank is selected (CAS lines asserted) the
other bank is de-selected (CAS lines deasserted). Data is
output by the DRAM during a read or accepted by the
DRAM during a write by the assertion CAS.

2.3.4 State Machines and Signals

Figure 7 shows the DRAM control state machine for the
PCI-SDK; Figure 8 shows a simplified version. The
simplified version is the result of choosing the configuration
discussed in Section 1.2, Overview (pg. 1-1). For this
configuration, the CPU module Frequency Switches are set
to 25 MHz (Positions 1-4 should be OFF, OFF, ON, ON.
This maps to a logic 1,1,0,0. Refer to Cyclone documen-
tation for definitions).

The PD3 pin output from the DRAM SIMM, when sampled
high, indicates 60 ns DRAM. With these frequency and
speed settings, the signal PF0 is set high and all the other PF
signals are reset low. The PCI-SDK does not use the
EXTEND signal; it is tied high.

The state machine has two major paths: a refresh path and
an access path. The refresh path is taken when the refresh
counter indicates a refresh is needed. The access path is
taken when the processor initiates an access to the address
range dedicated to the DRAM.

When a conflict occurs between an access and a refresh, the
refresh has priority and proceeds; a memory pending bit is
set. When refresh completes, the memory pending bit
causes the access to complete. The same process occurs
when an access is in progress and a request for a refresh is
received. A refresh pending bit is set which causes the
refresh to complete when the access completes.

The DRAM state machine is developed with Intel’s
PLDshell Plus® . Appendix A, PLDshell FILES contains the
code which implement the DRAM controller.

The state machine transitions described here use the
following PLDshell conventions for logic operators. For all
the following, refer to Figure 8.

2.3.4.1 DRAM Control State Machine

The DRAM control state machine, the heart of DRAM
controller, resides in the FPGA. It is controlled with inputs
from the processor and equations from within the controller.
Its outputs are the RAS and REF signals, both are active
low. The RAS signals directly drive the RAS inputs of both
banks and are used to latch the row addresses into the
DRAM. Two identical RAS signals distribute the load
between the two banks. REF provides a bit to the
REFPEND state machine, indicating a refresh has begun.
This resets the REFPEND signal, so it can be set the next
time a refresh is required.

The other output functions of the DRAM controller depend
upon which state the DRAM control state machine is in.
The following are the signals that make up the DRAM
controller.

2.3.4.2 SELDRAM Signal

The active high SELDRAM signal is decoded from the
latched address bits LA[31:28]. When these address bits
equal A16 during the processor’s address cycle, SELDRAM
is asserted indicating an access to the DRAM memory
region.

2.3.4.3 REFPEND Signal

The active low REFPEND signal is asserted when a refresh
is requested, either during the idle state or a DRAM access.
Its main function is to keep track of when a refresh is
required, so the controller will not skip the refresh if it is
requested during an access. It is also the bit that causes the
refresh to complete first, when in conflict with an access.
Since the refresh counter runs at 4 MHz, and the REFPEND
signal runs on the 25 MHz, the counter output and the
REFPEND signal must be synchronized. The signal used
for synchronization is the REFSYNC (see Table A-1 in
Appendix A) signal embedded in the controller.

/ Represents active-low in pin declaration;
Boolean NOT elsewhere in file

* Represents Boolean AND

+ Represents Boolean OR

A AP-726

7

Figure 7. DRAM Control State Machine

Assert/REF

Assert/REF

Assert/REF/RAS

Assert/REF/RAS

Assert/REF/RAS

Precharge

Precharge

Precharge/Idle

Assert/RAS*
Assert/CASEN*
If / W_R*BLAST

assert INCBANK*

Assert/RAS*
Assert/CASEN*

assert INCBANK*

Assert/RAS*
If /W_R assert CASEN*

assert INCBANK*

s6

s7

s8

s9

s10

s2

s4

P

Q

R

S

M

N

B

D

E

G

L

K

J

IH

s5

s0

s3

F

C

O

s5a

A = ADS
B = /ADS *Seldram *(PF1 + PF2 + PF3)
C = /ADS *Seldram* PF0

D = UNCONDITIONAL
E = /W_R * (PF2 + PF3)
F = W_R * (PF2 + PF3)

G = UNCONDITIONAL
H = BLAST*/W_R *PF0

J = /BLAST*PF0 + /MEMPEND * PFO

 +PF1
 +PF0

 + BLAST*/W_R *PF1
 + /EXTEND */W_R

K = /BLAST*PF3*/W_R
+ /BLAST *PF1
+ /BLAST *PF2

L = /BLAST *PF3*W_R
M = UNCONDITIONAL
N = UNCONDITIONAL
O = /REFPEND

I = BLAST* /W_R *PF3
 + BLAST*/W_R*PF2
 + BLAST*W_R

P = UNCONDITIONAL
Q = UNCONDITIONAL
R = UNCONDITIONAL
S = UNCONDITIONAL
T = UNCONDITIONAL

A

T

s1

Assert/RAS*
If BLAST assert CASEN

If BLAST assert INCBANK

AP-726 A

8

Figure 8. Simplified DRAM State Machine

s0

s2

s3

s4

s10

s9

s8

s7

s6

C

B

A = ADS

B = /ADS*SELDRAM

C = UNCONDITONAL

D = UNCONDITIONAL

E = BLAST*/W_R *PF0

F = BLAST*W_R

G = /BLAST*PFO

H = /REFPEND

I = UNCONDITIONAL

J = UNCONDITIONAL

K = UNCONDITIONAL

L = UNCONDITIONAL

M = UNCONDITIONAL

L

K

J

I

G

D

A

M

F

E

+ /MEMPEND

HAssert /REF

Assert /REF

Assert /REF * /RAS

Assert /REF * /RAS

Assert /REF * /RAS

Precharge/Idle

Assert /RAS*

Assert /CASEN*

assert INCBANK*

Assert /RAS*
If /W_R assert CASEN*

assert INCBANK*

Assert/RAS*

If BLAST assert CASEN

If BLAST assert INCBANK

s5

Precharge

N

N = UNCONDITIONAL

2.3.4.4 MEMPEND Signal

The active low MEMPEND signal function is similar to the
REFPEND signal, except it keeps track of an access when
the controller is performing a refresh. It is asserted when an
access is requested either during the idle state or a refresh.

2.3.4.5 MUX Signal

The MUX signal, clocked by the falling edge of the 25 MHz
clock, controls whether a row or column address is input to
DRAM. It is actually a RAS signal delayed by a half clock
cycle. The delay allows enough row address hold time
(tRAH) which DRAM requires. When MUX is high, the row
address to DRAM is valid; when MUX is low, the column
address is valid.

A AP-726

9

2.3.4.6 CASEN Signal

The active low CASEN signal provides an output enable
signal to the CAS state machines, located in the PAL20V8.
Its function is determined by which state the DRAM
Control state machine is in:

• s0: asserted during an address cycle in which one or
more are true:

— access is to the DRAM memory region

— a refresh is not pending

— an access is pending

• s2 and s3: CASEN is asserted when the access is a
read. (Remember that PF0 is asserted, indicating the
system is operating at 25 MHz with 60 ns DRAM.)

• s4: asserted during a burst read or write access
EXCEPT for the last access of the burst.

2.3.4.7 INCBANK and BANKSEL Signals

The active low BANKSEL signal determines which bank
will have its CAS lines driven:

• When low, selects bank A

• When high, selects bank B

The active low INCBANK signal, in conjunction with the
BANKSEL signal, creates wait states by controlling the
CAS lines. When asserted low at the end of a clock cycle,
the CAS lines are asserted, thereby selecting each bank.
The INCBANK signal operates based upon which state the
DRAM Control state machine is in.

• s0: asserted during an address cycle, in which one or
more are true:

— access is to the DRAM memory region

— a refresh is not pending

— an access is pending

• s2: asserted if the access is a burst read, EXCEPT for
the last access of the burst.

• s4: asserted during a burst read or write access,
EXCEPT for the last access of the burst.

2.3.4.8 CASA[3:0] and CASB[3:0] Signals

The active low CASA and CASB signals connect to the
CAS pins of DRAM banks A and B respectively. They are
enabled by the CASEN and BANKSEL signals. With
BANKSEL low bank A is selected, with BANKSEL high

bank B is selected. These signals serve two purposes: to
latch the column addresses into the DRAM, and to provide
chip selects for each bank. CASA3 and CASB3 enables the
most significant byte, and CASA0 and CASB0 enable least
significant byte. The byte enables, BE[3:0] control which
byte(s) to be transferred within each bank, allowing 8 and
16 bit wide data transfers. BE[3:0] controls bytes 3-0
respectively.

2.3.4.9 MA0B and MA0A Signals

MA0B and MA0A are the least significant column address
bits that increment the address to DRAM banks B and A
respectively, during a burst access. They are decoded from
address bits A3 and A2 of the processor’s bus, which
increment during a burst.

2.3.4.10 RDYEN Signal

The active low RDYEN signal enables the three-state buffer
that controls the READY signal. Since the system has two
controllers on it, i.e. a DRAM controller and a SAR
controller, the READY signal of the DRAM controller has
to be three-stated when the SAR controller drives its
READY signal. This prevents contention between the two
ready signals. The RDYEN signal is asserted based upon
which state the DRAM control state machine is in. It’s
asserted during states s0, s2, s3 and s4, regardless if
READY is asserted or not.

2.3.4.11 READY Signal

The active low READY signal is connected to the
RDYRCV pin of the processor. It indicates to the processor
that data can be transferred, and that the address can be
incremented if the access is a burst. It is asserted based
upon which state the DRAM control state machine is in. It
is asserted unconditionally in states s2 and s3. It is asserted
in s4 if the access is a burst read, provided it’s not the last
access of the burst.

2.3.4.12 DWE Signal

The active low DWE signal indicates to the DRAM that the
access is a write, provided the controller is not in refresh.
The write enable signal of the DRAM's must be held high
during refresh.

AP-726 A

10

2.4 SAR slave controller

The SAR slave controller controls access to the SAR in
slave mode. Reading and writing the SAR in slave mode
accesses 32 bit registers that initialize and control the SAR.
Referring to Figure 4, the SAR slave controller is discussed
in 4 sections: control logic, address flow logic, data flow
logic, and the SAR slave controller state machines and
signals.

2.4.1 Control Logic

The control logic is implemented using the EPX780 FPGA
and a MACH210 PLD. The FPGA decodes the SAR’s
address space, and provides the select signal to the SAR's
access state machine. The MACH210 PLD provides all the
logic that makes up the SAR controller, which controls the
sequencing of the SAR itself, and the signals that control
the SAR's address and data transceivers.

2.4.2 Address Flow Logic

Figure 9 shows the SAR Address Buffers. The address for
the SAR is controlled by two 74ABT16601 universal bus
transceivers. The AOEABn control signal, output from the
SAR controller, enables the latched address bits onto the
multiplexed AD bus of the SAR. When inactive, the outputs
of the transceivers are three-stated, allowing data to be
driven on the data bus without being in contention with the
address bus.

2.4.3 Data Flow Logic

Figure 9 shows the SAR Data Buffers. The data for the SAR
is controlled by two 74ABT16601 universal bus trans-
ceivers. The DOEABn control signal, output from the SAR
controller, enables the data onto the multiplexed AD bus of
the SAR, when the SAR is being written to. The DOEBAn
control signal, output from the SAR controller, enables the
data onto the AD bus of the processor, when the SAR is
being read. When either control signal is inactive, both sides
A and B of the data buffers are three-stated, allowing the
bus to be used for other functions.

Figure 9. SAR Address and Data Buffers

2.4.4 State Machine and Signals

The SAR slave controller consists of the SAR access state
machine, and several equations that implement the control
signals. The SAR controller resides in the MACH210 PLD.

The SAR controller is written in MACHXL. Appendix B,
PLD EQUATIONS contain the code which implement the
SAR controller. The state machine transitions described
here follow the MACHXL conventions for logic operators.

/ Represents Boolean NOT

* Represents Boolean AND

+ Represents Boolean OR

{} Represents Substitution (OUT1=A*B*C,
OUT2=A*B*C*D or OUT2={OUT1}*D)

AOEABn

AD[31:0]
A

LEAB

OEAB

CKAB

LA[31:2]

CKEAB

LEBA

OEBA

CKBA
CKEBA

+5V
+5V

Address Buffers

DOEABn

AD[31:0]

+5V +5V

2 x 74ABT16601

DOEBAn

B

Data Buffers

2 x 74ABT16601

A

LEAB

OEAB

CKEAB

LEBA

OEBA

CKEBA

BFROM/TO

80960Jx

FROM
SAR CONTROLLER

FROM
SAR CONTROLLER

TO SARFROM
80960Jx

CKAB CKBA

FROM
SAR CONTROLLER

A AP-726

11

2.4.4.1 SELC Signal

The active high SELC signal is decoded from the latched
address bits LA[31:28]. When these address bits equal C16

during the processor’s address cycle, SELC is asserted
indicating an access to the SAR memory region.

2.4.4.2 SELSQ0 Signal

SELSQ0 is the select signal (standing for Select Squall
module, remembering that the SAR is on the squall
module) which initiates the SAR Access State Machine
when SELC is asserted.

2.4.4.3 SAR Access State Machine

Shown in Figure 10 is the SAR access state machine. It is
initiated when the SELSQ0 select signal from the FPGA is
asserted, due to a request issued to the SAR’s memory
region.

The state of the control signals implemented in the
controller, depend upon which state the state machine is in.
The following are the signals that make up the SAR
controller.

Figure 10. 80960Jx to SAR Access State Machine

2.4.4.4 READYn Signal

The READYn signal is asserted on the rising edge of the
clock, at the end of state sB of the SAR access state
machine. At the end of state sC, READYn signals to the
processor the termination of a data transfer.

sC

sB

sA

sWAIT

A

B

CD

E

A = SELSQn

B = /SELSQn

C = UNCONDITIONAL

D = UNCONDITIONAL

E = UNCONDITIONAL

2.4.4.5 READYpinn Signal

The READYpinn signal is connected to the RDYRCV pin
of the processor. It can be three-stated and is driven by
READYn. It must be three-stated when an access other than
a SAR access occurs. The READYpinn signal is paired
with the READYn signal, indicated by the brackets around
READYn on the right side of the READYpinn equation.
(see the MACHXL PLD file of Appendix B). Pairing
connects a node signal like READYn, to an output signal
like READYpinn.

2.4.4.6 RDYENn Signal

RDYENn controls the three-state buffer that three-states the
READYpinn signal. It is asserted when SELSQ0 is
asserted.

2.4.4.7 SARSELn Signal

The SARSELn signal selects the SAR, enabling it to be
accessed in slave mode.

2.4.4.8 SARASELn Signal

The SARASELn signal indicates to the SAR that an
address is on its AD bus. On the first rising clock edge after
SARASELn goes active, the SAR latches the address onto
its AD bus for use during an access.

2.4.4.9 SARSWRn Signal

The SARSWRn signal determines the direction of the slave
access. 1=read, 0=write.

2.4.4.10 AOEABn Signal

The AOEABn signal enables the B output of the SAR's
address buffers, directing the flow of the latched address
from the PCI-SDK, onto the AD bus of the SAR.

2.4.4.11 DOEABn Signal

The DOEABn signal enables the flow of data through the
data buffers from A to B, to the AD bus of the SAR during
a write.

AP-726 A

12

2.4.4.12 DOEBAn Signal

The DOEBAn signal enables the flow of data through the
data buffers from B to A, to the AD bus of the processor
during a read.

3.0 DRAM CONTROLLER ACCESS FLOW

This section explains how the DRAM controller is
sequenced while reading, writing and refreshing the
DRAM. Examples discussed are:

• single word read access

• quad word read access

• single word write access

• quad word write access

• refresh

For the following accesses, refer to Figure 8. All accesses to
the DRAM are with the i960 Jx processor configured with a
32 bit bus.

3.1 Single Word Read and Write Access

Figure 11 shows a single word read timing diagram. In state
s0 of the read when an access has begun, the address bits
from the processor are latched, and held latched throughout
the access. The MUX signal stays deasserted, selecting the
row address via the multiplexer. On the clock edge at the
end of state s0, the DRAM control state machine transitions
to state s2. In the beginning of state s2, the BLAST signal,
MEMPEND bit, INCBANK signal, and all the RAS lines
are asserted. BLAST asserting at this time indicates a single
access, MEMPEND indicates an access is pending,
INCBANK indicates the next state is a data state, while the
RAS lines load the row address into all the DRAM's. In the
middle of s2 the MUX signal is asserted on the falling edge
of CLK1, selecting the column address.

At the end of state s2, the state machine unconditionally
transitions to state s4. In s4, READY is asserted and the
CAS lines for bank A are asserted, based on the byte
enables. Asserting of the CAS lines enables data from the

DRAM's onto the AD bus, making state s4 the data state
(Td0). On the clock edge at the end of state s4, data is
captured by the processor due to sampling READY
asserted. It is at this point that data put on the AD bus from
the DRAM, must meet the set-up (tis1) and hold (tih1) times
of the processor. At the time READY is sampled low,
BLAST is sampled low, causing the state machine to
transition to state s0, completing the access and deasserting
the MEMPEND bit.

Figure 11 shows a single word write timing diagram. This
access sequences in the same manner as the single word
read access did, up until the first data state.

In state s0 of the write when an access has begun, the
address bits from the processor are latched, and held latched
throughout the access. The MUX signal stays deasserted,
selecting the row address via the multiplexer. On the clock
edge at the end of state s0, the DRAM control state machine
transitions to state s2, due to the processor access. In the
beginning of state s2, the BLAST signal, MEMPEND bit,
INCBANK signal, and all the RAS lines are asserted.
BLAST asserting at this time indicates a single access,
MEMPEND indicates an access is pending, INCBANK
indicates the next state is a data state, while the RAS lines
load the row address into all the DRAM's. Also during state
s2, data is driven on the AD bus, where it waits to be written
into the DRAM's. In the middle of s2 the MUX signal is
asserted on the falling edge of CLK1, selecting the column
address.

At the end of state s2, the state machine unconditionally
transitions to state s4. In s4, READY is asserted and the
CAS lines for bank A are asserted, based on the byte
enables. Asserting the CAS lines writes data into the
DRAM's from the AD bus, making state s4 the data state
(Td0). It is at this point that data on the AD bus must meet
the set-up (tds) and hold (tdh) times of the DRAM's. In this
design, tdh is most critical, and is met by holding the data on
the AD bus until the end of state s4. On the clock edge at the
end of state s4, READY and BLAST are sampled asserted,
causing the state machine to transition back to state s0,
completing the access and deasserting the MEMPEND bit.

A AP-726

13

Figure 11. 80960Jx to DRAM 1 Wait State Single Word Read and Write Timing Diagram

MEMPEND

RAS[2,0]

CASEN

CASA[3:0]

CASB[3:0]

BANKSEL

INCBANK

BLAST

READY

A[3:2]

MA0[b:a]

W/R

DEN

S2 S4 S0 S0 S2 S4S0 S0

ADS

CLK1

MUX

Tw Tdo Ta Tw TdoTi Ta Ti Ti

S0

ALE

00 00

00 00

AD[31:0]

MMA[10:1] Row Column Row Column

Single Read Single Write

DataAdd DataAdd

LA[31:4] Latched AddressLatched Address

AP-726 A

14

3.2 Quad Word Read Access

Figure 12 shows a quad word read timing diagram. The
quad word read access begins exactly the same way that the
single word read access did, until the clock edge at the end
of state s4. At this point, since a quad word read has 1-0-0-0
wait states, the state machine stays in s4, until a READY
and BLAST are sampled asserted, on the rising clock edge
at the end of state s4. As the state machine spins in s4, the
toggling BANKSEL and the byte enables determine which
CAS signals activate, thereby controlling which leaf of the
DRAM data is transferred from. The toggling of
BANKSEL causes CASA and CASB to activate alternately,
with CASA enabling bank A first. As CASA and CASB
alternate, bits MA0A and MA0B increment, providing two
separate addresses, two for each bank. This is evident by
observing Figure 12, which shows that bit “a” of MA0[b:a]
toggles from 0 in data state Td0 to 1 in data state Td2. This is
also true with bit “b”, during data states Td1 and Td3 .
During these data states the MUX signal stays asserted,
only allowing the CAS address to be changed.

3.3 Quad Word Write Access

Figure 13 shows a quad word write timing diagram. The
quad word write access begins exactly the same way that

the single word write access did, until the clock edge at the
end of state s4. At this point, since a quad word write has 1-
1-1-1 wait states, the state machine alternates between
states s4 and s3, with s4 being the data state (CAS signals
asserted) and s3 being the wait state (CAS signals
deasserted). The signals that determine which states are the
data and wait states of the DRAM control state machine, are
the CASEN and INCBANK signals. If at the end of s4,
CASEN and INCBANK are deasserted, the CAS lines
deassert and the incrementing address bits MA0[b:a] are
incremented, preparing for the next data state. If at the end
of s3 CASEN and INCBANK are asserted, the CAS lines
are asserted and address bits MA0[b:a] are held constant
until the end of the data state. The incrementing of bits
MA0A and MA0B provide two separate addresses, two for
each bank. This is evident by observing Figure 13, which
shows that bit “a” of MA0[b:a] toggles from 0 in data state
Td0 to 1 in data state Td2. This is also true with bit “b”,
during data states Td1 and Td3.

If the READY and BLAST signals are sampled asserted on
the rising clock edge at the end of state s4, the state machine
transitions back to state s0, where the access is complete.
During these data states the MUX signal stays asserted,
only allowing the CAS address to be changed.

A AP-726

15

Figure 12. 80960Jx to DRAM 1,0,0,0 Quad Word Read Timing

AD[31:0]

ALE

RAS2,0

CASEN

CASA[3:0]

CASB[3:0]

BANKSEL

INCBANK

BLAST

READY

A[3:2]

MA[b:a]

MUX

MEMPEND

W/R

DEN

S2 S4 S4 S4 S4 S0S0 S0

ADS

00 01 1011 00

00 01 10 11

ADD DATA DATA DATA DATA

CLK1

MMA[10:1] COLROW COL COLCOL

Tw Td0 TiTd1 Td2 Td3 T iTi Ta Ti

S0 S0

LA[31:4] Latched Address

AP-726 A

16

Figure 13. 80960Jx to DRAM 1,1,1,1 Quad Word Write Timing Diagram

ALE

CASEN

CASA[3:0]

CASB[3:0]

BANKSEL

INCBANK

BLAST

READY

A[3:2]

MA0[b,a]

MUX

MEMPEND

W/R

DEN

S4 S3 S4 S3 S4 S3S0 S2

ADS

S4 S0

CLK1

00 01 10 11

00 01 11 0010

S0

AD[31:0] ADD Data Data Data Data

MMA[10:0] ROW COL COL COLCOL

Td0 Tw Td1 Tw Td2 TwTa Tw Td3 TiTi

RAS[2,0]

Ti

S0

LA[31:4] Latched Address

A AP-726

17

3.4 CAS before RAS Refresh

Figure 14 shows a refresh cycle timing diagram. As soon as
the PCI-SDK powers up, the refresh counter starts counting,
and cannot be stopped by RESET. The counter is a free-
running divide-by-64 counter, running on a 4 MHz clock.
Its output switches high every 64 cycles of the 4 MHz clock,
giving a 16 µs interval for requesting refresh.

On the next 25 MHz clock edge after the output of the
counter switches high, the REFSYNC signal is asserted,
causing the REFCLK and REFCLKD signals to sequence
as shown in Figure 14. When REFCLK is sampled high and
REFCLKD is sampled low on the clock edge, REFPEND is
asserted. When REFPEND is detected low on the next clock
edge, the DRAM control state machine enters state s6

where refresh begins. At the beginning of s6, REF is sserted
and stays asserted through state s10. On the clock edge at
the end of s6, REF indicates to the REFPEND state machine
that the DRAM refresh is going to be satisfied, causing
REFPEND to be deasserted.

The REF signal serves another purpose. It enables the CAS
state machines during refresh, allowing the CAS signals to
be driven. In states s8-s10, the RAS signals are asserted,
giving a CAS before RAS refresh, since the CAS signals
were asserted back in state s6.

After the state machine transitions out of state s10
completing the refresh, it passes through states s5 and s0,
where the required RAS precharge takes place before
another access can begin

.

Figure 14. CAS-Before-RAS Refresh Cycle

REFCLK

REFCLKD

REFPEND

REFC5

REFSYNC

REF

RAS2, RAS0

S7 S8 S9 S10S6 S5 S0

CASb[3:0], CASa[3:0]

CLK1

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0S0

4.0 SAR SLAVE ACCESS FLOW

This section describes how the SAR controller is sequenced
during a single word read and write access.

All accesses to the SAR are with the i960 Jx processor
configured with a 32 bit bus.

4.1 Single Word Read and Write Access

Figure 15 shows the Single Word Read Access Timing
Diagram. The single word access begins with the processor
making a request to the SAR address space. The address is
latched and decoded, asserting the SELSQ0 select signal.
On the first rising clock edge that SELSQ0 is low, the SAR
access state machine initiates and unconditionally transi-

tions from state sA through state sC, back into state sWAIT.
The state machine will stay in sWAIT until SELSQ0 asserts,
indicating another access.

At the end of state sWAIT when the state machine transi-
tions to sA, the SAR controller drives SARSWRn high for a
read, and asserts SARSELn, SARASELn, and AOEABn.
As AOEABn asserts, the address buffers place the address
on the SAR's AD bus, where it is latched into the SAR on
the first rising edge of the clock after SARASELn goes low.
On the following clock edge after the address is latched, the
SAR places the data on its AD lines, which is at the
beginning of state sC, provided that SARSELn is low. At
the beginning of state sC with the data placed on the SAR's
AD bus, READYpinn is asserted and DOEBAn activates,
placing the data onto the processors AD bus, through the

AP-726 A

18

data buffers. At the end of state sC, the processor samples
READY and BLAST asserted, signaling the end of the data
transfer. When READY and BLAST are sampled asserted
during the transition from sC to sWAIT, the SELSQ0 signal
deasserts, keeping the SAR access state machine in state
sWAIT.

Figure 15 shows the Single Word Write Access Timing
Diagram. The single word access begins with the processor
making a request to the SAR address space. The address is
latched and decoded, asserting the SELSQ0 select signal.
On the first rising clock edge that SELSQ0 is low, the SAR
access state machine initiates and unconditionally transi-
tions from state sA through state sC, back into state sWAIT.
The state machine will stay in sWAIT until SELSQ0 asserts,
indicating another access.

At the end of state sWAIT when the state machine transi-
tions to sA, the SAR controller drives SARSWRn low for a

write, and asserts SARSELn, SARASELn, and AOEABn.
As AOEABn asserts, the address buffers place the address
on the SAR's AD bus, where it is latched into the SAR on
the first rising edge of the clock after SARASELn goes low.
On the same clock edge that the address is latched, the
DOEABn signal is asserted, enabling data onto the SAR's
AD bus, through the data buffers. The SAR then completes
the access by latching the data present on its AD bus on the
leading edge of the clock, just before SARSELn goes high.
The clock edge in this case is at the end of state sB.

In the beginning of state sC after the access has completed,
the controller asserts READYpinn and deasserts DOEABn,
removing the data from the SAR’s AD bus. At the end of
state sC, the processor samples READY and BLAST
asserted, signaling the end of the data transfer. When
READY and BLAST are sampled asserted during the
transition from sC to sWAIT, the SELSQ0 signal deasserts,
keeping the SAR access state machine in state sWAIT.

A AP-726

19

Figure 15. 80960Jx to µPD98401 Single Word Read and Write Timing Diagram

ADS

ALE

SELSQn

W/R

BLAST

RDYRCV

AD[31:0]

A[31:4]

A[3:2]

BE[3:0]

AD[31:0](SAR)

SARSWRn

SARSELn

SARASELn

AOEABn

DOEABn

DOEBAn

sA sB sA sB sC sWAIT sWAITsC sWAIT sWAIT sWAITsWAIT sWAIT

ADD DATA

LATCHED ADDRESS

00 00

VALID VALID

ADD DATA DATAADD

CLK1

Tw1 Tw2 Td0 Ti TaTi Ta Tw3 Tw1 Tw2 Td0Tw3 Ti Ti

Single Read Single Write

ADD DATA

LATCHED ADDRESS

AP-726 A

20

5.0 CONCLUSION

This application note discusses how to interface between an Intel i960 Jx processor and an NEC µPD98401 Local ATM
SAR Chip. The platform used was a Cyclone Microsystems PCI-SDK evaluation platform, with a i960 Jx processor
module and an ATM Squall module. With the Squall module containing the SAR chip. To support the interface between the
i960 Jx processor and the SAR chip are 2, 8, or 32 Mbytes of DRAM, implemented in two 72 pin SIMM sockets. The
schematics were generated in Future Net. The PLD equations for the DRAM controller were written in PLDshell, and the
SAR controller equations were written in MACHXL. The schematics and PLD files are available through Intel America’s
Application Support BBS.

6.0 RELATED INFORMATION

To receive Intel literature, contact:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-879-4683

You can use your PC with modem to download schematics and PLD equations from Intel’s Bulletin Board Service (BBS).

To contact Cyclone Microsystems for additional information about their products:

Table 1. Related Information

Reference # Document Name Order#

1 Intel Solutions960® catalog Intel 270791

2 i960® Jx Microprocessor Users’s Manual Intel 272483

3 80960JA/JF Embedded 32-bit Microprocessor Data Sheet Intel 272504

4 µPD98401 LOCAL ATM SAR CHIP User’s Manual NEC IEU-1384

5 µPD98401 LOCAL ATM SAR CHIP Preliminary Data Sheet NEC ID-3392

6 10 ns FLASHlogic FPGA with SRAM Option Data Sheet Altera

7 PLDshell Plus /PLDasm User’s Guide V4.0 Intel

8 Cyclone i960® Microprocessor User’s Guide Intel 272577

9 MACHXL Software Users’s Guide AMD

10 MACH 1 and 2 Family Data Book AMD

Intel Technical Support Hotline
North America: 800-628-8686
Europe: 44-793-696-000

Intel’s Bulletin Board Service (BBS)
for schematics and PLD equations

North America: 916-356-3600
supports up to 14.4 Kbps (n,8,1,p)

Europe: 44-793-432-955

Cyclone Microsystems
25 Science Park
New Haven CT 06511

Phone: 203-786-5536

FAX: 203-786-5025

e-mail: info@cyclone.com

A AP-726

A-1

APPENDIX A
PLDshell FILES

Table A-1 contains the PLD equations used to build the portion of the DRAM controller, implemented in the Altera
FLASHlogic EPX780 FPGA. Table A-2 contains the PLD equations used to build the portion of the DRAM controller,
implemented in the PAL20V8. The PLD equations were created in PLDshell.

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 1 of 12)

 TITLE Private DRAM Control
 PATTERN D601 - Compiled with PLDShell
 REVISION E
 AUTHOR J. Smith
 COMPANY Cyclone Microsystems Inc.
 DATE 5-10-95

 CHIP DCTRL iFX780_84

 PIN 3 pclk ;INP: system clock
 PIN 45 clk16 ;INP: 16MHz clock
 PIN 51 rst ;INP: reset
 PIN 47 ads ;INP:
 PIN 81 blast ;INP:
 PIN 55 a31 ;INP:
 PIN 56 a30 ;INP:
 PIN 58 a29 ;INP:
 PIN 60 a28 ;INP:
 PIN 62 a19 ;INP:
 PIN 64 a18 ;INP:
 PIN 32 a3 ;INP: address to increment
 PIN 13 a2 ;INP: select bank cas
 PIN 20 a1 ;INP: select bank cas
 PIN 75 w_r ;INP: shared w/r
 PIN 76 holda ;INP:
 PIN 77 sqbr0 ;INP: Squall 0 bus request
 PIN 78 pcihold ;INP: PCI 9060 bus request
 PIN 79 lock ;INP: 960 lock
 PIN 82 extend ;INP: squall module extend dram reads
 PIN 1 pt2 ;INP: i960 processor type Pulled hi on board
 PIN 35 pt1 ;INP: i960 processor type
 PIN 37 pt0 ;INP: i960 processor type
 PIN 8 freq2 ;INP: i960 processor freq
 PIN 7 freq1 ;INP: i960 processor freq
 PIN 28 freq0 ;INP: i960 processor freq
 PIN 74 pd3 ;INP: SIMM PD3 output 70/60ns
 PIN 73 swaprom ;INP:
 PIN 21 pciinstall ;INP: PCI9060 installed = 1
 PIN IO29 readyin ;INP: should be given same pin #
 ; as ready pin - this is for
 ; pin feedback

AP-726 A

A-2

 PIN IO51 muxin ;INP: should be given same pin #
 ; as mux pin. muxalt when operating @ 33Mhz
 PIN 22 irquart ;INP: active high uart interrupt
 PIN 83 breqo ;INP: PCI9060 indicates deadlock

 PIN 84 boff REG ;OUT: BOFF* to Cx processors @ deadlock
 PIN 30 altREADY REG ;OUT: ready during deadlock
 PIN 54 irqddlk REG ;OUT: deadlock interrupt
 PIN 9 ras0 REG ;OUT:
 PIN 5 ras2 REG ;OUT:
 PIN 63 mux REG ;OUT: mux output - freq<33 , active low
 PIN 61 muxalt REG ;OUT: mux output - freq>=33, “ “
 PIN 27 casen REG ;OUT:
 PIN 72 banksel REG ;OUT:
 PIN 70 ma0a REG ;OUT:
 PIN 69 ma0b REG ;OUT:
 PIN 31 dwe REG ;OUT: DRAM write enable
 PIN 12 ready REG ;out: i960 ready
 PIN 6 ref REG ;out:
 PIN 48 hold REG ;OUT: hold processor
 PIN 49 sqbg0 REG ;OUT: bus grant Squall 0
 PIN 50 pcihlda REG ;OUT: bus grant to PLX 9060

 PIN 19 clk4 REG ;OUT: 4MHz clock
 PIN 18 zrd REG ;OUT:
 PIN 16 zwr REG ;OUT:
 PIN 15 ior REG ;OUT:
 PIN 14 iow REG ;OUT:
 PIN 43 selio REG ;
 PIN 42 selcio REG ;OUT:
 PIN 41 seluart REG ;OUT:
 PIN 40 selpp REG ;OUT: select parallel port
 PIN 33 selpmrom REG ;OUT:
 PIN 34 selfrom0 REG ;OUT:
 PIN 36 selfrom1 REG ;OUT:
 PIN 39 selsq0 REG ;OUT: Select Squall Module
 PIN 57 irquartn COMB ;OUT: active low uart interrupt

 NODE IO46 altRDYEN REG ;buried: ready enable during deadlock
 NODE IO28 rdyen REG ;buried: ready enable
 NODE IO49 st0 REG
 NODE IO44 st1 REG
 NODE IO42 st2 REG
 NODE IO31 bss0 REG ;buried: bank select state 0
 NODE IO05 incbank REG ;buried:
 NODE IO07 mempend REG ;buried:
 NODE IO52 sx ;buried: Sx processor is accessing Mem.
 NODE IO50 pfv1 ;buried:
 NODE IO57 pfv0 ;buried:

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 2 of 12)

A AP-726

A-3

 NODE IO54 selmux ;buried:
 NODE IO76 refsync REG ;buried:
 NODE IO06 refclk REG ;buried:
 NODE IO08 refclkd REG ;buried:
 NODE IO02 refpend REG ;buried: refresh pending
 NODE IO67 BOOTRD0 REG ;buried: set at reset, clr w/ ADS
 NODE IO65 BOOTRD1 REG ;buried: set at ADS, clr w/ blast

 NODE IO22 clk8 REG ;buried: 8MHz clock
 NODE IO10 ios0 REG ;buried: io control states
 NODE IO13 ios1 REG ;buried: io control states
 NODE IO16 ios2 REG ;buried: io control states
 NODE IO15 ios3 REG ;buried: io control states
 NODE IO19 ios4 REG ;buried: io control states
 NODE IO32 ciotrc REG ;buried:
 NODE IO34 synctrc REG ;buried:
 NODE IO36 count0 REG ;buried: cio trcv states
 NODE IO38 count1 REG ;buried: cio trcv states
 NODE IO79 refc0 REG ;buried: refresh counter
 NODE IO78 refc1 REG ;buried: refresh counter
 NODE IO74 refc2 REG ;buried: refresh counter
 NODE IO72 refc3 REG ;buried: refresh counter
 NODE IO71 refc4 REG ;buried: refresh counter
 NODE IO70 refc5 REG ;buried: refresh counter
 NODE IO12 t0 REG ;buried: timeout states
 NODE IO14 t1 REG ;buried: timeout states
 NODE IO55 d0 REG ;buried: deadlock states
 NODE IO58 d1 REG ;buried: deadlock states

 STRING sel4_7 ‘/a31 * a30’ ;regions 4-7
 STRING sel8_9 ‘ a31 * /a30 * /a29’ ;regions 8-9
 STRING sel0_3 ‘/a31 * /a30’ ;region 0-3
 STRING seldram ‘ a31 * /a30 * a29 * /a28’ ;region A
 STRING selb ‘ a31 * /a30 * a29 * a28’ ;region B
 STRING selc ‘ a31 * a30 * /a29 * /a28’ ;regions C
 STRING seld ‘ a31 * a30 * /a29 * a28’ ;regions D
 STRING sele ‘ a31 * a30 * a29 * /a28’ ;region E
 STRING self ‘ a31 * a30 * a29 * a28’ ;region F

 STRING pf0 ‘/pfv1 * /pfv0’
 STRING pf1 ‘/pfv1 * pfv0’
 STRING pf2 ‘ pfv1 * /pfv0’
 STRING pf3 ‘ pfv1 * pfv0’

 STRING Cx ‘/pt2 * pt1 * /pt0’
 STRING Jx ‘ pt2 * /pt1 * /pt0’

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 3 of 12)

AP-726 A

A-4

 T_TAB (freq2 freq1 freq0 pd3 >> pfv1 pfv0)
 0 1 x x : 0 0 ; pf0=16 & 20MHz, 60 & 70ns
 1 0 0 1 : 0 0 ; =25MHz, 60ns
 ;3111,3222
 1 0 0 0 : 0 1 ; pf1=25MHz, 70ns
 1 0 1 x : 0 1 ; =33MHz, 60 & 70ns
 1 1 0 1 : 0 1 ; =40MHz, 60ns
 ;41111,42221
 1 1 0 0 : 1 0 ; pf2=40MHz, 70ns
 1 1 1 1 : 1 0 ; =50MHz, 60ns
 ;52221,42221
 1 1 1 0 : 1 0 ; pf3=50MHz, 70ns
 ;52222,42221

 ;*********** I/O Wait & ready generation ***
 STATE MEALY_MACHINE
 DEFAULT_BRANCH io0
 io0 = ios4 * ios3 * ios2 * ios1 * ios0
 io1 = ios4 * ios3 * ios2 * ios1 * /ios0
 io2 = ios4 * ios3 * ios2 * /ios1 * /ios0
 io3 = ios4 * ios3 * ios2 * /ios1 * ios0
 io4 = ios4 * ios3 * /ios2 * /ios1 * ios0
 io5 = ios4 * ios3 * /ios2 * /ios1 * /ios0
 io6 = ios4 * ios3 * /ios2 * ios1 * /ios0
 io7 = ios4 * ios3 * /ios2 * ios1 * ios0
 io8 = ios4 * /ios3 * /ios2 * ios1 * ios0
 io9 = ios4 * /ios3 * /ios2 * /ios1 * ios0
 io10 = ios4 * /ios3 * /ios2 * /ios1 * /ios0
 io11 = ios4 * /ios3 * /ios2 * ios1 * /ios0
 io12 = ios4 * /ios3 * ios2 * ios1 * /ios0
 io13 = ios4 * /ios3 * ios2 * ios1 * ios0
 io14 =/ios4 * /ios3 * ios2 * ios1 * ios0
 io15 =/ios4 * ios3 * ios2 * ios1 * ios0
 io16 =/ios4 * ios3 * ios2 * ios1 * /ios0
 io17 =/ios4 * ios3 * ios2 * /ios1 * /ios0
 io18 =/ios4 * ios3 * ios2 * /ios1 * ios0
 io19 =/ios4 * ios3 * /ios2 * /ios1 * ios0
 io20 =/ios4 * ios3 * /ios2 * ios1 * ios0
 io21 =/ios4 * /ios3 * /ios2 * ios1 * ios0
 io22 =/ios4 * ios3 * /ios2 * ios1 * /ios0
 io23 =/ios4 * /ios3 * ios2 * ios1 * /ios0
 io24 =/ios4 * /ios3 * ios2 * /ios1 * ios0
 io32 =/ios4 * /ios3 * /ios2 * ios1 * /ios0 ; used only on 1st Cx/Hx read.

 io0 := (/selio * /selcio * ciotrc) -> io1
 + (/selio * selcio) -> io15
 + (/selpmrom) ->io15
 + (time3) ->io15

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 4 of 12)

A AP-726

A-5

 io1 := vcc -> io2
 io2 := vcc -> io3
 io3 := vcc -> io4
 io4 := vcc -> io5
 io5 := vcc -> io6
 io6 := vcc -> io7
 io7 := vcc -> io8
 io8 := vcc -> io9
 io9 := vcc -> io10
 io10 := vcc -> io11
 io11 := vcc -> io12
 io12 := vcc -> io13
 io13 := vcc -> io14
 io14 := vcc -> io15
 io15 := vcc -> io16
 io16 := vcc -> io17
 io17 := vcc -> io18
 io18 := vcc -> io19
 io19 := vcc -> io20
 io20 := vcc -> io21
 io21 := (BOOTRD1) -> io32 ; Cx first read, loop & hold ready
 + (/BOOTRD1) -> io22 ; low until Cx asserts blast.
 io22 := (blast) -> io15 ; Sx/Kx burst read
 + (/blast) -> io23
 io23 := vcc -> io24
 io24 := vcc -> io0
 io32 := (blast) -> io32
 + (/blast) -> io23

 ;*********** Local bus Timeout *************
 ;8us minimum timeout on squall cycles.

 STATE MEALY_MACHINE
 DEFAULT_BRANCH HOLD_STATE
 time0 = t1 * t0
 time1 = t1 * /t0
 time2 = /t1 * /t0
 time3 = /t1 * t0

 time0 := (/selsq0) -> time1
 time1 := (/readyin) -> time0
 + (refclk * /refclkd) -> time2
 time2 := (/readyin) -> time0
 + (refclk * /refclkd) -> time3
 time3 := (/readyin) -> time0

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 5 of 12)

AP-726 A

A-6

 ;*********** DRAM Control ******************
 STATE MEALY_MACHINE
 DEFAULT_BRANCH s0
 s0 = ref * ras0 * ras2 * /st2 * /st1 * st0
 s1 = ref * /ras0 * /ras2 * /st2 * /st1 * st0
 s2 = ref * /ras0 * /ras2 * /st2 * /st1 * /st0
 s3 = ref * /ras0 * /ras2 * /st2 * st1 * /st0
 s4 = ref * /ras0 * /ras2 * /st2 * st1 * st0
 s5 = ref * ras0 * ras2 * /st2 * /st1 * /st0
 s5a = ref * ras0 * ras2 * st2 * /st1 * /st0
 s6 = /ref * ras0 * ras2 * /st2 * /st1 * st0
 s7 = /ref * ras0 * ras2 * /st2 * /st1 * /st0
 s8 = /ref * /ras0 * /ras2 * /st2 * /st1 * /st0
 s9 = /ref * /ras0 * /ras2 * st2 * /st1 * /st0
 s10 = /ref * /ras0 * /ras2 * st2 * /st1 * st0

 s0 := (/refpend) -> s6
 + (refpend * /ads * seldram */(pf0)) -> s1
 + (refpend * /mempend */(pf0)) -> s1
 + (refpend * /ads * seldram * (pf0)) -> s2
 + (refpend * /mempend * (pf0)) -> s2
 s1 := vcc -> s2
 s2 := (pf2 * /w_r) -> s3
 + (pf2 * w_r) -> s4
 + (pf3 * /w_r) -> s3
 + (pf3 * w_r) -> s4
 + (pf1) -> s4
 + (pf0) -> s4
 s3 := vcc -> s4
 s4 := (blast * /w_r * extend * (pf0)) -> s4 ;AP ok
 + (blast * /w_r * extend * pf1) -> s4
 + (blast * /w_r * extend * pf2) -> s3
 + (blast * /w_r * extend * pf3) -> s3
 + (blast * w_r) -> s3 ;AP ok
 + (/blast * extend * (pf0)) -> s0 ;AP ok
 + (/blast * extend * pf1) -> s5
 + (/blast * extend * pf2) -> s5
 + (/blast * w_r * pf3) -> s5a
 + (/blast * /w_r * extend * pf3) -> s5
 + (/extend * /w_r) -> s4
 s5a := vcc -> s5
 s5 := vcc -> s0
 s6 := vcc -> s7 ;refresh
 s7 := vcc -> s8 ;refresh
 s8 := vcc -> s9 ;refresh
 s9 := vcc -> s10 ;refresh
 s10 := vcc -> s5 ;refresh

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 6 of 12)

A AP-726

A-7

 ;******* Deadlock State Machine ************
 STATE MEALY_MACHINE
 DEFAULT_BRANCH sIDLE

 ;state assignments
 sIDLE = irqddlk * /d1 * /d0
 sB = /irqddlk * /d1 * /d0
 sC = /irqddlk * /d1 * d0
 sD = /irqddlk * d1 * /d0
 sE = irqddlk * d1 * /d0
 sF = irqddlk * d1 * d0

 ;state transitions
 sIDLE := (/breqo) -> sIDLE ; waiting for BREQo=1
 + (breqo * Jx) -> sB ; start only if Jx processor
 sB := vcc -> sC ; \
 sC := vcc -> sD ; > IRQDDLK active for 3 clks
 sD := vcc -> sE ; /
 sE := (blast) -> sE ; set READY=0, wait for BLAST=0
 + (/blast) -> sF
 sF := (breqo) -> sF ; waiting for BREQo=0 before
 + (/breqo) -> sIDLE ; rearming state machine

 EQUATIONS ;************ FF Control *******************
 ras0.clkf = pclk ras2.clkf = pclk
 casen.clkf=pclk incbank.clkf= pclk
 banksel.clkf=pclk ma0a.clkf=pclk ma0b.clkf=pclk
 dwe.clkf=pclk ready.clkf=pclk hold.clkf=pclk
 sqbg0.clkf=pclk pcihlda.clkf=pclk rdyen.clkf=pclk st0.clkf=pclk
 bss0.clkf=pclk mempend.clkf=pclk st1.clkf = pclk st2.clkf = pclk
 rdyen.clkf = pclk

 ios4.clkf = pclk ios3.clkf = pclk ios2.clkf = pclk
 ios1.clkf = pclk ios0.clkf = pclk
 zrd.clkf = pclk zwr.clkf = pclk
 ior.clkf = pclk iow.clkf = pclk
 t1.clkf = pclk t0.clkf = pclk
 selio.clkf = pclk selcio.clkf = pclk
 seluart.clkf=pclk selpmrom.clkf=pclk selfrom0.clkf=pclk
 selpp.clkf=pclk selsq0.clkf=pclk selfrom1.clkf=pclk

 st0.setf = /rst st1.rstf = /rst st2.rstf = /rst
 ras0.setf = /rst ras2.setf = /rst ref.setf = /rst

 ios4.setf = /rst ios3.setf = /rst ios2.setf = /rst
 ios1.setf = /rst ios0.setf = /rst
 t1.setf = /rst t0.setf = /rst

 irqddlk.clkf = pclk boff.clkf = pclk
 irqddlk.setf = /rst boff.setf = /rst

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 7 of 12)

AP-726 A

A-8

 d0.clkf = pclk d1.clkf = pclk
 d0.rstf = /rst d1.rstf = /rst

 altREADY.clkf = pclk altRDYEN.clkf = pclk
 altREADY.setf = /rst altRDYEN.rstf = /rst

 BOOTRD0.clkf = pclk
 BOOTRD1.clkf = pclk

 ;************ Deadlock Equations ***********
 /altREADY := sD
 + sE * blast
 altREADY.trst = altRDYEN
 altRDYEN := sC + sD + sE
 /boff := Cx * breqo
 + Cx * /breqo * /boff * pcihold

 ;************ Select Signals ***************
 /selio := /ads * selb ;Bxxxxxxx
 + /ads * self * /swaprom ;Fxxxxxxx
 + /ads * sele * swaprom ;Exxxxxxx
 + /ads * seld ;Dxxxxxxx
 + /ads * sel4_7 * /pciinstall
 + /ads * sel8_9 * /pciinstall
 + /selio * /(/blast * /ready) * rst

 /selcio := /ads * selb */a19 * a18 ;b4000000
 + /selio * selb */a19 * a18 * ready
 /seluart:= /ads * selb */a19 * /a18 ;b0000000
 + /selio * selb */a19 * /a18 * ready
 /selpp := /ads * selb * a19 * /a18 ;b8000000
 + /selio * selb * a19 * /a18 * ready

 /selpmrom:= swaprom * /ads * self * rst ;f0000000
 + swaprom * /selpmrom * self * ready * rst
 + swaprom * /ads * sel0_3 * rst ;00000000
 + swaprom * /selpmrom * sel0_3 * ready * rst
 +/swaprom * /ads * sele * rst ;e0000000
 +/selpmrom */(/blast * /ready) * rst

 /selfrom0:= swaprom * /ads * sele */a18 ;e0000000
 + swaprom * /selio * sele */a18 * ready
 +/swaprom * /ads * self */a18 ;f0000000
 +/swaprom * /selio * self */a18 * ready
 +/swaprom * /ads * sel0_3 */a18 ;00000000
 +/swaprom * /selio * sel0_3 */a18 * ready

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 8 of 12)

A AP-726

A-9

 /selfrom1:= swaprom * /ads * sele * a18 ;e0040000
 + swaprom * /selio * sele * a18 * ready
 +/swaprom * /ads * self * a18 ;f0040000
 +/swaprom * /selio * self * a18 * ready
 +/swaprom * /ads * sel0_3 * a18 ;00040000
 +/swaprom * /selio * sel0_3 * a18 * ready
 + /selfrom1 * BOOTRD1 * blast * rst

 /selsq0 := /ads * selc * rst ;c0000000
 + /selsq0 * /(/blast * /readyin) * rst

 BOOTRD0 := /rst * /pt2 * pt1 ; set if Cx or Hx
 + rst * BOOTRD0 * ads * /pt2 * pt1 ; hold til 1st ads

 BOOTRD1 := rst * BOOTRD0 * /ads * /pt2 * pt1 ; set at ads
 + rst * BOOTRD1 * blast * /pt2 * pt1 ; hold til 1st blast

 ;************I/O control equatons *********
 /zrd := /rst
 + /selcio * /w_r * io2 * rst
 + /selcio * /w_r * io3 * rst
 + /selcio * /w_r * /zrd * ready * rst

 /zwr := /rst
 + /selcio * w_r * io2 * rst
 + /selcio * w_r * io3 * rst
 + /selcio * w_r * /zwr * ready * rdyen * rst

 /ior := /selio * selcio * /w_r * ready * rst
 + /selpmrom * /w_r * ready * rst
 + /selio * selcio * /w_r * /ready * BOOTRD1 * blast * rst
 + /selpmrom * /w_r * /ready * BOOTRD1 * blast * rst

 /iow := /selio * selcio * w_r * ready * rdyen * rst
 + /selpmrom * w_r * ready * rdyen * rst

 /irquartn= irquart
 ;************ Configuration Terms **********
 sx = /pt2 * /pt1 * /pt0 * /holda ;i960Sx
 selmux = freq2 */freq1 * freq0 ; 33MHz
 + freq2 * freq1 * /freq0 ; 40MHz
 + freq2 * freq1 * freq0 ; 50MHz
 ;************DRAM Control *****************
 /mempend := mempend * /ads * seldram * rst
 + /mempend * /(/blast * /ready) * rst ;hold till rdy

 mempend.setf = /rst
 /mux := /ras0 * rst
 /muxalt := /ras0 * rst
 mux.clkf = /pclk

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 9 of 12)

AP-726 A

A-10

 mux.trst = /selmux ;MUX tri-stated when operating @ >=33MHz
 muxalt.clkf = pclk
 muxalt.trst = selmux

 /casen := s0 * /ads * seldram * (pf0) * refpend
 + s0 * /mempend * (pf0) * refpend
 + s1
 + s2 * /w_r * pf2
 + s2 * /w_r * pf3
 + s2 * ((pf0) + (pf1)) * /w_r
 + s3 * /w_r
 + s4 * blast
 + s4 * /extend * /w_r * /blast

 /incbank := s0 * /ads * seldram * (pf0) * refpend * extend ; JX ok
 + s0 * /mempend * (pf0) * refpend * extend ; JX ok
 + s1 * /((pf2) + (pf3)) * /w_r * blast * extend ; JX ok
 + s1 * w_r * blast * extend ; “
 + s2 * /w_r * blast * extend ; “
 + s3 * /((pf2) + (pf3)) * /w_r * blast * extend ; 1st term
 ; =1 w/
 ; pf0=1
 + s4 * blast * extend ; “

 /ready := s2 * (pf0)
 + s2 * pf1
 + s2 * pf2 * w_r
 + s2 * pf3 * w_r
 + s3
 + s4 * (pf0) * /w_r * blast
 + s4 * pf1 * /w_r * blast
 + s4 * /w_r * /blast * /extend
 + io21
 + io32

 ready.trst = /rdyen

 /rdyen := s1 + s2 + s3 + s4
 + io20 + io21 + io22 + io32

 /dwe := w_r * ref

 ma0a.d := ras0 * /a3 * a2 ; a[3:2] = 01
 + ras0 * a3 * /a2 ; “ = 10
 + /ras0 * /ma0b * banksel * bss0 * /ready
 + /ras0 * ma0a * /banksel
 + /ras0 * ma0a * /bss0
 + /ras0 * ma0a * ready

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 10 of 12)

A AP-726

A-11

 ma0b.d := ras0 * a3 * /a2 ; a[3:2] = 10
 + ras0 * a3 * a2 “ = 11
 + /ras0 * ma0a * /banksel * bss0 * /ready
 + /ras0 * ma0b * banksel
 + /ras0 * ma0b * /bss0
 + /ras0 * ma0b * ready

 ma0a.rstf = /rst ma0b.rstf = /rst
 ma0a.trst = /muxin ;output enable active with MUX or MUXALT low
 ma0b.trst = /muxin ;muxin low when MUX or MUXALT is low

 ;************ DRAM Bank Select *************

 /banksel.d:= /ads * mempend * /sx * /a2 * rst ; JX ok
 + /ads * mempend * sx * /a2 * /a1 * rst
 + /ads * mempend * sx * /a2 * a1 * rst
 + /mempend * incbank * /banksel * rst ;hold JX ok
 + /mempend * /incbank * /banksel * rst * /extend ;hold
 + /mempend * /incbank * /banksel * /bss0 * rst * extend
 ;bs0->bs1
 + /mempend * /incbank * banksel * bss0 * rst * extend ; JX ok
 ; /\ ;bs3->bs0
 ||
 ; oscillates with incbank low
;bs3->bs1 /sx

;bs3->bs1 /sx
 /bss0.d := /ads * sx * /a2 * /a1 * rst
 + /ads * sx * a2 * /a1 * rst
 + ads * sx * incbank * /bss0 * rst ;hold
 + ads * sx * /incbank * /bss0 * rst * /extend ;hold
 + ads * sx * /incbank * /banksel * bss0 * rst * extend
 ;bs1 ->bs2
 + ads * sx * /incbank * banksel * bss0 * rst * extend
 ;bs3 ->bs0
 banksel.setf = /rst bss0.setf = /rst

 ;************ DRAM Refresh *****************
 /refsync := refc5 ;sync 4MHz count w/ pclock
 /refclk := refsync
 /refclkd := /refclk
 /refpend := refclk * /refclkd * rst ;set
 + /refpend * ref * rst ;reset with ref

 refc0.t := vcc ;refresh counter 16us
 refc1.t := refc0
 refc2.t := refc0 * refc1
 refc3.t := refc0 * refc1 * refc2
 refc4.t := refc0 * refc1 * refc2 * refc3

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 11 of 12)

AP-726 A

A-12

 refc5.t := refc0 * refc1 * refc2 * refc3 * refc4
 refc0.aclk = clk4 refc1.aclk = clk4 refc2.aclk = clk4
 refc3.aclk = clk4 refc4.aclk = clk4 refc5.aclk = clk4
 refsync.clkf=pclk refclk.clkf= pclk refclkd.clkf=pclk
 refpend.clkf=pclk ref.clkf = pclk

 ;************ Arbitration ******************
 hold := pcihold * /holda * lock ;hold may not be asserted
 + pcihold * holda ;if lock is active, but
 + /sqbr0 * /holda * lock ;lock maybe asserted by
 + /sqbr0 * holda ;SQUALL masters once they
 ;are granted the bus.
 /sqbg0 := holda * hold * /sqbr0 * /pcihlda
 + /sqbg0 * /sqbr0 * holda

 pcihlda := holda * hold * pcihold * sqbr0 * sqbg0
 + pcihlda * pcihold * holda
 + pcihold * /boff

 ;************ 4 MHz clock ******************
 clk8.t := vcc
 clk8.clkf = clk16
 clk4.t := vcc
 clk4.aclk = clk8
 ;************ CIO T recovery ***************
 ;Delay 1000ns for trc on the 8536
 /ciotrc := /selcio * /ready * rst ;set
 + /ciotrc * synctrc * rst ;hold/reset

 /synctrc := /ciotrc * /count1 * count0 * rst ;assert

 ciotrc.clkf = pclk
 synctrc.clkf = pclk

 /count1 := /ciotrc * count1 * /count0 * rst ;10 -> 00
 + /ciotrc * /count1 * /count0 * rst ;00 -> 01

 /count0 := /ciotrc * count1 * count0 * rst ;11 -> 10
 + /ciotrc * count1 * /count0 * rst ;10 -> 00
 count1.aclk = clk4
 count0.aclk = clk4
 count1.setf = /synctrc * ciotrc
 count0.setf = /synctrc * ciotrc

Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 12 of 12)

A AP-726

A-13

Table A-2. DRAM Controller PAL20V8 PLDshell File (Sheet 1 of 2)

TITLE Private DRAM Control
PATTERN
REVISION D600A
AUTHOR J. Smith
COMPANY Cyclone
DATE 06-14-94
CHIP CASEN PAL20V8

PIN 1 pclk ;INP: system clock
PIN 2 ready ;INP: ;plcc pin 3
PIN 3 casen ;INP: ;plcc pin 4
PIN 4 banksel ;INP: ;plcc pin 5
PIN 5 blast ;INP: ;plcc pin 6
PIN 6 be3 ;INP: ;plcc pin 7
PIN 7 be2 ;INP: ;plcc pin 9
PIN 8 be1 ;INP: ;plcc pin 10
PIN 9 be0 ;INP: ;plcc pin 11
PIN 10 ref ;INP: ;plcc pin 12
PIN 11 nc ;INP: ;plcc pin 13
PIN 12 gnd ;plcc pin 14
PIN 13 oe ;plcc pin 16
PIN 14 nc ;OUT: ;plcc pin 17
PIN 15 casb0 REG ;OUT: ;plcc pin 18
PIN 16 casb1 REG ;OUT: ;plcc pin 19
PIN 17 casb2 REG ;OUT: ;plcc pin 20
PIN 18 casb3 REG ;OUT: ;plcc pin 21
PIN 19 casa0 REG ;OUT: ;plcc pin 23
PIN 20 casa1 REG ;OUT: ;plcc pin 24
PIN 21 casa2 REG ;OUT: ;plcc pin 25
PIN 22 casa3 REG ;OUT: ;plcc pin 26
PIN 23 nc ;plcc pin 27
PIN 24 vcc

AP-726 A

A-14

EQUATIONS

/casa0 := /casen * /be0 * /banksel * /(/blast * /ready)
 + /ref

/casa1 := /casen * /be1 * /banksel * /(/blast * /ready)
 + /ref

/casa2 := /casen * /be2 * /banksel * /(/blast * /ready)
 + /ref

/casa3 := /casen * /be3 * /banksel * /(/blast * /ready)
 + /ref

/casb0 := /casen * /be0 * banksel * /(/blast * /ready)
 + /ref

/casb1 := /casen * /be1 * banksel * /(/blast * /ready)
 + /ref

/casb2 := /casen * /be2 * banksel * /(/blast * /ready)
 + /ref

/casb3 := /casen * /be3 * banksel * /(/blast * /ready)
 + /ref

Table A-2. DRAM Controller PAL20V8 PLDshell File (Sheet 2 of 2)

A AP-726

B-1

APPENDIX B
PLD EQUATIONS

Table B-1 contains the PLD equations used to build the SAR controller, implemented in an AMD* MACH210* PLD. The
PLD equations were created in MACHXL.

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 1 of 6)

 TITLE NEC-SAR (uPD98401) Control
 PATTERN H601
 REVISION A
 AUTHOR Joe Niedermeyer
 COMPANY Cyclone
 DATE 6-06-95

 CHIP H601 MACH210 ;(-12nS tPD req’d for SARRDYn)

 PIN 35 PCLK ;INP: system clock.
 PIN 7 RESETn ;INP: system reset.
 PIN 19 SELSQn ;INP: squall region decode.
 PIN 14 SARATTNn ;INP: SAR bus request.
 PIN 3 SQBGNTn ;INP: squall bus grant.
 PIN 13 SIZE2 ;INP: SAR burst length MSB.
 PIN 11 SIZE1 ;INP: SAR burst length bit.
 PIN 10 SIZE0 ;INP: SAR burst length LSB.
 PIN 5 SARDWRn ;INP: SAR dr/w* (master rd/wr*).
 PIN 33 PHYCSn ;INP: FRAMER chip select.
 PIN 32 PHYWRn ;INP: FRAMER read/write*.

 PIN 2 READYpinn REG ;OUT: i960 ready*.
 PIN 6 SARASELn REG ;OUT: SAR asel*.
 PIN 41 SARSELn REG ;OUT: SAR sel*.
 PIN 36 SARSWRn REG ;OUT: SAR sr/w* (slave rd/wr*).
 PIN 25 SQBREQn REG ;OUT: squall bus request.
 PIN 30 SARGNTn REG ;OUT: SAR bus grant.
 PIN 4 BLASTpinn REG ;OUT: blast* when SAR is bus master.
 PIN 16 ADSpinn REG ;OUT: ads* when SAR is bus master.
 PIN 21 CPUWRpin REG ;OUT: w/r* when SAR is bus master.
 PIN 24 SARRDYn COMB ;OUT: SAR rdy*.
 PIN 18 BE0n COMB ;OUT: be0* when SAR is bus master.
 PIN 20 BE1n COMB ;OUT: be1* when SAR is bus master.
 PIN 28 BE2n COMB ;OUT: be2* when SAR is bus master.
 PIN 38 BE3n COMB ;OUT: be3* when SAR is bus master.
 PIN 26 AOEBAn REG ;OUT: ADDR XCVR control, master direction.
 PIN 40 ACLKENn REG ;OUT: ADDR XCVR clock enable, master direction.
 PIN 42 AOEABn REG ;OUT: ADDR XCVR control, slave direction.
 PIN 43 DOEABn REG ;OUT: DATA XCVR control, slave write direction.
 PIN 17 DOEBAn REG ;OUT: DATA XCVR control, slave read direction.
 PIN 15 DCLKENn COMB ;OUT: DATA XCVR clock enable, master read dir.
 PIN 37 DLEABn REG ;OUT: DATA XCVR latch enable, master write dir.
 PIN 39 PHYALE REG ;OUT: FRAMER address latch enable.

AP-726 A

B-2

 NODE 2 READYn REG PAIR READYpinn
 NODE 28 ADSn REG PAIR ADSpinn
 NODE 6 BLASTn REG PAIR BLASTpinn
 NODE 18 CPUWR REG PAIR CPUWRpin

 NODE 23 RDYENn REG ;BRY: ready pin enable.
 NODE 11 CNT3 REG ;BRY: burst count MSB.
 NODE 7 CNT2 REG ;BRY: burst count bit.
 NODE 4 CNT1 REG ;BRY: burst count bit.
 NODE 15 CNT0 REG ;BRY: burst count LSB.
 NODE 3 SARRDY0 REG ;BRY: ready*, one clock delayed.

 NODE 14,39 slv[1..0] REG ;BRY: slave states.
 NODE 35,22 mst[1..0] REG ;BRY: master states.

 ;*********************************;
 ;*** Slave State Assignments ***;
 ;*********************************;

 STRING WAIT ‘ #b11 ‘
 STRING A ‘ #b01 ‘
 STRING B ‘ #b00 ‘
 STRING C ‘ #b10 ‘

 STRING sWAIT ‘ slv[1] * slv[0] ‘
 STRING sA ‘ /slv[1] * slv[0] ‘
 STRING sB ‘ /slv[1] * /slv[0] ‘
 STRING sC ‘ slv[1] * /slv[0] ‘

 ;**********************************;
 ;*** Master State Assignments ***;
 ;**********************************;

 STRING M0 ‘ #b11 ‘
 STRING M1 ‘ #b01 ‘
 STRING M2 ‘ #b00 ‘
 STRING M3 ‘ #b10 ‘

 STRING sM0 ‘ mst[1] * mst[0] ‘
 STRING sM1 ‘ /mst[1] * mst[0] ‘
 STRING sM2 ‘ /mst[1] * /mst[0] ‘
 STRING sM3 ‘ mst[1] * /mst[0] ‘

 GROUP ff slv[1..0] mst[1..0] READYn RDYENn
 SARASELn SARSELn SARSWRn SQBREQn SARGNTn
 AOEABn AOEBAn ACLKENn DOEABn DOEBAn DLEABn
 ADSn CPUWR SARRDY0 BLASTn PHYALE
 CNT3 CNT2 CNT1 CNT0

 EQUATIONS

 ff.CLKF = PCLK
 ff.RSTF = GND
 ff.SETF = GND

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 2 of 6)

A AP-726

B-3

 ;*********************************;
 ;*** Slave State Transitions ***;
 ;*********************************;

 IF (/RESETn)
 THEN BEGIN slv[1..0] = WAIT END
 ELSE BEGIN CASE (slv[1..0])
 BEGIN
 WAIT: BEGIN IF (SELSQn)
 THEN BEGIN slv[1..0] = WAIT END
 ELSE BEGIN slv[1..0] = A END
 END
 A: BEGIN slv[1..0] = B END
 B: BEGIN slv[1..0] = C END
 C: BEGIN slv[1..0] = WAIT END
 END
 END

 ;**************************;
 ;*** Ready Generation ***;
 ;**************************;

 READYn := /(sB)

 READYpinn := { READYn }

 READYpinn.TRST = /RDYENn

 /RDYENn := /SELSQn

 ;*****************************;
 ;*** SAR Slave Equations ***;
 ;*****************************;

 /SARASELn := sWAIT * /SELSQn

 /SARSELn := sWAIT * /SELSQn
 + sA

 /SARSWRn := sWAIT * /SELSQn * CPUWRpin

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 3 of 6)

AP-726 A

B-4

 ;***************************************;
 ;*** Address & Data Buffer Control ***;
 ;***************************************;

 /AOEABn := sWAIT * /SELSQn ; SAR Slave direction

 /AOEBAn := sM1 + sM2 + sM3 ; SAR Master direction

 /ACLKENn := sM1 ; SAR Master direction

 /DOEABn := sA * CPUWRpin ; SAR Slave Write
 + sM3 * SARDWRn ; SAR Master Read

 /DOEBAn := sB * /CPUWRpin ; SAR Slave Read
 + sM3 * /SARDWRn ; SAR Master Write

 /DCLKENn = /READYpinn * /SQBGNTn * SARDWRn ; SAR Master Read Only

 /DLEABn := sM3 * SARDWRn ; SAR Master Read Only

 ;**********************************;
 ;*** Master State Transitions ***;
 ;**********************************;

 IF (/RESETn)
 THEN BEGIN mst[1..0] = M0 END
 ELSE BEGIN CASE (mst[1..0])
 BEGIN
 M0: BEGIN IF (/SQBGNTn * /SARATTNn)
 THEN BEGIN mst[1..0] = M1 END
 ELSE BEGIN mst[1..0] = M0 END
 END
 M1: BEGIN mst[1..0] = M2 END
 M2: BEGIN mst[1..0] = M3 END
 M3: BEGIN IF (/BLASTn * /READYpinn)
 THEN BEGIN mst[1..0] = M0 END
 ELSE BEGIN mst[1..0] = M3 END
 END
 END
 END

 ;*******************************;
 ;*** Arbitration Equations ***;
 ;*******************************;

 /SQBREQn := /SARATTNn * RESETn

 /SARGNTn := /SQBGNTn * /SQBREQn * /SARATTNn * RESETn

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 4 of 6)

A AP-726

B-5

 ;**************************;
 ;*** Blast Generation ***;
 ;**************************;

 ; Burst counter needed to generate BLASTn.
 ; SAR indicates burst length (encoded) on SIZE<2,1,0> pins.
 ; Counter loaded with (SIZE - 1) at ADS*.
 ; Counter decrements with each READY*.
 ; BLASTn asserted when (CNT = 1) and (READY* = 0).

 CNT3 := /ADSn * SIZE2 * /SIZE1 * /SIZE0 ; LOAD
 + ADSn * READYpinn * CNT3 ; HOLD
 + ADSn * /READYpinn * CNT3 * CNT2 * CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * CNT3 * CNT2 * CNT1 * /CNT0 ; DOWN
 + ADSn * /READYpinn * CNT3 * CNT2 * /CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * CNT3 * CNT2 * /CNT1 * /CNT0 ; DOWN
 + ADSn * /READYpinn * CNT3 * /CNT2 * CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * CNT3 * /CNT2 * CNT1 * /CNT0 ; DOWN
 + ADSn * /READYpinn * CNT3 * /CNT2 * /CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * /CNT3 * /CNT2 * /CNT1 * /CNT0 ; DOWN

 CNT2 := /ADSn * SIZE2 * /SIZE1 * /SIZE0 ; LOAD
 + /ADSn * /SIZE2 * SIZE1 * SIZE0 ; LOAD
 + ADSn * READYpinn * CNT2 ; HOLD
 + ADSn * /READYpinn * CNT2 * CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * CNT2 * CNT1 * /CNT0 ; DOWN
 + ADSn * /READYpinn * CNT2 * /CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * /CNT2 * /CNT1 * /CNT0 ; DOWN

 CNT1 := /ADSn * SIZE2 * /SIZE1 * /SIZE0 ; LOAD
 + /ADSn * /SIZE2 * SIZE1 * SIZE0 ; LOAD
 + /ADSn * /SIZE2 * SIZE1 * /SIZE0 ; LOAD
 + ADSn * READYpinn * CNT1 ; HOLD
 + ADSn * /READYpinn * CNT1 * CNT0 ; DOWN
 + ADSn * /READYpinn * /CNT1 * /CNT0 ; DOWN

 CNT0 := /ADSn * SIZE2 * /SIZE1 * /SIZE0 ; LOAD
 + /ADSn * /SIZE2 * SIZE1 * SIZE0 ; LOAD
 + /ADSn * /SIZE2 * SIZE1 * /SIZE0 ; LOAD
 + /ADSn * /SIZE2 * /SIZE1 * SIZE0 ; LOAD
 + ADSn * READYpinn * CNT0 ; HOLD
 + ADSn * /READYpinn * /CNT0 ; DOWN

 BLASTn := /(/ADSn * /SIZE2 * /SIZE1 * /SIZE0 * RESETn
 + /READYpinn * /CNT3 * /CNT2 * /CNT1 * CNT0 * RESETn
 + /BLASTn * READYpinn * RESETn)

 BLASTpinn := { BLASTn }
 BLASTpinn.TRST = /SQBGNTn

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 5 of 6)

AP-726 A

B-6

 ;******************************;
 ;*** SAR Master Equations ***;
 ;******************************;

 ADSn := /(sM2)
 ADSpinn := { ADSn }
 ADSpinn.TRST = /SQBGNTn

 CPUWR := /SARDWRn
 CPUWRpin := { CPUWR }
 CPUWRpin.TRST = /SQBGNTn

 /SARRDY0 := /READYpinn

 /SARRDYn = /SARRDY0 * /SQBGNTn * SARDWRn ; READs pipelined
 + /READYpinn * /SQBGNTn * /SARDWRn ; WRITEs normal

 /BE0n = VCC
 /BE1n = VCC
 /BE2n = VCC
 /BE3n = VCC

 BE0n.TRST = /SQBGNTn
 BE1n.TRST = /SQBGNTn
 BE2n.TRST = /SQBGNTn
 BE3n.TRST = /SQBGNTn

 ;*******************************;
 ;*** Physical I/F Equations ***;
 ;*******************************;

 ; SAR only holds a valid address for the 1st 6 clocks of a PHY read cycle.
 ; PHY write cycle works OK, as-is.
 ; PHY has an active HI ALE input available.
 ; ALE is held HI for write cycles and pulled LO during reads to latch addr.

 PHYALE := /(/PHYCSn * PHYWRn)

 ;*********************;
 ;*** End Of H601 ***;
 ;*********************;

Table B-1. SAR Controller MACH210, MACHXL File (Sheet 6 of 6)

	Interfacing the i960 ® Jx Microprocessor to the NEC µPD98401 ® Local ATM Segmentation And Reassembly (SAR) Chip
	Copyright Page
	Table Of Contents
	List Of Figures
	Figure 1. Quad-Word Write Request with 2,1,1,1 Wait State Profile
	Figure 2. Two-Way Interleaving
	Figure 3. 80960Jx Interface Memory Map
	Figure 4. i960 ® Jx Processor to DRAM / NEC µPD98401 SAR Bus Interface
	Figure 5. System Address Latches
	Figure 6. DRAM Address Flow Logic
	Figure 7. DRAM Control State Machine
	Figure 8. Simplified DRAM State Machine
	Figure 9. SAR Address and Data Buffers
	Figure 10. 80960Jx to SAR Access State Machine
	Figure 11. 80960Jx to DRAM 1 Wait State Single Word Read and Write Timing Diagram
	Figure 12. 80960Jx to DRAM 1,0,0,0 Quad Word Read Timing
	Figure 13. 80960Jx to DRAM 1,1,1,1 Quad Word Write Timing Diagram
	Figure 14. CAS-Before-RAS Refresh Cycle
	Figure 15. 80960Jx to µPD98401 Single Word Read and Write Timing Diagram

	List Of Tables
	Table 1. Related Information
	Table A-1. DRAM Controller EPX780 PLDshell File (Sheet 1 of 12)
	Table A-2. DRAM Controller PAL20V8 PLDshell File (Sheet 1 of 2)
	Table B-1. SAR Controller MACH210, MACHXL File (Sheet 1 of 6)

	1.0 INTRODUCTION
	1.1 Design Goals
	1.2 Overview
	1.3 Page Mode DRAM SIMM
	1.4 DRAM Refresh
	1.5 Burst Capabilities for a 32-bit Bus
	1.6 Bank Interleaving

	2.0 CIRCUIT DESCRIPTION
	2.1 Clock Generation
	2.2 System Address Latches
	2.3 DRAM Controller
	2.3.1 Control Logic
	2.3.1 Control Logic
	2.3.3 Data Flow Logic
	2.3.4 State Machines and Signals
	2.3.4.1 DRAM Control State Machine
	2.3.4.2 SELDRAM Signal
	2.3.4.3 REFPEND Signal
	2.3.4.4 MEMPEND Signal
	2.3.4.5 MUX Signal
	2.3.4.6 CASEN Signal
	2.3.4.7 INCBANK and BANKSEL Signals
	2.3.4.8 CASA[3:0] and CASB[3:0] Signals
	2.3.4.9 MA0B and MA0A Signals
	2.3.4.10 RDYEN Signal
	2.3.4.11 READY Signal
	2.3.4.12 DWE Signal

	2.4 SAR slave controller
	2.4.1 Control Logic
	2.4.2 Address Flow Logic
	2.4.3 Data Flow Logic
	2.4.4 State Machine and Signals
	2.4.4.1 SELC Signal
	2.4.4.2 SELSQ0 Signal
	2.4.4.3 SAR Access State Machine
	2.4.4.4 READYn Signal
	2.4.4.5 READYpinn Signal
	2.4.4.6 RDYENn Signal
	2.4.4.7 SARSELn Signal
	2.4.4.8 SARASELn Signal
	2.4.4.9 SARSWRn Signal
	2.4.4.10 AOEABn Signal
	2.4.4.11 DOEABn Signal
	2.4.4.12 DOEBAn Signal

	3.0 DRAM CONTROLLER ACCESS FLOW
	3.1 Single Word Read and Write Access
	3.2 Quad Word Read Access
	3.3 Quad Word Write Access
	3.4 CAS before RAS Refresh

	4.0 SAR SLAVE ACCESS FLOW
	4.1 Single Word Read and Write Access

	5.0 CONCLUSION
	6.0 RELATED INFORMATION
	APPENDIX A PLDshell FILES
	APPENDIX B PLD EQUATIONS

