
A AP-716

Order Number: 272694-001

APPLICATION
NOTE

80960Cx/80960Jx/80960Hx
Architectural Comparison

Tom Johnson

SPG 80960 Systems Engineer

Intel Corporation
Mail Stop CH6-311
5000 W. Chandler Blvd.
Chandler, Arizona 85226

January 29, 1996

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

A AP-716

iii

80960Cx/80960Jx/80960Hx ARCHITECTURAL COMPARISON

1.0 Introduction.. 1
1.1 i960® Processor Family... 1

1.1.1 The 80960Cx Processor Family .. 2
1.1.2 The 80960Jx Processor Family ... 2
1.1.3 The 80960Hx Processor Family .. 3

2.0 Initialization.. 3

2.1 Initialization Data Structures.. 3
2.1.1 Initialization Boot Record (IBR) .. 3
2.1.2 Processor Control Block (PRCB) ... 5
2.1.3 Fault Table ... 6
2.1.4 Control Table ... 9
2.1.5 Arithmetic Control Register Initial Image ... 11
2.1.6 Fault Configuration Word ... 11
2.1.7 Interrupt Table ... 11
2.1.8 System Procedure Table ... 11
2.1.9 Interrupt Stack Pointer ... 12
2.1.10 Instruction Cache Configuration Word ... 12
2.1.11 Register Cache Configuration Word .. 12

2.2 Register Values after Reset/Reinitialization .. 12
2.2.1 Common Reset/Reinitialized States .. 12
2.2.2 Differences in the Reset/Reinitialized State ... 14

2.3 Initial Bus Configuration... 16
2.3.1 80960Cx Processor ... 16
2.3.2 80960Jx Processor .. 16
2.3.3 80960Hx Processor ... 17
2.3.4 External Bus Configuration .. 18

2.3.4.1 External Memory Configuration on the 80960Cx Processor 18
2.3.4.2 External Memory Configuration on the 80960Jx Processor 19
2.3.4.3 External Memory Configuration on the 80960Hx Processor 23

3.0 New and Extended Instructions... 27
3.1 New Instructions Supported by the 80960Jx and 80960Hx Processors...................... 27

3.1.1 Conditional Integer/Ordinal Add and Subtract and Select Value Instructions 28
3.1.1.1 Operation of Conditional Add Instruction .. 28
3.1.1.2 Operation of Conditional Subtract Instruction ... 28
3.1.1.3 Operation of Select Value Instruction ... 28

3.1.2 Byte Swap Instruction (bswap) ... 29
3.1.3 Compare Integer/Ordinal Byte and Short Instructions ... 29
3.1.4 Data Cache Control Instruction (dcctl) .. 29

3.1.4.1 Function Zero - Disable the Data Cache (src1 == 0) 29
3.1.4.2 Function One - Enable the Data Cache (src1 == 1) 29

AP-716 A

iv

3.1.4.3 Function Two - Globally Invalidate the Data Cache (src1 == 2) 29
3.1.4.4 Function Three - Ensure Coherency of the Data Cache with

External Memory (src1 == 3) .. 29
3.1.4.5 Function Four - Get Data Cache Status (src1 == 4) 29
3.1.4.6 Function Six - Store Data Cache Sets to Memory (src1 == 6) 30

3.1.5 Instruction Cache Control Instruction (icctl) .. 30
3.1.5.1 Function Zero - Disable the Instruction Cache (src1 == 0) 31
3.1.5.2 Function One - Enable the Instruction Cache (src1 == 1) 31
3.1.5.3 Function Two - Globally Invalidate the Instruction Cache (src1 == 2) 31
3.1.5.4 Function Three - Load and Lock Code into the Instruction Cache (src1 == 3) 31
3.1.5.5 Function Four - Get Instruction Cache Status (src1 == 4) 31
3.1.5.6 Function Five - Get Instruction Cache Locking Status (src1 == 5) 32
3.1.5.7 Function Six - Store Instruction Cache Sets to Memory (src1 == 6) 32

3.1.6 Interrupt Control Instruction ... 32
3.1.6.1 Function Zero - Globally Disable Interrupts (src1 = 0) 33
3.1.6.2 Function One - Globally Enable Interrupts (src1 = 1) 33
3.1.6.3 Function Two - Return Interrupt Controller Status (src1 = 2) 33

3.1.7 Global Interrupt Disable ... 33
3.1.8 Global Interrupt Enable .. 33
3.1.9 Halt Instruction ... 33

3.1.9.1 Function Zero - Globally Disable Interrupts (src1 = 0) 33
3.1.9.2 Function One - Globally Enable Interrupts (src1 = 1) 33
3.1.9.3 Function Two - Halt Without Modifying the Current Interrupt State (src1 = 2) 33

3.1.10 Flush Data Cache Contents by Address Instruction (dcflusha) 33
3.1.11 Give Address to Data Cache as Hint Instruction (dchint) 34
3.1.12 Data Cache Invalidate by Address Instruction (dcinva) .. 34

3.2 Extended Instructions.. 34
3.2.1 System Control Instruction (sysctl) ... 34

3.2.1.1 Function Zero - Post Software Interrupt (Message Type = 00H) 34
3.2.1.2 Function One - Invalidate the Instruction Cache (Message Type = 01H) 34
3.2.1.3 Function Two - Configure the Instruction Cache (Message Type = 02H) 34
3.2.1.4 Function Three - Software Reinitialization (Message Type 03H) 34
3.2.1.5 Function Four - Load One Group of Control Registers (Message Type 04H) 34
3.2.1.6 Function Five - Modify One Memory-mapped Control Register

 (Message Type 05H) ... 35
3.2.1.7 Function Six - Breakpoint Resource Request (Message Type 06H) 35

4.0 Register Cache/Stack Frames .. 35
4.1 Register Cache Configuration on the 80960Cx Processor.. 35

4.2 Register Cache Configuration on the 80960Jx Processor .. 36
4.3 Register Cache Configuration on the 80960Hx Processor.. 36

5.0 Breakpoint Resource Sharing Mechanism.. 37

5.1 Breakpoint Resources on the 80960Cx Processor ... 37
5.2 Breakpoint Resources on the 80960Jx Processor .. 38

A AP-716

v

5.3 Breakpoint Resources on the 80960Hx Processor.. 38

6.0 Integrated Peripherals ... 39
6.1 Direct Memory Access Control Unit on the 80960Cx Processor 39
6.2 Guarded Memory Unit on the 80960Hx Processor.. 40

6.3 Interrupt Control Unit ... 40
6.3.1 80960Cx Processor Interrupt Control Unit ... 40

6.3.1.1 Interrupt Control Register (ICON) ... 41
6.3.1.2 Interrupt Mapping Registers (IMAP0-IMAP2) ... 41
6.3.1.3 Interrupt Mask and Interrupt Pending Registers (IMSK, IPND) 42

6.3.2 80960Jx/80960Hx Processor Interrupt Control Unit .. 43
6.3.2.1 Interrupt Control Register (ICON) ... 43
6.3.2.2 Interrupt Mapping Registers (IMAP0-IMAP2) ... 44
6.3.2.3 Interrupt Mask and Interrupt Pending Registers (IMSK, IPND) 45
6.3.2.4 Improvements to Interrupt Latency ... 46

6.4 Timer Unit .. 46

7.0 Memory-mapped Control Registers .. 47

7.1 Special Function Registers and Memory-mapped Counterparts................................. 47
7.1.1 Special Function Registers on the 80960Cx Processor .. 47
7.1.2 Special Function Registers on the 80960Hx Processor .. 48

8.0 Memory-mapped Control Register Address Space... 49

9.0 80960Hx/80960Cx Pin Compatibility... 54

10.0 Conclusion... 56

11.0 Related Information ... 56

AP-716 A

vi

FIGURES
Figure 1. Initialization Boot Record (IBR) Structure ... 4
Figure 2. Simplified Typical Memory Decoding Logic .. 5

Figure 3. Processor Control Block (PRCB) Structure .. 6
Figure 4. 80960Cx 80960Jx, and 80960Hx Fault Table and Fault Table Entries 7
Figure 5. 80960Cx MCON Register Format... 18

Figure 6. 80960Cx BCON Register.. 19
Figure 7. PMCON Register Format for the 80960Jx Processor... 20
Figure 8. Format of LMARx and LMMRx Pairs on the 80960Jx Processor 21

Figure 9. Format of the DLMCON Register on the 80960Jx .. 22
Figure 10. Format of the BCON Register on the 80960Jx ... 23
Figure 11. PMCON Register Format for the 80960Hx Processor .. 24

Figure 12. LMARx and LMMRx Registers on the 80960Hx Processor (LMCONx Pair) 25
Figure 13. DLMCON Register on the 80960Hx.. 26
Figure 14. Format of the BCON Register on the 80960Hx .. 26

Figure 15. Register Cache Configuration Word (RCCW) for the 80960Cx Processor........... 36
Figure 16. Register Cache Configuration Word (RCCW) for the 80960Jx Processor............ 36
Figure 17. Register Cache Configuration Word (RCCW) for the 80960Hx Processor........... 37

Figure 18. Interrupt Control Register on the 80960Cx Processor .. 41
Figure 19. Interrupt Mapping Registers on the 80960Cx Processor 42
Figure 20. Interrupt Pending (sf0) and Interrupt Mask (sf1) on the 80960Cx Processor 43

Figure 21. Interrupt Control Register (ICON) on the 80960Jx and 80960Hx Processors 44
Figure 22. Interrupt Mapping Registers on the 80960Jx and 80960Hx Processors............... 45
Figure 23. Interrupt Pending (sf0) and Interrupt Mask (sf1) on the 80960Jx and

80960Hx Processor .. 46
Figure 24. 80960Hx Processor Data Cache Control Register ... 48

Figure 25. PGA Pinout Diagram for the 80960Cx Processor... 54
Figure 26. PGA Pinout Diagram for the 80960Hx Processor... 55

TABLES
Table 1. Feature Summary of the 80960Cx, 80960Jx, and 80960Hx Processors 1
Table 2. 80960Cx, 80960Jx, and 80960Hx Fault Types and Subtypes 8

Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors 9
Table 4. Common State of the i960® Processors after Reset/Reinitialization..................... 13
Table 5. Differences in State of the i960® Processors after Reset/Reinitialization 14

Table 6. New 80960Jx and 80960Hx Instructions... 27
Table 7. Condition Code Masks .. 28
Table 8. Format of Data Cache Status.. 30

Table 9. Function Six - Store Data Cache Sets to Memory (src1 == 6) 30

A AP-716

vii

Table 10. Function Three - Load and Lock Code into the Instruction Cache (src1 == 3)...... 31

Table 11. Format of Instruction Cache Status... 31
Table 12. Format of Instruction Cache Locking Status ... 32
Table 13. Function Six - Store Instruction Cache Sets to Memory (src1 == 6) 32

Table 14. src/dst Field Definitions for Breakpoint Resource Request 35
Table 15. Integrated Peripherals on the 80960Cx, 80960Jx, and 80960Hx Processors....... 39
Table 16. Sample Application with Restricted Memory Partitions ... 40

Table 17. Timer Control Registers on the 80960Jx and 80960Hx Processors 47
Table 18. Special Function Registers of the 80960Hx Processor ... 48

Table 19. Memory-mapped Control Registers .. 49

AP-716 A

viii

A AP-716

1

1.0 Introduction

This document describes three implementations of the
i960 architecture: the 80960Cx, 80960Jx, and 80960Hx
microprocessors.

During the 80960Jx and 80960Hx definition process, every
attempt was made to maintain backward compatibility with
the 80960Cx processor. To a large extent, this compatibility
is maintained; most application code will run on each
processor without modification. Due to enhancements to the
bus interface, instruction set, and other refinements,
complete compatibility was not maintained. This document
discusses in detail those differences between the 80960Cx,
80960Jx, and 80960Hx microprocessors. Suggestions are
given for mitigating their impact on future designs.

This document also provides hints for developing applica-
tions which the 80960Cx processor can use now, and can be
80960Hx-ready in the future. The reader should note that
the 80960Hx processor is not drop-in compatible with the

80960Cx processor. However, system hardware can be
designed such that it will accept both the 80960Cx and
80960Hx processors in the same socket.

This document contains condensed information from the
i960® Cx Microprocessor User’s Manual (Intel Literature
Order No. 270710), Application Note 506, Designing for
80960Cx and 80960Hx Compatibility (Intel Literature
Order No. 272556), the i960® Jx Microprocessor User’s
Manual (Intel Literature Order No. 272483), and the i960®

Hx Microprocessor User’s Manual, (Intel Literature Order
No. 272484). The reader should refer to these documents
for more detailed information.

1.1 i960 Processor Family

Table 1 summarizes the features of the 80960Cx, 80960Jx,
and 80960Hx microprocessor families. Subsections which
follow further describe each processor’s features.

Table 1. Feature Summary of the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 1 of 2)

Feature
Processor

80960Cx 80960Jx 80960Hx

Core Superscalar (maximum 3
inst/clk) Scalar, clock doubled

Superscalar (max 3
inst/clk), clock doubled,

clock tripled

External Bus 32-bit demultiplexed
address and data

32-bit multiplexed
address/data

32-bit demultiplexed
address and data, parity

on data

Instruction Cache CA: 1 Kbyte, 2-way
CF: 4 Kbytes, 2-way 4 Kbytes, 2-way 16 Kbytes, 4-way

Data Cache
CA: None

CF: 1 Kbyte, direct map,
write-through

2 Kbytes, direct map,
write-through

8 Kbytes, 4-way, write-
through

Data RAM 1 Kbyte, mapped from
000H to 3FFH

1 Kbyte, mapped from
0000H to 3FFH

2 Kbytes, mapped from
000H to 7FFH

Register Cache
5 frames, programmable

to 15 frames (more than 5
uses Data RAM)

8 frames
5 frames, programmable

to 15 frames (more than 5
uses Data RAM)

Memory-mapped
Registers No Yes Yes

Direct Memory Access
(DMA) Controller Yes No No

AP-716 A

2

Interrupt Controller Yes Yes Yes

Guarded Memory Unit No No Yes

Timers None Two Two

Power Supply 5V 5V or 3.3V 3.3V, 5V tolerant

JTAG No Yes Yes

Table 1. Feature Summary of the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 2 of 2)

Feature
Processor

80960Cx 80960Jx 80960Hx

1.1.1 The 80960Cx Processor Family

The 80960Cx family of processors are superscalar imple-
mentations of the i960 microprocessor architecture, and
feature demultiplexed, 32-bit address and data buses. The
two members of this family, the CA and CF, can execute up
to three instructions per clock cycle. Due to the high degree
of parallelism and on-chip caches, these processors are well
suited for high performance applications such as
networking and high-end imaging.

The 80960CA includes a 1 Kbyte, two-way set associative
instruction cache and 1 Kbyte of on-chip data RAM. Data
RAM is located in the processor’s address space from
locations 0000.0000H to 0000.03FFH. The CF processor
enhances the CA feature set by increasing the instruction
cache size to 4 Kbytes, and adding a 1 Kbyte direct-mapped
write-through data cache. As with the CA, the CF contains
1 Kbyte of on-chip data RAM located from 0000.0000H to
0000.03FFH.

The upper 16 Mbytes of the address space (FF00.0000H
through FFFF.FFFFH) are reserved for implementation-
specific functions. In general, an application must not
access this space unless specifically required by the imple-
mentation. In the case of the CA and CF processors, the
application must locate the Initialization Boot Record (IBR)
at address FFFF.FF00H.

Integrated peripherals include the Interrupt Controller and
Direct Memory Access (DMA) Controller. The DMA
peripheral is not available on the 80960Jx and 80960Hx
processors.

1.1.2 The 80960Jx Processor Family

The 80960Jx family of microprocessors represent the next
generation of high-performance, low-cost processors based

on the i960 architecture. 80960Jx processors feature a 32-
bit multiplexed address and data bus; the core issues one
instruction per clock cycle. The 80960Jx processor family
supports 5V and 3.3V operation.

These processors provide a maximum 4 Kbyte, two-way set
associative instruction cache, and a maximum 2 Kbyte,
direct-mapped write-through data cache. The 80960Jx
features 1 Kbyte of on-chip data RAM located from address
0000.0000H to 0000.03FFH.

The upper 16 Mbytes of the address space (FF00.0000H
through FFFF.FFFFH) are reserved for implementation-
specific functions. In general, an application must not
access this space unless specifically required by the imple-
mentation. Memory-mapped control registers are located
within this address space:

• user/supervisor accessible control registers are located
from address FF00.0000H to FF00.7FFFH

• supervisor only accessible control registers from
address FF00.8000H to FFFF.FFFFH

The application must locate the Initialization Boot Record
(IBR) at address FEFF.FF30H.

Integrated peripherals include a 80960Cx-compatible
Interrupt Controller, and two 80960Hx-compatible 32-bit
timers. The 80960Jx does not implement a DMA
peripheral.

A AP-716

3

1.1.3 The 80960Hx Processor Family

The 80960Hx family of microprocessors represent the next
generation of very high-performance superscalar processors
based on the i960 architecture. 80960Hx processors feature
32-bit demultiplexed address and data buses; the core may
issue up to three instructions per clock cycle. The 80960Hx
processor family is fabricated on a 3.3V process. All
internal logic and memories operate at 3.3V; however, the
pad-ring may be biased at 5V, meaning that the 80960Hx
can operate in a 5V system. To do so, the system must
provide a low-current 5V supply to bias the I/O buffers. In
any case, the system must provide a 3.3V supply.

These processors provide a 16 Kbyte, four-way set
associative instruction cache, and 8 Kbyte, four-way set-
associative write-through data cache. The 80960Hx
includes 2 Kbytes of on-chip data RAM located from
address 0000.0000H to 0000.07FFH.

The upper 16 Mbytes of the address space (FF00.0000H
through FFFF.FFFFH) are reserved for implementation-
specific functions. In general, an application must not
access this space unless specifically required by the imple-
mentation. Memory-mapped control registers are located
within this address space:

• user/supervisor accessible control registers are located
from address FF00.0000H to FF00.7FFFH

• supervisor only accessible control registers from
address FF00.8000H to FFFF.FFFFH

The application must locate the Initialization Boot Record
(IBR) at address FEFF.FF30H.

Integrated peripherals include a 80960Cx-compatible
Interrupt Controller, two 80960Jx-compatible 32-bit timers,
and the Guarded Memory Unit (GMU). The 80960Hx does
not implement a DMA peripheral.

2.0 Initialization

This section outlines differences in initialization data
structures and initialization procedures of the 80960Cx,
80960Jx, and 80960Hx. Only differences between these
processor families are highlighted.

2.1 Initialization Data Structures

This section describes the differences between the
necessary initialization data structures. Subsections include
Section 2.1.1, Initialization Boot Record (IBR), Section
2.1.2, Processor Control Block (PRCB), Section 2.1.3,
Fault Table, Section 2.1.4, Control Table, Section 2.1.5,
Arithmetic Control Register Initial Image, and the rest.

2.1.1 Initialization Boot Record (IBR)

The 80960Cx, 80960Jx, and 80960Hx share similar initial-
ization mechanisms. All processors fetch an Initialization
Boot Record (IBR) from a fixed location in memory. The
IBR contains the address of the first instruction to fetch and
the pointer to the Processor Control Block (PRCB), which
is the same format for all processors. The IBR structure is
identical for the 80960Cx, 80960Jx, and 80960Hx, and is
given in Figure 1. However, it is important to note that the
interpretation of the InitBusConx bytes varies across
implementations.

InitBusConx initializes:

• MCON0 on the 80960Cx

• PMCON14:15 on the 80960Jx

• PMCON15 on the 80960Hx

AP-716 A

4

Figure 1. Initialization Boot Record (IBR) Structure

IBR_Start

+14H

+18H

+1CH

+20H

+24H

+28H

+2CH

+8H

+CH

+10H

+4H

InitBusCon0

InitBusCon2

InitBusCon3

Byte0Byte2Byte3 Byte1

InitBusCon1

Data located in shaded locations is ignored

80960Cx: IBR_Start = FFFF.FF00H
80960Jx: IBR_Start = FEFF.FF30H
80960Hx: IBR_Start = FEFF.FF30H

Starting Instruction Pointer (StrtIP)

Process Control Block Pointer (PRCBPtr)

Check Word 1

Check Word 2

Check Word 3

Check Word 4

Check Word 5

Check Word 6

As indicated in Figure 1, the IBR contains the address of the
first instruction to be fetched (StrtIPx), and the pointer to
the PRCB (PRCBPtrx). The IBR also contains the initial
bus configuration (InitBusConx), and check words for the
bus confidence test. The algorithm used for the bus
confidence test is identical for all processors.

The 80960Cx locates the IBR structure at address
FFFF.FF00H; the 80960Jx and 80960Hx locate the IBR

structure at address FEFF.FF30H. This was done so that a
single boot ROM could hold two separate IBRs; one IBR
for the 80960Cx, and one IBR for the 80960Jx or 80960Hx.
This scheme works because of the way accesses to system
memory are typically performed. Separate IBRs are
necessary because of differences in initial register images,
interpretation of the InitBusConx bytes, and control table
structures. To clarify, refer to Figure 2.

A AP-716

5

Figure 2. Simplified Typical Memory Decoding Logic

SysA31

SysA30

SysA29

SysA28

CS

ROM
SysA5

SysA4

SysA3

SysA2

SysA1

SysA0

SysD7

SysD6

SysD5

SysD4

SysD3

SysD2

SysD1

SysD0

As can be seen from the figure above, system designers
typically do not decode all high-order address pins when
accessing memory. This allows for addresses to be aliased;
logically different addresses will access the same physical
memory.

Assume that the ROM in the figure above contains 64
Kbytes. In this case, when the 80960Cx accesses its IBR at
FFFF.FF00H, address FF00H in the ROM is physically
accessed. Likewise, when the 80960Jx or 80960Hx access
the IBR at FEFF.FF30H, address FF30H in the ROM is
physically accessed. Hence, both IBRs may be conveniently
contained in the same ROM device. In the figure above,
A24 can be ignored with the same results.

2.1.2 Processor Control Block (PRCB)

PRCB structure, illustrated in Figure 3, is identical for the
80960Cx, 80960Jx, and 80960Hx. Even though the PRCB
structures are identical, the application designed to
accommodate the 80960Cx and 80960Hx can be designed
to provide separate control structures for each. This allows
the application to define which control structures are
common to the 80960Cx and 80960Hx, and which are
unique.

AP-716 A

6

Figure 3. Processor Control Block (PRCB) Structure

PRCBPtr+0H

+14H

+18H

+1CH

+20H

+24H

+8H

+CH

+10H

+4H

Byte0Byte2Byte3 Byte1

Reserved - Initialize to zero

Fault Table Base Address (FTB)

Control Table Base Address (CTB)

Arithmetic Controls Initial Image (ACInitIm)

Fault Configuration Word (FCW)

Interrupt Table Base Address (ITB)

Interrupt Stack Pointer (ISP)

System Procedure Table Base Address (SPTB)

Instruction Cache Configuration Word (ICCW)

Register Cache Configuration Word (RCCW)

As shown in Figure 1. Initialization Boot Record (IBR)
Structure, the PRCBPtr is found in the IBR.

2.1.3 Fault Table

As indicated in Figure 3, the pointer to the fault table is
found in the PRCB at offset 0H and is referred to as FTB
(fault table base address). It may be initialized to any valid,
non-reserved location in memory. The FTB points to the
beginning of the fault table, which contains entries for the
beginning address of each fault handler.

The fault tables for the 80960Cx, 80960Jx, and 80960Hx
processors are identical, with the exception that the
80960Hx adds an entry for machine faults and an additional
fault sub-type to support the Guarded Memory Unit.
Machine faults are generated in response to parity errors.
This is illustrated in Figure 4.

A AP-716

7

Figure 4. 80960Cx 80960Jx, and 80960Hx Fault Table and Fault Table Entries

Operation Fault Entry

Arithmetic Fault Entry

Constraint Fault Entry

Protection Fault Entry

Type Fault Entry

Parallel Fault Entry

Trace Fault Entry

Local-call Entry

System-call Entry

Fault-handler Procedure Address

Fault-handler Procedure Number
0000.027FH

0

0

0

1
1

1

0

0 n
n+4

n
n+4

FTB+0H

FTB+8H

FTB+10H

FTB+18H

FTB+20H

FTB+28H

FTB+30H

FTB+38H

FTB+40H

FTB+48H

FTB+58H

FTB+50H

FTB+60H

FTB+F0H

FTB+E8H

FTB+F8H

Reserved - Initialize to zero

80960Hx only - Reserved on 80960Cx, 80960Jx

Machine Fault Entry

AP-716 A

8

The fault types and subtypes are summarized for the 80960Cx, 80960Jx, and 80960Hx processors. Each processor’s users
manual provides information on each fault type.

Table 2. 80960Cx, 80960Jx, and 80960Hx Fault Types and Subtypes

Fault Type Fault Subtype
Fault Record

(Hex)
Number Name Number/Bit

Position Name/Description

00H Parallel 02H through
FFH

Indicates the number of faults that
occur in parallel

XX00 XX02
XX00 XXFF

01H Trace

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Reserved
Instruction Trace

Branch Trace
Call Trace

Return Trace
Prereturn Trace

Supervisor Trace
Breakpoint Trace

XX01 XX02
XX01 XX04
XX01 XX08
XX01 XX10
XX01 XX20
XX01 XX40
XX01 XX80

02H Operation

01H
02H
03H
04H

Invalid Opcode
Unimplemented

Unaligned
Invalid Operand

XX02 XX01
XX02 XX02
XX02 XX03
XX02 XX04

03H Arithmetic 01H
02H

Integer Overflow
Arithmetic Zero-divide

XX03 XX01
XX03 XX02

04H Reserved

05H Constraint 01H
02H

Constraint Range
Privileged

XX05 XX01
XX05 XX02

06H Reserved

07H Protection Bit 1
Bit 5

Length
Bad Access1

XX07 XX01
XX07 XX20

08H Machine2 Bit 1 Parity Error XX08 XX02

09H Reserved

0AH Type 01H Type Mismatch XX0A XX01

0BH through
0FH Reserved

NOTES:

1. 80960Hx only. Added the Bad Access fault sub-type to support illegal memory accesses detected
by the Guarded Memory Unit (GMU).

2. 80960Hx only. Added the Machine fault, with the Parity Error fault sub-type due to data parity sup-
ported on the 80960Hx data bus.

A AP-716

9

2.1.4 Control Table

As shown in Figure 3, the pointer to the control table is
found in the PRCB at offset 4H and is referred to as CTB
(control table base address). It may be initialized to any
valid, non-reserved location in memory. CTB points to the
beginning of the control table, which contains entries for the
initial values of the memory configuration, breakpoint,
interrupt control, and additional registers.

The control table for the 80960Cx, 80960Jx, and 80960Hx
processors is shown in Table 3 Unique control tables are
required for each processor, due to differences in the region
and bus control registers. Refer to each processor’s users
manual for additional details

Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 1 of 3)

Offset Description Group

CTB + 00H
80960Cx: Instruction Breakpoint 0 (IPB0)
80960Jx: Reserved
80960Hx: Reserved

0H

CTB + 04H
80960Cx: Instruction Breakpoint 1 (IPB1)
80960Jx: Reserved
80960Hx: Reserved

CTB + 08H
80960Cx: Data Address Breakpoint 0 (DAB0)
80960Jx: Reserved
80960Hx: Reserved

CTB + 0CH
80960Cx: Data Address Breakpoint 1 (DAB1)
80960Jx: Reserved
80960Hx: Reserved

CTB + 10H
80960Cx: Interrupt Map 0 (IMAP0)
80960Jx: Same
80960Hx: Same

1H

CTB + 14H
80960Cx: Interrupt Map 1 (IMAP1)
80960Jx: Same
80960Hx: Same

CTB + 18H
80960Cx: Interrupt Map 2 (IMAP2)
80960Jx: Same
80960Hx: Same

CTB + 1CH
80960Cx: Interrupt Control (ICON)
80960Jx: Same
80960Hx: Same

CTB + 20H
80960Cx: Memory Region 0 Configuration (MCON0)
80960Jx: Physical Memory Region 0:1 Configuration (PMCON0:1)
80960Hx: Physical Memory Region 0 Configuration (PMCON0)

2H

CTB + 24H
80960Cx: Memory Region 1 Configuration (MCON1)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 1 Configuration (PMCON1)

CTB + 28H
80960Cx: Memory Region 2 Configuration (MCON2)
80960Jx: Physical Memory Region 2:3 Configuration (PMCON2:3)
80960Hx: Physical Memory Region 2 Configuration (PMCON2)

CTB + 2CH
80960Cx: Memory Region 3 Configuration (MCON3)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 3 Configuration (PMCON3)

AP-716 A

10

CTB + 30H
80960Cx: Memory Region 4 Configuration (MCON4)
80960Jx: Physical Memory Region 4:5 Configuration (PMCON4:5)
80960Hx: Physical Memory Region 4 Configuration (PMCON4)

3H

CTB + 34H
80960Cx: Memory Region 5 Configuration (MCON5)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 5 Configuration (PMCON5)

CTB + 38H
80960Cx: Memory Region 6 Configuration (MCON6)
80960Jx: Physical Memory Region 6:7 Configuration (PMCON6:7)
80960Hx: Physical Memory Region 6 Configuration (PMCON6)

CTB + 3CH
80960Cx: Memory Region 7 Configuration (MCON7)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 7 Configuration (PMCON7)

CTB + 40H
80960Cx: Memory Region 8 Configuration (MCON8)
80960Jx: Physical Memory Region 8:9 Configuration (PMCON8:9)
80960Hx: Physical Memory Region 8 Configuration (PMCON8)

4H

CTB + 44H
80960Cx: Memory Region 9 Configuration (MCON9)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 9 Configuration (PMCON9)

CTB + 48H
80960Cx: Memory Region 10 Configuration (MCON10)
80960Jx: Physical Memory Region 10:11 Configuration (PMCON10:11)
80960Hx: Physical Memory Region 10 Configuration (PMCON10)

CTB + 4CH
80960Cx: Memory Region 11 Configuration (MCON11)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 11 Configuration (PMCON11)

CTB + 50H
80960Cx: Memory Region 12 Configuration (MCON12)
80960Jx: Physical Memory Region 12:13 Configuration (PMCON12:13)
80960Hx: Physical Memory Region 12 Configuration (PMCON12)

5H

CTB + 54H
80960Cx: Memory Region 13 Configuration (MCON13)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 13 Configuration (PMCON13)

CTB + 58H
80960Cx: Memory Region 14 Configuration (MCON14)
80960Jx: Physical Memory Region 14:15 Configuration (PMCON14:15)
80960Hx: Physical Memory Region 14 Configuration (PMCON14)

CTB + 5CH
80960Cx: Memory Region 15 Configuration (MCON15)
80960Jx: Reserved (initialize to zero)
80960Hx: Physical Memory Region 15 Configuration (PMCON15)

Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 2 of 3)

Offset Description Group

A AP-716

11

CTB + 60H
80960Cx: Reserved (initialize to zero)
80960Jx: Reserved (initialize to zero)
80960Hx: Reserved (initialize to zero)

6H

CTB + 64H
80960Cx: Breakpoint Control (BPCON)
80960Jx: Same
80960Hx: Same

CTB + 68H
80960Cx: Trace Controls (TC)
80960Jx: Same
80960Hx: Same

CTB + 6CH
80960Cx: Bus Configuration Control (BCON)
80960Jx: Same
80960Hx: Same

NOTES:

1. CTB = Control Table Base address, found in the Processor Control Block (PRCB).

2. Differences exist between the processors in the format of the IMAPx and ICON registers.

3. Differences exist between the processors in the format of the BCON, MCON, and PMCON registers.

Note that MCON0, PMCON14:15, and PMCON15 are initialized from the IBR at reset.

Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 3 of 3)

Offset Description Group

2.1.5 Arithmetic Control Register Initial
Image

The arithmetic control register (AC) is defined identically
for the 80960Cx, 80960Jx, and 80960Hx processors. The
AC initial image is programmed in the PRCB at offset 8H,
and is shown as ACInitIm in Figure 3, Processor Control
Block (PRCB) Structure (pg. 6).

2.1.6 Fault Configuration Word

The fault configuration word is defined identically for the
80960Cx, 80960Jx, and 80960Hx processors. The fault
configuration word is programmed in the PRCB at offset
CH, and is shown as FCW in Figure 3, Processor Control
Block (PRCB) Structure (pg. 6).

2.1.7 Interrupt Table

Recall that the pointer to the interrupt table base address is
found in the PRCB at offset 10H. The interrupt table base
address pointer is identified as ITB (interrupt table base
address), and may be initialized to any valid, non-reserved
location in memory. ITB points to the beginning of the
interrupt table, which contains entries for the starting
addresses (interrupt vectors) of all interrupt service
routines.

The formats of the interrupt tables for the 80960Cx,
80960Jx, and 80960Hx processors are identical. Interrupt
vectors may be internally cached in on-chip data RAM in
the same manner as well. The system may provide unique
versions of the interrupt table for the 80960Cx and
80960Hx processors, so that the interrupt enable (inten)
and disable (intdis) instructions may be used, which are
not available on the 80960Cx processor.

2.1.8 System Procedure Table

As shown in Figure 3, Processor Control Block (PRCB)
Structure (pg. 6), the pointer to the system procedure table
is found in the PRCB at offset 14H. It is identified as SPTB
(system procedure table base address), and may be
initialized to any valid, non-reserved location in memory.
SPTB points to the beginning of the system procedure
table, which contains entries for the starting addresses
system procedures. System procedures may be invoked by
executing the call system (calls) instruction, or by the fault
generator.

The system procedure table formats for all three processors
are identical.

AP-716 A

12

2.1.9 Interrupt Stack Pointer

The interrupt stack pointer is defined identically for all three
processors; its initial image is programmed in the PRCB at
offset 1CH, and is shown as ISP in Figure 3, Processor
Control Block (PRCB) Structure (pg. 6).

2.1.10 Instruction Cache Configuration
Word

The instruction cache configuration word (ICCW) is
defined identically for all three processors. The ICCW
initial image is programmed in the PRCB at offset 20H, and
is shown as ICCW in Figure 3.

2.1.11 Register Cache Configuration Word

The register cache configuration word (RCCW) initial
image is programmed in the PRCB at offset 24H, and is
shown as RCCW in Figure 3, Processor Control Block
(PRCB) Structure (pg. 6). The 80960Jx and 80960Hx
processors add additional programmability in addition to

that provided for by the 80960Cx processor, to allow local
register frames in the on-chip register cache to be reserved
for use by high-priority interrupts. This involves the imple-
mentation of bits in the RCCW which are reserved on the
80960Cx processor. However, since the 80960Cx ignores
these bits, one value can be programmed in the PRCB
which will work properly for all three processors. Refer to
section 4.0 Register Cache/Stack Frames, for more infor-
mation.

2.2 Register Values after Reset/Reinitial-
ization

This section describes the values of the architectural state of
the 80960Cx, 80960Jx, and 80960Hx processors after
hardware reset and software reinitialization.

2.2.1 Common Reset/Reinitialized States

Table 4 shows the inital state values held in common by all
three processors after hardware reset and software reinitial-
ization.

A AP-716

13

Table 4. Common State of the i960® Processors after Reset/Reinitialization (Sheet 1 of 2)

Register Value after Hardware Reset Value after Software Reinitialization

g0 Device ID Device ID

AC AC initial image at PRCBptr + 8H AC initial image at PRCBPtr + 8H

TC TC initial image at CTB + 68H TC initial image at CTB + 68H

FP (g15) ISP (PRCBPtr + 1CH) ISP (PRCBPtr + 1CH)

PFP (r0) Undefined Value before Software Reinitialization

SP (r1) ISP + 40H ([PRCBPtr + 1CH] + 40H) ISP + 40H ([PRCBPtr + 1CH] + 40H)

RIP (r2) Undefined Undefined

IPND Undefined Value before Software Reinitialization

IMSK 00H 00H

IMAP0 CTB + 10H CTB + 10H

IMAP1 CTB + 14H CTB + 14H

IMAP2 CTB + 18H CTB + 18H

ICON CTB + 1CH CTB + 1CH

80960Cx: MCON0
80960Jx: PMCON0:1
80960Hx: PMCON0

CTB + 20H CTB + 20H

80960Cx: MCON1
80960Hx: PMCON1 CTB + 24H CTB + 24H

80960Cx: MCON2
80960Jx: PMCON2:3
80960Hx: PMCON2

CTB + 28H CTB + 28H

80960Cx: MCON3
80960Hx: PMCON3 CTB + 2CH CTB + 2CH

80960Cx: MCON4
80960Jx: PMCON4:5
80960Hx: PMCON4

CTB + 30H CTB + 30H

80960Cx: MCON5
80960Hx: PMCON5 CTB + 34H CTB + 34H

80960Cx: MCON6
80960Jx: PMCON6:7
80960Hx: PMCON6

CTB + 38H CTB + 38H

80960Cx: MCON7
80960Hx: PMCON7 CTB + 3CH CTB + 3CH

80960Cx: MCON8
80960Jx: PMCON8:9
80960Hx: PMCON8

CTB + 40H CTB + 40H

80960Cx: MCON9
80960Hx: PMCON9 CTB + 44H CTB + 44H

80960Cx: MCON10
80960Jx: PMCON10:11

80960Hx: PMCON10
CTB + 48H CTB + 48H

AP-716 A

14

2.2.2 Differences in the Reset/Reinitialized State

Table 5 shows the differences in the state of the 80960Cx, 80960Jx, and 80960Hx processors after hardware reset and
software reinitialization.

80960Cx: MCON11
80960Hx: PMCON11 CTB + 4CH CTB + 4CH

80960Cx: MCON12
80960Jx: PMCON12:13

80960Hx: PMCON12
CTB + 50H CTB + 50H

80960Cx: MCON13
80960Hx: PMCON13 CTB + 54H CTB + 54H

80960Cx: MCON14
80960Jx: PMCON14:15

80960Hx: PMCON14
CTB + 58H CTB + 58H

80960Cx: MCON15
80960Hx: PMCON15 CTB + 5CH CTB + 5CH

BCON CTB + 6CH CTB + 6CH

Table 5. Differences in State of the i960®Processors after Reset/Reinitialization (Sheet 1 of 2)

Register Value after Hardware Reset Value after Software Reinitial-
ization

Processor

Cx Jx Hx

PC
C01F.2002H C01F.2002H X

001F.2002H 001F.2002H X X

DMAC (sf2) 00H 00H X

CCON (sf2) TBD 1 TBD 1 X

BPCON
CTB + 64H CTB + 64H X

0000.0000H 0000.0000H X X

LMARx Undefined Value before Software Reinitial-
ization X X

LMMRx Bit 0 = 0; bits 1 - 31 = undefined Bit 0 = 0; bits 1 - 31 = undefined 3 X X

DLMCON Bit 0 = bit 7 of byte InitBusCon3;
bit 1 = 0; bits 2 - 31 = undefined

Bit 0 = value before warm reset;
bit 1 = 0; bits 2 - 31 = undefined X X

TRRx Undefined Value before software reinitial-
ization X X

TCRx Undefined Value before software reinitial-
ization X X

TMRx Bits 1 - 6 = 0; bits 0, 7 - 31 =
undefined 2

Bits 1 - 6 = 0; bits 0, 7 - 31 =
undefined 2 X X

Table 4. Common State of the i960® Processors after Reset/Reinitialization (Sheet 2 of 2)

Register Value after Hardware Reset Value after Software Reinitialization

A AP-716

15

GCR (sf4) Bits 0 - 7 = 0; bits 8 - 31 =
undefined

Bits 0 - 7 = 0; bits 8 - 31 =
undefined X

MPAR0 thru
MPAR1 Undefined Value before Software Reinitial-

ization X

MPMR0 thru
MPMR1 Undefined Value before Software Reinitial-

ization X

MDUB0 thru
MDUB5 Undefined Value before Software Reinitial-

ization X

MDLB0 thru
MDLB5 Undefined Value before Software Reinitial-

ization X

IPB0
CTB + 00H CTB + 00H X

0000.0000H 0000.0000H X X

IPB1
CTB + 04H CTB + 04H X

0000.0000H 0000.0000H X X

DAB0
CTB + 08H CTB + 08H X

0000.0000H 0000.0000H X X

DAB1
CTB + 0CH CTB + 0CH X

0000.0000 0000.0000H X X

IPB2 thru IPB5 0000.0000H Value before Software Reinitial-
ization X

DAB2 thru
DAB5 0000.0000H Value before Software Reinitial-

ization X

XBPCON 0000.0000H Value before Software Reinitial-
ization X

DEVICEID Device Identification Device Identification X X

NOTES:

1. Bit 31 = 1, all others = 0

2. Bits 1-5 = 0, bits 0, 6-31 = undefined

3. LMMRx retains value (Jx only) otherwise, bit 0 = 0, bits 1-31 = undefined

Table 5. Differences in State of the i960® Processors after Reset/Reinitialization (Sheet 2 of 2)

Register Value after Hardware Reset Value after Software Reinitial-
ization

Processor

Cx Jx Hx

AP-716 A

16

2.3 Initial Bus Configuration

As indicated in Figure 1, Initialization Boot Record (IBR)
Structure, The InitBusConx bytes are used for the initial
configuration of the bus controller. These bytes configure
the bus controller during the interim period from the
beginning of initialization until the remainder of the config-
uration data structures are loaded from external memory to
fully configure the bus controller. Each processor uses these
bytes to initialize the appropriate memory control register.
Since each processor has unique memory control register
formats, these bytes are interpreted differently for each
processor. For more information on memory control, refer
to Section 2.3.4, External Bus Configuration.

2.3.1 80960Cx Processor

The first four words of the IBR are fetched from memory
with the most relaxed bus parameters, specifically:

• Non-burst

• Non-pipelined

• Ready disabled

• 8-bit bus width

• Little endian byte order

• NRAD = 31

• NRDD = 3

• NWAD = 31

• NWDD = 3

• NXDA = 3

The 80960Cx provides memory control with 16 Memory
Control registers, named MCON15:0. The MCON registers
define the physical attributes of the external memory
system: wait state profiles, bus width, pipelining, bursting,
READY enable, etc. MCON0 controls external accesses to
addresses 0000.0000H through 0FFF.FFFFH, MCON1
controls accesses 1000.0000H through 1FFF.FFFFH, and
so forth. In this manner, the MCON registers control 256
Mbyte regions of memory. The bus controller interface is
discussed in further detail in Section 2.3.4.1, External
Memory Configuration on the 80960Cx Processor.

As the first four words of the IBR are read from external
memory, the low-order byte from each word is loaded into
MCON0. The exact order in which these words are read is
implementation dependent. This means that InitBusCon0
is loaded into MCON00, InitBusCon1 into MCON01, and
so forth. The most significant byte of all MCONx registers

is reserved, and must be programmed to zero
(InitBusCon3 must be zero). Once MCON0 is configured,
all subsequent external bus accesses are controlled by this
register until the remaining MCONx and Bus Control
(BCON) registers are configured. After the MCONx
registers are configured, they are marked valid and then
control accesses to their respective memory regions.

Typically, the IBR is located in ROM memory; MCON0 is
initially loaded with the appropriate parameters to access
this memory.

2.3.2 80960Jx Processor

The first four words of the IBR are fetched from memory
with the most relaxed bus parameters, specifically:

• 8-bit bus width

Since there is no internal wait state generator on the
80960Jx, the external memory system must return READY
as appropriate.

The 80960Jx allows enhanced memory control by
providing eight Physical Memory Control registers
(PMCONx:x+1), two Logical Memory Control register
pairs (LMCONx), and the Default Logical Memory Control
register (DLMCON). The PMCONx:x+1 registers define
the bus width of the external memory system. The
LMCONx register pairs define the logical characteristics of
the external memory system which, in the case of the
80960Jx, is simply cacheability. The DLMCON register
defines the default logical characteristics of the external
memory system for addresses not specifically covered by
the LMCONx register pairs. This means that the DLMCON
register controls the default cacheability characteristic of
external memory, as well as the globally controlling byte
order (big- or little-endian). Byte order on the 80960Jx
cannot be controlled by LMCONx register pairs on a
region-by-region basis; the memory space is uniformly big-
or little-endian.

PMCON0:1 controls the bus width for external accesses to
addresses 0000.0000H through 1FFF.FFFFH, PMCON2:3
controls accesses 2000.0000H through 3FFF.FFFFH, and
so forth. In this manner, the PMCONx:x+1 registers control
512 Mbyte regions of memory. The LMCON registers may
be programmed to control a variable range of addresses.
The bus controller interface is discussed in further detail in
Section 2.3.4.2, External Memory Configuration on the
80960Jx Processor.

A AP-716

17

As the first four words of the IBR are read from external
memory, the low-order byte from each word is loaded into
memory configuration register 14:15 (PMCON14:15). The
exact order in which these words are read is implementation
dependent. This means that InitBusCon0 is loaded into
PMCON14:150, InitBusCon1 into PMCON14:151, and
so forth. Once PMCON14:15 is configured, all subsequent
external bus accesses are controlled by this register until the
remaining PMCONx:x+1 and Bus Control (BCON)
registers are initialized. After the PMCONx:x+1 registers
are initialized, they are marked valid and then control
accesses to their respective memory regions. Bit 7 of
InitBusCon3 is loaded into bit 0 of the DLMCON
register; this bit controls data endianess for the entire 32-bit
memory space.

Typically, the IBR is located in ROM memory, and
PMCON14:15 is initially loaded with the appropriate
parameters to access this memory. Note that PMCON14:15
is initialized first from the IBR, as opposed to PMCON0:1
(or as MCON0 is on the 80960Cx). This makes sense since
the IBR is fixed in memory region 15; accesses to this
memory region are normally controlled by PMCON14:15,
not PMCON0:1. On the 80960Cx, system programmers
were often required to reconfigure MCON0 (which controls
memory region zero) if the memory profile for this region
did not match that of memory region 15.

2.3.3 80960Hx Processor

The first four words of the IBR are fetched from memory
with the most relaxed bus parameters:

• Non-burst

• Non-pipelined

• Ready disabled

• 8-bit bus width

• Little endian byte order

• NRAD = 31

• NRDD = 3

• NWAD = 31

• NWDD = 3

• NXDA = 15

The possible number of NXDA wait states is increased from
three on the 80960Cx, to fifteen on the 80960Hx.

The 80960Hx allows enhanced memory control by
providing:

• 16 Physical Memory Control registers (PMCONx)

• 15 Logical Memory Control register pairs (LMCONx)

• Default Logical Memory Control register (DLMCON)

The PMCONx registers define the physical attributes of the
external memory system: wait state profiles, parity, bus
width, pipelining, bursting, READY enable, etc. The
LMCONx register pairs define the logical characteristics of
the external memory system: data endianess, data cache
independently invalidatable regions, and cacheability. The
DLMCON register defines the default logical character-
istics of the memory system for addresses not specifically
covered by the LMCONx register pairs.

PMCON0 controls external accesses to addresses
0000.0000H through 0FFF.FFFFH, PMCON1 controls
accesses 1000.0000H through 1FFF.FFFFH, and so forth.
In this manner, the PMCONx registers control 256 Mbyte
regions of memory. The LMCONx register pairs may be
programmed to control a variable range of addresses.
PMCON registers (80960Hx) and MCON registers
(80960Cx) are roughly analogous in functionality, if the
endianess and cacheability bits are ignored. The bus
controller interface is discussed in further detail in Section
2.3.4.3, External Memory Configuration on the 80960Hx
Processor.

As the first four words of the IBR are successively read
from external memory, the low-order byte from each word
of the IBR is successively loaded into each byte of Memory
Configuration register 15 (PMCON15). This means that
InitBusCon0 gets loaded into PMCON150,
InitBusCon1 into PMCON151, and so forth. Once
PMCON15 is configured, all subsequent external bus
accesses are controlled by this register until the remaining
PMCONx and Bus Control (BCON) registers are
initialized. After all PMCONx registers are initialized, they
are marked valid and then control accesses to their
respective memory regions.

Typically, the IBR is located in ROM memory, and
PMCON15 is initially loaded with the appropriate
parameters to access this memory. Note that PMCON15 is
initialized first from the IBR, as opposed to PMCON0 (or
as MCON0 is on the 80960Cx). This makes sense since the
IBR is fixed in memory region 15; accesses to this memory
region are normally controlled by PMCON15, not
PMCON0. On the 80960Cx, system programmers were
often required to reconfigure MCON0 (which controls

AP-716 A

18

memory region zero) if the memory profile for this region
did not match that of memory region 15.

2.3.4 External Bus Configuration

This section describes differences in the external bus
configuration of the 80960Cx, 80960Jx, and 80960Hx
processors. Specifically, this section outlines the differences
in programming the Memory Region Configuration
(MCON), Physical Memory Region Configuration
(PMCON), Logical Memory Template Address (LMAR),
Logical Memory Template Mask (LMMR), Default Logical
Memory Configuration (DLMCON), and Bus Control
(BCON) registers.

2.3.4.1 External Memory Configuration on
the 80960Cx Processor

The 80960Cx processor’s MCON registers define the
physical nature of the memory system (wait state profile,
ready enable, burst, pipeline, bus width), and logical nature
(byte order, cacheability - CF only). There are 16 MCON
registers, one for each 256-Mbyte physical memory region.
These registers are labelled MCON0 through MCON15.
The format of the MCON register is shown in Figure 5.

Figure 5. 80960Cx MCON Register Format

048121620242831

Burst Enable
(0) Disabled
(1) Enabled

READY/BTERM Enable
(0) Disabled
(1) Enabled

Read Pipelining Enable
(0) Disabled
(1) Enabled

NRAD Wait States
0-31 wait states

NRDD Wait States
0-3 wait states

NXDA Wait States
0-3 wait states

NWAD Wait States
0-31 Wait States

NWDD Wait States
0-3 wait states

Bus Width
(00) 8-bit bus
(01) 16-bit bus
(10) 32-bit bus
(11) Reserved

Byte Order
(0) Little-endian
(1) Big-endian

Data Cacheability (CF Only)
(0) Disabled
(1) Enabled

Reserved
(Initialize to 0)

A AP-716

19

As shown in Figure 6, The Bus Control Register (BCON)
mainly serves to validate the values stored in the MCON
registers (region table). Immediately after a hardware reset,
the region table is marked invalid in the BCON register.
Whenever the region table is marked invalid in the BCON
register (bit 0 = bit 0), the Bus Control Unit (BCU) uses the

physical memory parameters found in MCON0 for accesses
to all regions (Recall that MCON0 is initialized from data
found in the IBR). Once the entire region table is loaded by
reset microcode, the region table is marked valid in the
BCON register (bit 0 = 1), and the BCU uses the
appropriate user programmed values.

Figure 6. 80960Cx BCON Register

048121620242831

Reserved
(Initialize to 0)

Internal RAM Protect (IRP)
0 = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Region Table Valid
0 = Region table invalid, use MCON0
1 = Region table valid, use all MCON registers

2.3.4.2 External Memory Configuration on
the 80960Jx Processor

Control of physical and logical memory characteristics is
divided among several registers on the 80960Jx:

• Physical Memory Region Control (PMCON)

• Logical Memory Template Address (LMAR)

• Logical Memory Template Mask (LMMR)

• Default Logical Memory Configuration (DLMCON)
registers

There are eight PMCON registers, one for each 512 Mbyte
physical memory region on the 80960Jx (PMCON0:1
through PMCON14:15). There are two pairs of
LMAR/LMMR registers (LMAR0, LMAR1, LMMR0,
LMMR1), and one DLMCON register.

PMCON registers control the bus width on the 80960Jx
processor. This is shown in Figure 7.

AP-716 A

20

Figure 7. PMCON Register Format for the 80960Jx Processor

048121620242831

Bus Width
(00) 8-bit bus
(01) 16-bit bus
(10) 32-bit bus
(11) Reserved

Reserved
(Initialize to 0)

Logical memory control registers (LMARx and LMMRx)
inform the processor logical attributes of external memory.
On the 80960Jx, the only logical attribute controlled by
logical memory register pairs is data cacheability. The low-
order bit LMARx registers reflects the state byte-order
control bit present in DLMCON. In the LMARx registers,
this is a read only bit. In other words, the 80960Jx does not
support multiple byte-order profiles by logical region; it
implements only a homogeneous model. The entire memory
map is either big-endian or little-endian.

Logical memory regions are created using the
LMAR/LMMR register pair. Either:

• LMAR contains a starting address (4 Kbyte granu-
larity), against which all external accesses are
compared, or

• LMMR contains a mask, which indicates which
address bits in LMAR are actually compared (compare
under mask).

In this manner, one register pair can be used to create
multiple logical regions, aliased on an arbitrary power-of-
two boundary, by making some combination of upper
memory bits “don’t care.” The format of the LMAR and
LMMR registers is shown in Figure 8.

A AP-716

21

Figure 8. Format of LMARx and LMMRx Pairs on the 80960Jx Processor

048121620242831

Reserved
(Initialize to 0)

Template Starting Address

Data Cache Enable
0 = Data caching disabled
1 = Write-through caching enabled

Byte Order (Read-only)
0 = Little-endian
1 = Big-endian

Logical Memory Template Starting Address Register (LMARx)

048121620242831

Template Address Mask

Logical Memory Template Enable Control
0 = LMT disabled
1 = LMT enabled

Logical Memory Template Mask Register (LMMRx)

AP-716 A

22

The Default Logical Memory Configuration Register
(DLMCON) provides default logical memory control for
those accesses which do not fall within a region defined by
the logical memory control register pairs. Logical attributes
controlled by the DLMCON include data caching enable

and byte ordering. On the 80960Jx, the byte order
programmed in the DLMCON register controls byte
ordering for the entire 32-bit memory space. The format of
the DLMCON is illustrated in Figure 9.

Figure 9. Format of the DLMCON Register on the 80960Jx

048121620242831

Reserved
(Initialize to 0)

Byte Order
0 = Little-endian
1 = Big-endian

Data Cache Enable Control
0 = Data caching disabled
1 = Write-through caching enabled

The Bus Control Register (BCON) mainly serves to validate
the values stored in the PMCON registers (region table).
Immediately after a hardware reset, the region table is
marked invalid in the BCON register (bit 0 =0). Whenever
the region table is marked invalid in the BCON register, the
Bus Control Unit (BCU) uses the physical memory
parameters found in PMCON14:15 for accesses to all
regions (recall that PMCON14:15 is initialized from data
found in the IBR). Once the entire region table is loaded by

reset microcode, the region table is marked valid in the
BCON register (bit 0 = 1), and the BCU uses the
appropriate user programmed values. The BCON register
format is presented in Figure 10.

A AP-716

23

Figure 10. Format of the BCON Register on the 80960Jx

048121620242831

Reserved
(Initialize to 0)

Internal RAM Protect (IRP)
0 = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Supervisor Internal RAM Protect (SIRP)
0 = First 64 bytes not protected from supervisor mode writes
1 = First 64 bytes protected from supervisor mode writes

Region Table Valid
0 = Region table invalid, use PMCON14:15
1 = Region table valid, use all PMCON registers

2.3.4.3 External Memory Configuration on
the 80960Hx Processor

Control of physical and logical memory characteristics is
divided among several registers on the 80960Hx:

• Physical Memory Region Control (PMCON)

• Logical Memory Template Address (LMAR)

• Logical Memory Template Mask (LMMR)

• Default Logical Memory Configuration (DLMCON)
registers

There are sixteen PMCON registers, one for each 256
Mbyte physical memory region on the 80960Hx (PMCON0
through PMCON15). There are fifteen pairs of
LMAR/LMMR registers (LMAR0/LMMR0 through
LMAR14/LMMR14), and one DLMCON register.

PMCON registers define the following physical memory
attributes for the 80960Hx.

• Read Address to Data Wait States

• Read Data to Data Wait States

• Write Address to Data Wait States

• Write Data to Data Wait States

• Bus Turnaround Wait States

• Data Bus Parity

• Parity Sense

• Bus Width

• Read Pipelining

• Burst Enable

• READY/BTERM Enable

Note that this is a superset of the control found in 80960Cx
MCON registers. Also note that the format for the PMCON
registers of the 80960Jx and 80960Hx match; 80960Jx
PMCON registers select only bus width, but the bit
positions are the same.

The PMCON register format is shown in Figure 11.

AP-716 A

24

Figure 11. PMCON Register Format for the 80960Hx Processor

0481216

20242831

Bus Width
(00) 8-bit bus
(01) 16-bit bus
(10) 32-bit bus
(11) Reserved

Reserved
(Initialize to 0)

Read Address to Data Wait States
0 to 31 wait states allowed

Read Data to Data Wait States
0 to 3 wait states allowed

Write Address to Data Wait States
0 - 31 wait states allowed

Write Data to Data Wait States
0 - 3 wait states allowed

Bus Turnaround Wait States
0 to 15 wait states allowed

Parity Enable
0 = Parity disabled
1 = Parity enabled

Parity Sense
0 = Even parity
1 = Odd parity

Read Pipelining Enable
0 = disabled
1 = enabled

Burst Enable
0 = disabled
1 = enabled

READY/BTERM Enable

0 = READY/BTERM ignored
1 = READY/BTERM enabled

Logical memory control registers (LMARx and LMMRx)
inform the processor of the logical attributes of external
memory. On the 80960Hx, these registers control byte
ordering, data caching, and regions to be marked for quick
invalidation in the data cache. Lines in the data cache filled
from a “quick invalidation” region may be invalidated by
executing the Data Cache Control (dcctl) instruction,
without invalidating the entire cache. Note that byte
ordering is controlled by logical region on the 80960Hx; the
80960Jx supports only global byte ordering.

Logical memory regions are created using the
LMAR/LMMR register pair. LMAR contains a starting
address (4 Kbyte granularity), against which all external
accesses are compared. LMMR contains a mask, which
indicates which address bits in LMAR are actually
compared (compare under mask). In this manner, one
register pair may be used to create multiple logical regions,
aliased on an arbitrary power-of-two boundary, by making
some combination of upper memory bits “don’t care.”
LMAR and LMMR register formats are shown in Figure 12.

A AP-716

25

Figure 12. LMARx and LMMRx Registers on the 80960Hx Processor (LMCONx Pair)

048121620242831

Reserved
(Initialize to 0)

Template Starting Address

Data Cache Enable
0 = Data caching disabled
1 = Write-through caching enabled

Byte Order
0 = Little-endian
1 = Big-endian

Logical Memory Template Starting Address Register (LMARx)

048121620242831

Template Address Mask

Logical Memory Template Enable Control
0 = LMT disabled
1 = LMT enabled

Logical Memory Template Mask Register (LMMRx)

Data Cache Independently Invalidatable Region
0 = Region is not independently invalidatable
1 = Region is independently invalidatable

AP-716 A

26

The Default Logical Memory Configuration Register (DLMCON) provides default logical memory control for those
accesses which do not fall within a region defined by the logical memory control register pairs. Logical attributes
controlled by the DLMCON include data caching enable, independent data cache invalidation, and byte ordering. The
DLMCON register format is illustrated in Figure 13.

Figure 13. DLMCON Register on the 80960Hx

The Bus Control Register (BCON), represented in Figure 14, mainly serves to validate the values stored in the PMCON
registers (region table). Immediately after a hardware reset, the region table is marked invalid in the BCON register (bit 0 =
0). Whenever the region table is marked invalid in the BCON register, the Bus Control Unit (BCU) uses the physical
memory parameters found in PMCON15 for accesses to all regions (recall that PMCON15 is initialized from data found in
the IBR). Once the entire region table is loaded by reset microcode, the region table is marked valid in the BCON register
(bit 0 = 1), and the BCU uses the appropriate user programmed values.

Figure 14. Format of the BCON Register on the 80960Hx

048121620242831

Reserved
(Initialize to 0)

Byte Order
0 = Little-endian
1 = Big-endian

Data Cache Enable Control
0 = Data caching disabled
1 = Write-through caching enabled

Data Cache Independently Invalidatable Region
0 = Region can not be independently invalidated
1 = Region can be independently invalidated

048121620242831

Reserved
(Initialize to 0)

Internal RAM Protect (IRP)
0 = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Supervisor Internal RAM Protect (SIRP)
0 = First 64 bytes not protected from supervisor mode writes
1 = First 64 bytes protected from supervisor mode writes

Region Table Valid
0 = Region table invalid, use PMCON15
1 = Region table valid, use all PMCON registers

A AP-716

27

3.0 New and Extended Instructions

The 80960Jx and 80960Hx processors are designed for
software upward-compatibility from the 80960Cx
processor. The 80960Jx and 80960Hx processors execute
any instructions in the 80960Cx instruction set, except the
Setup DMA instruction (sdma). Executing sdma
generates a fault. In addition, the processors provide
additional instructions not supported by the 80960Cx
processor to enhance performance, and provide additional
control over on-chip memories and peripherals. These new
instructions are summarized in the following sections.

For more detailed information on new instructions, please
refer to the appropriate processor users manual.

3.1 New Instructions Supported by the
80960Jx and 80960Hx Processors

Table 6 lists the new 80960Jx and 80960Hx instructions.
These instructions are not supported by the 80960Cx
processor. These instructions are described in the following
sections. Refer to the Jx and Hx users manuals for extensive
details.

Table 6. New 80960Jx and 80960Hx Instructions

Instruction Name Mnemonic
Processor

Jx Hx

Conditional Integer/Ordinal Add addi<cc>/addo<cc> X X

Conditional Integer/Ordinal Subtract subi<cc>/subo<cc> X X

Byte Swap bswap X X

Compare Integer/Ordinal Byte cmpib/cmpob X X

Compare Integer/Ordinal Short cmpis/cmpos X X

Select Value sel<cc> X X

Data Cache Control dcctl X X

Instruction Cache Control icctl X X

Interrupt Control intctl X X

Global Interrupt Disable intdis X X

Global Interrupt Enable inten X X

Halt halt X X

Flush Data Cache Contents by Address dcflusha X

Give Address to Data Cache as Hint dchint X

Data Cache Invalidate by Address dcinva X

NOTES:

1. <cc> indicates conditional instructions. These conditions include: no - unordered, g -
greater, e - equal, ge - greater or equal, l - less, le - less or equal, ne - not equal,
o - ordered.

AP-716 A

28

3.1.1 Conditional Integer/Ordinal Add and Subtract and Select Value Instructions

Conditional add instructions (addi<cc>/addo<cc>) provide an efficient method for encoding C language constructs.
Consider the following example:

if (condition) value += adder; /* may translate to following assembly */
cmpir4, 0/* condition in r4 */
addiner5, r6, r5/* value in r5, adder in r6 */

This eliminates the need to branch around the addition. A similar example could be cited for the subtract instruction
(subi<cc>/subo<cc>). The select value instruction (sel<cc>) provides the ability to conditionally move data, thus an
efficient means to encode the following C construct:

r = a ? b : c; /* may translate to following assembly */
cmpir4, 0/* a in r4, tested against 0000.0000H */
seler5, r6, r7 /* r in r7, b in r5, c in r6 */

Again, this eliminates the need to branch around a move instruction.

The operation of these new instructions depends on the condition code mask applied by the instruction, to the current state
of the condition code flags. Condition code masks are selected based on the <cc> field, and listed in Table 7.

3.1.1.1 Operation of Conditional Add Instruction

The conditional add instructions perform the following operation:

if ((((mask != 0002) && (mask & AC.cc)) != 0002) || ((mask == 0002) && (AC.cc == 0002)))
 src/dst = src2 + src1;

3.1.1.2 Operation of Conditional Subtract Instruction

The conditional subtract instructions perform the following operation.

if ((((mask != 0002) && (mask & AC.cc)) != 0002) || ((mask == 0002) && (AC.cc == 0002)))
 src/dst = src2 - src1;

3.1.1.3 Operation of Select Value Instruction

The select value performs the following operation:

if ((((mask != 0002) && (mask & AC.cc)) != 0002) || ((mask == 0002) && (AC.cc == 0002)))
 src/dst = src2;
else
 src/dst = src1;

Table 7. Condition Code Masks

Mask Instruction Mask Instruction

0002 Unordered 1002 Less

0012 Greater 1012 Not Equal

0102 Equal 1102 Less or Equal

0112 Greater or Equal 1112 Ordered

NOTES:

1. Mask values correspond to those values applied to the condition code flags, found in
the Arithmetic Controls register (AC.cc).

A AP-716

29

3.1.2 Byte Swap Instruction (bswap)

The byte swap instruction is useful for reversing the byte
ordering of a value; it swaps a value’s endianess from little-
to big-endian, or vice versa. For instance, if a register
contains FF00.AA55H, then after the bswap instruction, it
will contain 55AA.00FFH. The operation of this instruction
follows:

src/dst = ((src1 rotate 8) & 00FF.00FFH) +
((src1 rotate 24) & FF00.FF00H),

where rotate means to shift the value to the left by the
number of bits specified; bits shifted out of the MSB
position are inserted back at the LSB position. The user
should be aware that, on some implementations, it is
possible to perform the byte-swap operation using an
equivalent set of discrete instructions.

3.1.3 Compare Integer/Ordinal Byte and
Short Instructions

The compare integer/ordinal byte and short instructions
provide for the comparison of 8- and 16-bit quantities,
without the need to manually mask upper bits. The
operation of these instructions follows:

if (src1[N:0] < src2[N:0]) AC.cc = 1002;
if (src1[N:0] == src2[N:0]) AC.cc = 0102;
if (src1[N:0] > src2[N:0]) AC.cc = 0012;

where N indicates the number of least-significant bits to
compare, and is either seven or fifteen.

3.1.4 Data Cache Control Instruction
(dcctl)

The data cache control instruction performs data cache
management and control. The src1 value determines the
operation to perform; some operations also use src2 and
src/dst. This instruction eliminates the need to provide such
functionality in the sysctl instruction, thus improving its
performance. The operations performed by this instruction
are listed in the following sections.

3.1.4.1 Function Zero - Disable the Data
Cache (src1 == 0)

This function globally disables the data cache. Data loads
and stores are directed to external memory; no access
causes a hit or space to be allocated in the cache. The cache
contents remain unchanged.

3.1.4.2 Function One - Enable the Data
Cache (src1 == 1)

This function globally enables the data cache. Data loads
may hit in the cache, eliminating the external bus access.
Data stores are allocated to the cache, and written to
external memory (write through cache).

3.1.4.3 Function Two - Globally Invalidate
the Data Cache (src1 == 2)

This function invalidates the entire data cache.

3.1.4.4 Function Three - Ensure Coherency
of the Data Cache with External
Memory
(src1 == 3)

This function is meant to ensure that the data cache is
guaranteed to be coherent with external memory. In this
case, since the data cache is write-through, the cache is
invalidated. In this manner, any new data allocated in the
cache is coherent with external memory.

3.1.4.5 Function Four - Get Data Cache
Status (src1 == 4)

This function returns the status of the data cache. Status
returned in src/dst follows the format outlined in Table 8.

AP-716 A

30

3.1.4.6 Function Six - Store Data Cache Sets to Memory (src1 == 6)

This instruction provides a means to dump the entire data cache, so that its contents may be examined and evaluated. The
operation performed by this function follows.

3.1.5 Instruction Cache Control Instruction (icctl)

The instruction cache control instruction performs instruction cache management and control. The sr1 value determines
the operation to perform; some operations also use src2 and src/dst. This instruction eliminates the need to provide such
functionality in the sysctl instruction, thus improving its performance. The operations performed by this instruction are
listed in the following subsections.

Table 8. Format of Data Cache Status

Bits of src/dst Meaning

[0] Data Cache Enable: 0 = disabled, 1 = enabled

[7:4] log2 (bytes per atom)

[11:8] log2 (atoms per line)

[15:12] log2 (number of sets)

[27:16] Number of ways minus one

NOTES:

1. Total Cache Size = ([27:16] + 1) << ([7:4] + [11:8] + [15:12])

2. Bits not specified read as zeroes.

Table 9. Function Six - Store Data Cache Sets to Memory (src1 == 6)

start = src/dst[15:0]; /* starting set number */
end = src/dst[31:16]; /*ending set number */
if (end >= DCACHE_MAX_SETS)
 end = DCACHE_MAX_SETS - 1;
if (start > end)
 GenerateFault(Operation.InvalidOperand);
memadr = src2;
for (set = start; set <= end; set++)
{
 memory[memadr] = SetData[set];
 memadr += 4;
 for (way = 0; way < DCACHE_MAX_WAYS; way++)
 {
 memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < DCACHE_WORDS_IN_LINE; word++)
 {
 memory[memadr] = DCache_Line[set][way][word];
 memadr += 4;
 }
 }
}

A AP-716

31

3.1.5.1 Function Zero - Disable the
Instruction Cache (src1 == 0)

This function globally disables the instruction cache.
Instruction fetches are directed to external memory; no
fetch causes a hit or space to be allocated in the cache. The
cache contents remain unchanged.

3.1.5.2 Function One - Enable the
Instruction Cache (src1 == 1)

This function globally enables the instruction cache.
Instruction fetches may hit in the cache, eliminating the
external bus access. Instruction fetches that do not hit are
redirected to external memory, and allocated in the cache.

3.1.5.3 Function Two - Globally Invalidate
the Instruction Cache (src1 == 2)

This function invalidates the entire instruction cache.

3.1.5.4 Function Three - Load and Lock
Code into the Instruction Cache
(src1 == 3)

This function is used to load and lock instructions into the
instruction cache. Src2 contains the number of contiguous
blocks to load; src/dst contains the starting address of code
to lock. The operation of this function follows:

3.1.5.5 Function Four - Get Instruction Cache Status (src1 == 4)

This function returns the status of the data cache. Status returned in src/dst follows the format outlined in Table 11.

Table 10. Function Three - Load and Lock Code into the Instruction Cache (src1 == 3)

for (j = 0; j < src2; j++)
{
 way = way_associated_with_block(j);
 start = src/dst + j * block_size;
 end = start + block_size;
 for (i = start; i < end; i += 4)
 {
 set = set_associated_with(i);
 word = word_associated_with(i);
 ICache_Line[set][way][word] = memory[i];
 UpdateTagNValidBits(set, way, word);
 LockICache(set, way, word);
 }
}

Table 11. Format of Instruction Cache Status

Bits of src/dst Meaning

[0] Instruction Cache Enable: 0 = disabled, 1 = enabled

[7:4] log2 (bytes per atom)

[11:8] log2 (atoms per line)

[15:12] log2 (number of sets)

[27:16] Number of ways minus one

NOTES:

1. Total Cache Size = ([27:16] + 1) << ([7:4] + [11:8] + [15:12])

2. Bits not specified read as zeroes.

AP-716 A

32

3.1.5.6 Function Five - Get Instruction Cache Locking Status (src1 == 5)

This function returns the instruction cache locking status. Status returned in src/dst follows the format outlined in Table 12.

3.1.5.7 Function Six - Store Instruction Cache Sets to Memory (src1 == 6)

This instruction provides a means to dump the entire instruction cache, so that its contents may be examined and evaluated.
The operation performed by this function follows.

3.1.6 Interrupt Control Instruction

This instruction provides a means of globally enabling or disabling interrupts; the previous state of the interrupt controller is
returned. The interrupt control instruction may also be used to interrogate the state of the interrupt controller, whether
enabled or disabled. The processor guarantees that the new interrupt controller state is in effect before the instruction
completes.

Table 12. Format of Instruction Cache Locking Status

Bits of src/dst Meaning

[7:0] Number of blocks that lock

[23:8] Block size in words

[31:24] Number of locked blocks

Table 13. Function Six - Store Instruction Cache Sets to Memory (src1 == 6)

start = src/dst[15:0]; /* starting set number */
end = src/dst[31:16]; /*ending set number */
if (end >= ICACHE_MAX_SETS)
 end = ICACHE_MAX_SETS - 1;
if (start > end)
 GenerateFault(Operation.InvalidOperand);
memadr = src2;
for (set = start; set <= end; set++)
{
 memory[memadr] = SetData[set];
 memadr += 4;
 for (way = 0; way < ICACHE_MAX_WAYS; way++)
 {
 memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < ICACHE_WORDS_IN_LINE; word++)
 {
 memory[memadr] = ICache_Line[set][way][word];
 memadr += 4;
 }
 }
}

A AP-716

33

3.1.6.1 Function Zero - Globally Disable
Interrupts (src1 = 0)

Executing this function globally disables interrupts by
setting the global interrupt enable bit of the Interrupt
Control register (ICON.gie = 1). The previous state of
ICON.gie is returned in bit zero of the src/dst.

3.1.6.2 Function One - Globally Enable
Interrupts (src1 = 1)

Executing this function globally enables interrupts by
clearing the global interrupt enable bit of the Interrupt
Control register (ICON.gie = 0). The previous state of
ICON.gie is returned in bit zero of the src/dst.

3.1.6.3 Function Two - Return Interrupt
Controller Status (src1 = 2)

By executing this function, the state of the global interrupt
enable bit of the Interrupt Control register (ICON.gie) is
returned in bit zero of src/dst.

3.1.7 Global Interrupt Disable

This instruction provides a high-performance method for
globally disabling interrupts. Interrupts are disabled by
setting the global interrupt enable bit in the Interrupt
Control register (ICON.gie = 1). In timing-critical routines,
this instruction is preferable to the Interrupt Control
instruction (intctl).

3.1.8 Global Interrupt Enable

This instruction provides a high-performance method for
globally enabling interrupts. Interrupts are enabled by
clearing the global interrupt enable bit in the Interrupt
Control register (ICON.gie = 0). In timing-critical routines,
this instruction is preferable to the Interrupt Control
instruction (intctl).

3.1.9 Halt Instruction

The halt instruction provides a means for the processor to
prepare itself to receive an interrupt, and to service that
interrupt quickly. Once the halt instruction executes
processing ceases until an interrupt is received of sufficient
priority to cause an exit from the halted state. Such an

interrupt is serviced, and then normal execution continues
at the instruction after halt. The halt instruction may
enable or disable interrupts based on the value of src1.

3.1.9.1 Function Zero - Globally Disable
Interrupts (src1 = 0)

When this instruction executes with src1 equal to zero, the
global interrupt enable bit of the Interrupt Control register
is set (ICON.gie = 1). This masks all interrupts except a
non-maskable interrupt (NMI); only an NMI event can
bring the processor out of the halted state in this case.

3.1.9.2 Function One - Globally Enable
Interrupts (src1 = 1)

When this instruction executes with src1 equal to one, the
global interrupt enable bit of the Interrupt Control register
is cleared (ICON.gie = 0). This globally enables all
interrupts; any interrupt of sufficient priority causes the
processor to exit halted state in favor of servicing the
interrupt.

3.1.9.3 Function Two - Halt Without
Modifying the Current Interrupt
State (src1 = 2)

When this instruction executes with src1 equal to two, the
interrupt controller state remains unmodified. The global
interrupt enable state of the processor is not affected.

3.1.10 Flush Data Cache Contents by
Address Instruction (dcflusha)

If the effective address referenced by this instruction hits in
the data cache, then steps must be taken to guarantee that
the value cached for any part or all of the quad-word that
the address specifies must be the same as the values for that
quad-word in external memory. Since the 80960Hx incor-
porates a write-through cache, this instruction performs the
same operation as the dcinva instruction; the quad-word of
data in which the address falls is invalidated.

This instruction is available only on the 80960Hx
processor.

AP-716 A

34

3.1.11 Give Address to Data Cache as Hint
Instruction (dchint)

This instruction is architecturally specified as either a hint
to the data cache, or as a no-operation.

If implemented as a data cache hint, it generates an effective
address that would be sent to the data cache, indicating that
data at the specified address is likely to be needed soon. If
this hint to the data cache results in a fault generation, the
hint is ignored and no fault is generated.

This instruction is available only on the 80960Hx processor,
and is implemented as a no-operation.

3.1.12 Data Cache Invalidate by Address
Instruction (dcinva)

The effective address referenced in this instruction is sent to
the data cache. The cache must guarantee that after
execution of this instruction, the quad-word of data in
which this effective address falls is not cached.

This instruction is available only on the 80960Hx processor.

3.2 Extended Instructions

The 80960Jx and 80960Hx processors extend the function-
ality of the sysctl instruction, as originally supported by
the 80960Cx processor. This additional functionality
supports access to memory-mapped control registers, and
the breakpoint sharing mechanism.

3.2.1 System Control Instruction (sysctl)

The system control (sysctl) instruction present on the
80960Cx processor has expanded functionality on the
80960Jx and 80960Hx processors. The function that sysctl
performs is determined from the message type of the
instruction. The message type is obtained by logically
ANDing src1 with FF00H, and shifting the results to the
right by eight bits ((src1 & FF00H) >> 8). The various
functions of the sysctl instruction are detailed in the
following sections.

3.2.1.1 Function Zero - Post Software
Interrupt (Message Type = 00H)

This function behaves identically to the 80960Cx processor.
Typically, sysctl is used to request an interrupt in a program.
The request interrupt message type (00H) is selected and

the interrupt procedure pointer number is specified in the
least significant byte of the instruction operand.

3.2.1.2 Function One - Invalidate the
Instruction Cache (Message Type =
01H)

This function behaves identically to the 80960Cx processor.

3.2.1.3 Function Two - Configure the
Instruction Cache (Message Type =
02H)

The 80960Cx processor supports four modes of operation:
modes 0, 1, 4, and 6. The mode is determined by logically
ANDing src1 with FFH (src1 & FFH). Mode 0 and mode 1
enable and disable the instruction cache, respectively. Mode
4 may be used to load and lock the entire instruction cache
(1 Kbyte), while mode 6 is used to load and lock only half
the instruction cache (512 bytes).

The 80960Jx and 80960Hx processors also support four
modes of operation with slightly different behavior; they
also are modes 0, 1, 4, and 6. Again modes 0 and 1 may be
used to enable and disable the instruction cache, respec-
tively. However, modes 4 and 6 differ slightly from the
80960Cx processor operation. These two modes are used to
load and lock the instruction cache; the number of blocks
(ways) to load and lock are indicated by src2. The algorithm
used to load and lock the cache is the same as that outlined
for the instruction cache control instruction (icctl).

3.2.1.4 Function Three - Software Reinitial-
ization (Message Type 03H)

This function behaves identically to the 80960Cx processor.
The 80960Jx and 80960Hx processors guarantee that the
instruction and data caches are both invalidated and
disabled before execution resumes.

3.2.1.5 Function Four - Load One Group of
Control Registers (Message Type
04H)

This function is implemented on the 80960Cx processor.
The 80960Jx and 80960Hx processors do not support this
function.

A AP-716

35

3.2.1.6 Function Five - Modify One Memory-
mapped Control Register (Message
Type 05H)

This function provides a means to modify a specified
memory-mapped control register. The upper sixteen bits of
src1 (src1[31:16]) contain the two low-order bytes of the
address of the memory-mapped register to access. The new
value to write is contained in src2, and src3 contains a
mask. After the operation completes, the previous value of
the memory-mapped register is returned in src/dst. The
operation performed by this function follows.

addr = (FF00H << 16) | (src1 >> 16);
temp = memory[addr];
memory[addr] = (src2 & src/dst)
| (temp & ~src/dst);
src/dst = temp;

This function is not supported on the 80960Cx processor.

3.2.1.7 Function Six - Breakpoint Resource
Request (Message Type 06H)

To properly use the hardware breakpoint resources of the
80960Jx and 80960Hx, application code must first request
access to these resources. To do so, the application must
execute this function of the sysctl instruction, and use this
function. After completion, the value of src/dst indicates the
breakpoint resources available to the application. This is
shown in Table 14. For more information on breakpoint
resource sharing, refer to section 5.0, Breakpoint Resource
Sharing Mechanism.

This function is not supported on the 80960Cx processor.

Table 14. src/dst Field Definitions for Breakpoint Resource Request

Bits of src/dst Description

[3:0] Number of available instruction breakpoint registers

[7:4] Number of available data address breakpoint registers

[31:8] Read as zeroes

4.0 Register Cache/Stack Frames

The 80960Cx, 80960Jx, and 80960Hx processors each
implement a register cache to store local register sets during
explicit and implicit calls. By definition, this memory is not
a cache, but a FIFO; the last register set stored in the
memory is the first to be retrieved. The register cache is
configured from the Register Cache Configuration Word
(RCCW), which is read from the PRCB during initialization
(see section 2.1.2 Processor Control Block (PRCB)). This
register’s format and control functions of vary from
processor to processor, as discussed in the following
sections.

4.1 Register Cache Configuration on the
80960Cx Processor

The 80960Cx processor provides for up to fifteen local
register sets to be stored on-chip. If more than five registers
sets are specified, additional storage space is taken from
internal data RAM, starting at the highest available location
and working down from there. For instance, if storage is
requested for six register sets, the register cache stores the
first five, and data RAM locations 0000.03C0H through
0000.03FFH are used to store the sixth set (recall the
80960Cx provides 1 Kbyte of on-chip data RAM located
from addresses 0000.0000H through 0000.03FFH). The
user code initializes the least-significant four bits of the
RCCW with the total number of register sets to be cached
on-chip. If greater than five sets are requested, the required
amount of on-chip data RAM is used as described above.
The format of the RCCW is shown in Figure 15.

AP-716 A

36

Figure 15. Register Cache Configuration Word (RCCW) for the 80960Cx Processor

4.2 Register Cache Configuration on the 80960Jx Processor

The 80960Jx processor provides for eight local register sets to be stored in the register cache. Unlike the 80960Cx and
80960Hx processors, additional register frames cannot be stored in the register cache by consuming additional on-chip data
RAM.

By initializing the RCCW, application code may reserve register frames within the register cache for use only by high-
priority interrupts (priority 28 or above). This is accomplished by programming bits 10 through 8 with the appropriate
value. Allowed values of the programmed limit range from 0002 to 1112. Setting the value to 1112 reserves all register
frames for high-priority interrupts. Setting the value to 0002 reserves no register frames for high-priority interrupts.

The RCCW is initialized from the PRCB during initialization. It is not accessible through the memory-mapped control
register interface. Register format is shown in Figure 16.

Figure 16. Register Cache Configuration Word (RCCW) for the 80960Jx Processor

4.3 Register Cache Configuration on the 80960Hx Processor

The 80960Hx processor provides for up to fifteen local register sets to be stored on-chip. If more than five register sets are
specified, additional storage space is taken from internal data RAM, starting at the highest available location and working
down from there. For instance, if storage is requested for six register sets, the register cache stores the first five, and data
RAM locations 0000.07C0H through 0000.07FFH are used to store the sixth set (recall the 80960Hx provides 2 Kbytes of
on-chip data RAM located from addresses 0000.0000H through 0000.07FFH).

User code initializes the least-significant four bits of the RCCW with the total number of register sets to be cached on-chip.
If greater than five sets are requested, the required amount of on-chip data RAM is used as described above. By initializing

048121620242831

Reserved
(Initialize to 0)

Number of Cached Local Register Sets (0 - 15)

048121620242831

Reserved
(Initialize to 0)

Reserved Register Frames for High-priority Interrupts (0 - 7)

A AP-716

37

the RCCW appropriately, application code may reserve
register frames within the register cache for use only for
high-priority interrupts (priority 28 or above). This is
accomplished by programming bits 12 through 8 with the
appropriate value. Allowed values of the programmed limit
range from 00002 to 11112. Setting the value to 11112
reserves all register frames for high-priority interrupts.
Setting the value to 00002 reserves no register frames for

high-priority interrupts. The number of frames reserved for
high-priority interrupts must be equal to or less than the
total number of frames available.

The RCCW is initialized from the PRCB during initial-
ization. It is not accessible through the memory-mapped
control register interface. The register format is shown in
Figure 17.

Figure 17. Register Cache Configuration Word (RCCW) for the 80960Hx Processor

048121620242831

Reserved
(Initialize to 0)

Reserved Register Frames for High-priority Interrupts (0 - 15)

Total Number of Cached Local Register Sets (0 - 15)

5.0 Breakpoint Resource Sharing
Mechanism

The 80960 family of processors provide significant on-chip
debugging capabilities, including breakpoint and breakpoint
control registers. While breakpoint resources included on
the 80960Cx, 80960Jx, and 80960Hx processors are similar
in function, the access model is different. Accesses to
breakpoint resources on the 80960Jx and 80960Hx
processors are controlled such that contention between
application code (such as embedded debuggers) and
hardware development tools does not occur. This section
discusses these differences.

5.1 Breakpoint Resources on the
80960Cx Processor

The 80960Cx processor provides two instruction address
(IPB0, IPB1) and two data address (DAB0, DAB1)
breakpoint registers. In addition, the Breakpoint Control
(BPCON) register serves to control the data address
breakpoint registers. The 32-bit IPBx registers contain the
30-bit address on which to break normal execution. Only 30

bits of address are compared, because instruction addresses
must be word aligned. The low-order bit of each register
provides enable/disable control for each register. Execution
“breaks” after the instruction executes. The DABx registers
contain the 32-bit address at which an appropriate data
access causes the processor to “break” normal execution.
Data address breakpoints are controlled by the BPCON
register, and may be configured to break on:

1. stores

2. loads or stores

3. load, store, or instruction fetch

4. any access

Application code programs these registers by using the
“load control register” function of the sysctl instruction.
The only restriction here is that the processor must be in
supervisor mode to execute the sysctl instruction. These
registers are also initialized at reset and software reinitial-
ization, from values contained in the control table. There is
no controlled access or sharing mechanism provided with
the 80960Cx processor.

AP-716 A

38

5.2 Breakpoint Resources on the
80960Jx Processor

The 80960Jx processor provides two instruction address
(IPB0, IPB1) and two data address (DAB0, DAB1)
breakpoint registers. In addition, the Breakpoint Control
(BPCON) register serves to control the data address
breakpoint registers. The 32-bit IPBx registers contain the
30-bit address on which to break normal execution. Only 30
bits of address are compared, because instruction addresses
must be word aligned. The low-order bit of each register
provides enable/disable control for each register. Execution
“breaks” after the instruction executes. The DABx registers
contain the 32-bit address at which an appropriate data
access causes the processor to break normal execution. Data
address breakpoints are controlled by the BPCON register,
and may be configured to break under the following
conditions:

1. stores

2. loads or stores

3. loads

These registers are accessed through the sysctl instruction,
or as memory-mapped control registers.

To avoid contention between hardware development tools
and application code, the 80960Jx implements a breakpoint
sharing mechanism. Application code must always first
request and acquire hardware breakpoint resources before
any attempt is made to access them. Hardware development
tools exercise supervisor control over breakpoint resource
allocation. If the tool retains control of breakpoint
resources, none are available for application code. If a
development tool is not being used, access privilege to
access breakpoint resources is granted to the application.
The development tool may relinquish control of breakpoint
resources to the application at its discretion.

If the application attempts to access the breakpoint or
breakpoint control (BPCON) registers without first
acquiring access rights to them, a fault is generated. In this
case, the breakpoint resource is not modified, whether
accessed through a sysctl instruction or as a memory-
mapped register. These breakpoint registers are not
initialized from the control table at reset or software reini-
tialization. Instead, they are initialized during the execution
of the sysctl instruction when access is requested, only
when the application successfully gains access to these
registers.

For more information on breakpoint resource sharing, refer
to the i960® Jx Microprocessor User’s Manual.

5.3 Breakpoint Resources on the
80960Hx Processor

The 80960Hx processor provides six instruction address
(IPB0 - IPB5) and six data address (DAB0 - DAB5)
breakpoint registers. In addition, the Breakpoint Control
(BPCON) and Expanded Breakpoint Control (XBPCON)
registers serve to control the data address breakpoint
registers. The 32-bit IPBx registers contain the 30-bit
address on which to break normal execution. Only 30 bits of
address are compared, because instruction addresses must
be word aligned. The low-order bit of each register provides
enable/disable control for each register. Execution breaks
after the instruction executes. The DABx registers contain
the 32-bit address at which an appropriate data access
causes the processor to break normal execution. Data
address breakpoints are controlled by the BPCON register,
and may be configured to break under the following
conditions:

1. stores

2. loads or stores

3. loads

These registers are accessed through the sysctl instruction,
or as memory-mapped control registers.

To avoid contention between hardware development tools
and application code, the 80960Hx also implements a
breakpoint sharing mechanism. Application code must
always first request and acquire hardware breakpoint
resources before any attempt is made to access them.
Hardware development tools exercise supervisor control
over breakpoint resource allocation. If the tool retains
control of breakpoint resources, none are available for
application code. If the tool is not being used, access
privilege to access breakpoint resources are granted to the
application. It is possible on the 80960Hx for the
application to obtain legal access to IPB0, IPB1, DAB0, and
DAB1, and for the remaining breakpoint resources to
remain under control of the development tool. Like the
80960Jx, the tool may relinquish control of breakpoint
resources to the application at its discretion.

If the application attempts to access the breakpoint or
breakpoint control (BPCON) registers without first
acquiring access rights to them, a fault is generated. In this
case, the breakpoint resource is not modified, whether

A AP-716

39

accessed through a sysctl instruction or as a memory-
mapped register. These breakpoint registers are not
initialized from the control table at reset or software reini-
tialization. Instead, they are initialized during the execution
of the sysctl instruction when access is requested, only
when the application successfully gains access to these
registers.

For more information on breakpoint resource sharing, refer to
the i960®Hx Microprocessor User’s Manual.

6.0 Integrated Peripherals

The integrated peripheral sets available on the 80960Cx,
80960Jx, and 80960Hx processors are summarized in Table
15.

Table 15. Integrated Peripherals on the 80960Cx, 80960Jx, and 80960Hx Processors

Peripheral
Processor

80960Cx 80960Jx 80960Hx

Direct Memory Access Controller Yes No No

Interrupt Controller Yes Yes Yes

Guarded Memory Unit No No Yes

Timers None Two Two

6.1 Direct Memory Access Control Unit
on the 80960Cx Processor

The Direct Memory Access controller on the 80960Cx
processor provides integrated DMA capability to the appli-
cation. The DMA controller can manage four independent
DMA channels concurrently. Each channel supports
transfers between any combination of external memory and
internal data RAM. There are two modes employed to
accomplish DMA transfers:

• demand mode (synchronous)

• block mode (asynchronous)

Demand mode transfers typically move data between
external devices and memory. Block mode transfers typically
move blocks of data within memory.

The 80960Cx processor provides a 13-pin interface to
manage DMA transfers. These pins include:

• DMA request (DREQx)

• DMA acknowledge (DACKx)

• End of Process/Terminal Count (EOPx/TCx), and

• DMA Access (DMA)

The 80960Cx DMA controller provides two means to
transfer data: standard and fly-by transfers. During standard

transfers, multiple bus cycles are generated until the transfer
is complete. During fly-by, the processor uses idle time on
the bus to “slip in” a DMA bus cycle. Transfers may occur
between any combination of 8-, 16-, and 32-bit memories
using byte, short, word, or quad-word transactions.

DMA functionality is controlled by programming the DMA
Command (DMAC) register, and the DMA Control Word. A
special instruction, the Set Up DMA (sdma) instruction is
also used to configure DMA functionality.

Programming the DMA controller is not discussed in detail
in this document. Using the DMA capabilities of the
80960Cx processor precludes an application from being
80960Hx-ready. The user must not use DMA functions of
the 80960Cx processor if the design will be upgraded to the
80960Hx processor. For more information on the DMA
controller, refer to the i960® Cx Microprocessor User’s
Manual.

AP-716 A

40

6.2 Guarded Memory Unit on the
80960Hx Processor

The Guarded Memory Unit (GMU) provides memory
protection capabilities to the 80960Hx processor. This is
useful during software development to detect and protect
against illegal memory accesses. The GMU does not
degrade execution, or in any way affect correct program
execution. This peripheral is available only on the 80960Hx
processor.

Using the GMU, application code may set up ranges of
addresses with programmable access privileges. These
privileges include: user read, user write, user execute,

supervisor read, supervisor write, and supervisor execute.
The GMU provides two range types: protection and
detection ranges. Illegal accesses which fall within a
protected range are prevented from altering memory. The
processor guarantees that the access does not result in an
internal cache or data RAM access, or generate an external
bus cycle. The PROTECTION.BAD_ACCESS fault is also
generated. An unauthorized access which falls within a
detection range is allowed to complete, but the same
protection fault is generated. An example of how the GMU
might be configured to provide memory protection is given
in Table 16.

Table 16. Sample Application with Restricted Memory Partitions

Application Memory Partition
Supervisor User Execute

Read Write Read Write Read Write

Application/User RAM X X
User Mode Stack X X X X

Interrupt, Supervisor, Fault Tables X X
Interrupt Stack X X

Supervisor Stack X X
Kernel RAM X X

Kernel Code and Application Code X X

NOTES:

1. An ‘X’ in a location indicates the access is allowed.

The GMU is configured using several control registers:

• GMU Control register (GCR)

• GMU Memory Protect Address register pairs (MPARx,
MPMRx), and

• GMU Memory Violation Detection register pairs
(MDUBx, MULBx)

Two memory protect address register pairs are provided,
allowing for a minimum of two protection ranges to be
selected. More than two protection ranges are possible
because the protection range address pairs are implemented
as a base address and mask. An arbitrary number of
addresses may be aliased by setting the appropriate mask
bits. A total of six memory violation detection ranges may
be selected. These register pairs act as true range (upper and
lower bounds) registers.

Programming the GMU is not discussed in detail in this
document. For more information on the GMU, refer to the
i960® Hx Microprocessor User’s Manual.

6.3 Interrupt Control Unit

The 80960Cx, 80960Jx, and 80960Hx processors
implement an integrated interrupt controller. The interrupt
controllers present on the 80960Jx and 80960Hx are
identical. The 80960Jx and 80960Hx implementations draft
directly from the 80960Cx. The following sections detail
differences between the 80960Cx and the 80960Jx/
80960Hx interrupt controllers.

6.3.1 80960Cx Processor Interrupt
Control Unit

The 80960Cx processor’s interrupt controller is configured
by programming the Interrupt Control (ICON), Interrupt
Mapping (IMAP0 - IMAP2), Interrupt Mask (IMSK), and
Interrupt Pending (IPND) registers. The formats of these
registers are given in the following paragraphs.

A AP-716

41

6.3.1.1 Interrupt Control Register (ICON)
The interrupt control register of the 80960Cx processor (see Figure 18) controls basic functionality of the interrupt
controller such as interrupt mode, signal detection, global enable/disable, mask operation, interrupt vector caching, and
sampling mode.

Figure 18. Interrupt Control Register on the 80960Cx Processor

048

121620242831

Reserved
(Initialize to 0)

m
a
0

g
i
e

s
d
m
7

s
d
m
6

s
d
m
5

s
d
m
4

s
d
m
3

s
d
m
2

s
d
m
1

s
d
m
0

i
m
1

i
m
0

m
a
1

v
c
e

s
m

d
m
a
s

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode - ICON.sdm
(0) Level-low Activated
(1) Falling-edge Activated

Global Interrupt Enable - ICON.gie
(0) Enabled
(1) Disabled

Mask Operation - ICON.mo

(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded mode interrupts

Vector Cache Enable - ICON.vce
(0) Fetch from external memory
(1) Fetch from internal RAM

Sampling Mode - ICON.sm
(0) Debounce
(1) Fast

DMA Suspension - ICON.dmas
(0) Run on interrupt
(1) Suspend on interrupt

Note the control bits designated in Figure 18 which are
related to DMA functionality. The 80960Jx and 80960Hx
processors do not support DMA capability, and therefore do
not contain these control bits. Programming the ICON
register is supported through the sysctl instruction on the
80960Cx processor.

6.3.1.2 Interrupt Mapping Registers (IMAP0-
IMAP2)

Interrupt mapping registers are used to program the vector
number associated with an interrupt source when the source
is connected to a dedicated-mode input.

• Registers IMAP0 and IMAP1 contain mapping
information for the external interrupt pins (four bits per
pin

• Register IMAP2 contains mapping information for the
DMA interrupt inputs (four bits per input)

The format of these registers is shown in Figure 19.

AP-716 A

42

Figure 19. Interrupt Mapping Registers on the 80960Cx Processor

048121620242831

External Interrupt 0 Field - IMAP0.x0

x
2
7

x
2
6

x
2
5

x
2
4

x
1
7

x
1
6

x
1
5

x
1
4

x
0
7

x
0
6

x
0
5

x
0
4

Interrupt Map Register 0 (IMAP0)

x
3
7

x
3
6

x
3
5

x
3
4

External Interrupt 1 Field - IMAP0.x1
External Interrupt 2 Field - IMAP0.x2
External Interrupt 3 Field - IMAP0.x3

048121620242831

External Interrupt 4 Field - IMAP1.x4

x
6
7

x
6
6

x
6
5

x
6
4

x
5
7

x
5
6

x
5
5

x
5
4

x
4
7

x
4
6

x
4
5

x
4
4

Interrupt Map Register 1 (IMAP1)

x
7
7

x
7
6

x
7
5

x
7
4

External Interrupt 5 Field - IMAP1.x5
External Interrupt 6 Field - IMAP1.x6
External Interrupt 7 Field - IMAP1.x7

Reserved
(Initialize to 0)

048121620242831

External Interrupt 0 Field - IMAP2.d0

d
2
7

d
2
6

d
2
5

d
2
4

d
1
7

d
1
6

d
1
5

d
1
4

d
0
7

d
0
6

d
0
5

d
0
4

Interrupt Map Register 2 (IMAP2)

d
3
7

d
3
6

d
3
5

d
3
4

External Interrupt 1 Field - IMAP2.d1
External Interrupt 2 Field - IMAP2.d2
External Interrupt 3 Field - IMAP2.d3

Note the DMA-related control bits. The 80960Jx and
80960Hx processors do not support DMA functionality;
therefore these control bits do not exist. The IMAPx
registers are programmed by using the sysctl instruction.

6.3.1.3 Interrupt Mask and Interrupt Pending
Registers (IMSK, IPND)

The interrupt mask register provides a mechanism to
uniquely mask dedicated mode interrupts and DMA
interrupt sources, or globally mask expanded mode
interrupts. In this manner, application software may prevent

servicing of these interrupts. The interrupt pending register
serves as a means to post dedicated mode interrupts, or
interrupts from a DMA source. Application code which sets
a bit in the interrupt pending register precipitates the same
action that would occur if an external interrupt source
caused the bit to be set.

These registers are accessed as special function registers:
interrupt pending as sf0, interrupt mask as sf1. On reset, the
interrupt mask is cleared (= 0) and interrupt pending
undefined. Application code is responsible for explicitly
initializing these registers. Figure 20 shows the format of
these registers.

A AP-716

43

Figure 20. Interrupt Pending (sf0) and Interrupt Mask (sf1) on the 80960Cx Processor

048121620242831

Reserved
(Initialize to 0)

DMA Interrupt Pending - IPND.dip
0 = No interrupt
1 = Pending interrupt

External Interrupt Pending - IPND.xip
0 = No interrupt
1 = Pending interrupt

d
i
p
3

d
i
p
2

d
i
p
1

d
i
p
0

x
i
p
7

x
i
p
6

x
i
p
5

x
i
p
4

x
i
p
3

x
i
p
2

x
i
p
1

x
i
p
0

Interrupt Pending Register (IPND) - sf0

048121620242831

DMA Interrupt Mask - IMSK.dim
0 = Masked
1 = Not masked

External Interrupt Mask - IMSK.xim
0 = Masked
1 = Not masked

d
i

m
3

d
i

m
2

d
i

m
1

d
i

m
0

x
i

m
7

x
i

m
6

x
i

m
5

x
i

m
4

x
i

m
3

x
i

m
2

x
i

m
1

x
i

m
0

Interrupt Mask Register (IMSK) - sf1

6.3.2 80960Jx/80960Hx Processor
Interrupt Control Unit

The 80960Jx and 80960Hx interrupt controllers are
configured by programming the Interrupt Control (ICON),
Interrupt Mapping (IMAP0 - IMAP2), Interrupt Mask
(IMSK), and Interrupt Pending (IPND) registers. The
formats of these registers are given in the following
paragraphs.

6.3.2.1 Interrupt Control Register (ICON)

The interrupt control register of the 80960Jx and 80960Hx
processors control basic functionality of the interrupt
controller such as interrupt mode, signal detection, global
enable/disable, mask operation, interrupt vector caching,
and sampling mode. The format of this register is shown in
Figure 21.

AP-716 A

44

Figure 21. Interrupt Control Register (ICON) on the 80960Jx and 80960Hx Processors

048121620242831

Reserved
(Initialize to 0)

m
o
0

g
i
e

s
d
m
7

s
d
m
6

s
d
m
5

s
d
m
4

s
d
m
3

s
d
m
2

s
d
m
1

s
d
m
0

i
m
1

i
m
0

m
o
1

v
c
e

s
m

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode - ICON.sdm
(0) Level-low Activated
(1) Falling-edge Activated

Global Interrupt Enable - ICON.gie
(0) Enabled
(1) Disabled

Mask Operation - ICON.mo

(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded mode interrupts

Vector Cache Enable - ICON.vce
(0) Fetch from external memory
(1) Fetch from internal RAM

Sampling Mode - ICON.sm
(0) Debounce
(1) Fast

Programming the ICON register is supported through the
sysctl instruction. The ICON register is also mapped to the
memory-mapped register space, address FF00.8510H, and
may be accessed as such in supervisor mode. This register is
also affected by the interrupt control (intctl), interrupt
disable (intdis), and interrupt enable (inten) instructions.
Refer to section 3.0 New and Extended Instructions, for
more information.

6.3.2.2 Interrupt Mapping Registers (IMAP0-
IMAP2)

Interrupt mapping registers are used to program the vector
number associated with an interrupt source when the source
is connected to a dedicated-mode input, or timer interrupt.

• Registers IMAP0 and IMAP1 contain mapping
information for the external interrupt pins (four bits per
pin)

• register IMAP2 contains mapping information for the
timer interrupt sources (four bits per input)

The format of these registers is shown in Figure 22.

A AP-716

45

Figure 22. Interrupt Mapping Registers on the 80960Jx and 80960Hx Processors

048121620242831

Reserved
(Initialize to 0)

External Interrupt 0 Field - IMAP0.x0

x
2
7

x
2
6

x
2
5

x
2
4

x
1
7

x
1
6

x
1
5

x
1
4

x
0
7

x
0
6

x
0
5

x
0
4

Interrupt Map Register 0 (IMAP0)

x
3
7

x
3
6

x
3
5

x
3
4

External Interrupt 1 Field - IMAP0.x1
External Interrupt 2 Field - IMAP0.x2
External Interrupt 3 Field - IMAP0.x3

048121620242831

Timer Interrupt 0 Field - IMAP2.t0

t
1
3

t
1
2

t
1
1

t
1
0

t
0
3

t
0
2

t
0
1

t
0
0

Interrupt Map Register 2 (IMAP2)

Timer Interrupt 1 Field - IMAP2.t1

048121620242831

External Interrupt 4 Field - IMAP1.x4

x
6
7

x
6
6

x
6
5

x
6
4

x
5
7

x
5
6

x
5
5

x
5
4

x
4
7

x
4
6

x
4
5

x
4
4

Interrupt Map Register 1 (IMAP1)

x
7
7

x
7
6

x
7
5

x
7
4

External Interrupt 5 Field - IMAP1.x5
External Interrupt 6 Field - IMAP1.x6
External Interrupt 7 Field - IMAP1.x7

The IMAPx registers are programmed by using the sysctl
instruction. They may also be accessed as memory-mapped
control registers, at addresses FF00.8520H through
FF00.8528H, in supervisor-mode only.

6.3.2.3 Interrupt Mask and Interrupt Pending
Registers (IMSK, IPND)

The interrupt mask register provides a mechanism to
uniquely mask dedicated mode interrupts and timer
interrupt sources, or globally mask expanded mode
interrupts. In this manner, application software may prevent
the servicing of these interrupts. The interrupt pending
register serves as a means to post dedicated mode interrupts,
or interrupts from a timer source. Application code which
sets a bit in the interrupt pending register precipitates the

same action that would occur if an external interrupt source
caused the bit to be set.

These registers are accessed as special function registers:
interrupt pending as sf0, interrupt mask as sf1. Note that the
80960Jx does not support special function registers. IMSK
and IPND may be accessed as memory-mapped control
registers, at address FF00.8504H and FF00.8500H, respec-
tively. To access these memory-mapped registers, the
application must be operating in supervisor mode. The
atmod, sysctl, ld, and st instructions may also be used to
modify these registers, again in supervisor-mode only.

On reset, interrupt mask is cleared (=0) and interrupt
pending is undefined. Application code is responsible for
explicitly initializing these registers. Figure 23 shows the
format of these registers.

AP-716 A

46

Figure 23. Interrupt Pending (sf0) and Interrupt Mask (sf1) on the 80960Jx and 80960Hx Processor

048121620242831

Reserved
(Initialize to 0)

Timer Interrupt Pending - IPND.tip
0 = No interrupt
1 = Pending interrupt

External Interrupt Pending - IPND.xip
0 = No interrupt
1 = Pending interrupt

x
i
p
7

x
i
p
6

x
i
p
5

x
i
p
4

x
i
p
3

x
i
p
2

x
i
p
1

x
i
p
0

Interrupt Pending Register (IPND) - sf0

048121620242831

Timer Interrupt Mask - IMSK.tim
0 = Masked
1 = Not masked

External Interrupt Mask - IMSK.xim
0 = Masked
1 = Not masked

x
i

m
7

x
i

m
6

x
i

m
5

x
i

m
4

x
i

m
3

x
i

m
2

x
i

m
1

x
i

m
0

Interrupt Mask Register (IMSK) - sf1

t
i
m
0

t
i

m
1

t
i
p
0

t
i

p
1

NOTE: the 80960Jx processor does not implement special function registers

6.3.2.4 Improvements to Interrupt Latency

The 80960Jx and 80960Hx processors provide the ability to
reserve local register frames in the on-chip register cache
for use by interrupts of priority 28 or above. This
mechanism minimizes the chances that high-priority
interrupts result in a spill to external memory, potentially
increasing interrupt latency. For more information on this
topic, refer to Section 4.0, Register Cache/Stack Frames.

6.4 Timer Unit

The 80960Jx and 80960Hx processors integrate two
general-purpose timers. Timers and timer controls are
identical on the 80960Jx and 80960Hx processors. Refer to

the i960® Jx Microprocessor User’s Manual or the i960®Hx
Microprocessor User’s Manual for details. These 32-bit
timers are useful as system clocks, or for other purposes.
Each timer may be clocked independently (clock input
based on CLKIN input). Timers operate in a single-shot
mode, or auto-reload for continuous tick generation. Each
timer may independently interrupt the core upon terminal
count. Timer resources may be configured such that user-
mode accesses generate a fault.

Timer resources are independently controlled by six control
registers. These registers, along with their memory-mapped
control register addresses, are listed in Table 17.

A AP-716

47

.
Table 17. Timer Control Registers on the 80960Jx and 80960Hx Processors

Name Description Memory-Mapped Address
(Hex)

TRR0 Timer Reload Register 0 FF00.0300H

TCR0 Timer Count Register 0 FF00.0304H

TMR0 Timer Mode Register 0 FF00.0308H

TRR1 Timer Reload Register 1 FF00.0310H

TCR1 Timer Count Register 1 FF00.0314H

TMR1 Timer Mode Register 1 FF00.0318H

The timer mode control register enables/disables the timer,
enables auto-reload, provides for protection from user-mode
writes to timer resources, and controls the input clock to its
associated timer. Timers may be clocked by:

• the bus clock (CLKIN)

• bus clock / 2

• bus clock / 4, or

• bus clock / 8

The timer count register contains the timer’s current count,
and may be read or written. The timer reload register
contains the value to load into the timer count register upon
reaching terminal count (when auto-reload mode is
enabled).

The 80960Cx processor does not contain any integrated
timers.

7.0 Memory-mapped Control Registers

The 80960Jx and 80960Hx processors implement memory-
mapped control registers within the architecturally reserved
memory locations from FF00.0000H to FFFF.FFFFH.
Accesses to this address space never cause an external bus
cycle. These memory-mapped control registers provide
convenient access to control registers. Additionally, they
provide visibility to internally cached values, such as the
Processor Control Block (PRCB) pointer, which is not
architecturally visible on the 80960Cx. The 80960Cx
processor does not implement memory-mapped control
registers.

Memory-mapped control registers residing in address
locations FF00.0000H to FF00.7FFFH can be accessed in
user or supervisor mode. Those located in addresses

FF00.8000H to FFFF.FFFFH are accessible via supervisor
mode only. When using load (ld) and store (st) instructions,
application code must access memory-mapped registers as
aligned words only. Unaligned and/or non-word accesses to
these registers, or user mode accesses made to supervisor-
only registers generate a fault. The sysctl instruction may
also be used to atomically modify memory-mapped control
registers. In addition, the atmod instruction may be used to
atomically modify the Interrupt Pending (IPND) and
Interrupt Mask (IMSK) registers.

Memory-mapped control register addresses are detailed in
Section 8.0, Memory-mapped Control Register Address
Space.

7.1 Special Function Registers and
Memory-mapped Counterparts

The 80960Cx and 80960Hx processors implement special
function registers (SFRs) to provide control over integrated
peripherals. SFRs may be accessed by most REG format
instructions. With the exception of the Cache Control
Register, all of the 80960Hx SFRs are also accessible as
memory-mapped control registers. The 80960Jx does not
implement special function registers.

7.1.1 Special Function Registers on the
80960Cx Processor

The 80960Cx processor implements three special function
registers:

• Interrupt Pending (sf0)

• Interrupt Mask (sf1), and

• DMA Command (sf2)

AP-716 A

48

The formats of the Interrupt Pending and Interrupt Mask registers for the 80960Cx processor are shown in Section 6.3.1,
80960Cx Processor Interrupt Control Unit. DMA functionality is present only on the 80960Cx processor, and the DMA
Command register as such is present only on the 80960Cx processor. The upper two bits (bits 30 and 31) of the DMA
Command register control the data cache (CF processor only). For more information on DMA support, refer to the i960®

Cx Microprocessor User’s Manual.

7.1.2 Special Function Registers on the 80960Hx Processor

The 80960Hx processor implements five special function registers. With the exception of the data cache control register
(sf2), these registers are also accessible as memory-mapped control registers. These registers, with their associated
memory-mapped locations are listed in Table 18.

These registers may be accessed by application code as either special function or memory-mapped registers. However,
these registers must not be accessed as both special function and memory-mapped registers within a short period of time
(less than 64 core cycles). Doing so results in unpredictable behavior.

The formats of the interrupt pending, interrupt mask, and interrupt control registers are shown in Section 6.3.2,
80960Jx/80960Hx Processor Interrupt Control Unit. The format of the GMU Control Register is shown in Section 6.2,
Guarded Memory Unit on the 80960Hx Processor, illustrates the format of the Data Cache Control Register.

Figure 24. 80960Hx Processor Data Cache Control Register

Table 18. Special Function Registers of the 80960Hx Processor

Name Mnemonic Special Function
Register

Memory-mapped
Address

Interrupt Pending Register IPND sf0 FF00.8500H

Interrupt Mask Register IMSK sf1 FF00.8504H

Data Cache Control Register D sf2 NA

Interrupt Control Register INTCON sf3 FF00.8510H

GMU Control Register sf4 FF00.8000H

048121620242831

Reserved
(Initialize to 0)

Data Cache Global Enable

Data Cache Invalidate

0 = Data Cache Enabled
1 = Data Cache Disabled

1 = Perform Data Cache Invalidation

Special Function Register: sf2

0 = Do not Perform Data Cache Invalidation

A AP-716

49

The Data Cache Control register may be accessed as a
special function register, or by use of the Data Cache
Control instruction (dcctl). Regardless of how the register
is accessed, bit 30 always properly reflects the state of the
data cache: a zero if enabled and one if disabled. Writing a
one to bit 31 causes the data cache to invalidate. Note that
since the cache is write-through, it does not get flushed.
When the invalidation process is complete, hardware
automatically clears bit 31.

8.0 Memory-mapped Control Register
Address Space

The memory-mapped control registers for the 80960Jx and
80960Hx microprocessors are shown in Table 19. Memory-
mapped registers are not implemented on the 80960Cx
processor. Accesses to this address space never causes an
external bus cycle.

Table 19. Memory-mapped Control Registers (Sheet 1 of 5)

Address
(Hex) Description Access Rights

Processor

Jx Hx

FF00.0300H Timer Reload Register 0 (TRR0) S/U, R/W X X

FF00.0304H Timer Count Register 0 (TCR0) S/U, R/W X X

FF00.0308H Timer Mode Register 0 (TMR0) S/U, R/W X X

FF00.030CH Reserved

FF00.0310H Timer Reload Register 1 (TRR1) S/U, R/W X X

FF00.0314H Timer Count Register 1 (TCR1) S/U, R/W X X

FF00.0318H Timer Mode Register 1 (TMR1) S/U, R/W X X

FF00.031CH
to

FF00.7FFFH
Reserved

FF00.8000H GMU Control Register (GMCR, sf4) S, R/W X

FF00.8004H Reserved

FF00.8008H Reserved

FF00.8010H Memory Protection Address 0 (MPAR0) S, R/W X

FF00.8014H Memory Protection Mask 0 (MPMR0) S, R/W X

FF00.8018H Memory Protection Address 1 (MPAR1) S, R/W X

FF00.801CH Memory Protection Mask 1 (MPMR1) S, R/W X

FF00.8020H
to

FF00.807FH
Reserved

FF00.8080H Memory Detect Upper Bounds 0 (MDUB0) S, R/W X

FF00.8084H Memory Detect Lower Bounds 0 (MDLB0) S, R/W X

FF00.8088H Memory Detect Upper Bounds 1 (MDUB1) S, R/W X

FF00.808CH Memory Detect Lower Bounds 1 (MDLB1) S, R/W X

FF00.8090H Memory Detect Upper Bounds 2 (MDUB2) S, R/W X

FF00.8094H Memory Detect Lower Bounds 2 (MDLB2) S, R/W X

FF00.8098H Memory Detect Upper Bounds 3 (MDUB3) S, R/W X

AP-716 A

50

FF00.809CH Memory Detect Lower Bounds 3 (MDLB3) S, R/W X

FF00.80A0H Memory Detect Upper Bounds 4 (MDUB4) S, R/W X

FF00.80A4H Memory Detect Lower Bounds 4 (MDLB4) S, R/W X

FF00.80A8H Memory Detect Upper Bounds 5 (MDUB5) S, R/W X

FF00.80ACH Memory Detect Lower Bounds 5 (MDLB5) S, R/W X

FF00.80B0H
to

FF00.80FFH
Reserved

FF00.80E8H
to

FF00.80FFH
GMU Testability Registers X

FF00.8100H Default Logical Memory Configuration Register
(DLMCON) S, R/W X X

FF00.8104H Reserved

FF00.8108H Logical Memory Address Register 0 (LMAR0) S, R/W X X

FF00.810CH Logical Memory Mask Register 0 (LMMR0) S, R/W X X

FF00.8110H Logical Memory Address Register 1 (LMAR1) S, R/W X X

FF00.8114H Logical Memory Mask Register 1 (LMMR1) S, R/W X X

FF00.8118H Logical Memory Address Register 2 (LMAR2) S, R/W X

FF00.811CH Logical Memory Mask Register 2 (LMMR2) S, R/W X

FF00.8120H Logical Memory Address Register 3 (LMAR3) S, R/W X

FF00.8124H Logical Memory Mask Register 3 (LMMR3) S, R/W X

FF00.8128H Logical Memory Address Register 4 (LMAR4) S, R/W X

FF00.812CH Logical Memory Mask Register 4 (LMMR4) S, R/W X

FF00.8130H Logical Memory Address Register 5 (LMAR5) S, R/W X

FF00.8134H Logical Memory Mask Register 5 (LMMR5) S, R/W X

FF00.8138H Logical Memory Address Register 6 (LMAR6) S, R/W X

FF00.813CH Logical Memory Mask Register 6 (LMMR6) S, R/W X

FF00.8140H Logical Memory Address Register 7 (LMAR7) S, R/W X

FF00.8144H Logical Memory Mask Register 7 (LMMR7) S, R/W X

FF00.8148H Logical Memory Address Register 8 (LMAR8) S, R/W X

FF00.814CH Logical Memory Mask Register 8 (LMMR8) S, R/W X

FF00.8150H Logical Memory Address Register 9 (LMAR9) S, R/W X

FF00.8154H Logical Memory Mask Register 9 (LMMR9) S, R/W X

FF00.8158H Logical Memory Address Register 10 (LMAR10) S, R/W X

Table 19. Memory-mapped Control Registers (Sheet 2 of 5)

Address
(Hex) Description Access Rights

Processor

Jx Hx

A AP-716

51

FF00.815CH Logical Memory Mask Register 10 (LMMR10) S, R/W X

FF00.8160H Logical Memory Address Register 11 (LMAR11) S, R/W X

FF00.8164H Logical Memory Mask Register 11 (LMMR11) S, R/W X

FF00.8168H Logical Memory Address Register 12 (LMAR12) S, R/W X

FF00.816CH Logical Memory Mask Register 12 (LMMR12) S, R/W X

FF00.8170H Logical Memory Address Register 13 (LMAR13) S, R/W X

FF00.8174H Logical Memory Mask Register 13 (LMMR13) S, R/W X

FF00.8178H Logical Memory Address Register 14 (LMAR14) S, R/W X

FF00.817CH Logical Memory Mask Register 14 (LMMR14) S, R/W X

FF00.8180H
to

FF00.83FFH
Reserved

FF00.8400H Instruction Address Breakpoint 0 (IPB0) S, Sys, WwG X X

FF00.8404H Instruction address Breakpoint 1 (IPB1) S, Sys, WwG X X

FF00.8408H Instruction Address Breakpoint 2 (IPB2) S, Sys, WwG X

FF00.840CH Instruction address Breakpoint 3 (IPB3) S, Sys, WwG X

FF00.8410H Instruction Address Breakpoint 4 (IPB4) S, Sys, WwG X

FF00.8414H Instruction address Breakpoint 5 (IPB5) S, Sys, WwG X

FF00.8418H
to

FF00.841FH
Reserved

FF00.8420H Data Address Breakpoint 0 (DAB0) S, R/W, WwG X X

FF00.8424H Data Address Breakpoint 1 (DAB1) S, R/W, WwG X X

FF00.8428H Data Address Breakpoint 2 (DAB2) S, R/W, WwG X

FF00.842CH Data Address Breakpoint 3 (DAB3) S, R/W, WwG X

FF00.8430H Data Address Breakpoint 4 (DAB4) S, R/W, WwG X

FF00.8434H Data Address Breakpoint 5 (DAB5) S, R/W, WwG X

FF00.8438H
to

FF00.843FH
Reserved

FF00.8440H Breakpoint Control (BPCON) S, R/W, WwG X X

FF00.8444H Expanded Breakpoint Control (XBPCON) S, R/W, WwG X

FF00.8448H
to

FF00.84FFH
Reserved

FF00.8500H Interrupt Pending (IPND, sf0) S, R/W, AtMod X X

Table 19. Memory-mapped Control Registers (Sheet 3 of 5)

Address
(Hex) Description Access Rights

Processor

Jx Hx

AP-716 A

52

FF00.8504H Interrupt Mask (IMSK, sf1) S, R/W, AtMod X X

FF00.8508H
to

FF00.850FH
Reserved

FF00.8510H Interrupt Control (ICON, sf3) S, R/W X X

FF00.8514H
to

FF00.851FH
Reserved

FF00.8520H Interrupt Map 0 (IMAP0) S, R/W X X

FF00.8524H Interrupt Map 1 (IMAP1) S, R/W X X

FF00.8528H Interrupt Map 2 (IMAP2) S, R/W X X

FF00.852CH
to

FF0085FFH
Reserved

FF00.8600H

80960Jx: Physical Memory Control Region 0:1
(PMCON0:1)
80960Hx: Physical Memory Control Region 0
(PMCON0)

S, R/W X X

FF00.8604H Physical Memory Control Region 1 (PMCON1) S, R/W X

FF00.8608H

80960Jx: Physical Memory Control Region 2:3
(PMCON2:3)
80960Hx: Physical Memory Control Region 2
(PMCON2)

S, R/W X X

FF00.860CH Physical Memory Control Region 3 (PMCON3) S, R/W X

FF00.8610H

80960Jx: Physical Memory Control Region 4:5
(PMCON4:5)
80960Hx: Physical Memory Control Region 4
(PMCON4)

S, R/W X X

FF00.8614H Physical Memory Control Region 5 (PMCON5) S, R/W X

FF00.8618H

80960Jx: Physical Memory Control Region 6:7
(PMCON6:7)
80960Hx: Physical Memory Control Region 6
(PMCON6)

S, R/W X X

FF00.861CH Physical Memory Control Region 7 (PMCON7) S, R/W X

FF00.8620H

80960Jx: Physical Memory Control Region 8:9
(PMCON8:9)
80960Hx: Physical Memory Control Region 8
(PMCON8)

S, R/W X X

FF00.8624H Physical Memory Control Region 9 (PMCON9) S, R/W X

FF00.8628H

80960Jx: Physical Memory Control Region 10:11
(PMCON10:11)
80960Hx: Physical Memory Control Region 10
(PMCON10)

S, R/W X X

Table 19. Memory-mapped Control Registers (Sheet 4 of 5)

Address
(Hex) Description Access Rights

Processor

Jx Hx

A AP-716

53

Note that access to the instruction and data address breakpoint registers requires that the processor grant permission to
access these registers. This is discussed in further detail in Section 5.0, Breakpoint Resource Sharing Mechanism.

FF00.862CH Physical Memory Control Region 11 (PMCON11) S, R/W X

FF00.8630H

80960Jx: Physical Memory Control Region 12:13
(PMCON12:13)
80960Hx: Physical Memory Control Region 12
(PMCON12)

S, R/W X X

FF00.8634H Physical Memory Control Region 13 (PMCON13) S, R/W X

FF00.8638H

80960Jx: Physical Memory Control Region 14:15
(PMCON14:15)
80960Hx: Physical Memory Control Region 14
(PMCON14)

S, R/W X X

FF00.863CH Physical Memory Control Region 15 (PMCON15) S, R/W X

FF00.8640H
to

FF00.86FBH
Reserved

FF00.86FCH Bus Configuration Control (BCON) S, R/W X X

FF00.8700H Processor Control Block Pointer (PRCBptr) S, RO X X

FF00.8704H Interrupt Stack Pointer (ISP) S, R/W X X

FF00.8708H Supervisor Stack Pointer (SSP) S, R/W X X

FF00.870CH Reserved

FF00.8710H Device Identification (DEVICEID) RO X X

FF00.8714H
to

FFFF.FFFFH
Reserved

NOTES:

1. AtMod: Register can be updated quickly through the atmod instruction.
RO: Read only.
R/W: Register readable or writable.
S: Supervisor access only.
Spcl: Special Intel only test register.
S/U: Supervisor or User access allowed, may be configured to be supervisor only.
Sys: Modifiable using the sysctl instruction.
WwG: Writing or modifying (with st or sysctl) the register only allowed when
access has been granted.

Register locations which are not implemented are specifically reserved by Intel. Any locations
not specifically defined are reserved by Intel.

Table 19. Memory-mapped Control Registers (Sheet 5 of 5)

Address
(Hex) Description Access Rights

Processor

Jx Hx

AP-716 A

54

9.0 80960Hx/80960Cx Pin Compatibility

Like the 80960Cx, the 80960Hx is available in the 168-lead PGA package. However, the 80960Hx is not 100% pin-
compatible with the 80960Cx. This is largely due to the lack of Direct Memory Access (DMA) capability on the 80960Hx.
On the 80960Cx, DMA capability consumed thirteen pins. The 80960Hx incorporates enhanced bus control functions and
JTAG; pins required to support these features replace the DMA pins present on the 80960Cx. In this manner, it is possible
to design a board that accepts the 80960Cx processor now, and the 80960Hx in the future. Pin diagrams for the 168-lead
PGA package are illustrated in Figure 25 and Figure 26. See Application Note 506, Designing for 80960Cx and 80960Hx
Compatibility for more details.

Figure 25. PGA Pinout Diagram for the 80960Cx Processor

D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25

D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29

NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D31 READYD26

D28 BTERM HOLDA

D30 HOLD BE3

VCC ADS BE2

VSS VCC BE1

VSS VCC BLAST

VSS BE0 DEN

VSS VCC W/R

VSS VCC DT/R

A29 LOCK

SUP WAITDMA

A28

A30 BREQ D/C

D3

D1

ONCE

NC

NC

VCC

VSS

VSS

VSS

VSS

VSS

CLKIN

CLK MODE

VSS

BOFF

STEST

NC

NC

DREQ0

DREQ2

VCC

DACK0

VCC

VCCPLL

VCC

PCLK2

PCLK1

VCC

NC

FAIL

NC

NC

NC

DREQ1

DREQ3

DACK1

DACK2

DACK3

EOP/TC0

EOP/TC2

EOP/TC3

EOP/TC1

VSS

A2

VCC

A22 A25

A20VSS

A3 A5

NMI VCC VSS VSS VSS VSSVSS A24 A31A26

A4 VCC

A6 A8 A9 A10 A11 A12 A14 A15 A17 A18

VCC VCC VCC A13 VCC A16 A19 A21 A23 A27A7XINT6

XINT7

XINT4

XINT3

XINT5

XINT0

RESET

XINT2

XINT1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

F_CA003A

A B C D E F G H J K L M N P Q R S

A B C D E F G H J K L M N P Q R S

Metal Lid

View From Botton Side

Shaded pins indicate pins which carry a different defintion on the 80960Hx processor.

A AP-716

55

Figure 26. PGA Pinout Diagram for the 80960Hx Processor

The 80960Jx incorporates a multiplexed address and data bus. Therefore, pin compatibility with the 80960Cx or 80960Hx
is not required or relevant.

D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25

D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29

NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D31 READYD26

D28 BTERM HOLDA

D30 HOLD BE3

VCC ADS BE2

VSS VCC BE1

VSS VCC BLAST

VSS BE0 DEN

VSS VCC W/R

VSS VCC DT/R

A29 LOCK

SUP WAITBSTALL

A28

A30 BREQ D/C

D3

D1

ONCE

VSS

VCC5

VCC

VSS

VSS

VSS

VSS

VSS

CLKIN

VCC

VSS

BOFF

STEST

DP1

DP3

TCK

TMS

VCC

PCHK

VCC

VCCPLL

VCC

NC

NC

VCC

VSS

FAIL

DP0

DP2

VOLDET

TRST

TDI

TDO

NC

NC

CT0

CT2

CT3

CT1

VSS

A2

VCC

A22 A25

A20VSS

A3 A5

NMI VCC VSS VSS VSS VSSVSS A24 A31A26

A4 VCC

A6 A8 A9 A10 A11 A12 A14 A15 A17 A18

VCC VCC VCC A13 VCC A16 A19 A21 A23 A27A7XINT6

XINT7

XINT4

XINT3

XINT5

XINT0

RESET

XINT2

XINT1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E F G H J K L M N P Q R S

A B C D E F G H J K L M N P Q R S

Package Lid

View From Botton Side

Shaded pins indicate pins which carry a different defintion on the 80960Cx processor.

AP-716 A

56

10.0 Conclusion

In conclusion, this document describes three implementa-
tions of the i960 architecture: the 80960Cx, 80960Jx, and
80960Hx microprocessors.

During the 80960Jx and 80960Hx definition process, every
attempt was made to maintain backward compatibility with
the 80960Cx processor. To a large extent, this compatibility
is maintained; most application code will run on each
processor without modification. Due to enhancements to the
bus interface, instruction set, and other refinements,
complete compatibility was not maintained. In summary,
this document discusses in detail these differences between
the 80960Cx, 80960Jx, and 80960Hx microprocessors.

11.0 Related Information

This appnote contains condensed information from the
i960® Cx Microprocessor User’s Manual, Application Note
506, Designing for 80960Cx and 80960Hx Compatibility,
the i960® Jx Microprocessor User’s Manual, and the i960®

Hx Microprocessor User’s Manual. The reader should refer
to these documents for more detailed information. The
following table shows these document’s order numbers:

To receive these documents or any other available Intel
literature, contact:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-879-4683

Document Name Order #

i960® Cx Microprocessor User’s Manual 270710

i960® Jx Microprocessor User’s Manual 272483

i960® Hx Microprocessor User’s Manual 272484

Application Note 506—Designing for
80960Cx and 80960Hx Compatibility 272556

A AP-716

Index-1

A
AC 11
ACInitIm 11
arithmetic control 11
Arithmetic Fault 8

B
Bad Access Fault Sub-type 8
BCON 11, 16, 17, 18, 19, 22, 26
BPCON 11, 38
Breakpoint Control 11, 38
breakpoints

breakpoint sharing 38
data address 38
instruction 38
system control (sysctl) 39

bus confidence test 4
Bus Configuration Control 11
Bus Control 18, 19, 22, 26
bus controller 16
byte order 16

C
Constraint Fault 8
control table base address 9
Core 1
CTB 9

D
DAB 9, 38
Data Address Breakpoint 9
Data Cache 1
data cacheability 16, 17
Data RAM 1
Default Logical Memory Configuration 18, 19, 22,

23, 26
Default Logical Memory Control 16, 17
Direct Memory Access Controller 1
DLMCON 16, 17, 18, 19, 22, 23, 26
DMA Command 47

E
Expanded Breakpoint Control 38
External Bus 1

F
fault configuration word 11
fault table base address 6

Fault Types 8
FCW 11
FTB 6

G
Guarded Memory Unit 2, 6

H
high-priority interrupts 36, 37

I
IBR 3, 4, 16, 17
ICCW 12
ICON 9, 41, 43
IMAP 9, 41, 44
IMSK 42, 45
independently invalidatable regions 17
InitBusCon 3, 16, 17
Initialization 3
Initialization Boot Record 3
initialization data structures 3
Instruction Breakpoint 9
Instruction Cache 1
instruction cache configuration word 12
instructions 27

byte swap 29
compare integer/ordinal byte and short 29
Condition Code Masks 28
Conditional Add 28
Conditional Subtract 28
data cache control 29
data cache hint 34
data cache invalidate by address 34
flush data cache by address 33
global interrupt disable 33
global interrupt enable 33
halt 33
instruction cache control 30
interrupt control 32
Select Value 28
system control 34

intdis 11
inten 11
Interrupt Control 9
interrupt control 41, 43
Interrupt Controller 2
interrupt disable 11

AP-716 A

Index-2

interrupt enable 11
Interrupt Map 9
interrupt map 41, 44
interrupt mask 42, 45
interrupt pending 42, 45
interrupt stack pointer 12
interrupt table base address 11
interrupt vectors 11
IPB 9, 38
IPND 42, 45
ISP 12
ITB 11

J
JTAG 2

L
LMAR 18, 19, 20, 21, 23, 24, 25
LMCON 16, 17
LMMR 18, 19, 20, 21, 23, 24, 25
local register sets 36
local registers sets 35
Logical Memory Control 16, 17
Logical memory control 24
Logical Memory Template Address 18, 19, 23
Logical Memory Template Mask 18, 19, 23

M
Machine Fault 8
machine faults 6
MCON 9, 18
MCON0 3
Memory Region 9
Memory Region Configuration 18
memory-mapped control registers 47

accessing 47
address space 49

Memory-mapped Registers 1

O
Operation Fault 8

P
Parallel Fault 8
Parity 23
parity 17
Parity Error Fault Sub-type 8
peripherals

Direct Memory Access 39
Guarded Memory Unit (GMU) 40
interrupt controller 40
timers 46

Physical Memory Control 16, 17
Physical Memory Region 9
Physical Memory Region Configuration 18
Physical Memory Region Control 19, 23
pin compatibility 54
PMCON 9, 16, 17, 18, 19, 23, 24
PMCON14

15 3
PMCON15 3
Power Supply 2
PRCB 5
PRCBPtr 4
Processor Control Block 5
Protection Fault 8

R
RAM 2, 3, 35, 36
RCCW 12, 35, 36, 37
Register Cache 1
register cache 35
Register Cache Configuration Word 35
register cache configuration word 12
reinitialization 12, 14
reset 12, 14

S
sf0 43, 46, 48
sf1 43, 46, 48
sf2 47, 48
sf3 48
SFR 47
special function registers 47

Data Cache Control 48
GMU Control 48
Interrupt Control 48
Interrupt Mask 48
Interrupt Pending 48

SPTB 11
stack frames 35
StrtIP 4
system procedure table 11

A AP-716

Index-3

T
TC 11
TCR 47
Timer Count 47
Timer Mode 47
Timer Reload 47
Timers 2
TMR 47
Trace Controls 11
Trace Fault 8
TRR 47
Type Fault 8

W
wait state profile 16, 17

X
XBPCON 38

	Cover Page
	Copyright Page
	Table of Contents
	List of Figures
	Figure 1. Initialization Boot Record (IBR) Structure
	Figure 2. Simplified Typical Memory Decoding Logic
	Figure 3. Processor Control Block (PRCB) Structure
	Figure 4. 80960Cx 80960Jx, and 80960Hx Fault Table and Fault Table Entries
	Figure 5. 80960Cx MCON Register Format
	Figure 6. 80960Cx BCON Register
	Figure 7. PMCON Register Format for the 80960Jx Processor
	Figure 8. Format of LMARx and LMMRx Pairs on the 80960Jx Processor
	Figure 9. Format of the DLMCON Register on the 80960Jx
	Figure 10. Format of the BCON Register on the 80960Jx
	Figure 11. PMCON Register Format for the 80960Hx Processor
	Figure 12. LMARx and LMMRx Registers on the 80960Hx Processor (LMCONx Pair)
	Figure 13. DLMCON Register on the 80960Hx
	Figure 14. Format of the BCON Register on the 80960Hx
	Figure 15. Register Cache Configuration Word (RCCW) for the 80960Cx Processor
	Figure 16. Register Cache Configuration Word (RCCW) for the 80960Jx Processor
	Figure 17. Register Cache Configuration Word (RCCW) for the 80960Hx Processor
	Figure 18. Interrupt Control Register on the 80960Cx Processor
	Figure 19. Interrupt Mapping Registers on the 80960Cx Processor
	Figure 20. Interrupt Pending (sf0) and Interrupt Mask (sf1) on the 80960Cx Processor
	Figure 21. Interrupt Control Register (ICON) on the 80960Jx and 80960Hx Processors
	Figure 22. Interrupt Mapping Registers on the 80960Jx and 80960Hx Processors
	Figure 23. Interrupt Pending (sf0) and Interrupt Mask (sf1) on the 80960Jx and 80960Hx Processor
	Figure 24. 80960Hx Processor Data Cache Control Register
	Figure 25. PGA Pinout Diagram for the 80960Cx Processor
	Figure 26. PGA Pinout Diagram for the 80960Hx Processor

	List of Tables
	Table 1. Feature Summary of the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 1 of 2)
	Table 1. Feature Summary of the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 2 of 2)
	Table 2. 80960Cx, 80960Jx, and 80960Hx Fault Types and Subtypes
	Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 1 of 3)
	Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 2 of 3)
	Table 3. Control Table for the 80960Cx, 80960Jx, and 80960Hx Processors (Sheet 3 of 3)
	Table 4. Common State of the i960 ® Processors after Reset/Reinitialization (Sheet 1 of 2)
	Table 4. Common State of the i960 ® Processors after Reset/Reinitialization (Sheet 2 of 2)
	Table 5. Differences in State of the i960 ® Processors after Reset/Reinitialization (Sheet 1 of 2)
	Table 5. Differences in State of the i960 ® Processors after Reset/Reinitialization (Sheet 2 of 2)
	Table 6. New 80960Jx and 80960Hx Instructions
	Table 7. Condition Code Masks
	Table 8. Format of Data Cache Status
	Table 9. Function Six - Store Data Cache Sets to Memory (src1 == 6)
	Table 10. Function Three - Load and Lock Code into the Instruction Cache (src1 == 3)
	Table 11. Format of Instruction Cache Status
	Table 12. Format of Instruction Cache Locking Status
	Table 13. Function Six - Store Instruction Cache Sets to Memory (src1 == 6)
	Table 14. src/dst Field Definitions for Breakpoint Resource Request
	Table 15. Integrated Peripherals on the 80960Cx, 80960Jx, and 80960Hx Processors
	Table 16. Sample Application with Restricted Memory Partitions
	Table 17. Timer Control Registers on the 80960Jx and 80960Hx Processors
	Table 18. Special Function Registers of the 80960Hx Processor
	Table 19. Memory-mapped Control Registers (Sheet 1 of 5)
	Table 19. Memory-mapped Control Registers (Sheet 2 of 5)
	Table 19. Memory-mapped Control Registers (Sheet 3 of 5)
	Table 19. Memory-mapped Control Registers (Sheet 4 of 5)
	Table 19. Memory-mapped Control Registers (Sheet 5 of 5)

	1.0 Introduction
	1.1 i960® Processor Family
	1.1.1 The 80960Cx Processor Family
	1.1.2 The 80960Jx Processor Family
	1.1.3 The 80960Hx Processor Family

	2.0 Initialization
	2.1 Initialization Data Structures
	2.1.1 Initialization Boot Record (IBR)
	2.1.2 Processor Control Block (PRCB)
	2.1.3 Fault Table
	2.1.4 Control Table
	2.1.5 Arithmetic Control Register Initial Image
	2.1.6 Fault Configuration Word
	2.1.7 Interrupt Table
	2.1.8 System Procedure Table
	2.1.9 Interrupt Stack Pointer
	2.1.10 Instruction Cache Configuration Word
	2.1.11 Register Cache Configuration Word

	2.2 Register Values after Reset/Reinitial-ization
	2.2.1 Common Reset/Reinitialized States
	2.2.2 Differences in the Reset/Reinitialized State

	2.3 Initial Bus Configuration
	2.3.1 80960Cx Processor
	2.3.2 80960Jx Processor
	2.3.3 80960Hx Processor
	2.3.4 External Bus Configuration
	2.3.4.1 External Memory Configuration on the 80960Cx Processor
	2.3.4.2 External Memory Configuration on the 80960Jx Processor
	2.3.4.3 External Memory Configuration on the 80960Hx Processor

	3.0 New and Extended Instructions
	3.1 New Instructions Supported by the 80960Jx and 80960Hx Processors
	3.1.1 Conditional Integer/Ordinal Add and Subtract and Select Value Instructions
	3.1.1.1 Operation of Conditional Add Instruction
	3.1.1.2 Operation of Conditional Subtract Instruction
	3.1.1.3 Operation of Select Value Instruction

	3.1.2 Byte Swap Instruction (bswap)
	3.1.3 Compare Integer/Ordinal Byte and Short Instructions
	3.1.4 Data Cache Control Instruction (dcctl)
	3.1.4.1 Function Zero - Disable the Data Cache (src1 == 0)
	3.1.4.2 Function One - Enable the Data Cache (src1 == 1)
	3.1.4.3 Function Two - Globally Invalidate the Data Cache (src1 == 2)
	3.1.4.4 Function Three - Ensure Coherency of the Data Cache with External Memory (src1 == 3)
	3.1.4.5 Function Four - Get Data Cache Status (src1 == 4)
	3.1.4.6 Function Six - Store Data Cache Sets to Memory (src1 == 6)

	3.1.5 Instruction Cache Control Instruction (icctl)
	3.1.5.1 Function Zero - Disable the Instruction Cache (src1 == 0)
	3.1.5.2 Function One - Enable the Instruction Cache (src1 == 1)
	3.1.5.3 Function Two - Globally Invalidate the Instruction Cache (src1 == 2)
	3.1.5.4 Function Three - Load and Lock Code into the Instruction Cache (src1 == 3)
	3.1.5.5 Function Four - Get Instruction Cache Status (src1 == 4)
	3.1.5.6 Function Five - Get Instruction Cache Locking Status (src1 == 5)
	3.1.5.7 Function Six - Store Instruction Cache Sets to Memory (src1 == 6)

	3.1.6 Interrupt Control Instruction
	3.1.6.1 Function Zero - Globally Disable Interrupts (src1 = 0)
	3.1.6.2 Function One - Globally Enable Interrupts (src1 = 1)
	3.1.6.3 Function Two - Return Interrupt Controller Status (src1 = 2)

	3.1.7 Global Interrupt Disable
	3.1.8 Global Interrupt Enable
	3.1.9 Halt Instruction
	3.1.9.1 Function Zero - Globally Disable Interrupts (src1 = 0)
	3.1.9.2 Function One - Globally Enable Interrupts (src1 = 1)
	3.1.9.3 Function Two - Halt Without Modifying the Current Interrupt State (src1 = 2)

	3.1.10 Flush Data Cache Contents by Address Instruction (dcflusha)
	3.1.11 Give Address to Data Cache as Hint Instruction (dchint)
	3.1.12 Data Cache Invalidate by Address Instruction (dcinva)

	3.2 Extended Instructions
	3.2.1 System Control Instruction (sysctl)
	3.2.1.1 Function Zero - Post Software Interrupt (Message Type = 00H)
	3.2.1.2 Function One - Invalidate the Instruction Cache (Message Type = 01H)
	3.2.1.3 Function Two - Configure the Instruction Cache (Message Type = 02H)
	3.2.1.4 Function Three - Software Reinitial-ization (Message Type 03H)
	3.2.1.5 Function Four - Load One Group of Control Registers (Message Type 04H)
	3.2.1.6 Function Five - Modify One Memory-mapped Control Register (Message Type 05H)
	3.2.1.7 Function Six - Breakpoint Resource Request (Message Type 06H)

	4.0 Register Cache/Stack Frames
	4.1 Register Cache Configuration on the 80960Cx Processor
	4.2 Register Cache Configuration on the 80960Jx Processor
	4.3 Register Cache Configuration on the 80960Hx Processor

	5.0 Breakpoint Resource Sharing Mechanism
	5.1 Breakpoint Resources on the 80960Cx Processor
	5.2 Breakpoint Resources on the 80960Jx Processor
	5.3 Breakpoint Resources on the 80960Hx Processor

	6.0 Integrated Peripherals
	6.1 Direct Memory Access Control Unit on the 80960Cx Processor
	6.2 Guarded Memory Unit on the 80960Hx Processor
	6.3 Interrupt Control Unit
	6.3.1 80960Cx Processor Interrupt Control Unit
	6.3.1.1 Interrupt Control Register (ICON)
	6.3.1.2 Interrupt Mapping Registers (IMAP0- IMAP2)
	6.3.1.3 Interrupt Mask and Interrupt Pending Registers (IMSK, IPND)

	6.3.2 80960Jx/80960Hx Processor Interrupt Control Unit
	6.3.2.1 Interrupt Control Register (ICON)
	6.3.2.2 Interrupt Mapping Registers (IMAP0- IMAP2)
	6.3.2.3 Interrupt Mask and Interrupt Pending Registers (IMSK, IPND)

	6.4 Timer Unit

	7.0 Memory-mapped Control Registers
	7.1 Special Function Registers and Memory-mapped Counterparts
	7.1.1 Special Function Registers on the 80960Cx Processor
	7.1.2 Special Function Registers on the 80960Hx Processor

	8.0 Memory-mapped Control Register Address Space
	9.0 80960Hx/80960Cx Pin Compatibility
	10.0 Conclusion
	11.0 Related Information
	Index A-I
	Index J-S
	Index T-Z

