teL AP-703

APPLICATION
NOTE

DRAM Controller for 33MHz
1960® CA/CF Microprocessors

Sailesh Bissessur Intel Corporation

SPG EPD 80960 Applications Engineer Embedded Processor Division
Mail Stop CH5-233

5000 W. Chandler Blvd.
Chandler, Arizona 85226

February 2, 1995

I Order Number: 272627-001

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683
© INTEL CORPORATION 1995

n
Int9I® AP-703

DRAM CONTROLLER FOR 33 MHZ 1960® CA/CF MICROPROCESSORS

1.0 INTRODUCTIONottt e e et e e e e et e e e e e et ba e e e e e eetbbaeeeeeeataeeeesannbbeseeeeansreeas 1
2.0 OVERVIEW ...ttt ettt e e e ettt e e e e e ettt e e e e e e eat b e e e e e s eatb e e e e e s aabaeeeeeeeatreeas 1
2.1 Page Mode DRAM SIMM REVIEWccouuiiiiiiiiiiiiee ettt a e eaeeeee s 1
2.2 BanK INtEII@AVINGeii ettt e e e e e et e e e e e e enneeeaaeas 1
2.3 Burst Capabilities for 32-Bit BUS.......cccoiiuiiiiieeiiii e a e 1
3.0 BASIC DRAM CONTROLLER
3.1 (0] 11 7o) I oo [[PPSR
3.11 Refresh Logic (CAS-before-RAS) 3
3.1.2 Clock Generation 3
3.1.3 Wait State Profile 3
3.2 AAAreSS Path ... e e e e e e e e e —————aaaaaas 3
3.3 [L= B == 1 o 1SR 3
3.4 SIMM L.t — e e e e —— e e e e e ——— e e e e e i ————eeeeaabreaeeeaabreaaaeaaraaeas 4
4.0 STATE MACHINES AND SIGNALS ..ottt ettt e et e e e etbe e e e e e etaaeeaeeanes 4
4.1 ACCESS State MaChINe.......uuiiiiiiiiiiicce e e e ee s 4
4.2 PENDING State MaChINEcuuuiiiiiiiiiiie et e e e e e e e e e e e s s eeeeeeeas 5
4.3 ODDACCESS State MaCKINE.........uuiiiiiiiiiiiiicec e e e e e e e e e s s annneees 5
4.4 BANKSELA State MaChiNe........uuuiiiiiiiiiiiieee ettt e e e e e e s eeeeee s 5
4.5 BANKSELB State MaChiNe.........uuuuiiiiiiiiiieie ettt e e e eeeeee s 5
4.6 ADDRMUX State MaCRINGuuviiiiiiiiiiiee et e e e e e 5
4.7 PN] A o NS 1 (= 1Y/ = Tod o 11 = 5
4.8 A3ODD State MACKINEuviiiiiiiiiiicie e e e e e r e e aaas 5
4.9 RFEVENBK State MacChiNecuviiiiiiiiiiiee sttt e e e e e 5

4.10 CASPIPE State Machine
4.11 CASPIPO State Machine

412 CASE_B3:0 State Machines 5
4.13 CASO_B3:0 State Machines 6
4.14 RASEVEN State MACKINEccoiiiiiiiii et e e 6
4.15 RASODD State MaCKHINEcooiiiiiiiiie et e e e enneeeee s 6
4.16 SRASE State MaCKhINecooeiiiiieei ettt a e 6
4.17 RDEN SIGNAI ..evieeeeeeeececeeeeceeeeeeee ettt ettt ettt n s st en e s s s en e 6
4.18 WRE SIGNA ...cveieecececeee ettt ettt ettt enenen st e e n s s s e 6
4.19 WRO SIGNAL. .ottt e e ee s en e 6
4.20 REFREQ SIGNAL....eutieieeieeeeeeeeeee ettt et s s en s e en s s s e 6

n
AP-703 Int9I®

5.0 DRAM CONTROLLER ACCESS FLOWccotiiiiiiiiiiiieiiie ittt 6
5.1 Quad-Word Read
5.2 Single-Word Read
5.3 Quad-Word Write
5.4 Single-Word Write

5.5 Refresh Cycles
6.0 CONCLUSION ...ttt ettt ettt b e b e bbbt et e e nbe e st e e nbeensbeenbeesaneeneas 14
7.0 RELATED INFORMATIONotiitiiiiiieieeitie ettt ettt ettt ettt abe b nbe e e et e sineenneas 14
APPENDIX A

PLD EQUATIONS ... e e e e e e e e e e e e e e eeeeeees A-1
FIGURES
Figure 1. TWO-WaY INtEFIEAVINGceeiiiie ettt e et e e e eeee e e e e enes 1
Figure 2. Quad-Word Access Example Showing ADS and BLAST Timings...........ccccvevrunnn.. 2
Figure 3. DRAM Controller BIOCK DIiagramccooiiuiieiiaiiiiieree et e e e e e eiaeeee s 2
Figure 4. Address Path Logic 3
Figure 5. Data Path LOQICccvveveeeiiiiieeennn. 4
Figure 6. Basic ACCESS State Machine 4
Figure 7. Quad-Word Read State Diagram...........eeeaiiiuiiiiaeaaiiie e et e e e e e e nneeas
Figure 8. Quad-Word Read Timing Diagram
Figure 9. Single-Word Read State Diagram (A2 = 1)
Figure 10. Single-Word Read Timing Diagram (A2 = 1)occuuiiieiiiiiieee e 9
Figure 11. Quad-Word Write State DIiagramcooceeiiieiiiiiiiee et e e e e eiaeeeae s 10
Figure 12. Quad-Word Write Timing DIiagram.........oocuueeieaiiiiiiie et e e e 11
Figure 13. Single-Word Write State Diagram (A2 = 1)cooiuiiiieiiiiiiieee e 12
Figure 14. Single-Word Write Timing Diagram (A2 = 1) ..ccccuveeiieiiiieieeeeiiee e 12
Figure 15. Refresh State DIagramooiiiiiiiiiii ittt e e enneeeae s 13
Figure 16. Refresh Timing DIagramcoooiiuiiiiia e e e e e e eeaeeeae s 13
TABLES
Table 1. Wait State Profiles (33 MHZ) ... 3
Table A-1. 33 MHz DRAM Controller PLD EQUALtIONS...........ccoiiiiiiiiaiiiiiee e A-1
Table A-2. Signal and Product Term AllOCAtiONc.coiiiiiiiiaiiiiiiie e A-23

intal

1.0 INTRODUCTION

This application note describes a DRAM controller for use
with the i960® CA/CF 33 MHz microprocessors. Other
application notes are available which describe DRAM
controllers for the 1960 CF and Jx processors; see Section
7.0, RELATED INFORMATION for ordering information.

This DRAM controller’s design features include:
¢ Interleaved design
e Canuse standard 70 ns DRAM SIMM

¢ 3-0-0-0/2-0-0-0 back-to-back/idle bus wait state burst
reads at speeds up to 33 MHz

¢ 3-1-1-1/2-1-1-1 back-to-back/idle bus wait state burst
writes at speeds up to 33 MHz

« Nodelay lines

This application note contains some genera DRAM
controller theory as well as this design’s state machine
definitions and timing diagrams. It also contains the PLD
equations which were used to build and test the prototype
design. Timing analysis was verified with Timing
Designer*. PLD equations were created in ABEL* as a
device-independent design. Schematics were developed
with OrCAD*. The timing analysis, schematics and PLD
files are available through Intel’s America's Application
Support BBS, at (916) 356-3600.

2.0 OVERVIEW

This section provides an overview of DRAM SIMM
operation and the concept of memory interleaving. It also
describes the 1960 Cx microprocessor’s burst capabilities.

21 Page Mode DRAM SIMM Review

Page mode DRAM alows faster memory access by
keeping the same row address while selecting random
column addresses within that row. A new column addressis
selected by deasserting CAS while keeping RAS active and
then asserting CAS with the new column address valid to
the DRAM. Page mode operation works very well with
burst buses, such as those in the i960 CA/CF processors, in
which a single address cycle can be followed by multiple
datacycles.

All WE pins on each SIMM are tied to a common WE line;
this feature requires the use of early write cycles. In an
early write cycle, write datais referenced to the falling edge
of CAS, not the falling edge of WE.

AP-703

Each SIMM also has four CAS lines, one for every eight
(nine) bits in a 32-bit (36-bit) SIMM module. The four
CAS lines control the writing to individual bytes within
each SIMM.

2.2 Bank Interleaving

Interleaving significantly improves memory system
performance by overlapping accesses to consecutive
addresses. Two-way interleaving is accomplished by
dividing the memory into two 32-bit banks (also referred to
as‘“leaves’):

« onebank for even word addresses (A2=0)

« onebank for odd word addresses (A2=1)

The two banks areread in parallel and the data from the two

banks is multiplexed onto the processor's data bus. This
overlaps the wait states of:

¢ the second access with the first

¢ thethird access with the second

¢ thefourth access with the third

Figure 1 shows DRAM with a 2-1-1-1 quad word burst read

wait state profile being interleaved to generate a 2-0-0-0
wait state system.

CLK [[| ' ' ' ' :
Even[:A: W'D 'W.D .
Bank - | Z Z Z Z Z Lo
ow | I AIWIW W DIW: D]
Bank ' ' ' ' ' ' ' f
CPU[:A:W:W:D:D:D:D:

A =Address W =Wait D =Data

Figure 1. Two-Way Interleaving

2.3 Burst Capabilities for 32-Bit Bus

A bus access starts by asserting ADS in the address cycle,
and ends by asserting BLAST in the last data cycle. Figure
2 shows ADS and BLAST timings for a quad-word access.

AP-703

v Ta 0 Tgo v Tgr v Tgp v Ty o

ADS

.

L
L

BLAST

Figure 2. Quad-Word Access Example Showing
ADS and BLAST Timings

The 1960 Cx processor’s burst protocol requires:

¢ Quad-word and triple-word requests aways start on
quad word boundaries (A3 =0, A2 =0).

¢ Double-word requests aways start on double word
boundaries (A3 =X, A2=0).

intel

« Single-word requests can start on any word boundary
(A3=X,A2=X).

* Any request starting on an odd word boundary never
bursts (A3=X, A2=1).

3.0 BASIC DRAM CONTROLLER

The DRAM controller comprises four distinct blocks:
control logic, address path, data path, and the DRAM
SIMMS. This section describes each block.

3.1 Control Logic

The DRAM controller is centered around a four-bit state
machine which controls DRAM bank accesses and DRAM
refresh. All timings are generated based on the four-bit state
machine’s outputs. Some states are used for both read and
write accesses. The state machine uses the W_R signal from
the processor to distinguish between reads and writes. This
technique alows the state machine to use fewer states;
therefore, fewer output bits.

—
A24:4 MUX DA10:1
AsE | ADDR [pace | |
A0y MUX DA0O
T4F257
A31:2 A3L:2 — RAS30 >| RAS30
RASO Odd Even
BE3:0 - BE30 CASOB3.0 *m Bank casso Bank
- __ DRAM |wz DRAM
Contro| [— - WRO WE 5o31:0 DQ31:0
—— ADS
i960% CA/CF oUAST RASE
Processor CASEB3O 4
WRE
D31:0 I
- SELA/SELB 2 —
RDEN
|—||:||—| 32 B A 32
— RESET —| RESET
2X_CLK READY — = —
0osc CLKIN PCLK ¢ ’7 1X GLK _‘ EN AB LEN
EN
T4F244 T4F257 T4F244
System RESET
CLOCK
GEN

Figure 3. DRAM Controller Block Diagram

intal

3.1.1 Refresh Logic (CAS-before-RAS)

Typically DRAM needs to be refreshed every 15.6 ps. In
this design, due to power requirements needed to refresh an
entire DRAM array, one bank is refreshed at a time. The
DRAM controller uses an eight-bit counter to generate
refresh requests. A refresh reguest is generated every
7.8 us. The DRAM controller toggles between refreshing
each bank every 7.8 ps which means each bank is
effectively refreshed every 15.6 ps.

A refresh request has priority over a processor request.
When a processor and a refresh request occur simulta
neously, the DRAM controller sequences a refresh to the
appropriate DRAM bank while the PENDING state
machine posts the processor request. The pending request is
then serviced after the refresh is completed.

An eight-bit synchronous down counter is used to generate
refresh requests. The counter is clocked using 1X_CLK
clock. REFREQ is asserted each time the counter reaches
zero. Counting is inhibited when the counter reaches zero.
The counter is reloaded with Oxff and counting resumes
after the ACCESS state machine services the refresh.
During reset, the counter isloaded with Oxff.

3.1.2 Clock Generation

In the tested design, Motorola* MC88915 low skew CMOS
PLL generates the clock signals for the DRAM controller.
The MC88915 uses PCLK2 as an input, and produces four
very low skew copies of PCLK2, aswell asa 2x PCLK. At
33 MHz, the maximum skew between PCLK2 and any of
the MC88915 outputs was calculated to be +1 ns, while the
skew between any of the individual outputs is +750 ps
under equal loading conditions. All clock lines are
terminated with 22 ohm series resistors.

3.1.3 Wait State Profile

The DRAM Controller uses the processor’s READY signal
to control wait states. The MCON register is initiaized as
follows: (NXAD = NXDD = NXDA = 0) Table 1, Wait State
Profiles (33 MHz), provides the wait state profiles for read
and write accesses up to 33 MHz. Back-to-back accesses
require an extra wait state to meet RAS precharge time.
Therefore, to meet the RAS precharge time required, the
first data access uses three wait state cycles as opposed to
two wait state cycles for idle bus DRAM accesses.

AP-703

Table 1. Wait State Profiles (33 MHz)

Wait State Profile

Access Type Back-To-Back Idle Bus
Quad Word Read 3-0-0-0 2-0-0-0
Triple Word Read 3-0-0 2-0-0

Double Word Read 3-0 2-0

Single Word Read 3 2

Quad Word Write 3-1-1-1 2-1-1-1

Triple Word Write 3-1-1 2-1-1

Double Word Write 3-1 2-1

Single Word Write 3 2
3.2 Address Path

Figure 4 is a block diagram of the address path logic. The
2-to-1 multiplexers combine the row and column addresses
into a singular row/column address that the DRAM
requires. DAOE and DAOO eguivalent signas are
generated, one for each bank. DAOE and DAQOO are
generated by using A3E and A30 respectively. DAOE and
DAOO are the only address bits that increment during
bursts. The timing of these signals during bursts is critical
for proper operation.

A20:12, A22, A24

A24:4 > Binputs | [
DA10:1
Al1:4, A21, A23 >
T A Inputs
DAOE
—>
> Select
A3E | DAOO
A30 —
N 3 x 74F257
MUX Multiplexers

NOTE: Thicker lines indicate a bus.

Figure 4. Address Path Logic

3.3 Data Path

As shown in Figure 5, Data Path Logic, there is one data
path for reads and a separate data path for writes. The read
path uses 74F257 2:1 multiplexers to prevent contention
between the two DRAM banks. CAS can be active for both

AP-703

banks at the same time, necessitating use of the muilti-
plexers. The multiplexer outputs are enabled only during
reads by the RDEN signal. The multiplexers are switched
using SELA and SELB. These signals are derived from the
states of the ACCESS state machine and address A2.

The write data path consists of eight 8-bit 74F244 buffers,
four for each bank. The buffer outputs are enabled by WRE
and WRO.

p—
—— P \cn
WRE OE
4 X 74F244
Buffers
RDEN CE |[h
SELA/ SELB S A
D310 <Gup--<Guum
B
8 x 74F257
Multiplexers
—
<@ Odd
WRO —>|OE
4 X 74F244
Buffers

Figure 5. Data Path Logic

3.4 SIMM

The SIMM block consists of two standard 72-pin SIMM
sockets, arranged as two banks: odd and even. The x36
SIMM parity bits are not used in this design. However, x36
SIMMs are standard for PCs and workstations and are
readily available. The only penalty is more loading on the
address and control lines due to the extra DRAM devices of
x36 SIMM. In the tested design, all address and control
lines to the SIMM s are terminated with 22 ohm resistors.

intel

4.0 STATE MACHINES AND SIGNALS

This section describes the state machines and signals used
in this design. Most of the state machines are simple and the
PLD equations can be referenced in APPENDIX A. The
ACCESS state machine is the most complex of al the state
machines; for that reason, this application note provides
more detail on the operations of this state machine. In this
design, some state machines are clocked with the 1X_CLK
clock (bus clock frequency) and others with the 2X_CLK
clock (twice the bus clock frequency).

All PLD eguations are written in ABEL. APPENDIX A,
PLD EQUATIONS contains a listing of the PLD equation
file. State machine transitions described here follow the
ABEL conventions for logic operators:

« | represents NOT, bit-wise negation
¢ &

. #

represents AND

represents OR

To follow ABEL conventions, active LOW signals (such as
ADS) dready have a polarity assigned. For example, in the

state machines, ADS refers to the asserted state (LOW) and
|ADS refers to the non-asserted state (HIGH).

4.1 ACCESS State Machine

The ACCESS state machine, the “heart” of the DRAM
controller, is implemented as a four-bit state machine. See
Figure 6, Basic ACCESS State Machine. It is responsible
for sequencing accesses and refreshes to the DRAM banks.

From the IDLE state, the access state machine is sequenced
based on these three events:

¢ Refresh requests from the counter

« DRAM requests from the processor

* PENDING state machine requests

REFREQ

ADS & (DRAM Address)
ACC_PEND

Figure 6. Basic ACCESS State Machine

intal

4.2 PENDING State Machine

The PENDING state machine is a one-bit state machine
which monitors DRAM requests from the processor. Thisis
necessary because a DRAM refresh has priority over a
processor request. Therefore, this state machine is used to
post the processor request. The state machine gets reset
once the ACCESS state machine starts sequencing the
pending request. The state machine generates ACC_PEND.

4.3 ODDACCESS State Machine

The ODDACCESS state machine is clocked using the
1X_CLK clock. It is a onebit state machine which
monitors the initial state of the processor’'s address A2.
Several state machines in this design use the output of this
state machine as inputs. Address A2 from the processor
indicates whether an access starts on an even or odd word
boundary. The ACCESS state machine uses this bit exten-
sively. It is important to latch address A2 because the
processor toggles address A2 on burst accesses. This state
machine generates LA2.

4.4 BANKSELA State Machine

The BANKSELA state machine is a one-bit state machine
which is used to control the data multiplexer, primarily to
select between even or odd data during read accesses. This
state machine is clocked using the 1X_CLK clock. It
generates SELA.

4.5 BANKSELB State Machine

BANKSELB is a one-hit state machine which controls the
data multiplexer, primarily to select between even or odd
data during read accesses. This state machine is clocked
using the 1X_CLK clock. It generates SELB.

4.6 ADDRMUX State Machine

The ADDRMUX state machine is a one-bit state machine
which is used to control the address multiplexers,
essentially to select between row or column addresses. It is
clocked using the 2X_CLK clock. This state machine
generates MUX. This signal is a delayed version of RASE.
Delaying the switching of the row address by one 2X_CLK
clock cycle provides ample row address hold time (tgap)
required by the DRAM. The row address is selected while
MUX is high; otherwise, the column address is sel ected.

AP-703

4.7 A3EVEN State Machine

The A3EVEN state machine is a one-bit state machine
which is toggled on burst accesses to select the next data
word (next column data). The state machine is initialy
loaded with the value of the processor's address A3 and
then toggled for the next data access. This state machine is
clocked using the 2X_CLK clock, and generates A3E. This
signal isan input to the address multiplexer.

4.8 A30DD State Machine

The A30DD state machine is a one-bit state machine and
has the same functionality as the ABEVEN state machine.
This state machine generates A30.

4.9 RFEVENBK State Machine

The RFEVENBK state machine is a one-bit state machine
which is used to indicate which of the two banks (even or
odd) to refresh. The two banks are refreshed separately. The
even bank is refreshed when the RFEVENBK state
machine is active; otherwise, the odd bank is refreshed. The
output of this state machine is toggled on every refresh.
This state machine generates REFEVEN.

4.10 CASPIPE State Machine

The CASPIPE state machine is a one-bit state machine
which generates a pipelined CAS signa one 2X_CLK
clock cycle earlier. The output of this state machine is then
fed to the CASE_B3:0 state machines where it is recon-
structed to drive the CAS lines of the even bank. This state
machine generates CASEE.

4.11 CASPIPO State Machine

CASPIPO is a one-bit state machine which generates a
pipelined CAS signal one 2X_CLK clock cycle earlier. Its
output is then fed to the CASO_B3:0 state machines where
it is reconstructed to drive the CAS lines of the odd bank.
This state machine generates CASOO.

4.12 CASE_B3:0 State Machines

The CASE_B3:0 state machines control the CAS pins of
the even bank. CASE_BO controls the least significant byte
and CASE_B3 controls the most significant byte. The
CASE BO state machine generates CASEBO, and the
CASE_B3 state machine generates CASEB3. CASEBO is

5

AP-703

asserted when CASEE and the processor’s BEO signal are
asserted. CASEB3 is asserted when CASEE and the
processor’s BE3 signal are asserted. The CASE_B3:0 state
machines are clocked using the 2X_CLK clock.

4.13 CASO_B3:0 State Machines

The CASO_B3:0 state machines control the CAS pins of
the odd bank. CASO_BO controls the least significant byte
and CASO_B3 controls the most significant byte. The
CASO_BO state machine generates CASOBO, and the
CASO_B3 state machine generates CASOB3. CASOBO is
asserted when CASOO and the processor’s BEO signal are
asserted. CASOB3 is asserted when CASOO and the
processor’s BE3 signal are asserted. The CASO_B3:0 state
machines are clocked using the 2X_CLK clock.

4.14 RASEVEN State Machine

RASEVEN is a one-bit state machine which is used to
generate the RAS signals for the even bank. It is clocked
using the 2X_CLK clock; it generates RASE.

4.15 RASODD State Machine

RASODD is a one-bit state machine which is used to
generate the RAS signals for the odd bank. It is clocked
using the 2X_CLK clock; it generates RASO.

4.16 SRASE State Machine

SRASE is a one-hit state machine which is used to monitor
back-to-back DRAM accesses. It is generated by shifting
RASE by one 1X_CLK clock cycle. This state machine
generates SRASE. By using this signal’s state, the DRAM
controller can eliminate one wait state cycle for accessing
the first data word. Back-to-back accesses require an extra
wait state cycle to satisfy the RAS precharge time (tgp).

4.17 RDEN Signal

RDEN is asserted while a DRAM read is in progress. It
controls the data multiplexers output enables.

4.18 WRE Signal

WRE is asserted while a DRAM write is in progress. It
controls the even leaf WE lines to perform early writes. It
aso controls the even data path buffers output enables.

6

intel

WRO is asserted while a DRAM write is in progress. It
controls the odd leaf WE lines to perform early writes. It
aso controls the odd data path buffers output enables.

4.19 WRO Signal

4.20 REFREQ Signal

REFREQ, an active low signal, is the output of an eight-bit
counter. The counter is clocked using 1X_CLK. REFREQ
is asserted when the counter reaches zero. The ACCESS
state machine uses REFREQ to sequence refreshes.

5.0 DRAM CONTROLLER ACCESS FLOW

This section explains how the ACCESS state machine is
sequenced while reading, writing, and refreshing DRAM.
Examples used are:

¢ quad-word read

¢ single-word read

¢ quad-word write

¢ single-word write

* refresh

The examples in this application note assume back-to-back
DRAM accesses or pending accesses. For example, the first
data access of a DRAM request uses three wait states for

both reads and writes. For idle bus accesses, the ACCESSO
state is skipped, allowing only two wait states.

Refer to APPENDIX A, PLD EQUATIONS. The ACCESS
state machine uses SRA SE to detect back-to-back accesses.

RDEN is asserted during read accesses while WRE and
WRO are asserted during write accesses.

5.1 Quad-Word Read

Figure 7 shows the state diagram for a quad-word read state
diagram. Figure 8 shows a quad-word read timing diagram.
This state diagram shows the paths for triple-, double-, and
single-word reads. Single-word reads which are aligned on
odd word boundaries use a different path; therefore, a
separate exampleis used to explain that state machine path.

AP-703

from the processor are asserted. At the end of ACCESS2,

A=

ADS & | REFREQ & ! ACC_PEND & DRAMADDR & SRASE
| REFREQ & ACC_PEND

B = ADS & ! REFREQ & ! ACC_PEND & DRAMADDR

& ! SRASE & ! A2
LA2

UNCONDI TI ONAL
UNCONDI TI ONAL
| BLAST

BLAST & LA2

| BLAST

WR & BLAST

| BLAST

BLAST

UNCONDI TI ONAL

rXeTIOomMMmO 0O

Figure 7. Quad-Word Read State Diagram

From the IDLE state, the machine enters the ACCESS0
state due to a processor request or a pending processor
request. At the end of the IDLE state, the ASEVEN and
A30DD state machines are loaded with the processor's
address A3 and the ODDACCESS state machine is loaded
with the processor’s address A2. While in the IDLE state,
MUX is deasserted, which selects the row address.

At the end of the ACCESSO state, RASE and RASO are
asserted. The machine then proceeds to ACCESS] state.

In the middle of the ACCESSL state, MUX is asserted. This
causes the column address to be selected. At the end of
ACCESS1, CASEE is asserted. From ACCESSL, the
machine enters ACCESS2 state.

In the middle of the ACCESS2 state, CASEB3:0 are
asserted if CASEE and the respective byte enable signals

CASOQO is asserted or BLAST is not asserted. The machine
then proceeds to the ACCESSS3 state.

The ACCESSS3 state is the first data cycle (Tyg) for read
requests which are aigned on even word boundaries
(A2=0). In the middle of the ACCESS3 state, CASOB3:0
are asserted if CASOO and the respective byte enable
signals from the processor are asserted, whereas CASEE is
deasserted. At the end of ACCESS3, CASEB3:.0 are
deasserted if they were earlier asserted. CASEB3:0 are
deasserted because CASEE is sampled deasserted. CASEE
is reasserted at the end of ACCESS3 to initiate the third
data (T4p) access. The pending state machine is reset before
leaving this state. From ACCESS3, the machine can
proceed to either the IDLE state or the ACCESSA state. If
BLAST s asserted, the machine proceeds to the IDLE
state; otherwise, it proceeds to the ACCESSA state.

The ACCES$ state is the second data cycle (Ty,) for read
accesses. In the middle of ACCESS4, CASOO is
deasserted. At the end of ACCESS4, CASOB3:.0 are
deasserted if they were earlier asserted. CASOB3:0 are
deasserted because CASOO is sampled deasserted.
CASOO is reasserted at the end of ACCESS4 to initiate the
fourth data (T 43) access. From ACCESS4, the machine can
proceed to either the IDLE state or the ACCESSS state. If
BLAST is asserted, the machine proceeds to the IDLE
state; otherwise, to the ACCESSS state.

The ACCESSS dtate is the third data cycle (Typ) for read
accesses. In the middle of ACCESS5, CASOB3:.0 are
asserted when CASOO and the respective byte enable
signals from the processor are sampled asserted, whereas
CASEE is deasserted. At the end of ACCESSS5, the
CASEB3:0 are deasserted if they were earlier asserted.
CASEB3:0 are deasserted because CASEE is sampled
deasserted. From ACCESS5, the machine can proceed to
either the IDLE state or the ACCESSS state. When BLAST
is asserted, the machine proceeds to the IDLE state,
otherwise to the ACCESSS state.

ACCESSS is the fourth and last data cycle (Ty3) for read
accesses. In the middle of ACCESS6, CASOO is
deasserted. At the end of ACCESS6, CASOB3:.0 are
deasserted. CASOB3:0 are deasserted because CASOO is
sampled deasserted. From ACCESS6, the machine
proceeds to IDLE state while deasserting RASE and
RASO.

AP-703

Ta } Tw } Tw } Tw

:IDLE : ACCO , ACC1 : ACC2

1X_CLK

Tao Ta1

' '
i ACC3

Ta2 Tas

ACC4 . ACC5 . ACC6 . .

ADS

A31:3

RASE / RASO

SNV

DA10:1

Column

CASOO

CASOB3:0

D31:00

D31:0

111111100 171

READY

Figure 8.

5.2 Single-Word Read

The ACCESS state machine takes a dlightly different path
when a read request is aligned on an odd word boundary.
Figure 9 shows the state diagram for a single-word read;
Figure 10 shows a single-word read timing diagram.

From the IDLE state, the machine enters the ACCESSO
state due to a processor request or a pending processor
request. At the end of the IDLE state, the ASEVEN and
A30DD state machines are loaded with the processor’'s
address A3 and the ODDACCESS state machine is loaded
with the processor’'s address A2. MUX is deasserted in the
IDLE state, which selects the row address.

At the end of the ACCESSO state, RASO is asserted. The
machine then proceeds to the ACCESS2 state.

Quad-Word Read Timing Diagram

MUX is asserted in the middle of the ACCESS2 state; this
selects the column address. At the end of ACCESS2,
CASOO is asserted. From ACCESS?2, the machine enters
ACCESS3 state.

In the middle of the ACCESS3 state, CASOB3:0 are
asserted when CASOO and the respective byte enable
signals from the processor are asserted. The pending state
machine is reset before leaving this state. The machine then
proceeds to ACCESH state.

The ACCESH state is the data cycle (Tqq) for the read
access. In the middle of ACCESS4, CASOO is deasserted.
At the end of ACCESS4, CASOB3:0 are deasserted.
CASOB3:0 are deasserted because CASOO is sampled
deasserted. The machine then proceeds to the IDLE state.

AP-703

ACCESS4

Tao

A = ADS & ! REFREQ & ! ACC_PEND & DRAMADDR
& SRASE
| REFREQ & ACC_PEND

B = ADS & ! REFREQ & ! ACC_PEND & DRAMADDR
& I'SRASE & A2 & WR

C= WR&!LA2

D = UNCONDI TI ONAL
E = BLAST & ! LA2
F = WR & BLAST

Figure 9. Single-Word Read State Diagram
(A2=1)

: Ta Tw Tw Tw | TdO:

| IDLE ; ACCO,ACC2, ACC3, ACC4,

lx_CLK [1 1 1 1 1 1
Abs |

A3L3 |

X
m[:
pALO:1 | 3(Row X
S —
easoo L0 N/

oo [T\
p3100 [——————_d0_)—
D31:0|:E @—
oy [N\

Figure 10. Single-Word Read Timing Diagram
(A2=1)

5.3 Quad-Word Write

Figure 11 shows the state diagram for a quad-word write.
This state diagram also shows the state machine paths for
triple-, double-, and single-word writes. Single-word writes
which are aligned on odd word boundaries use a different
path; therefore, a different example is used to explain the
state machine path. Figure 12 shows the timing diagram for
aquad-word write.

From the IDLE state, the machine enters the ACCESS0
state due to a processor request or a pending processor
request. At the end of the IDLE state, the ABEVEN and
A30DD state machines are loaded with the processor's
address A3, and the ODDACCESS state machine is loaded
with the processor’s address A2. MUX is deasserted in the
IDLE state, which selects the row address.

At the end of the ACCESSO state, RASE and RASO are
asserted. The machine then proceeds to the ACCESS1
State.

MUX is asserted in the middle of the ACCESSL state; this
selects the column address. From ACCESSL, the machine
enters the ACCESS? state.

AP-703

In the middle of the ACCESS2 state, CASEE is asserted. At
the end of the ACCESS? state, CASEB3:0 are asserted if
CASEE and the respective byte enable signals from the
processor are asserted. The machine then proceeds to the
ACCESS3 state.

The ACCESSS state is the first or third data cycle (T or
Tqp) for write accesses which are aigned on even word
boundaries (A2 = 0). In the middle of the ACCESSS state,
CASEE is deasserted. At the end of the ACCESS3 state,
CASEB3:0 are deasserted. This is because CASEE is
sampled deasserted. The pending state machine is reset
before leaving this state. From ACCESS3, the machine can
proceed to either the ACCESSA state or the IDLE state. If
BLAST is asserted, the machine proceedsto the IDLE state,
otherwise to the ACCESS4 state.

In the middle of the ACCESS4 state, CASOO is asserted.
At the end of ACCESS4, CASOB3:0 are asserted if
CASOO and the respective byte enable signals from the
processor are asserted. The machine then proceeds to the
ACCESSS state.

The ACCESSS state is the second or fourth data cycle (Tg;
or Tyg) for write accesses which are aligned on even word
boundary (A2 = 0). In the middle of ACCESS5, CASOO is
deasserted. At the end of ACCESS5 CASOB3:0 are
deasserted. This is because CASOO is sampled deasserted.
From ACCESS5, the machine can proceed to either the
ACCESS2 state or the IDLE state. If BLAST is asserted,
the machine proceeds to the IDLE state, otherwise to the
ACCESS2 state.

10

A = ADS & ! REFREQ & ! ACC_PEND & DRAMADDR
& SRASE

| REFREQ & ACC_PEND

B = ADS & ! REFREQ & ! ACC_PEND & DRAMADDR
& I SRASE & | A2

C= LA2

D = UNCONDI TI ONAL

E = UNCONDI TI ONAL

F = 1BLAST

G = BLAST & LA2

H= IWR

| = IWR & ! BLAST

J = BLAST

Figure 11. Quad-Word Write State Diagram

AP-703

RASE / RASO

Column

X

Row

CASEB3:0 I:

d3

dl

do

CASOB3:0 I:

Figure 12. Quad-Word Write Timing Diagram

11

AP-703

5.4 Single-Word Write

The ACCESS state machine takes a dlightly different path
when the write request is aligned on an odd word boundary.
Figure 13 shows the state diagram for a single-word write.
Figure 14 shows the timing diagram.

ACCESS0
TW

A=

ADS & ! REFREQ & ! ACC_PEND & DRAMADDR
& SRASE

| REFREQ & ACC_PEND
ADS & ! REFREQ & ! ACC_PEND & DRANADDR
& I SRASE & A2 & | WR

= IWR & ILA2

LA2 & BLAST

IWR

= BLAST

B =

Mmoo
Il

Figure 13. Single-Word Write State Diagram
(A2=1)

From the IDLE state, the machine enters the ACCESSO
state due to a processor request or a pending processor
request. At the end of the IDLE state, the ASEVEN and
A30DD state machines are loaded with the processor’'s

address A3, and the ODDACCESS state machine is loaded
with the processor’s address A2.

12

.

mteL
At the end of ACCESSO state, RASO is asserted. The
machine then proceeds to the ACCESS3 state.

In the middle of ACCESS3, MUX is asserted. This causes
the column address to be selected. From ACCESS3, the
machine enters ACCESS4 state.

In the middle of ACCESS4, CASOO is asserted. At the end
of the ACCESS4 state, CASO3.0 are asserted if CASOO
and the byte enable signals from the processor are sampled
asserted. CASOO is deasserted at the end of ACCESS4.
The machine then proceeds to ACCESSS state.

The ACCESSS state is the data cycle (Tqyo) for the write
access which is aligned on odd word boundary (A2 = 1). At
the end of ACCESS5, CASOB3:.0 are deasserted. The
machine then proceeds to the IDLE state while deasserting
RASO.

T, .

Ty * Tw + Ty + Tgo ¢

' IDLE | ACCO |ACC3 ! ACC4 ! ACCS5 | X

CASOB [
30

D31:00 |:

D31:0 |: ' { do

ml N\

Figure 14. Single-Word Write Timing Diagram
(A2=1)

intel

55 Refresh Cycles

The refresh counter requests a DRAM refresh every 7.8 ps.
One bank isrefreshed at atimein alternation. The ACCESS
state machine sequences the refresh and, based on the state
of the RFEVENBK state machine, either the even or the
odd bank is refreshed. The following text assumes the even
bank is to be refreshed; for example, the RFEVENBK state
machine is active. The odd bank is refreshed in a similar
manner.

Figure 15 shows the refresh state diagram. Figure 16 shows
the refresh timing diagram. From the IDLE state, the
machine enters the REFRESHO state if REFREQ is
asserted. In the middle of REFRESHO, CASEE is asserted.
At the end of REFRESHO, CASEB3:0 is asserted because
CASEE is sampled asserted. At the end of REFRESHO the
counter is also reloaded which deasserts REFREQ to get
deasserted. Counting resumes on the next clock edge. The
machine then proceeds to the REFRESH1 state.

In the middle of the REFRESH1 state, CASEE is deasserted
while RASE is asserted. At the end of the REFRESH1 state,
CASEB3:0 are deasserted. This is because CASEE is
sampled deasserted. The RFEVENBK state machine is
toggled at the end of REFRESH1. The machine then
proceeds to the REFRESH2 state. The next refresh
sequence refreshes the odd bank because the state of the
RFEVENBK state machine is altered.

AP-703
In the REFRESH2 state, the machine unconditionally
proceeds to the REFRESHS state.

At the end of the REFRESH3 state, RASE is deasserted.
The machine then proceeds to the IDLE state.

> REFRESHO

A = REFREQ
B = UNCONDI TI ONAL
C = UNCONDI TI ONAL
D = UNCONDI TI ONAL
E = UNCONDI TI ONAL

Figure 15. Refresh State Diagram

1X_CLK

. IDLE , IDLE ,REFO , REF1, REF2,REF3, IDLE,

REFREQ

REFEVEN

/

RASE

CASEE

\

CASEB3:0

RASO

CASOO

ririririririri1riri

Y/

CASOB3:0

Figure 16. Refresh Timing Diagram

13

AP-703

6.0 CONCLUSION

In conclusion, this application note describes a DRAM
controller for use with 33 MHz 1960 CA/CF processors.
This DRAM controller was built and tested for validation
purposes. The PLD equations used to build and test the
prototype design were created in ABEL. All timing analysis
was verified with Timing Designer. Schematics were
created with OrCAD. The timing analysis, schematics and
PLD files are available through Intel’'s America's
Application Support BBS.

7.0 RELATED INFORMATION

This application note is one of four that are related to
DRAM controllers for the i960 processors. The following
table shows the documents and order numbers:

Document Name N%Ft)g# Order #
DR Controler forthe 40 MH2 19607 | ap-706 | 272655
'\Ddfi/rxol\g rgggéglresr for the i960° JAFID | Ab 715 | 272674

14

intel

To receive these documents or any other available Intel
literature, contact:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect IL 60056-7641
1-800-879-4683

To receive files that contain the timing analysis, schematics
and PLD equations for this and the other DRAM controller
application notes, contact:

Intel Corporation
America's Application Support BBS
916-356-3600

AP-703

15

AP-703

16

intal

AP-703

APPENDIX A
PLD EQUATIONS

Table A-1 contains the PLD equations which were used to build and test the prototype design. Table A-2 defines signal
and product term allocation. The PLD equations were created in ABEL as a device-independent design. Using the ABEL*
software, a PDS file was created and subsequently imported into PLDSHEL L* software. PLDSHELL was used to fit the
design into an Altera EPX780 FLEXIogic* PLD. PLDSHELL was also utilized to create the JEDEC file, and to simulate

the design.

In addition, this appendix contains a table listing the number of product terms used by each macrocell.

The DRAM Controller does not use the APK_ACTIVE signal.

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 1 of 22)

25/ 33MHz

Modul e CX33T

Title ' DRAM Controller for
Source File CX33T. ABL

Revi si on Rev 0.0

Dat e 11/ 17/ 94

Desi gner Sai | esh Bi ssessur

Intel

80960 Applications Engineering'

" 2-Vy Interleaved DRAM controller for the 960Cx 33 AND 25MHz.

" This design also contains logic for

FLASH, HEX DI SPLAY, and Software Reset.

" DRAM - 0xA0000000

" FLASH - OxFFFEO000

" HEX DI SPLAY - 0xB8000000

" SW Reset - 0xB0000000

" Ux x device 'I1FX780_132';

" inputs signals
CLK1 PIN 118 ; " 1x clock
CLK2 PIN 52 ; " 2x clock
A2 PIN, " Address A2
I EXTRST PIN, " External Reset
I CPUMAI T PIN, " Processor wait
I ADS PIN, " Address Strobe
| BLAST PIN, " Burst Last
IWR PIN, " Processor Read/Wite
A31 PIN, " Address A31
A30 PIN, " Address A30
A29 PIN, " Address A29
A28 PIN, " Address A28
A27 PIN, " Address A27
DCLK1 PIN, " Delayed Cl ock
A3 PIN, " Address A3
| BE3 PIN, " Byte Enable 3
| BE2 PIN, " Byte Enable 2
| BE1 PIN, " Byte Enable 1
I BEO PIN, " Byte Enable O
I APK_ACTI VE PIN, " Indicates presence of ApLink

A-1

AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 2 of 22)

intel

out put signals
I LA2
05]
@
! RDEN
I SELA
| SELB
| READY
Q

@
I ACC_PEND
| RASO
A3E

| REFEVEN

| CASEE

| CASOO
A30

WA T

| RASE

! MUX

! CASEBO
I CASEB1
I CASEB2
! CASEB3
I CASOBO
I CASOB1

! FLASHRD
| FLASHWR
| XCROE

| XCRDI R

| SWRST

| TRI GRST
| RESET

| VRE

I VRO

| SRASE
LED LAT

PI'N
PI N
PI'N
PI N
PI'N
PI N
PI'N
PI N
PI N
PI'N
PI'N
PI N
PI'N
PI'N
PI'N
PI N
PI'N
PI'N
PI'N

PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI N
PI N
PI'N
PI N
PI N
PI N
PI N
PI N
PI'N
PI'N
PI'N
PI'N
PI N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI'N
PI N

stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype

stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype
stype

reg'
reg'
reg'
com
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
com
reg'
reg'

reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
reg'
com
reg'
reg'

com ;
reg';
coni ;
reg';
reg';
reg'
com ;

com
reg'
reg'

’
’
i
i
i
i
’
’
’
i

’

| at ched A2

mc bit3

mc bit2

enabl es data nmux '257s
sel ects even odd data
sel ects even odd data
Processor READY

mc bitl

mc bit0

access pendi ng indicator
Odd RAS

Even Address Counter

whi ch bank to refresh

Pi pel i ned Even CAS

Pi pel i ned Odd CAS

Odd Address Counter

wait state indicator
Even RAS

Sel ect s between Even/ Gdd Col

Byte 0 Even CAS
Byte 1 Even CAS
Byte 2 Even CAS
Byte 3 Even CAS
Byte 0 Odd CAS
Byte 1 Odd CAS
Byte 2 Odd CAS

Byte 3 Qdd CAS

Refresh Counter 1 bit 3
Refresh Counter 1 bit 2
Refresh Counter 1 bit 1
Refresh Counter 1 bit O
Refresh Counter 2 bit 3
Refresh Counter 2 bit 2
Refresh Coubter 2 bit 1
Refresh Counter 2 bit 0

Refresh Required

FLASH Chi p Sel ect
FLASH CE

Fl ash WE

TRANSCEI VER CE contro
TRANSCEI VER DI R contro
SW Reset | ndi cator
Triggers the Reset Device
Syst em Reset

Even Bank WE

Odd Bank WE

Lat ched RASE or RASO
HEX Di spl ay Pul se

Addr

A-2

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 3 of 22)

AP-703

C
X
CYCLE
ODDACCESS
BANKSELA
BANKSELB
PENDI NG
RDY
RASEVEN
RASODD
CASPI PE
CASPI PO
ADDRMUX
A3EVEN
A30DD
RFEVENBK
CASE_BO
CASE_B1
CASE_B2
CASE_B3
CASO_BO
CASO Bl
CASO B2
CASO B3
REFCT2 =
REFCT1 =

.C.;
X

[@B, @, A, Q];
[LA2];

[SELA] ;

[SELB] ;

[ACC_PEND] ;

[READY] ;

[RASE] ;

[RASO ;

[CASEE] ;

[CASOT ;

T3, T2, T1, T0] ;
S3, S2, S1, S0] ;
= (A31 & ! A30
= (A31 & A30
= (A31 & ! A30
= (A31 & ! A30

A29 & | A28 & ! A27);
A29 & A28 & A27);
A29 & A28 & ! A27);
A29 & A28 & A27);

Ro Ro Ro Ro

~b1;
~bO:;

~b0000;
~b0001;
~b0010;
~b0011;
~b0100;
~b0101;
~b0110;
~b0111;
~b1000;
~b1001;
~b1010;
~b1011;
~b1100;
“b1101;
~b1110;
“b1111,;

A-3

AP-703 In

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 4 of 22)

| DLE = ~b0000;
ACCESS0 = ~b0001;
ACCESS1 = ~b0010;
ACCESS2 = ~b0011;
ACCESS3 = ~b0100;
ACCESS4 = ~b0101;
ACCESS5 = ~b0110;
ACCESS6 = ~b0111;
ACCESS7 = ~b1000; “this state is never entered
ACCESS8 = ~b1001; “this state is never entered
REFRESHO = ~b1010;
REFRESH1 = ~b1011;
REFRESH2 = ~b1100;
REFRESH3 = "b1101;
REFRESH4 = ~b1110; “this state is never entered
REFRESH5 = "b111ll; “this state is never entered

"Hol ds state of A2 of Processor
st at e_di agr am ODDACCESS
st at e ASSERT:
if((CYCLE == I DLE) & A2) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if((CYCLE == IDLE) & ! A2) then ASSERT
el se

DEASSERT;

"Even byte 0 CAS
st at e_di agr am CASE_BO
stat e ASSERT:
if(!@ & ! CASEE) then DEASSERT

el se

if(!QB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se

if(@B & ! CASEE) then DEASSERT
el se

ASSERT;

st at e DEASSERT:

if(!QB & CASEE & BEQ) then ASSERT
el se

if(Q8 & CASEE) then ASSERT
el se

DEASSERT;

A-4

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 5 of 22)

"Even byte 1 CAS
st at e_di agram CASE_B1
st at e ASSERT:
if(!QB & ! CASEE) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(Q8 & ! CASEE) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASEE & BEl) then ASSERT
el se

if(Q8 & CASEE) then ASSERT
el se

DEASSERT;

"Even byte 2 CAS
st at e_di agr am CASE_B2
st at e ASSERT:
if(!QB & ! CASEE) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(Q8 & ! CASEE) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASEE & BE2) then ASSERT
el se

if(Q8 & CASEE) then ASSERT
el se

DEASSERT;

A-5

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 6 of 22)

"Even byte 3 CAS
st at e_di agram CASE_B3
st at e ASSERT:
if(!QB & ! CASEE) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(Q8 & ! CASEE) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASEE & BE3) then ASSERT
el se

if(Q8 & CASEE) then ASSERT
el se

DEASSERT;

"Odd byte 0 CAS
st at e_di agr am CASO_BO
st at e ASSERT:
if(!QB & ! CASOCO) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(QB & ! CASOO) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASOO & BEQ) then ASSERT
el se

if(Q8 & CASOO) then ASSERT
el se

DEASSERT;

A-6

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 7 of 22)

"Odd byte 1 CAS
st at e_di agram CASO B1
st at e ASSERT:
if(!B & ! CASCO) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(QB & ! CASCO) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASOO & BEl) then ASSERT
el se

if(QB & CASOO) then ASSERT
el se

DEASSERT;

"Odd byte 2 CAS
st at e_di agram CASO_B2
st at e ASSERT:
if(!QB & ! CASOCO) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(QB & ! CASCO) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASOO & BE2) then ASSERT
el se

if(QB & CASOO) then ASSERT
el se

DEASSERT;

A-7

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 8 of 22)

"Odd byte 3 CAS
st at e_di agram CASO B3
st at e ASSERT:
if(!QB & ! CASOCO) then DEASSERT
el se
if(!lB & 'WAIT & BLAST & WR & ! DCLK1) then DEASSERT
el se
if(QB & ! CASOO) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

if(!QB & CASOO & BE3) then ASSERT
el se

if(QB & CASOO) then ASSERT
el se

DEASSERT;

"Keeps track of any pending access
st at e_di agr am PENDI NG
stat e ASSERT:
i f (CYCLE == ACCESS3) then DEASSERT
el se
ASSERT,;

st at e DEASSERT:

i f (ADS & DRAMADDR) then ASSERT
el se

DEASSERT;

A-8

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 9 of 22)

"I ndi cates which Bank is to be refreshed next when ! REFREQ becomes active
st at e_di agr am RFEVENBK
st ate ASSERT:
i f((CYCLE == REFRESH1) & ! DCLK1) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

i f((CYCLE == REFRESH1) & !DCLK1) then ASSERT
el se

DEASSERT;

"Sel ects even or odd data path while reading
st at e_di agr am BANKSELA
stat e ASSERT:
i f((CYCLE == | DLE) & A2) then DEASSERT
el se
i f((CYCLE == ACCESS3)) then DEASSERT
el se
i f((CYCLE == ACCESS5)) then DEASSERT
el se
ASSERT,;

st at e DEASSERT:

if((CYCLE == IDLE) & ! A2) then ASSERT
el se

i f((CYCLE == ACCESS4)) then ASSERT
el se

DEASSERT;

"Sel ects even or odd data path while reading
st at e_di agr am BANKSELB
stat e ASSERT:
if((CYCLE == | DLE) & A2) then DEASSERT
el se
i f((CYCLE == ACCESS3)) then DEASSERT
el se
i f((CYCLE == ACCESS5)) then DEASSERT
el se
ASSERT,;

st at e DEASSERT:

if((CYCLE == IDLE) & ! A2) then ASSERT
el se

i f((CYCLE == ACCESS4)) then ASSERT
el se

DEASSERT;

A-9

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 10 of 22)

"Cenerates READY to the processor
st at e_di agr am RDY
stat e ASSERT:
if(WR & BLAST) then DEASSERT
el se
if(!WR) then DEASSERT
el se
ASSERT;

st at e DEASSERT:
i f((CYCLE == ACCESS2) & LA2) then ASSERT

el se
if((CYCLE == ACCESS3) & WR & ! LA2) then ASSERT
el se
if((CYCLE == ACCESS3) & WR & LA2 & ! BLAST) then ASSERT
el se
i f((CYCLE == ACCESS4) & !WR) then ASSERT
el se

DEASSERT;

"Even RAS
st at e_di agr am RASEVEN
st ate ASSERT:
i f((CYCLE == ACCESS3) & ! DCLK1 & LA2 & BLAST) then DEASSERT

ol se i f ((CYCLE == ACCESS4) & ! DCLKL & WR & BLAST) then DEASSERT
ol ee i f ((CYCLE == ACCESS5) & ! DCLK1 & BLAST) then DEASSERT

ol ee i f ((CYCLE == ACCESS6) & !DCLK1 & BLAST) then DEASSERT

e: > i f ((CYCLE == REFRESH3) & !DCLK1) then DEASSERT

el se

ASSERT;

st at e DEASSERT:
if((CYCLE == IDLE) & ! SRASE & ADS & ! REFREQ & ! ACC_PEND

& DRAMADDR & ! DCLK1) then ASSERT

el se
i f((CYCLE == ACCESS0) & !DCLK1) then ASSERT
el se
i f((CYCLE == REFRESH1) & DCLK1 & REFEVEN) then ASSERT
el se
DEASSERT;

A-10

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 11 of 22)

"OQdd RAS
st at e_di agr am RASODD
stat e ASSERT:
i f((CYCLE == ACCESS3) & !DCLK1 & LA2 & BLAST) then DEASSERT

ol ee i f ((CYCLE == ACCESS4) & !DCLKL & WR & BLAST) then DEASSERT
ol se i f ((CYCLE == ACCESS5) & !DCLK1 & BLAST) then DEASSERT

ol se i f ((CYCLE == ACCESS6) & !DCLK1 & BLAST) then DEASSERT

e: > i f ((CYCLE == REFRESH3) & !DCLK1) then DEASSERT

el se

ASSERT;

st at e DEASSERT:
if((CYCLE == I DLE) & ! SRASE & ADS & ! REFREQ & ! ACC_PEND
& DRAMADDR & ! DCLK1) then ASSERT

el se

i f((CYCLE == ACCESS0) & !DCLK1l) then ASSERT
el se

i f((CYCLE == REFRESH1) & DCLK1 & ! REFEVEN) then ASSERT
el se

DEASSERT;

" Pi pel i ned Even CAS
st at e_di agr am CASPI PE
stat e ASSERT:
i f((CYCLE == ACCESS3) & DCLK1) then DEASSERT

el se
i f((CYCLE == ACCESS5) & DCLK1) then DEASSERT
el se
i f((CYCLE == ACCESS4) & ! DCLK1 & BLAST & WR) then DEASSERT
el se
i f((CYCLE == REFRESH1) & DCLK1) then DEASSERT
el se

ASSERT;

st at e DEASSERT:
i f((CYCLE == ACCESS1l) & WR & !DCLK1) then ASSERT

el se
i f((CYCLE == ACCESS2) & !WR & DCLK1) then ASSERT
el se
i f((CYCLE == ACCESS3) & WR & ! DCLK1 & !BLAST) then ASSERT
el se
i f((CYCLE == REFRESH0) & DCLK1 & REFEVEN) then ASSERT
el se

DEASSERT,;

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 12 of 22)

"Pi pelined Odd CAS
stat e_di agram CASPI PO
stat e ASSERT:
i f((CYCLE == ACCESS4) & WR & DCLK1) then DEASSERT

ol se i f ((CYCLE == ACCESS6) & WR & DCLK1) then DEASSERT

ol se i f ((CYCLE == ACCESS5) & WR & BLAST & ! DCLK1) then DEASSERT
ol se i f ((CYCLE == ACCESS5) & !WR & DCLK1) then DEASSERT

e: > i f ((CYCLE == REFRESH1) & DCLK1) then DEASSERT

el se

ASSERT;

st at e DEASSERT:
i f((CYCLE == ACCESS2) & WR & LA2 & ! BLAST & ! DCLK1) then

ASSERT

el se

if((CYCLE == ACCESS2) & WR & !LA2 & ! DCLK1) then ASSERT
el se

i f((CYCLE == ACCESS4) & WR & ! BLAST & ! DCLK1) then ASSERT
el se

if((CYCLE == ACCESS4) & !WR & DCLK1) then ASSERT
el se

i f((CYCLE == REFRESH0) & DCLK1 & ! REFEVEN) then ASSERT
el se

DEASSERT;

"Even address counter
st at e_di agram A3EVEN
st at e DEASSERT:

if((CYCLE == IDLE) & !DCLK1 & A3) then ASSERT
el se

i f((CYCLE == ACCESS3) & !WR & !DCLK1) then ASSERT
el se

i f((CYCLE == ACCESS3) & WR & DCLK1) then ASSERT
el se

DEASSERT;
st at e ASSERT:

if((CYCLE == IDLE) & !DCLK1 & ! A3) then DEASSERT
el se

ASSERT;

A-12

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 13 of 22)

"Odd address counter
st at e_di agram A30DD
st at e DEASSERT:
if((CYCLE == IDLE) & A3 & !DCLK1) then ASSERT
el se
i f((CYCLE == ACCESS4) & WR & DCLK1) then ASSERT
el se
i f((CYCLE == ACCESS5) & !WR & !DCLK1) then ASSERT
el se
DEASSERT;

st at e ASSERT:
if((CYCLE == IDLE) & !'A3 & ! DCLK1) then DEASSERT

el se

ASSERT;

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 14 of 22)

"Mai n DRAM st ate nachi ne - ACCESS state machi ne
st at e_di agram CYCLE
state | DLE:
if(ADS & ! REFREQ & ! ACC_PEND & DRAMADDR & SRASE) then
ACCESSO0
el se
if(ADS & ! REFREQ & ! ACC_PEND & DRAMADDR & ! SRASE & ! A2)
t hen ACCESS1

el se
if(ADS & ! REFREQ & ! ACC_PEND & DRAMADDR & ! SRASE & A2
& WR) then ACCESS2
el se
if(ADS & ! REFREQ & ! ACC_PEND & DRAMADDR & ! SRASE & A2
& 'WR) then ACCESS3
el se
i f (! REFREQ & ACC_PEND) t hen ACCESSO
el se
i f (REFREQ then REFRESHO
el se

| DLE;

st at e ACCESSO:

if(WR & 'LA2) then ACCESS2
el se

if(!WR & ! LA2) then ACCESS3
el se

ACCESS1,;

state ACCESS1:
got o ACCESS2;

st at e ACCESS2:
got o ACCESS3;

st at e ACCESS3:

i f (BLAST & LA2) then |DLE
el se

ACCESS4;

st at e ACCESS4:

if(WR & BLAST) then |DLE
el se

got o ACCESSS5;

st at e ACCESSS:

i f (BLAST) then |DLE
el se

if(!WR & ! BLAST) then ACCESS2
el se

got o ACCESS6;

A-14

intal

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 15 of 22)

AP-703

state

state

state

state

state

state

state

state

state

ACCESS6:
goto | DLE;

ACCESS7:
got o ACCESSS;

ACCESSS:
goto | DLE;

REFRESHO:
got o REFRESH1;

REFRESHL.:
got o REFRESHZ;

REFRESH2:
got o REFRESHS3;

REFRESH3:
goto | DLE;

REFRESH4:
goto | DLE;

REFRESH5:
goto | DLE;

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 16 of 22)

"Row Col utm addr ess sel ect
st at e_di agr am ADDRMUX
st at e ASSERT:
i f (! RASE & DCLK1) then DEASSERT
el se
ASSERT;

st at e DEASSERT:

i f (RASE & DCLK1) then ASSERT
el se

DEASSERT;

"Refresh Counter 1
st at e_di agram REFCT1
state Z0:
if(!B & (REFCT2 == Z0)) then 20
el se
Z15;

state Z1:

if(Q@) then Z15
el se

Z0;

state Z2:

if(Q@) then Z15
el se

Z1;

state Z3:

if(Q@) then Z15
el se

Z2;

state Z4:

if(Q@) then Z15
el se

Z3;

state Z5:

if(Q@) then Z15
el se

Z4;

state Z6:

if(Q@) then Z15
el se

Z5;

A-16

In

tol

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 17 of 22)

AP-703

state Z7:
if(R@)

Z6;

el se

state Z8:
if(R@)

Z7;

el se

state Z9:
if(R@)

Z8;

el se

state Z10:
if(R@)

Z9;

el se

state Z11:
if(R@)

Z10;

el se

state Z12:
if ()

Z11;

el se

state Z13:
if(R@)

Z712;

el se

state Z14:
if(R@)

Z13;

el se

state Z15:
if(R@)

Z14;

el se

t hen

t hen

t hen

t hen

t hen

t hen

t hen

t hen

t hen

Z15

Z15

Z15

Z15

Z15

Z15

Z15

Z15

Z15

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 18 of 22)

"Refresh Counter 2
st at e_di agr am REFCT2
state Z0:
if(Q) then Z15

el se

Z0;
state Z1:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z0;
el se

Z1;
state Z2:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z1;
el se

Z2;
state Z3:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z2;
el se

Z3;
state Z4:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z3;
el se

Z4;
state Z5:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then z4;
el se

Z5;
state Z6:

if(Q) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z5;
el se

Z6;

A-18

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 19 of 22)

state Z7:

if(Q@B) then Z15
el se

if(!@B & (REFCT1 == Z0)) then Z6;
el se

Z7;
state Z8:

if(Q@) then Z15
el se

if(!@B & (REFCT1 == Z0)) then Z7,
el se

Z8;
state Z9:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z8;
el se

Z9;
state Z10:

if(Q) then Z15
el se

if(!@B & (REFCT1 == Z0)) then Z9;
el se

Z10;
state Z11:

if(Q@) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z10;
el se

Z11;
state Z12:

if(Q@) then Z15
el se

if(!@B & (REFCT1 == Z0)) then Z11;
el se

Z12;
state Z13:

if(Q) then Z15
el se

if(!B & (REFCT1 == Z0)) then Z12;
el se

Z13;

AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 20 of 22)

In

tel

state Z14:

if(Q@) then Z15
el se

if(!@B & (REFCT1 == Z0)) then Z13;
el se

Z14;
state Z15:

if(Q@) then Z15
el se

if(!@B & (REFCT1 == Z0)) then Z14;
el se

Z15;

A-20

n
Int9I® AP-703

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 21 of 22)

"Equati ons

EQUATI ONS

[, @, A1, Q0, ! SELA, ! SELB, ! READY, ! LA2, ! ACC_PEND] . cl k = CLK1;
[@3.. Q0] . RE = RESET;

[!'LA2, ! ACC_PEND, ! READY, ! SELA, ! SELB] . PR = RESET;

"Indicates wait state cycles
WAIT = (CYCLE == IDLE) & WR
(CYCLE == ACCESS0) & WR
(CYCLE == ACCESS1) & WR
(CYCLE == ACCESS2) & WR
(CYCLE == ACCESS3) & WR & ! LAZ;

[MUX, ! RASE, ! RASO, ! CASEE, ! CASOO, A3E, A30, ! REFEVEN] . cl k = CLK2;
[MUX, ! RASE, ! RASO, ! CASEE, ! CASOO, A3E, A30, ! REFEVEN] . pr = RESET,;

[! CASEBO, ! CASEBL1, ! CASEB2, ! CASEB3, ! CASOBO, ! CASOBL1, ! CASOB2, ! CASOB3] . cl k = CLK2;

[T3, T2, T1, TO, S3, S2, S1, SO] . ¢l k = CLK1,;
[T3, T2, T1, TO, S3, S2, S1, SO] . pr = RESET,;

"Refresh required indicator

REFREQ = !'T3 & !T2 & !T1 & !TO & !S3 & !S2 & !S1 & ! SO;
"FLASH Chi p Sel ect

FLASHCS : = ADS & FLASHADDR & ! APK_ACTI VE
| ADS & ! BLAST & FLASHCS;

"FLASH CE control

FLASHRD = FLASHCS & WR;

"XCR CE control
XCRCE : = FLASHCS & ! BLAST & ! APK_ACTI VE
| ADS & LEDADDR & ! BLAST;

"XCR DIR control
XCRDIR = WR;

" Software reset indicator
SWRST : = ADS & SWRSTADDR
! ADS & ! BLAST & SWRST;

A-21

n
AP-703 Int9I®

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 22 of 22)

" Triggers the 7705 Reset Device

TRI GRST : = TRI GRST,;
TRI GRST. RE = SVWRST,

"Pul se to the HEX DI SPLAY

LED LAT := I ADS & LEDADDR & XCRCE & ! BLAST;

"Lat ched RASE or RASO

SRASE : = RASE # RASQ,

"DRAM data path OE control while reading

RDEN = !B & WR & RASE;

"Even DRAM data path control while witing

WRE = !B & !WR & RASE;

"Odd DRAM data path control while witing

WRO = !B & !WR & RASE;

[! FLASHCS, ! XCROE, ! SWRST, ! TRI GRST, LED_LAT, SRASE] . cl k = CLK1,;
[! FLASHCS, ! XCROE, ! SWRST, ! TRI GRST] . pr = RESET,;

LED LAT. RE = RESET;

"Latched external reset
RESET : = EXTRST;
RESET. CLK = CLK1;

Test vectors
end CX33T

A-22

In

tol

Table A-2. Signal and Product Term Allocation

AP-703

OUTPUT MACROCELLS

BURIED MACROCELLS

Signal Product Terms Signal Product Terms
RASE 7 CASEE 12
RASO 7 CASOO 14
READY 5 ACC_PEND 5
A3E 4 LA2 5
A30 4 WAIT 2
RDEN 1 REFEVEN 6
SELA 4 T3 2
MUX 2 T2 8
Q3 3 T1 7
Q2 8 TO 6
Q1 9 S3 5
Qo 8 S2 4
CASEB3 3 s1 3
CASEB2 3 S0 2
CASEBL1 3 REFREQ 1
CASEBO 3 SWRST 2
CASOB3 3 SRASE 1
CASOB2 3
CASOB1 3
CASOBO 3
FLASHCS 2
FLASHRD 1
TRIGRST 1
XCROE 2
XCRDIR 1
RESET 1
WRE 1
WRO 1
LED_LAT 1
SELB 4

A-23

AP-703

A-24

intal

INDEX

AP-703

intal

A3EVEN state machine 5
A30DD state machine 5
ACCESS state machine 3, 4
single-word read 8
single-word write 12
ADDRMUX state machine 5

B
bank interleaving 1
BANKSELECT state machine 5
buffers

TAFCT244 4
burst capabilities 1

C
CASPIPE signal 5, 7, 10
CASPIPE state machine 5
CASPIPO signal 5,7, 8
CASPIPO state machine 5
clock generation 3

skew 3

termination 3

D
DAOQE signa 3
DAOQO signa 3
datapath 3
Double Word Read 3
Double Word Write 3
down counter (eight-bit synchronous) 3
DRAM
burst buses 1
early write cycles 1
page mode 1
DRAM controller
block diagram 2
overview 2
DRAM design
address path logic 3
datapath 3
performance 1
SIMMs 4
DRAM refresh 13

AP-703

G
generating 3

|
IDLE state 4, 7, 9
interleaving 1

L
leaves (two-way interleaving) 1

M
memory system performance 1
multiplexers
2-to-1 (74F257) 3
MUX signal 7

(0]
ODDACCESS state machine 5

P
PENDING state machine 3, 5

Q
Quad Word Read 3

Quad Word Write 3

R
RAS prechargetime 3
RASE state machine 6
RASO state machine 6
RDEN signal 4, 6
REFEVEN state machine 5
REFREQ signal 3,6
refresh cycles 13
refresh requests 3
generating 3
priorities 3

S

SEL signal 4

signals
CASPIPES5, 7, 10
CASPIPO5, 7
MUX 7
RDEN 6
REDN 4
REFREQ 3, 6
SEL 4
SRASE 6

Index-3

AP-703

signals (continued)
W_R2
WRE 6
WREN 4
WRO 6
SIMMs 1
termination 4
Single Word Read 3
Single Word Write 3
SRASE signal 6
SRASE state machine 6
state machine
A3EVEN 5
A30DD 5
ACCESS 3, 4
ADDRMUX 5
BANKSELECT 5
CASPIPE 5
CASPIPO 5
ODDACCESS5
PENDING 3,5
RASE 6
RASO 6
REFEVEN 5
SRASE 6
states
IDLE state 4

T
Triple Word Read 3
Triple Word Write 3
two-way interleaving 1

W

W_R signal 2

wait state profiles 3
WRE signal 6
WREN signal 4
WRO signal 6

Index-4

	COVER PAGE
	CONTENTS
	1.0 INTRODUCTION
	2.0 OVERVIEW
	2.1 Page Mode DRAM SIMM Review
	2.2 Bank Interleaving
	2.3 Burst Capabilities for 32-Bit Bus

	3.0 BASIC DRAM CONTROLLER
	3.1 Control Logic
	3.1.1 Refresh Logic (CAS-before-RAS)
	3.1.2 Clock Generation
	3.1.3 Wait State Profile

	3.2 Address Path
	3.3 Data Path
	3.4 SIMM

	4.0 STATE MACHINES AND SIGNALS
	4.1 ACCESS State Machine
	4.2 PENDING State Machine
	4.3 ODDACCESS State Machine
	4.4 BANKSELA State Machine
	4.5 BANKSELB State Machine
	4.6 ADDRMUX State Machine
	4.7 A3EVEN State Machine
	4.8 A3ODD State Machine
	4.9 RFEVENBK State Machine
	4.10 CASPIPE State Machine
	4.11 CASPIPO State Machine
	4.12 CASE_B3:0 State Machines
	4.13 CASO_B3:0 State Machines
	4.14 RASEVEN State Machine
	4.15 RASODD State Machine
	4.16 SRASE State Machine
	4.17 RDEN Signal
	4.18 WRE Signal
	4.19 WRO Signal
	4.20 REFREQ Signal

	5.0 DRAM CONTROLLER ACCESS FLOW
	5.1 Quad-Word Read
	5.2 Single-Word Read
	5.3 Quad-Word Write
	5.4 Single-Word Write
	5.5 Refresh Cycles

	6.0 CONCLUSION
	7.0 RELATED INFORMATION
	APPENDIX A
	INDEX
	FIGURES
	Figure 1. Two-Way Interleaving
	Figure 2. Quad-Word Access Example Showing ADS and BLAST Timings
	Figure 3. DRAM Controller Block Diagram
	Figure 4. Address Path Logic
	Figure 5. Data Path Logic
	Figure 6. Basic ACCESS State Machine
	Figure 7. Quad-Word Read State Diagram
	Figure 8. Quad-Word Read Timing Diagram
	Figure 9. Single-Word Read State Diagram (A2 = 1)
	Figure 10. Single-Word Read Timing Diagram (A2 = 1)
	Figure 11. Quad-Word Write State Diagram
	Figure 12. Quad-Word Write Timing Diagram
	Figure 13. Single-Word Write State Diagram (A2 = 1)
	Figure 14. Single-Word Write Timing Diagram (A2 = 1)
	Figure 15. Refresh State Diagram
	Figure 16. Refresh Timing Diagram

	TABLES
	Table 1. Wait State Profiles (33 MHz)
	Table A-1. 33 MHz DRAM Controller PLD Equations
	Table A-2. Signal and Product Term Allocation

