
E
TECHNICAL

PAPER

EEPROM Replacement
with Flash Memory

Order Number: 297828-001

March 1997

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683
or visit Intel’s Website at http:\\www.intel.com

COPYRIGHT © INTEL CORPORATION, 1997 CG-041493

*Third-party brands and names are the property of their respective owners.

E TECHNICAL PAPER

3

CONTENTS

PAGE PAGE

1.0 INTRODUCTION... 5

2.0 MEMORY FUNDAMENTALS.......................... 5

2.1 Memory Architecture.................................... 5

2.2 Program/Erase Timing................................. 6

2.3 Specialized Flash RWW Circuits.................. 9

2.4 New Hardware Assisted Suspend to
Read/Write.. 10

3.0 FLASH DATA INTEGRATOR SOFTWARE
STRUCTURE ... 14

3.1 Flash Data Integrator Functional
Overview... 14

3.2 EEPROM Parameter Types....................... 14

3.3 Parameter Storage and Management 14

3.4 Read Latency .. 16

3.5 Real Time Interrupt Support....................... 16

3.6 FDI Features.. 17

4.0 DEVELOPMENT RESOURCES17

5.0 SYSTEM REQUIREMENTS18

5.1 Random Access Memory Requirements18

5.2 Flash Memory Requirements18

6.0 PARAMETER CYCLING18

7.0 POWER LOSS RECOVERY..........................18

8.0 ENRICHED DATA STORAGE AND REMOTE
CODE UPDATES ...19

9.0 CONCLUSION...19

APPENDIX A: References..................................20

TECHNICAL PAPER E

4

REVISION HISTORY
Number Description

-001 Original version

E TECHNICAL PAPER

5

1.0 INTRODUCTION

Flash memory is used in a wide range of applications
for embedded control code storage. Many of these
applications including cellular phones, modems,
automobile engine control and others also use a
separate EEPROM to store factory, system, and/or user
data. With ever-increasing pressure to eliminate
components and reduce system cost, designers are
looking to use flash memory to emulate EEPROM for
simultaneous code and data storage.

Intel introduced an EEPROM emulation methodology
based on linked data list structures that was successful
in applications such as automobile engine control.
However, in time-synchronized applications like the
cellular phone, the inability of flash memory to write
during an erase suspend operation and the
undeterministic maximum write and erase flash timing
may have prevented EEPROM emulation using
standard flash components in certain market segments.
Time-critical applications, such as cellular telephones,
must service system interrupts by providing access to
processor code stored in flash while simultaneously
supporting data writes to flash. For this reason,
research has been undertaken by Intel and others to
develop a simultaneous read operation while writing or
erasing another flash memory partition (block).
Specialized components have been proposed to support
simultaneous read and write operations, but they incur
from 10- to 20-percent increase in silicon die area due
to redundant circuitry, and have not been manufactured
in volume production. Although specialized circuits
enable simultaneous read-while-write (RWW)
operation, the added cost is less attractive in cost-
critical, high-volume manufactured applications. New
hardware-assisted suspend/resume circuitry with fast
latency offer a technically-feasible approach to emulate
simultaneous RWW operation without the cost impact
of specialized circuits.

Regardless of specialized flash circuits, flash media
management software is required to manage the larger
(8 or 64 Kbytes) flash memory block partitions. This is
true, since flash memory cannot be erased on the byte
level common to memory such as EEPROM, but must
be erased on a block granularity. The development of a
flash memory manager requires a keen understanding
of flash technology and data management methods.
Fortunately, Intel has designed the necessary flash
media manager, known as Flash Data Integrator (FDI),
which handles variable length parameter storage, while
utilizing hardware-assisted circuitry to emulate
simultaneous code execution. This new method

handles power loss recovery in the case of battery
removal during data storage, providing a reliable
EEPROM replacement.

This paper describes the hardware and software
architecture necessary to emulate EEPROM memory in
flash. Section 2.0 reviews the fundamentals of flash
and EEPROM technology. Critical new timing
parameters and hardware limitations are examined,
along with a description of new hardware suspend to
read/write capabilities common to many standard flash
architectures. The software architecture for EEPROM
emulation in flash memory is reviewed in Section 3.0.
The software modules and features are also discussed
in Section 3.0. Resource and system requirements are
presented in Sections 4.0 and 5.0. Parameter cycling is
characterized in Section 6.0, and power loss recovery
techniques are described in Section 7.0. Section 8.0
reviews the flexibility of extending FDI to support
enriched data storage and remote code updates.

2.0 MEMORY FUNDAMENTALS

2.1 Memory Architecture

Flash memory technology offers the electrical
erasability of random access memory (RAM), and
nonvolatility of read only memory (ROM) to retain
information after power is removed. Unlike RAM,
flash cannot be erased on a byte basis. Flash memory
supports writing (programming), the processes of
changing a logic “1” to a “0,” on a byte or word
[double byte] basis. Certain flash memory components,
including those from Intel, have the added capability to
be programmed one bit (or multiple bits) at a time.

Erasing flash is the process of changing a logical “0” to
a “1” on a block-by-block basis. Physical block
partitioning is set by a fixed address range of the
component (see Figure 1). Typical block sizes range
from 8 Kbytes to 64 Kbytes for parameter and main
blocks, respectively.

Flash memory stores data as charge on the floating gate
of a single transistor as compared to other memory
types that require additional components to hold a
charge or the state of a latch circuit. As a result, flash
has significant silicon area and cost advantages when
compared with other memory types (see Table 1),
offering a cost-effective means of storing data.

TECHNICAL PAPER E

6

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

FlashFile™ Architecture Advanced Boot Block
Architecture

7828_01

Figure 1. Intel’s Standard Flash Memory Architectures

2.2 Program/Erase Timing

EEPROM supports byte alterability by rewriting a page,
typically 16, 32 or 64 bytes. The system must wait 10
ms to allow time for the data to be written to the
EEPROM cell in the background. This limits EEPROM
write times from 157 µs to 625 µs/byte or 12.5 Kb/s to
49.7 Kb/s. Flash memory, on the other hand, supports
data writes at a continuous 17 µs/byte (22 µs/word)
typical 2.7 volt program time in the foreground, thereby
supporting data write rates up to 710 Kb/s and reducing
the amount of time a system spends writing data from
93% to 98%. Continuous data programming may be
essential for streaming data packets such as short

message service (SMS), fax, or digitized voice
recording. This also doesn’t account for any overhead
time lost rewriting an entire page in EEPROM when
only a single byte update is required—providing even a
further reduction in data write time overhead.

Unlike flash, EEPROM does not require a block erase
operation to free up space before data can be rewritten.
This means that some form of software management is
required to store data in flash. However, EEPROM
technology is also limited to a maximum number of data
writes [cycles] between 10,000 and 100,000. Flash
memory, on the other hand, does not experience a
device cycle until the block is erased. This means flash

E TECHNICAL PAPER

7

improves cycling reliability on the order of hundreds of
times better than EEPROM technology. The details of
parameter cycling is discussed in Section 5.0.

Table 2 compares the timing specifications of flash and
EEPROM memory. Although the write performance of
flash technology is fast compared to EEPROM, it is
important to consider maximum program time. The time
it takes to reliably store charge on the floating gate in
flash memory is a function of process variation,
temperature, voltage, and electron storage susceptibility.
Under worst case conditions it may take as long as 170
µs to store a byte (200 µs for a word), as given by the
specification tWHQV1 and tWHQV2, respectively (see
Table 3). The maximum time, however, does not occur
across each of the flash cells, and is only realized in a
single or few cells within a given address range. When
writing a single byte or word, one should account for
this maximum time tWHQV1 and tWHQV2, respectively.
However, when writing a page of data to flash memory
the maximum write time is dependent on the page size
and is given by the graph in Figure 2.

The erase time of the flash parameter and main blocks
are given by the specification tWHQV3 and tWHQV4,
respectively (see Table 3). The distribution of erase time
is similar to that of write times and are dependent on
operating conditions and cycling. Erase times remain
semi-constant for erase cycles less than 10,000. Above
10,000 cycles the erase time increases as illustrated in
Figure 3. The manufacturer’s specified cycling
parameter is based on a given erase and program time.
Flash can be reliably cycled beyond the specified value
provided the design accommodates an increase in the
erase and program time. For example, a flash device
with specified 10K erase cycles can operate with 100K
cycles with a typical erase time of 1.5 sec.

Fortunately, engineers need not design systems to wait
the maximum specified values. Instead flash
components commonly contain internal Status Registers
that indicate when a program or erase operation is
complete. By polling the internal register, the designer
can determine when an operation is completed and the
memory is available for another operation such as read.

Table 1. Die Area Comparison of Memory Technology

Features Flash DRAM EEPROM SRAM

Cell Components 1 Transistor 1 Transistor +
1 Capacitor

2 Transistor 4 Transistor +
2 Resistor

Cell Area (µm2)

[0.4µ lithography]
2.0 3.2 4.2 22

Chip Area (mm2)
(16-Mbit density)

61 98 107 59
(1-Mbit Density)

Read Speed (ns) 80 (5V)
120 (3V)

60 150 <60

Table 2. Comparison of Flash and EEPROM

Features Flash EEPROM

Write Time (Typical) 10 µs / Byte (5V)
17 µs / Byte (3V)

3-5 ms / 32-Byte Page
[47-157 µs/Byte]

Erase Time (Typical) 800 ms/8-KB Block (5V)
1000 ms/8-KB Block (3V)

NA

Internal Program/Erase
Voltage

5V/12V (PSE)
5V/–10V (NGE)

5V/21V

Cycling 10–100K Erase Cycle/Block
10-300M Write Cycle/Byte1

10–100K Write Cycle/Byte

NOTES:
1. See Section 6.0.

TECHNICAL PAPER E

8

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400
Page Size (bytes)

M
ax

im
um

 W
rit

e
T

im
e

(m
s)

Byte Write

Word Write

7828_02

NOTES:
Initial characterization; subject to change based on device validation.

Figure 2. Maximum Write Timing(1)

(VCC = 2.7V–3.6V, TA = –40°C to +85° C, 10K Cycles)

0

1

2

3

4

10 100 1,000 10,000 100,000 1,000,000

Number of Erase Cycles

E
ra

se
 T

im
e

(s
ec

)

8KB Parameter Block

64KB Main Block

7828_03

Figure 3. Cycling Effects on Erase Time
(VCC = 2.7V–3.6V, TA = –40°C to +85°C)

E TECHNICAL PAPER

9

Table 3. Flash Memory Erase and Program Timings(3,4)

VPP = 2.7V VPP = 12V

Sym Parameter Notes Typ1 Max5 Typ1 Max5 Unit

tWHQV1
tEHQV1

Word Program Time 2 22 200 8 185 µs

tWHQV2
tEHQV2

Byte Program Time 2 17 170 8 155 µs

tBWPB1 Block Program Time (Word)
(Parameter)

2 0.10 0.30 0.03 0.10 sec

tBWPB1 Block Program Time (Byte)
(Parameter)

2 0.16 0.48 0.07 0.21 sec

tBWMB2 Block Program Time (Word) (Main) 2 0.80 2.40 0.24 0.80 sec

tBWMB2 Block Program Time (Byte) (Main) 2 1.28 3.84 0.56 1.7 sec

tWHQV3
tEHQV3

Block Erase Time (Parameter) 2 1 5.0 0.8 4.8 sec

tWHQV4
tEHQV4

Block Erase Time (Main) 2 1.8 8.0 1.1 7.0 sec

tWHRH1
tEHRH1

Word/Byte Program Suspend
Latency Time to Read

6 10 5 6 µs

tWHRH2
tEHRH2

Erase Suspend Latency Time to
Read

13 20 10 12 µs

NOTES:
1. Typical values measured at TA = +25°C and nominal voltages. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. These performance numbers are valid for all speed versions.

4. Characterized but not 100% tested.

5. Maximum values are based on typical process skews. Subject to change based on device characterization.

2.3 Specialized Flash RWW
Circuits

Most currently available flash technology must
complete a program or erase operation before code can
be read from another memory block. Based on the
maximum program/erase timing specifications of flash,
there is a common misconception that EEPROM
emulation can be supported only when the application
can mask interrupts and allow a write or erase operation
to complete. In time-synchronized applications with
maximum latencies in the range of microseconds, such
as a cellular phone, simultaneous operation may be
difficult without some form of hardware assistance.
Many approaches to hardware assisted read-while-write
(RWW) operation have been proposed for flash
architecture (see Figure 4). One approach is to segment
the standard memory array into separate physical
partitions by duplicating the row and column (x/y)

decoders, sense amplifiers and charge pump circuits—
adding 12% to 17% to the silicon die area, and
component cost. This form of hardware-assisted flash
memory allows code to be read from one memory block,
while a program or erase operation executes
simultaneously in another block in the opposite physical
partition.

Simultaneous read with background program/erase has
higher peak power dissipation, but the total energy may
be the same as the standard architecture. Segmented
flash partitions further require that the data and code fit
completely within the fixed partitions—making the
selection of the partition size critical. If either code or
data requirements exceed the maximum partition limit
then simultaneous operation is no longer possible when
data and code reside in the same partition, and the
maximum suspend latency timing of the component
must be considered. Although this method is attractive

TECHNICAL PAPER E

10

for EEPROM emulation, it does not offer the flexibility
to support growing data needs.

On the other hand, a segmented architecture does
minimize program/erase to read latency (see Table 5).
This reduces the effect on system timing and may
reduce testing if the design is time-critical.

An alternative approach is based on packaging two
standard flash die into a single “dual-die” package. The
“dual-die” approach supports simultaneous operation
between the two die with the added flexibility that the
size of the data or code partition can be changed to meet
the needs of the application. Unfortunately, total peek
memory system power is twice the power of a single
standard flash component. Dual-die packaging, or two
separate flash components, is attractive when the data
requirements exceed 2 Mbits to 4 Mbits (256 KB to 512
KB). EEPROM emulation alone requires far less
parameter storage needs, 8 Kbytes to 32 Kbytes, making
a dual-die solution less cost-attractive.

A third approach to RWW is to combine EEPROM
technology onto a two-transistor (2T) flash memory
process. This approach eliminates the need for media
management software, but has the disadvantage of
increased memory system power and cost. Memory
power dissipation can be as high as 200 mW compared
to standard flash memory at 60 mW. The increase in die
area necessary to support both memory technologies has
an adverse impact on die yield and in turn product cost.

Yet another approach to hardware assistance is
enhanced suspend circuits that allow program/erase
operations to be suspended temporarily to read code
from another partition. Suspend circuits allow time
critical operations to be serviced without stalling the
microprocessor (CPU). Unlike the other specialized
RWW approaches, suspend circuits do not place limits
on the code/data partition size, thereby increasing the
flexibility and offering support as data storage needs
grow. Suspend circuits do not increase the flash die size

(cost), nor do they increase memory system power. The
following section describes the suspend-resume
operation in more detail.

Table 4 summarizes the comparison of the various
RWW memory architectures.

2.4 New Hardware Assisted
Suspend to Read/Write

Intel’s 0.4µ ETOXTM V flash process technology
components include two suspend commands; Program
and Erase Suspend. Program and erase suspend mode
allows system software to suspend both the word/byte
program or block erase command in order to read from
or write data to another block. Commands are written to
the Command User Interface (CUI), connecting the
microprocessor and the internal chip controller, using
standard microprocessor write timings. Issuing a
program or erase suspend command will begin to
suspend a program/erase operation. The flash internal
Status Register will indicate when the device reaches
program/erase suspend mode. In this mode, the CUI will
respond only to the Read Array, Read Status Register,
Program, Program Resume, and Erase Resume
commands. Flash specification tWHRH1 and tWHRH2
define the program and erase suspend latency,
respectively (Table 3).

After a Program or Erase Resume is written to the flash
memory, the flash device will continue with the program
or erase process, respectively, (see Figures 5 and 6). The
flash continues from the point where the suspend
command was issued, eliminating the need to repeat the
program or erase operation. The suspend to read/write
operation provides a maximum latency of 10/20 µs,
respectively, and allows system designers to emulate
simultaneous RWW operation within the time
constraints of the systems.

E TECHNICAL PAPER

11

Fast Suspend

Architecture

Partition A

Partition B
8 Mbit

Segmented

Flash Partitions

Dual-Die

Flash

Standard
Array
4 Mbit

Standard
Array
4 Mbit

Flash

plus EEPROM

Standard
Array
4 Mbit

EEPROM
256 Kbit

Standard
Array
8 Mbit

R
el

at
iv

e
C

o
st

 C
o

m
p

ar
is

o
n

Flexible Boundary Pre-Defined Hardwired Boundary

7828_04

Figure 4. Comparison of Standard and Specialized Flash Memory Architectures for RWW

Table 4. Comparison of Standard and Specialized Flash Memory Architectures

Attribute

Advanced
Boot Block

Flash

Segmented
RWW Flash

Dual-Die
Flash

2T Flash
Plus

EEPROM

Die Size (mil/side)
[8 Mbit, 0.4µ Lithography]

250 265-270 440
(2-Mbit data)

330
(256-Kbit

EEPROM)

Min. Operating Voltage
(Read/Write)

2.7V / 2.7V 2.7V / 2.7V 2.7V / 2.7V 4.5V / 4.5V

Max. Read Pwr.1 60 mW 60 mW 120 mW 200 mW

Max. Write/Erase Pwr.1 132/82.5 mW 132/132 mW 264/165 mW 200 mW

Max. Standby Pwr.1 165 µW 165 µW 330 µW 1,500 µW

Max. Latency to Read 10 to 20 µs 1 µs 120 ns 300 ns

NOTES:
1. Assumes maximum Vcc = 3.3V, and 5.0V for the 2T Flash plus EEPROM

TECHNICAL PAPER E

12

SR.7 =
0

1

Start

Write B0H

Read
Status Register

Write D0H

Program Resumed

Bus
Operation

Command Comments

Write Program
Suspend

Read

Data = B0H
Addr = X

Check SR.7
1 = WSM Ready
0 = WSM Busy

Status Register Data Toggle
CE# or OE# to Update SRD.
Addr = X

Standby

SR.2 =

Write FFH

Read Array Data
Program Array

Done
Reading and/or
Programming

Program Completed

Write FFH

Read Array Data

Yes

No

0

1

Check SR.2
1 = Program Suspended
0 = Program Completed

Standby

Data = FFH
Addr = X

Write

Read array from block other
than the one being erased.

Read

Data = D0H
Addr = X

Write

Read Array

Program
Resume

7828_05

Figure 5. Program Suspend/Resume Flowchart

E TECHNICAL PAPER

13

SR.7 =
0

1

Start

Write B0H

Read
Status Register

Write D0H

Block Erase Resumed

Bus
Operation

Command Comments

Write Erase
Suspend

Read

Data = B0H
Addr = X

Check SR.7
1 = WSM Ready
0 = WSM Busy

Status Register Data
Addr = X

Standby

SR.6 = Block Erase Completed

Write FFH

Read Array Data

Yes

0

1

Check SR.6
1 = Block Erase Suspended
0 = Block Erase Completed

Standby

Data = D0H
Addr = X

Write Erase
Resume

Read or
Program

?

Done?

Program
Loop

Read Array
Data

Read Program

No

7828_06

Figure 6. Block Erase Suspend/Resume Flowchart

TECHNICAL PAPER E

14

3.0 FLASH DATA INTEGRATOR
SOFTWARE STRUCTURE

Software is required to make all flash memory
components, regardless of RWW circuitry, emulate an
EEPROM. The approach of storing data on a nonvolatile
media is well understood, but intricate due to the need to
overcome the conditions described previously.

Intel has developed an open software architecture,
known as the Flash Data Integrator (FDI), that enhances
the flash technology. FDI allows the system designer to
use a single low-cost flash memory component as a
storage medium for both system code and data in real-
time systems. This section describes the FDI flash media
management software and reviews basic flash data
management techniques.

3.1 Flash Data Integrator
Functional Overview

The FDI architecture consists of three major subsystems;
the Foreground Application Programming Interface
(API), Background Manager, and Boot Code Manager.

System tasks and interrupts that need to store data,
interface to the Foreground API functions. Through the
API interface, commands that modify flash, and their
corresponding data are queued by the system. The API
commands such as open, close, read, write, and query
are the interface between FDI and the system. The
Background Manager reads commands/parameters from
the queue, determines where the information should be
stored, and performs any parameter storage or clean-up
necessary while monitoring for interrupts. During initial
system power-on the Boot Code Manager initializes the
FDI control structures and performs any necessary
power loss recovery.

Figure 7 illustrates the information flow between the
system flash memory and SRAM. The system calls the
foreground API function (0), with a command and data.
The API function either, queues the command and data
into SRAM for operations which modify flash (1W), or
executes the command directly for commands which do
not modify flash (1R). The FDI Background Manager
(2W), executing out of flash memory, manages the
queued tasks during available processor time. During a
flash program or erase operation (4W), interrupts with
vectors in flash are disabled and control is turned over to
a small routine (less than 1 Kbyte) in SRAM (3W). This
routine polls interrupts while monitoring progress of the
program or erase operation. If a higher priority interrupt
occurs, the polling routine suspends the flash memory

program or erase operation, and allows the interrupt
handler to then execute directly from flash memory.
Upon completion of the interrupt routine, the flash
program or erase operation is resumed by the SRAM
polling routine. The Background Manager continues in
this fashion until all events are handled and all
necessary cleanup is complete.

A complete description of the FDI subsystems is
provided in Chapter 3 of the Flash Data Integrator
(FDI) User’s Manual, order 297833.

3.2 EEPROM Parameter Types

Parameters stored in the EEPROM in a cellular phone
can be characterized as either factory, network or end-
user data. These parameter records vary in size and
frequency of updates. For example, factory tuning data
may be a long record (few hundred bytes) that is written
to the EEPROM during the manufacturing process and
may only be updated on an infrequent basis when the
user brings the phone into a service center. On the other
hand, the call timer parameter keeps track of the
duration of a call and may be updated as often as every
couple seconds during the process of the call. Table 5
lists the data parameter types commonly stored in the
EEPROM of a cellular phone. The details of the
parameter data structure are beyond the scope of this
paper.

The frequency of parameter updates determines how
often parameter blocks must be cleaned up [erased], to
ensure free space is always available in flash for data
writes. The write occurrence combined with the system
time allocated for flash management and the timing
parameters of the flash memory should be evaluated.
Based on the low data write rate of cellular phone
EEPROM data, flash memory with hardware assisted
suspend/resume circuitry provides adequate timing to
emulate an EEPROM and respond to system interrupts.
It should be feasible to manage all flash memory
program and erase operations during normal phone
operation (e.g., during “dead” time while on a control
channel or during a phone call). This maximizes the
time the CPU remains in sleep mode.

3.3 Parameter Storage and
Management

Unlike EEPROM, flash memory cannot be erased on a
byte basis. By using software management techniques,
data can be stored on a byte or variable length basis and
flash erase operations can be completed using a suspend
command to emulate byte alterability.

E TECHNICAL PAPER

15

Data parameters are stored and tracked by software as
virtual units within the physical boundaries of the flash
block (see Figure 8). This is required whether
specialized RWW circuits are available or not. Since a
byte in flash may not be overwritten, an old occurrence
of a parameter is marked “dirty” when the parameter is
updated. The valid parameter is written to the next
available memory location. The software media manager
tracks the valid occurrences and controls access when
requested by the system.

Parameters are stored until there is not enough “clean”
space available in the block to insure new records can be
written without over flowing the block. When this point
is reached, the latest occurrence of each parameter is
transferred to a clean [erased] block. Block header
records associated with each parameter block indicates
the status of the block. That is, information such as if the
block is active [containing valid data], if the block is
transferring data, or if the block is erased. After the valid
parameters are transferred, the original block is marked
for clean-up [erasing]. The parameter storage and
management process if handled fully by FDI, and may
be suspended by the system to write data provided free
space is available.

(2R) Data
Queues
<1 Kbyte

(3W) Flash
Program/

Erase
Control &
Interrupt
Polling

<1 Kbyte

(1W) Foreground API:
write, delete

Foreground API:
read, close

(2W) Background
Manager: write,
delete reclaim

Spare

Factory Data
User Data

Net Params
Boot Code

(4W)

Total = 2 KB - 3 KB

SRAM Flash

Flash
Memory

Data
Blocks

T
ot

al
 =

 1
6

K
B

 -
20

 K
B

(0) Data to Be
Read/Stored

(1R)

7828_07

NOTES:
R = Read

W = Write

Figure 7. Flash Media Manager Software Data Flow

TECHNICAL PAPER E

16

Table 5. EEPROM Data Parameters

Parameter
Type

Size (Bytes) Number Amount
(Bytes)

Occurrence

Factory 1–300 <10 ∼1,024 1–2 times/year

Network 5–20 25–50 ∼1,024 < few times/day

End-User 20–250 30–250 ∼6,144 Every few seconds during call

Valid

Clean

Dirty

n Bytes

Flash
Block

Virtual
Unit

7828_08

Figure 8. Flash Media Management

3.4 Read Latency

Unlike previous EEPROM emulation techniques that
were based on a linked list approach, FDI uses a look up
pointer to the parameter header to access the data. This
provides uniform latency and simplifies system timing
issues. (See AP-604 Using Intel’s Boot Block Flash
Memory Parameter Blocks to Replace EEPROM.)

3.5 Real Time Interrupt Support

To support real time interrupts, the flash management
operations are suspended before servicing an interrupt.
Upon completion of the interrupt routine, the flash
operation is resumed until complete.

During a flash program or erase operation, a system
interrupt hardware register is polled while waiting for
the flash command to complete. If an interrupt occurs,
the program or erase command is suspended and the
interrupt handler is executed directly from flash memory

E TECHNICAL PAPER

17

after the maximum latency of the flash component (20
µs in the case of Intel’s Advanced Boot Block Flash).
This eliminates the need to store interrupt handlers in
SRAM. Upon completion of the interrupt, control is
returned to flash program/erase routine to resume the
operation.

Since non-specialized RWW flash components cannot
be read from during a program or erase operation, a
small (less than 1 Kbyte) software handler in the
system’s static RAM (SRAM) is required. The SRAM
and other system requirements are described in Section
5.0.

3.6 FDI Features

• Ability to easily integrate data and code into a
variety of digital cellular environments. All areas of
the code that require porting should be very limited
and the code does not depend on the existence of
non-ANSI ‘C’ libraries.

• Ability to suspend all data management activity
when requested to execute code.

• Ability to resume data management activity
following code execution.

• Ability to migrate the SW developed for standard
flash architecture with hardware suspend/resume
capability and flash components that support
specialized RWW circuitry.

• Ability to support all EEPROM data storage
requirements in the initial release.

• Ability to support enriched (larger) data types in
future releases. These could include phone
directories, audio recordings, or code updates. The
initial release will not support these data types,

however, the architecture is planned with this in
mind.

• Ability to trade-off the features with the flash/RAM
requirement.

• Low latency parameter/file read access.

• Support for variable parameter sizes without large
overhead in media.

• Power-off recovery capabilities. An unexpected
power loss should never corrupt or lose data.
Replacement of old data with new should always
provide the old data as a back-up until the new data
can be guaranteed.

• Supports symmetrical block sizes through a portion
of the flash component, but allows the block size to
be definable at compile time.

• Flexible through use of defines, compile time
options, or parameter options.

4.0 DEVELOPMENT RESOURCES

Although basic flash data management techniques may
be well understood by the system software engineer, the
work necessary to develop a reliable system takes
significant time and resources. This effort has delayed
many OEMs from fully emulating the EEPROM in
flash. Fortunately, Intel’s FDI solution greatly reduces
the OEM’s development effort.

Table 6 provides an estimate of the development
resources required to integrate Intel’s FDI into an
existing system compared to developing an internal
media manager for a flash memory component using a
specialized RWW flash component. Intel’s FDI may
reduce the development time by 82%, allowing the
OEM to bring the product to market faster.

Table 6. Projected EEPROM Emulation Development Time

Feature Intel FDI Internal Media
Manager

FDI Definition included 500 devl. hrs.

Flash Parameter Storage Management included 600 devl.-hrs

Flash Storage Management Reclaim included 600 devl.-hrs

EEPROM Interface included 80 devl.-hrs

Power Loss Recovery included 480 devl.-hrs

Flash Suspend/Resume Interface and Testing included N/A

API Integration 400 devl.-hrs N/A

Total 400 devl.-hrs 2,260 devl.-hrs

TECHNICAL PAPER E

18

Although additional time may be necessary to test future
software changes that effect system timing. This may or
may not be significant depending on the latency
requirements of the system.

5.0 SYSTEM REQUIREMENTS

5.1 Random Access Memory
Requirements

Some amount of system RAM (SRAM) is required to
provide instructions during flash program and erase
operation. The amount of RAM usage is dependent on
the specific features needed. The size of this code is
expected to be 2 Kbyte, 1 Kbyte for queue storage and
less than 1 Kbyte of code. RAM should be used for
queuing of events/data. The goal is to create a modular
set of reference code, where the cellular phone OEM can
pick and choose the various features needed in their
product, and thus tailor the software to their specific
product needs. Flash memory with specialized RWW
circuitry does not have the requirement for available
RAM as the component can provide instructions to
control operation within the separate partition.

5.2 Flash Memory Requirements

Flash memory space will be necessary to store the
Foreground and Background media manager program
code. This is required for all flash memory types,
standard and specialized. Intel’s FDI media manager
should require 16 Kbytes to 20 Kbytes of flash memory.

In addition, the flash memory component must include
program and erase suspend commands (such as those in
Intel’s Advanced Boot Block components) or include
specialized RWW circuitry as described in Section 2.3.

6.0 PARAMETER CYCLING

Intel’s flash memory is specified to work over 100,000
erase cycles when operating over 0oC to +70oC, between
20,000 and 30,000 over the range of –25°C to +85°C,
and 10,000 over the extended temperature range of
–40oC to +85oC.

A cycle is defined as an erase operation, and not the
number of data writes the device can support. For
example, an 8-Kbyte block supports 8,192 byte writes
before a single erase operation, one cycle, has
completed. Therefore, parameter cycling is a function of

the parameter size. This is important when determining
how many parameter updates can be supported. Today,
many OEMs limit writes to EEPROM due to 100K write
cycling limit of EEPROM technology. Parameter
updates in EEPROM over write the previous instance.
The maximum life of the EEPROM is thereby limited to
the update rate of the most frequently written parameter
(e.g., call timer in the case of a digital cellular phone.
Using flash for EEPROM emulation extends the
effective number of data cycles.

The effective number of write cycles is dependent on the
number of available parameter blocks and size of the
parameter record and is given by:

Eff Write Cycles

available bytes block x no blocks

parameter record size
xMax erase cycles block

.

/ .
. /

=

Assuming two 8-KB flash blocks are used to store a 5-
byte record over an extended temperature range, and
further assuming 5 Bytes/block status and 512
Bytes/block overhead results in:

Eff Write Cycles

Bytes blk x Blks

Bytes parameter
x cycles blk

.

(, /)

/
, /

, ,

=
− −

=

8 192 5 512 2

5
10 000

30 700 000

.

This is a 300 times improvement over EEPROM
memory that is limited to 100,000 write cycles. The
same approach works for variable size records, where
the effective write cycles are determined by the
summation of the occurrences of the various records.

7.0 POWER LOSS RECOVERY

Power loss is handled in a reliable manner by adding a
status field to the header of each data parameter block,
as well as each parameter. The status field indicates that
a parameter update has been initiated or the write was
complete. If power is lost during a parameter update, the
status is known when power is restored. Upon power
recovery, the initiation process should check the status
of each parameter. If the status indicates that a
parameter update began but did not complete
successfully, then the record can be marked invalid. The
same process is used during clean-up operations when
valid data is moved to a clean block. Because of the fast
write capability of flash, critical parameters can be
stored to flash sooner than an EEPROM component,
thereby improving the robustness of the system.

E TECHNICAL PAPER

19

To improve system power-on performance, the initiation
process may be suspended, provided free space in flash
is maintained.

8.0 ENRICHED DATA STORAGE
AND REMOTE CODE UPDATES

Specialized RWW flash architectures with fixed size
data partitions are limited in their ability to manage data
that exceeds the partition size. Intel’s FDI software is
designed to manage a multiple number of memory
blocks, offering a more flexible solution when combined
with a component that is not limited by a physical
partition, such as the Intel Advanced Boot Block flash
memory.

FDI architecture supports extensions to manage
enriched, streaming data types such as digitized voice,
fax, company phone directories, and more. The
architecture also enables the ability to remotely manage
code modules stored in the main memory blocks.

9.0 CONCLUSION

A low-cost, flexible and reliable approach to EEPROM
emulation in flash memory was presented for real time
applications such as cellular phones. The approach is
based on flash memory management software, known as
the Flash Data Integrator (FDI), that emulates EEPROM
functionality while enabling the flexibility for future
data sotrage needs. This method reduces system cost,
improves system write times by as much as 98%,
supports data write rates up to 710 Kb/s, reduces
memory system power by as much as 140 mW
(compared with specialized RWW components), reduces
development time by as much as 82%, and can increase
parameter cycling 300 times over EEPROM memory.
Power loss recovery techniques ensure data is not lost or
corrupted in the event of power loss, eliminating the
need for battery backed SRAM. EEPROM emulation in
flash requires limited system resources depending on the
needs and selected flash technology. Intel’s FDI flash
media management software and Advanced Boot Block
flash memory offer a cost-effective, robust, reliable, and
flexible solution to EEPROM replacement.

TECHNICAL PAPER E

20

APPENDIX A
ADDITIONAL INFORMATION

Intel-Related Documents(1,2)

Order Number Document/Tool

210830 1997 Flash Memory Databook

290580 Smart 3 Advanced Boot Block 4-Mbit, 8-Mbit, 16-Mbit Flash Memory Family
Datasheet

292148 AP-604 Using Intel’s Boot Block Flash Memory Parameter Blocks to
Replace EEPROM

Contact Intel/Distribution
Sales Office

Intel Flash Data Integrator Functional Specification(3)

Contact Intel/Distribution
Sales Office

Intel Flash Data Integrator System Environment Emulation Software
Functional Specification(3)

NOTE:
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should

contact their local Intel or distribution sales office.

2. Visit Intel’s World Wide Web home page at http://www.Intel.com for technical documentation and tools.

3. This document is contained within the FDI Developer’s Kit. Contact your local Intel or distribution sales office to obtain a
copy.

Other Related Documents

Brian Dipert and Marcus Levy, Designing with Flash Memory, Annabooks, San Diego, CA, 1993.

	TITLE
	CONTENTS
	1.0 INTRODUCTION
	2.0 MEMORY FUNDAMENTALS
	2.1 Memory Architecture
	2.2 Program/Erase Timing
	2.3 Specialized Flash RWW Circuits
	2.4 New Hardware Assisted Suspend to Read/Write

	3.0 FLASH DATA INTEGRATOR SOFTWARE STRUCTURE
	3.1 Flash Data Integrator Functional Overview
	3.2 EEPROM Parameter Types
	3.3 Parameter Storage and Management
	3.4 Read Latency
	3.5 Real Time Interrupt Support
	3.6 FDI Features

	4.0 DEVELOPMENT RESOURCES
	5.0 SYSTEM REQUIREMENTS
	5.1 Random Access Memory Requirements

	6.0 PARAMETER CYCLING
	7.0 POWER LOSS RECOVERY
	8.0 ENRICHED DATA STORAGE AND REMOTE CODE UPDATES
	9.0 CONCLUSION
	APPENDIX A: Additional Information
	FIGURES
	Figure 1. Intel’s Standard Flash Memory Architectures
	Figure 2. Maximum Write Timing
	Figure 3. Cycling Effects on Erase Time
	Figure 4. Comparison of Standard and Specialized Flash Memory Architectures for RWW
	Figure 5. Program Suspend/Resume Flowchart
	Figure 6. Block Erase Suspend/Resume Flowchart
	Figure 7. Flash Media Manager Software Data Flow
	Figure 8. Flash Media Management

	TABLES
	Table 1. Die Area Comparison of Memory Technology
	Table 2. Comparison of Flash and EEPROM
	Table 3. Flash Memory Erase and Program Timings
	Table 4. Comparison of Standard and Specialized Flash Memory Architectures
	Table 5. EEPROM Data Parameters
	Table 6. Projected EEPROM Emulation Development Time

