
E
TECHNICAL

PAPER

Software Download
Utility for Intel Boot
Block Components

Order Number: 297707-001

SAMUEL C. DUFOUR
MEMORY COMPONENTS
DIVISION

July 1996

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright, or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

COPYRIGHT © INTEL CORPORATION 1996

Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683 CG-041493

E TECH PAPER

3

CONTENTS

PAGE PAGE

1.0 INTRODUCTION.. 5

2.0 REVIEW OF FLASH MEMORY
FUNDAMENTALS .. 5

3.0 BLOCK DOWNLOAD.. 6

4.0 DOWNLOAD STATUS STRUCTURE............... 6

5.0 SYSTEM REQUIREMENTS............................... 6

6.0 IMPLEMENTATION CONSTRAINTS................ 8

7.0 RECOVERING FROM POWER LOSS.............. 8

8.0 CONCLUSION ... 8

APPENDIX A

Download Status Structure 9

APPENDIX B

Download Initialization .. 11

APPENDIX C

Download Preparation... 13

APPENDIX D

Download Code... 15

APPENDIX E

Download Status Cleanup 16

APPENDIX F

Additional Information.. 17

FIGURES

Figure 1. Intel's 4-Mbit Boot Block Flash Memory
Map... 6

Figure 2. Copying Good Code to Boot Block for
Block Erase .. 7

Figure 3. Download of Update Code and Code
Held in RAM/Flash to Boot Block 7

TABLES

Table 1. Example Flash Memory Read, Write
and Erase Operations............................ 5

Table I. DownloadStatus Values with Associated
Definitions .. 10

Table II. InitializationStatus Values with
Associated Definitions 12

Table III. Download Preparation Status Values
with Associated Definitions.................. 14

Table IV. DownloadCode Status Values with
Associated Definitions 15

Table V. DownloadCode Status Values with
Associated Definitions 16

TECH PAPER E

4

Revision History

Number Description

-001 Original Version

E TECH PAPER

5

1.0 INTRODUCTION

Intel’s boot block flash memories provide updateable
code and data storage for a wide range of applications
including cellular phones, modems, PC BIOS,
automobile engine control and many others. System
designers reduce system cost, improve reliability and
allow for easy upgradeability by integrating Intel’s boot
block flash memory into their products for code storage.

Using software techniques described in this paper,
designers can easily update portions of blocks while
retaining valid portions of blocks. This essentially
means that portions of code in blocks can be updated
thereby reducing the external memory (RAM or flash)
overhead needed in an environment utilizing flash for
code storage.

This paper describes flash reference software written in
C for updating code stored in flash (chunks of code
within any given block that are less than or equal to the
size of the block of which they are contained) without
disturbing surrounding code.

NOTE:

This utility has only been used in a simulated
environment and should only be considered as
reference in creating a product.

2.0 REVIEW OF FLASH MEMORY
FUNDAMENTALS

Flash technology brings unique attributes to system
memory. Like RAM, flash memory is electronically
modified in-system. Like ROM, flash is nonvolatile,
retaining data after power is removed. However, unlike
RAM, flash cannot be rewritten on a byte or module
basis. Flash memory reads and writes on a bit-by-bit
basis, and adds a new requirement: it must be erased
before a bit can be reprogrammed. An erase operation
must occur at the block level. The overall effect is that
individual code objects within flash blocks cannot be
altered in-place like that of mechanical drives or RAM.

Flash is preferred, in most instances, over mechanical
drives due to incredibly rapid storage and retrieval of
code. To give an idea of how rapidly flash works,
Table 1 depicts each flash memory operation, the size
of data, and the time needed to execute each operation.

Table 1. Example Flash Memory Read, Write and
Erase Operations(1)

Operation Min Segment
Size

Typical
Time

Max
Time

Read Byte 60 ns 60 ns

Write Byte 10 µs 160 µs

Erase Block
(8-KB Parameter

Block)

0.8 sec 7 sec

NOTE:
1. Times for Intel’s SmartVoltage 4-Mb boot block product

operation in x8 mode at 5.0V VCC and 5.0V VPP. Refer
to the SmartVoltage 2-/4-Mb datasheets.

Writing (or programming) flash is the process of
changing “1”s to “0”s. Erasing flash is the process of
changing “0”s to “1”s. Flash memory is erased on a
block-by-block basis. Blocks are defined by a fixed
address range, as shown in Intel’s 4-Mb Boot Block
Memory Map, Figure 1. When a block is erased, all
address locations within a block are erased in parallel,
independent of other blocks in the flash memory device.

Intel’s boot block flash memory products are capable of
being cycled over 100,000 times when operating at 5V
VCC. In short, the definition of a block “cycle” is the act
of both programming and erasing one block a single
time. For example, if all of a 128-KB main block is
successively programmed and then the block is erased,
one cycle has completed. This specification is important
in determining how many times code can be stored and
how many times this code can be updated.

Since flash memory cannot be re-written to the same
address location without first erasing an entire block of
memory, this reference software can be used to emulate
code alterability using the upload utility (see Figure 1).

NOTE:

For current Intel NOR flash technology, a flash
byte or word actually can be rewritten as many
times as you wish, as long as you never need to
change a bit from a “0” to a “1.”

TECH PAPER E

6

16-Kbyte Boot Block

8-Kbyte Parameter Block

8-Kbyte Parameter Block

96-Kbyte Main Block

128-Kbyte Main Block

128-Kbyte Main Block

128-Kbyte Main Block

(Word Addresses)

80000H

7C000H
7BFFFH

7A000H
79FFFH

78000H
77FFFH

60000H
5FFFFH

40000H
3FFFFH

20000H
1FFFFH

00000H

7707_01

Figure 1. Intel's 4-Mbit Boot Block Flash
Memory Map

3.0 BLOCK DOWNLOAD

By using adequate RAM or flash along with flash boot
block components and the download utility, code can
be seamlessly rewritten in smaller subsets than the full
block requirement imposed by flash erase operation.
Adequate RAM or flash is defined to be: erase block
size minus largest amount of code required to be copied.

When a request is made to alter code within a main
block of a flash component, the download utility copies
the code which will not be changed to spare memory.
RAM or flash erases the flash block, copies the code
from spare memory back to the original block and
downloads new code to the space that has been cleared
for it. The download process also tracks status of each
step in the process to allow power-off recovery.

4.0 DOWNLOAD STATUS
STRUCTURE

Prior to, and during, the altering of code in the
designated block, the download status structure table
(located in one of the 8-KB parameter blocks) is
updated to reflect the state of the code being
manipulated; each step of the download process will be
reflected in the status. The download status structure
must be maintained to assist the recovery procedures in
determining where the download left off in case of an
accidental power-off. If a download was in progress and
the spare memory being used for download was flash
memory, the initialization can continue the process
where it left off. If the spare memory being used was
RAM, the valid code which was lost can be flagged to
the caller, allowing the user to know which code needs
to be downloaded. This status information is maintained
in the parameter blocks

For greater detail regarding the makeup of download
status structure see Appendix A.

5.0 SYSTEM REQUIREMENTS

• The system must have around 1 KB of RAM
available for download of flash programming
algorithms if executing out of the boot block
component.

• The system must have at least 6 KB of flash memory
available for this utility software.

• The system must contain enough memory in either
RAM or flash to temporarily store the maximum
amount of valid code to be retained (e.g., to
download 48 KB to a 128 KB block: 128 KB –
48 KB = 80 KB of external RAM/flash is required—
see Figures 2 and 3).

• This implementation assumes that one of the 8-KB
parameter blocks is available for use in storing the
105-byte download status table.

E TECH PAPER

7

Code Marked
for Rewrite

48 KB

Code to Be Kept
80 KB RAM or Flash

80 KB

128-KB
Main Block

3FFFFH

2C000H
2BFFFH

20000H

7707_02

Figure 2. Copying Good Code to Boot Block for Block Erase

Newly
Erased
128-KB
Block

RAM or Flash
Stored Code

3FFFFH

2C000H
2BFFFH

20000H

Update Code
48 KB

7707_03

Figure 3. Download of Update Code and Code Held in RAM/Flash to Boot Block

TECH PAPER E

8

6.0 IMPLEMENTATION
CONSTRAINTS

The following information pertains to the restrictions that
must be observed while implementing this utility.

• The boot block components data I/O lines do not
support a read from memory while writing to the
same memory. This forces any code executing from
flash which will need to write to the same device to
be downloaded to RAM before execution.

• Interrupts will be disabled during erases and during
word/byte writes.

• A status table will be kept in the flash parameter
block which will determine current status of
download. This will allow the system to determine
what steps it should take to complete the process
upon initialization.

• Software will have an option to compile to execute
from either RAM or flash. This will determine if the
flash programming algorithms are downloaded to
RAM or not.

7.0 RECOVERING FROM POWER
LOSS

Recovery from power loss is one of the greatest strengths
of this download utility. As mentioned in Section 4, by
using a status control table the download operation can
be reliably tracked from beginning to end. Should a
power-down occur, operation will continue from where it
left off, if possible. Otherwise, notification will be
delivered to help correct inconsistencies in data integrity.

8.0 CONCLUSION

This paper described software techniques for emulating
code alterability less than or equal to a single block using
the software download utility to control flash media
structures. System developers reduce system overhead
and improve reliability by using Intel’s boot block flash.
The download utility can further increase the value of
boot block flash by offering bit-wise alterability and fault
tolerant power-down recovery.

E TECH PAPER

9

APPENDIX A
DOWNLOAD STATUS STRUCTURE

The structure below contains the status information pertaining to the state in which the download is in throughout the
entire download event.

typedef struct download_status {
byte DownloadStatus; /* Indicates current status of the download
dword pCode; /* Pointer to Valid Code to be retained or Address being downloaded. */
dword pSpareMemory; /* Pointer to spare area where valid code may be copied */
dword Size; /* Size of code to be retained or code being downloaded */
byte SpareType; /* RAM or flash for aid in power-off recovery */
byte DataTransferStatus; /* Ensures validity of this structure */

} DOWNLOAD_STATUS;

Below are the descriptions of the variables contained within the Download_Status structure along with what the
DownloadStatus’s value indicates:

Field Description

DownloadStatus A bit mapped status field which indicates the current status of the download. Table
I depicts the definitions associated with each valid condition status value.

pCode This pointer will point to the valid code to be retained if in the download preparation
phase or if download is in progress, will point to the address being downloaded to.

pSpareMemory This pointer will point to the spare memory (RAM, Boot Block, Main Block or
Parameter Block) if the status indicates download preparation phase, or will
indicate location being downloaded from if during download. Location being
downloaded from is useful for debugging only, not for recovery.

Size This field indicates the size of the code being retained if in the download
preparation phase, or will indicate amount of code being downloaded if in the
download phase.

SpareType This field indicates if the valid code for download preparation is being downloaded
to RAM or to flash. This assists the initialization procedure in determining if the
download can be continued or if an error code should be flagged to the user.

DataTransferStatus This field indicates to the initialization procedure if this structure was completely
finished being written when a power off occurred. If this field is FF, this structure
contains unreliable information. If this field is 00, this structure is valid.

TECH PAPER E

10

Table I. DownloadStatus Values with Associated Definitions

Condition
 Status Value

Definition

11111111b Erased status. Indicates end of status table.

01111111b Copy Valid Code to Spare.

00111111b Erase Original Block.

00011111b Copy from Spare to Original Block.

00001111b Erase Spare Block (only entered if SpareType = Flash).

00000111b Download in progress.

00000011b Download complete.

00000001b
through

00000000b

Reserved for future use.

E TECH PAPER

11

APPENDIX B
DOWNLOAD INITIALIZATION

The Download Initialization routine should be called upon the system’s initialization. This routine will evaluate the
download status table to determine if a download was interrupted by a power-off. If the SpareType is RAM, the entire
status will be returned to indicate the failure. This will allow the system to reload the entire block if necessary.

If the SpareType is flash, the download preparation will be continued.

Status Action

Copy to Spare Will use pointers in table to re-copy the valid code to the spare area. Will then
progress to the next step.

Erase Original If SpareType is flash, will verify block is erased. If not erased, will perform the
erase and progress to the next step. If the SpareType is RAM, will indicate to the
user that all software in the block may have been lost.

Copy Spare Back to
Original

If SpareType is flash, will copy from spare back to the original block and will return
indication that download preparation is complete. If SpareType is RAM, will
indicate to the user that all software in the block may have been lost.

Erase Spare If SpareType is flash, will erase the spare block. SpareType of RAM should never
enter this state.

Download in
Progress

Will indicate error to the user. This indicates that any download preparation was
completed and that the new code must still be downloaded.

Download Complete No action required.

Download Initialization Call Format

The 'C' call to the initialization procedure will be as follows:

ERR_STATUS * DownloadInitialization();

Below is the err_status structure which contains an initialization status followed by the most recent
DOWNLOAD_STATUS entry:

typedef struct err_status {
byte InitializationStatus;
Download_Status DownloadInformation;

} ERR_STATUS;

The descriptions of the values contained within the ERR_STATUS structure are described below:

Field Description

InitializationStatus - (int) Contains the status of the call. Table II depicts the definitions associated with
each valid condition status value.

Download_Status

TECH PAPER E

12

Table II. InitializationStatus Values with Associated Definitions

Condition
Status Value

Definition

00000000b OK. No downloads were interrupted.

00000001b Download preparation ERROR. All code in the block to be downloaded was lost.

00000010b Download ERROR. Download preparation completed, but new code must be
downloaded again.

E TECH PAPER

13

APPENDIX C
DOWNLOAD PREPARATION

The Download Preparation function will allow the user to save a portion of a block into RAM or flash while the block is
being erased. It will then copy the information back to the block. Once all of this has completed, the block is ready to
have new code downloaded to the portion that was not saved. This program assumes all code to be saved is contiguous
(Note: If code is not contiguous, this interface could be changed to accept an array. This would require slight
modifications to the interface). Enough memory (RAM or flash) must exist to save the code which should be retained.

If software is executing from boot block components, programming or erasing flash will require a routine to be
downloaded into RAM to interface with the command user interface of the flash part and to handle all processes while
the part is read status mode.

Download Preparation Call Format

The 'C' call to this procedure will be as follows:

int DownloadPreparation (byte Command, dword pSpare, byte SpareType, dword pValid, dword Length);

Below are the descriptions of the variables passed to the DownloadPreparation function along with a description of the
value which is returned from this function:

Field Input/Output Description

status (int returned) Output Contains the status of the call. Table III depicts the definitions
associated with each valid condition status value.

Command Input Indicates if this is a new download preparation or one to be
continued. Users should only use the new download option.
Initialization will use the continue download option.

pSpare Input Pointer to where the spare are is which will temporarily contain the
code to be retained.

SpareType Input Indicates if the memory which is used temporarily is RAM or flash.

pValid Input Pointer to the valid code which should be retained.

Length Input Length of valid code to be retained.

TECH PAPER E

14

Table III. Download Preparation Status Values with Associated Definitions

Condition
Status Value

Definition

00000000b OK. All requested actions were successfully performed.

00000001b Error. Copy to Spare failed.

00000010b Error. Erase of Original Block failed.

00000100b Error. Copy from Spare back to Original failed.

E TECH PAPER

15

APPENDIX D
DOWNLOAD CODE

The Download Code function will assist in downloading software from a location in memory (RAM) to a location in the
boot block component. The area in the boot block component should already be erased.

Download Code Call Format

The 'C' call to the download procedure will be as follows:

int DownloadCode(dword pCodeAddr, dword pDownloadAddr, dword Length);

Below are the descriptions of the variables passed to the DownloadCode function along with a description of the value
which is returned from this function:

Field Input/Output Description

status (int returned) Output Contains the status of the call. Table IV depicts the definitions
associated with each valid condition status value.

pCodeAddr Input Pointer to memory which contains code to be programmed into the
flash device.

pDownloadAddr Input Pointer to flash memory which the code will be programmed into.

Length Input Length of code to be downloaded.

Table IV. DownloadCode Status Values with Associated Definitions

Condition
Status Value

Definition

00000000b OK. All requested actions were successfully performed.

00000001b Error in download.

TECH PAPER E

16

APPENDIX E
DOWNLOAD STATUS CLEANUP

The Download Status Cleanup function will evaluate the amount of space left in the parameter block which contains the
DOWNLOAD_STATUS table. If the table approaches the end of the block, the block will be erased. Otherwise, the
function will return. This function will be called from the DownloadCode function after each download complete.

Download Status Cleanup Call Format

The 'C' call to this procedure will be as follows:

int DownloadStatusCleanup ();

Below is the description of the value which is returned from the DownloadStatusCleanup function:

Field Input/Output Description

status (int returned) Output Contains the status of the call. Table V depicts the definitions
associated with each valid condition status value.

Table V. DownloadCode Status Values with Associated Definitions

Condition
Status Value

Definition

00000000b OK. All requested actions were successfully performed.

00000001b Error.

E TECH PAPER

17

APPENDIX F
ADDITIONAL INFORMATION

References

Order
Number

Document

290530 2-Mbit SmartVoltage Boot Block Flash Memory Family Datasheet

290531 4-Mbit SmartVoltage Boot Block Flash Memory Family Datasheet

290539 8-Mbit SmartVoltage Boot Block Flash Memory Family Datasheet

	Title Page
	1.0 INTRODUCTION
	2.0 REVIEW OF FLASH MEMORY FUNDAMENTALS
	3.0 BLOCK DOWNLOAD
	4.0 DOWNLOAD STATUS STRUCTURE
	5.0 SYSTEM REQUIREMENTS
	6.0 IMPLEMENTATION CONTSTRAINTS
	7.0 RECOVERING FROM POWER LOSS
	8.0 CONCLUSION
	APPENDIX A DOWNLOAD STATUS STRUCTURE
	APPENDIX B DOWNLOAD INITIALIZATION
	APPENDIX C DOWNLOAD PREPARATION
	APPENDIX D DOWNLOAD CODE
	APPENDIX E DOWNLOAD STATUS CLEANUP
	APPENDIX F ADDITIONAL INFORMATION
	FIGURES
	Figure 1. Intel's 4-Mbit Boot Block Flash Memory Map
	Figure 2. Copying Good Code to Boot Block for Block Erase
	Figure 3. Download of Update Code and Code Held in RAM/Flash to Boot Block

	TABLES
	Table 1. Example Flash Memory Read, Write and Erase Operations
	Table I. DownloadStatus Values with Associated Definitions
	Table II. InitializationStatus Values with Associated Definitions
	Table III. Download Preparation Status Values with Associated Definitions
	Table IV. DownloadCode Status Values with Associated Definitions
	Table V. DownloadCode Status Values with Associated Definitions

