
An Embedded Processor Based Data Acquisition System using
Innovative Compression Algorithms and Flash Memory Technology

1) Name: Vandana Verma
Title: Technical Marketing
Engineer
Company: Intel Corporation
Address: M/S CH10-82

 5000 W. Chandler Blvd.
 Chandler, AZ 85226

Telephone: (602)554-3928
Fax: (602)554-6167

2) Name: Minda Zhang
Title: Sr. Software Engineer
Company: Intel Corporation
Address: M/S CH10-21

5000 W. Chandler Blvd.
Chandler, AZ 85226

Telephone: (602)554-3759
Fax: (602)554-6167

Introduction
An Embedded Processor Based Data
Acquisition System (EPBDAS) is a
novice analog interface to the digital
world. The Intel386EX embedded
processor is used in the EPBDAS for
compressing digital signal sampling
files generated by the Analog-to-Digital
(A/D) converter in the system. Flash
memory, arranged in an array for
nonvolatile data storage, is used for
compressed digital signal file storage.

This paper presents an innovative
compressed digital signal file format
which allows O(Nlog2K) storage
requirements for storing a size N digital
signal sampling file with K different
signal patterns in the file. This file
format greatly increases the size of the
data stored for signal processing.

EPBDAS System Components
A DAS is a system that is dedicated to
the measurement and sampling of
analog

signals for further processing. The
analog input signals are preconditioned

and translated to an encoded digital
format. The signal is translated into the

analog-electrical domain and stored in
the DAS.
The basic block diagram of our DAS is
shown in figure 1.

Analog
Input

Figure 1. Basic Block Diagram of a Data
Acquisition System

The analog-to-digital converter (ADC)
translates the analog signal into an
encoded digital format. The processor
makes on-line programmable
processing of the incoming data
possible and it also supplies the clock
information. Fulfilling the role of the
recording device is memory.

The embedded processor is based on a
PC platform and is used in conjunction
with a timer, an interrupt controller,
memory and the PC-104 extension bus.
The embedded processor in the
EPBDAS was chosen over a DSP
processor so that General Software’s
Embedded DOS can be ported as the
Real-Time Operating System (RTOS).

 A/D
 Converter Memory Processor

The low level hardware device drivers
are provided by General Software’s
Embedded BIOS. This permits
applications developed in the PC DOS
environment to be run on the EPBDAS.
The EPBDAS also has an environment
that is totally compatible with a
PC/DOS environment allowing the
flash array to be hooked up with a PC
so that the data stored in the flash array
can be post processed on a PC. The
embedded processor is obviously a
more cost effective solution than a PC
for the task of acquiring data.

The embedded processor was
interfaced with the Flash array, our
memory component in the DAS, via
the PC-104 extension bus and Adtron’s
Input/Output (I/O) card as shown in
Figure 2.

28F016

28F016

28F016

28F016

28F016

28F016

28F016

28F016

16M
 FL

A
SH

 A
R

R
A

Y

PC
-1

04
 In

te
rf

ac
e

38
6E

X

 Flash

SRAM

386EX eval.
board

Flash
Array

Adtron’s
I/O Card

Figure 2. Embedded processor to Flash
 Array interface

We used flash memory in our DAS
since flash memory is nonvolatile,
electrically changeable, rugged and is
offered in high densities. The Flash
Array utilizes 16 Mbit memory

components which have low-power
operation and high read/write
performance. The use of Flash memory
to replace SRAM on the motherboard
is explored.

Flash Memory Technology
The major categories in memory
technologies are magnetic media,
optical media, and solid state media.
Solid state memory was developed to
perform specific functions on chips.
Data storage applications now have the
choice of several different memory
technologies. The original
semiconductor memories were
manufactured for either RAM or ROM
functions and functioned as a binary
storage device, storing on and off
pulses of information in individual
memory cells, memory cells being the
smallest unit of solid state memory.
Traditionally, EPROMs handled code
and BIOS storage; disk drives stored
the applications and user data files that
get downloaded to system DRAM
during execution. EEPROMs then
replaced anything from SRAMs to
EPROMs when flexibility and
nonvolatility was required at low
densities.

Flash memory demonstrates the
technical ability to displace each of the
existing memories to a varying degree.
With properties that include
nonvolatility and in-system
updateability Flash memories
utilization ties directly to cost and
design considerations. Flash memory
combines the high speed of DRAM, the
nonvolatility of hard drives and floppy
disk drives, the updateability of RAM
or EEPROM, and the high density of
ROM and is programmable on a bit-by-

bit resolution. Erasure is accomplished
on a block-by-block level. A Command
Register architecture results in SRAM
like command write
timings to flash components. Fast
access times make Flash memory an
excellent choice for data storage.

Flash array
The fundamentals of the Flash array
interface are defined by PCMCIA 2.0
specification. A linear mapped memory
design is used for the Flash array so
that the embedded processor would
have direct access to the entire memory
array. The hardware and software
implementation of a linearly mapped
memory addressing is simpler than
most other memory mapping
techniques.

The flash components used were Intel’s
16 Mbit SmartVoltageTM, the
28F016SV product. These components
permit us to use a single power supply
of 5V for Vcc and Vpp. The Flash
Array consists of eight components.
The array is highly standardized
because it’s electrical interface is
according to PCMCIA 2.0
specifications. This supports various
capabilities like automated write and
erase operations, and reset. The
Ready/Busy signal is used because it
frees up the host system to perform
additional tasks after initiating an
operation.

Digital signal file compression
The data is stored in the flash array
after it is compressed to optimize
memory by removing redundancy from
the digital signal data. The size of a
digital signal file, where all the samples
are recorded, is considerably larger

than the number of different signal
patterns in the file. Since all the digital
samples generated by the ADC must be
quantized to a discrete set of amplitude
levels, and sampling must be large
enough such that the sampling process
will not result in any major loss of
spectral information in the signal
sequence. The compressed digital
signal file format that is proposed is
depicted in Figure 3.

File Header
The first 22 bytes of a compressed
digital signal file is a file header which
holds information specifying a magic
number, the time and date at which this
compressed file was created, the
resolution order, and pointers. The
resolution order makes it possible for
signals x(n) and x(m) to be treated
similarly, if their absolute difference is
within the resolution order. The
pointers point to the signal pattern area
and checksum byte which is at the end
of the file. The file header data
structure is shown in Figure 4.

Pointers
Immediately after the file header is the
section which contains all the pointers
pointing to each recording block in the
recording area of the compressed file.
Each pointer uses 10 bytes to specify
the offset, in bytes, of the first sample
recording, in the specified recording
block. As depicted in Figure 1, it
defines a unit and a size. The unit
specifies the number of bits used for
each sample recording in the block
pointed to, and size determines the
total number of signal recordings in the
block. The pointer data structure is
depicted in Figure 5.

Recording Area
All the recording blocks are stored in
the recording area shown in Figure 1.
Although the signal samples in the
different blocks use different units to
record, they can be recovered from the
signal pattern area. The data structure
for

Figure3. Compressed digital signal file format

signal type and signal pattern are
shown in Figure 6.

The compression algorithm which
compresses a digital signal file requires
O(NK) complexity, where N is the size
of the diagonal file and K is the number
of patterns in the file. The storage
requirement for this compressed file is

O(N log K), assuming N >> K . The
complexity could be greatly reduced, if
the advanced technique is employed,
such as branch prediction for
comparing incoming signal samples
with existing signal patterns.

It is worth pointing out that this
compressed file format will greatly

filehdr

magic_num
 timdat
 data_type
 radix
 resol_order
 bit_number
 signal_area_ptr
 chksum_ptr

recording
blocks’
pointer

 block_1 record_ptr
 :
 block_k record ptr
 :
 block_bit_number
 record_ptr

 Recording
 Area

Signal
Pattern
Area {x(k), k=0, K}

 Check_Sum

block_1

 startptr
 unit
 size
 *next

 block_k

block_bit_numbe
r

 :

 :

reduce the requirement for file storage.
The following special case furnishes a
good illustration of this.

Figure 4. File header data structure

Figure 5. Recorder point data structure

Figure 6. Signal data structure

For instance, if a digital signal file
records N signal samples {x(n), n=0,
N}, each sample is a double floating
point number which requires 80 bits,
and signal samples have 16 different
patterns. Thus the storage requirement
for the original digital file is about
80*N bits. However, the compressed
digital file will needs O(N log2 K) = O(
N* log2 16) =O(4*N) bits for the
storage.

Summary
A highly integrated and cost effective
DAS solution which allows for
increased memory capacity as and
when required, is proposed. The
compression algorithm proposed can
save storage space by a factor of 20x.
Flash memory technology is the best
choice since it is fast, nonvolatile in-
system updateable and is available in
high densities.

struct filehdr {
 unsigned short magic_num;

/* magic number to indicate file
being compressed */
 long timdat; /* # of seconds since GMT 00:00:00

Jan. 1, 1970 */
 unsigned short data_type;

/* data type for each signal in original
file */

 unsigned short radix;
/* radix position in fixed point
representation */

 unsigned short resol_order;
/* the order of resolution parameter */

 unsigned short bit_number;
/* the max number of bits needed for

a recording */
 long signal_area_ptr;

/* offset of signal pattern area in this
file */

 long chksum_ptr;
/* offset of check_sum for this
compressed file */
};

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

struct record_ptr {
/* recording block’s pointer */

 long startptr;
/* offset of starting for current
recording block*/

 unsigned short unit;
/* number of bits for each
recording */

 long size;
/* number of recordings in

current block */
 struct record_ptr *next

/* points to next signal recording
block */

};

#define RECPTR struct record_ptr
#define RECPSZ sizeof(RECPTR)

union signal_type {
 int int_sig; /* integer type */
 long long_sig; /* long integer type */
 long fix_sig; /* 32_bits fixed point type */
 real float_sig;/* 64_bit floating point type */
 double double_sig;

/* 80_bit floating point type */
}

#define SIGNAL union signal_type

struct sig_pattern {
 SIGNAL sig;

/* signal in the signal pattern area
*/
struct sig_pattern *next;

/* points to next signal pattern */

Filename: ICPA_PAF.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WINDOWS\WINWORD6\TEMPLATE\NORMAL.DOT
Title: Subject: Abstract for ICSPAT ‘95
Subject:
Author: Stuart Levy
Keywords:
Comments:
Creation Date: 07/26/95 3:43 PM
Revision Number: 21
Last Saved On: 11/01/95 4:47 PM
Last Saved By: Stuart Levy
Total Editing Time: 227 Minutes
Last Printed On: 12/18/95 5:27 PM
As of Last Complete Printing

Number of Pages: 6
Number of Words: 1,393 (approx.)
Number of Characters: 7,943 (approx.)

	Title Page
	Introduction
	EPBDAS System Components
	Flash Memory Technology
	Flash array
	Digital signal file compression
	File Header
	Pointers
	Recording Area
	Summary

