
D

Flash Data Integrator (FDI)
User’s Guide

1997

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1997 CG-041493

E
1

Technical Overview

E

1-1

CHAPTER 1
TECHNICAL OVERVIEW

Many personal communications devices (e.g., cellular telephones and pagers) have a need to
store both data and code. This problem has been solved using multiple memory devices (Figure
1-1). Although viable, this approach is neither cost-effective nor sensitive to critical power
constraints. System integration is necessary not only to reduce cost and form factor but also to
foster product differentiation. Furthermore, consumer demand for ease-of-use and convenience
is pushing data requirements to new levels. These factors, and others, have fueled the need for a
monolithic flash memory device capable of simultaneous read while write (RWW) operation.

4 / 8 Mbit
R

n

SRAM
256Kb

EEPROM
64Kb

Code
Storage

Data
Storage

Mirrors EEPROM /
System Variables

Figure 1-1. Typical Memory Subsystem in Today’s Designs

TECHNICAL OVERVIEW E

1-2

The market need for read-while-write flash memory is clear; however it is questionable
whether a hardware partitioned flash device is the best choice to satisfy this need. There are
numerous hardware RWW flash devices available today (Figure 1-2). These hardware devices
lack the flexibility to adapt as code and data needs change. Moreover, when these devices are
used in a real-time operating environment, the flash device still needs to be managed (since it is
writeable on a byte basis but eraseable only on a block basis) In addition, a hardware flash
device can be up to 20% more costly than standard flash memory.

Market analysis shows there is a superior alternative solution which meets code and data
storage requirements without additional flash memory cost. This solution incorporates the
management of flash memory within a real-time environment. The Intel Flash Data Integrator
provides the most cost-effective and flexible solution for code plus data storage applications.

Fast Suspend
Architecture

Partition A

Partition B
8Mbit

Segmented
Flash Partitions

Dual-Die
Flash

Standard
Array
4Mbit

Standard
Array
4Mbit

Flash
plus EEPROM

Standard
Array
4Mbit

EEPROM
256Kbit

Standard
Array
8Mbit

R
el

at
iv

e
C

o
st

 C
o

m
p

ar
is

o
n

Flexible Boundary Pre-defined Hardwired Boundary

FDI1-2

Figure 1-2. Relative Cost and Die Sizes of Differing Approaches to
Code Plus Data Storage

E TECHNICAL OVERVIEW

1-3

The Flash Data Integrator (FDI) is a royalty-free flash media manager that enables code reads
from flash while data writes are occurring. This is accomplished with a deterministic program
and erase suspend (a feature available on Intel’s new Smart 3 and Smart 5 flash memory
products). If an application can manage a maximum 20 µs context switch latency, it can realize
a code plus data storage solution within a single flash memory device with FDI and standard
flash—without the expense of a hardware RWW flash device. FDI background flash
management can be “held-off” during the execution of time-critical code segments.

To evaluate whether FDI meets critical system requirements, Chapter 2 of this manual presents
a technical analysis of how FDI with standard flash can be used to replace a EEPROM in a
GSM cellular phone application. Over 84% of the processing time available for doing
background flash management; therefore an erase operation that typically takes 1 second would
take about 1.2 seconds during a call. Chapter 2 gives an excellent overview of the FDI
architecture and how it is applicable to many environments. The commands and structures that
make up FDI are explained in Chapter 3. Chapter 4 describes Intel’s FDI test platform for GSM
cellular phone applications.

Appendix A contains a list of frequently asked questions (FAQs) for FDI. Information on
technical support for FDI is available in Appendix B. Appendix C provides an overview of the
system requirements for implementing FDI. A full description of the FDI license agreement is
given in Appendix D.

E
2

EEPROM
Replacement with
Flash Memory

E

2-1

CHAPTER 2
EEPROM REPLACEMENT WITH FLASH MEMORY

2.1 INTRODUCTION
Flash memory is used in a wide range of applications for embedded control code storage. Many
of these applications including cellular phones, modems, automobile engine control and others
also use a separate EEPROM to store factory, system, and/or user data. With ever-increasing
pressure to eliminate components and reduce system cost, designers are looking to use flash
memory to emulate EEPROM for simultaneous code and data storage.

Intel introduced an EEPROM emulation methodology based on linked data list structures that
was successful in applications such as automobile engine control. However, in time-
synchronized applications like the cellular phone, the inability of flash memory to write during
an erase suspend operation and the undeterministic maximum write and erase flash timing may
have prevented EEPROM emulation using standard flash components in certain market
segments. Time-critical applications, such as cellular telephones, must service system interrupts
by providing access to processor code stored in flash while simultaneously supporting data
writes to flash. For this reason, research has been undertaken by Intel and others to develop a
simultaneous read operation while writing or erasing another flash memory partition (block).
Specialized components have been proposed to support simultaneous read and write operations,
but they incur from 10- to 20-percent increase in silicon die area due to redundant circuitry, and
have not been manufactured in volume production. Although specialized circuits enable
simultaneous read-while-write (RWW) operation, the added cost is less attractive in cost-
critical, high-volume manufactured applications. New hardware-assisted suspend/resume
circuitry with fast latency offer a technically-feasible approach to emulate simultaneous RWW
operation without the cost impact of specialized circuits.

Regardless of specialized flash circuits, flash media management software is required to
manage the larger (8 or 64 Kbytes) flash memory block partitions. This is true, since flash
memory cannot be erased on the byte level common to memory such as EEPROM, but must be
erased on a block granularity. The development of a flash memory manager requires a keen
understanding of flash technology and data management methods. Fortunately, Intel has
designed the necessary flash media manager, known as Flash Data Integrator (FDI), which
handles variable length parameter storage, while utilizing hardware-assisted circuitry to
emulate simultaneous code execution. This new method handles power loss recovery in the
case of battery removal during data storage, providing a reliable EEPROM replacement.

This paper describes the hardware and software architecture necessary to emulate EEPROM
memory in flash. Section 2.2 reviews the fundamentals of flash and EEPROM technology.
Critical new timing parameters and hardware limitations are examined, along with a description
of new hardware suspend to read/write capabilities common to many standard flash
architectures. The software architecture for EEPROM emulation in flash memory is reviewed

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-2

in Section 2.3. The software modules and features are also discussed in Section 2.3. Resource
and system requirements are presented in Sections 2.4 and 2.5. Parameter cycling is
characterized in Section 2.6, and power loss recovery techniques are described in Section 2.7.
Section 2.8 reviews the flexibility of extending FDI to support enriched data storage and remote
code updates.

2.2 MEMORY FUNDAMENTALS

2.2.1 Memory Architecture
Flash memory technology offers the electrical erasability of random access memory (RAM),
and nonvolatility of read only memory (ROM) to retain information after power is removed.
Unlike RAM, flash cannot be erased on a byte basis. Flash memory supports writing
(programming), the processes of changing a logic “1” to a “0,” on a byte or word [double byte]
basis. Certain flash memory components, including those from Intel, have the added capability
to be programmed one bit (or multiple bits) at a time.

Erasing flash is the process of changing a logical “0” to a “1” on a block-by-block basis.
Physical block partitioning is set by a fixed address range of the component (see Figure 2-1).
Typical block sizes range from 8 Kbytes to 64 Kbytes for parameter and main blocks,
respectively.

Flash memory stores data as charge on the floating gate of a single transistor as compared to
other memory types that require additional components to hold a charge or the state of a latch
circuit. As a result, flash has significant silicon area and cost advantages when compared with
other memory types (see Table 2-1), offering a cost-effective means of storing data.

2.2.2 Program/Erase Timing
EEPROM supports byte alterability by rewriting a page, typically 16, 32 or 64 bytes. The
system must wait 10 ms to allow time for the data to be written to the EEPROM cell in the
background. This limits EEPROM write times from 157 µs to 625 µs/byte or 12.5 Kb/s to
49.7 Kb/s. Flash memory, on the other hand, supports data writes at a continuous 17 µs/byte
(22 µs/word) typical 2.7 volt program time in the foreground, thereby supporting data write
rates up to 710 Kb/s and reducing the amount of time a system spends writing data from 93% to
98%. Continuous data programming may be essential for streaming data packets such as short
message service (SMS), fax, or digitized voice recording. This also doesn’t account for any
overhead time lost rewriting an entire page in EEPROM when only a single byte update is
required—providing even a further reduction in data write time overhead.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-3

Unlike flash, EEPROM does not require a block erase operation to free up space before data
can be rewritten. This means that some form of software management is required to store data
in flash. However, EEPROM technology is also limited to a maximum number of data writes
[cycles] between 10,000 and 100,000. Flash memory, on the other hand, does not experience a
device cycle until the block is erased. This means flash improves cycling reliability on the order
of hundreds of times better than EEPROM technology. The details of parameter cycling is
discussed in Section 2.5.

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

8-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

64-Kbyte Block

FlashFile™ Architecture Advanced Boot Block
Architecture

FDI2-1

Figure 2-1. Intel’s Flash Memory Architectures

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-4

Table 2-2 compares the timing specifications of flash and EEPROM memory. Although the
write performance of flash technology is fast compared to EEPROM, it is important to consider
maximum program time. The time it takes to reliably store charge on the floating gate in flash
memory is a function of process variation, temperature, voltage, and electron storage
susceptibility. Under worst case conditions it may take as long as 170 µs to store a byte (200 µs
for a word), as given by the specification tWHQV1 and tWHQV2, respectively (see Table 2-3). The
maximum time, however, does not occur across each of the flash cells, and is only realized in a
single or few cells within a given address range. When writing a single byte or word, one
should account for this maximum time tWHQV1 and tWHQV2, respectively. However, when writing
a page of data to flash memory the maximum write time is dependent on the page size and is
given by the graph in Figure 2-2.

The erase time of the flash parameter and main blocks are given by the specification tWHQV3 and
tWHQV4, respectively (see Table 2-3). The distribution of erase time is similar to that of write
times and are dependent on operating conditions and cycling. Erase times remain semi-constant
for erase cycles less than 10,000. Above 10,000 cycles the erase time increases as illustrated in
Figure 2-3. The manufacturer’s specified cycling parameter is based on a given erase and
program time. Flash can be reliably cycled beyond the specified value provided the design
accommodates an increase in the erase and program time. For example, a flash device with
specified 10K erase cycles can operate with 100K cycles with a typical erase time of 1.5 sec.

Fortunately, engineers need not design systems to wait the maximum specified values. Instead
flash components commonly contain internal Status Registers that indicate when a program or
erase operation is complete. By polling the internal register, the designer can determine when
an operation is completed and the memory is available for another operation such as read.

Table 2-1. Die Area Comparison of Memory Technology

Features Flash DRAM EEPROM SRAM

Cell Components 1 Transistor 1 Transistor +
1 Capacitor

2 Transistor 4 Transistor +
2 Resistor

Cell Area (µm2)
[0.4µ lithography]

2.0 3.2 4.2 22

Chip Area (mm2)
(16-Mbit density)

61 98 107 59
(1-Mbit Density)

Read Speed (ns) 80 (5V)
120 (3V)

60 150 <60

Table 2-2. Comparison of Flash and EEPROM

Features Flash EEPROM

Write Time (Typical) 10 µs / Byte (5V)
17 µs / Byte (3V)

10 ms / 16, 32 or 64 Byte Page
[157–625 µs/Byte]

Erase Time (Typical) 800 ms/8-KB Block (5V)
1000 ms/8-KB Block (3V)

NA

Internal Program/Erase
Voltage

5V/12V (PSE)
5V/–10V (NGE)

5V/21V

Cycling 10–100K Erase Cycle/Block
10–300M Write Cycle/Byte1

10–100K Write Cycle/Byte

NOTE: 1. See Section 2.6.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-5

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400
Page Size (bytes)

M
ax

im
um

 W
rit

e
T

im
e

(m
s)

Byte Write

Word Write

FDI2-2

NOTE:

Initial characterization; subject to change based on device validation.

Figure 2-2. Maximum Write Timing
(VCC = VPP = 2.7V–3.6V, TA = –40°C to +85° C, 10K Cycles)

0

1

2

3

4

10 100 1,000 10,000 100,000 1,000,000

Number of Erase Cycles

E
ra

se
 T

im
e

(s
ec

)

8KB Parameter Block

64KB Main Block

FDI2-3

Figure 2-3. Cycling Effects on Erase Time
(VCC = VPP = 2.7V–3.6V, TA = –40°C to +85°C)

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-6

Table 2-3. Flash Memory Erase and Program Timings(3,4)

VPP = 2.7V VPP = 12V

Sym Parameter Notes Typ1 Max5 Typ1 Max5 Unit

tWHQV1
tEHQV1

Word Program Time 2 22 200 8 185 µs

tWHQV2
tEHQV2

Byte Program Time 2 17 170 8 155 µs

tBWPB1 Block Program Time (Word)
(Parameter)

2 0.10 0.30 0.03 0.10 sec

tBWPB1 Block Program Time (Byte)
(Parameter)

2 0.16 0.48 0.07 0.21 sec

tBWMB2 Block Program Time (Word) (Main) 2 0.80 2.40 0.24 0.80 sec

tBWMB2 Block Program Time (Byte) (Main) 2 1.28 3.84 0.56 1.7 sec

tWHQV3
tEHQV3

Block Erase Time (Parameter) 2 1 5.0 0.8 4.8 sec

tWHQV4
tEHQV4

Block Erase Time (Main) 2 1.8 8.0 1.1 7.0 sec

tWHRH1
tEHRH1

Word/Byte Program Suspend
Latency Time to Read

6 10 5 6 µs

tWHRH2
tEHRH2

Erase Suspend Latency Time to
Read

13 20 10 12 µs

NOTES:

1. Typical values measured at TA = +25°C and nominal voltages. Subject to change based on device
characterization.

2. Excludes external system-level overhead.

3. These performance numbers are valid for all speed versions.

4. Characterized but not 100% tested.

5. Maximum values are based on typical process skews. Subject to change based on device
characterization.

2.2.3 Specialized Flash RWW Circuits
Most currently available flash technology must complete a program or erase operation before
code can be read from another memory block. Based on the maximum program/erase timing
specifications of flash, there is a common misconception that EEPROM emulation can be
supported only when the application can mask interrupts and allow a write or erase operation to
complete. In time-synchronized applications with maximum latencies in the range of
microseconds, such as a cellular phone, simultaneous operation may be difficult without some
form of hardware assistance.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-7

Many approaches to hardware assisted read-while-write (RWW) operation have been proposed
for flash architecture (see Figure 2-4). One approach is to segment the standard memory array
into separate physical partitions by duplicating the row and column (x/y) decoders, sense
amplifiers and charge pump circuits—adding 12% to 17% to the silicon die area, and
component cost. This form of hardware-assisted flash memory allows code to be read from one
memory block, while a program or erase operation executes simultaneously in another block in
the opposite physical partition.

Simultaneous read with background program/erase has higher peak power dissipation, but the
total energy may be the same as the standard architecture. Segmented flash partitions further
require that the data and code fit completely within the fixed partitions—making the selection
of the partition size critical. If either code or data requirements exceed the maximum partition
limit then simultaneous operation is no longer possible when data and code reside in the same
partition, and the maximum suspend latency timing of the component must be considered.
Although this method is attractive for EEPROM emulation, it does not offer the flexibility to
support growing data needs.

On the other hand, a segmented architecture does minimize program/erase to read latency (see
Table 2-5). This reduces the effect on system timing and may reduce testing if the design is
time-critical.

An alternative approach is based on packaging two standard flash die into a single “dual-die”
package. The “dual-die” approach supports simultaneous operation between the two die with
the added flexibility that the size of the data or code partition can be changed to meet the needs
of the application. Unfortunately, total peek memory system power is twice the power of a
single standard flash component. Dual-die packaging, or two separate flash components, is
attractive when the data requirements exceed 2 Mbits to 4 Mbits (256 KB to 512 KB).
EEPROM emulation alone requires far less parameter storage needs, 8 Kbytes to 32 Kbytes,
making a dual-die solution less cost-attractive.

A third approach to RWW is to combine EEPROM technology onto a two-transistor (2T) flash
memory process. This approach eliminates the need for media management software, but has
the disadvantage of increased memory system power and cost. Memory power dissipation can
be as high as 200 mW compared to standard flash memory at 60 mW. The increase in die area
necessary to support both memory technologies has an adverse impact on die yield and in turn
product cost.

Yet another approach to hardware assistance is enhanced suspend circuits that allow
program/erase operations to be suspended temporarily to read code from another partition.
Suspend circuits allow time critical operations to be serviced without stalling the
microprocessor (CPU). Unlike the other specialized RWW approaches, suspend circuits do not
place limits on the code/data partition size, thereby increasing the flexibility and offering
support as data storage needs grow. Suspend circuits do not increase the flash die size (cost),
nor do they increase memory system power. The following section describes the suspend-
resume operation in more detail.

Table 2-4 summarizes the comparison of the various RWW memory architectures.

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-8

Fast Suspend

Architecture

Partition A

Partition B
8 Mbit

Segmented

Flash Partitions

Dual-Die

Flash

Standard
Array
4 Mbit

Standard
Array
4 Mbit

Flash

plus EEPROM

Standard
Array
4 Mbit

EEPROM
256 Kbit

Standard
Array
8 Mbit

R
el

at
iv

e
C

o
st

 C
o

m
p

ar
is

o
n

Flexible Boundary Pre-Defined Hardwired Boundary

FDI2-4

Figure 2-4. Comparison of Standard and
Specialized Flash Memory Architectures for RWW

Table 2-4. Comparison of Hardware Assisted Flash Memory Architectures

Attribute

Advanced
Boot Block

Flash

Segmented
Partitions

Flash

Dual-Die Flash 2T Flash Plus
EEPROM

Die Size (mil/side) 254 (8 Mb) 315 (8 Mb) 380
(two, 4-Mbit die)

345
(4 Mb + 256-Kbit

EEPROM)

Process Lithography 0.4 µm 0.5 µm 0.4 µm 0.6 µm

Min. Operating Voltage
(Read/Write)

2.7V / 2.7V 2.7V / 4.5V 2.7V / 2.7V 4.5V / 4.5V

Max. Read Pwr.1 60 mW <90 mW 105 mW 200 mW

Max. Program/Erase Pwr.1 120/82.5 mW 120/1220 mW 235/260 mW 200 mW

Max. Standby Pwr.1 150 µW 300 µW 60 µW 1,500 µW

Max. Latency to Read 10 to 20 µs 1 µs 120 ns 300 ns

NOTE:

1. Assumes nominal 3.0V or 5.0V read or program voltage, and 5 MHz data rate.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-9

2.2.4 New Hardware Assisted Suspend to Read/Write
Intel’s 0.4µ ETOXTM V flash process technology components include two suspend commands;
Program and Erase Suspend. Program and erase suspend mode allows system software to
suspend both the word/byte program or block erase command in order to read from or write
data to another block. Commands are written to the Command User Interface (CUI), connecting
the microprocessor and the internal chip controller, using standard microprocessor write
timings. Issuing a program or erase suspend command will begin to suspend a program/erase
operation. The flash internal Status Register will indicate when the device reaches
program/erase suspend mode. In this mode, the CUI will respond only to the Read Array, Read
Status Register, Program Resume, and Erase Resume commands. Flash specification tWHRH1 and
tWHRH2 define the program and erase suspend latency, respectively (Table 2-3).

After a Program or Erase Resume is written to the flash memory, the flash device will continue
with the program or erase process, respectively, (see Figures 2-5 and 2-6). The flash continues
from the point where the suspend command was issued, eliminating the need to repeat the
program or erase operation. The suspend to read/write operation provides a maximum latency
of 10/20 µs, respectively,

and allows system designers to emulate simultaneous RWW operation

within the time constraints of the systems.

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-10

Start

Write B0H

Read Status Register

Bus Operation

Write

Write

No

Command

Program Suspend

Read Array

Comments

Data = B0H
Addr = X

Data = FFH
Addr = X

SR.7 =

SR.2 =

1

Write FFH

Read Array Data

Program Completed

Done
Reading

Yes

Write FFHWrite D0H

Program Resumed Read Array Data

0

1

0

Read
Read array data from block
other than the one being
programmed.

Read

Status Register Data Toggle
CE# or OE# to Update Status
Register Data
Addr = X

Standby
Check SR.7
1 = WSM Ready
0 = WSM Busy

Standby
Check SR.2
1 = Program Suspended
0 = Program Completed

Write Program Resume
Data = D0H
Addr = X

FDI2-5

Figure 2-5. Program Suspend/Resume Flowchart

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-11

SR.7 =
0

1

Start

Write B0H

Read
Status Register

Write D0H

Block Erase Resumed

Bus
Operation

Command Comments

Write Erase
Suspend

Read

Data = B0H
Addr = X

Check SR.7
1 = WSM Ready
0 = WSM Busy

Status Register Data
Addr = X

Standby

SR.6 = Block Erase Completed

Write FFH

Read Array Data

Yes

0

1

Check SR.6
1 = Block Erase Suspended
0 = Block Erase Completed

Standby

Data = D0H
Addr = X

Write Erase
Resume

Read or
Program

?

Done?

Program
Loop

Read Array
Data

Read Program

No

FDI2-6

Figure 2-6. Block Erase Suspend/Resume Flowchart

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-12

2.3 FLASH DATA INTEGRATOR SOFTWARE STRUCTURE
Software is required to make all flash memory components, regardless of RWW circuitry,
emulate an EEPROM. The approach of storing data on a nonvolatile media is well understood,
but intricate due to the need to overcome the conditions described previously.

Intel has developed an open software architecture, known as the Flash Data Integrator (FDI),
that enhances the flash technology. FDI allows the system designer to use a single low-cost
flash memory component as a storage medium for both system code and data in real-time
systems. This section describes the FDI flash media management software and reviews basic
flash data management techniques.

2.3.1 Flash Data Integrator Functional Overview
The FDI architecture consists of three major subsystems; the Foreground Application
Programming Interface (API), Background Manager, and Boot Code Manager.

System tasks and interrupts that need to store data, interface to the Foreground API functions.
Through the API interface, commands that modify flash, and their corresponding data are
queued by the system. The API commands such as open, close, read, write, and query are the
interface between FDI and the system. The Background Manager reads commands/parameters
from the queue, determines where the information should be stored, and performs any
parameter storage or clean-up necessary while monitoring for interrupts. During initial system
power-on the Boot Code Manager initializes the FDI control structures and performs any
necessary power loss recovery.

Figure 2-7 illustrates the information flow between the system flash memory and SRAM. The
system calls the foreground API function (0), with a command and data. The API function
either, queues the command and data into SRAM for operations which modify flash (1W), or
executes the command directly for commands which do not modify flash (1R). The FDI
Background Manager (2W), executing out of flash memory, manages the queued tasks during
available processor time. During a flash program or erase operation (4W), interrupts with
vectors in flash are disabled and control is turned over to a small routine (less than 1 Kbyte) in
SRAM (3W). This routine polls interrupts while monitoring progress of the program or erase
operation. If a higher priority interrupt occurs, the polling routine suspends the flash memory
program or erase operation, and allows the interrupt handler to then execute directly from flash
memory. Upon completion of the interrupt routine, the flash program or erase operation is
resumed by the SRAM polling routine. The Background Manager continues in this fashion until
all events are handled and all necessary cleanup is complete.

A complete description of the FDI subsystems is provided in Chapter 3, FDI Architecture and
API Specification.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-13

(2R) Data
Queues
<1 Kbyte

(3W) Flash
Program/

Erase
Control &
Interrupt
Polling

<1 Kbyte

(1W) Foreground API:
write, delete

Foreground API:
read, close

(2W) Background
Manager: write,
delete reclaim

Spare

Factory Data
User Data

Net Params
Boot Code

(4W)

Total = 2 KB - 3 KB

SRAM Flash

Flash
Memory

Data
Blocks

T
ot

al
 =

 1
6

K
B

 -
20

 K
B

(0) Data to Be
Read/Stored

(1R)

FDI2-7

NOTES:

R = Read

W = Write

Figure 2-7. FDI Information Flow between Flash and SRAM Memory

2.3.2 EEPROM Parameter Types
Parameters stored in the EEPROM in a cellular phone can be characterized as either factory,
network or end-user data. These parameter records vary in size and frequency of updates. For
example, factory tuning data may be a long record (few hundred bytes) that is written to the
EEPROM during the manufacturing process and may only be updated on an infrequent basis
when the user brings the phone into a service center. On the other hand, the call timer
parameter keeps track of the duration of a call and may be updated as often as every couple
seconds during the process of the call. Table 2-5 lists the data parameter types commonly stored
in the EEPROM of a cellular phone.

The frequency of parameter updates determines how often parameter blocks must be cleaned up
[erased], to ensure free space is always available in flash for data writes. The write occurrence
combined with the system time allocated for flash management and the timing parameters of
the flash memory should be evaluated. Based on the low data write rate of cellular phone
EEPROM data, flash memory with hardware assisted suspend/resume circuitry provides
adequate timing to emulate an EEPROM and respond to system interrupts. It should be feasible

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-14

to manage all flash memory program and erase operations during normal phone operation (e.g.,
during “dead” time while on a control channel or during the a phone call). This maximizes the
time the CPU remains in sleep mode.

Table 2-5. EEPROM Data Parameters

Parameter
Type

Size (Bytes) Number Amount
(Bytes)

Occurrence

Factory 1–300 <10 ∼1,024 1–2 times/year

Network 5–20 25–50 ∼1,024 < few times/day

End-User 20–250 30–250 ∼6,144 Every few seconds during call

2.3.3 Parameter Storage and Management
Unlike EEPROM, flash memory cannot be erased on a byte basis. By using software
management techniques, data can be stored on a byte or variable length basis and flash erase
operations can be completed using a suspend command to emulate byte alterability.

Data parameters are stored and tracked by software as virtual units within the physical
boundaries of the flash block (see Figure 2-8). This is required whether specialized RWW
circuits are available or not. Since a byte in flash may not be overwritten, an old occurrence of
a parameter is marked “dirty” when the parameter is updated. The valid parameter is written to
the next available memory location. The software media manager tracks the valid occurrences
and controls access when requested by the system.

Parameters are stored until there is not enough “clean” space available in the block to insure
new records can be written without over flowing the block. When this point is reached, the
latest occurrence of each parameter is transferred to a clean [erased] block. Block header
records associated with each parameter block indicates the status of the block. That is,
information such as if the block is active [containing valid data], if the block is transferring
data, or if the block is erased. After the valid parameters are transferred, the original block is
marked for clean-up [erasing]. The parameter storage and management process if handled fully
by FDI, and may be suspended by the system to write data provided free space is available.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-15

Valid

Clean

Dirty

n Bytes

Flash
Block

Virtual
Unit

FDI2-8

Figure 2-8. Flash Media Manager

2.3.4 Read Latency
Unlike previous EEPROM emulation techniques that were based on a linked list approach, FDI
uses a look up pointer to the parameter header to access the data. This provides uniform latency
and simplifies system timing issues. (See AP-604 Using Intel’s Boot Block Flash Memory
Parameter Blocks to Replace EEPROM.)

2.3.5 Real Time Interrupt Support
To support real time interrupts, the flash management operations are suspended before
servicing an interrupt. Upon completion of the interrupt routine, the flash operation is resumed
until complete.

During a flash program or erase operation, a system interrupt hardware register is polled while
waiting for the flash command to complete. If an interrupt occurs, the program or erase
command is suspended and the interrupt handler is executed directly from flash memory after
the maximum latency of the flash component (20 µs in the case of Intel’s Advanced Boot Block
Flash). This eliminates the need to store interrupt handlers in SRAM. Upon completion of the
interrupt, control is returned to flash program/erase routine to resume the operation.

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-16

Since non-specialized RWW flash components cannot be read from during a program or erase
operation, a small (less than 1 Kbyte) software handler in the system’s static RAM (SRAM) is
required. The SRAM and other system requirements are described in Section 2.5.

2.3.6 FDI Features
• Ability to easily integrate data and code into a variety of digital cellular environments. All

areas of the code that require porting should be very limited and the code does not depend
on the existence of non-ANSI ‘C’ libraries.

• Ability to suspend all data management activity when requested to execute code.

• Ability to resume data management activity following code execution.

• Ability to migrate the SW developed for standard flash architecture with hardware
suspend/resume capability and flash components that support specialized RWW circuitry.

• Ability to support all EEPROM data storage requirements in the initial release.

• Ability to support enriched (larger) data types in future releases. These could include phone
directories, audio recordings, or code updates. The initial release will not support these
data types, however, the architecture is planned with this in mind.

• Ability to trade-off the features with the flash/RAM requirement.

• Low latency parameter/file read access.

• Support for variable parameter sizes without large overhead in media.

• Power-off recovery capabilities. An unexpected power loss should never corrupt or lose
data. Replacement of old data with new should always provide the old data as a back-up
until the new data can be guaranteed.

• Supports symmetrical block sizes through a portion of the flash component, but allows the
block size to be definable at compile time.

• Flexible through use of defines, compile time options, or parameter options.

2.4 DEVELOPMENT RESOURCES
Although basic flash data management techniques may be well understood by the system
software engineer, the work necessary to develop a reliable system takes significant time and
resources. This effort has delayed many OEMs from fully emulating the EEPROM in flash.
Fortunately, Intel’s FDI solution greatly reduces the OEM’s development effort.

Table 2-6 provides an estimate of the development resources required to integrate Intel’s FDI
into an existing system compared to developing an internal media manager for a flash memory
component using a specialized RWW flash component. Intel’s FDI may reduce the
development time by 82%, allowing the OEM to bring the product to market faster.

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-17

Although additional time may be necessary to test future software changes that effect system
timing. This may or may not be significant depending on the latency requirements of the
system.

Table 2-6. Projected EEPROM Emulation Development Time

Feature Intel FDI Internal Media
Manager

FDI Definition included 500 devl.-hours

Flash Parameter Storage Management included 600 devl.-hours

Flash Storage Management Reclaim included 600 devl.-hours

EEPROM Interface included 80 devl.-hours

Power Loss Recovery included 480 devl.-hours

Flash Suspend/Resume Interface and Testing included N/A

API Integration 400 devl.-hours N/A

Total 400 devl.-hours 2,260 devl.-hours

2.5 SYSTEM REQUIREMENTS

2.5.1 Random Access Memory Requirements
Some amount of system RAM (SRAM) is required to provide instructions during flash program
and erase operation. The amount of RAM usage is dependent on the specific features needed.
The size of this code is expected to be 2 Kbyte, 1 Kbyte for queue storage and less than 1 Kbyte
of code. RAM should be used for queuing of events/data. The goal is to create a modular set of
reference code, where the cellular phone OEM can pick and choose the various features needed
in their product, and thus tailor the software to their specific product needs. Flash memory with
specialized RWW circuitry does not have the requirement for available RAM as the component
can provide instructions to control operation within the separate partition.

2.5.2 Flash Memory Requirements
Flash memory space will be necessary to store the Foreground and Background media manager
program code. This is required for all flash memory types, standard and specialized. Intel’s FDI
media manager should require 16 Kbytes to 20 Kbytes of flash memory.

In addition, the flash memory component must include program and erase suspend commands
(such as those in Intel’s Advanced Boot Block components) or include specialized RWW
circuitry as described in Section 2.2.3.

EEPROM REPLACEMENT WITH FLASH MEMORY E

2-18

2.6 PARAMETER CYCLING
Intel’s flash memory is specified to work over 100,000 erase cycles when operating over 0oC to
+70oC, between 20,000 and 30,000 over the range of –25°C to +85°C, and 10,000 over the
extended temperature range of -40oC to +85oC.

A cycle is defined as an erase operation, and not the number of data writes the device can
support. For example, an 8-Kbyte block supports 8,192 byte writes before a single erase
operation, one cycle, has completed. Therefore, parameter cycling is a function of the
parameter size. This is important when determining how many parameter updates can be
supported. Today, many OEMs limit writes to EEPROM due to 100K write cycling limit of
EEPROM technology. Parameter updates in EEPROM over write the previous instance. The
maximum life of the EEPROM is thereby limited to the update rate of the most frequently
written parameter (e.g., call timer in the case of a digital cellular phone. Using flash for
EEPROM emulation extends the effective number of data cycles.

The effective number of write cycles is dependent on the number of available parameter blocks
and size of the parameter record and is given by:

Eff Write Cycles

available bytes block x no blocks

parameter record size
xMax erase cycles block

.

/ .
. /

=

Assuming two 8-KB flash blocks are used to store a 5-byte record over an extended
temperature range, and further assuming 5 Bytes/block status and 512 Bytes/block overhead
results in:

Eff Write Cycles

Bytes blk x Blks

Bytes parameter
x cycles blk

.

(, /)

/
, /

, ,

=
− −

=

8 192 5 512 2

5
10 000

30 700 000

This is a 300 times improvement over EEPROM memory that is limited to 100,000 write
cycles. The same approach works for variable size records, where the effective write cycles are
determined by the summation of the occurrences of the various records.

2.7 POWER LOSS RECOVERY
Power loss is handled in a reliable manner by adding a status field to the header of each data
parameter block, as well as each parameter. The status field indicates that a parameter update
has been initiated or the write was complete. If power is lost during a parameter update, the
status is known when power is restored. Upon power recovery, the initiation process should
check the status of each parameter. If the status indicates that a parameter update began but did
not complete successfully, then the record can be marked invalid. The same process is used
during clean-up operations when valid data is moved to a clean block. Because of the fast write

E EEPROM REPLACEMENT WITH FLASH MEMORY

2-19

capability of flash, critical parameters can be stored to flash sooner than an EEPROM
component, thereby improving the robustness of the system.

To improve system power-on performance, the initiation process may be suspended, provided
free space in flash is maintained.

2.8 ENRICHED DATA STORAGE AND REMOTE CODE UPDATES
Specialized RWW flash architectures with fixed size data partitions are limited in their ability
to manage data that exceeds the partition size. Intel’s FDI software is designed to manage a
multiple number of memory blocks, offering a more flexible solution when combined with a
component that is not limited by a physical partition, such as the Intel Advanced Boot Block
flash memory.

FDI architecture supports extensions to manage enriched, streaming data types such as digitized
voice, fax, company phone directories, and more. The architecture also enables the ability to
remotely manage code modules stored in the main memory blocks.

2.9 CONCLUSION
A low-cost, flexible and reliable approach to EEPROM emulation in flash memory was
presented for real time applications such as cellular phones. The approach is based on flash
memory management software, known as the Flash Data Integrator (FDI), that emulates
EEPROM functionality while enabling the flexibility for future data sotrage needs. This method
reduces system cost, improves system write times by as much as 98%, supports data write rates
up to 710 Kb/s, reduces memory system power by as much as 140 mW (compared with
specialized RWW components), reduces development time by as much as 82%, and can
increase parameter cycling 300 times over EEPROM memory. Power loss recovery techniques
ensure data is not lost or corrupted in the event of power loss, eliminating the need for battery
backed SRAM. EEPROM emulation in flash requires limited system resources depending on
the needs and selected flash technology. Intel’s FDI flash media management software and
Advanced Boot Block flash memory offer a cost-effective, robust, reliable, and flexible
solution to EEPROM replacement.

E
3

FDI Architecture and
API Specification

E

3-1

CHAPTER 3
FDI ARCHITECTURE AND API SPECIFICATION

3.1 INTRODUCTION

3.1.1 Scope
This chapter provides a detailed design description of the Flash Data Integrator (FDI) which
enables code plus data storage in a single flash component.

3.1.2 Purpose
The purpose of this chapter is to provide a general and detailed design description of the FDI.

3.1.3 System Overview
Many of today’s systems use flash for code storage and execution. These same systems use
EEPROMs to provide nonvolatile memory for system data and parameter storage even though
the flash device often has unused space. The FDI code plus data solution removes the
EEPROM from the system, thus reducing board space and product cost.

FDI allows the storage of data, and the execution of code from the same flash device. FDI also
allows for future code updates, upgrades, and extensions in flash. While the current FDI effort
is GSM-centric, many different system architectures can utilize the FDI software.

Figure 3-1 provides a highly simplified diagram of a system software architecture which is a
good candidate for FDI. In this system, many tasks, such as protocol control, run on top of a
real- time operating system kernel. An EEPROM data storage request may be prompted by a
user pressing a key or a service routine which generates a system interrupt. An EEPROM
manager task handles the data storage request, and may queue the data in RAM until time is
available to write the data to EEPROM.

FDI ARCHITECTURE AND API SPECIFICATION E

3-2

MAC ISR

Key Press

EEPROM
Manager

O/S Kernel

TasksInterrupt Service Routines

FDI3-1

Figure 3-1. Simplified System Software Architecture

FDI is a complete flash media manager which includes an EEPROM manager type API. FDI
handles all aspects of storing and retrieving variable length parameters into flash memory. FDI
allows system designers to remove EEPROM and use existing flash for parameter data and
code storage.

Intel’s Advanced Boot Block Flash Memory products have been designed to maximize data
efficiency when using FDI. FDI takes advantage of Advanced Boot Block features including
small data blocks and program/erase suspend features.

3.1.4 Document Overview
The General Description in Section 3.3 contains the FDI APIs, and general implementation
considerations.

The Detailed Design in Section 3.4 contains the FDI software requirements to a level of detail
sufficient to enable system and firmware designers to design a system with FDI as a component
of their system.

E FDI ARCHITECTURE AND API SPECIFICATION

3-3

3.2 FLASH DATA INTEGRATOR REFERENCES

3.2.1 Glossary

3.2.1.1 DEFINITIONS

Bitmask Set of bits

BYTE 8-bit value

DWORD 32-bit value

Granularity Minimum allocation unit size

Init Initialization

NIBBLE 4-bit value

NULL Zero

Unit A section of a flash block taking up one or more granular sizes

WORD 16-bit value

data parameters Information such as system variables, small arrays, etc.

data streams Data such as SMS, voice messages, large arrays, etc.

data fragment A unit containing one of multiple data pieces of a data parameter or stream

Instance One occurrence of a data parameter in a unit which can hold multiple
occurrences of the data parameter

3.2.1.2 ACRONYMS

APC Advanced Personal Communication

API Application Program Interface

EEPROM Electrically Erasable Programmable Read Only Memory

FDI Flash Data Integrator

GSM Global System for Mobile communications

ISR Interrupt Service Routines

RAM Random Access Memory

3.2.1.3 ABBREVIATIONS

blk block

blknum block number

FDI ARCHITECTURE AND API SPECIFICATION E

3-4

3.2.2 References
European Digital Cellular Telecommunications System (Phase 2); Specification of the
Subscriber Identity Module–Mobile Equipment (SIM–ME) Interface (GSM 11.11) ETS 300
608 January 1995.

3.3 FLASH DATA INTEGRATOR GENERAL DESCRIPTION

3.3.1 Flash Data Integrator Product Perspective
The Flash Data Integrator (FDI) enables embedded systems to use flash memory for code
storage and execution as well as data storage FDI will replace EEPROM management software
in current systems. Figure 3-2 provides an overview of the software components necessary to
accomplish this and how these components interact with the existing system software.

MAC ISR

Key Press

O/S Kernel

TasksInterrupt Service Routines

FDI Background
Manager: write,
delete, reclaim

FDI Foreground
APIs: open,

close, read, write,
delete

FDI3-2

Figure 3-2. Simplified System Software Architecture Using FDI

All tasks and interrupts that need to store data into the flash, interface to functions provided in
the FDI Foreground API. These functions (such as open/close/read/write) allow the command
and corresponding data to be queued in memory for the FDI Background Manager.

E FDI ARCHITECTURE AND API SPECIFICATION

3-5

The FDI Background Manager is responsible for executing pending data writes. When a write
is queued, and background processing time is available, the Background Manager manages
updating or creation of data in flash. The Background Manager also manages any reclaim of
invalid (deleted) data areas in flash for reuse.

The FDI Background Manager utilizes a small low level flash erase and programming routine
which resides in RAM. This low level routine responds to interrupts that occur during the flash
program/erase times by suspending the program/erase, and allowing the interrupt to then be
executed from flash. Worst case latencies from program and erase suspend are 7 µs and 20 µs
respectively.

FDI implements robust power loss recovery mechanisms to protect the valuable data stored in
flash media.

Figure 3-3 provides a diagram of the information flow between flash and RAM. The system
calls the Foreground API function (1), with a command and data. The Foreground API function
either, stuffs the command and data into a RAM queue for operations which modify flash (1a),
or executes the command directly for commands which do not modify flash (1b). The
Background Manager (2), executing out of flash, manages the queued tasks during available
processor time. During a flash write or erase, interrupts with vectors in flash are disabled and
control is turned over to a small routine in RAM (3). This routine polls interrupts while
monitoring progress of the program or erase operation. If a higher priority interrupt occurs, the
polling routine suspends the program or erase operation, and allows the interrupt handler to
then execute from flash. Upon completion of the interrupt routine, the flash program or erase
operation is resumed by the RAM polling routine.

FDI ARCHITECTURE AND API SPECIFICATION E

3-6

FlashRAM

Data Queues
< 1 Kbyte

3

Flash program/
erase control &
Interrupt polling

< 1 Kbyte

Foreground
API: write, delete

2 Background
Manager: write,
delete, reclaim

EEPROM
data to be

stored

Spare

Factory Data

User Data

Network
Parameters

Boot Code

1a

Foreground
API: read, open,

close

1

1b

flash memory
data blocks

FDI3-3

Figure 3-3. Software Flash Data Integrator Data Flow Diagram

3.3.2 Foreground APIs
The Foreground API functions receive storage and read commands from other tasks in the
system The system calls the Foreground API function with a command and data. The
Foreground API function then either stuffs the command and data into a RAM queue for
operations which modify flash, or executes the command directly for commands which do not
modify flash. The Foreground API functions are the application interface for storing EEPROM
data types, factory data, network parameters and user alterable data to the flash media.

E FDI ARCHITECTURE AND API SPECIFICATION

3-7

3.3.3 Background Manager
The FDI Background Manager controls the actual writes into the flash media. The Background
Manager awaits the arrival of items into its Data Queue and then extracts the highest priority
item to act upon. When there is CPU time available, the Background Manager reads from the
queue and determines the information’s location in flash. During flash programming and erase
operations the Background Manager disables and polls interrupts. If an interrupt occurs, the
Background Manager suspends the program/erase in progress, and then relinquishes the flash to
the interrupt task. Once the interrupt handling is complete, the Background Manager continues
until it completes, or until interrupted again by other interrupts. The Background Manager
resumes the write/erase which then continues in this fashion until the RAM queue is empty.

The Background Manager is also responsible for reclaiming invalid (deleted or superseded)
data. Reclamation occurs upon a predetermined free space trigger, or a user-defined percentage
(default value of INVALID_PER_BLOCK is 70%) of a block that has been dirtied, or when
there is not enough free space to store a new piece of data. The Background Manager asks for
permission from the system, and when granted, executes the reclamation process to free up
invalid regions of flash memory and makes them available for reuse.

3.3.4 Initialization
The initialization process performs power loss recovery, and initializes all FDI hardware and
RAM variables. FDI implements robust power loss recovery mechanisms throughout the code.
This safeguards the valuable data stored in the flash media. By utilizing the unique
characteristics of flash media, the integrity of the existing data can be assured if power fails
while writing to flash.

The worst case power loss situations for FDI are:

• All data in the RAM queue (not yet written to flash) will be lost if a power failure occurs.

• Any operation in progress is considered not done.

If a power loss occurs during the operation, the partial data that has been written prior to power
loss is discarded. A reclamation in progress is identified and completed during the initialization
process at the next power on. Refer to the Power Loss Recovery Process section below.

3.3.4.1 POWER LOSS RECOVERY PROCESS

Power loss recovery is done during initialization to guarantee all internal structures and data are
in a valid state. To validate all blocks, power loss recovery reads internal structures maintained
within each block. If a power loss has occurred during the reclaim of a block, the reclaim is
restarted and completed. To validate all data, power loss recovery reads the header structures. If
a power loss has occurred during a data modification, power loss recovery will restore the
original data.

FDI ARCHITECTURE AND API SPECIFICATION E

3-8

3.3.5 Low Level Code and Interrupt Handling
FDI performs all programs and erases to flash media through a RAM based low-level flash
driver.

The basic functions provided by the low-level flash driver are: program, erase, program/erase
suspend, and interrupt polling. During a flash program or erase, interrupts with vectors in flash
are disabled and control is turned over to a RAM based low-level flash driver. This routine
polls interrupts while monitoring the progress of the flash program or erase operation. Upon the
occurrence of an interrupt, the RAM based routine suspends the flash program or erase
operation, and allows the interrupt handler to then execute from flash. Upon completion of the
interrupt routine, the flash program or erase operation is resumed by the RAM flash driver.

Intel’s Advanced Boot Block product family provides Erase Suspend to Read (ESR) in 20 µs
maximum and Program Suspend to Read (PSR) in 10 µs maximum. This allows FDI to suspend
program or erase and re-enabling interrupts with minimal latency.

3.3.6 Implementation Constraints
FDI is coded in ANSI Standard C. Assembly language is used only for those processes that require
greater speed and optimization than a C compiler could provide.

Documentation to assist users in porting processor specific areas will be provided with the
software.

3.3.7 Assumptions, Dependencies and Limitations

• Only one open Read/Write stream will be supported at any given time.

• Deletions of portions of stored data is not allowed.

• Data reads will not be interrupted.

E FDI ARCHITECTURE AND API SPECIFICATION

3-9

3.4 FLASH DATA INTEGRATOR DETAILED DESIGN

3.4.1 Media Control Structures
FDI manages code and data separately to enable code execution and data storage in the same
flash device. FDI provides a movable data/code partition, however, it must be on flash memory
block boundary. A movable partition allows the ratio of code vs. data throughout the life of a
system to evolve to match the systems needs. A symmetrically-blocked part is required to allow
a movable data/code partition. If using an asymmetrically-blocked flash device, the data/code
partition is fixed. This is a small block cannot be used as a spare block for a large block. FDI
requires a spare block in the Data Storage area for reclamation.

Boot Code

Data
Storage

Spare Block

Code
Storage

Movable
Data/Code
Boundary

FDI3-4

Figure 3-4. Code + Data Storage Arrangement in Flash

FDI supports boot code block separate from Code and Data storage which can contain the
initialization code needed at startup. Some systems may have boot code stored external to the
flash device, and would then use the entire flash device for code and data storage.

FDI ARCHITECTURE AND API SPECIFICATION E

3-10

The following control structures are used by FDI to manage data. FDI provides flash
read/write/modify capabilities with limited overhead and improved performance over
EEPROM.

3.4.1.1 CONTROL STRUCTURES USED BY FDI

Command Control structure–Interface between the system and the FDI. A pointer to this
structure enables the system and FDI to communicate and share information for reading,
writing, and managing flash.

Data Lookup table–FDI indexes into this table to provide quick access to header location.
During initialization, FDI recreates this array in RAM.

Unit Header structure–Describes the contents of the unit it points to with name, type, size, and
attribute fields.

Multiple Instance structure–Describes the number of instances of the data parameter which
can be contained within this unit, and the current valid instance.

Block Information structure–Used to track the logical block number, and power loss
information.

Sequence Table structure–Describes the location of multiple Unit Headers describing multiple
fragments of a data parameter of data stream.

Logical Block Table–Translation of logical block numbers from physical block numbers.

Data Location structure–Physical location of append data in the flash media.

Command structure–Contains the information needed to write data to or delete data from the
flash media.

3.4.1.2 HOW FDI USES CONTROL STRUCTURES

Each flash data block consists of a list of Unit Headers addressed from the top of the block, and
the data they describe addressed from the bottom of the block. Figure 3-5 shows the
arrangement of Unit Headers and data within a physical block. At the bottom of each block is
the Block Information structure. The Block Information structure maintains the logical block
number, and tracks reclamation status for the block.

E FDI ARCHITECTURE AND API SPECIFICATION

3-11

Unit Header 1

Unit Header 2

Unit Header 3

 Headers
 Grow
 Down

 Data
 Grows
 Up

Data 3

Data 2

Data 1

Block Information

Diagram of a single block showing the relationship between
Unit Headers and Data.

FDI3-5

Figure 3-5. Data Block Arrangement

For ease in data management, physical blocks are segmented into sections called units. A unit is
a segment of a block whose contents are described by a Unit Header. Units vary in size but
always have the same granularity. Granularity is the minimum allocation unit size defined at
compile time.

FDI ARCHITECTURE AND API SPECIFICATION E

3-12

3.4.1.2.1 Command Control Structure

The Command Control structure is the interface between the system and FDI. A pointer to
Command Control enables the system and FDI to communicate with each other, and share
information for reading, writing, and managing flash.

Command Control Structure Fields

typedef struct command_control {

DWORD buffer; /* buffer address */

DWORD count; /* number of bytes desired */

DWORD offset; /* beginning offset into the data */

DWORD actual; /* number of actual bytes acted on */

DWORD sub_cmd; /* sub-command to expand functionality */

DWORD aux; /* supplementary field */

WORD identifier; /* unique identity for each data or code */

BYTE type; /* command type: either data or code type */
BYTE priority; /* each identifier is assigned a priority */

} COMMAND_CONTROL;

buffer–Pointer to a buffer to read data from, or write data to flash.

count–The number of bytes to read or write.

offset–The number of bytes into the Unit (offset) to begin reading or writing.

actual–The number of bytes FDI was able to read or write.

sub_cmd–Used for future or extended commands.

aux–Allows additional information to be passed between the application and FDI.

identifier–Unique identifier.

type–Used to define unique classes or types of information.

priority– The priority of the data determines the order data is written if data is queued for write.

3.4.1.2.2 Data Look-Up Table Structure

This look-up table increases the speed of accessing data. Since this table is located in RAM, it
must be recreated from the Unit Header structures at initialization. The index into this table is
based on the type and identifier value of each data parameter or stream.

E FDI ARCHITECTURE AND API SPECIFICATION

3-13

Data Look-Up Table Structure Fields

typedef struct data_lookup {

BYTE ptrUnitHeader; /* logical block and offset */

} DATA_LOOKUP;

ptrUnitHeader–Logical block and offset of the Unit Header whose name and type match the
offset into this table.

3.4.1.2.3 Unit Header Structure

The Unit Header describes the data unit within the physical block. It also tracks the status bits
of the data for reclamation and power loss recovery. Bit fields within the unit header structure
indicate whether the data unit is active, being transferred, or invalid. Unit size indicates
multiples of the base granularity.

Unit Header Structure Fields

typedef struct unit_header {

WORD identifier; /* unique identifier per parameter */

BYTE status; /* power-off recovery */

BYTE type; /* data parameter, data stream, phone #,

 * fax #, SMS, etc. */

WORD size; /* in multiples of granularity */

WORD ptrUnit; /* offset from the bottom of the block */

} UNIT_HEADER;

identifier–A unique identity.

status–A bit-mapped field that indicates the current status of the data parameter, data stream,
etc.

Table 3-1. Unit Header Structure Status Field Definitions

Name Condition Status Value Definition

“empty“’ 1111 111X Binary This is an empty granular unit. The system
can use this for the next unit header.

“allocating“ 0111 111X Binary The unit header is in the process of being
written.

“allocated“ 0011 111X Binary The unit data is in the process of being
written.

“valid“ 0001 111X Binary This unit header describes valid data.

“invalid“ 0000 111X Binary This unit header describes invalid data.

FDI ARCHITECTURE AND API SPECIFICATION E

3-14

type–This field distinguishes the information associated with this header. The currently defined
types in the first nibble of this field are attributes: Multiple Instance, Single Instance,
Data Fragment and Sequence Table. The last nibble defines the associated data type:
data parameter, data stream, phone number, etc.

size–Size is a multiple of granularity in this unit. Granularity is defined at compile time as the
minimum number of bytes taken up by any unit.

ptrUnit– The offset from the beginning of the block to the start of the Unit data. PtrUnit is in
multiples of granularity.

Table 3-2. Unit Header Structure Type Field Definitions

Type Value Definition

XXXX 1110 Binary This header points to Multiple Instance unit.

XXXX 1100 Binary This header points to a sequence table.

XXXX 1000 Binary This header points to a Single Instance unit.

XXXX 0000 Binary This header points to a Data Fragment unit.

1110 XXXX Binary The data type is data parameter.

1101 XXXX Binary The data type is data stream.

1100 XXXX Binary The data type is phone number.

1010 XXXX Binary The data type is SMS.

3.4.1.2.4 Multiple Instance Structure

This structure describes multiple instances of small parameter data within a unit. Grouping the
data into multiple instances limits the overhead in managing small data parameters, and
improves the performance of updates. Figure 3-6 provides an example of a small data
parameter with four available instances.

Instance
Information

Instance #1
status = VALID

Instance #2
status = UNUSED

Instance #3
status = UNUSED

Instance #4
status = UNUSED

Valid Data Erased Erased Erased

FDI3-6

Figure 3-6. Example of Multiple Instances

E FDI ARCHITECTURE AND API SPECIFICATION

3-15

Each instance has a corresponding status. New instances added have the status of “allocating,”
“allocated,” and “valid.” The old instances have the status of “invalid.” Figure 3-7 displays a
data parameter updated with a new instance. Note the status of the old instance is set to
“invalid.”

Instance
Information

Instance #1
status = INVALID

Instance #2
status = VALID

Instance #3
status = UNUSED

Instance #4
status = UNUSED

Invalid Data Valid Data Erased Erased

FDI3-7

Figure 3-7. Parameter Update with New Instance

The number of multiple instances of the parameters is based on the size of the parameter and
the size of the containing unit.

Multiple Instance Structure Fields
typedef struct data_info {

WORD sizeOfInst; /* size of this instance of *
 * the data */

BYTE numOfInst; /* number of data instances

 * available in this unit */

Bitmask validOfInst[]; /* 4 bits of validation for
 * each instance used */

} DATA_INFO;

sizeOfInst–The size in bytes of each data instance.

numOfInst–The number of instances available in this unit.

validOfInst[]– Contains four status bits for each instance in this unit.

Table 3-3. Multiple Instance Structure ValidOfInst Field Definitions

Name Condition Status Value Definition

“empty“’ 1111 Binary This is an unused data instance.

“allocated“ 0011 Binary The instance is in the process of being
written.

“valid“ 0001 Binary The instance holds valid data.

“invalid“ 0000 Binary The instance no longer holds valid data.

FDI ARCHITECTURE AND API SPECIFICATION E

3-16

3.4.1.2.5 Block Information Structure

The Block Information Structure is located at the bottom of each physical block used for data
storage. It contains the logical block number, reclamation status, and current state of the block.
Figure 3-8 depicts the block information structure in a physical block.

Rest of the Block

status logical block number current state last address
in block

FDI3-8

Figure 3-8. Placement of Block Information

E FDI ARCHITECTURE AND API SPECIFICATION

3-17

Block Information Structure Fields
typedef struct block_info {

BYTE status; /* includes: reclamation info */

BYTE logicalBlkNum; /* allows for movable spare block */

BYTE physicalCopy; /* physical block being copied during

 * reclamation */

WORD currentState; /* this will demonstrate block
 * integrity: F0F0H */

} BLOCK_INFO;

status–This field contains the information needed for the reclamation process.

Table 3-4. Block Information Structure Status Field Definitions

Name Condition Status Value Definition

“erased“’ 1111 1111 Binary Indicates block has not been written to and all
bits are in the erased state.

“recover“ 1111 1110 Binary Indicates that the process of placing data into
this block from a block being reclaimed has
begun.

“erasing“ 1111 1100 Binary All data has been transferred from a block
being reclaimed to this block and the block
indicated is undergoing erase.

“write“ 1111 1000 Binary This block is available for writing.

logicalBlkNum-Contains the logical block number.

physicalCopy-Contains the physical block number of the block being copied during reclaim.

currentState-Enables the FDI software to verify the block’s integrity. CurrentState is checked
to see if a block erase was interrupted by a power loss.

3.4.1.2.6 Sequence Table Structure

If data spans physical block boundaries, a sequence table is used to list each data fragment.
Figure 3-9 provides an example of using a sequence table with three separate fragments across
two physical blocks. Sequence tables contain an ordered list of data fragments. Unit Headers
for each data fragment are described by logical block number and occurrence in the block.
Notice in Figure 3-9 that the second fragment in the sequence table is associated to the second
instance in block 1.

FDI ARCHITECTURE AND API SPECIFICATION E

3-18

Looking for
Parameter X

Unit Header: Parameter X Sequence Table

Unit Header: Parameter X

Parameter X Instance #1 Data

Sequence Table: Parameter X

Block 0 Instance #1

Block 1 Instance #2

Block 1 Instance #1

Block Info : Logical Block 0

Sequence Table Contents
for Parameter X

Unit Header: Parameter X

Unit Header: Parameter Y

Unit Header: Parameter X

Parameter X Instance #2 Data

Parameter Y Data

Parameter X Instance #3 Data

Block Info : Logical Block 1

Physical Block
 Boundary

1

2

3

4

5

6

8

7

FDI3-9

Figure 3-9. A Sequence Table Example

E FDI ARCHITECTURE AND API SPECIFICATION

3-19

Sequence Table Structure Fields
typedef struct sequence_table {

BYTE blockNum; /* virtual block number */

BYTE instance; /* the instance of this fragment */

WORD size; /* in multiples of granularity */

} SEQUENCE_TABLE;

blockNum–This is the block number of the parameter data.

instance–Because there can be multiple fragments in a single block, this field contains the
instance of this fragment in the unit header table.

size–This field describes each fragment’s size in multiples of granularity.

3.4.1.2.7 Logical Block Table

This table is a logical to physical block jump table where the index is the logical block number
and the physical block number is the element.

Logical Block Table Structure Fields
typedef struct logical_block_tag {

WORD freeSpace; /* the amount of free space in block */

WORD dirtySpace; /* invalid space in block */

BYTE physical; /* physical block identifier */

} LOGICAL_BLOCK;

freeSpace–The amount of free space available in the block measured in multiples of
granularity.

dirtySpace–The amount of invalid space used in the block measured in multiples of
granularity.

physical–This field is the physical block number of the logical block used as the index into this
table.

FDI ARCHITECTURE AND API SPECIFICATION E

3-20

3.4.1.2.8 Data Location Structure

This structure contains information about a data parameter or stream. It is used internally by
FDI to assist with tracking information and improving performance.

Data Location Structure Fields
typedef struct data_location_tag {

DWORD ptrUnit; /* ptr to unit accessed by header */

IDTYPE identifier; /* identity of data accessed */

WORD size; /* the size of the data in

 * multiples of granularity */

BYTE type; /* data and unit type accessed */

} DATA_LOCATION;

ptrUnit–The physical address of this unit’s information structure.

identifier–A unique identity to validate stream open/close operations.

size–Size is a multiple of granularity in this unit.

type–This field distinguishes the information associated with this header. The currently defined
types in the first nibble of this field are attributes: Multiple Instance, Single Instance,
Data Fragment and Sequence Table. The last nibble defines the associated data type:
data parameter, data stream, phone number, etc.

Table 3-5. Data Location Structure Type Field Definitions

Type Value Definition

XXXX 1110 Binary This header points to Multiple Instance unit.

XXXX 1100 Binary This header points to a sequence table.

XXXX 1000 Binary This header points to a Single Instance unit.

XXXX 0000 Binary This header points to a Data Fragment unit.

1110 XXXX Binary The data type is data parameter.

1101 XXXX Binary The data type is data stream.

1100 XXXX Binary The data type is phone number.

1010 XXXX Binary The data type is SMS.

3.4.1.2.9 Data Queue Structure

The system writes to the Data Queue using FDI API functions to request flash reads, writes,
and modifications. Figure 3-10 depicts the Data Queue Structure.

E FDI ARCHITECTURE AND API SPECIFICATION

3-21

Command Queue Node
Priority element

Command Queue
element

null

Command Queue Node
Priority element

Command Queue Node
Priority element

Command Queue
element

null

Command Queue
element

null

Command Queue
element

Command Queue
element

null

Elements in each
Command Queue have
same priority.

Elements in Priority Queue
are ordered in decreasing
priority.

FDI3-10

Figure 3-10. Data Queue Structure

FDI ARCHITECTURE AND API SPECIFICATION E

3-22

Command Queue Node Fields
typedef struct priority_element_tag {

PELEMENT_PTR ptrNextPriority; /* points to lower priority

 * queue */

CELEMENT_PTR ptrFirsttCmd; /* points to command queue */

BYTE priority; /* priority of queue. */

} PELEMENT;

ptrNextPriority–Points to the next lower priority element in the Command Queue Node
priority queue. If there is no lower priority element, this field points to NULL.

ptrFirstCmd– Points to the first command element in the command queue of priority
“priority.”

priority–Data is accessed from the command queue in high to low priority order.

typedef struct command_element_tag {

CELEMENT_PTR ptrNextCmd; /* points to next command queue

 * element */

WORD dataSize; /* size of data to read/write. */

COMMAND commandData; /* command data structure */

} CELEMENT;

ptrNextCmd–Points to the next element in the command queue. If the current element is the
last element, then ptrNextCmd is set to NULL.

dataSize–Indicates the size in bytes of the data buffer to be written/modified.

commandData–Contains the command, Id, offset into data unit, data unit type, and RAM data
pointer, as described below.

typedef struct command_data_tag {

IDTYPE identifier; /* identity of data accessed. */

WORD dataOffset; /* beginning offset into the data. */

BYTE sub_cmd; /* task execution sub commands. */

BYTE type; /* command type: either data
 * parameter or a data stream. */

BYTE_PTR ptrContainer; /* array of data follows. */

} COMMAND;

E FDI ARCHITECTURE AND API SPECIFICATION

3-23

identifier–Unique identifier of a Unit to write/modify.

dataOffset–The number of bytes from the beginning of the Unit to begin operation.

sub_cmd–The type of data modification function requested.

type–Defines unique classes of data storage information.

ptrContainer–The ptrContainer field is a pointer to an allocated buffer which contains the data
to be written to flash.

3.4.1.3 RAM USAGE AND CONTROL STRUCTURES

Variable Name Data Type Description Size in Bytes

last_data_found DATA_LOCATION Global loaded by the dataFind routine 9

get_data_found DATA_LOCATION A copy of last_data_found used by
the FDI_get function

9

open_stream DATA_LOCATION A copy of last_data_found used by
the FDI_open and FDI_close routines

9

command_element CELEMENT The information for each write or
delete function loaded in the
command queue. This includes
command_data structure also.

16 + data size

priority_element PELEMENT The priority information common for
each write or delete function of same
priority is loaded in this structure. This
is a dummy element acting as a node
for the command queue of that priority

9

qhead_ptr PELEMENT Points to the highest priority element
in the data Queue

4

data_q_node COMMAND The information for each write or
delete function loaded in the Data
Queue

18 + data size

logical_block LOGICAL_BLOCK The table contains the logical block
number, free space and dirty space
for each physical block

5 / block

FDI ARCHITECTURE AND API SPECIFICATION E

3-24

3.4.2 MODULES

3.4.2.1 FOREGROUND API SUB-SYSTEM

3.4.2.1.1 Opening a Data Parameter or Stream

FDI_open opens a data parameter or stream for reading, editing or creates a data stream for
writing. Only one data parameter or stream can be opened at any given time.

Open Data Stream Format
int FDI_open(COMMAND_CONTROL *cmd_cntrl);

Input Elements

Identifier Description Data
Type

Data
Rep.

Limit /Range Validity
Check

Performed
?

Input
Method

cmd_cntrl->sub_cmd This field contains
a command to
indicate the data
stream opening
method:

OPEN_READ:
Open for read
only.

OPEN_MODIFY:
Open for
parameter data
modification.

OPEN_CREATE:
Open for writing a
new parameter.

DWORD flag

OPEN READ

OPEN
MODIFY

OPEN
CREATE

yes by
reference

cmd_cntrl->aux unused

cmd_cntrl->identifier This is a unique
data parameter or
stream identifier.

WORD integer na yes by
reference

cmd_cntrl->type This field indicates
a data type. The
options are:

DATA_
PARAMETER or
DATA_STREAM

BYTE id_type na yes by
reference

cmd_cntrl->ptrBuffer unused

E FDI ARCHITECTURE AND API SPECIFICATION

3-25

Identifier Description Data
Type

Data
Rep.

Limit /Range Validity
Check

Performed
?

Input
Method

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->priority unused

Processes Characteristics

FDI_open improves performance when accessing a data stream multiple times by maintaining
location information in RAM. FDI_open stores the data location information in the global
open_stream structure (Section 3.4.1.2.8). FDI_open returns an error if the system attempts to
open multiple data parameters or streams. FDI_open calls dataFind to determine the existence
of data with a matching identifier and type. If data already exists and is being opened for
reading or modification, FDI_open gets the data size in multiples of granularity and updates the
open_stream structure size field. Successive calls to FDI_read or FDI_write by pass the call to
dataFind and the size update, thus reducing overhead.

Error Handling

If during the open process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

FDI_open uses the dataFind routine defined in Section 3.4.2.5.1.

The global structure open_stream is from the Data Location Structure defined in Section
3.4.1.2.8.

Limitations

Only one data parameter or stream can be opened at any given time.

FDI ARCHITECTURE AND API SPECIFICATION E

3-26

Output Elements

Identifier Description Data
Type

Data
Representation

Limit /
Range

Validity
Check

Performed
?

Output
Method

cmd_cntrl->ptrBuffer Points to the
buffer which has
a copy of the
open_stream
structure
information

DWORD DATA_LOCATION
pointer

no by
reference

error Refer to the
return codes in
Section 3.5.

BYTE count no function
call

cmd_cntrl->identifier reserved

cmd_cntrl->type reserved

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->priority unused

cmd_cntrl->sub_cmd reserved

3.4.2.1.2 Closing a Data Parameter or Stream

FDI_close closes an open data stream or parameter.

Close Call Format
int FDI_close(COMMAND_CONTROL *cmd_cntrl);

E FDI ARCHITECTURE AND API SPECIFICATION

3-27

Input Elements

Identifier Description Data
Type

Data
Rep.

Limit /
Range

Validity
Check

Performed
?

Input
Method

cmd_cntrl->identifier Unique data parameter
identifier

IDTYPE integer na no by
reference

cmd_cntrl->type This field indicates a
data type. The options
are:

DATA_PARAMETER or
DATA_STREAM

BYTE integer ENUM yes by
reference

cmd_cntrl->sub_cmd unused

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->priority unused

cmd_cntrl->ptrBuffer reserved

Processing Characteristics

FDI_close determines if a data stream or parameter is open. FDI_close returns an error if no
data stream or parameter is open. FDI_close clears the open_stream structure to indicate
closing a data stream or parameter.

Error Handling

If during the close process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

The global structure open_stream is from the Data Location Structure defined in Section
3.4.1.2.8.

Limitations

Not applicable.

FDI ARCHITECTURE AND API SPECIFICATION E

3-28

Output Elements

Identifier Description Data
Type

Data
Rep.

Limit /
Range

Validity
Check

Performed
?

Output
Method

error Refer to the return codes
in Section 3.5.

BYTE count no function
call

cmd_cntrl->identifier reserved

cmd_cntrl->type reserved

cmd_cntrl->sub_cmd reserved

cmd_cntrl->ptrBuffer unused

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->priority unused

cmd_cntrl->aux unused

3.4.2.1.3 Delete Parameter Data

The delete process invalidates a data parameter or stream in the flash media.

Delete Call Format
int FDI_delete(COMMAND_CONTROL *cmd_cntrl);

E FDI ARCHITECTURE AND API SPECIFICATION

3-29

Input Elements

Identifier Description Data
Type

Data
Rep.

Limit /
Range

Validity
Check

Performed
?

Input
Method

cmd_cntrl->identifier Unique data parameter
or stream identifier

IDTYPE integer na no by
reference

cmd_cntrl->type This field indicates a
data type. The options
are:

DATA_PARAMETER or
DATA_STREAM

BYTE integer ENUM yes by
reference

cmd_cntrl->priority Used to indicate the
priority of the data
parameter or stream

BYTE integer na yes by
reference

cmd_cntrl->sub_cmd unused

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->ptrBuffer reserved

Processing Characteristics

FDI_delete loads all requests to modify the flash data into the Data Queue for the Background
Manager to execute in priority order. FDI_delete returns an error if the data parameter or
stream is open. Using the input identifier and type as parameters, a call to dataFind verifies the
data’s existence. FDI_delete fills a Data Queue entry structure buffer and calls dataQSend to
add the entry to the queue.

Error Handling

If during the delete process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

FDI_delete uses the dataFind routine defined in Section 3.4.2.5.1 and the dataQSend routine
defined in Section 3.4.2.4.2.

Limitations

Not Applicable.

FDI ARCHITECTURE AND API SPECIFICATION E

3-30

Output Elements

Identifier Description Data
Type

Data
Rep.

Limit /
Range

Validity
Check

Performed
?

Output
Method

cmd_cntrl->ptrBuffer unused

error Refer to the return codes
in Section 3.5.

BYTE count no function
call

cmd_cntrl->identifier reserved

cmd_cntrl->type reserved

cmd_cntrl->priority reserved

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->sub_cmd reserved

3.4.2.1.4 Getting Parameter Data

The get process locates the first or next data parameter or stream of the specified type or it will
find a matched data parameter or stream using the type and identifier fields. FDI_get places
information from the global last_data_found structure into the callers buffer if the ptrBuffer
parameter is non-zero.

Get Call Format
int FDI_get(COMMAND_CONTROL *cmd_cntrl);

E FDI ARCHITECTURE AND API SPECIFICATION

3-31

Input Elements
Identifier Description Data

Type
Data Rep. Limit /Range Validity

Check
Perf.?

Input
Method

cmd_cntrl->sub_cmd Contains a flag to
modify the functions
action:

GET_FIRST: finds
the first data
parameter of a given
type

GET_NEXT: finds
the matching data
parameter of a given
type and identifier
GET_MATCHED:
finds the matching
data parameter of a
given type and
identifier

DWORD flag commands listed
below:

GET_FIRST

GET_NEXT

GET_MATCHED

yes by ref.

cmd_cntrl->identifier Unique data
parameter identifier

IDTYPE integer na no by ref.

cmd_cntrl->type This field indicates a
data type. The
options are:

DATA_PARAMETER
or DATA_STREAM

BYTE integer ENUM yes by ref.

cmd_cntrl->ptrBuffer A pointer to a buffer
to contain the
get_data_found
information

DWORD DATA_LO-
CATION
structure
pointer

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->priority unused

cmd_cntrl->aux unused

Processing Characteristics

FDI_get calls the dataFind routine and saves the data location into the structure get_data_found
defined from the Data Location structure type. FDI_get uses get_data_found to find the next
data item of the same type if the input sub-command is GET_NEXT. FDI_get places
information from the global last_data_found structure into the callers buffer if the ptrBuffer
parameter is non-zero.

FDI ARCHITECTURE AND API SPECIFICATION E

3-32

Error Handling

If the dataFind routine returns an error, the function sets the input parameter buffer to zero and
returns the error. The error ERR_NOTEXISTS indicates the last id of a particular type has been
found or if the type is GET_MATCHED, indicates that the data does not exist.

Utilization of Other Elements

FDI_get uses the dataFind routine defined in Section 3.4.2.5.1.

The local structure get_data_found is from the Data Location Structure defined in Section
3.4.1.2.8.

Limitations

Not applicable.

Output Elements

Identifier Description Data
Type

Data
Representation

Limit /
Range

Validity
Check

Performed
?

Output
Method

cmd_cntrl->ptrBuffer A pointer to a
buffer to contain
the
get_data_found
information

DWORD DATA_LOCATION
structure pointer

na no by
reference

error Refer to the
return codes in
Section 3.5.

BYTE count no function
call

cmd_cntrl->identifier reserved

cmd_cntrl->type reserved

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->priority unused

cmd_cntrl->sub_cmd reserved

3.4.2.1.5 Reading Parameter Data

The read process returns the specified portion of a data parameter or stream’s content into a
calling routine’s data buffer.

E FDI ARCHITECTURE AND API SPECIFICATION

3-33

Read Call Format
int FDI_read(COMMAND_CONTROL *cmd_cntrl);

Input Elements

Identifier Description Data
Type

Data
Rep.

Limit /
Range

Validity
Check

Performed
?

Input
Method

cmd_cntrl->ptrBuffer This is a pointer to a
buffer in which the data
content is placed.

DWORD pointer na no by
reference

cmd_cntrl->count This field contains the
number of bytes to read.

DWORD count na yes by
reference

cmd_cntrl->offset This is the number of
bytes into the data
parameter or stream to
begin reading.

DWORD index na yes by
reference

cmd_cntrl->actual This field returns the
actual number of bytes
read.

DWORD count na no by
reference

cmd_cntrl->sub_cmd unused

cmd_cntrl->aux unused

cmd_cntrl->identifier This field indicates a data
type. The options are:

DATA_PARAMETER or
DATA_STREAM

WORD integer na yes by
reference

cmd_cntrl->type This field indicates a
parameter data type.

BYTE id_type na yes by
reference

cmd_cntrl->priority Priority of the data. BYTE integer na yes by
reference

Processing Characteristics

FDI_read reads from the starting offset location in flash and writes count bytes of data into the
input buffer. Using the identifier and type input parameters, FDI_read verifies the data’s
existence in the open_stream structure. FDI_read calls dataFind to update the open_stream
structure if the data is not currently open. FDI_read gets the data size in multiples of granularity
and updates the open_stream structure size field. FDI_read validates the count and offset input
parameters against the data size to ensure the read does not go beyond the end of the data.
Otherwise FDI_read returns only the size of data stored in flash.

If the data stream or parameter is fragmented, the data fragments are read unit by unit for each
fragment in the sequence table until done reading. If no fragmentation exists, a single unit

FDI ARCHITECTURE AND API SPECIFICATION E

3-34

needs to be read. To read information from any unit, a starting offset and data size are set up to
indicate the amount of data read within the current unit. FDI_read calls readUnit to read from
the starting offset location in flash and writes size bytes of data into the input buffer. FDI_read
calls readUnit for each unit of data requested.

Finally, FDI_read determines if more data writes of the same identifier and type are pending in
the Data Queue by calling dataQPeek. If matching data is in the queue, this routine returns a
pointer to the queue buffer. FDI_read updates the input buffer data if commands in the Data
Queue overwrite the same data. FDI_read repeatedly calls dataQPeek until there are no more
matching data modification items in the Data Queue.

Error Handling

If during the read process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

FDI_read uses the dataFind routine defined in Section 3.4.2.5.1, the dataQPeek routine defined
in Section 3.4.2.4.5 and the readUnit routine defined in Section 3.4.2.5.2.

The global structure open_stream is from the Data Location Structure defined in Section
3.4.1.2.8.

Limitations

Not Applicable.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check

Performed?

Output
Method

cmd_cntrl->ptrBuffer Points to the buffer into
which the data is read

DWORD pointer na no by
reference

error Refer to the return codes
in Section 3.5.

BYTE count na no function
call

cmd_cntrl->identifier reserved

cmd_cntrl->type reserved

cmd_cntrl->count unused

cmd_cntrl->offset unused

E FDI ARCHITECTURE AND API SPECIFICATION

3-35

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check

Performed?

Output
Method

cmd_cntrl->actual The actual number of
bytes read

DWORD count na no by
reference

cmd_cntrl->aux unused

cmd_cntrl->priority unused

cmd_cntrl->sub_cmd reserved

3.4.2.1.6 Writing Parameters and Streams

The write process queues data to be written or replaced by the Background Manager.

Write Call Format
int FDI_write(COMMAND_CONTROL *cmd_cntrl);

Input Elements
Identifier Description Data

Type
Data
Rep.

Limit /Range Validity
Check
Perf.?

Input
Method

cmd_cntrl->ptrBuffer This points to the
data to be written

BYTE_PTR byte
pointer

1006 bytes no by ref.

cmd_cntrl->count The number of
bytes to write.

DWORD integer 1006 (queue limit) yes by ref.

cmd_cntrl->offset The index into the
data at which the
new data is written

DWORD integer na yes by ref.

cmd_cntrl->sub_cmd Contains a flag to
modify the
function’s action:

WRITE_REPLACE:
replaces existing
data in flash

WRITE_APPEND:
writes after existing
or creates new data
WRITE_MODIFY:
modifies existing
data in place

DWORD flag commands listed
below:

WRITE_REPLACE

WRITE_APPEND

WRITE_MODIFY

yes by ref.

cmd_cntrl->identifier Unique data
parameter or
stream identifier.

IDTYPE integer na no by ref.

FDI ARCHITECTURE AND API SPECIFICATION E

3-36

Identifier Description Data
Type

Data
Rep.

Limit /Range Validity
Check
Perf.?

Input
Method

cmd_cntrl->type This field indicates
a data type. The
options are:

DATA_PARAM-
ETER or
DATA_STREAM

BYTE integer ENUM yes by ref.

cmd_cntrl->priority Priority value of the
data.

BYTE integer 0-255 yes by ref.

cmd_cntrl->aux unused

cmd_cntrl->actual unused

Processing Characteristics

FDI_write loads all requests to modify the flash data into the Data Queue for the Background
Manager to execute in priority order. FDI_write allocates memory space for each command
element and the Background Manager will free the space upon completion of executing the
request.

FDI_write checks the open_stream structure to see if the data is already opened. Otherwise
FDI_write calls dataFind to see if the data exists in the flash media. FDI_write creates the data
if the sub-command type is WRITE_APPEND and dataFind returns error ERR_NOTEXIST.

A call to dataQSend loads the command element information into the Data Queue.

Error Handling

If during the write process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

The malloc library function is needed to dynamically allocate memory for the command
element and the data container. DataQSend (Section 3.4.2.4.2) loads the command element
information into the Data Queue. FDI_write uses dataFind defined in Section 3.4.2.5.1.

Limitations

Not applicable.

E FDI ARCHITECTURE AND API SPECIFICATION

3-37

Output Elements

Identifier Description Data
Type

Data
Representation

Limit /
Range

Validity
Check

Performed
?

Output
Method

error Refer to the
return codes in
Section 3.5.

BYTE count no function
call

3.4.2.1.7 Reclaim Request Enable

FDI_reclaimEnable unblocks the reclaim process pending on the reclaimEnable Semaphore. A
reclaim can be invoked by the system at any time.

Reclaim Call Format
void FDI_reclaimEnable(void);

Input Elements

None.

Processing Characteristics

FDI_reclaimEnable grants reclaim permission by asserting the reclaimEnable semaphore.

reclaimEnable: Used to control flash reclamation. When reclaimEnable is asserted, reclamation
is unblocked and proceeds to reclaim invalid (written to but superseded) areas of flash.

Error Handling

None.

Utilization of Other Elements

FDI_reclaimEnable uses the reclaimEnable semaphore.

Limitations

Not applicable.

Output Elements

None.

FDI ARCHITECTURE AND API SPECIFICATION E

3-38

3.4.2.1.8 Memory Statistics

This memory statistics process calculates the memory statistics of the media and returns the
values to the calling function.

Memory Statistics Call Format
void FDI_statistics(WORD *freeUnits, WORD *invalidUnits);

Input Elements

Identifier Description Data
Type

Data
Representation

Limit /
Range

Validity
Check

Performed
?

Input
Method

freeUnits Pointer to
number of free
units.

WORD pointer no by
reference

invalidUnits Pointer to
number of
invalid units.

WORD pointer no by
reference

Processing Characteristics

FDI_statistics provides a way to monitor the FDI usage of the entire media. These values
represent FDI usage for the Flash Data Integrator structures and application data. The total
number of clean units remaining does not include those units held in reserve (system_threshold
and FDI_threshold). Each entry of the Logical Block table tracks the statistics of individual
blocks. FDI_statistics adds up the free_space field of the Logical Block table to get the
total_free_space and the dirty_space field to get the total_invalid_space. FDI_statistics returns
these values by filling in the variables pointed to by the pointers that were passed in by the
calling function.

Error Handling

Not applicable.

Utilization of Other Elements

FDI_statistics uses the Logical Block table defined in Section 3.4.1.2.7.

Limitations

Not applicable.

E FDI ARCHITECTURE AND API SPECIFICATION

3-39

Output Elements
Identifier Description Data

Type
Data

Representation
Limit /
Range

Validity
Check

Performed
?

Output
Method

freeUnits Number of free
units in terms of
granularity.

WORD count no by
reference

invalidUnits Number of
invalid units in
terms of
granularity.

WORD count no by
reference

3.4.2.1.9 Data Queue Status

FDI_status returns the queue status and the reclamation status to the calling function.

Status Call Format
BYTE FDI_status(void);

Input Elements

None.

Processing Characteristics

FDI_status returns whether reclamation is in progress and whether the data queue is empty.

The table below indicates all possible values that can be returned by this function and its
interpretation.

Bit mask Interpretation

0000 No pending reclamation. Queue is empty.

0001 Reclamation is pending. Queue is empty.

0010 No pending reclamation. Message pending in the queue.

0011 Reclamation is pending. Message pending in the queue.

Error Handling

None.

Utilization of Other Elements

None.

FDI ARCHITECTURE AND API SPECIFICATION E

3-40

Limitations

Not applicable.

Output Elements

Identifier Description Data
Type

Data
Representation

Limit /
Range

Validity
Check

Performed
?

Output
Method

value Return value
indicates the
status of the
queue and
reclamation.

BYTE integer 0–3 no function
call

3.4.2.2 BACKGROUND MANAGER SUB-SYSTEM

3.4.2.2.1 Background Task

BkgrdTask is the FDI Background Manager which performs any modifications/writes to flash.
BkgrdTask pends on data available in the Data Queue, and then reads the highest priority
Command Queue element. BkgrdTask disables system interrupts before issuing program or
erase commands. BkgrdTask then polls interrupts while waiting for the program or erase to
complete. If an interrupt is asserted during this time, bkgrdTask suspends the flash program or
erase in progress, and then relinquishes the system to the interrupting task. Once the interrupt
handler has completed executing, bkgrdTask continues until it completes, or until it is
interrupted again by another interrupt. BkgrdTask continues in this fashion until the Data Queue
is empty. BkgrdTask also determines when a reclaim is necessary by checking predetermined
thresholds.

Background Task Call Format
int bkgndTask(void);

Input Elements

Not applicable.

Processing Characteristics

When pending on the queueCount semaphore, bkgndTask looks for the highest priority item in
the Data Queue. When an item arrives in the Data Queue, bkgndTask gets a pointer to the item
by calling dataQReceive. BkgndTask uses the Data Queue command information pointed to by
dataQReceive to modify the flash media. BkgndTask determines the location of the data in
flash by calling dataFind if the data is not already opened. BkgndTask modifies the Data

E FDI ARCHITECTURE AND API SPECIFICATION

3-41

Header status field if the operation is a DELETE sub-command. For the cases of
WRITE_REPLACE and WRITE_MODIFY commands bkgndTask determines the storage
method of the data, either a Multiple Instance unit, a Single Instance unit, or a fragmented data
unit.

If the data is in a Multiple Instance unit and there is available space, bkgndTask creates a new
instance of the data within the existing Multiple Instance unit. The old data instance in the unit
is marked invalid. If there is not enough space in the Multiple Instance unit, bkgndTask creates
a new unit with corresponding Unit Header with the replacement or modified data. The old
Multiple Instance unit and associated Unit Header is invalidated.

If the storage method is a Single Instance unit and there is available space, bkgndTask creates a
new unit with corresponding Unit Header with the replacement or modified data. The old
Single Instance unit and associated Unit Header is invalidated.

If the storage method is a fragmented data unit, this requires writing the replacement or
modified data to a new unit and corresponding Unit Header. BkgndTask recreates the Sequence
Table and associated Unit Header to reflect the changed data. In the case of the
WRITE_APPEND command, bkgndTask determines the storage method of the data. If the
method is a Multiple Instance unit, bkgndTask creates a new unit with the additional data
added. The old unit and associated Unit Header is invalidated. If the storage method is a
fragmented data unit, bkgndTask creates a new unit and Unit Header with the additional data
and updates the Sequence Table.

Before a data write takes place, it is necessary to determine if enough space exists on the flash
media. If the data size is greater than the available space above the system_threshold,
bkgndTask checks the condition of the reclaimDone semaphore. If reclaimDone semaphore is
asserted, bkgndTask asserts the reclaimRequest semaphore and resets the reclaimDone
semaphore. The write command completes if the data size fits within the available space and
that headroom exists between the system_threshold and the FDI_threshold. Otherwise,
bkgndTask is pending on reclaimDone semaphore. Once the reclamation function asserts the
reclaimDone semaphore, bkgndTask continues with the write or delete operation.

Before modifying flash media, bkgndTask determines if there is enough time to execute the
command. BkgndTask delays if there is not enough time until the next interrupt occurs. A call
to the flashLowLevel function executes the command from within RAM. If an error occurs
during this low-level function, bkgndTask gives an error semaphore to indicate the error to the
system. If the low-level operation completes, a call to dataQDelete removes the item from the
queue and bkgndTask is again pending on items in the Data Queue.

Error Handling

If an error is returned the semaphore describing the error and location is given to the system.

Utilization of Other Elements

BkgndTask uses dataQReceive defined in Section 3.4.2.4.3, dataQDelete defined in Section
3.4.2.4.4 and flashLowLevel defined in Section 3.4.2.5.5. The semaphores used are
queueCount, reclaimRequest and reclaimDone.

FDI ARCHITECTURE AND API SPECIFICATION E

3-42

Limitations

Not applicable.

Output Elements

Not applicable.

3.4.2.2.2 Low-Level Interrupt and Status Polling

RAM_flashModify exists in RAM and allows a real-time multi-tasking system flash “read
while write” capabilities.

Low-Level Polling Call Format
int RAM_flashModify(LOWLVL_INFO_PTR ptrLowlvlInfo);

Input Elements

The input parameter structure is defined as follows:
typedef struct lowlvl_info_tag {

DWORD address; /* identity of data accessed */

DWORD ptrBuffer; /* pointer to actual data */

WORD count; /* number of bytes to write to flash */

BYTE command; /* task execution sub-commands */

} LOWLVL_INFO;

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Input
Method

ptrLowlvlInfo->address Beginning
address of
flash media
data.

DWORD address
pointer

no by
reference

ptrLowlvlInfo->count Number of
bytes if
programming.

WORD byte counter 0–0XFFFF yes by
reference

ptrLowlvlInfo->command Either program
or erase.

BYTE command
flag

0– 1 yes by
reference

ptrLowlvlInfo->ptrBuffer Pointer to
buffer
containing data
for
programming.

BYTE
pointer

array of
bytes

no by
reference

E FDI ARCHITECTURE AND API SPECIFICATION

3-43

Processing Characteristics

RAM_flashModify disables the system Task Scheduling so the scheduler does not interrupt the
write process. The Data Queue still contains the current data element being acted upon. Next,
RAM_flashModify disables the interrupts. This is the point of worst case interrupt latency, after
the interrupts have been disabled. RAM_flashModify calculates the “time until next interrupt”
using the last interrupt time-stamp and the current time. There must be available time for a
minimum run, overhead and command suspend time. If there is not enough time
RAM_flashModify re-enables the interrupts and the task scheduler. RAM_flashModify then
delays until the next interrupt occurs and the process begins again.

If enough time exists, RAM_flashModify gives the program or erase command to start or
continue the operation. Checking the status register verifies the command is complete.

If the operation is a programming command the byte counter is decrements and the address
pointer increments to the next location. RAM_flashModify checks the status register for errors
if there are no more bytes to write and sets the status variable to indicate correct command
completion or error. Verification of the status register ensures the completion of the operation.
RAM_flashModify analyzes the available time if the command has not completed.
RAM_flashModify sets the status variable to the suspended state if there is not enough time to
poll the status register or an interrupt has occurred. This is the point of best case interrupt
latency, after the interrupt polling. RAM_flashModify suspends the program or erase command
and waits for the operation to complete. RAM_flashModify re-enables the interrupts and the
task scheduler. The system will vector to the address of the interrupt handler. After the system
interrupt completes and the Background Manager is allowed CPU time, the process is
continued until interrupted again or until complete.

If the status variable indicates that the program/erase command was suspended,
RAM_flashModify disables the Task Scheduling, disables the interrupts and verifies the
available time. RAM_flashModify resumes the previously interrupted command until the
variable status indicates completion or error.

Error Handling

RAM_flashModify returns the status value to the calling function.

Utilization of Other Elements

None.

Limitations

Not applicable.

FDI ARCHITECTURE AND API SPECIFICATION E

3-44

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

status Returns the status of the
command upon completion.

BYTE unsigned
char

0 - okay

1 - suspended

2 - an error

no function
call

3.4.2.2.3 Reclamation Management

Reclamation is the process used to make invalid regions of flash memory available for reuse for
parameter storage. The FDI system uses a spare block for reclaiming valid headers and data.
This spare is not used for parameter storage but is used for reclamation only. When there is no
more room to write updated or new data, the system finds a block with the greatest amount of
invalid space and finds the spare block.

Figure 3-11 displays the reclaim candidate and the spare block prior to the reclaim process.

Logical
Block #4

Valid and
Invalid Data
and Headers

Spare Block

status =
"erased"

Physical
Block #2

Physical
Block #7

Block with
the greatest
amount of

invalid
space

FDI3-11

Figure 3-11. Reclaim Candidate and Spare

E FDI ARCHITECTURE AND API SPECIFICATION

3-45

Transfer of valid data and headers from the block being reclaimed to the spare block is the next
step. The status of the spare block indicates the valid data is being transferred. Figure 3-12
demonstrates this process. Notice invalid data and headers do not transfer to the spare block.

Logical
Block #4

Valid and
Invalid Data
and Headers

Physical
Block #2

Physical
Block #7

transfer only valid
data and headers

Spare Block

status =
"recover"

FDI3-12

Figure 3-12. Transferring Valid Data to the Spare Block

FDI ARCHITECTURE AND API SPECIFICATION E

3-46

Upon completion of the data transfer the next step is to prepare the spare block to logically take
the original block’s place. The FDI writes the original block’s logical block number to the spare
block’s block information structure. For power off recovery purposes the status of the spare
block indicates the original block is about to be erased. The old block begins to erase after all
valid data exists in the spare block. Figure 3-13 shows the status of the spare and reclaim blocks
at this time.

Unknown
state/content

Physical
Block #2

Physical
Block #7

Place the
logical block

number of the
reclaimed

block into the
spare

Logical
Block #4

status =
"erasing"

FDI3-13

Figure 3-13. Erasing the Reclaim Block

E FDI ARCHITECTURE AND API SPECIFICATION

3-47

When the erase of the original block completes, the status of the spare block changes to indicate
that the block is now a writable block. All of the valid data and headers have been transferred
successfully and the old locations have been erased. The new status of the blocks is shown in
Figure 3-14.

New Spare
Block

status =
"erased"

Physical
Block #2

Physical
Block #7

Ready for
another

reclamation

Contains valid
headers and

data

Logical
Block #4

status =
"write"

FDI3-14

Figure 3-14. Status after Reclamation

Reclamation Call Format
void reclamation(void);

Input Elements

None.

Processing Characteristics

Flash is byte alterable. However, to rewrite a flash location which has already been written
requires a block erase. Flash blocks are typically large – several Kbytes. Any valid information
in a block to be erased must be moved from the block before “reclaiming” invalid flash
memory by erasing the block. Reclamation copies all the valid data from a block with invalid
data to reclaim to an empty “spare”block and then erases the block.

On Initialization installs reclamation as a task which runs in the background. The reclamation
task pends on the reclaimEnable semaphore. When this semaphore is asserted by the system

FDI ARCHITECTURE AND API SPECIFICATION E

3-48

through the Foreground API FDI_reclaimEnable function, the reclamation process begins. The
following semaphores are used to control reclamation:

reclaimRequest: BbkgndTask uses this semaphore to request the system to enable
reclaim at the next available instant.

reclaimEnable: The system asserts this semaphore to grant reclaim permission. The
reclamation function awaits this binary semaphore.

reclaimDone: The reclamation function uses this semaphore to indicate the
completion of the reclamation process. If bkgndTask is pending on
the reclaimDone semaphore, this indicates that memory is full and
that it cannot continue the write or delete operation until reclaim is
complete.

Reclamation selects the reclaim block by finding the block with the least amount of erase
counts or the highest percentage of dirty space. Reclaiming the block with the least amount of
erase counts distributes the erases across the blocks for maximum reliability. This process is
called wear-leveling.

Reclamation first reads all the erase count information stored in each block and stores them in a
local array and calculates the difference between the fewest erase counts and the most erase
counts. If the difference is greater than a pre-defined value, reclamation reclaims the block with
smallest erase count. If the difference is less than or equal to a pre-defined value, reclamation
reads the invalid count of each block from the Logical Block table and selects the block with
most invalid data.

Once reclamation selects the block to reclaim, reclamation writes the erase count value of that
block as a data parameter with a unique identifier directly bypassing the Data Queue.

Then reclamation finds the spare block from the Logical Block table and marks the spare block
to indicate the start of data transfer.

After finding the spare block, reclamation transfers the valid units from the reclaim block to the
spare block. Once the data transfer is complete, reclamation writes the logical block number
and the physical block number of the reclaimed block into the block information area of the
spare block.

After completion of the data transfer, reclamation marks the spare block to indicate that the
erase of the old block has begun.

Reclamation then erases the old block. Upon erase completion, reclamation retrieves the cycle
count by doing a parameter read, increments it by one and writes this value into the block
information area of the reclaimed block. The reclamation function then writes the complete
block information into the spare block and marks it as a valid block. Then reclamation deletes
the parameter cycle count to free up its RAM space. Finally, reclamation updates the logical
block table and asserts the reclaimDone semaphore.

E FDI ARCHITECTURE AND API SPECIFICATION

3-49

Error Handling

If during the process there is an error, a special semaphore that indicates that an error has
occurred in the system is set by reclamation.

Utilization of Other Elements

None.

Limitations

Not applicable.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

reclaimDone Indicate the completion of
reclamation to the pending
background write task if
any.

semaphore no by
reference

reclaimError Indicate an error occurs
during the reclamation
process.

semaphore no by
reference

3.4.2.3 BOOT CODE MANAGER SUB-SYSTEM

3.4.2.3.1 Power On Initialization

The initialization process initializes all the FDI control structures and performs necessary
power loss recovery.

Initialization Call Format
int FDI_init(void);

Input Elements

None.

Processing Characteristics

FDI_init calls the initUnit routine to validate all the blocks and to validate all the units of each
block. FDI_init also updates all the control structures and the global variables used by the FDI
functions. FDI_init scans through all the Unit Header entries to build the Data lookup table by

FDI ARCHITECTURE AND API SPECIFICATION E

3-50

scanning through all the Unit Header entries. FDI_init also builds the Logical Block Table
scanning through the Block Information entries at the end of each block. Finally, FDI_init
installs the Background Manager task as well as the reclamation task.

Error Handling

Any error during the initialization process will be returned to the application layer.

Utilization of Other Elements

FDI_init uses initUnit defined in Section 3.4.2.5.3, and dataQCreate in Section 3.4.2.4.1.

Limitations

Care must be taken to avoid repeated calls to FDI_init from the application or OS interface.
Multiple calls to FDI_init can create undesired results, such as trashing existing global
variables.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

error Refer to the return codes in
Section 3.5.

BYTE count no function
call

3.4.2.4 COMMAND DATA QUEUE SUB-PROGRAMS

The queue is implemented as a counting semaphore as well as a mutual exclusion semaphore.
The queue functions implemented in this library are:

• dataQCreate–initializes the queue structure and necessary variables.

• dataQSend–adds the new command information to the equal priority queue.

• dataQReceive–reads the highest priority item from the queue.

• dataQDelete–removes the highest priority item from the queue.

• dataQPeek–scans through the queue and finds the matching command of same identifier
and offset range.

3.4.2.4.1 Creating a Queue

This queue creating process initializes the queue element structure and the necessary variables.

E FDI ARCHITECTURE AND API SPECIFICATION

3-51

dataQCreate Call Format
void dataQCreate(void);

Input Elements

None.

Processing Characteristics

DataQCreate initializes the queue structure and the necessary variables. This includes the
variables that are used to maintain the semaphore protection for the queue, variable Q_Size
which is used to limit the queue size to a user defined size. The system defined variable
maxQSize is defaulted to 1K. The queue size includes the memory occupied by the queue
structure as well as the data pointed by its elements. DataQCreate also sets the global pointer
qhead_ptr to null. DataQCreate should be called once by the FDI_init function only during the
initialization process.

Error Handling

Not applicable.

Utilization of Other Elements

None.

Limitations

None.

Output Elements

None.

3.4.2.4.2 Sending Information to the Queue

DataQSend puts the information into the data queue.

Queue Send Call Format
int dataQSend(CLEMENT_PTR Queue, BYTE priority);

FDI ARCHITECTURE AND API SPECIFICATION E

3-52

Input Elements

Identifier Description Data
Type

Data
Rep.

Limit /
Range

Validity
Check
Perf.?

Input
Method

CELEMENT->commandData Actual
command
structure.

COMMAND structure na yes

CELEMENT->ptrNextCmd Pointer to the
next command
element on the
command
queue.

CELEMENT_PTR pointer na yes

CELEMENT->dataSize The data
container size.

WORD count na no

priority Data priority. BYTE integer na yes

Processing Characteristics

DataQSend puts the data command information into the data queue. DataQSend makes sure
that the queue has been created successfully during the initialization process. This is done by
verifying if the global variables are properly initialized. Then dataQSend makes sure that the
node count has not yet reached the maximum count. DataQSend checks if adding this element
will exceed the maxQSize, which is a pre-defined value. If so, returns an error code to indicate
that the queue is full.

If the data and the command element will fit into the limit, dataQSend scans the queue in the
order of highest to lowest priority looking for a match. If dataQSend does not find a matching
priority element, it creates a priority element which also acts as a node to the same priority
command queue. To create a new priority element, dataQSend allocates and fills the memory
with the appropriate information from the buffer whose pointer is passed by the calling
function. Then dataQSend adds a command element to the command queue of that priority. If
dataQSend finds a match, it scans through the same priority looking for the last command
element. Once dataQSend hits the last command element, it adds the new command element to
the last command element. To add a new command element, dataQSend fills the allocated
memory with the appropriate information from the buffer whose pointer is passed by the calling
function.

queueProtect: DataQSend uses this semaphore to protect the queue from being accessed
by any other task at the same time the queue pointers are being redirected.

queueCount: DataQSend uses the counting semaphore queueCount to keep track of the
number of entries in the queue.

Error Handling

If any error occurs during this process, dataQSend returns an descriptive error code.

E FDI ARCHITECTURE AND API SPECIFICATION

3-53

Utilization of Other Elements

Not applicable.

Limitations

Not applicable.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

error Refer to the return code in
Section 3.5.

BYTE count no function
call

3.4.2.4.3 Receiving Information from the Queue

This queue data read process receives the information from the queue.

Queue Receive Call Format
void dataQReceive(BYTE_PTR pbuffer);

Input Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Input
Method

pbuffer Pointer to the buffer in
which data is read.

BYTE_PTR pointer no by
reference

Processing Characteristics

DataQReceive reads the information from the queue. The calling function passes the pointer to
the buffer into which dataQReceive reads. DataQReceive returns a pointer to the Data Queue’s
qhead_ptr.

Error Handling

None.

Utilization of Other Elements

None.

FDI ARCHITECTURE AND API SPECIFICATION E

3-54

Limitations

None.

Output Elements

None.

3.4.2.4.4 Deleting Information from the Queue

This queue delete process deletes the information from the queue.

Queue Delete Call Format
void dataQDelete(void);

Input Elements

None.

Processing Characteristics

DataQDelete deletes the first command element from the highest priority command queue from
the data queue.

queueProtect: DataQDelete uses this semaphore to protect the queue from being
accessed by any other task at the same time the queue pointers are being redirected.

DataQDelete redirects the pointers to proper elements pulling out the first command element
from the highest priority queue. If this is the only command element left in the queue before
deletion, dataQDelete pulls out the first priority element also. After this pointer redirection the
protection semaphore can be released. Then it frees the memory of the data container pointed
by this command element. At last, it frees the memory occupied by the pulled out command
element and the priority element if pulled out.

queueCount: DataQDelete uses this counting semaphore to keep track of the number of
existing elements in the queue. The semaphore count decrements automatically when
this semaphore is given.

DataQDelete decrements the Q_Size by a total of the element size and the data container size.

Error Handling

None.

Utilization of Other Elements

None.

E FDI ARCHITECTURE AND API SPECIFICATION

3-55

Limitations

None.

Output Elements

None.

3.4.2.4.5 Peeking through the Queue

DataQPeek scans the queue looking for matching type and identifier. If the command is
WRITE, dataQPeek also looks for the matching offset range. DataQPeek returns a null pointer
if it did not find a match. Otherwise, dataQPeek returns the pointer to the queue buffer of the
matching element to the calling function.

Queue Peek Calling Format
int dataQPeek(CELEMENT_PTR Node, BYTE priority);

Input Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Input
Method

Node A pointer to a queue
element from which
peek should start
peeking through or a
null pointer if the
scanning should start
from the head of the
queue.

CELEMENT_PTR pointer n.a. yes by
reference

priority Data priority. BYTE integer n.a. yes by
reference

Processing Characteristics

The calling function of dataQPeek function passes in two pointers. If the Node pointer passed
in is a null pointer, dataQPeek scans the queue from the qhead_ptr in the order highest to lowest
priority looking for a priority match that was passed in through the Queue pointer and finds a
match. If the Node pointer is pointing to a same priority element, dataQPeek scans from that
element. DataQPeek scans over the same priority command elements in the queue looking for a
matching identifier field. DataQPeek returns the pointer to the queue buffer if it finds a match.
Otherwise, dataQPeek returns a null pointer.

FDI ARCHITECTURE AND API SPECIFICATION E

3-56

Error Handling

None.

Utilization of Other Elements

None.

Limitations

None.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

pointer Pointer to the queue
buffer or a null pointer
is returned.

pointer DWORD yes function
call

3.4.2.5 SUPPORTING SUB-PROGRAMS

3.4.2.5.1 Finding Data

DataFind locates the first or next data parameter of the specified type or it will find a matched
parameter using the type and identifier fields. DataFind fills the ptrBuffer with the
last_data_found global structure if the ptrBuffer parameter is a non-zero.

Data Find Call Format
int dataFind(COMMAND_CONTROL *cmd_cntrl);

E FDI ARCHITECTURE AND API SPECIFICATION

3-57

Input Elements

Identifier Description Data
Type

Data
Rep.

Limit /Range Validity
Check
Perf.?

Input
Method

cmd_cntrl->sub_cmd Contains a flag to
modify the
functions action:

GET_FIRST: finds
the first data
parameter of a
given type.

GET_NEXT: finds
the matching data
parameter of a
given type and
identifier.
GET_MATCHED:
finds the matching
data parameter of a
given type and
identifier.

DWORD flag commands listed
below:

GET_FIRST

GET_NEXT

GET_MATCHED

yes by ref.

cmd_cntrl->identifier Unique data
parameter
identifier.

IDTYPE integer n.a. no by ref.

cmd_cntrl->type Indicates a data
type.

BYTE integer n.a. yes by ref.

cmd_cntrl->count unused

cmd_cntrl->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->ptrBuffer reserved

Processing Characteristics

DataFind handles three different cases of sub-commands.

If the sub_cmd is FIND_FIRST dataFind looks in the Data Lookup Table (Section 3.4.1.2.2)
for the first type listed that matches the input field. If the cmd_cntrl->type parameter is an
illegal value, dataFind returns ERR_NOTEXISTS.

DataFind uses the last_data_found structure’s identifier field as the starting index into the Data
Lookup table if the sub_cmd is FIND_NEXT. The Data Location structure in Section 3.4.1.2.8
defines the global last_data_found structure. From there dataFind looks for the next type listed
that matches the input type. If the type parameter is an illegal value, dataFind returns
ERR_NOTEXISTS.

FDI ARCHITECTURE AND API SPECIFICATION E

3-58

If the sub_cmd is FIND_MATCHED dataFind indexes into the Parameter Lookup Table by the
identifier input field. If there are no matching identifiers or types dataFind returns error
ERR_NOTEXISTS.

The following is done in all cases: The Data Lookup Table locates the logical block and the
Unit Header offset for the data. The physical block is located using the logical block number as
an index into the Logical Block Table.

The physical block number and the offset define the location of the Unit Header within the
flash memory. The Unit Header (Section 3.4.1.2.3) provides the location of the corresponding
data within the block. DataFind fills the structure last_data_found with the information
provided by the Unit Header structure.

Error Handling

If an error is returned by the dataFind function, the input parameter ptrBuffer is set to zero and
the error is returned.

Utilization of Other Elements

The global structure last_data_found is from the Data Location Structure defined in Section
3.4.1.2.8.

Limitations

The FIND_FIRST sub-command must be executed before the FIND_NEXT sub-command
otherwise an error will be returned.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

cmd_cntrl->ptrBuffer Points to the
last_data_found
structure.

DWORD DATA_LOCATION
pointer

n.a. no by ref.

error Refer to the return
codes in Section 3.5.

BYTE count no function
call

cmd_cntrl->identifier reserved

cmd_cntrl->type reserved

cmd_cntrl->count unused

cmd_cntrl->offset unused

E FDI ARCHITECTURE AND API SPECIFICATION

3-59

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->sub_cmd reserved

3.4.2.5.2 Read Unit

The readUnit function reads the data from the media into the input buffer.

Read Unit Call Format
BYTE readUnit(DWORD startloc, DWORD size, BYTE *buffer);

Input Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Input
Method

startloc Indicates the start
location of the unit from
which the data is to be
read

DWORD block offset location no by
reference

size Indicates the size in
bytes to be read

DWORD number of bytes no by
reference

buffer Indicates the address of
the buffer into which the
data is read

BYTE * pointer no by
reference

Processing Characteristics

ReadUnit goes to the starting location in flash and writes size bytes of data into the input buffer.

Error Handling

A descriptive error is returned if there is any problem during execution of this function.

Utilization of Other Elements

Not applicable.

FDI ARCHITECTURE AND API SPECIFICATION E

3-60

Limitations

Not applicable.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

buffer Data is read into this
buffer.

BYTE * pointer no by
reference

error Error while reading this
unit cause this value to
be returned.

BYTE count no function
call

3.4.2.5.3 Unit Initialization

The initUnit validates all the blocks and all the units in each block.

Unit Initialization Call Format
int initUnit(void);

Input Elements

None.

Processing Characteristics

The initUnit function scans all the available blocks in the media to verify the validity of each
block by reading the Block Information structure. If initUnit encounters a block in the process
of being erased, initUnit completes the erase and prepares the blocks for reuse. InitUnit also
scans all internal data management structures and performs any necessary power loss recovery.

Error Handling

Any error during the initialization process will be returned to the API layer.

Utilization of Other Elements

None.

Limitations

None.

E FDI ARCHITECTURE AND API SPECIFICATION

3-61

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

error Refer to the return codes
in Section 3.5.

BYTE count no function
call

3.4.2.5.4 Downloading RAM Code

The downloadCode function loads the Interrupt and Status Polling code into RAM at
Initialization. The low-level function RAM_flashModify is literally copied directly from its
code location in flash and copied to RAM.

Downloading RAM Code Call Format
void downloadCode(void);

Input Elements
Identifier Description Data

Type
Data

Representation
Limit /
Range

Validity
Check
Perf.?

Output
Method

RAM_START Pointer to RAM
destination.

defined
address

address pointer n.a. defined at
compile time

Processing Characteristics

The downloadCode function marks the beginning and end of the low-level function by storing
the RAM_flashModify function pointer as the begin pointer and the next function pointer as the
end pointer. The low-level function RAM_flashModify is copied byte by byte from the begin
pointer to the end pointer, into the RAM destination address.

Error Handling

Not applicable.

Utilization of Other Elements

The function RAM_flashModify and the next function in memory.

Limitations

None.

FDI ARCHITECTURE AND API SPECIFICATION E

3-62

Output Elements

None.

3.4.2.5.5 Interface to Low Level Functions

The flashLowLevel function executes the low-level polling function located in RAM.

RAM Interface Call Format
BYTE flashLowLevel(BYTE function, BYTE_PTR ptrAddr,

WORD length, WORD offset, BYTE_PTR ptrData);

Input Elements
Identifier Description Data

Type
Data

Representation
Limit /
Range

Validity
Check
Perf.?

Input Method

function Type of
command
erase or
program.

BYTE integer value 0, 1 yes by value

ptrAddr Pointer to the
address in
flash.

BYTE * address pointer n.a. no by reference

length Size of data to
write.

WORD integer value no by value

offset Offset into data
to write.

WORD integer value no by value

ptrData Pointer to the
data in RAM.

BYTE * address pointer no by reference

Processing Characteristics

The input parameters for flashLowLevel describe the data item and the flash location for the
polling function. FlashLowLevel places the input parameters into a LOWLVL_INFO structure
(Section 3.4.2.2.2) and calls the RAM_flashModify function located at the RAM_START
address in RAM to perform the command.

Error Handling

Returns forwarding errors to the calling function.

Utilization of Other Elements

None.

E FDI ARCHITECTURE AND API SPECIFICATION

3-63

Limitations

None.

Output Elements

Identifier Description Data
Type

Data Rep. Limit /
Range

Validity
Check
Perf.?

Output
Method

status Returns the status of the
command upon completion.

BYTE unsigned
char

0 - okay

1 - suspended

2 - an error

no function
call

FDI ARCHITECTURE AND API SPECIFICATION E

3-64

3.5 RETURN ERROR CODES
The following list of error codes may possible be returned from any interface function of the
FDI system

Return Error Code Meaning

ERR_NONE 0 Indicates command was successful

ERR_READ 1 Indicates an error reading the flash component

ERR_WRITE 2 Indicates an error in the status register when writing to the flash
component. Potentially due to a locked block if the flash component
has this capability.

ERR_PARAM 3 Indicates an incorrect parameter to a function.

4 Reserved for future use.

ERR_OPEN 5 Indicates an operation is attempted on an open file when the file
should be closed.

ERR_EXISTS 6 Indicates the attempt to create a file or directory that already exists.

ERR_NOTEXISTS 7 Indicates an error in attempting to perform an operation on a file that
does not exist.

ERR_QFULL 8 Indicates the Data Queue is full and cannot accept additional
elements.

ERR_SPACE 9 Indicates that there is no available clean flash space left. This
indicates that a manual reclaim needs to occur before re-attempting
the command.

10 Reserved for future use.

ERR_NOTOPEN 11 Indicates an error in performing an operation on a file that is not open
but must be to complete the operation.

ERR_ERASE 12 Indicates an error erasing the flash block. Potentially due to a locked
block if using flash with this capability.

13 Reserved for future use.

14 Reserved for future use.

ERR_MAX_PARAMS 15 Indicates that the maximum number of objects has been reached.

16 Reserved for future use.

17 Reserved for future use.

18 Reserved for future use.

19 Reserved for future use.

20 Reserved for future use.

21 Reserved for future use.

E FDI ARCHITECTURE AND API SPECIFICATION

3-65

Return Error Code Meaning

ERR_FORMAT 22 Indicates the detection of an error in the card format structures.

ERR_MEDIA _TYPE 23 Indicates the media type is identified as a media that is unsupported
(such as RAM if RAM_SUPPORT is disabled)

ERR_NOT_DONE 24 Indicates that a function was aborted before completion due to an
abort capability such as that used in the REVERSE_SEEK_SETUP.

25 Reserved for future use.

26 Reserved for future use.

27 Reserved for future use.

28 Reserved for future use.

29 Reserved for future use.

ERR_WRITE_PROTECT 30 Indicates the media is write protected. Returned at in initialization
(which should not be treated as an error, only a flag) and when a write
is attempted.

ERR_DRV_FULL 31 Indicates that the flash media is full.

ERR_MAX_OPEN 32 Indicates that the maximum number of objects open consecutively has
already been reached. This is determined by the MAX_OBJECTS
define in type.h.

33 Reserved for future use.

E
4

FDI Test
Specification

E

4-1

CHAPTER 4
FDI TEST SPECIFICATION

4.1 INTRODUCTION
The Flash Data Integrator (FDI) software allows users to store system parameters into flash
while performing code execution from the same flash device. The software is designed to add
future capabilities to update code stored in flash, as well as storing larger data files. The
software is initially being directed toward the digital cellular market. This document outlines
the test platform and software being developed to allow testing the FDI software in a system
and environment similar to a GSM cellular system. While the current system test environment
concentrates on the GSM cellular system, many different cellular system architectures (such as
PCN, or CDMA based architectures) can utilize the FDI software.

 The FDI test system consists of an embedded platform on which the software is tested, a PC to
perform remote debug of the embedded platform, and a second PC at which automatic test
scripts are run. The embedded platform provides an external interface to receive asynchronous
communication from the Test Script Interface and user interface on the PC. The embedded
platform consists of a Motorola 48340-based evaluation board with a flash add-on board. The
platform utilizes the Wind River Systems VxWorks Operating System and development
environment to provide a real-time multi-tasking environment.

On the Test Script Interface PC, test scripts are generated and run. Commands in the test script
are verified/translated and downloaded to the embedded controller through an “asynchronous”
interface. Once the embedded platform receives a test script, it waits for control on the test PC
to indicate that the test should be started. The script is run and all commands are run on the
embedded platform to emulate communication similar to a digital cellular phone. In addition,
the test script PC can cause asynchronous events, such as a key press, to be simulated and
communicated to the embedded platform through the asynchronous interface. The goal of this
setup is to simulate realistic cellular phone activity to guarantee applicability of the FDI
software. As commands are completed on the embedded platform, status is sent to the test
script PC to be placed into a log file. This allows test scenarios to be repeated for reproduction
of problems. Figure 4-1 provides an overview of the necessary components.

FDI TEST SPECIFICATION E

4-2

Windows 95*/ Windows NT*
Remote Debug for

Embedded Platform
(Mobile Emulation)

DOS PC
 Test Script Interface
(Network Emulation)

Remote
Debug

Interface
(Ethernet)

Asynchronous
Event Generation

Interface
(RS-232)

Embedded Platform
(SBC 360)

Address Translation
PLD

Cobra Array

FDI4-1

Figure 4-1. System Overview

4.2 DEFINITIONS AND CONVENTIONS
ACC Access Control Class

ACM Accumulated Call Meter

ACM Max Accumulated Call Meter Maximum; the maximum value that the
ACM field can store

ADN Abbreviated Dialing Numbers

AD Administrative Data

BCCH Broadcast Control Channel

BYTE 8-bit value

CCP Capability Configuration Parameters

CBMI Cell Broadcast Message Id selection

CDMA Code Division Multiple Access (IS-95)

DAMPS Digital American Mobile Phone System (IS-54)

DWORD 32-bit value

E FDI TEST SPECIFICATION

4-3

EXT1 Extension of LND/ADN/SSC/MSISDN parameters

EXT2 Extension of FDN/SSC parameters

FDI Flash Data Integrator software

FDN Fixed Dialing Numbers

FNULL 0xFFFFFFFFh; used to refer to flash null media pointers

FPLMN Forbidden Public Land Mobile Network

GSM Global System for Mobile communications, a digital cellular radio system

HPLMN Home Public Land Mobile Network

ICCID SIM identification

IMSI International Mobile Subscriber Identification

KC Ciphering Key

LND Last Number Dialed

LOCI Location Information

LP Language Preference

NULL Zero

Media Control
Structure A structure of data used as a controlling structure in any of the drivers; a

Media Control Structure can exist on the flash card or in RAM

MSISDN Mobile Station Integrated Services Digital Network Number

PCCP PC Consumer Peripheral; a consumer product that is being used as a PC
Peripheral

PCN Pacific Digital Cellular

PHASE Phase Identification

PLMN Public Land Mobile Network

PLMN Sel Public Land Mobile Network Selector

PUCT Price per Unit and Currency Table

SIM Subscriber Identity Module. This is a removable memory card used in GSM
mobile stations. Many parameters are stored in the SIM or in nonvolatile
memory on the mobile station or both memories.

SMS Short Message Service; a feature in GSM cellular networks in which mobile
phones may send or receive text messages of a maximum length of 140 bytes

SMSP Short Message Service Parameters

SMS Short Message Service Status

FDI TEST SPECIFICATION E

4-4

SST SIM Service Table

TDMA Time Division Multiplexed Access. Each 4.415 ms in time is broken down
into eight time slots or logical channels. Each of these logical channels allow
a different user to access the shared frequency at a regularly defined interval.

TDMA frame A 4.415 ms period of time that provides eight separate time slots or logical
channels for cellular communication.

TDMA
hyper-frame A large scale timing interval in the GSM system that consists of 2048 super

frames which is equivalent to 2H : 28M : 53S : 740 ms of time

TDMA
multi-frame A large scale timing interval consisting of 24 frames for a traffic channel or

51 frames for a signaling channel.

TDMA
super-frame A large scale timing interval consisting of 51 instances of a 24 frame traffic

channel multi-frame or consisting of 24 instances of a 51 frame signaling
channel multi-frame

TDMA
 time slot One of eight 577 ms pieces of time that combine to make a TDMA frame

WORD: 14-bit value

4.3 SYSTEM ENVIRONMENT SOFTWARE ARCHITECTURE
This document covers the system environment software on the embedded platform and the Test
Script Interface PC. This software creates the system environment in which the FDI software is
verified. The remote debug software for the embedded platform consists of third party vendor
software purchased through Wind River Systems. The Test Script Interface (TSI) Software on
the PC provides commands that allow the embedded test platform to emulate the cellular
network interface. The software on the embedded platform uses these commands to simulate
the timing and activity of the mobile station.

On the Test Script Interface PC, a test script is passed to the test executable through the user
interface. The test script is parsed through a layer of software that validates all commands and
parameters in the script. The test script is then transferred to the embedded platform through a
download message which is communicated over the asynchronous interface. Asynchronous
messages are received by the embedded platform. The asynchronous interface interprets the
messages and passes each message to the appropriate handling mechanism. A download
message is passed to the GSM emulation software which breaks the test script down into
distinct commands. Each command is treated as a series of GSM events that require simulation.
This software is designed to emulate the behavior of a real-time multi-tasking environment
which exists in most cellular phones. Other messages from the user interface on the Test PC are
used to simulate asynchronous interrupts (such as keypad interrupts) seen in the mobile station
environment. Figure 4-2 provides an overview of the software layers and their interaction.

E FDI TEST SPECIFICATION

4-5

Asynchronous Message
Interface

Test Script

Test Script Interface
Software

(PC)

Embedded
Platform Software

GSM Cellular Emulation
(Layer 2, Layer 3, RSLC,

MMI)
FDI

(Foreground API’s/
Background Manager,

Interrupt Polling)

Low Level Flash IF

Flash

User Interface

Asynchronous Message
Interface

FDI4-2

Figure 4-2. Software Overview

4.3.1 PC User Interface
The user interface allows users to enter commands to download test scripts to the embedded
platform, control execution of the command scripts on the embedded platform (start, pause,
stop, etc.), and send asynchronous commands to the embedded platform while test scripts are
executing. It also polls for the receipt of messages sent by the embedded platform and allows
reading of stored parameters in flash. These messages contain status updates to be stored in log
files to indicate the progress of command scripts and provide feedback information to the user.

FDI TEST SPECIFICATION E

4-6

4.3.2 PC Asynchronous Communication
This layer of software controls all asynchronous communication on the PC. Asynchronous
communication is used to allow emulation of events external to the TDMA emulation. This
interface allows for simulation of events such as keypad input, and other events or status to
assist with the debug of software on the embedded platform. This interface consists of an
ethernet port.

4.3.3 Embedded Asynchronous Communication
This layer of software receives asynchronous commands from the PC Asynchronous Interface,
interprets, and acts upon the command. Commands include test script downloads, script control
commands, keypad input commands, parameter storage commands, and any future debug
messages necessary to successfully test the system.

All messages on this interface return an ack/nack to indicate if the command/message has been
accepted as valid. Keypad input allows user input, such as phone numbers, to occur. Once a
valid keypad sequence has been received, the information is passed to the parameter storage
system.

4.3.4 Embedded GSM Emulation Software
The GSM emulation software is used to emulate the timing involved for each of these
commands and the behavior of the system. This layer of software consists of several tasks that
simulate the multi-tasking environment of a GSM mobile phone. Each of the tasks track the
states similar to those used in a mobile phone. Test scripts sent from the PC are used to
simulate parameter storage and the overall CPU availability that is seen in cellular phones. The
GSM Emulation software receives the commands, and responds by saving parameters,
simulating the activity that would occur in a normal phone.

4.4 PARAMETER STORAGE EMULATION
The test software must allow for testing of storage, update, and retrieval of a set of parameters
similar to that used in GSM telephones. The Table 4-1 summarizes the parameters that are
currently stored to the SIM card or nonvolatile memory in a GSM phone that could be stored to
flash memory. This table forms the base set of parameters used for testing and emulation for
the FDI software. Any parameters marked as NV or both in Table 4-1 are candidates for flash
and are emulated in the test software.

E FDI TEST SPECIFICATION

4-7

Table 4-1. GSM Parameter Storage Summary

Memory
(S = SIM,

NV =
Nonvolatile)

Param.
No.

File ID Description Size
(Bytes)

Updated Update
Occurrences

S 2FF2 ICCID SIM Id 10 Never

NV 6F05 LP Language Preference 1–N Low User

S 6F07 IMSI International Mobile
Subscriber Id

9 Never

S 6F20 KC Ciphering Key 9 High Init, Termination,
Authentication
Request

S/NV 6F30 PLMN Sel PLMN Selector 3N Low Init, User

S/NV 6F31 HPLMN HPLMN Search
period

1 Never Service Provider

S/NV 6F37 ACM Max ACM max value 3 Never Service Provider

S 6F38 SST SIM service table 4 Never Service Provider

S/NV 6F39 ACM Accumulated call
meter

3 High Init, periodically during
call

S/NV 6F41 PUCT Price per unit &
currency table

5 Never Service Provider

Both 6F45 CBMI Cell Broadcast
message id selection

2N Low User

Both 6F74 BCCH Broadcast control
channel list

16 High Init, Termination,
Location Updates

S 6F78 ACC Access Control Class 2 Never Service Provider

S 6F7B FPLMN Forbidden PLMN 12 Low Init, Termination,
Location Update
Rejection

S 6F7E LOCI Location Info 11 High Init, Termination,
Handover (p73: 4.08)

S 6FAD AD Administrative Data 3 + X Never Service Provider

S 6FAE PHASE Phase Identification 1 Never Service Provider

Both 6F3A ADN Abbreviated Dialing
Numbers

X + 14 Low User

S 6F3B FDN Fixed Dialing
Numbers

X + 14 Never Service Provider

Both 6F3C SMS Short Message
Service

176 High Network SMS
procedure

FDI TEST SPECIFICATION E

4-8

Table 4-1. GSM Parameter Storage Summary (Continued)

Memory
(S = SIM,

NV =
Nonvolatile)

Param.
No.

File ID Description Size
(Bytes)

Updated Update
Occurrences

Both 6F3D CCP Capability
Configuration
Parameters

14 Never Service Provider

S 6F40 MSISDN MS - ISDN X + 14 Never Service Provider

Both 6F42 SMSP Short Message
Service Parameters

28 + Y Low When sending SMS

Both 6F43 SMSS Short Message
Service Status

2 + X Low Network SMS
procedure

Both 6F44 LND Last Number Dialed X + 14 High Call Termination

Both 6F4A EXT1 Extension data of
LND, ADN/SSC,
MSISDN

13 Low User

S 6F4B EXT2 Extension data of
FDN/SSC

13 Low User

Both XXXX MISC Miscellaneous OEM
specific data (volume
control, ring type)

variable

1–300

Low User

NOTES:

N = >=8

X = Ranges from 0–241

Y =Y may be zero, uses GetResponse function of SIM Card to determine length

4.5 TIMING ENVIRONMENT
GSM cellular phones share frequency band-width through use of Time Division Multiple
Access, or TDMA. TDMA allows multiple users to share a common frequency channel on a
time schedule. All users sharing the frequency resource have their own assigned repeating time
slot within a group of time slots called a frame. Figure 4-3 shows an overview of the timing in a
GSM system. Each of the defined time periods shown in this diagram is further explained
below. This timing environment must be simulated by the GSM emulation software on the
embedded platform.

E FDI TEST SPECIFICATION

4-9

3
Tail Bit

57
Coded Data

57
Coded Data

1
Stealing

Flag

26
Training

Sequence

1
Stealing

Flag

8.25
Guard Period

0.577 ms = TDMA Time Slot = Logical Channel

2 43 5 6 710

4.615 ms = TDMA Frame

0
0

0
1

0
2

0
3

0
4

0
9

0
8

0
7

0
5

0
6

1
0

1
1

1
2

1
3

1
4

1
9

1
8

1
7

1
6

1
5

2
0

2
1

2
2

2
3

2
4

2
9

2
8

2
7

2
6

2
5

3
0

3
1

3
2

3
3

3
4

3
9

3
8

3
7

3
6

3
5

4
0

4
1

4
2

4
3

4
4

4
9

4
8

4
7

4
6

4
5

5
0

235.38 ms = 51 Frame Signalling Multi-frame

T
0
0

T
0
1

T
0
2

T
0
3

T
0
4

T
0
9

T
0
8

T
0
7

T
0
6

T
0
5

T
1
0

T
1
1

T
1
2

S
1
3

T
1
4

T
1
9

T
1
8

T
1
7

T
1
6

T
1
5

T
2
0

T
2
1

T
2
2

T
2
3

T
2
4

I
2
5

120 ms = 26 Frame Speech Multi-frame

0

0 1 2 3 47 48 49 50

1 2524

6.12 S = 1 Superframe = 26 - 51 Frame Multiframes = 51 - 26 Frame Multi-frames

0 1 2 2047204620453 4 20442043

3H 28M 53S 760 ms = 1 Hyperframe = 2048 Superframes

S = SACCH
I = IDLE
T = TCH / FACCH

For content of Signalling Multi-
frame, see p. 93 - 98 of "An
Introduction to GSM" by Redl,
Weber, and Oliphant

FDI4-3

Figure 4-3. Time Division Multiple Access Overview

4.5.1 TDMA Time Slots
In GSM cellular phones, all frequencies are divided into a minimum common repeating interval
called a time slot. Each time slot is 577 µs in length. The data transferred during this time
follows the structure defined in Figure 4-3.

FDI TEST SPECIFICATION E

4-10

4.5.2 TDMA Frames
Eight TDMA time slots are combined to create a TDMA frame. Each of eight users are
assigned one time slot within a frame. One TDMA frame lasts 4.615 ms (8 * 577 µs). This
provides each user a repeating time slot in which to communicate to the cellular network. Each
user is assigned a time slot within a time frame and this is called their logical channel. Each
logical channel consists of a time slot to receive data from the network, and a time slot to
transmit data. Transmissions and receiving frames occur on separate frequencies. The GSM
specification requires the time difference between receive and transmit functions to be three
time slots, although the time slot numbering (logical channel) remains the same as if both were
using the same time slot at the same time. Figure 4-4 shows how time-division duplex occurs in
the GSM system.

0 210765431 27

5 765432106 74

3

0

Base Transmits

Mobile Transmits

FDI4-4

Figure 4-4. Time Division Duplex in the GSM System

4.5.3 TDMA Multi-Frames
A multi-frame is a structure that defines logical channels for a multiple number of frames. This
allows different types of signaling opportunities for the variety of equipment in the cellular
network. Due to the limitation of bits transferred in each time slot, user-level messages often
take several TDMA frames to transmit. Each channel in the multi-frames defined below is
configured to take the number of consecutive frames typical messages on the channel take (for
example typical messages for the SDCCH channel take four frames to transmit, therefore the
channel takes four consecutive frames). In some situations, several instances of a multi-frame
must be received before an entire message can be received (for example, normal SACCH
messages take four frames, however, the traffic multi-frame only allows one frame to be used
for SACCH per multi-frame. This means it would take four traffic multi-frames to receive one
SACCH message). Section 4.5.7 defines the uses for each of the channels defined in the multi-
frames defined below.

4.5.3.1 SIGNALING MULTI-FRAME

On logical channels that are being used for phone control, 51 consecutive occurrences of a
logical channel combine to create what is called a signaling multi-frame. This multi-frame
defines certain repeating intervals on a higher level to create a variety of logical control
channels. These control channels do not move users data (such as voice or fax), but move the

E FDI TEST SPECIFICATION

4-11

data the network and mobile phones need to make sure all events in the system are handled
properly. All control messaging flows in the test environment mirror the signaling multi-frame
defined in Figure 4-5 as closely as possible. Figure 4-3 also contains a high level overview of
the signaling multi-frame. All channels and their purposes are described in Section 4.5.7.

235.38 ms = 51 Frame Signaling Multi-frame

2 3 4 50 1 6 7 8 9

F S BCCH CCCH

12 13 14 1510 11 16 17 18 19

F S CCCH CCCH

22 23 24 2520 21 26 27 28 29

F S SDCCH 0 SDCCH 1

32 33 34 3530 31 36 37 38 39

F S SDCCH 2 SDCCH 3

42 43 44 4540 41 46 47 48 49

F S SACCH 0 SACCH 1

50

I

2 3 4 50 1 6 7 8 9

F S BCCH CCCH

12 13 14 1510 11 16 17 18 19

F S CCCH CCCH

22 23 24 2520 21 26 27 28 29

F S SDCCH 0 SDCCH 1

32 33 34 3530 31 36 37 38 39

F S SDCCH 2 SDCCH 3

42 43 44 4540 41 46 47 48 49

F S SACCH 2 SACCH 3

50

I

16 170 1 2 3

R RSDCCH 3

6 7 8 94 5 10 11 12 13

R R SACCH 2 SACCH 3

14 15

R R

37 38 39 4034 35 41 42 43 44

R R SDCCH 0 SDCCH 1

45 46 47 48 49 50

F S SDCCH 2

36

R

20 21

R R

18 19

R R

24 25

R R

22 23

R R

28 29

R R

26 27

R R

32 33

R R

30 31

R R

16 170 1 2 3

R RSDCCH 3

6 7 8 94 5 10 11 12 13

R R SACCH 0 SACCH 1

14 15

R R

37 38 39 4034 35 41 42 43 44

R R SDCCH 0 SDCCH 1

45 46 47 48 49 50

F S SDCCH 2

36

R

20 21

R R

18 19

R R

24 25

R R

22 23

R R

28 29

R R

26 27

R R

32 33

R R

30 31

R R

1

2

1

2

Base Station to Mobile
(Downlink)

Mobile to Base Station
(Uplink)

FDI4-5

Figure 4-5. Signaling Multi-Frame

4.5.3.2 TRAFFIC MULTI-FRAME

Logical channels that are being used for speech or data are considered a logical traffic channel.
Traffic channels follow the communication structure shown in Figure 4-3. The traffic channel
structure consists of 26 consecutive occurrences of a logical channel. The first 12 occurrences
are used for traffic, one occurrence is used for control, then the last 12 are used for traffic.
When urgent control data must be communicated, some of the slices reserved for traffic may be
changed to control. This is indicated through use of the stealing flag in each packet. All traffic
messaging flows in the test environment mirror the traffic multi-frame defined in Figure 4-3 as
closely as possible.

4.5.4 TDMA Super-Frame
The super-frame provides a mechanism for the signaling multi-frame and traffic multi-frame to
meet up at regular intervals. This frame type is not used in the test software emulation defined
by this document because this time interval is not critical in the evaluation of using FDI
software in GSM systems. A super-frame is defined as 26 instances of the 51 frame signaling
multi-frame, or 51 instances of a 26 frame traffic multi-frame.

FDI TEST SPECIFICATION E

4-12

4.5.5 TDMA Hyper-Frame
The hyper-frame provides a timing interval on a larger scale. This frame type is not used in the
test software emulation defined by this document because this time interval is not critical in the
evaluation of using FDI software in GSM systems.

4.5.6 Background CPU Availability
Each OEM’s background CPU availability is different due to architectural differences in each
implementation. The background CPU availability created by the test software is modifiable
through several different variables that determine the length of time it takes for a system to do
several tasks that occur on a regular basis such as transmit, receive, monitoring other
frequencies, and power level adjustments.

4.5.7 Communication Channels
Several pre-defined channels exist to provide a guaranteed repeating time slot upon which
certain messages are transmitted. These channels are pre-defined by the signaling and traffic
multi-frames as certain portions of the multi-frame. This provides mechanisms to allow the
mobile phone to originate messages, as well as to locate information about each cell as it moves
about a network. Below is an overview of the channels that exist and the type of information
sent on these channels. The GSM emulation software emulates the timing associated with using
the appropriate channels for the appropriate messages.

There are several types of channels. These are defined as follows:

Traffic Channel (TCH)–Reserved for voice and data messaging.

Broadcast Channel (BCH)–Transmitted only by the base station. Intended to provide
information to the mobile station to allow it to synchronize with the network.

Common Control Channels (CCCH)–Support the establishment of a dedicated link between
a mobile and a base station.

Dedicated Control Channels (DCCH)–Used for message transfers between the network and
mobile station, not for traffic.

Associated Control Channels (ACCH)–Always used in association with a traffic channel
(TCH) or Standard Dedicated Control Channel (SDCCH).

E FDI TEST SPECIFICATION

4-13

Channel Name Type Purpose

TCH Traffic Channel TCH Used to transmit users voice or data.

BCCH Broadcast Control
Channel

BCH Informs mobile station about system parameters it
needs to identify the network (cell options, neighboring
cell frequencies, access parameters, location area
code, etc.).

FCCH Frequency Correction
Channel

BCH Provides the mobile station with the frequency
reference of the system and helps in initial
synchronization.

SCH Synchronization Channel BCH Provides the training sequence the mobile station
needs to demodulate information coming from the
network and indicates current frame number.

RACH Random Access Channel CCCH Used by the mobile station to request a dedicated
control channel from the network.

PCH Paging Channel CCCH Used by the base station to call an individual mobile
station.

AGCH Access Grant Channel CCCH Used by the base station to inform the mobile which
dedicated channel it should use for its signaling needs
and provides a channel description.

SDCCH Standalone Dedicated
Control Channel

DCCH Used for transfer of information between the mobile and
the network.

SACCH Slow Associated Control
Channel

ACCH Used for control and measurement parameters or
routine data needed to maintain a link between the
mobile station and the network.

FACCH Fast associated Control
Channel

ACCH Used to replace all or part of a traffic channel to
transfer information similar to that carried by the
SDCCH.

4.6 TEST ENVIRONMENT COMMANDS
There are two types of commands that exist in the test environment. Test script commands are
sent in a script to the embedded platform and are executed on the embedded platform to
simulate GSM activity and parameters. User commands are sent from a user interface to control
execution of the test script, to create asynchronous events, and to provide user feedback.

4.6.1 Test Script Commands
The test script commands allow a multi-tasking environment similar to a GSM cellular phone
to be simulated. The test script is sent as a whole entity (using the download command in the
user commands) to the embedded environment and the GSM simulation on the embedded
platform executes each command and simulates the activity that would normally be seen in

FDI TEST SPECIFICATION E

4-14

messaging as well as any other background activity and timing that would normally occur on a
GSM cellular phone.

The following sections describe each of the call flows to be simulated for the commands
summarized in the table below. Each flow shows which logical channel is used for
communication. This can be used along with the signaling/traffic multi-frame drawings to
determine the GSM simulation behavior. Each command overview below also defines which
parameters are possibly updated and in which situations they are updated.

Command Inputs Purpose SIM Params.
Affected

NV Params.
Affected

Call Establishment Allow storage/reading of
parameters

ACM, KC, LOCI
(status)

ACM

Location Update Success, Failure Allow storage/reading of
parameters

FPLMN, KC,
LOCI

Loop Label, Count Allows looping of various
command sequences

None None

Wait Time Allows time between
commands to be altered

None None

Call Clearing Allow storage/reading of
parameters

ACM, LND ACM, LND

Send SMS Allows storage/reading of
SMS parameters

KC, LOCI, SMS,
SMSS

SMS

Determine Random
Parameter Number

Number Range Allow random testing to
occur

None None

Fill buffer with data Random or Pre-
Determined

Allows random data
testing to occur

None None

E FDI TEST SPECIFICATION

4-15

4.6.1.1 CALL ESTABLISHMENT

Call establishment is used by the GSM network to set up all necessary channels to establish a
phone call connection. Normally, calls can be originated by the network or by the mobile
station. To simplify the design, the test software allows network-originated call establishment
only. All messages in the following scenario are simulated through the GSM emulation
software. The following flow is for the network originated (mobile terminated) call
establishment in a normal channel assignment situation.

Base StationMobile StationLogical Channel

PCH

RACH

AGCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

Paging Request

Channel Request

Channel Assignment

Paging Response

Authentication Request

Authentication Response

Cipher Mode Command

Cipher Mode Complete

Setup

Call Confirmed

SDCCH Assignment Command

FACCH

FACCH

FACCH

Assignment Complete

Alerting

Connect

FACCH Connect Acknowledge

TCH Exchange of User Data (Speech)

Type of Message

The parameters which may be updated with relation to the call establishment are as follows:

Parameter Cause for Update

ACM Update begins once call is established, is updated to Flash once every X seconds
where X is defined at compile time.

KC Authentication Request

LOCI When channel assignment is received, TMSI portion when Cipher Mode command
is received

FDI TEST SPECIFICATION E

4-16

4.6.1.2 LOCATION UPDATE

The location update is used by the GSM network to keep the network informed about the
location of the mobile station. All messages in the following scenario are simulated by the
GSM emulation software. The following flow is for the successful location update.

Base StationMobile StationLogical Channel

RACH

AGCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

SDCCH

Channel Request

Channel Assignment

Location Updating Request

Authentication Request

Authentication Response

Cipher Mode Command

Cipher Mode Complete

Location Updating Accept, TMSI

TMSI Reallocation Complete

Channel Release

Type of Message

The parameters which may be updated with relation to the location update are as follows:

Parameter Cause for Update

FPLMN Location Update rejection

KC Authentication Response

LOCI TMSI Reallocation Command

4.6.1.3 LOOP

No call flow exists for this command. This command is used to force the command translation
software in the GSM emulation portion of the embedded system to automatically repeat
portions of the test script.

E FDI TEST SPECIFICATION

4-17

4.6.1.4 WAIT

No call flow exists for this command. This command is used by the command translation
software in the GSM emulation portion of the embedded system to allow the phone to remain in
its current state for a pre-defined amount of time allowing the call to continue or the phone to
remain in its current state.

4.6.1.5 SEND SMS

Short Message Service (SMS) is a special feature in the GSM network to allow short messages
to be sent to/from a mobile. To simplify the design, the test software simulates network
originated SMS only. This command allows an SMS command to be sent asynchronously to the
embedded platform. Several parameters may be updated with relation to the SMS command.
They are as follows:

Parameter Cause for Update

KC

LOCI

SMS SMS message received

SMSS Status of message received/sent

SMSP

4.6.1.6 CALL CLEARING

Call clearing is used by the GSM network to release all channels used in a phone call
connection. Normally, calls can be cleared by the network or by the mobile station. To simplify
the design, the test software allows network originated call clearing only. All messages in the
following scenario are simulated by the GSM emulation software. The following flow is for the
network originated call clearing.

The parameters which may be updated with relation to call clearing are as follows:

Parameter Cause for Update

ACM Update to this parameter ceases when disconnect is received

LND Update to this parameter upon call established or disconnect

4.6.1.7 DETERMINE RANDOM PARAMETER

This command allows random parameters in a certain range to be chosen. This allows random
variability in parameter updates.

FDI TEST SPECIFICATION E

4-18

4.6.1.8 FILL BUFFER WITH DATA

This command allows a buffer to be filled with random data or pre-determined data. This buffer
is used to provide data for parameter updates. This information is determined on the test PC and
transferred to the embedded system. This allows verification of data to occur.

4.6.2 User Commands
The user commands assist in creating the GSM environment by allowing asynchronous events
to occur as well as controlling the test script execution and receiving status information to
indicate progress. Status information is displayed for the user as well as stored into a log file.
All commands in this section consist of a command message followed by a command response
message. Message details are defined in the Detailed Definition documentation for this
software.

Command Origination Inputs Purpose SIM
Params
Affected

NV Params
Affected

Download
Script

PC File Input Download a script to run on
the embedded platform

None None

Run Script PC None Begin execution of a test script None None

Pause Script PC None Temporarily halt execution of
script at next possible location

None None

Stop Script PC None Halt/abort execution of script
at next possible location

None None

Keypad Input PC File Input Allow asynchronous interrupts
as in cellular environment,
allow update of user
parameters

ADN, EXT1,
EXT2, FDN,
LP, PLMN
Sel

ADN, EXT1,
EXT2, FDN,
LP, PLMN
Sel, OEM
defined
params

Parameter
Update

PC File Input,
Bytes,
Parameter
ID

Allows basic storage/update of
parameters

None All

Parameter
Read

PC # Bytes,
Parameter
ID

Allows read verification of
parameters

None All

Status
Update

Embedded
System

Indicates information about
command completion to
provide user feedback

None None

Misc Debug
commands

Either Currently
Undefined

Currently undefined None None

E FDI TEST SPECIFICATION

4-19

4.6.2.1 DOWNLOAD SCRIPT

This command allows the user to input a test script file. The test script file is then parsed,
validated, and sent to the embedded system. The test script is stored on the embedded system in
a RAM area. The script is run at a later time when given the “run script” command by the user.

4.6.2.2 RUN SCRIPT

This command allows the user to begin execution of a script on the embedded platform. The
embedded platform begins execution of the most recent script that has been downloaded. If no
script has been downloaded, the embedded platform returns an error in the response. If the
execution of a script was in progress and no new script has been downloaded, this command
functions as a “resume execution” command.

4.6.2.3 PAUSE SCRIPT

This command allows the user to pause execution of a script on the embedded platform. The
embedded platform stops execution of the script when the command in progress completes and
retains the current command. The “run script” command is used as a method to resume
execution. This command allows execution to stop to allow various structures on the embedded
platform to be evaluated and allow execution to continue.

4.6.2.4 STOP SCRIPT

This command allows the user to stop execution of a script on the embedded platform. The
embedded platform stops execution of the script when the command in progress completes. The
current command is not retained in this situation.

4.6.2.5 KEYPAD INPUT

Keypad input is performed by a user on a GSM cellular mobile station. This creates
asynchronous interrupts in a mostly synchronous environment. This command allows
simulation of key presses to occur. Each key press generates a keypad input command. Keypad
commands from the user interface may take input from a file and generate several keypad input
message sequences.

FDI TEST SPECIFICATION E

4-20

Several parameters may be updated with relation to the keypad input. They are as follows:

Parameter Cause for Update

ADN User enters ADN key sequence

EXT1 User enters ADN key sequence

EXT2 User enters FDN key sequence

FDN User enters FDN key sequence

LP User enters LP key sequence selection

PLMN Sel User enters PLMN key sequence selection

User Defined Parameters

4.6.2.6 PARAMETER UPDATE COMMAND

This command includes the identification of the parameter to update, the offset and number of
bytes to update in the parameter, followed by the data with which to update the parameter. This
command, along with the parameter read command, allows basic parameter storage to be tested
without waiting for the GSM emulation software to be complete.

4.6.2.7 PARAMETER READ COMMAND

This command includes the identification of the parameter to update, the offset and number of
bytes to read from the parameter. This command expects a response message that includes the
parameter identification, offset, number of bytes, and the actual parameter data. This command,
along with the parameter update command, allows basic parameter storage to be tested without
waiting for the GSM emulation software to be complete.

4.6.2.8 STATUS UPDATE

This command is initiated by the embedded platform and is sent at the completion of each
command in the test script. This information is used by the PC to update the user interface and
to update the log file that tracks test script execution.

4.6.2.9 MISCELLANEOUS

Future messages may be added as debug aids or additional simulation tools. The design should
be easily modifiable to allow command additions to be simple.

E FDI TEST SPECIFICATION

4-21

4.7 PC TEST FUNCTIONALITY

4.7.1 Functionality Overview
The PC Test Script Interface software allows automated testing of the parameter storage
database to occur. It provides a list of script commands that are interpreted and turned into a
command file that is sent to the embedded platform. Many of these commands simulate the
GSM environment, while others are used for debug purposes only. It also provides a user
interface at which user commands can be sent to the embedded system while a test script is
executing.

4.7.2 Asynchronous Interface
This interface is responsible for sending commands over the asynchronous interface and
receiving any appropriate responses. This interface consists of the following software modules:

1. Communication hardware control

2. Messaging software that allows users to send or receive messages on this interface

The Communication hardware control performs initialization for all aspects of the
communication device for the channel being used and sets up any interrupt vectoring necessary
for the control chip. The receive message interrupt first handles any device specific needs, then
calls a function to handle any message specific needs. Once a full message is received, the
message is placed into a message queue.

The messaging software provides the capability of sending or receiving full messages. This
software is responsible for using the hardware interface to transmit multiple byte messages, as
well as receiving multiple byte messages. The receive function monitors the incoming message
queue for a pre-determined length of time. If the message queue is empty and no response is
received in the pre-determined length of time, an error is returned to higher layer levels of
software.

4.7.3 User Interface
This layer of functionality is the main control of the PC test interface. Once all initialization is
complete (variables initialized, log file set up, etc.), control is passed to this layer of software
which watches for user input as well as received messages from the embedded platform. If
messages are received from the embedded platform, they are either command responses or
status updates. Each message is handled in the appropriate manner. If user input is received, the
command is validated and the appropriate message is sent to the embedded platform.

When a test script download is requested through the user interface, a layer of test script
validation and parsing software will exist. This layer of software provides functions for reading
a file that contains ASCII commands, validating each of the commands, and sending the

FDI TEST SPECIFICATION E

4-22

compiled commands to the embedded system. The test script parsing software should support
all commands specified in the table which summarizes all Test Script Commands, in Section
4.6.1. The test script parsing software should allow expandability in the command set and
should not be limited to this pre-defined set of commands. These functions are used by the user
interface software when a user command to download a test script has been entered.

4.8 EMBEDDED GSM EMULATION FUNCTIONALITY

4.8.1 Functionality Overview
The GSM emulation software provides a real-time multi-tasking environment in which
parameters are updated and provides a variety of test scenario situations. Tasks similar to those
found in a cellular mobile station exist which provide similar communication scenarios,
however, the tasks do not perform tasks necessary for cellular communication. Instead, the
CPU overhead is simulated and must be modifiable to allow different scenarios to be tested.
Figure 4-6 outlines the tasks involved and their high level interaction.

FDI Layer 2
Emulation

Layer 3
Emulation

Main
Control /

RSLC

MMI /
Asynch
Control

Asynchronous
Interface

Flash

User SIM / NV
Data Network

SIM/NV
Data

NV Data

Cellular TDMA
Simulation

TDMA Timing Emulation

Interrupt Interface

Interrupt set/
handling on
slot/frame

FDI4-6

Figure 4-6. High-Level Simulation Task Interaction

4.8.2 Asynchronous Interface (MMI)
This interface is responsible for receiving commands over the asynchronous interface,
validating the key combinations or command, sending the appropriate response, passing
commands on to the appropriate task when necessary, and storing any appropriate parameters

E FDI TEST SPECIFICATION

4-23

through use of the FDI interface. This interface consists of several software modules. These
are:

1. Communication hardware control

2. Asynchronous interface tasks to act on messages received/send the appropriate response

The communication hardware control performs initialization for all aspects of the
communication device for the channel being used and sets up any interrupt vectoring necessary
for the control chip.

The asynchronous receive task pends on a message queue that indicates the receipt of a
message. Once a message is received, this task verifies the message and sends the appropriate
response. Any keypad input combinations are evaluated for validity and once a full keypad
combination is received, the appropriate parameter is updated through use of the FDI interface.
The asynchronous send task pends on a message queue to perform a send.

4.8.3 Layer 2 Emulation
This interface is responsible for simulating activity of a synchronous TDMA interface. This
interface is also responsible for providing services to layer 3 that allow the simulation of layer 2
activity. This interface contains a function to emulate sending TDMA messages and a function
to emulate receiving TDMA messages.

4.8.4 Layer 3 Emulation
This layer of software emulates the messaging and call control at its highest level. This
software consists of a task that pends on messages from the network and modules for call and
resource control emulation. This layer parses through test scripts to determine which GSM call
flows to emulate.

4.8.4.1 RADIO RESOURCE CONTROL

This software module is responsible for emulating the establishment, maintenance, and
termination of Radio Resource connections for use by the mobility management and call
management software. This software deals with the changing radio environment. Specific
procedures to be emulated include:

1. Channel assignment and release function

2. Channel frequency changes

3. Frequency hopping sequences (if necessary)

4. Measurement reports from the mobile (performed approximately 1 time per multi-frame)

5. Power control and timing (performed approximately 1 time per multi-frame)

6. Cipher mode setting

FDI TEST SPECIFICATION E

4-24

4.8.4.2 MOBILITY MANAGEMENT

This software module is responsible for emulating the authorization and connection of the
mobile user, as well as emulating supporting mobility functions. Specific procedures to be
emulated include:

1. Location and periodic updating

2. Authentication

3. IMSI attach and detach, TMSI re-allocation

4. Identification

4.8.4.3 CALL CONTROL

This software module is responsible for emulating call control, short message service, and any
special services. Specific procedures to be emulated include:

1. Call establishment and call control

2. Call termination

4.8.5 RSLC Emulation/Main Control
This task is responsible for emulating cell selection and for emulating the behavior of the
mobile station while in idle mode. This function emulates the following:

1. Measures signal strength of each carrier

2. Looks for 30 strongest signals, reads BCCH data

3. When camped on a cell, listens to BCCH and PCH

4. Decodes BCCH data every 30 seconds

5. Decodes BCCH of six strongest non-serving cells at least every five minutes

E
A

FAQs

E

A-1

CHAPTER A
FAQs

OVERVIEW
This document contains questions and answers relating to Intel’s Flash Data Integrator (FDI)
software used for code plus data storage in a single flash memory component. This document
assumes the reader is familiar with the information in Chapter 3, FDI Architecture and API
Specification.

Q & As are organized in the following categories:

• Hardware

• Software

• Reclaim

• General

HARDWARE QUESTIONS

1. What if the system cannot withstand a 20 µs latency for erase suspend or 10 µs for program
suspend?

The 20 µs latency is only associated with Erase suspend. An erase operation occurs only
during a reclaim process. FDI includes a Reclaim_Enable command which can be used to
disable the reclaim. With reclaim disabled the maximum latency is based on program
suspend, which is a maximum 10 µs. If the system cannot support this, a portion of the
interrupt handler would need to be loaded into system RAM to allow code execution for the
10 µs or 20 µs period. Intel continues to evaluate improvement of suspend latency
performance.

2. Are nested erase and program suspends supported? In other words, can you suspend a write
to read after you have suspended an erase?

The architecture supports erase suspend to program and subsequent program suspend to
read.

FAQs E

A-2

SOFTWARE QUESTIONS

1. What SW effort is there in integrating FDI?

Feature Intel FDI Other
OEM Solution

Flash Data Integrator (FDI) Architecture included 500 devl.-hrs

Flash Parameter Storage Management included 600 devl.-hrs

Flash Storage Management Reclaim included 600 devl.-hrs

EEPROM Interface included 80 devl.-hrs

Power Loss Recovery included 480 devl.-hrs

Flash Suspend/Resume Interface and Testing included N/A

API Integration 400 devl.-hrs N/A

Total 400 devl.-hrs 2,260 devl.-hrs

2. What is the FDI code size? What is the RAM size requirement for FDI?

The estimated code size will equal 16 KB–20 KB and the RAM will equal 2 KB–3 KB for
the data queue and flash memory drivers.

3. What variables affect the RAM buffer size when using FDI? And, how does the FDI RAM
buffer size compare to that required for RWW solutions with specialized circuits (H/W
RWW) and for EEPROM?

The estimated data throughput affects the RAM buffer size. The available MIPS from the
processor also affects the RAM buffer size. The FDI RAM buffer size is identical to what
would be needed for H/W RWW. The RAM buffer for FDI is actually less, in most cases,
than what OEMs are using today with EEPROM. Many OEMs mirror all parameters in
RAM and EEPROM. Using a RAM buffer limits the usage of RAM for current systems.

4. What happens if a higher priority read occurs during a lower priority read?

Read operations are not queued. The lower priority read will complete and then the higher
priority read will be executed.

5. Why are unit headers independent of data?

Having unit headers independent of data allows any algorithms that scan information in a
block to automatically index through the headers instead of having to calculate the size of
the information it must skip over to reach the next unit header.

6. Can you stream data over a block boundary?

A sequence table is included in the FDI architecture that supports the management of
fragmented data. The sequence table is used to point to instances across block boundaries.

E FAQs

A-3

7. Is the sequence table supported in the initial release?

The architecture supports it, but this is not enabled in the initial release. Future releases of
FDI will include full support of a sequence table which enables data storage across block
boundaries.

8. Does FDI support data re-packing?

Data re-packing consumes power to rewrite data that already exists in flash. Rather than re-
packing data, FDI uses an instance table to track data.

9. Is there flexibility in FDI to limit EEPROM replacement across a smaller number of
parameter blocks (e.g., use three or four blocks instead of six or eight)? Can code be stored
in the non-used parameter blocks?

Two or more blocks can be used for data storage. There are compile time options to
identify the data block size (8 KB or 64 KB) and which blocks are used for data storage.

10. Will stale data be read if a read occurs prior to queued data being written to flash?

FDI uses a look aside technique: the valid instance is first read from flash then FDI looks in
the RAM queue to see if the data has been superseded. The most current instance of the
data is returned.

11. Why is cycle count contained in the block information?

The cycle count is incremented if the block is reclaimed. This information is used by FDI
for wear leveling. Wear leveling is a compile option that will be available and will allow
users to determine if they would like this information to be used and to influence which
block is chosen during reclaim.

12. What are the benefits of wear leveling?

Wear leveling allows all blocks to be used at an equal rate. If wear leveling is not used, this
can cause some blocks to reach maximum erase cycling before other blocks. For example,
without wear leveling, blocks with fixed data (does not get updated) are not cycled as much
as blocks with changing data. If wear leveling is used, it may require the reclaim of a block
that has little or no invalid data in the block. This causes an occasional extra reclaim,
however, the block with a lower cycling count can now be cycled with changing data.

13. How are variable size parameters handled by FDI?

The FDI architecture includes a multiple instance data structure that is user- programmable.
It can be adjusted to support multiple instance of a small parameter or single instance of a
large parameter (e.g., a fixed factory tuning parameter such as a trim level on a D/A
converter).

FAQs E

A-4

14. Why did Intel select the multiple instance data structure? What is the “expense” of
managing smaller granularity data?

The multiple instance data structure allows a parameter or small data object to be updated
with minimal modifications to overhead. Typically an update to data that is being tracked
in a multiple instance structure entails updating three status bits in addition to the data.
When the multiple instance structure is filled, it entails updating an 8-byte unit header
along with the size and status information in the multiple instance structure. In comparison,
using a single instance structure would waste several bytes in the allocated data unit, as
well as cost an 8-byte unit header update and a single bit status update with each update to
the parameter.

15. How does FDI handle high priority data writes if data is pending in the RAM queue?

The FDI data queue is prioritized. The most important parameter is written first.

16. Is FDI as safe as using an EEPROM in the event of power failure?

FDI includes status fields within the data parameter structure as well as the physical block
information field. This information is used during the initialization process to detect if data
was not successfully written or if a reclaim process did not complete. EEPROM
management software does not normally include similar levels of protection. If power is
removed during an EEPROM write, the data may be corrupted. FDI offers an equal or
increased level of data protection.

RECLAIM QUESTIONS

1. What is reclaim?

When a flash block is full (or near full), the valid data within that block must be copied to
another block. Data writes are then done to the new block. The reclaim process (a) copies
valid data from a full or near full block to a spare block and (b) erases the full or near full
block. Reclaim is sometimes referred to as “garbage collection.”

2. How do you suspend a reclaim?

A reclaim is suspended through system interrupts. This can be a hardware or software
interrupt.

3. What feedback does FDI provide following a reclaim?

An API function (FDI_Statistics) exists to allow the application to monitor the state of
memory. An API function (FDI_Query) exists to allow the application to monitor the status
of reclaim as well as the status of the RAM data queue.

4. How long does it take to reclaim as a function of data reclaimed?

 Reclaim time = erase time + (write time * bytes copied in reclaim) + software overhead
time. Benchmark examples will be available when the software is released to assist in
estimating software overhead time.

E FAQs

A-5

5. What if RP# is asserted during a reclaim? Is the reclaim operation aborted? If it is, how is
this handled since power was not removed and the initialization routine will not be
executed?

If RP# is connected to the system reset, power loss recovery algorithms will deal with any
issues during the normal FDI_Init call.

6. What statistics are available on how often is it necessary to do a reclaim?

The FDI_Statistics function provides the total free space available as well as the total
invalid space. There is one threshold that is user configurable that allows the user to
determine when a reclaim should be initiated by the file system. Once the file system
determines that a reclaim should occur, it can either handle the reclaim automatically, or
request permission from the application (through the use of a semaphore). Permission to
reclaim can be granted through the FDI_Reclaim function. During reclaim, new data can be
written until a second threshold is reached that indicates a full memory.

7. Can you write data during a reclaim suspend?

The Advanced Boot Block architecture supports erase suspend to read or program.

GENERAL QUESTIONS

1. Can I implement FDI on a device that does not have program suspend? Can I implement
FDI on a device that does not have erase suspend?

This depends on the latencies that are allowable on the system. If the system can accept a
latency as large as the device’s maximum program time, then FDI can be used on a device
without program suspend. If the system can accept a latency as large as the device’s
maximum erase time, then FDI can be used on a device without erase suspend. This may
also require that the system has latched or “sticky” interrupts.

2. If the CPU does not support “sticky” interrupts, how can FDI work?

Any interrupt line is raised high for a minimum period of time. If this time is greater than
the maximum interrupt detection time in the flash interrupt polling algorithm, then FDI will
detect the interrupt before the interrupt line transitions.

3. Can data be stored in the main blocks as well?

The current assumption in the software is that all blocks being used for data are
symmetrical in size. This means that any number of 8-KB blocks or 64-KB blocks can be
used for data storage, but not simultaneously.

4. Will FDI support data storage in both the parameter and main blocks simultaneously?

Combining 8-KB and 64-KB blocks together is not impossible, however, the current
software algorithms do not support this option. The spare block must remain the size of the
largest data block size. Extra algorithms are required to allow a combination file system.

FAQs E

A-6

5. Does FDI have any “security” built into it to ensure that my code is safe when writing
data?

The flash program and erase algorithms perform boundary checks on the flash addresses
passed in to the algorithm. This boundary check ensures that the address being accessed
falls within the flash data area being managed.

6. Has FDI been verified on other digital cellular standards like CDMA, DAMPS, or PDC?

In addition to GSM cellular phone validation, verification of the FDI software on other
digital cellular standards will be done in the future.

7. Does Intel have any intentions to standardize this software?

A file system standard is really only necessary when media will be exchanged between
multiple OEM systems. Since this is not the normal case for FDI systems, standardization
is currently not being pursued.

8. What are the licensing rights?

OEMs have royalty-free derivative rights to all source code.

9. What if I need a multi-chip solution? Will FDI still work?

As long as the memory map for the area being managed by FDI is contiguous.

10. Is FDI affected by voltage?

Reclaim and programming performance are directly impacted by voltage. Lower voltages
result in slower reclaim performance and program throughput.

11. Should fixed parameters be handled in the same manner as parameters that are updateable?

Fixed parameters should be grouped together into larger parameters. Any of the individual
portions of the larger parameter can still be read using an offset with the FDI_Read
command. Grouping fixed parameters in this manner allows less media waste due to
granular memory allocations and prevents the data from being placed into multiple instance
structures in which the extra instances will never get used.

E
B

Technical Support

E

B-1

APPENDIX B
TECHNICAL SUPPORT

Intel provides extensive customer support for all of its products. For technical assistance on
flash memory products, please contact Intel’s Customer Support (ICS) team at 1-800-628-8686.
You may also send electronic mail to the ICS team [e-mail* address:
ICS_Flash@ccm.fm.intel.com]. The e-mail* must be of the following form (Note: the colon
following each keyword is required):

Company: [Enter your company’s name]

Name: [Enter your name]

Product: [Enter the specific flash product name, e.g. TE28F160B3-T120]

Question: [Enter your question]

For FDI support, check the FAQ section of this manual. Documentation is available from
Intel’s Flash memory WWW (http://www.intel.com/design/flcomp) page or Bulletin Board
System (BBS). For specific software questions, send e-mail to the flash software team [e-mail
address: flash@inside.intel.com]. Also the flash software team can be reached at 1-916-356-
8922.

E
C

System/Flash
Hardware
Requirements

E

C-1

APPENDIX C
SYSTEM/FLASH HARDWARE REQUIREMENTS

This chapter outlines the system and hardware requirements for implementing the Flash Data
Integrator (FDI): a real-time O/S, interrupt polling, flash, and RAM.

C-1 REAL-TIME O/S
A real-time operating system is required to allow certain FDI tasks to be time sliced with other
system processes. During a reclaim operation for example, the Background Manager (see
Chapter 5, FDI API Specification) shares processing time with other system tasks. The real-
time operating system requirements include multi-tasking and the ability to communicate
between tasks via semaphores or flags.

C-2 INTERRUPTS
Interrupt polling is required to handle real-time interrupts that may occur during flash erase and
programming operations. FDI disables interrupts before initiating a program or erase command.
If a higher level interrupt occurs, a key being pressed on the keypad for example, the program
or erase command is suspended and the required interrupt service routine is then allowed to
execute.

C-3 FLASH
In order to implement FDI, the flash device must support deterministic program and erase
suspend to read. The suspend capability allows the servicing of real-time interrupts (Figure C-1
shows a program suspend example). A spare flash block is also required. This spare block is
used for reclaim (garbage collection). Lastly, the FDI code is estimated to be between 16 KB–
20 KB in size (both the Foreground and Background Manager).

SYSTEM/FLASH HARDWARE REQUIREMENTS E

C-2

Data
is

being
written

to
flash

A
number
on the
keypad

is
pressed

Interrupt
detected
through
polling

algorithms

Flash
programming
suspended

Key press
processed

by
appropriate

ISR

Programming
resumed

FDIC-1

Figure C-1. Example of a Program Suspend

Any flash device which satisfies the above conditions may also use FDI to achieve code plus
data storage within a single flash memory device. Intel’s Smart 3 Advanced Boot Block and
Smart 3 FlashFile™ memory products provide deterministic suspend capability: program can
be suspended in 10 µs maximum (5 µs typical) and erase can be suspended in 20 µs maximum
(10 µs typical).

C-4 RAM
RAM is required to assist FDI in managing data storage to flash. Current estimates indicate
2 Kbytes–3 Kbytes total is required. One Kbyte is used to store the flash program and erase
routines (executed by the Background Manager from flash); the remaining RAM is used as a
data queue and for system variables.

The Foreground Manager stores pending data to be written to flash in the RAM queue; when
spawned, the Background Manager writes the data to flash.

E
D

FDI Licensing
Agreement

E

D-1

APPENDIX D
FDI LICENSING AGREEMENT

INTEL OEM

SOFTWARE LICENSE AGREEMENT

BY USING THIS SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
AGREEMENT. DO NOT USE THE SOFTWARE UNTIL YOU HAVE CAREFULLY READ AND AGREED
TO THE FOLLOWING TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THE TERMS OF THIS
AGREEMENT, PROMPTLY RETURN THE SOFTWARE PACKAGE AND ANY ACCOMPANYING ITEMS.

IF YOU USE THIS SOFTWARE, YOU WILL BE
BOUND BY THE TERMS OF THIS AGREEMENT

LICENSE: Intel Corporation ("Intel") grants you the non-exclusive and royalty-free right to use the enclosed
software program ("Software"). You will not use, copy, modify, rent, sell or transfer the Software or any portion
thereof, except as provided in this Agreement.

OEM System Developers may:

1. Copy the Software for support, backup or archival purposes;

2. Install, use, or distribute Intel owned Software in object code form only;

3. Modify and/or use Software source code that Intel directly ships to you as an OEM;

4. Install, use, modify, distribute, and/or make or have made derivatives ("Derivatives") of Intel owned
Software under the terms and conditions in this Agreement, ONLY if you are an OEM system developer
and NOT an end-user.

RESTRICTIONS:

YOU WILL NOT:

1. Copy the Software, in whole or in part, except as provided for in this Agreement;

2. Decompile or reverse engineer Software provided in object code format;

3. Remove or modify the "Compatibility" module, if any, in the Software or in any Derivative work.

TRANSFER: You may transfer the Software to another party if the receiving party agrees to the terms of this
Agreement at the sole risk of any receiving party.

OWNERSHIP AND COPYRIGHT OF SOFTWARE: Title to the Software and all copies thereof remain with
Intel or its vendors. The Software is copyrighted and is protected by United States and international copyright

FDI LICENSING AGREEMENT E

D-2

laws. You will not remove the copyright notice from the Software. You agree to prevent any unauthorized
copying of the Software.

DERIVATIVE WORK: OEMs that make or have made Derivatives will not be required to provide Intel with a
copy of the source or object code. OEMs shall be authorized to use, market, sell, and/or distribute Derivatives
at their own risk and expense. Title to Derivatives and all copies thereof shall be in the particular OEM creating
the Derivative. OEMs shall remove the Intel copyright notice from all Derivatives if such notice is contained in
the Software source code.

DUAL MEDIA SOFTWARE: If the Software package contains multiple media, you may only use the medium
appropriate for your system.

 WARRANTY: The Software is provided "AS IS". Intel warrants that the media on which the Software is
furnished will be free from defects in material and workmanship for a period of one (1) year from the date of
purchase. Upon return of such defective media, Intel’s entire liability and your exclusive remedy shall be the
replacement of the Software.

THE ABOVE WARRANTIES ARE THE ONLY WARRANTIES OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE.

LIMITATION OF LIABILITY: NEITHER INTEL NOR ITS VENDORS OR AGENTS SHALL BE LIABLE FOR
ANY LOSS OF PROFITS, LOSS OF USE, LOSS OF DATA, INTERRUPTION OF BUSINESS, NOR FOR
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND WHETHER UNDER
THIS AGREEMENT OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TERMINATION OF THIS LICENSE: Intel reserves the right to conduct or have conducted audits to verify your
compliance with this Agreement. Intel may terminate this Agreement at any time if you are in breach of any of
its terms and conditions. Upon termination, you will immediately destroy, and certify in writing the destruction
of, the Software or return all copies of the Software and documentation to Intel.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Software and documentation were developed at private
expense and are provided with "RESTRICTED RIGHTS". Use, duplication or disclosure by the Government is
subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

EXPORT LAWS: You agree that the distribution and export/re-export of the Software is in compliance with the
laws, regulations, orders or other restrictions of the U.S. Export Administration Regulations.

APPLICABLE LAW: This Agreement is governed by the laws of the State of California and the United States,
including patent and copyright laws. Any claim arising out of this Agreement will be brought in Santa Clara
County, California.

E
E

Additional
Information

E

E-1

APPENDIX E
ADDITIONAL INFORMATION

Order
Number

Document/Tool

210830 1997 Flash Memory Databook

290580 Smart 3 Advanced Boot Block 4-Mbit, 8-Mbit, 16-Mbit Flash Memory Family Datasheet

292148 AP-604 604 Using Intel’s Boot Block Flash Memory Parameter Blocks to Replace
EEPROM

292199 AP-641 Achieving Low Power with Advanced Boot Block Flash Memory

292200 AP-642 Designing for Upgrade to Smart 3 Advanced Boot Block Flash Memory

NOTE:

1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International
customers should contact their local Intel or distribution sales office.

2. Visit Intel’s World Wide Web home page at http://www.Intel.com for technical documentation and tools.

	TITLE PAGE
	CHAPTER 1-Technical Overview
	CHAPTER 2-EEPROM Replacement with Flash Memory
	2.1 INTRODUCTION
	2.2 MEMORY FUNDAMENTALS
	2.2.1 Memory Architecture
	2.2.2 Program/Erase Timing
	2.2.3 Specialized Flash RWW Circuits
	2.2.4 New Hardware Assisted Suspend to Read/Write

	2.3 FLASH DATA INTEGRATOR SOFTWARE STRUCTURE
	2.3.1 Flash Data Integrator Functional Overview
	2.3.2 EEPROM Parameter Types
	2.3.3 Parameter Storage and Management
	2.3.4 Read Latency
	2.3.5 Real Time Interrupt Support
	2.3.6 FDI Features

	2.4 DEVELOPMENT RESOURCES
	2.5 SYSTEM REQUIREMENTS
	2.5.1 Random Access Memory Requirements
	2.5.2 Flash Memory Requirements

	2.6 PARAMETER CYCLING
	2.7 POWER LOSS RECOVERY
	2.8 ENRICHED DATA STORAGE AND REMOTE CODE UPDATES
	2.9 CONCLUSION

	CHAPTER 3-FDI Architecture and API Specification
	3.1 INTRODUCTION
	3.1.1 Scope
	3.1.2 Purpose
	3.1.3 System Overview
	3.1.4 Document Overview

	3.2 FLASH DATA INTEGRATOR REFERENCES
	3.2.1 Glossary
	3.2.1.1 DEFINITIONS
	3.2.1.2 ACRONYMS
	3.2.1.3 ABBREVIATIONS

	3.2.2 References

	3.3 FLASH DATA INTEGRATOR GENERAL DESCRIPTION
	3.3.1 Flash Data Integrator Product Perspective
	3.3.2 Foreground APIs
	3.3.3 Background Manager
	3.3.4 Initialization
	3.3.4.1 POWER LOSS RECOVERY PROCESS

	3.3.5 Low Level Code and Interrupt Handling
	3.3.6 Implementation Constraints
	3.3.7 Assumptions, Dependencies and Limitations

	3.4 FLASH DATA INTEGRATOR DETAILED DESIGN
	3.4.1 Media Control Structures
	3.4.1.1 CONTROL STRUCTURES USED BY FDI
	3.4.1.2 HOW FDI USES CONTROL STRUCTURES
	3.4.1.3 RAM USAGE AND CONTROL STRUCTURES

	3.4.2 MODULES
	3.4.2.1 FOREGROUND API SUB-SYSTEM
	3.4.2.2 BACKGROUND MANAGER SUB-SYSTEM
	3.4.2.3 BOOT CODE MANAGER SUB-SYSTEM
	3.4.2.4 COMMAND DATA QUEUE SUB-PROGRAMS
	3.4.2.5 SUPPORTING SUB-PROGRAMS

	3.5 RETURN ERROR CODES

	CHAPTER 4-FDI Test Specification
	4.1 INTRODUCTION
	4.2 DEFINITIONS AND CONVENTIONS
	4.3 SYSTEM ENVIRONMENT SOFTWARE ARCHITECTURE
	4.3.1 PC User Interface
	4.3.2 PC Asynchronous Communication
	4.3.3 Embedded Asynchronous Communication
	4.3.4 Embedded GSM Emulation Software

	4.4 PARAMETER STORAGE EMULATION
	4.5 TIMING ENVIRONMENT
	4.5.1 TDMA Time Slots
	4.5.2 TDMA Frames
	4.5.3 TDMA Multi-Frames
	4.5.3.1 SIGNALING MULTI-FRAME
	4.5.3.2 TRAFFIC MULTI-FRAME

	4.5.4 TDMA Super-Frame
	4.5.5 TDMA Hyper-Frame
	4.5.6 Background CPU Availability
	4.5.7 Communication Channels

	4.6 TEST ENVIRONMENT COMMANDS
	4.6.1 Test Script Commands
	4.6.1.1 CALL ESTABLISHMENT
	4.6.1.2 LOCATION UPDATE
	4.6.1.3 LOOP
	4.6.1.4 WAIT
	4.6.1.5 SEND SMS
	4.6.1.6 CALL CLEARING
	4.6.1.7 DETERMINE RANDOM PARAMETER
	4.6.1.8 FILL BUFFER WITH DATA

	4.6.2 User Commands
	4.6.2.1 DOWNLOAD SCRIPT
	4.6.2.2 RUN SCRIPT
	4.6.2.3 PAUSE SCRIPT
	4.6.2.4 STOP SCRIPT
	4.6.2.5 KEYPAD INPUT
	4.6.2.6 PARAMETER UPDATE COMMAND
	4.6.2.7 PARAMETER READ COMMAND
	4.6.2.8 STATUS UPDATE
	4.6.2.9 MISCELLANEOUS

	4.7 PC TEST FUNCTIONALITY
	4.7.1 Functionality Overview
	4.7.2 Asynchronous Interface
	4.7.3 User Interface

	4.8 EMBEDDED GSM EMULATION FUNCTIONALITY
	4.8.1 Functionality Overview
	4.8.2 Asynchronous Interface (MMI)
	4.8.3 Layer 2 Emulation
	4.8.4 Layer 3 Emulation
	4.8.4.1 RADIO RESOURCE CONTROL
	4.8.4.2 MOBILITY MANAGEMENT
	4.8.4.3 CALL CONTROL

	4.8.5 RSLC Emulation/Main Control

	APPENDIX A-FAQs
	OVERVIEW
	HARDWARE QUESTIONS
	SOFTWARE QUESTIONS
	RECLAIM QUESTIONS
	GENERAL QUESTIONS

	APPENDIX B-Technical Support
	APPENDIX C-System/Flash Hardware Requirements
	C-1 REAL-TIME O/S
	C-2 INTERRUPTS
	C-3 FLASH

	APPENDIX D-FDI Licensing Agreement
	APPENDIX E-Additional Information
	FIGURES
	Figure 1-1. Typical Memory Subsystem in Today’s Designs
	Figure 1-2. Relative Cost and Die Sizes of Differing Approaches to Code Plus Data Storage
	Figure 2-1. Intel’s Flash Memory Architectures
	Figure 2-2. Maximum Write Timing
	Figure 2-3. Cycling Effects on Erase Time
	Figure 2-4. Comparison of Standard and Specialized Flash Meory Architecutres for RWW
	Figure 2-5. Program Suspend/Resume Flowchart
	Figure 2-6. Block Erase Suspend/Resume Flowchart
	Figure 2-7. FDI Information Flow between Flash and SRAM Memory
	Figure 2-8. Flash Media Manager
	Figure 3-1. Simplified System Software Architecture
	Figure 3-2. Simplified System Software Architecture Using FDI
	Figure 3-3. Software Flash Data Integrator Data Flow Diagram
	Figure 3-4. Code + Data Storage Arrangement in Flash
	Figure 3-5. Data Block Arrangement
	Figure 3-6. Example of Multiple Instances
	Figure 3-7. Parameter Update with New Instance
	Figure 3-8. Placement of Block Information
	Figure 3-9. A Sequence Table Example
	Figure 3-10. Data Queue Structure
	Figure 3-11. Reclaim Candidate and Spare
	Figure 3-12. Transferring Valid Data to the Spare Block
	Figure 3-13. Erasing the Reclaim Block
	Figure 3-14. Status after Reclamation
	Figure 4-1. System Overview
	Figure 4-2. Software Overview
	Figure 4-3. Time Division Multiple Access Overview
	Figure 4-4. Time Division Duplex in the GSM System
	Figure 4-5. Signaling Multi-Frame
	Figure 4-6. High-Level Simulation Task Interaction

	TABLES
	Table 2-1. Die Area Comparison of Memory Technology
	Table 2-2. Comparison of Flash and EEPROM
	Table 2-3. Flash Memory Erase and Program Timings
	Table 2-4. Comparison of Hardware Assisted Flash Memory Architectures
	Table 2-5. EEPROM Data Parameters
	Table 2-6. Projected EEPROM Emulation Development Time
	Table 3-1. Unit Header Structure Status Field Definitions
	Table 3-2. Unit Header Structure Type Field Definitions
	Table 3-3. Multiple Instance Structure ValidOfInst Field Definitions
	Table 3-4. Block Information Structure Status Field Definitions
	Table 3-5. Data Location Structure Type Field Definitions
	Table 4-1. GSM Parameter Storage Summary

