inte|® AP-627

APPLICATION
NOTE

Byte-Wide FlashFile™
Memory Family Software
Drivers

BRIAN DIPERT
MCD MARKETING
APPLICATIONS

KEN MCKEE
TECHNICAL MARKETING
ENGINEER

April 1996

Order Number: 292182-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer Products may have
minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and iCOMP trademarks
has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996 CG-041493

]
I ntel ® AP-627

PAGE PAGE

1.0 INTRODUCTIONooviiiiiiniirieieieieesie e 5 TABLES

Table 1. Software Compatibility Checklist.............
2.0 SOFTWARE COMPATIBILITY ..ccoviiiiiinirine 5))

Table 2. Device Codes for the Byte-Wide
3.0 CONCLUSION oo 6 FlashFile™ Memory Family...................

Table 3. Status Register Definition.......................
APPENDIX A ..ottt 7
APPENDIX B ...ttt 13
APPENDIX C ..ottt 21

AP-627
REVISION HISTORY
Number Description
-001 Original version

intal.

1.0 INTRODUCTION

This application note provides example software for
controlling Intel's byte-wide FlashFile™ memory
family which includes the 28F004SC, 28F008SA,
28F008SC, and 28F016SC. Two programming
languages are provided: ASM86 assembly and high-
level “C” for multi-platform sipport. In many cases, the
driver routines can be inserted “as is” into the main
body of code being developed by the software engineer.
Each routine includes extensive comments to facilitate
adapting the code to specific applications.

The devices’ internal automation makes software timing
loops unnecessary and results in platform-independent
code. This software executes in any type of memory
and with all processor clock rates. “C” code ports easily
to many microprocessors, while ASM86 assembly code
provides a solution optimized for Intel microprocessors
and embedded controllers.

Below is a list of software driver assumptions.

* Pointers (in “C") or EDI offsets (in ASM86) are four
bytes long, providing a flat addressing space over
the entire memory space.

* A ‘“char”is 8 bits, “int” is 16 bits and “long” is 32
bits in “C.”

* A “set_pin” function controls high voltage on RP#.
The function enables in-system hardware block

locking.
* Writes and reads are to one device. Minor

modifications are needed for a device pair.

2.0 SOFTWARE COMPATIBILITY
The 28F008SA is software compatible with the
28F004SC, 28F008SC, and 28F016SC. These

components also share a common status register
definiton. The SmartVoltage FlashFile memory
devices, the 28F004SC, 28F008SC, and 28F016SC,
provide a superset of software commands to enable new
and enhanced features. Table 1 highlights the common
and new commands.

AP-627

Table 1. Software Compatibility Checklist

28F004SC
28F008SC
Procedure 28F008SA | 28F016SC
block_erase v v
byte_write v v
erase_suspend_to_read v v
erase_suspend_to_write v
write_suspend_to_read v
set_block_lock_bit v
set_master_lock_bit v
clear_block_lock_bits v
read_identifier_codes v v
SR_full_status_check v v
Because of density differences and software

enhancements, the devices do not share the same device
code. This difference allows for software component
identification. System software can read the device code
and select the appropriate algorithms for the given
component.

Table 2. Device Codes for the
Byte-Wide FlashFile™ Memory Family

Device Device Code (Hex)
28F004SC/SC-L A7
28F008SA-L Al
28F008SA A2
28F008SC/SC-L A6
28F016SC/SC-L AA

AP-627
Table 3. Status Register Definition
Bit Description Status
SR.7 WSM Status 1 = Ready
0 = Busy
SR.6 Erase Suspend Status 1 = Erase Suspended
0 = Erase in Progress/Completed
SR.5 Erase and Clear Lock-Bits Status 1 = Error in Block Erase or Clear Block Lock-Bits
0 = Successful Block Erase or Clear Block Lock-Bits
SR.4 Byte Write and Set Lock-Bit Status | 1 = Error in Byte Write or Set Block/Master Lock-Bit
0 = Successful Byte Write or Set Block/Master Lock-Bit
SR.3 Vpp Status 1 = Vpp Low Detect, Operation Abort
0 =Vpp OK
SR.2 Byte Write Suspend Status 1 = Byte Write Suspended
0 = Byte Write in Progress/Completed
SR.1 Device Protect Status 1 = Block Lock-Bit, Master Lock-Bit and/or RP# Lock
Detected, Operation Abort
0 = Unlock
SR.0 Reserved for Future Use
NOTE:

Underlined text ONLY applies to the 28F004SC, 28F008SC, and 28F016SC.

The example code makes use of bit masking when
reading information from the status register. Table 3
defines the meaning of status register bits for the
28F008SA and byte-wide SmartVoltage FlashFile
memories. Note that bits SR.2 and SR.1 provide
additional system feedback for the 28F004SC,
28F008SC, and 28F016SC. These bits were added to
support the new features and previously reserved for
future use in the 28FO08SA status register definition.
Code written for the 28F008SA should mask these two
bits when polling the status register.

3.0 CONCLUSION

This application note provides example code for the Intel
byte-wide FlashFile memory family. This information
facilitates software development. For further information
about these components, consult reference
documentation in Appendix C.

]
I ntel ® AP-627

APPENDIX A
"C" DRIVERS

/***********************‘k‘k‘k‘k‘k‘k**/

/* Header filefor “C” drivers for Intel's byte-wide FlashFile memory family */

/ /

/ /

/* Copyright Intel Corporation, 1996 */
/* File: stddefs.h */
/* Standard definitions for C Drivers for Intel's byte-wide FlashFile memory family */
* Author: Ken McKee *
/* Revision 1.0, January 1, 1996 */
/ /

/ /

[* error codes *
/ /

#defineNO_ERROR 0

#define VPP_ERROR 1

#defineWRITE_ERROR 2

#define ERASE_ERROR 3

#defineBLOCK_PROTECTION_ERROR 4 /* ONLY valid for the 28F0xxSC. */
#define COMMAND_SEQ_ERROR 5

/ /

I* bit mask */
/ /

#define BIT_O 0x01

#defineBIT_1 0x02

#define BIT_2 0x04

#defineBIT_3 0x08

#defineBIT_4 0x10

#defineBIT_5 0x20

#define BIT_6 0x40

#defineBIT_7 0x80

]
AP-627 I ntel ®

/***********************‘k‘k‘k‘k‘k‘k**/

[* “C” drivers for Intel's byte-wide FlashFile memory family */
/ /
/ /
/* Copyright Intel Corporation, 1996 */
/* Example C Routines for Intel's byte-wide FlashFile memory family */
[* File: ff_drv.c */
* Author: Ken McKee *
/* Revision 1.0, January 1, 1996 */
/ /
#include <stdio.h>
#include " stddefs.h"
void set_pin(int level) /* Controls RP# voltage. */
/* An implementation-dependent function that controls RP# high voltage (2 8FOxxSC ONLY). */
}
char block_erase(char *address) /* Works for the 28FO08SA and 28F0xxSC. */
{
/* This procedure erases a 64-Kbyte block. */
char SR; /* SR variable returns content of SR. */
address = 0x20; / Block Erase command. */
address = 0xDO; / Confirm command. *
while(!(BIT_7 & *address)) /* Poll SR until SR.7 = 1. *
/* Erase may be suspended here to read or write to a different block.
b
SR =*address; /* Save SR before clearing it. */
address = 0x50; / Clear SR command and place device in read mode. */
return(SR); /* Return SR to be checked for status of operation. */
}
char byte write(char *address, char data) /* Works for the 28FO008SA and 28F0xxSC. */
/* This procedure writes a byte. */
char SR; /* SR variable returns content of SR. */
address = 0x40; [Byte Write command. */
address = data; / Actual data write to flash address. */
while(!(BIT_7 & *address)) /* Poll SR until SR.7 = 1. *
[* Byte write may be suspended here to read from a different location (28FOxxSC ONLY).*/
b
SR =*address; /* Save SR before clearing it. */
address = 0x50; / Clear SR command and place device in read mode. */
return(SR); /* Return SR to be checked for status of operation. */
}

intal.

AP-627
void erase suspend_to_read(char *address, char *result)
* Works for the 28FO08SA and 28FOxxSC. */
{
[* This procedure suspends an erase operation to do aread. It assumes erase is underway. */
/* The procedure works equally well for the 28FO08SA and 28F0xxSC. */
address = 0xBO; / Block Erase Suspend command. */
while(!(BIT_7 & *address)); * Poll SR until SR.7=1. */
address = OXFF; / Read Flash Array command. */
*result = *address; /* Do the actual read. Any number of reads can be */
* done here. */
*address = 0x70; * Read SR command. */
if (BIT_6& *address) /* 1f SR.6 = 1 (erase incomplete). */
address = 0xDO; I Block Erase Resume command */
}
void erase suspend_to_write(char *address, char data)
* Works for the 28FOxxSC ONLY . */
{
/[* This procedure suspends an erase operation to do a byte write. It assumes erase is underway. */
/* The procedure ONLY applies to the 28FOxxSC. */
address = 0xBO; / Block Erase Suspend command. */
while(!(BIT_7 & *address)); * Poll SR until SR.7=1. */
address = 0x40; / Byte Write command. */
*address = data; * Actual datawrite to flash address. */
while(!(BIT_7 & *address)) * Poll SR until SR.7=1. */
/* Byte write may be suspended here to read from a different location (28FOxxSC ONLY). */
5
if (BIT_6& *address) /* 1f SR.6 = 1 (erase incomplete). */
*address = 0xDO; * Block Erase Resume command. */
}
void byte suspend_to_read(char *address, char *result)
* Works for the 28FOxxSC ONLY . */
{
* This procedure suspends an byte write operation to do aread. It assumes write is underway. */
* The procedure ONLY applies to the 28F0xxSC. */
address = 0xBO; / Block Erase Suspend command. */
while(!(BIT_7 & *address)); * Poll SR until SR.7=1. */
address = OXFF; / Read Flash Array command */
*result = *address; /* Do the actual read. Any number of reads can be */
* done here. */
*address = 0x70; * Read SR command. */
if (BIT_2& *address) /* If SR.2 =1 (byte write incomplete). */
*address = 0xDO; * Erase Resume command. */
}

AP-627

char set_block_lock_bit(char *lock_address)

}

char set_master_lock_bit(char *lock_addr ess)

/* Works for the 28FOxxSC ONLY .

/* This procedure sets a block lock-bit on the 28FOxxSC.

char SR;

/* If the master lock-bit is set, RP# = Vhh
/* set_pin(1); */

*|lock_address = 0x60;
*|lock_address = 0x01;
while (!(BIT_7 & *lock_address);

/* SR variable returns content of SR.

/* Enable high voltage on to RP

/* Set Block Lock-Bit command.
/* Set block lock-bit confirmation.
/* Poll SR until SR.7 = 1.

/* If the Master lock-bit is set return RP# to Vih.

* set_pin(0); */

SR =*lock_address;
*|lock_address = 0x50;
return(SR);

/* Disable high voltage on to RP#.
/* Save SR before clearing it.

/* Clear SR command and place device in read mode.
/* Return SR to be checked for status of operation.

/* Works for the 28FOxxSC ONLY .

* This procedure sets the master lock-bit on the 28FOxxSC.

char SR;

set_pin(1);

*|lock_address = 0x60;
*|lock_address = OxF1;

while (!(BIT_7 & *lock_address);
set_pin(0);

SR =*lock_address;
*|lock_address = 0x50;
return(SR);

/* SR variable returns content of SR.

/* Enable high voltage on to RP#.

I* Set Master Lock-Bit command.

I* Set master lock-bit confirmation.

/* Poll SR until SR.7=1.

/* Disable high voltage on to RP#.

/* Save SR before clearing it.

/* Clear SR command and place device in read mode.
/* Return SR to be checked for status of operati on.

*/

*/

*/

*/
*/

*/
*/
*/

*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

10

]
I ntel ® AP-627

char clear_block_lock_bits(char *lock_address) /* Works for the 28F0xxSC ONLY . */

{
[* This procedure clears all block lock-bits on the 28F0xxSC. */
char SR; * SR variable returns content of SR. */
* If the Master lock-bit is set, RP# = Vhh */
/* set_pin(1); */ /* Enable high voltage on to RP#. */
|lock_address = 0x60; / Clear Block Lock-Bits command. */
|lock_address = 0xDO; / Clear block lock-bits confirmation. */
while (!(BIT_7 & *lock_address); * Poll SR until SR.7=1. */
* If the Master lock-bit is set return RP# to Vih. */
* set_pin(0); */ /* Disable high voltage on to RP#. */
SR =*lock_address; /* Save SR before clearing it. */
|lock_address = 0x50; / Clear SR command and place deviceinread mode. */
return(SR); /* Return SR to be checked for status of operation. */

}

char read_identifier_codes(char *address) /* Works for the 28FO08SA and 28F0xxSC. */

{
* This procedure provides access to the 28F0xxSC’ s Manufacture Code, Device Code, */
/* Master/Block Lock Configuration Code. Aswell, this procedure can provide access to the */
[* 28F008SA’s Manufacture Code and Device Code. */
char code; * 1D code variable returned */
address = 0x90; / Read Identifier Codes command. */
code = *address; [* Store code. */
address = OXFF; / Read Flash Array command */
return(code); /* Return value. */

}

11

INn

tel.

AP-627
char SR_full_status_check(char SR) * Works for the 28FO08SA and 28FOxxSC. */
{
/* This procedure performs afull SR check. It isvalid for byte write, block erase, lock-bet setand ~ */
/* block lock-bit reset operations. */
I* */
/* Note: This procedure assumes that SR dataresidesin SR. Thisinformation is placed in the */
I* variable after the completion of each operation. If an error is detected, the previous */
I* operation should be executed again. */
char error_code; [* returns error code. */
if (SR & BIT_3) * Vpp range error check. */
error_code=VPP_ERROR; /* Set error code. */
eseif (SR& BIT_1) /* Device protection error check. */
error_code=BLOCK_PROTECTION_ERROR;
I* Set error code. ONLY valid for the 28FO0SC. This */
I* check should be remove for the 28FO08SA. */
eseif (SR & BIT_4){ [* Byte write error check. */
if (SR & BIT_5) /* Command sequence error check. */
error_code= COMMAND_SEQ_ERROR;
I* Set error code. */
else
error_code=BYTE_WRITE_ERROR; /* Set byte write error code. */
}
elseif (SR & BIT_5) I* Block erase error check. */
error_code= ERASE_ERROR;
I* Set error code. */
else * No error detected. */
error_code=NO_ERROR,; [* Set error code. */
return(error_code); /* Return error code. */

12

]
I ntel ® AP-627

APPENDIX B
ASM86 DRIVERS

; ASM86 assembly language drivers for Intel's byte-wide FlashFile memory family

i

; Copyright Intel Corporation, 1996

; EXAMPLE ASMB86 Drivers for Intel's byte-wide FlashFile memory family
; Author: Ken McKee, Intel Corporation

; Revision 1.0, January 1, 1996

; NOTE: The code assumes 32-bit flat model protected mode for simplicity. i.e. ES contains 0 and EDI
; accesses the entire memory space.

i

TEXT segment byte public 'CODE’
assume cs.TEXT

; Following is the structure by which all parameters are passed.

params STRUCT
erase_addr DD ? ; base of block or device to erase.
write_addr DD ? ; address to write to.
write base DD ? ; base address of block written to.
read_addr DD ? ; address to read from.
read_base DD ? ; base address of block read from.
read_id DD ? ; address to read device code from.
block_lock_addr DD ? ; base address of block to lock.
master _addr DD ? ; base address for the Master Lock-Bit
data_addr DD ? ; address of data to write.
data DB ? ; data byte to write.

params ENDS

; Defines

; Error Codes

NO_ERROR DW 0

VPP_ERROR Dw 1

WRITE_ERROR DW 2

ERASE_ERROR Dw 3

BLOCK_PROTECTION_ERROR DW 4 ; ONLY valid for the 28FOxxSC.

COMMAND_SEQ_ERROR DW 5

13

]
AP-627 I ntel ®

; MACRO set_pin

; This macro pushes parameters needed for the set_pin routine, calls pin_control, and then pops those

; parameters. set_pin is an implementati on-dependent function which enables high voltage on the RP# pin.

; Thismacro is used in the Master and Block Lock-Bit procedures which are ONLY valid for the 28FOxxSC.

Data needed at the beginning of this macro:

; level: level to set pin
; Trashes: CL
set_ pin MACRO leve
push level ; Push logic level of pin
call near ptr pin_control ; Call pin_control
pop CL ; Pop off parameters
ENDM

- PROCEDURE block_erase
; This procedure erases a 64K byte block on the 28F008SA and 28FOxxSC.

: Param fields needed:
; erase_address: offset of base block to erase

; Output AL: holds SR information

i)lock_erase proc near
mov EDI,params.erase_addr
mov BYTE PTR ES:[EDI],020H ; Block Erase command
mov ES:[EDI],0D0OH ; Block erase confirm

; Notethat it is not strictly necessary to write an erase command to the base of a block any
; address within the block will do.

WSM_busy:
mov AL,ES[EDI] ; Read SR.
test AL ,080H ; If SR.7 =0, test sets ZF.

; Erase may be suspended here to read/write from/to a different block.

jz short WSM _busy ; Loop while ZF is set.
mov BYTE PTR ES:[EDI],050H ; Clear Status Registers command and place into read mode.
ret ; Return to calling routine.

block_erase endp

14

]
I ntel ® AP-627

- PROCEDURE byte write
; This procedure writes a byte to the 28FO08SA and 28F0xxSC.

. Param fields needed:
) params.data: data word to be written
; params.write_addr: offset address to write

; Output: AL: holds SR information
byte write proc near
mov EDI,params.write_addr
mov BYTE PTR ES:[EDI],040H ; Write To Flash command
mov ES:[EDI],params.data ; Write data to 28FOxxSC.
WSM_busy1:
mov AL,ES[EDI] ; Read SR
test AL ,080H ; If SR.7 =0, test sets ZF.

; Byte write may be suspended here to read from a different block.

jz short WSM_busy1 ; Loop while ZF is set.
mov BYTE PTR ES:[EDI],050H ; Clear Status Registers command and place into read mode.
ret ; Return to calling routine.

byte write endp

- PROCEDURE erase suspend to_read
; This procedure suspends an erase operation to do aread. The procedure assumes that an erase
; operation is underway. This procedure is valid for the 28FO08SA and 28F0xxSC.

; Param fields needed:
; params.read_addr: offset address to read

; Output: AL: holds SR information

; CL: dataread from the address in params.read_addr

erase suspend_to read proc near

mov EDI,params.read_addr ; Set up offset of erase address.
mov BYTE PTR ES:[EDI],0B0H ; Erase Suspend command
WSM _busy?2:
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,080H ; If SR.7 =0, test sets ZF.
jz short WSM _busy?2 ; Loop while ZF is set.
mov BYTE PTR ES[EDI],0FFH ; Read Flash command
mov CL,ES:[EDI] ; Do actual read; put result in CL.

; Arbitrary number of reads can be done here.

mov BYTE PTR ES:[EDI],070H ; Read SR command
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,040H ; If SR.6 =0, indicating that there is no erase suspended.
jz short continue ; Jump to continue if ZF is set.
mov BYTE PTR ES:[EDI],0DOH ; Erase Resume command
continue:
ret ; Return to calling routine.

erase suspend_to read endp

15

]
AP-627 I ntel ®

- PROCEDURE erase suspend_to_write
; This procedure suspends an erase operation to do a byte write. The procedure assumes that an erase
; operation is underway. ONLY valid for the 28F0xxSC.

. Param fields needed:
) params.write_addr: offset block to erase
params.params.data: offset address to read

; Output: AL: holds SR information
erase_suspend_to_write proc near
mov EDI,params.write_addr ; Set up offset of erase address.
mov BYTE PTR ES:[EDI],0B0H ; Erase Suspend command
WSM _busy3:
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,080H ; If SR.7 =0, test sets ZF.
jz short WSM_busy3 ; Loop while ZF is set.
mov BYTE PTR ES:[EDI],040H ; Byte Write command
mov ES:[EDI],params.data ; Write data.
WSM _busy4:
mov AL,ES[EDI] ; Read SR
test AL ,080H ; If SR.7 =0, test sets ZF.
jz short WSM _busy4 ; Loop while ZF is set.

; Arbitrary number of writes can be done.

mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,040H ; If SR.6 =0, indicating that there is no erase suspended.
jz short continuel ; Jump to continue if ZF is set.
mov BYTE PTR ES:[EDI],0DOH ; Erase Resume command
continuel:
ret ; Return to calling routine.

erase_suspend_to write endp

16

intal.

AP-627
; PROCEDURE write_suspend_to_read
; This procedure suspends a byte write operation to do aread. The procedure assumes that a
; byte write operation is underway. ONLY valid for the 28F0xxSC.
; Param fields needed:
; params.read_addr: offset address to read
; Output: AL: holds SR information
; CL: dataread from the address in params.read_addr
write suspend_to read proc near
mov EDI,params.read_addr ; Set up offset of erase address.
mov BYTE PTR ES:[EDI],0B0H ; Erase Suspend command
WSM _busy5:
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,080H ; If SR.7 =0, test sets ZF.
jz short WSM _busy5 ; Loop while ZF is set.
mov BYTE PTR ES[EDI],0FFH ; Read Flash command
mov CL,ES:[EDI] ; Do actual read; put result in CL.
; Arbitrary number of reads can be done here.
mov BYTE PTR ES:[EDI],070H ; Read SR command
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,004H ; If SR.2 =0, indicating that there is no erase suspended.
jz short continue2 ; Jump to continue if ZF is set.
mov BYTE PTR ES:[EDI],0DOH ; Erase Resume command
continue2:
ret ; Return to calling routine.

write suspend_to _read endp

17

]
AP-627 I ntel ®

: PROCEDURE set_block_lock_bit
; This procedure sets a block lock-bit on the 28FOxxSC. ONLY valid for the 28FOxxSC.

: Param fields needed:
; params.block_lock_addr: offset of base block to lock

Output: AL: holds SR information
,set_block_lock_bit proc near
mov EDI,params.block_lock_addr ; Set up offset of address.
; If Master lock-bit is set, RP = Vhh.
;set_pin 1 ; Enable high voltage on to RP#.
mov BYTE PTR ES:[EDI],060H ; Set Block Lock-Bit command.
mov BYTE PTR ES:[EDI],001H ; Block lock-bit confirmation command.
WSM _busy6:
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,080H ; If SR.7 =0, test sets ZF.
jz short WSM _busy6 ; Loop while ZF is set
; If Master lock-bit was set return RPto Vih.
;setpin O ; Disable high voltage on to RP#.
mov BYTE PTR ES:[EDI],050H ; Clear Status Registers command and place into read mode.
ret ; Return to calling routine.

set_block_lock_bit endp

- PROCEDURE ~ set_master_lock_bit
; This procedure sets the master lock-bit on the 28F0xxSC. ONLY valid for the 28F0xxSC.

: Param fields needed:
; params.master_addr: offset of base Master Lock-Bit

; Output: AL: holds SR information
set_master_lock_block proc near

mov EDI,params.master_addr ; Set up offset of address.

set pin 1 ; Enable high voltage on to RP#.

mov BYTE PTR ES:[EDI],060H ; Set Master Lock-Bit command.

mov BYTE PTR ES:[EDI],0F1H ; Master lock-bit confirmation command.
WSM_busy7:

mov AL ,ES:[EDI] ; Read SR from any address.

test AL ,080H ; If SR.7 =0, test sets ZF.

jz short WSM _busy7 ; Loop while ZF is set

set pin O ; Disable high voltage on to RP#.

mov BYTE PTR ES:[EDI],050H ; Clear Status Registers command and place into read mode.

ret ; Return to calling routine.
set_master_lock_bit endp

18

]
I ntel ® AP-627

- PROCEDURE clear_block_lock_bits
; This procedure resets the block lock-bits on the 28F0xxSC. ONLY valid for the 28FOxxSC.

: Param fields needed:
; params.block_lock_addr: offset of base block

Output: AL: holds SR information
l:lear_block_lock_bits proc near
mov EDI,params.block_lock_addr ; Set up offset of address.
; If Master lock-bit is set, RP = Vhh.
;set_pin 1 ; Drive high voltage on to RP#.
mov BYTE PTR ES:[EDI],060H ; Clear Block Lock-Bits command
mov BYTE PTR ES:[EDI],0DOH ; Confirmation command
WSM _busy8:
mov AL ,ES:[EDI] ; Read SR from any address.
test AL ,080H ; 1f SR.7 =0, test sets ZF.
jz short WSM _busy8 ; Loop while ZF is set.
; If Master lock-bit was set return RPto Vih.
;set_pin O ; Drive high voltage on to RP#.
mov BYTE PTR ES:[EDI],050H ; Clear Status Registers command and place into read mode.
ret ; Return to calling routine.
clear_block_lock_bits endp

- PROCEDURE read_identifier_codes
; This procedure provides access to device codes. This procedure is valid for the 28FO08SA and 28F0xxSC.

: Param fields needed:
; params.read_id: offset of baseid

; Output: CL: dataread from the device
read_identifier_codes proc near
mov EDI,params.read_id ; Set up offset of address.
mov BYTE PTR ES:[EDI],090H ; Read |dentifier Codes command.
mov CL,ES:[EDI] ; Device code data.
mov BYTE PTR ES:[EDI],0FFH ; Read Array command.
ret ; Return to calling routine.

read_identifier_codes endp

19

]
AP-627 I ntel ®

“PROCEDURE SR _full_status check
; This procedure performs afull status register check. It isvalid for byte write, block erase, block-bit set
; and block-hit reset operations. This procedureis valid for the 28FO08SA and 28F0xxSC.

; Note: This procedure assumes the status register dataresidein the AL. Thisinformationisplacein AL
; after the completion of each operation. If an error is detected, the previous operation should be
; executed again.

; Output: ~ CL : error code

SR_full_status check proc near

vpp_check:
test AL ,008H ; 1f SR.3=0, test sets ZF.
jz device protection_check ; Next check if ZF is set.
mov CL,VPP_ERROR ; Place error codein CL.
jmp continue3 ; Jump to end of SR check.
device protection_check:
test AL ,002H ; 1f SR.1=0, test sets ZF.
jz command_seq_check ; Next check if ZF is set.

mov CL,BLOCK_PROTECTION_ERROR
; Place error codein CL. ONLY valid for the 28FOxxSC

jmp continue3 ; Jump to end of SR check.
command_seq_check:

test AL ,010H ; 1f SR4 =0, test sets ZF.

jz block_erase_check ; Next check if ZF is set.

test AL ,020H ; 1f SR5=0, test sets ZF.

jz write_check ; Next check if ZF is set.

mov CL,COMMAND_SEQ _ERROR
; Place error codein CL.

jmp continue3 ; Jump to end of SR check.
block_erase _check:

test AL ,020H ; 1f SR5=0, test sets ZF.

jz no_error_detected ; No error detected if ZF is set.

mov CL,ERASE_ERROR ; Place error codein CL.

jmp continue3 ; Jump to end of SR check.
write_check:

mov CL,BYTE_WRITE_ERROR ; Placeerror codein CL.

jmp continue3 ; Jump to end of SR check.
no_error_detected:

mov CL,NO_ERROR ; Place error codein CL.
continue3:

ret ; Return to calling routine.

SR_full_status check endp

20

intal.

AP-627

APPENDIX C

ADDITIONAL INFORMATION

RELATED INFORMATION (1.2)

Order Number

Document/Tool

290592 28F004SC/28F004SC-L 4-Mbit (512 KB x 8) SmartVoltage FlashFile™ Memor
Datasheel

290577 28F008SC 8-Mbit (1 MB x 8) SmartVoltage FlashFile™ MemoryDatasheet

290576 28F008SC-L 8-Mbit (1 MB x 8) SmartVoltage FlashFile™ MemoryDatasheet

290429 28F008SA 8-Mbit (1-Mbit x 8) FlashFile™ Memory Datasheet

290435 28F008SA-L (1-Mbit x 8) FlashFile™ Memory Datasheet

290593 28F016SC/28F016SC-L 16-Mbit (2 MB x 8) SmartVoltage FlashFile™ Memor
Datasheel

292094 AP-359 28F008SA Hardware Interfacing

292099 AP-364 28F008SA Automation and Algorithms

292180 AP-625 28F008SC Compatibility with 28F008SA

292183 AB-64 4-, 8-, 16-Mbit Byte-Wide FlashFile™ Memory Family Overview

297647 Flash SOFTWAREBuilder

Contact Intel/Distribution
Sales Office

TimingDesigner* Files for Intel's Byte-Wide FlashFile™ Memory Family

Contact Intel/Distribution
Sales Office(2)

Schematic Symbols for Intel's Byte-Wide FlashFile™ Memory Family

Contact Intel/Distribution
Sales Office(2)

VHDL and Verilog Models for Intel's Byte-Wide FlashFile™ Memory Family

Contact Intel/Distribution
Sales Office(2)

iBIS Models for Intel's Byte-Wide FlashFile™ Memory Family

NOTE:

1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should
contact their local Intel or distribution sales office.

2. Visit Intel's World Wide Web home page at http://www.Intel.com for technical documentation and tools.

21

	Title Page
	1.0 INTRODUCTION
	2.0 SOFTWARE COMPATIBILITY
	3.0 CONCLUSION
	APPENDIX A "C" DRIVERS
	APPENDIX B ASM86 DRIVERS
	APPENDIX C ADDITIONAL INFORMATION

