
E
APPLICATION

NOTE

AP-620

LFS File Manager
Software: LFM

Order Number: 292175-001

SAMUEL DUFOUR
MEMORY COMPONENTS
DIVISION

DEBORAH SEE
SENIOR SOFTWARE
ENGINEER

October 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

E AP-620

1

1.0 INTRODUCTION

A simple method for storing variable sized files on an
Intel Flash PC CARD or RFA (Resident Flash Array) is
to use a Linear File Store format recently standardized by
PCMCIA–the Linear File Store (LFS) File Manager
(LFM). LFM is well-suited for embedded applications
that would like to have a simple, operating system
independent, file-object header structure and contiguous
(non-fragmented) file objects without the overhead
associated with other linked list filing systems. LFS was
originally developed to accommodate storage of objects
such as: eXecute In Place (XIP) code, photographic
images, audio messages, and small-object-store (used for
WinPad*, Magic Cap*, etc.). Intel’s Memory
Components Division has developed reference software
to assist OEMs in customizing an LFM solution suited
for nonvolatile storage of data.

The distinction to be made between LFS and LFM is that
LFS is simply a well-defined file object storage partition
(file header) contained within LFM; these storage
partitions are termed “devices.” LFM, on the other hand,
is Intel’s implementation of the PCMCIA-defined LFS
specification. The LFM acts as a mini-file system
providing basic file system functionality for reading and
writing different-sized file objects. LFS stores file objects
contiguously in a device and arranged in a one-way
linked list. The first 32 bits of each file object make up
the LFS header. The header consists of basic file
information in addition to a link to the following file
object (see Figure 1). The LFM reference code consists
of several pieces—an LFS File System Driver (LFS –
FSD), Flash Media Manager (FFM), and a low-level
driver that interfaces to flash (see Figure 2).

NOTE

Throughout the context of this document and the
code definitions, the term “device” is used to
mean a LFS data partition rather than a single
flash component. A LFS device can be comprised
of a portion of a single component, or extend over
several flash components. The size of each device
(or partition) is defined by the user.

List of Abbreviations Used in This Document:

API - Application Programming Interface

FM- Flash Manager

FMM - Flash Media Manager

FSD - File System Driver

LFM - LFS File Manager

LFS - Linear File Store

OS - Operating System

PIA - Primary Initialization Area

POST - Power Off Self Test

RFA - Resident Flash Array

SIA - Secondary Initialization Area

XIP - eXecute In Place

1 2 3 4 5 6 7 8 9

2175_01

Figure 1. Linear File Store

AP-620 E

2

Operating System

Application

OS System Interface Driver (Opt.)

File System Driver (Opt.)

Low-Level Driver

File System Media

Flash
Manager

File System (Opt.)

Flash Media Manager

2175_02

Figure 2. Application's Request
Reaching the Device

The following sections will offer an in-depth look at the
workings of LFM and explain concepts behind
customizing the LFM code, as well as how an actual
design was accomplished using the Intel provided LFM
reference code.

2.0 LFM IN A “REAL LIFE”
APPLICATION

Intel recognizes that flash technology, while providing
many benefits in terms of cost-effective, reliable, high-
performance nonvolatile storage presents some software
challenges; thus Intel’s Memory Components Division
(MCD) has focused on developing software tools and
reference code to help customers apply their technology.
Thus, when confronted by a third-party vendor looking
to design and implement a file I/O system for a network
router (currently in mass production), Intel offered its
help. The router’s designer chose Intel Flash memory
over other storage solutions for its device organization,
density and availability. This flash memory would allow
for storage of the router’s system executables,

configuration data files, run-time data files and run-time
control files; however, the RFA (Resident Flash Array)
targeted for use in this system needed suitable software
to be able to manage these files. MCD set out to find a
solution for this customer that would meet their non-
volatile storage needs, minimize the time to market, and
remain low in cost.

The OEM initially considered, in the tradition of older
embedded systems, not to provide a file I/O system to
manage the flash memory. However, the router’s
development team was charged with ensuring
compatibility to other product lines resulting in the
requirement of maintaining file system compatibility.
Furthermore, the lack of a file system would reduce the
potential feature set of the system. The customer realized
a file system was necessary for maintaining the
organization of data, allowing for the deletion and
creation of files and to provide an Application
Programming Interface (API) for both the system’s boot
device and existing application software; specifically, a
Flash Manager (FM) is necessary for providing standard
file capabilities, i.e., reading, writing, deleting, etc., while
handling the peculiarities of the flash memory devices as
opposed to rotating magnetic media.

Unfortunately, most of the commercially available FM’s
assume a particular operating environment. These FM’s
assume that MS-DOS is the resident OS, and as such, the
FM must utilize the standard BIOS interface; however,
this assumption did not apply to this situation. The
customer was uncertain which platforms and operating
systems would be used by the router.

Fortunately Intel, having recognized the lack of file
system software available to pure embedded systems
developers, developed the Linear File Store (LFS) File
Manager module. When presented with the solution, the
vendor concluded that LFM would greatly exceed
expectations. The customer acquired the reference LFM
code and with only slight alterations and minimal time,
tailored the code to work with the router’s RFA.

With only slight alterations and minimal time the
customer’s LFM code worked with the router’s
flash RFA.

The following sections describe the process by which
Intel’s LFM reference code can be modified to fit designs
using Intel Flash to store files with low update frequency
or needing XIP capabilities. Accompanying sections will
illustrate parallels between the general procedure Intel
prescribes for modification and use of the LFM code, and
how the developer of the router followed these guidelines
in customizing the code to meet the router’s file system
requirements.

E AP-620

3

2.1 Requirements of Example
Target Application Covered
by LFM

The router’s designer considered the following issues
important to the router’s design, and LFM met each of
these concerns as you will see in the following sections.

• Quick time-to-market for OEMs

• Robust power-off recovery

• Backward-compatible with targeted device’s existing
application software

• File name and file date retention

• Portable to any OS and/or hardware platform

• Supports multiple flash chips

2.2 Implementation Specific
Details of the OEM's Router

In designing the router, two Intel components were key
to providing a robust file I/O system. These two
components were the Intel 28F008SA FlashFile™
memory (several components arranged as an Resident
Flash Array or RFA) and an Intel 28F001BX boot block
device. The router comes equipped with either 2 MB,
3 MB, or 4 MB of flash in the RFA and a single boot
block of 128 KB. This unique design makes use of the
boot block device to access the RFA for the purposes of
initializing the FMM, loading operational software and
writing copies of the operational software to DRAM for
execution, and for system installations or upgrades.

The architectural design of the boot block allowed the
developers of the router to create a multi-function device
(see Figure 3 for specifics). The first 8-KB boot partition
of the device houses the Primary Initialization Area or
PIA. The following two 4-KB parameter blocks allow for
data storage. The first parameter block holds records that
are updated as frequently as every 10 minutes. The
second parameter block is set aside to be used for future
updates to the Secondary Initialization Area or SIA. The
last 112-KB region is used for the SIA which is
responsible for updating the system’s operational
software. For the purposes of reducing code size and
complexity, the upper level interface (the Flash Manager
Application Program Interface or FM API) was not
included in the SIA. The router’s own Operational
Software contains the FM API.

FSB
8-KB Boot Block

4-KB Parameter Block

4-KB Parameter Block

SSB
112 KB

2175_03

Figure 3. Boot Block Diagram

Upon power-up of the router, the PIA (located in the first
8 KB of the boot block) initializes the CPU and the rest
of the system. Once the PIA finishes, it gives control to
SIA. The SIA then attempts to initialize the LFS. If the
initialization works, the system proceeds in attempting to
boot the system, (i.e., load the OS via calls to cfs_open,
cfs_read, etc.). If the initialization of the LFS fails, then
the system proceeds to automatically format (erase) the
RFA. As a result, the system knows that no OS files are
present in the RFA, so the system then drops into an X-
Modem session, requesting OS files to be presented.
Since media updates rarely occur in RFA systems this
automatic format happens quite infrequently (when
updating due to bug fixes and upon the very first power-
up of the system). After formatting, the particular device
gets mounted.

AP-620 E

4

Power On Self Tests (POSTs) determine the size of the
RFA, as well as other memory resources. In sizing the
media to be mounted, the system sends intelligent
identifier commands to the flash components. Using the
device type to determine the array size, devices are set up
by using a table based on array size. Running the POSTs
is one of the SIA’s main responsibilities. This operation
also stores the size of the installed RFA for future
references. The low-level device driver makes use of this
sizing data and stores it in a device size list. The router’s
version of the low-level device driver subsequently uses
this information to properly initialize itself and the LFS.
Finally, if an OS is present in the RFA, the system makes
a call to CFS_OPEN to open the file, CFS_READ to read
the file, and CFS_CLOSE closes the file then attempts to
boot.

Once up and operative, any file calls made to the RFA
are passed through the FSD API and handled by the LFM
and its low-level driver.

The system must bridge and route data quickly; thus the
developer minimized processor usage for background
tasks such as reclaiming deleted file space and the
overhead associated with the filing system software by
utilizing multithreaded processes (multitasking events).

Furthermore, a scrambled file system, due to an
unexpected power-down, would be totally unacceptable.
The router would not be able to power-up correctly
without an intact file system. Thus the customer made
use of LFM’s robust power-down recovery capabilities.
Upon initialization LFM closes and marks deleted any
files which were left open for write at power-off. It also
tracks the state of any reclaims to allow the reclaim to
complete on the next initialization if power is lost.

The customer made use of LFM’s robust power-
down recovery capabilities.

3.0 ARCHITECTURAL VIEW OF
HOW LFM SOFTWARE
MANAGES FLASH MEDIA

The basic ingredient needed to create an operational FM
under LFS consists of the FSD which has been designed
with the intent of re-usability; this means that the core
FSD remains the same, regardless of the OS, processor
hardware, or flash storage media configuration (card
versus RFA). To use the FSD, however, a low-level
hardware driver that responds to the FSD’s low-level

interface must be linked to the FSD. In using the FSD as
a file system, as was the case in the implementation of
the router, an operating system interface must be linked
as well. Intel Memory Components Division provides a
generic LFS File System Driver (FSD) as a direct
implementation of the LFS concept (see Figure 2). This
driver is not a file system, but serves as a device driver
(written in ANSI “C”) which may be linked to other
pieces of code to provide a File System Interface to the
OS.

The following sections will follow a hierarchical path
from the file system interface driver down through the
file system driver to the lower level driver interface and
finish with the low-level driver (refer to Figure 2).

3.1 General Operating System
Interface

To serve as a File System, the FSD needs an Operating
System Interface to the OS. This Operating System
Interface is different for each OS; programmers familiar
with DOS would recognize this as the network redirector
interface. However, there may or may not be a need for a
file system interface driver. Basically, all that this driver
is used for is a layer of translation between the OS or
application and the FSD. If this “API” is not used then
the FSD can be thought of as a library of functions.

In creating an API, it must be understood that the OS or
application will make calls to the FSD that reference this
API. In many cases this is just an extra step which may
not be necessary. If the OS/App has already been written,
then an API may be necessary. As was previously
mentioned, the API would be written to translate the
commands of the top layer OS/App into the functional
file manipulation commands contained within the FSD.
This API can provide FSD/hardware interchangeability.

3.1.1 ROUTER FILE SYSTEM INTERFACE

Since the customer’s system was written in “C” and the
test platform (a DOS platform) used the “C” standard I/O
library (e.g., fopen(), fclose(), ...) the customer chose to
provide a platform-dependent implementation of the
functions contained within the FSD as an API. The API is
a set of functions which comprise a subset of the “C”
standard file I/O module. The actual naming convention
used differed slightly to isolate their body of source code
from the standard “C” functions.

E AP-620

5

By implementing an API between the OS and the FSD,
the customer readily ensures backward compatibility to
other existing product lines.

API between the OS and the FSD readily
ensures backward-compatibility.

3.2 General Flash Manager
Organization

The generic flash manager contains all of the file system
interface functions necessary for basic file manipulation
within flash media. The FSD portion of the LFM code
should require no modification by the OEM, and it is
required for all implementations.

The FSD has the capability to operate on multiple files;
multiple files may be open for reading on a per device
basis, and one file open for writing per device (partition).
The maximum number of files open for reading per
device must be predefined and the number of devices
must be predefined.

Once a method has been established to identify files
within multiple storage devices (our assumption stated
above), the file system must be able to provide basic file
operations: read, write, delete, etc. In an attempt to create
a generic FSD, only the most basic functions exist. For
added flexibility, a special pass-through function exists
which allows custom functionality to be built into the
FSD based on unique OEM needs.

The Flash Media Manger is a separate layer beneath the
FSD. The primary purpose of the FFM is reclamation of
flash media.

To better understand how the FSD and the FMM
operates, observe Figure 2. Although we haven’t
discussed the low-level driver yet, the four components
connected in the same box represent the complete FM. In
this diagram, let’s assume that the application is
requesting a file operation from the OS. The OS routes
the file operation request to the FSD. When the FSD
receives the request, it needs to extract the device and the
identifier for the file being accessed as well as the
function to perform.

Once the OS’s request has been translated into FSD
function calls, the FSD utilizes the low-level driver to
access the flash device. Refer to Sections 3.3 and 3.4 for
greater detailed descriptions of the low-level driver and
its interface to the FSD.

3.2.1 GENERAL FSD DATA STRUCTURES

Each file entry in an LFS device begins with the 32-byte
header in Listing 1. This header contains status
information about the file, the link to the next file and the
unique IDs associated with the file.

AP-620 E

6

typedef struct lfs_header {

DWORD link; /* Link to next header */

DWORD size; /* Size of LFS HEADER */

DWORD type; /* PCMCIA assigned type */

DWORD offset; /* Offset to file object */

DWORD flags; /* Flags (deleted) */

DWORD stroff; /* Offset to string or extended header */

DWORD id; /* Unique ID */

DWORD reserved; /* Future */

} LFS_HEADER;
Listing 1. PCMCIA Defined LFS Header

Field Description

link This field contains the offset from the start of this header to the next LFS header in the device
(partition). If each bit in this field is equal to bit D0 of the flags field, this is the last entry in the
device.

size This is the actual size of the LFS header.

type PCMCIA requires that LFS headers contain a stamp indicating the type of the header. For our
implementation, this field has been assigned ZERO (0), indicating the 32-byte header above.

offset This field indicates how far from the start of this header into the entry the file data begins. This
allows LFS implementations that use extended headers to be compatible with drivers that can’t
read the extended header.

flags This is a bit-mapped flags field. Bit D0 indicates the nature of the flash (1 erase or 0 erase).
Bit D1 indicates whether or not this file entry is valid or deleted: if D1 matches D0 the file is
valid, if D1 differs, than that file is deleted.

stroff This field points to the extended header associated with this file. The actual location of the
filename string is determined by adding the value in this field to the address of the
LFS_HEADER. If this field is zero, there is no filename.

id This value is unique to each file object.

Notice there is no filename associated with the file. This
is because not all operating systems will use a filename
to locate records. However, under DOS, when an
application requests a file access, its most basic form
consists of: 1) a device indicator, and 2) a unique
identifier. These two elements would look like
“a:\readme.txt,” where “a:” is the device indicator for
that storage unit, and “\readme.txt” corresponds to the
unique identifier. This pair could also look like
“1301011989” where “13” is the device indicator and
“01011989” is the identifier. In this case, the Unique ID
may be the date that the file was recorded. In LFS, a file

contains two identification fields: “type” and “ID.” The
type field is assigned to this header to distinguish it from
other headers that may exist in the device. This prevents
the FSD from reading a header it cannot interpret. The
Unique ID field is to be used as a file identifier. If a true
filename is desired, it may be stored in an extended LFS
header referenced by “stroff.” See Appendix A for a
detailed schematic representation of each field.

Each FSD library function requires that a pointer to the
following packet be passed to it. This “command
structure” contains the following fields:

E AP-620

7

typedef struct cfs_ctrl {

DWORD device; /* Logical Device */

DWORD status; /* Return Status */

DWORD buffer; /* Buffer Address */

DWORD count; /* Transfer Count */

DWORD actual; /* Transfer Actual */

DWORD scmd; /* Sub-command */

DWORD type; /* PCMCIA EntryType */

DWORD id; /* PCMCIA Unique ID */

DWORD aux; /* Aux Data */

} CFS_CTRL;
Listing 2. Command Structure

Field Description

device This field indicates the device (partition) number to be acted upon. Device can also be thought
of as a partition. This field is zero based.

status This field provides a mechanism to pass a detailed failure back to the application. Typical
functions will place a detailed error in this field and return SUCCESS or FAILURE back to the
calling function.

buffer This field provides a pointer to a memory buffer to translate data either to or from a function.

count This field indicates the number of bytes transferred. This field is usually used on write
operations.

actual This field indicates whether or not a read or write is possible to a position by comparing the
requested source file size with the actual size of the target position.

scmd This field provides a subcommand for possible use in the future.

type PCMCIA requires that LFS headers contain a stamp indicating the type of the header. For our
implementation, this field has been assigned ZERO (0), indicating the 32 byte header above.

id This value is unique to each file object.

aux This field does not get initialized in the FlashDevMount function. It provides a mechanism to
pass extra information to/from the low-level function set.

The status field returns the extended error code if the
calling function returns a FAILURE or one (1). The sub-
command field can be used to call a function for a
specific purpose that it may support, such as the
“CFS_special” command. The PCMCIA Entry Type has
been given the value of zero (0) for this LFS
implementation. This stamp indicates that the structure is
the 32-byte PCMCIA defined LFS header. The Unique
ID is supplied by the user.

Once a file has been opened or created, a File Info
structure maintains the file pointer and other statistics of
the file, much like the FILE structure in ANSI “C.” An

array of File Info structures will exist per device for files
open for read and a single File Info structure will exist
per device for files open for write.

The calls that the FSD makes to the low-level functions
receive the Device Info structure for the device being
accessed. All devices should be mounted at initialization.
Mounting the target device fills the following structure
with the appropriate data. The fields in this structure are
filled in during the low-level “mount” command. Special
functions will exist to modify these structures to allow
removable media to indicate insertion or removal of
devices.

AP-620 E

8

typedef struct device_info {
DWORD device; /* Device # */

DWORD status; /* Device status */

DWORD blocksize; /* Size of blocks */

DWORD numberblocks; /* Number of blocks */

DWORD lfs_offset; /* Beginning of lfs device */

DWORD lfs_size; /* Size of lfs part (not inc spare blk) */

DWORD lfs_end; /* End of lfs part (not inc spare blk) */

DWORD aux; /* Aux data */

} DEVICE_INFO[MAX_DEVICES];

Listing 3. Device Info Structure

Field Description

device This field indicates the device (partition) number to be acted upon. Device can also be thought
of as a partition. This field is zero based.

status This field provides a mechanism to pass a detailed failure back to the application. Typical
functions will place a detailed error in this field and return SUCCESS or FAILURE back to the
calling function.

blocksize This field should be initialized by the FlashDevMount function and provides a mechanism to
allow multiple devices (partitions) with different Intel components (which may have different
block sizes). This field should reflect the size of media that will be erased when one block is
erased.

numberof
blocks

This field indicates the number of blocks in the entire media. If their are two flash cards, each
would be considered its own media. If the media is an RFA, each RFA is considered its own
media.

lfs_offset This field indicates the beginning address of the device (partition). If this is the first device on
the media, the address follows the Media Status Table. If this is the second device on the
media, the address follows the spare block of the first device.

lfs_size This value should contain the usable portion of the device (partition). The boundaries of size

not include the spare block.

lfs_end This field indicates the address of the end of the current device(partition). This value should
not include the spare block which is always assumed to be the block following the device.

aux This field does not get initialized in the FlashDevMount function. It provides a mechanism to
pass extra information to/from the low-level function set.

E AP-620

9

M
ed

ia
 S

ta
tu

s
Ta

bl
e

D
ev

ic
e

0
S

pa
re

 B
lo

ck

D
ev

ic
e

1
S

pa
re

 B
lo

ck

D
ev

ic
e

2
S

pa
re

 B
lo

ck

0x
00

00
00

00

0x
00

02
00

00

0x
00

10
00

00

0x
00

12
00

00

0x
00

20
00

00

0x
00

22
00

00

0x
00

30
00

00

de
v_

ar
ra

y[
0]

.lf
s_

of
fs

et

de
v_

ar
ra

y[
0]

.lf
s_

en
d

de
v_

ar
ra

y[
1]

.lf
s_

of
fs

et

de
v_

ar
ra

y[
1]

.lf
s_

en
d

de
v_

ar
ra

y[
2]

.lf
s_

of
fs

et

de
v_

ar
ra

y[
2]

.lf
s_

en
d

dev_array[0].lfs_size dev_array[1].lfs_size dev_array[2].lfs_size

dev_array[0].device = 0
dev_array[0].blocksize = 0x20000
dev_array[0].numberblocks = 0x00320000 / 0x2000
dev_array[0].status = 0
dev_array[0].lfs_offset = 0x00020000
dev_array[0].lfs_size = 0x000E0000
dev_array[0].lfs_end = 0x00100000

dev_array[1].device = 1
dev_array[1].blocksize = 0x20000
dev_array[1].numberblocks = 0x00320000 / 0x2000
dev_array[1].status = 0
dev_array[1].lfs_offset = 0x00120000
dev_array[1].lfs_size = 0x000E0000
dev_array[1].lfs_end = 0x00200000

dev_array[2].device = 2
dev_array[2].blocksize = 0x20000
dev_array[2].numberblocks = 0x00320000 / 0x2000
dev_array[2].status = 0
dev_array[2].lfs_offset = 0x00220000
dev_array[2].lfs_size = 0x00E0000
dev_array[2].lfs_end = 0x00300000

2175_04

Figure 4. A Mounted DEVICE_INFO Array

3.2.2 EXAMPLE INITIALIZED DEVICE_INFO
STRUCTURE

Figure 4 provides an example of a “mounted”
DEVICE_INFO array. This information will need to be
adapted to apply to your setup. If only one device
(partition) is desired, change the MAX_DEVICES define
as described in Section 5.1. This example is a Resident
Flash Array (an array of flash components or RFA) in
which only a portion of the array is used for LFM and
three devices (or partitions) are defined.

3.2.3 ROUTER FSD ORGANIZATION

The developer of the router did not need to alter the File
System Drivers in any way. However, there was a need
to retain file names and file dates so the customer chose
to implement an extended header (See Section 3.1.3.1 for
header information). Adding an extended header took
little more than adding an extra library to the FSD.

The extended header was defined to be a structure
containing two fields: 1) a character array containing the
filename and, 2) a TIME structure which is the creation
time and date of the file (the extended header can be
customized to retain any data). This customized extended
header allows for file names to be searched within
specified flash devices. When a requested file is found,
the corresponding FILE ID (a 32-bit integer), from the
LFS header, will be returned (if the file exists) to allow
access to the file.

The (Optional) Extended Header was
customized to hold the file name and file time.

Another benefit derived from the FSD was that since all
of the FSD (as well as the FSD API and low-level driver)
was written in “C,” the customer possessed a file system
that was operating system and hardware independent.
Hence, all doors were left open to future platform
portability.

All doors were left open to future platform
portability.

AP-620 E

10

Operating System

Application
Programming

Interface

Router Standard File I/O

File System
Driver

LFS-FSD

Low-Level
Interface Driver

LLID

Low Level
Device Driver

Flash Device
RFA

LFS-FMM

2175_05

Figure 5. Router File System Structure

The general structure of the router’s file system is
depicted in Figure 5.

3.3 General Low-Level Interface
Driver

All media level I/O occurs through the Low-Level
Interface Driver (LLID). When the FSD needs to access
the flash media, it makes a call to one of the low-level
function calls which are supplied by the LLID. The basic
functions associated with the low-level driver are: read,
write, and special. An erase procedure exists within the
special functions. Since the FSD was designed to work
with flash media, an erase function for reclaiming
deallocated space is essential.

3.3.1 ROUTER LOW-LEVEL INTERFACE
DRIVER

All low-level function names are consistent with those
required by the FSD. The customer simply followed
Intel’s naming conventions while coding the router’s
low-level drivers.

3.4 General Low-Level Driver

The low-level driver is responsible for accessing the
device (RFA or PC CARD) in response to requests from
the Operating System/Application. The low-level driver
provides the low-level media operations such as
read/write/erase as well as filling in the structures that the
FSD needs to operate properly. The low-level driver’s
biggest responsibility is managing multiple devices. In
the case of a fixed RFA, the low-level driver merely has
to translate logical to physical addresses for the FSD. If
removable media is present, the low-level driver must be
able to identify the devices that exist on the media and
handle all the hardware necessary to access the media.
Figure 6 depicts the responsibilities the low-level driver
must address for the two different media types (RFA or
memory card).

E AP-620

11

DEV_INFO
Structure

Device 1: Media 1, Partition 1

Device 2: Media 1, Partition 2

Device 3: Media 2, Partition 1

Device 5: Media 3, Partition 1

Device 6: Media 3, Partition 2

Low-Level Driver

Associates LFS Partitions (in Hardware)
with Device Numbers (used by the FSD)

Memory Card:
One LFS
Partition

Process

Memory Card:
Two LFS
Partitions

Process

RFA:
Two LFS
Partitions

Media 2 Media 3Media 1
2175_06

Figure 6. Low-Level Driver

AP-620 E

12

The following sections represent important requirements
of the low-level driver. In coding the low-level driver,
designers customizing the LFM code must be certain to
incorporate the following structures.

3.4.1 DEVICE ACCESS

Internally, the FSD may operate on multiple devices
(partitions) at any time. This requires that the number of
devices in the system be predetermined. This also
requires that removable media must predefine the
number of devices per slot.

The low-level driver contains whatever technology driver
algorithms are needed to read, write and erase the flash
media as well as fill in structures for the file system
driver and any other special functions required.

3.4.2 MEDIA STATUS TABLE

There will be one Media Status Table defined per media.
The Media Status Table will reserve one block and will
be used during initialization and reclaim. The LFS Media
Status Table is intended to assist in making the LFS File
Manager more robust. It provides memory to store status
updates when reclaim is occurring, so that the system
may recover from an unexpected power-off. For a
discussion of the Media Status Table and how it will
assist in recovery from an unexpected power-off see
Appendix E.

3.4.3 ROUTER LOW-LEVEL DRIVER

In creating a custom low-level driver, the OEM wrote
two copies. One was used to verify the Intel LFS. The
verification of the LFS was run on a PC and a binary disk
file was used to emulate flash memory. The other copy
was the router’s low-level driver which was written from
scratch; however, sample code was supplied by Intel
which helped to reduce coding time. The developer
chose to write the driver from scratch because there was
a need for the source to meet internal coding standards
and to make it easier to maintain.

In addition to the usual low-level device operations (e.g.,
read, write, erase, etc.), multi-tasking events were of
great concern to this customer because utilization of the
CPU’s time for tasks other than bridging or routing data
needed to be kept to a minimum. Therefore, in order to
guarantee such CPU restrictions, the low-level device
driver was designed to put a task that attempted to do a
block erase or a large block write to sleep (since block
writes can be relatively slow). Moreover, due to

the router’s system architecture, the type of “task sleep”
varies depending on whether the flash reclaim is
instigated automatically or via user input at the console.
These multi-tasking modifications were fairly simple to
make. Multiple partitioning of the router RFA allows the
file system to act upon each device simultaneously; thus
multiple devices help to decrease search time and allow
more than one file to be open at a time.

Multiple devices help to decrease search time
and allow more than one file to be open at a
time.

4.0 REQUIRED FILES

The following table gives an overview of which files in
the COMMON directory are necessary for your
implementation. Each file is described more completely
below. Files existing in the CARD directory are the low-
level files necessary for an example 82365SL PCIC
implementation on a DOS PC platform. The files existing
in the RFA directory are the low-level files necessary for
an example RFA using 28F008 components on a 486SL
evaluation platform. Your implementation will need to
replace the functionality in the low-level as indicated in
Appendix C of this document.

Table 1. Files Included within LFM
Reference Code

File Name Necessary?

MULTIMAIN.C NO

LFSSUB.C NO

FSD.C YES

RECLAIM.C YES

CFSTOP.H YES

CFSEXT.H YES

LFSEXT.H NO

LFSMGR.H NO

4.1 MULTIMAIN.C

This file contains an application interface for testing all
aspects of the filing system. This file is not required for
your implementation, but should be replaced by either
your own application, or an interface that translates your
operating systems file commands into LFM file
commands.

E AP-620

13

4.2 LFSSUB.C

This file contains subroutines for the example
application. It is not required for your implementation.

4.3 FSD.C

This file contains the file system interface functions. It is
required for all implementations. This file should require
no modifications for your implementation.

4.4 RECLAIM.C

This file contains the subroutines for reclaim
functionality. It is required for all implementations. This
file should require no modifications for your
implementation.

4.5 CFSTOP.H

This file contains error code defines, subcommand
definitions, structure definitions, and any other
information required by the user. Modifications
necessary to this file are described below in Section 5.

4.6 CFSEXT.H

This file contains prototype information for all functions
in the FSD.C and RECLAIM.C files. This file is required
for all implementations. It should require no
modifications for your implementation.

4.7 LFSEXT.H

This file contains prototype information for subroutines
in LFSSUB.C and external declarations. It is not required
for your implementation. The register structure
definitions are Borland Library definitions, and do not
need to be replicated for your implementation.

4.8 LFSMGR.H

This file contains a few defines that are application
specific. It is not required for your implementation. If
you do choose to use this file, please see the
modifications necessary as described in Section 5.

4.9 Files Used by the Router

Of the files previously listed for use, the only files used
to implement LFM for the router’s RFA were: FSD.C and
RECLAIM.C. However, some of the other “.h” files
where renamed and included in the FSD.C file; these files
contained definitions and type-definitions from the two
required “.h” files CFSTOP.H and CFSEXT.H. All the
definitions and type-definitions were still utilized from
the files, but the router’s developer chose to break them
up into several files instead of the two they were
contained within. A few headers were also added to
“RECLAIM.C” for multi-tasking.

5.0 MODIFYING HEADER FILES

The following header files require some modification.
Each definition requiring modification is described to
assist modification to adapt to your implementation.

5.1 CFSTOP.H

#define BYTE unsigned char

This define is platform specific. The unsigned char
should be replaced by any keywords that create an 8-bit
value. This may be compiler specific.

#define WORD unsigned int

This define is platform specific. The unsigned char
should be replaced by any keywords that create a
16-bit value. This may be compiler specific.

#define DWORD unsigned long

This define is platform specific. The unsigned char
should be replaced by any keywords that create a
32-bit value. This may be compiler specific.

#define TUPLE_XXXX X

This group of defines can be removed for non-removable
media. Tuples are part of the format of a media, which is
not required for non-removable media.

#define MAX_DEVICES 3

This define determines the total number of devices
(partitions) acceptable in the entire system. You should
modify this variable to suit your needs. Multiple devices
are useful if separating file types is necessary (it can be
treated as a rudimentary sub-directory). If only one single
device is required, set this value to one.

AP-620 E

14

#define MAX_OPEN_READ 5

This define determines the maximum number of files that
can be open for reading at any given time. You should
choose a large enough number for your needs, however,
make sure the number is not too large, or it may hide
application errors (such as forgetting to close files).

#define MAX_PART_MEDIA 3

This define determines the maximum number of devices
(partitions) that can be created on any one media. If you
are using non-removable media and there is only one
media (i.e., one RFA), then the define should equal
MAX_DEVICES. If you are using multiple non-
removable media’s or removable media, it should be an
equally divisible portion of MAX_DEVICES.

An example of how this define is used would be for a
system that contains two PC CARD slots and would like
to create one device on each card. For this example,
MAX_DEVICES would equal two and
MAX_PART_MEDIA would equal one. If this same
system wanted to allow two devices per card, the
MAX_DEVICES define would equal four, and the
MAX_PART_MEDIA define would equal two.

#define TUPLES_BUFFER_LEN 300

Removable media requires the format information to be
kept on the media. The software expects the first block
on the media to contain the format (also known as tuples
in PCMCIA). The Media Status Table (MST) that tracks
the progress of reclaim is also kept in this first block.
This define is used to indicate when the Media Status
Table is growing too large and should be reclaimed. The
MST is kept at the end of the first block and grows
backwards toward the beginning. If non-removable
media is being used, the buffer does not need to remain
this large, however, it should not decrease below 150
bytes. This allows a buffer for cleanup of the MST. This
is necessary because the MST cannot be checked for
cleanup every time it is decremented due to the status of
the spare block.

#define EXTERNAL_HEADER 1

The external header is a conditional option. If this define
is kept, external headers will exist as you define them. If
there is no desire for external headers, this define may be
commented out and extended headers will not be used. If
this definition remains, a pointer to an external header
must be passed in on the OPEN_CREATE sub-command
of the CFS_open function. This header is readable at a
later time through the CFS_find command as well as the
OPEN_OPEN sub-command of the CFS_open function.

The following is the currently defined external header:

typedef struct ext_header {

BYTE file_name[8];

BYTE file_ext[3];

}EXT_HEADER

This header may be modified to contain any elements
you choose, such as time and date of file creation,
compression ratio information, or any other information
you may wish to link to the file.

5.2 LFSMGR.H

It is recommended that this file not be used if possible
because these code segments exist within CFSTOP.H.
However, if it is used, the defines that are replicated in
CFSTOP.H must match those chosen in CFSTOP.H.

#define BYTE unsigned char

This define is platform specific. The unsigned char
should be replaced by any keywords that create an 8-bit
value. This may be compiler specific.

#define WORD unsigned int

This define is platform specific. The unsigned char
should be replaced by any keywords that create a
16-bit value. This may be compiler specific.

#define DWORD unsigned long

This define is platform specific. The unsigned char
should be replaced by any keywords that create a
32-bit value. This may be compiler specific.

6.0 SUMMARY

This application note has discussed the hierarchical
design underlining Intel’s LFM reference code as well as
necessary modifications needed for porting LFM to
designs requiring Flash Media Management. This
application note has also given detailed examples of how
an Intel customer used LFM and Intel Flash memory to
create a robust file I/O system; LFM also met each of the
designer’s concerns.

7.0 ADDITIONAL INFORMATION

E AP-620

15

7.1 References

Order
Number

Document

290429 28F008SA 8-Mbit Flash Memory Datasheet

290406 28F001 BX-T/28F001 BX-B 1-Mbit CMOS Flash Memory Datasheet

7.2 Revision History

Number Description

-001 Original Version

7.3 Intel BBS*

Name Description BBS Location* BBS filename &
Type

LFM LFS Flash Media File Manager.
Uses PCMCIA defined LFS (Linear
File Store) Spec for a linked-list
type method of storing "Objects."
For cards or a RFA/RFD. Includes
iCARDRV1 source for reference.

Flash/FlashFile
(Area 4-5)

Flash/Flash Card
(Area 5-5)

!LFM.EXE

“C” source

(same file as)
!LFMCRD.EXE

“C” source

iLFMDOS Redirector A DOS installable file system for
Linear File Store partitions based
on Intel’s LFS Flash Media File
Manager (LFM).

Flash/Flash Card
(Area 5-5)

tbd

1Mb Boot Block Drivers Reference code for read, write, and
erase functions on Intel 1-Mb Boot
Block Flash Components

Flash/Boot Block
(Area 3-5)

BOOTDRV.ZIP

“C” & x86 ASM86
Source

2 and 4-Mb Boot Block
Drivers

Reference code for read, write, and
erase functions on Intel 2 and 4-Mb
boot block flash Components

Flash/Boot Block
(Area 3-5)

24BOOTDR.EXE

“C” & x86 ASM86
Source

8-Mb FlashFile™
Drivers

Reference code for read, write, and
erase functions on Intel 8-Mb
FlashFile components

Flash/FlashFile
(Area 4-5)

8MBITDRV.EXE

“C” & x86 ASM86
Source

16-Mb FlashFile™
Drivers

Reference code for read, write, and
erase functions on Intel 16-Mb
FlashFile Components

Flash/FlashFile
(Area 4-5)

16MBDRV1.EXE

“C” & x86 ASM86
Source

NOTE:
The Intel Applications Support BBS can be reached at: US/Canada/ Japan/ APAC...916-356-3600, Europe +44(0)793-49-6340

AP-620 E

16

APPENDIX A
LFS HEADER FIELDS

32-Byte
LFS Header

Extended
Header

Extended
Header Offset

offset

Data

Size

Link

2175_07

Figure 7. LFS Header Offsets

typedef struct lfs_header {

DWORD link;
DWORD size;
DWORD type;
DWORD offset;
DWORD flags;
DWORD stroff;
DWORD id;
DWORD reserved;

} LFS_HEADER;

LFS Header Offsets Structure

This schematic represents an instance of a 32-byte LFS header, its extended header, and the associated data region. This
structure is described in Section 3.1.1.

E AP-620

17

APPENDIX B
FSD LIBRARY FUNCTIONS DEFINED:

FILE SYSTEM INTERFACE DRIVER
The following library functions comprise the complete set of functions available within the FSD library. The details of
each function are presented here to help familiarize the reader with the purpose and correct usage of each of these
functions.

Each function call at the top level of the FSD takes a CFS_CTRL structure pointer as an argument. If the function fails, it
returns a one (1) and updates the status field of the structure. The fields in the CFS_CTRL structure may be input or
output, depending on the function call. The following table describes the usage of the fields for each function call
(I=input, O=output, NA = not applicable).

 Open Close Read Write Find Delete Special**

Device I I I I I I I

Status O O O O O O O

Buffer I NA I I I NA I/O

Count NA NA I I NA NA I/O

Actual NA NA O O NA NA I/O

SCMD I NA NA NA I NA I/O

Type I I I I O I I/O

ID I I I I O I I/O

Aux I NA NA NA NA NA NA

** = One or more of the sub-commands or user special functions use these fields.

AP-620 E

18

int CFS_open(CFS_CTRL *)

Functionality

CFS_open opens a file for reading, or creates a file for
writing. The user specifies a device, PC CARD type and
a Unique ID, plus a sub-command. The sub-command
(SCMD) indicates open-for-read or open-for-create. If
open-for-read, the FSD tries to locate the file in the
device and will return an error if it’s not found. If open-
for-create, the FSD will return error if the file exists.

Open can also return physical information about the file.
If the “buffer” field contains a pointer to a data buffer,
Open will fill the buffer with the FULL header
information (FULL_HEADER). The FULL_HEADER
consists of the LFS_HEADER and the
EXTENDED_HEADER if one exists.

The user may add an extended header to give a file a
filename or any other additional header information by
passing a pointer to a pre-defined header structure
through the aux field. The user may add a special user
function to access this information and do any other
special handling.

The status field will contain a detailed error code if the
return indicates the routine failed.

Sub-command

OPEN_OPEN Open for read (R).

OPEN_CREATE Open for create (C).

Possible Return Error Codes

ERR_DEVICE R/C
ERR_OPEN R/C
ERR_EXISTS C
ERR_NOTEXISTS R
ERR_CREATE C
ERR_PARAM R/C
ERR_SPACE R/C
ERR_READ R/C
ERR_WRITE C
ERR_NONE R/C

int CFS_close(CFS_CTRL *)

Functionality.

If the file indicated by device, type, and ID was opened
for write, the FSD writes the file’s LFS header. Note that
the LFS header for a newly created file is not written
until the file is closed. This is due to the nature of flash
memory; the “link” field in the header must be the total
length of the file object including the header, which isn’t
known until all writing has been completed. The file
information in the devices write file structure will be
erased. If the file indicated by device, type, and ID was
opened for read, the file information in the devices read
file array will be erased. If a failure occurs, the status
field will contain a descriptive error code.

Possible Return Error Codes

ERR_DEVICE
ERR_WRITE
ERR_PARAM
ERR_SPACE
ERR_READ
ERR_NOTEXISTS
ERR_NONE

int CFS_read(CFS_CTRL *)

Functionality

This function reads “count” number of bytes from the file
specified by device, type, and ID and places them into
“buffer.” The file must be opened with the OPEN_READ
option. The file read begins at the location of the last read
or whatever file offset the special seek option set. If
during the process there is a failure, the “actual” field
indicates how many bytes were transferred and the status
will contain a descriptive error code.

Possible Return Error Codes

ERR_OPEN
ERR_DEVICE
ERR_READ
ERR_NONE

E AP-620

19

int CFS_write(CFS_CTRL *)

Functionality

This function writes “count” number of bytes from
“buffer” to the file specified by device, type, and ID. The
file must be opened with the OPEN_CREATE option. If
during the process there is a failure, the “actual” field
indicates how many bytes were transferred and the status
will contain a descriptive error code. The file write
begins at the location of the last write.

Possible Return Error Codes

ERR_NOTOPEN
ERR_WRITE
ERR_DEVICE
ERR_SPACE
ERR_NONE

int CFS_delete(CFS_CTRL *)

Functionality

Calling this function with a device, PC CARD type and a
Unique ID of a closed file will update its “flags” field to
indicate it has been deleted. The space cannot be reused
until a reclaim has been performed. Bit 0 is verified for
erase state then bit 1 is set to the NOT of bit 0.

Possible Return Error Codes

ERR_NOTEXIST
ERR_NOTCLOSED
ERR_DEVICE
ERR_WRITE
ERR_READ
ERR_SPACE
ERR_NONE

int CFS_find(CFS_CTRL *)

Functionality

Find will locate the FIRST or NEXT file in the device.
As with CFS_open, if “buffer” is non-zero, it will be
filled with information from the FULL header
(FULL_HEADER). The FULL_HEADER consists of the
LFS_HEADER and the EXTENDED_HEADER if one
exists. The type and ID will be filled in for the user to use
in future calls with this file.

Subcommands

FIND_FIRST

FIND_NEXT

Possible Return Error Codes

ERR_NOTEXISTS
ERR_DEVICE
ERR_SPACE
ERR_READ
ERR_NONE

int CFS_special(CFS_CTRL *)

“Special” provides a mechanism for hardware direct and
media specific operations. All file system specific
operations will call routines within the file system level.
All hardware specific operations will call the low-level
special function. Some operations may do both. In
addition, the Special function provides a way for the host
OS to pass or receive user-specific information through
the FSD to the low-level functions. The sub-command
selects which special function will be called. The first 20
functions have been reserved for internal development.
OEMs may use any special sub-command greater than
20. This procedure will call FlashDevSpecial() with the
respective sub-command. The predefined functions are
described in the low-level function section.

NOTE:

Before any other LFM function is called, a call to
CFS_special with sub-command INIT must be
made. Among other things, this call initializes the
DEVICE_INFO structure which is necessary for
all operations

SP_INIT

Functionality

The SP_INIT sub-command of the special function will
initialize all DEVICE_INFO structures necessary for all
operations. It will also initialize all file information
structures, as well as closing and deleting any files which
were left open at power-off.

Possible Return Error Codes

ERR_DEVICE
ERR_READ
ERR_NONE

AP-620 E

20

SP_GET_INFO

Functionality

The SP_GET_INFO sub-command will allow the user to
retrieve device information. The information is defined in
the DEVICE_INFO structure and will be placed in
memory pointed to by “buffer.” Any failures will be
described by status.

Possible Return Error Codes

ERR_DEVICE
ERR_PARAM
ERR_NONE

SP_FORMAT

Functionality

The SP_FORMAT sub-command will allow the user of
removable media to format the media. This may be in the
form of PCMCIA extended CIS structures or any other
user specified method of device definition. Users of non-
removable media will fill in the device info structures
during initialization and will not need to place the
information on the media. The device defines which
device to format, and the count defines how large to
make the device. This function should place the
information on the removable media so it may be read at
a later time.

Possible Return Error Codes

ERR_PARAM
ERR_READ
ERR_DEVICE
ERR_WRITE
ERR_NONE

SP_ERASE

Functionality

The SP_ERASE sub-command will erase a block of any
device. The device should be specified and the pointer
should point to an address in the block to be erased.

Possible Return Error Codes

ERR_DEVICE
ERR_ERASE
ERR_NONE

SP_SPACE

Functionality

The SP_SPACE sub-command will return the free space
left on the device. If a file is currently open for write on
the device, this file is not taken into account. If a file is
marked as deleted, this space will not be available until a
reclaim has been performed.

Possible Return Error Codes

ERR_DEVICE
ERR_SPACE
ERR_READ
ERR_NONE

SP_RECLAIM

Functionality

The SP_RECLAIM sub-command will reclaim all
unused space on the device specified. Reclaim removes
file objects that have been marked deleted and relocates
valid file objects to create the maximum contiguous free
space.

Possible Return Error Codes

ERR_DEVICE
ERR_READ
ERR_WRITE
ERR_ERASE
ERR_NONE

SP_ERASE_CARD

Functionality

The SP_ERASE_CARD sub-command applies to
removable media and will erase all blocks on the card.

Possible Return Error Codes

ERR_DEVICE
ERR_ERASE
ERR_READ
ERR_NONE

E AP-620

21

SP_SEEK

Functionality

The SP_SEEK sub-command uses the device, type, and
ID to determine if a file is open for read. If the file is
open for read, the buffer will be used as a new offset into
the file.

Possible Return Error Codes

ERR_DEVICE
ERR_PARAM
ERR_NOTOPEN
ERR_NONE

SP_TELL

Functionality

The SP_TELL sub-command uses the device, type, and
ID to determine if a file is open for read. If the file is
open for read, the current offset into the file will be
placed into the buffer field and the file size will be placed
into the aux field.

Possible Return Error Codes

ERR_DEVICE
ERR_NOTOPEN
ERR_NONE

SP_CARD_DETECT

Functionality

The SP_CARD_DETECT sub-command re-initializes all
device info structures. This function applies only to
removable media. This allows devices on the card which
have been removed to have their device info structure set
to values to indicate the device does not currently exist.

Possible Return Error Codes

ERR_DEVICE
ERR_READ
ERR_NONE

DEFAULT

Functionality

Calls the low-level special routine. This will give the user
direct access to hardware level functions. The
CFS_CTRL aux field will be placed into the
DEVICE_INFO aux field to allow the user to pass
information to the low-level special call. The
DEVICE_INFO aux field will be placed into the
CFS_CTRL aux field on the return to allow the user to
return information.

Possible Return Error Codes

ERR_PARAM
ERR_NONE

AP-620 E

22

APPENDIX C
LOW-LEVEL DRIVER INTERFACE

FUNCTIONS

The following functions are supplied by the low-level
driver (LOWLVL.C) and must adhere to FSD data
structure error handling. Due to the unique characteristics
of the hardware interface to flash created by individual
OEM’s, the following functions must be supplied by the
OEM’s low-level driver. If an error occurs, each function
returns one (1) and updates the status field in the
DEVICE_INFO field. If the implementation is for
removable media, the CARD directory provides example
low-level functionality. This example uses a DOS
interrupt to utilize I/O control functions that exist in the
ICARDRV1 driver included with the package. If the
targeted implementation is for non-removable media, the
RFA directory provides an example. Access to the RFA
will probably be much simpler than the example
provided.

int FlashDevRead (DEVICE_INFO * dev_ptr,
DWORD offset, DWORD length, BYTE *buffer)

Read fills the specified buffer with the number of bytes
defined by length from the device’s absolute physical
address. This function uses dev_ptr->device to determine
device. The return code should indicate ERROR (1) or
OK(0). If the return code indicates ERROR, the dev_ptr-
>status field should indicate the return error code.

This function must access the flash through the hardware
interface on your system. If your system uses memory
windows (i.e., only a portion of the flash is mapped into
the main memory map at any given time), it must be
accounted for in this algorithm.

Possible Return Error Codes

ERR_READ
ERR_NONE

int FlashDevWrite (DEVICE_INFO *dev_ptr,
DWORD offset, DWORD length, BYTE * buffer)

This function writes length bytes of data from a specified
buffer to the destination address within the device. This
function uses dev_ptr->device to determine device. The
return code should indicate ERROR (1) or OK(0). If the
return code indicates ERROR, the dev_ptr->status field
should indicate the return error code.

This function must access the flash through the hardware
interface on your system. If your system uses memory
windows (i.e., only a portion of the flash is mapped into
the main memory map at any given time), it must be
accounted for in this algorithm.

Possible Return Error Codes

ERR_WRITE
ERR_NONE

Int FlashDevErase (DEVICE_INFO * dev_ptr)

In order to reuse the flash media, an erase command must
be provided for the FSD. This command erases a single
flash erase-block beginning at the address specified by
the aux field in the DEVICE_INFO structure. The
blocksize field of the DEVICE_INFO structure is used to
force the aux ptr to a block boundary. Removable media
would use the device field to determine on which media
the block should be erased. The device field of the
DEVICE_INFO structure is used to determine which
device the block resides in.

This function must access the flash through the hardware
interface on your system. If your system uses memory
windows (i.e., only a portion of the flash is mapped into
the main memory map at any given time), it must be
accounted for in this algorithm.

Possible Return Error Codes

ERR_ERASE
ERR_NONE

E AP-620

23

int FlashDevSpecial (DEVICE_INFO * dev_ptr,
DWORD scmd)

All sub-commands perform the functions defined below.
Other functions which are not specific to the hardware
will be performed at the FSD level.

NOTE:

Before any other LFM function is called, a call to
CFS_special with sub-command INIT must be
made. Among other things, this call initializes the
DEVICE_INFO structure which is necessary for
all operations.

SP_INIT

Calls the support functions FlashCompatCheck() to
verify compatibility and FlashDevMount() to initialize all
devices. All other initialization will occur at the FSD
level. Returns error if all components are not Intel
devices or if an error occurs. An error could occur in the
FlashDevMount algorithm if a removable media is not
present. This will be detailed in the FlashDevMount()
function description in Appendix D. This function should
remain the same as the RFA\CFSLOW.C version for all
applications.

Possible Return Error Codes

ERR_JEDEC
ERR_DEVICE
ERR_READ
ERR_NONE

SP_FORMAT

This function is responsible for creating the LFS device
for removable media only. Non-removable media should
return either OK or ERROR, depending on the results
expected by the high level calling application. Functions
called for removable media include CreatePartition() and
FlashDevMount(). This function should remain the same
as defined in the CARD\CFSLOW.C file for removable
media.

Possible Return Error Codes

ERR_PARAM
ERR_DEVICE
ERR_WRITE
ERR_READ
ERR_NONE

SP_ERASE

This function provides the erase block capability.
Functions called include FlashDevErase(). This function
should remain identical to either the CARD\CFSLOW.C
or the RFA\CFSLOW.C versions.

Possible Return Error Codes

ERR_ERASE
ERR_NONE

SP_ERASE_CARD

This function allows the entire media to be erased. The
size and location of the media is defined in the low-level
by the user. This will allow the user to erase all
partitioning on a media to start from an erased media.
Functions called include Erase_Card() and
FlashDevMount(). This function should remain as it is in
both CFSLOW.C files.

Possible Return Error Codes

ERR_READ
ERR_ERASE
ERR_DEVICE
ERR_NONE

SP_CARD_DETECT

For non-removable media, this function may remain as
seen in RFA\CFSLOW.C, or it may just return
ERR_NONE. For removable media, this function will
provide a way to indicate when a device has been
removed or inserted. An interrupt handler must be
created that will call CFS_special with the
SP_CARD_DETECT option which will handle high level
functionality and call this low-level subcommand. The
filing system will then clean up all internal structures
which are applicable (open file structures), and the low-
level function is responsible for re-initializing the
DEVICE_INFO array. This should be done by calling
FlashDevMount(). This function should remain the same
as CARD\CFSLOW.C.

Possible Return Error Codes

ERR_READ
ERR_NONE

AP-620 E

24

DEFAULT

This function will call the User_Special() function which
will allow the user to add additional functionality to the
software. This option should remain as is for removable
or non-removable media.

Possible Return Error Codes

ERR_PARAM
ERR_NONE

E AP-620

25

APPENDIX D
LOW-LEVEL SUPPORT FUNCTIONS

(LOWLVL.C)

int FlashDevMount()

To determine the presence of a device, and to initialize
the internal FSD structures to use a device, the low-level
driver must provide a Device Mount function. This
function must call the FlashCompatCheck()(removable
media only) function as well as filling in the
DEVICE_INFO structures. If the FlashCompatCheck
function fails, an ERR_JEDEC must be returned to the
calling function. If a failure occurs detecting a device, the
function returns one (1). Fields to be initialized in the
DEVICE_INFO global array include the device,
blocksize, numberblocks, status, lfs_size, lfs_offset, and
lfs_end.

When using non-removable media, the format does not
need to be kept on the flash media. This allows this
function to use pre-determined defines to set up the
DEVICE_INFO array structure. If a modifiable non-
removable media is required, a User_Special function
can be created which will allow the information to be
passed in from the application level.

For removable media, this function should call the
FindPartition() function which analyzes the PCMCIA
structures on removable media to assist in initializing this
information.

Possible Return Error Codes

ERR_READ
ERR_JEDEC
ERR_NONE

int Erase_Card (DEVICE_INFO * dev_ptr)

This function applies to removable media and will erase
all blocks in the media on which the device resides. This
function uses the device, blocksize, and numberblocks
fields of the DEVICE_INFO structure passed in to
determine what it should erase. This function would
typically be used before creating the initial format of the
media during manufacturing. If using removable media,
this function will erase the tuples in the format to allow a
new format to be created. If using removable media, use
the CARD\CFSLOW.C version of this function. If using
non-removable media, use the RFA\CFSLOW.C version
of this function.

Possible Return Error Codes

ERR_ERASE
ERR_DEVICE
ERR_NONE

int EraseDevice (DEVICE_INFO *dev_ptr)

This function needs to erase the contents of the device
(partition) specified by dev_ptr->device. This will allow
the current files to be erased on this device, yet not affect
information stored on any other device. If using
removable media, use the CARD\CFSLOW.C version of
this function. If using non-removable media, use the
RFA\CFSLOW.C version of this function.

Possible Return Error Codes

ERR_ERASE
ERR_DEVICE
ERR_NONE

AP-620 E

26

int CreatePartition (DEVICE_INFO *dev_ptr)

This command applies to removable media only. It erases
the area which will be used to define the device
(partition). Then it formats the first block in the media
with the necessary PCMCIA CIS structures. It uses the
device, blocksize, numberblocks, and aux (size of
device) fields to create device information. If using
removable media, use the CARD\CFSLOW.C version of
this function.

Possible Return Error Codes

ERR_DEVICE
ERR_PARAM
ERR_READ
ERR_NONE

int FindPartition (BYTE array_ctr)

This function applies to removable media only; however,
when using removable media, use the
CARD\CFSLOW.C version of this function. This
function assists in reading the PCMCIA CIS structures on
removable media to determine what devices exist on the
media. It fills in the lfs_size, lfs_offset, and lfs_end fields
of the device array beginning at the array index passed in
for the maximum number of devices per media.

Possible Return Error Codes

ERR_READ
ERR_NONE

int FlashCompatCheck (void)

This function needs to be created by each user to
interface to specific hardware. This function should send
the intelligent identifier command to each component of
the entire flash media. It should then read the
manufacturer’s identifier for each component and verify
that the value indicates the component is an Intel
component. If any component in the media is not an Intel
component, this function should return an ERR_JEDEC
failure.

Possible Return Error Codes

ERR_JEDEC
ERR_NONE

int User_Special (DEVICE_INFO *dev_ptr,
DWORD scmd)

This function is completely customizable by the user.
Any low-level functions not supported by the existing
file system should be created as an additional sub-
command in the FlashDevSpecial() of the low-level
function. When an unrecognized value is found in
FlashDevSpecial(), this function will be called.

E AP-620

27

APPENDIX E
USE OF MEDIA STATUS TABLE FOR

UNEXPECTED POWER-OFF

The signature exists at the end of the status block and will assist the filing system when it searches for the Media Status
Table. This will be beneficial if an unexpected power-off occurs during cleanup of the Status Table.

struct {
DWORD FilePointer; /* Points to file to be deleted */

DWORD Residue; /* Length of residue */

DWORD FreeSpace; /* Offset in device to copy files back to */

DWORD SpareIndex; /* Offset to next fetched file in reclaimed block */

BYTE ResidueFlag; /* If block has residue from last block */

BYTE data_x_check; /* If data in Reclaim_status_info has been updated */

BYTE status; /* Status of device */

} MEDIA_STATUS_TABLE;

Listing 4. Media Status Table Structure

Field Description

FilePointer This pointer stores which file is currently being evaluated for deletion status.

Residue This variable stores the length of residue which exists from a previous file in the spare
block.

FreeSpace This variable stores the offset in the device where the valid files can be copied back to.

SpareIndex This variable stores the offset from the beginning of the device to the next fetched file in
the reclaimed block.

ResidueFlag This field indicates to the system whether the spare block contains residue from a file
which existed in the last block. The actual amount of residue is stored in another
parameter.

data_x_check

has not been updated. If the field is 0, all data has been updated and this is a valid
RECLAIM_STATUS_INFO.

status The status values and their meanings follow.

AP-620 E

28

Condition
Status Value

Definition Reclaim Status

1 Moving Block Data to
Spare Block

Reclaim will either start from the beginning of this block to
move the data to the spare block or will use the valid
available pointers to begin where it left off.

2 Erasing Original Block The block which was being erased should be checked to
determine if it is erased. If not, the erase sequence should
occur and reclaim should continue from this point.

3 Copy File Residue The spare block should be evaluated to copy the residue
from a previous file to the free space.

4 Copying Valid information
to Free Space

The last valid data to be copied should be verified. If this
process did not complete, it should occur again. Otherwise,
the next step in the reclaim may occur.

5 Erasing Spare Block The block which was being erased should be checked to
determine if it is erased. If not, the erase sequence should
occur and reclaim should continue from this point.

6 Evaluate Next This status indicates that the next file should be evaluated to
determine if reclaim is necessary.

7 Reclaim Complete No cleanup required.

Initialization of MST

The initialization procedure evaluates the media to
determine if a Media Status Table exists. If the Media
Status Table does not exist in the first block, the system
searches the media for the Signature field of the Media
Status Table. If this does not exist in the media, the
initialization procedure erases the media and creates a
Media Status Table in the first block. If the Media Status
Table exists inside the media, it is assumed that it was
undergoing cleanup and the initialization process should
complete this cleanup before continuing. If the Media
Status Table already exists in the first block, the
initialization process evaluates the reclaim status
information structures to determine if reclaim was
interrupted at any time. If reclaim was interrupted,
initialization completes reclaim. In addition, the
initialization evaluates the last file in each device to make
sure that the file was not open for write. The initialization
process truncates and deletes any files which were left
open for write at power-off.

Media Status Table Cleanup

After the reclaim process occurs several times, the Media
Status Table will reach the end of the first block. At this
time the Media Status Table will need to be reclaimed or
cleaned up. The reclaim process must use the spare block
of the device currently being reclaimed. The entire Media
Status Table will be copied to the spare block, and all
current information will be copied back to the first block
of the media after the block is erased.

Reclaim Cleanup

The reclaim cleanup must first evaluate which device (if
any) was being reclaimed. It must then continue the
reclaim where it left off. The table above illustrates the
action of the reclaim process when each status is
encountered.

Filename: 292175_1.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WINDOWS\WINWORD6\TEMPLATE\ZAN____1.DOT
Title:E
Subject:
Author: Mary Ann Hooker
Keywords:
Comments:
Creation Date: 09/09/95 12:22 PM
Revision Number: 65
Last Saved On: 12/06/95 11:26 AM
Last Saved By: Ward McQueen
Total Editing Time: 531 Minutes
Last Printed On: 12/06/95 11:30 AM
As of Last Complete Printing

Number of Pages: 30
Number of Words: 9,904 (approx.)
Number of Characters: 56,454 (approx.)

	Title Page
	1.0 INTRODUCTION
	2.0 LFM IN A “REAL LIFE” APPLICATION
	2.1 Requirements of Example Target Application Covered by LFM
	2.2 Implementation Specific Details of the OEM's Router

	3.0 ARCHITECTURAL VIEW OF HOW LFM SOFTWARE MANAGES FLASH MEDIA
	3.1 General Operating System Interface
	3.1.1 ROUTER FILE SYSTEM INTERFACE

	3.2 General Flash Manager Organization
	3.2.1 GENERAL FSD DATA STRUCTURES
	3.2.2 EXAMPLE INITIALIZED DEVICE_INFO STRUCTURE
	3.2.3 ROUTER FSD ORGANIZATION

	3.3 General Low-Level Interface Driver
	3.3.1 ROUTER LOW-LEVEL INTERFACE DRIVER

	3.4 General Low-Level Driver
	3.4.1 DEVICE ACCESS
	3.4.2 MEDIA STATUS TABLE
	3.4.3 ROUTER LOW-LEVEL DRIVER
	3.4.3 ROUTER LOW-LEVEL DRIVER

	4.0 REQUIRED FILES
	5.0 MODIFYING HEADER FILES
	5.1 CFSTOP.H
	5.2 LFSMGR.H

	6.0 SUMMARY
	7.0 ADDITIONAL INFORMATION
	7.1 References
	7.2 Revision History
	7.3 Intel BBS*

	APPENDIX A LFS HEADER FIELDS
	APPENDIX B FSD LIBRARY FUNCTIONS DEFINED: FILE SYSTEM INTERFACE DRIVER
	APPENDIX C LOW-LEVEL DRIVER INTERFACE FUNCTIONS
	APPENDIX D LOW-LEVEL SUPPORT FUNCTIONS (LOWLVL.C)
	APPENDIX E USE OF MEDIA STATUS TABLE FOR UNEXPECTED POWER-OFF

