
E
APPLICATION

BRIEF

AB-62

Compiled Code
Optimizations for Flash
Memories

Order Number: 292165-002

KEN MC KEE
TECHNICAL MARKETING
ENGINEER

November 1995

 Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

E AB-62

1

1.0 INTRODUCTION

Intel’s high-performance flash memories, the 28F016XS
and 28F016XD, are changing the typical view of
nonvolatile memories and moving into applications
previously dominated by fast volatile memories such as
DRAM and SRAM. These high-performance flash
components were specifically designed with optimized
system interfaces to deliver high read performance to
embedded applications. Systems that in the past
shadowed code from slow nonvolatile memory into fast
volatile memory to improve performance can now
eliminate this memory redundancy by utilizing flash
memory. The CPU can now execute code directly out of
a nonvolatile memory without slowing down the overall
system. Code stored in high-performance flash memory
will in many cases execute faster than that in DRAM.
This new approach reduces system component count,
cost and power consumption and improves overall
system read performance and reliability.

One important aspect to keep in mind when developing
code for direct execution out of a nonvolatile memory
concerns code and data segments—they must be
separated! This separation prevents program data from
accidentally being written to nonvolatile memory. Flash
memory is in-system updateable, but not fully bit
alterable. Therefore, specific address assignments are
necessary to fit code and data into a given target system’s
memory map.

The rest of this application brief will describe the process
of developing optimized code for direct execution out of
flash memory, as well as recompiling legacy code. For
specific component information about high-performance
flash memories, reference the Additional Information
section.

2.0 EMBEDDED ENVIRONMENT

Figure 1 illustrates a typical embedded system, consisting
of a CPU, random access memory (RAM), some type of
mass storage device and memory mapped input/output
(I/O). In this model, RAM contains both code and data
segments and the nonvolatile memory stores the program
when power is removed from the system. On power-up,
an initialization routine copies the stored program
resident in the nonvolatile memory into RAM for
execution. Figure 2 shows an optimized system utilizing
high-performance flash memory for both code storage
and execution. This improved system utilizes memory
resources more efficiently, thereby reducing the system
memory component count and cost.

CPU

Data
RAM

Code
RAM I/O

Nonvolatile
Memory

Memory
 Redundancy

Code Stored in Nonvolatile
Memory and Shadowed to
RAM on Power-up

2165_01

Figure 1. Code Shadowing Causes Memory
Redundancy Which Increases

the Overall System Component
Count and Cost

CPU

Data
RAM

I/O

Less RAM
Required

Direct Code
Execution

High
Performance

Flash
Memory

2165_02

Figure 2. Executing Code Directly out of
High-Performance Flash Memory

Improves System Performance and Reliability,
While Reducing Overall System Cost

AB-62 E

2

I/O

Data
RAM

High
Performance

Flash
Memory

00000000H

FC000000H

FFFFFFFFH

2165_03

Figure 3. Example Memory Map for Optimized Embedded Environment Illustrated in Figure 2

Figure 3 shows the resultant memory map for the high-
performance flash memory design illustrated in
Figure 2. Notice that each of the three different elements
within this optimized system resides at a unique address.
Unlike a PC environment that is well defined in terms of
its memory map configuration, the embedded
environment varies from one system to another. As a
result, code for embedded applications must be
specifically developed to fit a particular system
architecture.

For example, the embedded system memory map
illustrated in Figure 3 executes code directly out of the
flash memory. Therefore, the code segment points to
flash memory at address FC000000H. The data segment,
on the other hand, points to RAM at address 00000000H.
This segment will contain program data such as the stack
and program variables that are frequently updated.

3.0 SEGMENTING CODE AND DATA

The compiler is an important tool in developing
optimized code for flash memory. It’s the role of the
compiler to convert source code into the actual machine
language for the target microprocessor. This tool,
however, only generates machine code. It does not
resolve memory allocation addresses for code and data
segments. This job is left up to the linker to complete.

Fortunately, many linkers provide a mechanism to place
code and data in a specific location explicitly for
embedded applications. Therefore, the source code
structure does not have to define specific locations for
data structures when generating code for direct execution
out of a nonvolatile memory. This linker mechanism
furnishes a simple process for porting code from one
system to another without requiring any code
modifications. The following sections will step through
the process of segmenting code, utilizing different
development tools.

Before continuing, however, it’s important to understand
that the code segment should be set-up as a “read only”
segment. This will prevent writing information to the
code segment. Remember, flash memory is in-system
updateable but is not fully bit alterable. Therefore, self-
modifying code should be avoided.

E AB-62

3

Compilers/Linkers for Embedded Applications

Many compilers/linkers for embedded microprocessors,
such as the GNU/960 tool set for the i960®
microprocessor family, specify code and data segments
locations via a command line switch. Through the
command line, the linker receives specific segment
addresses. The linker then uses this information to place
the code and data segments into the target system.

The GNU/960 linker, for example, incorporates a
-Ttarget command line option that invokes the linker to
search for a file entitled TARGET.LD. This file defines
the target system’s memory map, informing the linker
where to place the program’s code and data segments in
the target system. Figure 4 illustrates a TARGET.LD file
for the embedded environment shown in Figures 2
and 3.

MEMORY
{ Flash: o=0xFC000000,1=0x4000000
 DataRAM: o=0x00000000,1=0x0010000
}

SECTIONS
{ .text: ; Code Segment
 {
 } >Flash

 .data ; Data Segment
 { ; Initialized Data Variables
 _ram = .;
 } >DataRAM

 .bss: ; Data Segment
 { ; Un-initialized Data
 } > DataRAM ; Variables
}

2165_04

Figure 4. Example TARGET.LD File for the
Embedded Environment in Figures 2 and 3

With the code and data segments defined, the initialized
data stored in the nonvolatile memory that the program
will update when executing must be linked to the data
segment upon invoking the program. To handle this
procedure, a small routine must be added to the code.
Fortunately, a myriad of compilers/linkers for embedded
applications provide a one-step process to setting up
initialization tables. The linker integrates a vendor-
developed start-up module which upon power-up copies
all initialized data to the appropriate RAM locations for
system execution. This linker utility eliminates additional
development time in creating optimized code for
execution out of flash memory.

Data structures that require no modification during the
run time of the program, such as static data tables and
constant variables, can remain situated within the
nonvolatile memory. The program will only read these
types of constant data structures. Leaving these structures
within the nonvolatile memory provides a positive
system benefit in that it reduces the necessary amount of
available RAM required by the program.

Compilers/Linkers for PC Platforms

When developing code for Intel Architecture
microprocessors, standard DOS compilers may be used
to develop optimized code for direct execution out of
flash memory. High level compilers such as C and C++,
with the help of two utilities called “linking locator” and
“start-up,” can generate code suitable for the embedded
world.

The job of the linking locator is to place code and data
segments into the target memory map, given specific
input parameters. The passing of parameters is
accomplished in the fashion as explained in the previous
section “Compilers/Linkers for Embedded Applications.”
Next, the “start-up” utility enables the embedded code to
be initiated without DOS being present in the embedded
system. The “start-up” routine explicitly assigns the
STACK segment as an independent segment so that it
will not point to nonvolatile memory. Figure 5 illustrates
an example of a “start-up” routine for Microsoft C
programs called INVOKEC.ASM. The steps involved in
creating optimized code using these tools is very
minimal.

Following the flowchart in Figure 6, the initial
development phase requires no alteration to standard
practices involved in developing code for a PC platform.
The major advantage here is that the development and
program debugging can be accomplished independently
on a PC before moving the code into an embedded
system.

Functional at the PC platform level, the code is once
again compiled and linked. During the linking process,
the object file, embedded libraries and “start-up” utilities
are tied together with the “linking locator” to segment
code and data to fit the target memory map.

The embedded libraries supplement standard DOS
libraries that call on the functionality of the operating
system. In the embedded environment, the operating
system may not be present. These functions include
simple library calls such as putchar(). The code for these
embedded libraries can be purchased from companies

AB-62 E

4

such as Phar Lap Inc. and Systems & Software Inc. (SSI)
or created for the target system.

E AB-62

5

INIT_TEXT SEGMENT PUBLIC DWORD 'CODE'
INIT_TEXT ENDS

STACK SEGMENT STACK DWORD 'STACK'
SSTACK DB 1024 DUP (?) ; Start (bottom) of stack.
ESTACK LABEL BYTE ; End (top) of stack.
STACK ENDS

_DATA SEGMENT PUBLIC DWORD 'DATA'
ARGV DW OFFSET PNAME
PNAME DB 'main',0
_DATA ENDS

DGROUP GROUP _DATA

 public __acrtused
__acrtused equ 0

 EXTRN _main:FAR

 ASSUME CS:INIT_TEXT,DS:DGROUP,SS:STACK

INIT_TEXT SEGMENT

 PUBLIC start,_exit

_exit PROC FAR
 jmp $; Hang here upon exit.
_exit ENDP

start PROC FAR

 mov ax,SEG DGROUP ; Initialize DS
 mov ds,ax ; and ES to point
 mov es,ax ; to the data segment.
 mov ax,SEG STACK ; Initialize Stack Segment
 mov ss,ax ; register and set up the
 ; stack.
 mov sp,OFFSET STACK:ESTACK
 push ds ; Set up
 mov ax,OFFSET D GROUP:ARGV ; a C standard
 push ax ; environment
 mov ax,1 ; for calling
 push ax ; the C program.
 call _main ; Invoke the program.
 call _exit ; go to the exit routine
 ; when done
start ENDP
INIT_TEXT ENDS
END start

2165_05

Figure 5. Example "Start-Up" Routine Enabling
Optimized Code for Flash Memory to Initiate

without DOS Being Present

Create Source File
(.c)

Compile Source File
(.obj)

Link Files
(.exe)

Test Program

Any Errors?
Yes

Debug Program

Recompile Source File
(.obj)

Link Files,
Locate Segments

(.bin)

Startup Utility

Library

No

Program Flash
Memory

2165_06

Figure 6. Flowchart for Developing Optimized
Code for Flash Memory Using Off-the-Shelf C

Compilers for Intel
Architecture Based Designs

4.0 OPTIMIZING LEGACY CODE

In most situations, it may be desirable to utilize existing
code from a previous design. This practice can drastically
reduce a new design’s development cycle. But, can this
legacy code port into a new system environment that
utilizes the benefits of high-performance flash
memories? The answer is emphatically YES!

Depending upon the system’s architectural changes and
legacy code structure, different steps may or may not be
necessary to optimize the legacy code for flash memory
usage. The following sections will describe the aspects
requiring consideration when utilizing legacy code.

AB-62 E

6

Legacy Code That Executed out of Nonvolatile
Memory

Many systems today already execute code directly out of
nonvolatile memory. When these types of systems
advance to employ the benefits of high-performance
flash memory, the legacy code may be put to use with no
alterations or recompiling necessary.

Legacy Code That Executed out of RAM

In high-performance embedded systems that shadow
code into RAM, the code and data segments may not be
separated in an appropriate fashion for direct execution
out of high-performance flash memory. When shadowing
code into RAM, the data segment can immediately
follow the code segment without posing a system
problem because the code segment resides in the RAM
area. In fact, linkers typically default to this type of
configuration if not informed otherwise. Figures 7 and 8
illustrate two different system implementations of
shadowing code for a nonvolatile memory.

In an optimized environment, the data segment cannot
point to a nonvolatile memory. To overcome this hurdle,
two specific areas need examination when converting
this type of legacy code. First, the initial routine that
copies the code stored in nonvolatile memory into RAM
on power-up will no longer be needed. The code will
now execute directly out of the storage memory. This
elimination will reduce code size and unnecessary
software overhead. Second, explicit address assignments,
if implemented in the legacy code, will require
examination. The address assignments for program
elements such as data structures and variables must be
configured to fit the new embedded target system.
Otherwise, these assignments can be removed and
replaced with variable references which the compiler and
linker can then use to place in appropriate address
locations.

After optimizing the code for flash memory, the legacy
code will require recompiling. See Section 3.0 for
information about compiling optimal code for flash
memory.

Copy
Code
and

Initialization
Data

Code

Data

Code
Stored
in NVM RAM

Code

Data

Boot Code

2165_07

Figure 7. Code Stored in Nonvolatile Memory,
Then Copied into RAM for Execution

Decompression Code

Data

Code

Data

Code

Data

Code

Data

Compressed
Code Stored in

NVM
RAM

Boot Code

2165_08

Figure 8. Compressed Code Stored in
Nonvolatile Memory, Then Decompressed into

RAM for Execution

E AB-62

7

5.0 DEBUG SUPPORT

Software debugging can consume a great deal of time
and effort. However, debugging tools available today can
dramatically reduce this time investment. They provide
the capability of single stepping, code disassembly,
breakpoint insertion and many more features. These
features aim to ease the debugging process and are
equally applicable for debugging code that executes
directly out of either RAM or flash memory.

The only noticeable difference between debugging code
out of RAM verses a nonvolatile memory is the
breakpoint insertion methodology used by debugging
tools. When debugging code in RAM, the instruction at
the desired breakpoint reference location is saved. Then,
a break instruction is written back to the reference
location. This write operation cannot be accomplished in
a nonvolatile memory. Consequently, an alternative
method must be used by the debugging tool to employ
breakpoints when debugging code in nonvolatile
memory. The tool set therefore makes use of “hardware
breakpoints,” thereby utilizing the internal debugging
capabilities of the host CPU. Instead of inserting actual
breakpoints in the executing code, the desired reference
location is stored in the processor’s debug registers. For
example, the Intel486™ microprocessor provides access
to four debug registers. When the processor’s instruction
pointer reaches the address location stored in the
processor debug register, the program will stop
execution. At this point, the program’s functionality can
be examined.

If the host CPU lacks sufficient integrated hardware
debugging support, several other strategies can be used
to debug execute-in-place (XIP) code stored in flash
memory. ROM or flash memory emulators provide one
such solution. Memory emulators integrate enhanced
debugging features such as built in hardware breakpoint
support. The Reference section of this application brief
lists example memory emulator vendors.

Another approach is debugging code in RAM. Using this
approach, the standard software emulator breakpoint
insertion method is valid. The debugged code then ports
directly to the optimized XIP embedded system. This
approach is most easily achieved in systems that place
DRAM on SIMMs, where a temporary increase in the
amount of RAM requires no system hardware changes.

A final approach makes use of hardware CPU emulators
versus software emulators. CPU emulators provide a
great deal of flexibility in breakpoint methodology
without writing to the main memory subsystem.

6.0 SUMMARY

This application brief has discussed the process of
developing optimized code for high-performance flash
memory. The important aspect to remember is that
compilers/linkers today provide the capability to produce
optimized code for direct execution out of flash memory.
For further information about high-performance flash
memories, compilers/linkers and linking locators, consult
the Additional Information and References sections.

AB-62 E

8

ADDITIONAL INFORMATION

Order Number Document/Tool

297372 16-Mbit Flash Product Family User’s Manual

290532 28F016XS 16-Mbit Synchronous Flash Memory Datasheet

290533 28F016XD 16-Mbit DRAM-Interface Flash Memory Datasheet

292147 AP-348, “Designing with the 28F016XS”

292126 AP-377, “16-Mbit Software Drivers”

292131 AP-384, “Designing with the 28F016XD”

292146 AP-600, “Performance Benefits and Power/Energy Saving of
28F016XS-Based Designs”

292163 AP-610, “Flash Memory In-System Code and Data Update Techniques”

292168 AP-614, “Using the 28F016XD in Embedded PC Designs”

297500 “Interfacing the 28F016XS to the i960® Microprocessor Family”

297504 “Interfacing the 28F016XS to the Intel486™ Microprocessor Family”

292152 AB-58, “28F016XD-Based SIMM Designs”

297508 FLASHBuilder Utility

Contact Intel/Distribution
Sales Office

28F016XS and 28F016XD Benchmark Utilities

Contact Intel/Distribution
Sales Office

28F016XS and 28F016XD iBIS Models

Contact Intel/Distribution
Sales Office

VHDL Models for the 28F016XS and 28F016XD

Contact Intel/Distribution
Sales Office

Timing Designer Files for the 28F016XS and 28F016XD

Contact Intel/Distribution
Sales Office

28F016XS and 28F016XD Orcad and ViewLogic Schematic Symbols

REVISION HISTORY

Number Description

001 Original version

002 Changed title from “Compiled Code Optimizations for Embedded Flash RAM Memories” to
“Compiled Code Optimizations for Flash Memories”

Removed all Embedded Flash RAM memory references

E AB-62

9

REFERENCES

NOTE:

The compiler/linker listing below is just a sample of available embedded tools that have the capability to segment
code and data. Since these embedded tools continuously improve, Intel recommends that designers contact
vendors for updated information about compiler/linker capabilities and new user utilities. Intel will continue to
work with the industry to develop optimum solutions for software compilation. Intel Corporation assume no
responsibility for the quality or reliability of these software products. No patent licenses are implied.

Compilers/Linkers for
Embedded Applications

Cygnus
1937 Landing Drive
Mountain View, CA 94043
(617) 872-3296

Embedded Performance, Inc.
1860 Barber Lane
Milpitas, CA 95635
(408) 434-2210

GreenHills
510 Castillo Drive
Santa Barbara, CA 93101
(805) 965-6044

MetaWare
 2161 Delaware Avenue
Santa Cruz, CA 95060
(408) 429-6382

Microtec Research
2350 Mission College Boulevard
Santa Clara, CA 95054
(800) 950-5554

Software Development Systems, Inc.
815 Commerce Drive, Suite 250
Oak Brook, IL 60521
(800) 448-7733

Linking Locators and Embedded Libraries
for Off-the-Shelf PC Compilers

Phar Lap Inc.
60 Aberdeen Avenue
Cambridge, MA 02138
(617) 661-1510

Systems & Software Inc. (SSI)
18012 Cowan, Suite 100
Irvine, CA 92714
(714) 833-1700

Memory Emulators

Grammar Engine, Inc.
921 Eastwind Drive Suite 122
Westerville, OH 43081
(800) 776-6423

J&M Microtek, Inc.
83 Seaman Road
W Orange, NJ 07052
(201) 325-1892

Tech Tools
P.O. Box 462101
Garland, TX 75046
(214) 272-9392

Filename: 292165_2.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WIN\WINWORD6\TEMPLATE\ZAN____1.DOT
Title:E
Subject:
Author: Ken Mckee
Keywords:
Comments:
Creation Date: 09/20/95 5:17 PM
Revision Number: 16
Last Saved On: 11/28/95 9:49 AM
Last Saved By: Ward McQueen
Total Editing Time: 189 Minutes
Last Printed On: 11/28/95 9:51 AM
As of Last Complete Printing

Number of Pages: 11
Number of Words: 2,914 (approx.)
Number of Characters: 16,615 (approx.)

	Title Page
	1.0 INTRODUCTION
	2.0 EMBEDDED ENVIRONMENT
	3.0 SEGMENTING CODE AND DATA
	4.0 OPTIMIZING LEGACY CODE
	5.0 DEBUG SUPPORT
	6.0 SUMMARY
	ADDITIONAL INFORMATION
	REVISION HISTORY
	REFERENCES

