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1.0 INTRODUCTION

The ability to update flash memory contents with the
system operational distinguishes flash memory from
other nonvolatile technologies such as ROM and
EPROM. This capability is key for using flash memory in
a wide range of applications:

• Code storage/execution (code DRAM and ROM
replacement),

• Data storage (EEPROM, battery RAM emulation,
etc.), and

• File storage (flash-based solid state drive)

System software implementations for in-system code and
data update must comprehend algorithm execution
during flash memory program/erase. Implementations
also vary according to the level of system code/data
access required during update.

This application note discusses these topics and gives
general recommendations that can be tailored to specific
system needs. It focuses on Intel’s Boot Block,
FlashFile™ and Embedded Flash RAM memories which
have on-chip program/erase automation and block
erasure. However, many of the concepts can be equally
applied to Intel’s bulk erase flash memories.

2.0 GENERAL INFORMATION

Definition of Terms

Design engineers can select from up to three unique
approaches to update stored flash memory information.
Before proceeding, let’s define these terms to make it

clear what we will and won’t be discussing in this
application note:

1. In-System Write (ISW): As first described earlier,
during an in-system update the system is powered up
and either partially or fully operational. The system
CPU (see Figure 1) executes the flash memory
program/erase algorithms and obtains new code/data
from one of several sources (serial or parallel port,
floppy or hard disk drive, modem, etc.).

2. On-Board Programming (OBP): In this approach, the
flash memory is also installed on the system board.
However, OBP does not use the system CPU and, in
fact, commonly powers down the processor or holds
it in a HALT mode. The flash memory connects to an
off-board “computer” such as a board tester or prom
programmer. This off-board intelligence provides the
necessary commands and data to erase and reprogram
the flash memory. This technique is covered in other
documentation available from Intel Corporation. See
the Additional Information section of this application
note.

3. PROM Programming: This approach was first made
popular back in the days of PROMs and EPROMs.
The flash memory is initially programmed, and is
reprogrammed, by removing it from the system board
and socketing it in dedicated hardware called a
PROM programmer. Intel works closely with a wide
range of PROM programmer vendors to ensure
support for all of its flash memory products. See the
Additional Information section of this application
note for details.
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Figure 1.  The System CPU Controls the In-System-Write Flash Memory Update
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Read-While-Write

The fundamental concept to understand when
considering in-system updates is that of read-while-write.
Stated simply, it is currently NOT possible with any of
today’s flash memory technology alternatives to read
from the flash memory array while simultaneously
programming or erasing it. There are several basic
reasons for this:

a. During program or erase, the flash memory row
and column decode architecture results in high
voltages present throughout the array. Isolating
these voltages to a specific byte/word or block
would have excessive die size and (therefore)
silicon cost impacts given that inexpensive system
implementation alternatives exist. Keep reading
for details!

b. Intel’s Boot Block, FlashFile and Embedded Flash
RAM memories all have on-chip program/erase
automation. After these flash memories receive
program or erase command sequences, they
automatically transition to a mode where they
provide status register information (versus array
or other data). This transition quickly provides the
system with the information it needs to determine
program/erase status, minimizing system software
overhead and maximizing effective write/erase
performance.

Flash memory array reads (to access code or data) CAN
take place at any time that the flash memory automation
is READY (either completed or suspended). Figure 2
gives a simple flash memory update algorithm example.
It shows portions of the code that must be executed off-
chip, and shaded areas show “windows” where the flash
memory array can be accessed, if needed, by writing the
Read Array command and then reading from desired
locations. These “windows” will be described in detail in
Section 4.0. Thanks to on-chip automation, the amount of
code executed off-chip to actually program/erase the
flash memory is very small. Overhead needed to obtain
new code/data from the system varies with the method
chosen.
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Figure 2.  Simple Code/Data Block Update
Algorithm Shows Shaded "Window"

Opportunities for Array Reads
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What Amount of System Functionality Is Needed
During Update?

The answer to the above question is key to understanding
the amount of software architecting needed to integrate
flash memory into your design. Use the following
question as a reference for where to continue reading:

Q. Can you dedicate the system exclusively to the flash
memory update and ignore all other non-related
interrupts? Said another way, can you take the system
“off-line” during flash memory updates?

A1. If your answer is “yes,” the software implementation
is very straightforward. See Sections 3.0 and 5.0.

A2. If your answer is “no,” the specific software
implementation varies. One approach uses redundant
system memory to separate the execution and
storage/backup regions. Another technique eliminates
this redundancy but depends on an understanding of
interrupt latency, interrupt frequency and its variability
with time. See Sections 4.0 and 5.0.

Dedicated Blocks for System Boot Code:
Recovery from System Power Loss or Reset
during Flash Memory Update

Several of the approaches described in Sections 3.0 and
4.0 that follow use system RAM to execute the flash
memory update algorithms. This brings up a logical
question; what happens if the system resets or loses
power in the middle of a flash memory update? In this
case, system RAM contents will be invalid, including the
flash memory update code. The byte being programmed
or the block being erased when system reset/power loss
occurs will be left in an indeterminate state and will need
to be reprogrammed/erased.

Flash memory’s blocked architecture provides protection
for system boot code and enables the system to recover
fully from incomplete code updates. All boot block
components as well as 16-/32-Mbit FlashFile and
embedded flash RAM memories also allow hardware
“lock” of boot code for additional protection. This boot
code, after minimally initializing system hardware,
should execute a checksum verify of the remainder of the
flash memory. If this checksum “passes,” system boot
can continue. If a checksum “fail” is obtained, this
reflects an incomplete program or erase, and the system
should alert the user and execute a repeat update. Figure
3 flowcharts this algorithm.
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Remainder of Flash Memory

Match?
No

Yes

Alert User, Execute
 ReprogramAlgorithm

Start

Continue Normal Boot

Compare to Valid Checksum
Stored in Boot Block

2163_03

Figure 3.  Checksum Validation Confirms Flash
Memory Integrity

Intel’s 16-/32-Mbit FlashFile and embedded flash RAM
memories indicate via Status Register feedback whether
an erase in progress has been aborted by power loss or
hardware power-down. The 16-Mbit Flash Product
Family User’s Manual covers this topic in detail. See the
Additional Information section of this application note.

3.0 "OFF-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should be
reading this section if you can ensure that the system will
receive no interrupts that will require flash memory array
access during the update process. Examples of this
scenario are numerous:

• Cellular phones that are placed in a special
“maintenance” mode for updates.

• PC BIOS applications where the user runs a dedicated
“update” routine to upgrade the resident flash
memory code.

• Laser printers that can be taken “off-line” prior to the
update process.

• Many other applications. . . .
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Again referencing Figure 2, we see that the shaded areas
of the algorithm can be ignored since flash memory array
access is not needed until after the update is complete.
The resultant algorithm, shown in Figure 4, is small in
size and straightforward in implementation. It can be
stored within one of the flash memory blocks if desired,
and is copied to/executed from an external memory.
Scenarios that follow show two of the many possible
implementation options.

Technique 3.1: Algorithm Execution from RAM

The RAM in this technique can be located in several
different places within the system, such as:

• In a discrete SRAM or DRAM chip

• Integrated within an embedded microprocessor or
microcontroller

• Integrated within a system ASIC

• In a Page Buffer of a separate 16-Mbit FlashFile
memory

An important requirement is that the system be able to
execute code (not just read and write data) out of the
RAM. Ideally, to minimize system overhead and
maximize effective update throughput, the update
algorithm should be present in RAM at all times during
system operation. If this is not possible due to “RAM
crunch,” the up-front time required to upload the
algorithm to RAM must be factored into system update
performance calculations.
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Figure 4.  The Block Erase/Program Algorithm Is
Simplified for "Offline" Updates
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Figure 5.  Executing the Update Algorithm
Requires Minimal System RAM

Figure 5 shows the overall flowchart used when
executing the update algorithm out of system RAM. As
mentioned earlier, flash memory automation means that
the amount of code executed off-chip to actually
program/erase the flash memory is very small. Overhead
needed to obtain new code/data from the system varies
with the method chosen (diskette, modem, serial or
parallel port, etc.).

Does your system include at least one 16-/32-Mbit
FlashFile memory and other flash memories? If so, you
can potentially use the 256 byte page buffer of the
FlashFile memory as the execution RAM while updating
the other flash memories! Note: it is NOT possible to
completely execute an update algorithm from the page
buffer of a flash memory while simultaneously updating
that same memory.

Technique 3.2: Algorithm Execution from
Nonvolatile Memory

If the system contains multiple flash memories,
implementation is very straightforward. Store a duplicate
copy of the update code in each flash memory, and
execute from one device while updating the other(s).
Figure 6 gives one example, using two Intel 28F001BX
Boot Block flash memories.

This same technique can be applied to any other
nonvolatile memory in the system. Examples include
boot ROM, ROM locations within an ASIC or
nonvolatile memory integrated within an embedded
microprocessor or microcontroller.
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Figure 6.  Executing the Flash Memory Update Algorithm from Another Nonvolatile Memory Requires No
Dedicated RAM
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Figure 7.  Redundant System RAM Enables Access to All Code during Flash Memory Update

4.0 "ON-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should be
reading this section if the system must be partially or
fully operational during the flash memory update
process. Said another way, it must be able to detect and
service some or all possible system interrupts. Examples
of this scenario include:

• Cellular base stations that must be able to service
incoming connection requests.

• Data Communications router and hub networks that
cannot be taken off-line.

• Telecommunications PBX switch networks that must
be always-operational.

Technique 4.1: Code Redundancy in System RAM

This system memory configuration, shown in Figure 7, is
relatively common today in high-performance systems.
The system boots from flash memory, copies code to

code DRAM (sometimes decompressing in the process)
and jumps to DRAM for execution. DRAM is used here
primarily because of its high-performance reads.

In this case, the system has access to all interrupt service
routines during the flash memory update process. After
update is complete, a quick system “reset” will reboot the
system and load DRAM with the new code. The amount
of time that the system cannot service interrupts is the
combination of system reboot and copy-to-DRAM
delays.

Technique 4.2: Code Redundancy in System
Flash Memory

Figure 8 gives an example of this system memory
configuration. Two banks of flash memory components
store “previous” and “latest” versions of system code.
The system executes from one bank while updating the
other bank. Once update successfully completes, an
address or control signal “toggle” swaps the “previous”
and “latest” banks and enables immediate execution of
the latest software version.
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Figure 8.  Dual Flash Memory Banks Eliminate RAM Reload Delays

The obvious advantage of this approach include constant
access to all interrupt service routines and a non-existent
reboot delay. Memory redundancy will incur additional
system cost, which must be balanced against advantages
and compared to total system cost (and price) to
determine applicability of this approach.

Technique 4.3: Leveraging Flash Memory
Automation: Programming Performance and
Erase Suspend Latency

This approach eliminates both the redundancy of
multiple memories and the reboot delay of the
flash/DRAM solution in Technique 4.1. It is especially
attractive for use with Intel’s Embedded Flash RAM
memories, whose read performance approaches or
exceeds that of DRAM. In this case, the need for
redundant code DRAM (for performance reasons) is
eliminated.

Before continuing your reading of this section, please do
the following research:

• Analyze the latencies of each of your system interrupt
routines. Which routines take the longest to execute,
and how long do they take?

• Analyze the profile of frequency of interrupts. How
often do interrupts occur, and how does this
frequency vary with time of day, week, month and
year? Can updates be scheduled for times when the
interrupt frequency is low (or ideally, zero)?

The flash memory automation approach “hides”
byte/word programming operations within the time delay
between interrupts. It also “hides” slow block erase by
using erase suspend/resume to read from the flash
memory when required. Referring back to
Figure 2, we see that reads from the flash memory (to
access interrupt service routines) can occur at the
conclusion of programming, at the conclusion of erase
and while erase is suspended. This approach exploits
these access “windows.”

As an example, we’ll construct the following scenario
(reference Figure 9).
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Figure 9.  Leveraging Flash Memory Automation Eliminates System Memory Redundancy, Enables Full
Interrupt Servicing throughout the Update Process
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Figure 10.  Available Time between System Interrupts Enable Flash Memory Programming

Components

Two 28F016SV flash memories (5V VCC, 12V VPP),
each x16, interfacing to a x32 system bus

Small system SRAM

Timings

System interrupt frequency (period) = every 200 µs.

Longest interrupt service routine latency = 50 µs.

Flash memory per-location programming time = 6 µs
(typical)

Flash memory erase suspend latency = 10 µs (typical)

Interrupts During Programming

Looking first at programming (Figure 10), we see that the
goal is to execute at least one programming operation
within the period between interrupts. In the scenario
described above, subtracting interrupt service routine
latency from interrupt period gives a 150 µs “window” in
which programming can occur. At 6 µs per double-word,
up to 25 locations can be programmed within each
interrupt period.

200 µs (interrupt period) – 50 µs (ISR latency) = 150 µs
(programming “window”)

150 µs (window)/6 µs (programming time per location) =
25 locations

Intel’s 16-/32-Mbit FlashFile memories contain on-chip
page buffers, each 256 bytes in size, that dramatically
increase effective per-byte programming performance.
For example (averaged over a page), typical
programming performance for the Intel 28F016SV is 2.1
µs/byte at 5V VCC and 12V VPP. Using these page
buffers may, in some cases, allow the system to program
even more bytes within each interrupt programming
“window.”

Interrupts During Erase

Now for erase. If an interrupt occurs during erase, the
system must be able to suspend erase, read the flash
memory array and service the interrupt, all before the
next interrupt. Looking at Figure 11, adding erase
suspend latency to interrupt service routine latency and
subtracting from interrupt period shows that 140 µs of
flash memory erase automation can execute between
each interrupt. Obviously, block erase time will extend
beyond that specified in the device datasheet since erase
is being repeatedly suspended.

200 µs (interrupt period) – [10 µs (erase suspend latency)
+ 50 µs (ISR latency)] = 140 µs (erase “window”)
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Figure 11.  Available Time between System Interrupts Enables Flash Memory Erase, and Erase Suspend
Allows Array Access for Interrupt Service Routines

Accessing the Existing Version of Code in a Block Being
Updated

All well and good. We’ve shown how to access code in
other flash memory blocks (for example blocks 2–30)
while erasing or reprogramming another block (for
example, block 1). But what happens if the code you
need to read is the code in the process of being updated?
Where do you put the previous version of this code?

One approach, shown in Figure 9, assumes that at least
one spare block is available in each flash memory (for
example, block 31). Before updating any block, copy that
block’s contents to the spare block and redirect
appropriate interrupt vectors to point to that block. After
update is complete, redirect interrupt vectors back to the
original block, erase the spare block and move to the
next block to be updated. This approach will obviously
“cycle” block 31 more than any of the others, but this is
often acceptable if the number of expected code updates
through system lifetime is not excessive.

If spare blocks are not available or expected updates are
numerous, copy block information to RAM before
updating. This approach requires dedicated RAM for this
function but needs much less RAM than a technique like
Technique 4.1, where the entire flash memory array is
shadowed.

Putting It All Together

Referring back to our example scenario in Figure 9, we
conclude with the following summary.

Component block 0 is locked and stores system boot
code and the flash memory update routine. The interrupt
vector table, stored in an unlocked block to enable its
revision, is copied from flash memory to RAM on system
power-up. During flash memory update, interrupt vector
table contents point to the flash memory update routine,
also copied to RAM. When an interrupt occurs, this
routine determines via a bit “flag” if block erase is

in progress and if so, suspends erase before jumping to
the necessary interrupt service code. After servicing the
interrupt, the update routine resumes erase or executes
location programming operations, depending on where in
the update the interrupt occurred.

Ideally, to minimize system overhead and maximize
effective update throughput, the update algorithm should
be present in RAM at all times during system operation.
If this is not possible due to “RAM crunch,” the up-front
time required to upload the algorithm to RAM must be
factored into system update performance calculations.

Before erasing and reprogramming a flash memory
block, system software copies block contents to the spare
block and appropriately redirects the interrupt vector
table. After block erase/reprogram completes, the update
routine redirects interrupts back to the block, erases the
spare block and moves to the next block to be updated.

Program/Erase Suspend Performance, Typical/Max vs.
Cycling

Depending on how “tight” the timings are using the
equations of Technique 4.3 with your specifications, and
depending on the expected flash memory update
frequency (cycling) through system lifetime, additional
information may be needed to determine whether this
technique is applicable to your design. In this case,
please contact your local Intel or distribution sales office
for additional information on typical/max program, erase
and erase suspend specifications as a function of cycling
for the Intel flash memory of interest.

What If Interrupt Period Is too Short or Interrupt Latency
Is too Long?

Technique 4.3 assumes that system interrupt timings
allowed sufficient time for erase suspend and byte/word
programming. If at first inspection this does not seem to
be the case for your design, answer the following
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questions in the process of further analyzing your system
interrupt profile:

• Do interrupts occur fairly regularly as a function of
time, or in bursts of activity followed by periods of
“quiet?” If the latter, your system software can hold
off attempting location programming or resuming
erase until it detects a specified time span of system
“inactivity.”

• Do one or several interrupt service routines have
substantially longer latencies than others? If so,
system software can hold off attempting
programming or initiating/resuming erase when these
specific interrupts occur.

In some cases, it may be difficult to hold off
programming due to a fixed data write transfer rate to the
flash memory subsystem. In these cases, a small RAM
FIFO can potentially be integrated within the interface
logic (ASIC, FPGA, etc.). This FIFO acts as a buffer
between system and flash memory and accommodates
programming delays due to interrupt bursts or long ISR
latencies.

As an alternative, the approaches described in
Techniques 4.1 and 4.2 can be reviewed to determine
applicability with your system design criteria.

Programming (Writing) during Erase

Some system designs require both the ability to quickly
read code from flash memory and to quickly write
information to flash memory in response to an interrupt.
Intel’s 16-Mbit FlashFile memories offer enhanced on-

chip automation that, among its features, automatically
suspends block erase to service queued programming
operations to other blocks.

5.0 CONCLUSION

Intel has developed a wide range of documentation and
other collateral to assist you in developing system
software solutions and profiling cycling through system
lifetime. Please contact your local Intel or Distribution
Sales Office for more information on Intel’s flash
memory products.

6.0 ADDITIONAL INFORMATION

Documentation

Device datasheets provide in-depth information on
device operating modes and specifications.

The 16-Mbit Flash Product Family User’s Manual (order
#297372) gives detailed information on the enhanced
automation of Intel’s 16-/32-Mbit FlashFile and
Embedded Flash RAM memories. Included flowcharts
assist you in developing system software.

The following application notes deal specifically with
software interfacing to Intel flash memories:

Order
Number

Document

292046 AP-316 “Using Flash Memory for In-System Reprogrammable
Nonvolatile Storage”

292059 AP-325 “Guide to First Generation Flash Memory Reprogramming”

292077 AP-341 “Designing an Updateable BIOS Using Flash Memory”

292095 AP-360 “28F008SA Software Drivers”

292099 AP-364 “28F008SA Automation and Algorithms”

292148 AP-604 “Using Intel’s Boot Block Flash Memory Parameter Blocks to Replace 
EEPROM”

292126 AP-377 “16-Mbit Flash Product Family Software Drivers”

NOTES:
Please call the Intel Literature Center at 1-800-548-4725 to request Intel documentation. International customers should
contact their local Intel or distribution sales office.
Additional information can be requested from Intel’s automated FaxBACK* system at 1-800-628-2283 or 916-356-3105
(+44(0)793-496646 in Europe).



AP-610 E

12

FLASHBuilder

This Windows-based utility is a hypertext aid to
understanding the automation of Intel’s 16-Mbit
FlashFile and Embedded Flash RAM memories.
FLASHBuilder automatically generates code segments in
C or ASM-86 for flash memory program/erase that you
can easily “paste” into your system software. It also
includes a cycling utility and power/performance
benchmark utilities for the 28F016XS and 28F016XD.

FLASHBuilder is available from the Intel Literature
Center via order number #297508. It can also be
downloaded from the Intel BBS at 916-356-3600
(+44(0)793-49-6340 in Europe).

VHDL and Verilog Models

VHDL functional simulation models for the 28F016SV,
28F016XD and 28F016XS are available now; please

contact your local Intel or distribution sales office.
Verilog models for these devices will be available in
early 1995.

PROM Programming Support

Intel works closely with a large number of world-wide
PROM programmer vendors to ensure timely support for
its flash memory products. This programming support
information, updated frequently, is available on
FaxBACK.

On-Board Programming

An application note will be available in early 1995 that
discusses hardware and software recommendations for
OBP using either a board tester or PROM programmer.
Contact your local Intel or distribution sales office for
more details.

REVISION HISTORY

Number Description

001 Original Version

002 Removed page buffer references for Embedded Flash RAM memories


	Title Page
	Flash Memory In-System Code and Data Update Techniques
	1.0 INTRODUCTION
	2.0 GENERAL INFORMATION
	3.0 "OFF-LINE" FLASH MEMORY
	4.0 "ON-LINE" FLASH MEMORY
	5.0 CONCLUSION
	6.0 ADDITIONAL INFORMATION
	Figures
	Figure 1. The System CPU Controls the In-System-Write Flash Memory Update
	Figure 2. Simple Code/Data Block Update
	Figure 3. Checksum Validation Confirms Flash
	Figure 4. The Block Erase/Program Algorithm Is Simplified for "Offline" Updates
	Figure 5. Executing the Update Algorithm
	Figure 6. Executing the Flash Memory Update Algorithm
	Figure 7. Redundant System RAM Enables
	Figure 8. Dual Flash Memory Banks Eliminate RAM Reload Delays
	Figure 9. Leveraging Flash Memory Automation Eliminates System Memory Redundancy, Enables Full Interrupt Servicing throughout th
	Figure 10. Available Time between System Interrupts Enable Flash Memory Programming
	Figure 11. Available Time between System Interrupts Enables Flash Memory Erase, and Erase Suspend Allows Array Access for Interr


