
E
APPLICATION

NOTE

AP-605

Implementing a
Resident Flash Disk
with an Intel386™ EX
Embedded Processor

Order Number: 292157-001

TONY SHABERMAN
TECHNICAL MARKETING
ENGINEER

September 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

E AP-605

1

1.0 INTRODUCTION

The Intel386 microprocessor family has gained a wide
acceptance in the world of embedded applications. One
reason for this acceptance is DOS-compatibility. A DOS-
based design provides an easy, cost-effective means to
develop, test, debug and port embedded application code.

As embedded system designers take advantage of DOS
capability, a revolutionary system architecture is required
to meet space and power requirements. The requirements
of this revolutionary system are:

• An architecture that is not bounded by what has been
done before with existing memory architectures, but
free to meet the demanding requirements of
embedded end-users.

• An architecture which is free to adopt and
accommodate new technological advances in
software and hardware, while protecting end-users
initial base hardware investment.

Implementing this new system architecture requires an
alternative to the traditional PC storage media such as
ROM, DRAM, floppy disk and hard disk. The solution is
Intel’s FlashFile™ memory (see architecture comparison
in Figure 1).

D AT A

DR AM DRAM /R OM

F LA SH DR AM F L ASH

- Re side n t D isk

- F la sh C ard

- F la sh D rive

De skto ps

F DD/HDD

C O DE F ILE & CO DE

APPLICAT ION M ANIP ULAT ION EXEC UT IO N ST ORA GE

Em b ed ded

2157_01

Figure 1. Architecture Comparison

Intel Flash memory provides in-system write capabilities,
along with selective block erase and program/erase
automation, which are gaining wide acceptance in the
embedded market. These features allow cost-effective
field updates and provide quick time-to-market solutions
in most applications.

Flash memory enables the design of completely new
types of computers that fit in the palm of your hand by
replacing many of the code and storage functions of
other memory types. These hand-held designs feature
flash memory resident on the embedded system’s
motherboard. In these designs flash memory is typically
arranged in an array, called a Resident Flash Array
(RFA). There are two types of RFAs (see Figure 2). The
first type of RFA is for storing eXecute-In-Place (XIP)
code, such as ROMed DOS, in the system’s memory
map. Used in this manner, the RFA is called a Resident
Flash for XIP (RFX). The second type of RFA performs
file and program storage functions traditionally provided
by a hard disk. Used in this manner the RFA is called a
Resident Flash Disk (RFD). This application note details
the hardware and software components necessary to
implement a resident flash disk. A hardware design
example for the Intel386 EX is also provided.

RFA
Resident Flash Array

RFX RFD

Resident Flash DiskResident Flash for XIP
(Code Execution) (Disk Emulation)

2157_02

Figure 2. Types of Resident Flash Arrays

AP-605 E

2

2.0 RESIDENT FLASH DISK

Solid-state disks are becoming a reality with the ever-
decreasing costs of flash memory components. These
devices provide erase blocking, automated write and
erase algorithms and a straightforward interface to the
CPU system bus. Many systems will choose the
versatility and reliability of solid-state media exclusively,
or in conjunction with traditional magnetic media.

A Resident Flash Disk based on Intel’s 16-Mbit FlashFile
memories provides distinct advantages over traditional
Hard Disk Drives (HDD). For example:

• Lower Power Requirements

 3.3V Operation
 1 µA per Chip in Deep Power-Down Mode
 << 1 mA of Static Current

• Higher Performance

• Lower Weight

• Superior Reliability

• Superior Ruggedness

• Higher Integration and a More Compact Footprint

Many embedded designs do not require the high
densities offered by today’s typical HDDs. Flash memory
arrays provide a more cost-effective mass storage
solution when compared against the “floor cost” of a
HDD. As PC architecture-based systems become
specialized in their functions and convert to direct-
execute software solutions, their mass storage
requirements will similarly decrease. The conversion to
an all solid-state flash memory storage solution becomes
an attractive (and in some cases necessary) alternative.

3.0 RFD SOFTWARE
REQUIREMENTS

Software plays a key role when implementing a resident
flash disk. The following sections briefly describe the
differences between flash memory and traditional
magnetic media, and the software used to easily manage
these differences. For more detailed information on RFD
software issues, refer to AP-618, “Software Concerns of
Implementing a Resident Flash Disk.”

3.1 Magnetic Media

DOS-based systems have random write and erase
capabilities when accessing magnetic media. This means
a sector of the magnetic media can be programmed,

reprogrammed, and erased at any time. A File Allocation
Table (FAT) is used to manage files. This table is
updated anytime a file is created, updated or erased.

3.2 Flash Media

Flash memory architecture is very different from
magnetic media. Flash memory is subdivided into
separate erase blocks. When flash memory is completely
erased, every bit is set to a “1.” A completely erased
device will allow writes to any location. However, once
bits within a block have been written to zero, the whole
block must be erased before those same bits can be
written back to a “1.” This characteristic of flash memory
prevents the direct use of a traditional FAT and requires
an alternative flash media manger to manage the files in a
RFD.

3.3 Flash Media Managers

There are many different flash media managers available
today. Each flash media manager has different features
tailored toward specific applications. For disk drive
replacement in a DOS environment, the Flash Translation
Layer (FTL) is the recommended selection. For more
information on alternative flash media managers call
Intel’s Application Support FaxBack* service at 800-
628-2283 and request document #2258. A list of current
FTL developers is provided in
Appendix D.

3.4 Flash Translation Layer

The Flash Translation Layer is a sector-based media
manger that uses an existing sector-based file system,
such as DOS FAT, to provide the upper level file
handling capabilities. By translating received requests
from DOS, a FTL driver appears as a normal sector based
drive to the upper layer software. Upper layer software
expects to be able to modify these sectors at any time. As
indicated in Section 3.2, flash requires that a block be
erased before files within that block are modified. When
the upper layer software tries to re-write a sector, FTL
remaps the request to a free area of flash. These
remapped sectors are treated as logical read/write blocks
rather than physical sectors. FTL subdivides each flash
block into smaller read/write blocks. Each read/write
block is the same size as a sector (typically 512 bytes).
Within a 28F008SA flash device there are 16 64-Kbyte
blocks. When using a 512-byte sector size, each 64-
Kbyte block divides into 128 read/write blocks (see
Figure 3).

E AP-605

3

28 F 0 1 6 S A /S V

6 4 -K B B lo ck

12 8 R e ad /W r ite B lo cks

51 2-B yte R /W B lock

6 4 -K B B lo ck

6 4 -K B B lo ck

6 4 -K B B lo ck

6 4 -K B B lo ck

6 4 -K B B lo ck

6 4 -K B B lo ck

51 2-B yte R /W B lock

51 2-B yte R /W B lock

51 2-B yte R /W B lock

51 2-B yte R /W B lock

51 2-B yte R /W B lock

51 2-B yte R /W B lock

2157_03

Figure 3. Read/Write Block Map

4.0 FTL IMPLEMENTATIONS

There are three primary implementations being provided
by FTL developers today (see Figure 4). These
implementations are divided into separate layers and
have differences that are described in the following
sections.

4.1 FTL for Card Services

Card Services is the layer responsible for allocating
system resources for a PCMCIA card. With the
appropriate client driver, card services manages the
support for any memory or I/O card. This software layer
would be used in a system that requires support for I/O
cards.

Socket Services is the driver that configures the window
that accesses the RFD. Socket services is a PCMCIA-
defined standard that was originally developed to
configure PCMCIA sockets. Even though there isn’t a
socket for a RFD, many FTL developers still refer to this
driver as socket services because it follows the PCMCIA

standard. The PCMCIA socket services queries the
inserted card for attribute information. Since the RFD is
nonremovable, all the attribute information about the
RFD is fixed. The RFD socket services would simply
include all of these fixed values. Most FTL developers
will provide sample source code for socket services
which can be customized for a particular design.

Sliding Window Logic is the hardware that controls the
window for accessing flash. Systems that need to support
PCMCIA memory cards require a PCMCIA socket
controller such as Intel’s 82365SL PCIC. This controller
manages access to flash cards through a sliding window.
A RFD can also be accessed through a sliding window.
Systems that already implement a PCIC for memory card
support can use that device to access the RFD. If a PCIC
is not used, the sliding window can be implemented with
a page register. For more information regarding the
sliding window hardware refer to Section 5.4.

Resident Flash refers to the physical flash components.
Intel’s FlashFile memory family is the best fit for
implementing resident flash disks.

4.2 FTL for Socket Services

The only difference between FTL for socket services and
FTL for card services is the elimination of the card
services layer. Removing the card services layer
sacrifices support for I/O cards. If the system only uses
memory cards or a RFD, card services is not needed and
precious memory space can be saved by not installing the
card service software.

4.3 FTL for Resident Flash

It is possible to access the resident flash without using a
sliding window. The is done by mapping the resident
flash into extended memory. The memory is accessed
linearly and requires putting the Intel386 EX CPU into
protected mode. This is the least expensive solution
eliminating the need for extra sliding window logic. This
solution requires a FTL designed specifically to access
flash memory that is linearly mapped into extended
memory. For more information regarding this “protected
mode FTL,” contact the FTL developer. A list of FTL
developers is provided in Appendix D.

AP-605 E

4

APPLICATION

DOS

F TL FTL F TL

C a rd Serv ices

So cket Serv ices

R es ide nt F lash A rray

So cke t Serv ices

R e s ide nt F la sh A rray

R e s iden t F la sh Arra y

for Card Services for Socket Services for R esident Flash

or or or

S lid ing W indow Lo gic

S lid ing W indow Lo gic

Socket Se rv ices

2157_04

Figure 4. FTL Implementations

4.4 Wear Leveling

Wear leveling is a technique used by FTL developers to
extend the life of the flash device. Wear leveling evenly
distributes erase operations to all blocks of the device.
For example, without wear leveling, a 64-Kbyte file
written to the same flash block in a 28F016SV every
hour has a block cycling rate of one cycle per hour. This
is because that block must be erased each time the file is

written. If the file system implements wear leveling over
all 32 flash blocks, the file might be written to a different
block every hour until all 32 blocks have been written. At
this point each block now has a cycling rate of 1 cycle
per 32 hours. Most flash devices support a minimum of
100,000 erase cycles per block and most FTL file
systems implement wear leveling. Intel’s
16-Mbit FlashFile components are rated for 1,000,000
cycles.

E AP-605

5

4.5 Flash Clean-Up

Once a flash bit is written to a 0, it cannot be written back
to a 1 without erasing the entire flash erase block.
Therefore, whenever a file gets updated the flash media
manager cannot rewrite that file to the same location as
the original. Instead the file gets written to a new
location, and the old file is marked “dirty.” As the flash
media manager continues to update files, more areas of
flash become dirty. At some point, the flash media
manger will decide to convert the dirty read/write blocks
into useable free space. This procedure is called clean-
up. The file manager copies the remaining clean
read/write blocks in a dirty flash erase block to another
free flash erase block. Then the dirty erase block is
erased. All FTL developers must implement some form
of clean-up.

4.6 FTL Installation

Most FTL developers allow the flexibility to load FTL
several different ways. It can be loaded as a device
driver, TSR, or ROM BIOS extension. For more
information on the installation of FTL, contact the FTL
developer. A list of FTL developers is provided in
Appendix D.

5.0 RFD HARDWARE
REQUIREMENTS

This section describes the general hardware requirements
for implementing a RFD. These concepts can be easily
incorporated into new chip-set or ASIC designs to take
advantage of the benefits that flash memory brings to
embedded designs.

5.1 FlashFile Memory Overview

Intel’s FlashFile memories are revolutionary
architectures which are the ideal choice for designing
embedded mass storage data/file flash memory systems.
With innovative capabilities, low-power operation and
high read/write performance, FlashFile memory enables
the design of truly mobile, high-performance personal
computing and communications products.

The 28F008SA, 28F016SA, 28F016SV, and
DD28F032SA are the four members of Intel’s FlashFile
memory family. Table 1 below lists the features of each
of the FlashFile devices. The 28F008SA is the smallest
density and smallest feature set member of the FlashFile
memory family. The 28F016SA, 28F016SV, and

DD28F032SA are very high-density, high-performance
nonvolatile read/write solutions ideal for solid-state
storage applications. They have symmetrically-blocked
architectures (100% compatible with the 28F008SA
8-Mbit FlashFile memory), very high cycling ability, low
power 3.3V operation, very fast write and read
performance, and selective block locking. These features
provide a highly flexible memory component suitable for
high-density Resident Flash Arrays. The dual read
voltage enables the design of memory cards which can
be interchangeably read/written in 3.3V and 5.0V
systems. Their x8/x16 architecture allows the
optimization of memory to processor interface. The
flexible block locking option enables bundling of
executable application software within the RFA. The
28F016SA, 28F016SV, and DD28F032SA are
manufactured on Intel’s 0.6 µm ETOX™ IV process
technology.

5.2 SmartVoltage Technology

The difference between the 28F016SA and the
28F016SV is SmartVoltage technology. The 28F016SV
incorporates SmartVoltage technology, providing read
operation at both VCC = 3.3V and VCC = 5.0V and
program/erase capability at VPP = 12.0V or VPP = 5.0V.
Reading at VCC = 3.3V, the 28F016SV consumes
approximately one-third the power consumption that it
would at 5.0V VCC, while 5.0V VCC provides the highest
read performance capability. VPP = 5.0V operation
eliminates the need for a separate 12.0V converter, while
VPP = 12.0V maximizes write/erase performance. In
addition to the flexible program and erase voltages, the
dedicated VPP gives complete code protection with VPP
≤ VPPLK. Internal 3.3V or 5.0V VCC detection
automatically configures the device for optimized 3.3V
or 5.0V read/write operation.

5.3 28F016XD

A RFD may also be implemented with a 28F016XD. The
28F016XD is a member of the Embedded Flash RAM
Family. It has a DRAM interface ideal for interfacing to a
system with an integrated DRAM controller.

5.4 Design Example

In order to illustrate the required hardware components
of a RFD, a design example is provided. There are 4
main components used in this design. An Intel386 EX
Embedded Processor, 28F016SA FlashFile memory, a

AP-605 E

6

generic 22V10 PLD, and a generic ‘374 latch. A block
diagram of this example is provided in Figure 5. In this
design example the RFD is running off of the Intel386
EX local bus. The same concepts can also be applied to
implement a RFD for an expansion bus like ISA or
PC/104.

5.5 Flash Control Logic

The logic required to interface the Intel386 EX
embedded processor to Intel flash devices is very simple.
For a complete analysis of the interface, refer to AP-609
“Interfacing the Intel386 EX Embedded Processor to
Intel Flash.” Some logic is required because of some
mismatched timings between the Intel386 EX and Intel
Flash. Since most design optimizations reduce glue logic,
future interface designs may not require the interface
described. As shown in Figure 5, the PLD controls WE#
to flash, and EN# to a buffer.

5.5.1 BUFFER

A buffer prevents bus contention on read followed by
write cycles. After a read from flash, it takes the
28F016SA 30 ns to float its data lines. This becomes an
issue on a read followed by a write cycle because the
Intel386 EX CPU drives data in the middle of the first
T-state. Adding a buffer and disabling it during this

period of potential bus contention solves this issue.
Enable logic for the buffer is also required.

5.5.2 WE# CONTROL

In addition to controlling the buffer, the PLD also needs
to pull WE# high early. The 28F016SA requires 10 ns of
address hold from WE# high. The Intel386 EX CPU will
not provide this so WE# must be controlled by a PLD.
Pulling WE# high early meets address hold time.

5.5.3 BYTE WRITES

Most FTL solutions require the ability to do byte writes.
To provide this capability, in this design example the x16
data bus is created by placing two flash devices side by
side in a x8 configuration. BHE# and BLE# are
generated by the Intel386 EX CPU. The PLD decodes
these signals and generates a CE# for the appropriate
flash device.

In this application example, the byte lanes of the x16 bus
are controlled by BHE# and BLE#. However, the RFD
could be implemented with a x8 data bus. The
performance of a x8 solution is obviously less than a x16
solution, however controlling byte lanes is no longer
required.

Table 1. Component Feature Overview
28F008SA 28F016SA/DD28F032SA 28F016SV 28F016XD

Symmetrical Blocking X X X X

On-Chip Automation X X X X

Fast 3.3V Read X X X

Page Buffers X X

x16 Interface X X X

Command Queuing X X

Block Locking X X X

SmartVoltage X X

DRAM Interface X

NOTE:
For more information about the different features, refer to the component datasheets or the 16-Mbit Flash Product Family
User’s Manual, or FLASHBuilder. FLASHBuilder is a software application which provides info on all 16-Mbit components. Refer
to Section 6.1 for all order numbers.

E AP-605

7

W/R#

A[13:1]

ADS#

OE#

WE#

A[12:0]

A[20:13]

D[7:0]
D[15:0]

D[7:0]

i386™ EX CPU

CS0#

DIR

EN#

CONTROL

CS1#

RD#

RP#

PWRGD
OSC

CLK2

LOGIC
READY#

22V10

LATCH

OC# CLK

BUFFER

CEL#

CEH#

BHE#

BLE#

D[15:8]

28F016SA

2157_05

Figure 5. RFD Block Diagram

AP-605 E

8

Table 2. Signal Description

Name Description Generated By Connected To

A[13:1] Lower Address CPU Flash A[12:0]

CLK2 50 MHz Clock Oscillator PLD, CPU CLK2

M/IO# Memory/IO CPU PLD

ADS# Address Status CPU PLD

W/R# Write/Read CPU PLD

READY# Ready CPU PLD

CS0# Chip Select 0 CPU (page register) PLD

CS1# Chip Select 1 CPU (sliding window select) PLD, Latch OC#

RD# Read Enable CPU Flash OE#, Buffer DIR

BHE# Byte High Enable CPU PLD

BLE# Byte Low Enable CPU PLD

CEL# Chip Enable Low Byte PLD Low Byte Flash CE#

CEH# Chip Enable High Byte PLD High Byte Flash CE#

D[15:0] Data Bus CPU, Buffer D[15:0] Buffer D[15:0], Latch D[7:0]

DIR Buffer Direction CPU RD# Buffer DIR

EN# Buffer Enable PLD Buffer EN#

RP# Reset Power-Down System PWRGD Flash RP#

PWRGD System Power Good System PWRGD Flash RP#, PLD

RESET CPU Reset PLD CPU Reset

WE# Write Enable PLD Flash WE#

A[20:13] Upper Address Latch Flash A[20:13]

OC# Output Control CS1# Latch OC#

CLK Latch Clock PLD Latch CLK

5.6 Sliding Window Logic

This section describes the RFD implementation using
sliding window logic. Figure 6 shows a typical memory
map of a system including the RFD memory. In real
mode DOS, all memory must be accessed under the
1-Mbyte boundary. In order to access the RFD memory
array, it is necessary to map that memory into pages and
read those pages through a RFD sliding window placed
under the 1-Mbyte boundary. This window is called a
sliding window since it slides over a large memory space.
In hardware, all that is required to implement this sliding
window is a latch which is used as a register

(see Figure 5). The register holds the upper address lines
connected to the flash device. These upper address lines
determine the page in the array. This register is referred
to as the page register.

5.6.1 PAGE REGISTER

As indicated in the previous section, the page register is
implemented with a latch. The system must have the
ability to write the desired page to the page register, and
provide the page to the flash array when the sliding
window is accessed.

E AP-605

9

5.6.1.1 Page Register Write

A page register write is triggered by a write to the page
register I/O port. The Intel386 EX CPU chip select unit
decodes the I/O port address and enables CS0# which is
sampled by the PLD. After sampling CS0# active with
W/R# high, the PLD generates a CLK pulse to the latch.
On the rising edge of CLK, the data is latched. For this
example, 3E0h was picked for the page register port
address. However, any available port address is
acceptable. For more information on programming the
Intel386 EX CPU chip select unit, refer to Section 5.5.
The PLD equations for implementing a page register
write is provided in Appendix B.

5.6.1.2 Flash Array Access

The flash array is accessed through the implemented
sliding window. The Intel386 EX CPU decodes the
memory address and enables CS1# when the sliding
window is accessed. CS1# is connected directly to the

PLD and the latch’s OC# signal. When CS1# drives OC#,
the latch drives the upper address lines to the flash
device. The Intel386 EX CPU drives the lower address
lines, and the PLD drives CE#.

5.6.2 PAGE SIZES

The size of each page is determined by the size of the
array and the number of bits used for the page register. If
all 8-bits are used in the page register, there will be 256
unique pages as illustrated in Figure 6. A 4-Mbyte array
divided into 256 pages yields 16 Kbytes per page. See
Table 3 for a listing of several page combinations. Most
FTL solutions allow page sizes of 4 Kbytes, 8 Kbytes,
16 Kbytes, 32 Kbytes, and 64 Kbytes. For this design
example a 16-Kbyte window from C8000h to CC000h
was picked for the sliding window. However, any
window residing in adapter space (C0000h to F0000h) is
acceptable.

Table 3. Page Data Matrix

1-MB Array 2-MB Array 4-MB Array

5-Bit Page Register 32 32-Kbyte Pages 32 64-Kbyte Pages 32 128-Kbyte Pages

6-Bit Page Register 64 16-Kbyte Pages 64 32-Kbyte Pages 64 64-Kbyte Pages

7-Bit Page Register 128 8-Kbyte Pages 128 16-Kbyte Pages 128 32-Kbyte Pages

8-Bit Page Register 256 4-Kbyte Pages 256 8-Kbyte Pages 256 16-Kbyte Pages(1)

NOTE:
This is the combination implemented in Figure 5.

AP-605 E

10

C 0 000h

C 8 000h
16-KB R FD SLID IN G W IN D O W

R e al M o d e A d d res s S p ace 4-M B R F D Ad d ress S p ac e

16-KB Page FD h

16-KB P age FEh

16-KB P age FFh

16-KB Page FC h

16-KB Page 06 h

16-KB Page 05 h

16-KB Page 04 h

16-KB Page 03 h

16-KB Page 02 h

16-KB Page 01 h

16-KB Page 00 h

16-KB P age FBh

4 0000 0h

0 0000 0h

0 0400 0h

0 0800 0h

0 0C 00 0h

0 1000 0h

0 1400 0h

0 1800 0h

0 1C 00 0h

3 FC 00 0h

3 F800 0h

3 F400 0h

3 F000 0h

64-KB BIO S

64-KB D O S

FFFF Fh

F00 00h

E 0000h

D 6 000h

00 000h

640-KB D R AM

A 0000h

128 -KB VG A G R A PH IC S

32-KB VG A BIO S

16-KB W IN DO W S S TU B

C C 000h

24-KB FTL
D C 000h

FR EE

2157_06

Figure 6. System Memory Map

E AP-605

11

5.7 Programming the Intel386 EX
CPU Chip-Select Unit

This design example uses two of the Intel386 EX CPU
chip-selects, CS0# and CS1#. However, any two
available chip-selects can be used. If two chip selects are
not available, external logic can be used for address
decode and READY# generation.

ApBUILDER is a utility that can be used to generate the
code to program the Chip-Select Unit. From the
ApBUILDER main menu, select “CSU” and
“Peripheral.” Fill in the ApBUILDER table with the
information given in Table 4 below. After the table is
filled in with the correct information, click on

“Showcode” to view the code. Sample code for
programming the Intel386 EX CPU Chip-Select Unit is
provided in Appendix E. The order number for
ApBUILDER is provided in Section 6.1.

5.8 Summary

A Resident Flash Disk is the alternative to traditional
magnetic media in embedded applications. It is faster,
more rugged, more reliable, smaller, and uses less power
than hard disk drives. This complete hardware and
software solution is implemented easily and available
today.

Table 4. ApBUILDER Chip-Select Unit Data

Chip
Select

Chip
Select
Enable

Bus
Ready
Enable

16-Bit
Width
Select

Memory
Space
Select

SMM (2)

Access
During

Boundary
Address

Region
Size

Wait-
States

CS0 X O X O Both Begin 3E0h 2 Byte 1

CS1 X O X X Both Begin C8000h 16 Kbyte 2

NOTES:
1. “X” indicates that this field is selected. “O” indicates that this field is not selected.
2. Selecting “Both” in this field will generate the chip-select regardless of whether or not the CPU is in SMM. Selecting

“Memory” in this field is also valid and will generate the chip-select only when the processor is not in SMM.

6.0 ADDITIONAL INFORMATION

6.1 References

Order
Number

Title

272420 Intel386™ EX Embedded Microprocessor Datasheet

290429 28F008SA 8-Mbit FlashFile™ Memory Datasheet

290489 28F016SA 16-Mbit FlashFile™ Memory Datasheet

290528 28F016SV 16-Mbit FlashFile™ Memory Datasheet

272425 AP-499, “Introducing Intel’s Family of Embedded Intel386™ Microprocessors”

292160 AP-609, “Interfacing the Intel386™ EX Embedded Processor to Intel Flash”

292173 AP-618, “Software Concerns of Implementing a Resident Flash Disk”

272485 Intel386 EX Embedded Microprocessor Hardware Reference

297372 16-Mbit Flash Product Family User’s Manual

297508 FLASHBuilder Utility for 28F016SA, 28F016SV, 28F016XS, 28F016XD

272216 ApBUILDER Interactive Programming Package

AP-605 E

12

6.1 Revision History

Number Description

-001 Original Version

E AP-605

13

APPENDIX A
TIMING DIAGRAMS

For all the following timing diagrams:

• The timing annotation is [minimum delay, maximum delay] or just maximum delay. This datasheet is valid for
devices marked with a “B” at the end of the top side tracking number.

• Intel386 EX CPU timing data was taken from the fourth revision datasheet (order# 272240-004).

• 28F016SV timing data was taken from the third revision datasheet (order# 290528-003).

• Buffer timing data was taken from a Texas Instruments 74ACT16245 datasheet (revised April 1993)

• Latch propagation delay data assumed a generic 10 ns tPD.

• PLD data assumed a generic 10 ns tPD and 2 ns to 8 ns tCO.

AP-605 E

14

[4,29]
[4,29]

[4,29]

[4,29]

[4,29]

[4,29] [4,29]

[4,39]

10

10

70 25

[2,8] [2,8]

11
[3,15] [3,15]

[4,34]
[4,36]

T1 T2 T2 T2 T1

0ns 100ns 200ns

CLK2

PH1

ADS#

A[12:1]

W/R#

RD#

BLE# / BHE#

CS1#

Page A[20:13]

CEL# / CEH#

Flash D[15:0]

Buffer EN#

Buffer

READY#
2157_07

NOTES:
1. The CPU drives ADS#, address, W/R#, RD#, and CS1#.
2. The PLD samples CS1#, BHE#, BLE#, W/R# and then drives CEL#, CEH# and EN#.
3. The latch drives A[20:13] and the buffer drives the CPU data bus.
4. Flash drives the data to the buffer.
5. The CPU drives READY# and latches in the data.

RFD Read Cycle Timing Diagram

E AP-605

15

[4,29]
[4,29]

[4,29]

[4,29]

[2,8] [2,8]

[2,8] [2,8]

[4,29]

[4,39]

10

10

[4,31]

[3,15] [3,15]

[4,34]
[4,36]

T1 T2 T2 T2 T1

0ns 100ns 200ns

CLK2

PH1

ADS#

A[12:1]

W/R#

WE#

Buffer EN#

BLE# / BHE#

CS1#

Page A[20:13]

CEL# /CEH#

CPU D[15:0]

Buffer

READY#
2157_08

NOTES:
1. The CPU drives ADS#, address, W/R#, CS1#, and data.
2. The PLD samples ADS#, W/R#, BHE#, BLE#, CS1# and then drives EN#, WE#, CEH# and CEL#.
3. The latch drives A[20:13] and the buffer drives the flash data bus.
4. The PLD disables WE# and flash latches in the data.
5. The CPU drives READY# and ends the bus cycle.

RFD Write Cycle Timing Diagram

AP-605 E

16

[4,29]
[4,29]

[4,29]

[4,29]

[4,39]

[2,8]
[2,8]

[4,31]

[4,34] [4,36]

T1 T2 T2 T1

0ns 100ns

CLK2

PH1

ADS#

Address

W/R#

CS0#

CLK

CPU Page D[7:0]

READY#

2157_09

NOTES:
1. The CPU drives ADS#, address, W/R#, CS0#, and data.
2. The PLD samples ADS#, W/R#, and CS1# and then drives CLK.
3. The CPU drives READY# and ends the bus cycle.

Page Register Write Cycle Timing Diagram

E AP-605

17

APPENDIX B
PLD EQUATIONS

TITLE Intel386(TM) EX CPU RFD INTERFACE
PATTERN PDS
REVISION 2.0
AUTHOR TONY SHABERMAN
COMPANY INTEL
DATE 4/25/95

; This design has not been verified, it is sample code only.
; Intel assumes no responsibility for any errors which may appear
; in this code.

; This PLD performs the functions necessary for implementing a RFD with
; the Intel386 (TM) EX CPU and the 28F016SA. It controls WE# to the 28016SA,
; EN# to the buffer, and CLK to the latch.

; NOTES

; T2_1 will go active for the duration of the first T2 on all cycles.
;
; T2_2 will go active for the duration of the second T2 on all cycles.
;
; Chip-selects have a 39 ns valid delay. This does not allow enough setup time to sample
; CS0# and CS1# in T1. Because of this, CS0# and CS1# are sampled in the middle of the
; first T2. Since EN is dependent on CS1# and CLK is dependent on a CS0#, these signals
; will not be generated until the middle of the first T2.
;
; EN will go active in the middle of the first T2 if CS1# is active. EN is
; disabled by the CPU driving READY#. Since the CPU could drive READY# early in
; the last T2, (+ PH1) is added to the equation to ensure that the buffer stays active during
; the second half of the last T2.
;
; CLK will go active in the middle of the first T2 if CS0# is active. CLK stays active for
; only 1 CLK2 allowing pleanty of data setup time before the rising edge.
;
; RESET is used to syncronize the PLD’s PH1 to the processor’s PH1. In this design example
; it is assumed that another device is generating RESET to the CPU. However, the RESET in this
; PLD can be used to RESET the CPU if desired.

AP-605 E

18

CHIP MEMORY_INTERFACE iPLD22V10N

; INPUTS
PIN 2 CLK2 ; 2X INPUT CLOCK (50MHZ)
PIN PWRGD ; POWER GOOD USED TO GENERATE RESET TO CPU
PIN W_R ; FROM CPU W/R# SIGNAL
PIN /ADS ; FROM CPU ADS# SIGNAL
PIN /CS0 ; FROM CPU CS0# SIGNAL
PIN /CS1 ; FROM CPU CS1# SIGNAL
PIN /READY ; FROM CPU READY# SIGNAL
PIN /BHE ; FROM CPU BHE# SIGNAL
PIN /BLE ; FROM CPU BLE# SIGNAL

; OUTPUTS
PIN /WE ; TO FLASH WE# SIGNAL
PIN /EN ; TO BUFFER OUTPUT ENABLE SIGNAL
PIN /CLK ; TO LATCH CLK SIGNAL
PIN /CEH ; TO FLASH CE# HIGH BYTE
PIN /CEL ; TO FLASH CE# LOW BYTE

; NODES
NODE PH1 ; MATCHES CPU PH1, USED FOR TIMING
NODE T2_1 ; ACTIVE DURING FIRST T2, USED FOR TIMING
NODE T2_2 ; ACTIVE DURING SECOND T2, USED FOR TIMING
PIN RESET ; TO CPU RESET

;EQUATIONS
RESET:=/PWRGD ; RESET TRIGGERED BY PWRGD
 PH1:=(/PH1*/RESET) ; PH1 SYNCS BY RESET
T2_1:=(/PH1*ADS)+(PH1*T2_1) ; T2_1 ACTIVE FOR 2 CLK2 CYCLES AFTER ADS#
T2_2:=(/PH1*T2_1)+(PH1*T2_2) ; T2_2 ACTIVE FOR 2 CLK2 CYCLES AFTER T2_1
WE:=CS1*W_R*(T2_1+T2_2) ; WE ACTIVE FROM MIDDLE OF T2_1 TIL MIDDLE OF T2_3
EN:=CS1*(T2_1+(EN*(/READY+PH1))) ; EN ACTIVE FROM MIDDLE OF T2_1 TIL READY#
CLK:=CS0*W_R*T2_1*PH1 ; CLK ACTIVE DURING THE SECOND HALF OF T2_1
CEH=CS1*BHE
CEL=CS1*BLE

E AP-605

19

SIMULATION
TRACE_ON CLK2 PH1 PWRGD RESET T2_1 T2_2 ADS CS0 CS1 BLE CEL WE EN CLK READY
SETF CLK2 /PWRGD /ADS /CS0 /CS1 /READY /BLE
PRLDF /PH1 /T2_1 /T2_2CLOCKF CLK2

CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETF PWRGD
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETF ADS W_R CS1 BLE
CLOCKF CLK2
CLOCKF CLK2
SETF /ADS
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETF READY
CLOCKF CLK2
CLOCKF CLK2
SETF /CS1 /READY /BLE
CLOCKF CLK2
CLOCKF CLK2
SETF CS1 ADS /W_R BLE
CLOCKF CLK2
CLOCKF CLK2
SETF /ADS
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETF READY
CLOCKF CLK2
CLOCKF CLK2
SETF /READY /CS1 /BLE
CLOCKF CLK2
CLOCKF CLK2
SETF CS0 W_R ADS BLE
CLOCKF CLK2
CLOCKF CLK2
SETF /ADS
CLOCKF CLK2
CLOCKF CLK2
SETF READY
CLOCKF CLK2
CLOCKF CLK2
SETF /READY /CS0 /BLE
CLOCKF CLK2
CLOCKF CLK2
TRACE_OFF

AP-605 E

20

APPENDIX C
PLDShell WAVEFORM

R ESET T1 T2 T i T1 T1T2 T2 T 2 T2 T2 T2 T2T i T i

R FD W rite C yc le R FD R ea d C yc le
Pag e R eg is ter

W rite C yc le

C LK 2

PH 1

T2 _1

T2_ 2

AD S#

C S1#

C S0#

W E#

EN #

C LK

R EAD Y#

BLE#

C E L#

PW R GD

R ESET

2157_10

NOTES:
1. This waveform was exported from PLDShell PLUS*. he waveform files are included on the BBS under EXRFD.ZIP.

The T-state annotation was added and is not normally included with the PLDshell PLUS waveform.
2. T2_1 and T2_2 are used to provide timing for WE# and CLK generation.
3. For this simulation, CLK2, CS0#, CS1#, PWRGD and READY# are all forced inputs.
4. For this simulation, a RFD write cycle immediately follows RESET. Under normal operating conditions, there would be

much more time after RESET before this cycle could occur.
5. For this simulation, BLE# is forced active for all cycles. CEL# goes active when BLE# and CS1# is active.
6. For this simulation, BHE# is not included. CEH# goes active when BHE# and CS1# is active.

PLDShell PLUS* Waveform

E AP-605

21

APPENDIX D
FTL DEVELOPERS

Datalight, Inc.: CardTrick*
307 N. Olympic Ave.
Suite #200
Arlington, WA 98223
(360) 435-8086

M-SYSTEMS: TrueFFS*
4655 Old Ironsides Dr.
Suite #200
Santa Clara, CA 95054
(408) 654-5820

SCM Microsystem, Inc.: S-FTL*
131 Albright Way
Los Gatos, CA 95030
(408) 370-4888

System Soft: SS-FTL
313 Speen St.
Natick, MA 01760
(508) 651-0088

For an updated list of FTL developers call the Intel FaxBack* system and request document #2255.

AP-605 E

22

APPENDIX E
CHIP-SELECT UNIT CODE

;Initialize Chip Select Unit for:

; CS0: Start address is 03E0H.
; Region size is 2 bytes.
; 1 wait states.
; Chip select 0 is Enabled.
; 16 bit data bus size in I/O space.
; External bus ready is Disabled.
; SMM region is accessable during SMI access and memory access.

; CS1: Start address is 0C8000H.
; Region size is 16 Kbytes.
; 2 wait states.
; Chip select 1 is Enabled.
; 16 bit data bus size in memory space.
; External bus ready is Disabled.
; SMM region is accessable during SMI access and memory access.

INCLUDE 80386EX.INC
_TEXT SEGMENT PUBLIC 'CODE'
 ASSUME CS:_TEXT

Init_CSU Proc Far

; Enable expanded I/O space for peripheral initialization.
 MOV AX, 08000H ;Enable expanded I/O space
 OUT REMAPCFGH, AL ; and unlock the re-map bits
 XCHG AL, AH
 OUT REMAPCFGL, AL
 OUT REMAPCFG, AX

 _SetEXRegWord CS0ADL, 08601H ;Configure chip select 0
 _SetEXRegWord CS0ADH, 0FH
 _SetEXRegWord CS0MSKL, 0401H
 _SetEXRegWord CS0MSKH, 00H

 _SetEXRegWord CS1ADL, 08702H ;Configure chip select 1
 _SetEXRegWord CS1ADH, 0CH
 _SetEXRegWord CS1MSKL, 03C01H
 _SetEXRegWord CS1MSKH, 00H

; Restore I/O space to original condition.
 _SetEXRegByte REMAPCFGH, 00H ;Disables expanded I/O space
RET
Init_CSU ENDP
_TEXT ENDS
END
}

Filename: 292157_1.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WINDOWS\WINWORD6\TEMPLATE\ZAN____1.DOT
Title:E
Subject:
Author: Kevin Culcasi
Keywords:
Comments:
Creation Date: 08/14/95 11:52 PM
Revision Number: 44
Last Saved On: 11/28/95 9:31 AM
Last Saved By: Ward McQueen
Total Editing Time: 382 Minutes
Last Printed On: 11/28/95 9:31 AM
As of Last Complete Printing

Number of Pages: 24
Number of Words: 5,157 (approx.)
Number of Characters: 29,399 (approx.)

	Title Page
	1.0 INTRODUCTION
	2.0 RESIDENT FLASH DISK
	3.0 RFD SOFTWARE REQUIREMENTS
	3.1 Magnetic Media
	3.2 Flash Media
	3.3 Flash Media Managers
	3.4 Flash Translation Layer

	4.0 FTL IMPLEMENTATIONS
	4.1 FTL for Card Services
	4.2 FTL for Socket Services
	4.3 FTL for Resident Flash
	4.4 Wear Leveling
	4.5 Flash Clean-Up
	4.6 FTL Installation

	5.0 RFD HARDWARE REQUIREMENTS
	5.1 FlashFile Memory Overview
	5.2 SmartVoltage Technology
	5.3 28F016XD
	5.4 Design Example
	5.5 Flash Control Logic
	5.5.1 BUFFER
	5.5.2 WE# CONTROL
	5.5.3 BYTE WRITES

	5.6 Sliding Window Logic
	5.6.1 PAGE REGISTER
	5.6.1.1 Page Register Write
	5.6.1.2 Flash Array Access

	5.6.2 PAGE SIZES

	5.7 Programming the Intel386 EX CPU Chip-Select Unit
	5.8 Summary

	6.0 ADDITIONAL INFORMATION
	6.1 References

	APPENDIX A TIMING DIAGRAMS
	APPENDIX B PLD EQUATIONS
	APPENDIX C PLDShell WAVEFORM
	APPENDIX D FTL DEVELOPERS
	APPENDIX E CHIP-SELECT UNIT CODE

