inte|® AP-374

APPLICATION
NOTE

Flash Memory Write
Protection Techniques

BRIAN DIPERT
SENIOR TECHNICAL MARKETING ENGINEER

December 1995

Order Number: 292123-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

FLASH MEMORY WRITE PROTECTION TECHNIQUES

CONTENTS PAGE CONTENTS PAGE
1.0 INTRODUCTION ..., 1 5.0 PREVENTING UNINTENDED
WRITES DURING NORMAL SYSTEM
2.0 WHY IS WRITE PROTECTION OPERATIONoovviineeannnn.. 2
IMPORTANT? ..., 1
6.0 PREVENTING UNINTENDED
3.0 SYSTEM WRITES WITH BULK- WRITES DURING SYSTEM
ERASE FLASH MEMORIES 1 POWERUP/POWERDOWN AND
1] S T 3

4.0 SYSTEM WRITES WITH
BOOTBLOCK AND FlashFile™
MEMORIES 2

6.1 Designing for Flash Memory
System Power Sequencing
Protection 4

7.0 SUMMARY ...l 5

intgl.

1.0 INTRODUCTION

Flash memory’s combination of nonvolatility and easy
in-system updateability are key attributes driving its
adoption into today’s system designs. However, this
flexibility also brings with it the responsibility (for
hardware and software engineers) to ensure that writes
to flash memory occur only when intended. This is espe-
cially important for those who are accustomed to de-
signing with various ROM (nonvolatile but non-up-
dateable) and RAM (updateable but volatile) memo-
ries.

This application note discusses techniques for proac-
tively designing systems to prevent unintentional writes
to flash memory. These design techniques are by no
means complex or costly, but their implementation is
crucial to ensuring reliable operation through system
lifetime. For more information on the devices and spec-
ifications discussed in this document, please consult
specific flash memory datasheets.

2.0 WHY IS WRITE PROTECTION
IMPORTANT?

Let’s begin by identifying the key characteristics of two
generic memory technologies: ROM (Read-Only-Mem-
ory) and RAM (Random-Access-Memory). Flash
memory combines many of the capabilities of both in
one solution. Therefore, it is often being utilized to re-
place ROM and/or RAM in new designs. At a mini-
mum, flash memory’s status as a relatively new tech-
nology means that many engineers are moving to it
from the familiarity of a ROM/RAM knowledge base.

RAM is fully alterable on a bit-by-bit basis, and the
mechanism for writing to it is established and well un-
derstood. RAM is in-system updateable, yet it is vola-
tile. This means that when a RAM memory loses pow-
er, it also loses its data. RAM is guaranteed not to
contain valid information on powerup.

ROM offers the advantage of nonvolatility, i.e. when
power is removed from the device, the information
stored inside is retained. However, ROM is not in-sys-
tem updateable. Once the information is initially put
into the device, it is permanent and unchangeable. To
replace the information, you have to physically re-
move/replace the device itself.

Traditional system memory architectures often includ-
ed both ROM (nonvolatile but non-updateable) and
RAM (volatile but in-system updateable). The new
model for system design retains some RAM for tempo-
rary data storage, but replaces the rest of RAM and
ROM with flash memory. Being both nonvolatile and
in-system updateable, flash memory encompasses the

AP-374

strengths of both RAM and ROM, offering new system
architecture possibilities. However, whereas in the past
RAM was guaranteed to be invalid on system powerup
and ROM was guaranteed to be unalterable, the same
cannot be said for flash memory.

Any alteration of flash memory contents (whether
planned or unintended) is permanent regardless of sys-
tem power transitions, until the data is again modified.
As we'll see later, command writes to flash memory can
also put it in modes where it outputs something other
than array data, a non-permanent but still undesirable
condition when not intended. This means that the sys-
tem hardware and software must ensure that flash
memory is written only when specifically desired, to
ensure a predictable system environment. The following
sections will discuss how this can be accomplished.

3.0 SYSTEM WRITES WITH BULK-
ERASE FLASH MEMORIES

First-generation bulk erase flash memories from Intel
Corporation are shown in Figure 1. These devices auto-
matically power up in a “Read Array” mode in which
they output array data when read. Transitions to alter-
nate modes occur by writing commands to the flash
memory.

Device Density
28F256A 32 Kbytes (x8)
28F512 64 Kbytes (x8)
28F010 128 Kbytes (x8)
28F020 256 Kbytes (x8)

Figure 1. Intel Corporation
Bulk-Erase Flash Memories

Bulk-erase flash memories include several forms of
“protection” to guard against unintended writes.
Writes with Vpp (the program/erase voltage) at Vppy,
(OV to 6.5V) are disregarded by the flash memory. Sim-
ilarly, write attempts with Ve at or below Vigo
(2.5V on most devices) are ignored. Finally, these de-
vices require multi-byte command sequences to initiate
internal program or erase algorithms. Note, however,
that while the erase command sequence (shown in Fig-
ure 2) requires both the proper Erase Setup and Erase
Confirm commands, the program sequence (Figure 3)
relies only on the valid Program Setup command. The
second command in the latter sequence can have any
value, and is interpreted as data to be programmed.
This means that if the flash memory receives an unin-
tended Program Setup command, the very next write to
the device (intended or not) will be interpreted as pro-
gram data and initiate an internal program event (if
VPP is above VPPL)'

AP-374

Erase Setup
(20H)

Erase Confirm
(20H for Bulk-Erase,
DOH for Block—-Erase)
T -

292123-1

Figure 2. Flash Memory Erase
Command Sequence (Simplified)

Beyond the program and erase sequences, the Read In-
telligent Identifier Codes command will, when written
to the flash memory, put it in a mode where it outputs
device signature IDs instead of array information when
read.

Program Setup

(40H for Bulk—Erase,
40H/10H for Block—Erase)

Program Data
(xxH)

Programming
Begins

292123-2

Figure 3. Flash Memory Programming
Command Sequence (Simplified)

4.0 SYSTEM WRITES WITH BOOT
BLOCK AND FlashFile™
MEMORIES

Second-generation block-erase Boot Block and Flash-
File memories from Intel Corporation are shown in
Figure 4. They function similarly to the bulk-erase de-
vices described earlier, with a few key enhancements.
As before, these devices automatically power up in
“Read Array” mode, and transition to alternate modes
via command writes.

2

intgl.

BOOT BLOCK ARCHITECTURE

Device Density
28F001BX 128 Kbytes (x8)
28F200BX 256 Kbytes (x16)
28F002BX 256 Kbytes (x8)
28F400BX 512 Kbytes (x16)
28F004BX 512 Kbytes (x8)

FlashFile™ ARCHITECTURE

Device Density

28F008SA 1 Mbyte (x8)

Figure 4. Intel Corporation
Block-Erase Flash Memories

For full access to the flash memory Status Register, as
well as for enhanced interface to internal device identi-
fiers, these block-erase flash memories will accept com-
mands written to them regardless of Vpp voltage, as
long as V¢ is above Vi go. Program and erase algo-
rithms initiated by command sequences will terminate
with Status Register error indication and unaltered ar-
ray data, if Vpp is at Vppy. However, regardless of Vpp
level, the device will still transition to a ‘“Read Status
Register” mode after program/erase command se-
quences are written. In this case, it will output data that
the system, if the write was unintended, will not expect.
The same multi-byte command sequences (shown in
Figures 2 and 3) are used as in bulk-erase flash memo-
ries.

Boot Block and FlashFile memories provide commands
(in addition to the program and erase sequences) which
transition the memory to alternate modes, outputting
data other than array information for subsequent reads.
In this respect, they are similar to bulk-erase flash
memory discussed earlier. These commands are Intelli-
gent Identifier and Read Status Register.

Block-erase devices include a hardware input called
RP# (or Reset/Powerdown). Among its many uses,
this pin acts as a “master on/off switch” to completely
disable the flash memory and lock all other control in-
puts. RP# is extremely effective at blocking unintend-
ed writes during system power transitions. This tech-
nique will be covered in detail, in a few paragraphs.

5.0 PREVENTING UNINTENDED
WRITES DURING NORMAL
SYSTEM OPERATION

Preventing unintended writes to flash memory during
normal system operation is a routine part of debugging
a new design, and a common concern for any “writea-
ble” device on the processor interface. Any combina-

intgl.

tion of active chip select (CE#) and active write enable
(WE#) has the potential of being decoded by the flash
memory as a valid write attempt. One common culprit
in these situations is the chip select decoder logic (PAL,
etc.) between the processor and external devices. As
addresses propogate through this logic at the beginning
of an access cycle, or in the undefined address state
between accesses, spurious chip selects of indeterminate
duration can be generated. System hardware should en-
sure that at these times, WE# to flash memory stays at
a logic ““1” and doesn’t transition low.

Some concern has also been expressed in the past about
unintended writes in certain “open” systems such as
the personal computer. In these environments, the type
and function of software run on the machine is beyond
the control of the computer manufacturer, who must
accordingly design his/her hardware. For example, a
third-party software utility may write to flash memory
assuming DRAM at that location. More malicious, of
course, is the case of the computer virus. Fortunately,
in cases like this, hardware design to prevent unintend-
ed writes is fairly simple.

WR# (FROM SYSTEM)
WE# (TO FLASH
GPI0 MEMORY)

292123-3

Figure 5. WE # Gating

Figure 5 shows one means of clarifying the WE# sig-
nal. When flash memory is used for BIOS storage, for
example, the manufacturer’s update utility is the only
software that should be writing to the device. By tog-
gling the general purpose I/0 line (whose default state
is, of course, “disabled”), the update utility can control
whether writes from the system are blocked or allowed
to pass to the flash memory. This type of WE# clarify-
ing function is integrated in the Intel386TMSL and In-
tel486TMSL Microprocessor Supersets. ASICs integrat-
ing motherboard functions should also be designed to
include such logic.

One other method for preventing flash memory altera-
tion is by controlling (or “switching”) the Vpp voltage,
turning it on to Vppy only when desired for system
update. Many 12V converters and power supplies inte-
grate this on/off function as shown in Figure 6, or it
can be provided by an external FET. This approach
will be used again in the next section on write protec-
tion during system power transitions. Note, however,
that although it prevents actual flash memory data al-
teration, Vpp control is insufficient to keep block-erase
flash memories from transitioning to alternate data out-
put modes by unintended writes.

AP-374
INPUT o .
VOLTAGE T ¥
V+
QUTPUT
X [VOLTAGE
MAX734
ON/OFF# —] SHDN#
Vour AS .
GND - CC T |
= -
292123-4

Figure 6. Vpp 12V Converter with
Integrated Switch (Example)

In a traditional “closed” system, the software directing
the hardware is totally under control of the system
manufacturer. No additional effort should be needed
(after the initial prototype hardware and software de-
bugging) to protect the flash memory from unintended
writes during normal system operation. Write control
during system powerup and powerdown also requires
attention, however; a topic covered next.

6.0 PREVENTING UNINTENDED
WRITES DURING SYSTEM
RESET AND POWERUP/
POWERDOWN

System powerup and/or powerdown offer the greatest
potential for unintended writes in flash memory-based
system designs. As mentioned earlier, similar potential
also exists for other “nonvolatile/rewriteable” memory
technologies, such as EEPROM and battery-backed
SRAM. Several reasons for this are listed below.

® When a system begins to power up, all logic outputs
are at OV. This is also the “enable” condition for
flash memory CE# and WE# inputs.

® Logic devices have specified, documented and guar-
anteed operation only at a specific supply voltage
range (typically 5V +10% or 3.3V £0.3V). Opera-
tion beyond this voltage range is not guaranteed and
may not be consistent. Specifically, device output
behaviour is typically undefined.

® Similarly, logic operation is sometimes undefined
and erratic when devices are being reset. For exam-
ple, MCS-186 embedded processors, when reset, tri-
state their WR # (write enable) outputs, which will
then typically drift toward OV (or ‘“enabled”, to
TTL inputs).

AP-374

Logic >

Addresses ’

Processor

WR# p o= = g WE#
RD# Logic OE#
[

Data

—>

Flash
Memory

292123-5

Figure 7. Basic Processor/Flash Memory Interface

e If both the Voo and Vpp power supplies are
switched “on” at the same time, one or the other is
likely to ramp to a ““valid” level first, depending on
the relative capacitive loading at the supply outputs.
Similarly, one supply will often ramp below its valid
voltage range before the other, on system poweroff.
This situation is acceptable, as long as the WE#
and/or CE# signals to the flash memory are con-
trolled.

Figure 7 shows a very basic example processor/memo-
ry interface. When the system power is switched on, the
processor (or logic) WE# output and logic CE# out-
put are both at GND. Depending on the processor and
logic, these outputs may not reliably stabilize until Voo
ramps to 4.5V. In most cases, CPU and logic outputs
will smoothly follow the supply voltage up to operating
levels. Any oscillations on these outputs, however, can
be decoded as a valid write by the flash memory, which
begins to “wake up” below 4.5V V. Similarly, ad-
dress and data processor outputs are typically unde-
fined below operating voltage ranges. Given a x8 inter-
face between processor and flash memory (therefore,
with 256 possible combinations of data inputs), there is
a finite chance that a valid command byte will be ran-
domly generated and written to the flash memory.

If the Vpp power supply output is less capacitively
loaded than Voo, Vpp can ramp above Vppp, before
Ve reaches 4.5V. This can cause unintended flash
memory program and erase if the correct command
data values are “spuriously” written to the device.

Again referencing Figure 7, the behaviour of processor/
logic CE#, WE# and address/data outputs are typi-
cally undefined once Ve drops below 4.5V. If the
power supply Vpp output is more capacitively loaded
than Ve, Vpp can remain above Vppr, as Ve decays
toward OV. This has the potential to initiate program/
erase operations in response to unintended flash memo-
ry writes.

6.1 Designing for Flash Memory
System Power Sequencing
Protection

Intel has taken several steps with respect to its flash
memory designs to significantly minimize the possibili-
ty of an unwanted write during system powerup or
powerdown. By synergizing system designs to these
flash memory features, you can easily eliminate the po-
tential for unwanted flash memory mode switching
and/or data alteration.

Flash memories from Intel are guaranteed not to pro-
gram or erase with Vpp below 6.5V. First generation
bulk-erase devices additionally block all write attempts
with Vpp below 6.5V. The implication here is clear; if
possible, don’t switch on Vpp until after the system
Vcc is stable (on powerup), and switch off Vpp before
the system is powered down. The Vpp supply itself can
be switched on/off, or an inline FET switch can be
installed between the power supply output and flash
memory input and controlled via an I/O line from the
processor or discrete logic. Figure 6 gives an example of
circuitry for the former case.

Supply
Voltage

}L Logic
Outputs

292123-6

Figure 8. Supply Voltage/Device Output
Relationship During Powerup

Intel flash memory also provides Vc-driven “lockout
protection” from unwanted writes. With Voo below
Viko, all write attempts to the flash memory are ig-
nored. Vi go varies between 2.5V and 2.0V depending
on the specific flash memory, and its value is targeted
to take advantage of the fact that in most cases device
outputs closely follow V¢ inputs (both up and down).
Referencing Figure 8, when V¢ exceeds Vi g0, device
outputs will in most cases also be at approximately
Viko, and consequently at a TTL “1” level (or dis-
abled). The flash memory “protects itself” up to Vi o,
and the system designer must above that point ensure
that flash memory control inputs are stable. Similarly,
the flash memory is again protected once V¢ drops
below Vi ko on system powerdown.

The RP # input (formerly known as PWD #), available
on Intel Boot Block and FlashFile memories, acts as a
“master on/off switch” for the device. With RP# at
V1L, the flash memory is put in a very low power mode
called Deep Powerdown, and is essentially turned
“off”. In this state, all write attempts to the flash mem-
ory are disregarded. RP# can be driven by the
POWERGOOD output of the system power supply (if
this output exists) or from an external analog ‘“power
supply monitoring” device like the Maxim MAX705 or
Motorola MC34064, providing absolute flash memory
protection. Figure 9 gives an example system design

AP-374

using the Maxim component. Voltage monitoring cir-
cuits like those mentioned above have adjustable trip
points and tight tolerances, and can be set to the lower
value of the system logic normal operating voltage.

Flash
v Memory
ce RP#
EXTERNAL PWR SYSTEM
ReseT#] MAXT05 40p > RESET#

292123-7

Figure 9. Reset Control during
System Powerup and Powerdown

7.0 SUMMARY

Unintended writes to flash memory can, at a minimum,
cause it to output data that the system does not expect,
forcing system reset or power sequencing to restore
normal operation. Depending on the specific data writ-
ten to the device, and the Vpp voltage at the time of the
write, actual “permanent” alteration of flash memory
contents can result from unintended program or erase.
However, Intel flash memory, in combination with
proper system interfacing techniques, easily eliminates
the potential for either of these scenarios.

Closely analyze the powerup/down and reset behaviour
of the system CPU and any interface logic that inter-
acts with the flash memory. In the vast majority of
cases, no problems will be found. If potential for un-
wanted writes does exist, however, nonvolatile/rewrite-
able memory protection can easily be included if incor-
porated early in the design, by following the hints de-
scribed in this application note.

