intel. AP-316

APPLICATION
NOTE

Using Flash Memory for
In-System Reprogrammable
Nonvolatile Storage

SAUL ZALES

DALE ELBERT

APPLICATIONS ENGINEERING
INTEL CORPORATION

January 1996

Order Number: 292046-004

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

USING FLASH MEMORY FOR IN-SYSTEM
REPROGRAMMABLE NONVOLATILE STORAGE

CONTENTS PAGE
1.0 INTRODUCTION 1
1.1 PROM Programmer vs
System-Processor Controlled
Programming 1
1.2 Information Download and
Uploadcooiiiiiat. 1
Version Updates (Download) 1
Data Acquisition (Upload) 1
2.0 DEVICE FEATURES AND ISW
APPLICATION
CONSIDERATIONS 2
2.1 Flash Memory Pinouts 2
2.2 Command Register
Architecture 4
Simplified Processor Interface 4
Command Register Reset 5
Data Protection on Power
Transitions 5
2.3 Vpp Specifications 6
3.0 HARDWARE DESIGN FOR ISW 6
3.1 VppGeneration 6
3.1.1 Regulating Down from
Higher Voltage 6
3.1.2 Pumping 5V upto 12V 6
3.1.3 Absolute Data Protection —
Vpp On/Off Control 7
3.1.4 Writes and Reads during
Vpp Transitions 7
3.1.5 Other Vpp Considerations 7
3.1.6 Vpp Circuitry and Trace
Layout 8

3.2 Communications — Getting Data
to and from the Flash
Memory ...l 8

CONTENTS PAGE
4.0 SOFTWARE DESIGN FORISW 8
4.1 System Integration — Boot Code
Requirements 8
411ISWFlagCheck 9
4.2 Communication Protocols and
Flash Memory ISW 9
4.3 Data Accumulation Software
Techniques 10
4.4 Reprogramming Routines 10
4.4.1 Quick-Erase Algorithm 10
Algorithm Timing Delays 10
High Performance Parallel
Device Erasure 11
4.4.2 Quick-Pulse Programming
Algorithm 12
Algorithm Timing Delays 12
High Performance Parallel
Device Programming 12
4.4.3 Pulse Width Timing
Techniques 13
Software Methods and
Examples 13
Hardware Methods 13
5.0 SYSTEM DESIGN EXAMPLE: AN
80C186 DESIGN 14
6.0SUMMARYc.oiian. 15

CONTENTS

APPENDIX A:
ON BOARD PROGRAMMING DESIGN
CONSIDERATIONS A-1

PAGE

APPENDIX B:
Vpp GENERATION CIRCUITS B-1

APPENDIX C:
LIST OF DC-DC CONVERTER
COMPANIES C1

CONTENTS

APPENDIX D:
DETAILED PARALLEL ERASE FLOW
CHART ... D-1

PAGE

APPENDIX E:
DETAILED PARALLEL
PROGRAMMING FLOW CHART E-1

APPENDIX F:
DETAILED SYSTEM SCHEMATICS F-1

intgl.

1.0 INTRODUCTION

Intel’s ETOXT II (EPROM tunnel oxide) flash mem-
ory technology uses a single-transistor cell to provide
in-system reprogrammable nonvolatile storage. Repro-
gramming entails electrically erasing all bits in parallel
and then randomly programming any byte in the array.
This new technology offers designers alternatives for
two of industry’s needs: 1) a cost-effective means of
updating program code; and 2) a solid-state approach
for non-volatile data accumulation or storage.

This application note:
® introduces you to the concepts of in-system writing;

e discusses the hardware and software considerations
for reprogramming flash memories in-system;

® offers a checklist for integrating Intel’s flash memo-
ries into microprocessor- or microcontroller-based
systems; and

® shows an example of an 80C186 design which incor-
porates flash memory.

1.1 PROM Programmer vs System-
Processor Controlled
Programming

While soldered to a printed circuit board, one of two
sources controls flash memory reprogramming: 1) a
PROM programmer connected to the board, or 2) the
system’s own central processing unit (CPU). These are
called on-board programming (OBP), and in-system
writing (ISW), respectively. With OBP, the PROM
programmer supplies the programming voltage (Vpp)
and the programming intelligence; with ISW, Vpp is
generated locally and the system itself drives the repro-
gramming process. Both methods offer a variety of ben-
efits. However this application note focuses on ISW.

AP-316

NOTE:
See Appendix A for OPB design considerations.

1.2 Information Download and Upload

ETOX II flash memory technology programs extreme-
ly quick, permitting ‘“‘on-the-fly”’ programming with
unbuffered 19.2K baud data input. The remote ISW
system handles the serial communication link for the
host interface, as well as the flash memory reprogram-
ming.

Version Updates (Download)

Flash memories enable code version updates using sim-
ple hardware designs. Beyond the basic system, a local
Vpp supply is all that is needed for remote code down-
load.

A central host computer can download program code
to many remote systems. Flash memory offers this ca-
pability without the drawbacks of other technologies. It
is solid-state and nonvolatile, thus eliminating mechani-
cal component wear-out (common with disk drives)
and the risk of losing updates (a concern with battery-
backed RAM). These aspects of flash memory offer
major advantages in automated factories, remote sys-
tems, portable equipment and other applications. Final-
ly, flash memories provide this capability at a much
lower cost than byte-alterable EEPROM and battery-
backed SRAM.

Data Acquisition (Upload)

Intel’s flash memories allow single-byte programming
for data accumulation applications. A remote data-log-
ger uploads its information to a central host via serial
link. The flash memory device is then in-system erased

On-Board Programming

In-System Writing

REMOTE SYSTEM

FILE SERVER
292046-2

Figure 1. These diagrams illustrate OBP and ISW. In OBP, a PROM programmer updates a system’s
flash memory. The ISW diagram shows a host updating remote flash memory via serial link. The
remote system performs the flash reprogramming with its own CPU.

AP-316

for resumption of data acquisition. This is useful in an
advanced electrical power meter, for example. It could
be configured to track and monitor power usage and
report the data to a central computer for billing and
utility management. This reduces the cost of manual
door-to-door meter reading.

2.0 DEVICE FEATURES AND ISW
APPLICATION CONSIDERATIONS

This section gives a brief overview of Intel’s flash mem-
ory features and explains how they facilitate ISW de-
sign.

intgl.

The 32-pin DIP memory site is forward-compatible
from the 256K bit to the 2 Mbit flash memory density.
It fits into the 27C010 Mbit EPROM pinout and re-
quires no multiplexed pins. Also, with just a single cir-
cuit-board jumper trace, a 28-pin EPROM can be
placed in the lower pins of the 32-pin flash memory
site. (See Figures 2A and 2B, Flash Memory Pinouts.)
For more information on intertechnology pin compati-
bility see Ap Brief AB-25.

2.1 Flash Memory Pinouts

Byte-Wide Flash Memory in 32-Pin DIP

(256K x 8)

(128K x 8)

(64K x8)

(32K x 8)

N\

A16| «| NC O
A15| NC [

AlA|A|4]|4]|4]4]4]4 * A
>
J

A

A
o
2
o
[1
I

A A |4
=]
QO
N
]

32 PINDIP 26 A9
0.800" wipe 25 ATl
9 TOP VIEW 24 [OE#

32 Ve
31 we#
30 NC |——
29[A4
28 A13
27|80 A8

=lv|v

>
~

vivlvy

23] A10
22 ce#
21 pQ7
20 |1 pas
19 DQ5
18 DQ4
17 | pQ3

vi|ivi|v|v|v|vY|v]|¥v]|¥]

292046-26

Figure 2A. Flash Memory Pinouts

L}
|n AP-316
®
Byte-Wide Flash Memory in 32-Pin PLCC
2M (256K X 8) T f A7
™ (128K X 8) | A16 T
512K (64K X 8) ats 4 |
256K (32K X 8) A12 NC NC Vep Vee WE# NC
4 3 2 1 32 31 30
K O 20 [] ane
A8 |: 6 28 :l A13
A5 |: 7 27 :l A8
A4 6] A9
[8 32-LEAD PLCC 2
A3 [9 0.450" x 0.550" 25] A1
A2 |: 10 TOP VIEW 24 :l oE#
Al [11 23] A10
A0 [12 22] CE#
DQO [13 21] DQ7
14 15 16 17 18 19 20
DQ1 DQ2 GND DQ3 DQ4 DQ5 DQ6
292046-27

Figure 2B. Flash Memory Pinouts

n
AP-31
ate intgl.
Table 1. Command Register Instructions
Bus First Bus Cycle Second Bus Cycle
Cycles i i
Command Reqd | Ohor® | Addr() | Data® | 9P | Addr() | Data(
Read Memory(3) 1 Write X 00H Read Valid Valid
Read Intelligent Identifier 1 Write X 90H Read 00/01H ID
Set-Up Erase/Erase 2 Write X 20H Write X 20H
Erase Verify 2 Write EA AOH Read X EVD
Set-Up Program/Program 2 Write X 40H Write PA PD
Program Verify 2 Write X COH Read X PVD
Reset(3) 2 Write X FFH Write X FFH
NOTES:

1. Addresses are latched on the falling edge of the Write-Enable pulse.
EA = Address of memory location to be read during erase verify.
PA = Address of memory location to be read during program verify.

2. EVD = Data read from location EA during erase verify.

PD = Data to be programmed at location PA. Data is latched on the rising edge of Write-Enable.
PVD = Data read from location PA during program verify. PA is latched on the Program command.
3. The second bus cycle must be followed by the next desired command register write, given the proper delay times.

2.2 Command Register Architecture

Simplified Processor Interface

Intel’s command register architecture simplifies the
processor interface. The command register allows
CE#, WE#, and OE# to have standard read/write
functionality. All commands such as “Set-up Program”
or “Program Verify” can be written with standard sys-
tem timings. Raising Vpp to 12V enables the command
register for memory read/write operation, while lower-
ing Vpp below Vo + 2V restores the device to a read
only memory.

Writing to the register toggles an internal state-ma-
chine. The state-machine output controls device func-
tionality. Some commands require one write cycle,
while others require two. The command register itself
does not occupy an addressable memory location. The
register simply stores the command, along with address
and data needed to execute the command. With this
architecture, the device expects the first write cycle to
be a command and does not corrupt data at the speci-
fied address. Table 1 contains a list of command regis-
ter instructions.

The following sections describe the commands in rela-
tion to device operation. For more information on the
command register see the appropriate flash memory
data sheets, and Section 4.4 “Reprogramming Rou-
tines”.

Read Memory Command—O00H

This command allows for normal memory read opera-
tions with Vpp turned on. After writing the command
and waiting 6 us, the CPU can read from the memory

4

at system speeds. Once placed in the read mode no
further action is required on the command register for
subsequent read operations.

Read Intelligent Identifier Command—90H

Most PROM programmers read the device’s intelligent
identifier to select the proper programming algorithm.
On EPROMs, raising A9 to the Vpp level configures
the device for this purpose. Since this is unacceptable
in-system, you can read the flash memory intelligent
identifier by first writing command 90H. Follow this by
reading address 0000 and 0001H for the manufacturer
and device ID. Reset the device with the Read Memory
command after you have read the identifier.

Set-Up Erase/Erase Commands—20H

Write this command (20H) twice in succession to initi-
ate erasure. The first write cycle sets up the device for
erasure. The device starts erasing itself on the second
command’s rising edge of Write-Enable. Erasure is
stopped when the CPU issues the Erase Verify com-
mand or when the device’s integrated stop timer times
out. Integrated stop timers provide a safety net for
complex system environments. In these environments,
s/w timer accuracy may be difficult to achieve. Some
method of timing is still required, however the timer
need only meet a minimum specification (10 ms). This
is far easier than calibrating a timer to meet both a
minimum and maximum specification (10 ms
£500 us).

NOTE:
Prior to erasure, it is necessary to program all bytes to
the same level (data = OOH). See the Quick-Erase al-
gorithm for more details.

intgl.

Erase Verify Command—AOH

The erase command erases all bytes of the array in par-
allel. After each erase operation, all bytes must be veri-
fied to see if they erased. Write the Erase Verify com-
mand (AOH) to stop erasure and setup verification.

Alternatively, you may allow the internal stop timer to
halt erasure. You must still issue the Erase Verify com-
mand to set up verification.

The device latches the address to be verified on the
falling edge of WE# and the actual command on the
rising edge. Wait 6 us before reading the data at the
address specified on the previous write cycle.

The flash memory applies an internally-generated refer-
ence voltage to the addressed byte. Reading OFFH from
the addressed byte in this mode indicates that all bits in
the byte are erased with sufficient margin to V¢ and
temperature fluctuations.

If the location is erased, then repeat the Erase Verify
procedure for the next address location. Write the com-
mand prior to each byte verification to latch the byte’s
address. Continue this process for each byte in the ar-
ray until a byte does not return OFFH data, or the last
address is accessed.

In the case where the data read is not OFFH, perform
another erase operation. (Refer to Set-up Erase/Erase).
Continue verifying from the address of the last verified
byte. Once you have accessed the last address, erasure
is complete and you can proceed to program the device.
Terminate the erase verify operation by writing another
valid command (e.g., Program Set-up).

Set-up Program/Program Commands—40H

Write this command (40H) twice in succession to initi-
ate programming. The first write cycle sets up the de-
vice for programming. The device latches address and
data on the falling and rising edges of the second write
cycle, respectively. It also begins programming on the
rising edge. You stop the programming operation by
issuing the Program Verify command, or by allowing
the integrated program stop timer to time out. This
timer works similiar to the erase stop timer. Again, a
minimum specification replaces a tougher minimum/
maximum combination (10 ws—25 us).

Program Verify Command—COH

Flash memory devices program on a byte-by-byte basis.
After each programming operation, the byte just pro-
grammed must be verified. Write the Program Verify
command (COH) to stop programming and set-up veri-
fication. Should your software allow the integrated stop
timer to halt programming, the software must resume
the algorithm with the Program Verify command. The

AP-316

device executes this command on the rising edge of
Write-Enable. The program Verify command stages the
device for verification of the byte last programmed. No
new address information is latched.

The flash memory applies an internally-generated refer-
ence voltage to the addressed byte. Wait 6 us for the
internal voltages to settle before reading the data at the
address programmed. Reading valid data indicates that
the byte programmed successfully.

Command Register Reset—FFH

Flash memories reset to the read mode during power-
up, and remain in this mode as long as Vpp is less than
Vee + 2V. If your system leaves Vpp turned-on dur-
ing a system reset, then incorporate a command register
device reset into the hardware initialization routines.
This is necessary because the CPU might be controlling
programming or erasure when the system reset hits.

Write the reset command (OFFH) twice in succession
to reset the device. The double write is necessary be-
cause of the state-machine reprogramming structure.
For example, suppose the system is reset after a Set-up
Program command. The flash memory state machine
expects the next write cycle to contain valid address
and data for programming, followed by another write
cycle for program verification. The first Reset com-
mand will be mistaken for program data but will not
corrupt the existing data. This is because the command
(data = OFFH) is a null condition for flash memory
programming. Only data bits programmed to zero pull
charge onto the memory cell and change the data. The
second write cycle actually resets the device to the read
function. Following the second reset cycle, you can
write the next command (Read, Program Set-up, Erase
Set-up, etc.).

If the Vpp supply is turned off upon system reset, the
software reset is not required. The flash memory will
reset itself automatically when Vpp powers down.

Data Protection on Power Transitions

The command register architecture offers another bene-
fit in addition to simplified processor interface—during
system power-up and power-down it protects data from
corruption by unstable logic. Erasure or programming
require Vpp to be greater than Voc + 2V and the
proper command sequence to be initiated. For example
the CPU must write the erase command twice in suc-
cession. The odds of this occurring randomly are slim.
Additionally, should Vpp ramp to 12V prior to V¢
ramping past 2.5V, the device will lock out all spurious
writes and internally block 12V from the flash memory
cells. For even greater security, you can switch Vpp as
discussed in Section 3.13.

AP-316

2.3 Vpp Specifications

Flash memories, like EPROMEs, require a 12V external-
ly-generated power supply for reprogramming. Intel’s
Vpp specifications 12.0V +£0.6V (5%) is compatible
with most off-the-shelf (or available in-system) power
supplies. (Note, Section 3.1 discusses Vpp generation
techniques, and Appendix B shows different circuit al-
ternatives.)

It is essential to use the specified Vpp when reprogram-
ming the flash memory device. Once the command to
erase, program, or verify is issued, the device internally
derives the required voltages from the Vpp supply. The
command register controls selection of internal refer-
ence circuitry tapped off of Vpp. An improper Vpp lev-
el causes the references to be wrong, degrading the per-
formance of the part.

(When programming U.V. EPROMs, V¢ is raised to
6.5V. On flash memories, the Vpp reference circuitry
and command register architecture provide the same
function while keeping Vo and Vpp at static levels.
An incorrect V¢ level during U.V. EPROM program-
ming poses similar hazards to improper Vpp levels on
flash memories.)

The hardware design section discusses various methods
for generating Vpp.

3.0 HARDWARE DESIGN FOR ISW

Covered in this section are the following:

® Description of ISW-specific functional system
blocks including memory requirements

® Vpp generation techniques

® Communication Considerations

FLASH RAM
l | |

MEMORY
cpu PORT
292046-6

Figure 3. System Block Diagram

System Level Hardware Requirements for ISW:

® processor or controller

® limited amount EP/ROM or other flash memory
devices for boot code, communications s/w, and re-
programming algorithms

intgl.

® limited amount of RAM for variable storage (i.e.,
stacks, buffers, and other changing parameters)

® data import capability (i.e., serial line, LAN, floppy
disk)

e flash memory for nonvolatile code or data storage
needs

® Vpp generator or regulator

All of the functional blocks in Figure 3 are typical of
any embedded or reprogrammable system with the ex-
ception of the Vpp generator. Some microcontrollers
have on-chip EP/ROM, RAM and a serial port. With
these devices, implementation of the ISW capability re-
quires little additional hardware.

The next section discusses Vpp generation techniques
and communications design considerations.

3.1 Vpp Generation

A static Vpp is needed to reprogram flash memories.
The Vpp voltage can be generated by:

1) regulating it down from a higher voltage;

2) pumping it up from a lower voltage (i.e., charge
pump, DC/DC converter, etc.); or

3) designing or specifying the system’s 12V supply
with the required ISW tolerances and specifications.

Sufficient current for reprogramming should be consid-
ered when selecting your Vpp generation option. Paral-
lel reprogramming for flash memory in 16-bit or 32-bit
systems will require, respectively, 2X or 4X additional
current capability.

3.1.1 REGULATING DOWN FROM HIGHER
VOLTAGE

Vpp is obtained from a higher voltage by using a linear
regulator. Given the higher voltage, regulation offers
the least expensive method of generating Vpp. Standard
three terminal 12V +1%, 2%, *4% non-adjustable
regulators are available off-the-shelf. Some regulators
have on/off control built-in. (See Appendix B, Vpp Cir-
cuit #1.) All regulators require a minimum input volt-
age greater than the output voltage. (See Appendix B,
Vpp Circuit #2 and #3.)

3.1.2 PUMPING 5V UP TO 12V

Vpp can be obtained by pumping V¢ and regulating it
to the proper voltage. A voltage charge-pump can be
designed and built by using a charge-pump integrated
circuit and some discrete components (see Appendix B,
Vpp Circuit #4) or by using a monolithic DC/DC con-
verter (see Appendix A, Vpp Circuit #5).

When using adjustable circuits containing discrete com-
ponents, design the output voltage so it falls within the
Vpp specifications for all corners of the components’

intgl.

skew (i.e., Voc £10%; Rx 1%, Ry +1%, etc.). In-
clude the resistors’ temperature coefficients in the cal-
culation matrix. Note that each of the various compo-
nents can add error to the Vpp supply.

The monolithic DC/DC converter shown in Appendix
B Circuit #5 fits into a 24-pin socket. It offers the
advantages of close temperature tracking and ease of
implementation. It has also been characterized at tem-
peratures and meets all the Vpp specifications. Appen-
dix C contains a partial list of vendors selling DC/DC
converters.

Most DC/DC converters are only 50-60% efficient, so
heat dissipation may be a concern. Some discrete boost
circuits such as Appendix B, Circuit #4, offer much
higher efficiency (70-85%). Circuit #4 as shown can
supply 200 mA. Smaller inductor and capacitor compo-
nent values and higher frequency boost convertors can
be used where less power is required. For example, de-
signs which reprogram one or two flash memories
simultaneously might use the LT1172. (Contact Linear
Technologies for more information.)

In all Vpp generation methods, a capacitor on the input
voltage terminals reduces the output noise voltage.
Some power supplies (Appendix B, Circuits #3 and
#4) specify a large-valued capacitor to decrease the Ef-
fective Series Resistance (ESR). Place a 0.1 wF capaci-
tor within 0.25 inches of each flash memory’s Vpp in-
put (in addition the one on the Vpp generator’s input).

NOTE:
The ESR is inversely proportional to the capacitance
value and the rated working voltage. To lower the
ESR choose a capacitor with a large capacitance and a
high working voltage (i.e., above 100V).

3.1.3 ABSOLUTE DATA PROTECTION—
Vpp ON/OFF CONTROL

With VPP below VCC +2V or VCC below 2.5V,
internal circuitry disables the command register and
eliminates the possibility of inadvertent erasure or
programming. Switching the Vpp supply off pro-
vides the secondary benefits of improved power and
thermal management.

There are two ways to switch Vpp on and off:
1) directly switch the Vpp generator’s output, or

2) switch the input voltage supplying the regulation
circuit.

Any switching circuit will cause a voltage drop, so
choose a switch with this drop in mind. Some power
supplies have asymmetrical tolerances on 12V (i.e.
+5%, —4%). Flash memory allows the 12V supply to
drop as low as —5%. The 1% difference between the
supply and the device requirement allows the switch to
have an ON resistance voltage drop of 0.12V. Continu-
ing with this example, assume the system only repro-
grams one flash memory at a time. The current through

AP-316

the switch into the flash is Ipp = 30 mA. Solving for
the allowable resistance across the switch: R = V/I =
(0.12V)/(30 mA) = 4 Ohms. See Figure 4. Example
Voltage Drop Across Switch. Note, one can reduce the
effective Rpg (ON) by placing 2 or more FETs in par-
allel if necessary.

O 12V=4% = 11.52V

SWITCH Rpg (ON) = 40

L,

Ipp = 30mA

L

Vpp = (12V=4%) = (30 mA)(40)
= 11.4V = 12V=5%

292046-38

Figure 4

Controlling the input voltage of a DC/DC convertor
with a MOSPOWER FET is another straightforward
approach. (See Appendix B, Circuit #5.) Choose the
FET switch carefully. It should have a very low on-re-
sistance to minimize the voltage divider effect of the
converter and FET switch. If the voltage across the
FET switch is too high, the converter will not have the
proper input voltage to meet its specifications. Always
design the switching circuit with sufficient margin to
maximum Vpp and Ve load currents.

3.1.4 WRITES AND READS DURING Vpp
TRANSITIONS

After switching Vpp off, the CPU can read from the
flash memory without waiting for the capacitors on
Vpp to bleed off. To do this, write the Read Memory
command prior to issuing the Vpp__OFF instruction.
Alternatively, the device resets automatically to read
mode when Vpp drops below Voc +2V.

Raising Vpp to 12V enables the command register. You
must wait 100 ns after Vpp achieves its steady state
value before writing to the command register. Remem-
ber that the steady state Vpp settling time depends on
both the power supply slew rate and the capacitive load
on the Vpp bus.

3.1.5 OTHER Vpp CONSIDERATIONS

The Vpp pin is an MOS input which can be damaged
by electrostatic discharge (ESD). In OBP applications,
an external power source supplies Vpp and then is re-
moved. Electrostatic charge can build up on the float-
ing Vpp pin. You can solve this problem by one of two
means: 1) tie the pin to V¢ through a diode and pull-
up resistor (Figure 5a) or through a resistor to ground
(Figure 5b). With either approach use a 10 K2 or larg-
er resistor to minimize Vpp power consumption.

AP-316

e Tﬂzv‘:c
C R = 10kQ
Vpp

292046-7
a. Vpp Tied to V¢ for OBP

Vpp Pin Vpp
°T %

292046-8
b. Vpp Tied to Ground

Figure 5

NOTE:
Typically EPROMs require Vpp to be within one di-
ode drop of V¢ for optimal standby power consump-
tion. Either approach can be used with the flash mem-
ory.

ISW applications do not require this ESD protection as
most regulators and charge pumps contain a voltage
divider on the output stage. A divider provides a resis-
tive path to ground even with the supply turned off.
(Note: check the schematics of the Vpp supply chosen.)
However, if you directly switch the Vpp supply, add
the resistor to ground; the switch isolates the Vpp pin
and allows charge to build up.

3.1.6 Vpp CIRCUITRY AND TRACE LAYOUT

You should lay out Vpp circuitry and traces for high
frequency operation since programming power charac-
teristics exhibit an AC current component. Use the fol-
lowing standard power supply design rules:

® Keep leads as short as possible and use a single
ground point or ground plane (a ground plane elimi-
nates problems).

® Locate the resistor network (or a regulator) as close
as possible to the adjustment pin to minimize noise
pick-up in the feedback loop. The resistor divider
network should also be as short as possible to mini-
mize line loss.

® Keep all high current loops to a minimum length
using copper connections that are as wide as possi-
ble. (This will decrease the inductive impedance
which otherwise causes noise spikes.)

® Place the voltage regulator as close to the flash
memory as practical to avoid an output ground
loop. Excessive lead length results in an error volt-
age across the distributed line resistance.

® Separate the input capacitor return from the regula-
tor load return line. This eliminates an input ground
loop, which could result in excessive output ripple.

intgl.

3.2 Communications—Getting Data to
and from the Flash Memory

The flash memory does not care about the origin of the
data to be programmed. The data could be downloaded
from a serial link, parallel link, disk drive, or generated
locally as in data accumulation applications.

While most systems communicate via serial link, send-
ing a font to a printer’s flash memory is an example of a
parallel interface. In either format, designers must de-
cide whether or not to buffer the incoming data. Error-
free serial protocols will require buffering for recon-
struction of information packets. With equal capacity
of RAM and flash memory in a system, the download
time would only be limited by the speed of the commu-
nication link.

Both worst case and typical analysis must be done for
real time download and un-buffered programming. The
maximum transmission rate is 19.2K baud assuming
worst case programming times. The time between char-
acters at 19.2K baud is 520 us; the worst case byte
programming time is approximately 0.5 ms (including
software overhead). Typical byte programming takes
16 us which allows for much higher unbuffered trans-
mission rates. However, a single byte can take up to the
full 400 s specified time (plus software overhead), so
you should not base transmission rate on typical pro-
gramming times.

Partial buffering or FIFO schemes can also be imple-
mented to increase transmission rates. An argument for
buffering is reduction of interconnect time and costs.

4.0 SOFTWARE DESIGN FOR ISW

Covered in this section are the following software re-
quirements:

® gsystem integration of ISW

® reprogramming considerations for single- and multi-
ple-flash memory based designs.

4.1 System Integration—Boot Code
Requirements

Boot code in remote systems should contain various
ISW-specific procedures in addition to standard initiali-
zation and diagnostic routines.

The most dependable boot code for remote version up-
dates contains some basic communications capability
and the ISW reprogramming algorithms. Thus, a data-
link disruption while reprogramming would be recover-
able. For manufacturing flexibility, this boot memory
could be an OBP 256K flash memory.

L}
| n‘tel AP-316
®
1. Bootstrap, and reset flash memory;
2. Check “HOST__INT” and “VALID__AP” RESET FLASH
flags: MEMORY
If HOST__INT is inactive and VALID__AP @,
= 4150H, jump to application start address;
3. If VALID__AP<>4150H, loop and wait
for host (the link probably went down during
update);
4. When “HOST__INT” is active, vector to
host interaction code.
See next section.)
(See . APPLICATION 2920469

Figure 6. Example of ISW Integration to the Boot Sequence

An alternative to storing these routines in a separate
boot device is storing them in the flash memory con-
taining the program code. Prior to erasure, the CPU
would transfer the ISW routines to system RAM and
execute from there. This type of approach is suitable for
battery-operated equipment or systems with back-up
power supplies.

The communication link could be disrupted during re-
programming, leaving the device in an unknown config-
uration. Therefore, the boot code should reset the flash
memory and check two ISW flags. The following sec-
tion discusses the flag check concept.

4.1.1 ISW FLAG CHECK

After resetting the flash memories and initializing other
system components, the CPU should check the com-
munications link for a host interrupt. We will call this
the HOST__INT flag. Had the communication link
gone down prior to completion of downloading, then
the host would have to re-establish contact to complete
the task.

Assuming no HOST__INT request has been made, the
boot protocol then checks a data sequence in the flash
memory signifying a valid application (VALID__AP).
You program this sequence into the memory array after
confirmation of a successful download. If a download is
interrupted midway through erasure or programming,
then the VALID__AP flag locations will not contain
the VALID__AP code. On the next system bootstrap
the CPU recognizes this and holds up system boot until
valid code is programmed. In Figure 6 an example flag
protocol uses the VALID__AP sequence of 4150H
(ASCII codes for “AP”).

4.2 Communication Protocols and
Flash Memory ISW

The remote download communications protocol must
guarantee accurate transmission of flash memory in-

structions and program code. This protocol can be as
simple as a read-back technique or as complex as an
error-free transmission protocol. (See Figure 7 for pos-
sible system-level flash memory instructions.)

A simple read-back technique optimizes download for
boot code memory needs and ease of implementation.
The embedded CPU echoes the flash memory instruc-
tion (i.e., Erase or Program) to the host, and waits for a
confirmation prior to execution. After programming
the update, the remote system checks the update by
transmitting it back to the host for confirmation. The
remote system then programs the VALID__AP se-
quence. Note that programming and reading back
64 Kbytes at 19.2K baud takes about 0.57 minutes per
direction:

(65,536 bytes) * (10 bits/byte) * (1 sec/19.2 Kbits) *
(1 min/60 sec) = 0.57 minutes.

Implementing either software- or hardware-based er-
ror-free communications protocol improves transmis-
sion efficiency. It eliminates the possibility of errant
data being programmed if not buffered and checked,
and optimizes the download process for transmission
time. Additionally, file compression and decompression
routines can improve the transmission rate.

General ISW instructions include:
STATUS CHECK
INITIATE REPROGRAMMING
MOVE ISW ROUTINES FROM FLASH MEMORY TO RAM
(If not resident in separate boot memory)

Data accumulation-specific commands include:
RETRIEVE DATA
ERASE FLASH MEMORY

Figure 7. Sample System-Level
ISW Instruction Set

AP-316

Status Check

The host should request a status update from the re-
mote system prior to sending a reprogramming instruc-
tion. Depending on the response, the host may break
the link and reconnect later, or it may send an erasure
or data-upload command. This type of handshaking is
necessary when system downtime for reprogramming
might not be acceptable. An example of this is an auto-
mated factory where robots handle caustic chemicals.

4.3 Data Accumulation Software
Techniques

Data can be accumulated in a remote environment with
flash memory and then uploaded to a host computer for
manipulation. You can adapt various standard data-
logging techniques for use with flash memory. With
any technique, you determine the next available memo-
ry location by reading for erased data (OFFH). This
address would only be located once on system boot-
strap and then recalled from RAM and incremented as
needed.

Given a repeating data string of known length and
composition, program start and stop codes at either end
of the string. Do not pick 00OH or OFFH data for these
codes because they are used during erasure. The start
and stop codes enable the CPU to differentiate between
available memory for logging and logged data equal to
00H or OFFH.

For non-regular data input, you can address this same
issue by programming the logged data followed by the
variable identifier. Again, do not pick 00H or OFFH
data for the variable identifiers.

With any technique, the host computer separates and
manipulates the data after the uploading operation.

4.4 Reprogramming Routines

Intel’s ETOX flash memories provide a cost-effective
updatable, non-volatile code storage medium. The reli-
ability and operation of the device is based on the use of
specified erasure and programming algorithms.

Intel offers reprogramming software drivers to make it
easy for you to design and implement flash memory
applications. The software is designed around the CPU-
family architectures and requires minimal modification
to define your system parameters. For example, you
supply the memory width (8-bit, 16-bit, or 32-bit), sys-
tem timing, and a subroutine for control of Vpp.

10

intgl.

Contact your nearest sales office for details.

If you prefer to implement the algorithms yourself, they
are outlined in the device data sheets. Command regis-
ter instructions required for the various operations are
included in the data sheet flow charts.

The following sections describe both single-device and
multiple-device parallel reprogramming implementa-
tions.

4.4.1 Quick-Erase Algorithm

Flash memories chip-erase all bits in the array in paral-
lel. The erase time depends on the Vpp voltage level
(11.4V-12.6V), temperature, and number of erase/
write cycles on the part. See the device data sheets for
specific parametric influences on reprogramming times.

Note that prior to erasing a flash memory device the
processor must program all locations to 00H. This equal-
izes the charge on all memory cells insuring uniform and
reliable erasure.

Algorithm Timing Delays

The Quick-Erase algorithm has three different time de-
lays:

1) The first is an assumed delay when Vpp first turns
on. The capacitors on the Vpp bus cause an RC
ramp. After switching on Vpp, the delay required is
proportional to the number of flash memory devices
times 0.1 wF/device. Vpp must reach its final value
100 ns before the CPU writes to the command regis-
ter. Systems that hardwire Vpp to the device can
eliminate this delay.

2) The second delay is the “Time Out TEW” function,
where TEW is the erase timing width. The function
occurs after writing the erase command (the second
time) and before writing the erase-verify command.
The erase-verify command or the integrated stop
timer internally stops erasure.

TEW for ETOX II flash memories is a minimum of
10 ms. This delay can be either software or hard-
ware controlled. Either way, the minimum nature of
the timing specification allows for interrupt-driven
timeout routines. Should the interrupt latency be
longer than the minimum delay specification, the
stop timer halts erasure.

3) The third delay in the erase algorithm is a 6 s time
out between writing the erase verify command and
reading for OFFH. During this delay, the internal
voltages of the memory array are changing from the

intgl.

erase levels to the verify levels. A read attempt prior
to waiting 6 us will give false data—it will appear
that the chip does not erase. Repeatedly trying to
erase verify the device without waiting 6 us will
cause over-erasure. This delay is short enough that
it is best handled with software timing. Again, note
that the delay specification is a minimum.

High Performance Parallel Device Erasure

In applications containing more than one flash memo-
ry, you can erase each device serially or you can reduce
total erase time by implementing a parallel erase algo-
rithm.7 You save time by erasing all devices at the same
time. However, since flash memories may erase at dif-
ferent rates, you must verify each device separately.
This can be done in a word-wise fashion with the com-
mand register Reset command and a special masking
algorithm.

Take for example the case of two-device (parallel) era-
sure. The CPU first writes the data word erase com-
mand 2020h twice in succession. This starts erasure.
After 10 ms, the CPU writes the data word verify com-
mand AOAOh to stop erasure and setup erase verifica-

AP-316

tion. If both bytes are erased at the given address, then
the CPU increments the address (by 2) and then writes
the verify command AOAOh again. If neither byte is
erased, then the CPU issues the erase sequence again
without incrementing the address.

Suppose at the given address only the low byte verifies
FFh data? Could the whole chip be erased? The answer
is yes. Rather than check the rest of the low byte ad-
dresses independently of the high byte, simply use the
reset command to mask the low byte from erasure and
erase verification on the next erase loop. In this exam-
ple the erase command would be 20FFh and the verify
command would be AOFFh. Once the high byte verifies
at that address, the CPU modifies the command back
to the default 2020h and AOAOh, increments the ad-
dress by 2, and writes the verify command to the next
address.

See Figure 8 for a conceptual view of the parallel erase
flow chart and Appendix D for the detailed version.
These flow charts are for 16-bit systems and can be
expanded for 32-bit designs.

RAISE Vpp

TIME OUT
VERIFY COMMAND

Y

LAST ADDRESS
K
DONE

N

PROGRAM ALL DEVICES TO 00h
RESET ALL VARIABLES

ISSUE ERASE COMMAND

BOTH DEVICES ERASED LI MASK®

* YOU MASK THE DEVICE BY SUBSTITUTING A RESET COMMAND
FOR THE ERASE & VERIFY COMMANDS. THAT WAY THE
ERASED BYTE IDLES THROUGH THE NEXT ERASE LOOP.

HI=OR LO-BYTE
COMMANDS

LAST PULSE N,

Y
ERROR

292046-28

Figure 8. High Performance Parallel Erasure (Conceptual Overview)

7. Parallel Erasure and Programming require appropriate choice of Vpp supply to support the increased power consumption.

11

AP-316

4.4.2 Quick-Pulse Programming Algorithm

Flash memories program with a modified version of the
Quick-Pulse Programming algorithm used for U.V.
EPROMs. It is an optimized closed-loop flow consist-
ing of 10 us program pulses followed by byte verifica-
tion. Most bytes verify after the first pulse, although
some may require more passes through the pulse/verify
loop. As with U.V. EPROMs, this algorithm guaran-
tees a minimum of ten years data retention. See the
device data sheets for more details on the programming
algorithm.

Algorithm Timing Delays

The Quick-Pulse Programming algorithm has three dif-
ferent time delays:

® The first and third—Vpp set-up and verify set-up
delays—are the same as discussed in the erasure sec-
tion. In this case the third delay is for the transition
between writing the Program Verify command and
reading for valid data.

intgl.

® The second delay is the “Time Out 10 us” function,
which occurs after writing the data and before writ-
ing the program-verify command. This write com-
mand internally stops programming. The section en-
titled “Pulse Width Timing Techniques” gives 86-
family assembly code for generating a 10 ws timer
routine.

High Performance Parallel Device Programming

Software for word- or double-word programming can
be written in two different manners. The first method
offers simplicity of design and minimizes software over-
head by using a byte programming routine on each de-
vice independently. Here you increment the address by
2 or 4 when addressing 1 of 2 or 4 devices, respectively.
The second method offers higher performance by pro-
gramming the word or double-word data in parallel.
This method manipulates the command register in-
structions for independent byte control. See Figure 9
for conceptual 2-device parallel programming flow
chart and Appendix E for the detailed version.

Raise Vpp
Get Address/Data Word
r* Reset Command and
Counter Variables

Program Data
Word

Time Out 10 us
Stop Programming with

Program Verify command

Y
‘—CT More Data?

N

Lower Vpp
Programming Complete

Mask Hi or Lo Byte
Data Word Programmed?—»Increment Pulse Counter

Y

Write Read command ~ Write Read command
Lower Vpp
Program Error

*You mask the device by substituting a Reset command for the Program and Verify commands. That way, the pro-
grammed bytes do not get further programmed on subsequent pulses.

Last Pulse?.

292046-11

Figure 9. Parallel Programming Flow Chart (Conceptual Overview)

12

intgl.

Word or double-word programming assumes 2 or 4
8-bit flash memory devices.

Parallel Programming Algorithm Summary:

® Decreases programming time by programming 2
flash memories (16 bits) in parallel. The algorithm
can be expanded for 32-bit systems.

e Eliminates tracking of high/low byte addresses and
respective number of program pulses by directing
the CPU to write data-words (16-bit) to the com-
mand register.

® Maintains word write and word read operations.
Should a byte on one device program prior to a byte
on the other, the CPU continues to write word-com-
mands to both devices. However, it deselects the
verified byte with software commands. An alterna-
tive is to independently program high and low bytes
using hardware select capability.

4.4.3 Pulse Width Timing Techniques

Software or hardware methods can be used to generate
the timing required for erasure and programming. With
either method you should use an in-circuit emulator
(ICE™) and an oscilloscope to verify proper timing.
Also remove the flash memory device from the system
during initial algorithm testing.

Software Methods and Examples

Software loops are easily constructed using a number of
techniques. Timing loops need to be done in assembly
language so that the number of clock cycles can be
obtained from the instructions.

In order to calculate a delay loop three things are need-
ed—

1) processor clock speed,

2) clock cycles per instruction, and

3) the duration of the delay loop.

As an example, the 80C186 divides the input clock by
2. With a 20 MHz input clock the processor’s internal
clock runs at 10 MHz. This translates to a 100 ns cycle
time. Delays can be made by loading the CX register
with a count and using the LOOP instruction. The

AP-316

LOORP instruction takes 16 clock cycles to execute per
pass. It decrements the CX register on each pass and
jumps to the specified operand until CX equals zero.

When writing a delay loop consider all instructions be-
tween the start and end of the delay. If a macro is
written that delays 10 us, add the clock cycles for all
instructions in the macro.

Here is an example of a 10 us delay and the calculation
of the constant required for a 10 MHz 80C186.

WAIT__10 ps:
push cx ;10 clock cycles
mov cx,DELAY ;4 clock cycles
loop § ;see calculation
pop cx ;10 clock cycles
1. Start to End = 10 us/cycle time
= 10 us/100 ns
= 100 cycles
2. Loop Instruction= 100-24 cycles
= 76 cycles
3. Loop Cycles =176

= (15 X [DELAY —1] + 5)

4. Solving for DELAY = 6

Hardware Methods

Using an Internal Timer—

Many microcontrollers and some microprocessors have
on-chip timers. At higher input clock speeds these in-
ternal timers have a resolution of 1 us or better. The
timers are loaded with a count and then enabled. The
timer starts counting and when it reaches the terminal
count a bit is set. The CPU executes a polling algorithm
that checks the timer status. Alternatively, a timer-con-
trolled interrupt can be used. After the timer has been
set and the interrupt enabled, the CPU can be pro-
grammed to wait in idle mode or it could continue exe-
cuting until the timed interrupt.

13

AP-316

One thing to take into account when using interrupts is
the time required for the CPU to recognize and inter-
rupt request (interrupt latency). This is important when
figuring the timer value, because the time seen by the
part will be the programmed delay plus the minmum
interrupt latency time.

The 80C186 has three 16-bit timers on-chip. Timer #2
can be a prescaler for the other two timers, which ex-
tends timers #0 and #1 range out to 2*32. By using
two timers, 10 us pulses and 10 ms pulses can be easily
achieved.

Using an External Timer—

External timers can take many forms. One popular ex-
ample is the 82C54 (CHMOS Programmable Interval
Timer) which has three 16-bit timers on-chip. One tim-
er can be used as a prescaler for the others so that a
count of 2*32 can be achieved as with the 80C186 inter-
nal timers.

5.0 SYSTEM DESIGN EXAMPLE:
AN 80C186 DESIGN

A general purpose controller and/or data acquisition
system was built to demonstrate 86-based ISW. The
80C186 CPU drives the system, which contains
16 Kbytes of EPROM (two 27C64’s), 64 Kbytes of
flash memory (two 28F256A’s), 64 Kbytes of SRAM
(two 32K x 8’s) three 8-bit ports (82C55A), one serial
port (82510), and a 5V to 12.0V DC/DC converter.
Three 74HCS573’s demultiplex the address/data bus
and latch the byte high enable line (BHE#) and the
status lines (if needed). Two data transceivers
(74HC245) simulate the worst case data path for a sys-
tem requiring added drive capability. If the transceivers
are not needed they can be replaced with wired headers.
See Appendix F for detailed schematics parts list, and
changes for the 28F512 or 28F010.

The 80C186 reset (output) drives the reset input on the
82510, 82C55A, and the OE# inputs on the address
latches and data transceivers. The reset line goes inac-
tive 5 clock cycles before the first code fetch. Also, the
CPU’s write signal is split into byte-write-high and
byte-write-low to allow for byte or word writes.

The 80C186 has on-chip memory and peripheral chip
selects. Two of the memory chip selects are dedicated.
One is the Upper Chip Select (UCS #, dedicated for the
boot area) and the second is the Lower Chip Select
(LCS#, for the interrupt vector table area). See the
memory map in Figure 10.

14

intgl.

Initialize H/W, Comm,
Boot flash memory algo’s, etc.

ucs FCO00H

Version update code,

Application Data Accumulation storage,
etc.
MCSO 40000H
RAM Vector table, Stack,
Buffers, etc.
LCS 0000

Figure 10. 80C186 Memory Map

The permanent code was placed in an EPROM in the
UCS memory segment; this code includes routines for
hardware initialization, communications, data upload-
ing and downloading, erasure and programming algo-
rithms, I/O drivers, ASCII to binary conversion tables,
etc. This would be useful for systems reconfigured for
different communication protocols as the last step prior
to shipment.

Code and constants that might change are placed in the
64 Kbytes of flash memory. Application examples in-
clude operating systems, code for rapidly advancing
biomedical technologies such as blood test software, en-
gine-control code and parameters, character fonts for
printers, postage rates, etc. The RAM is used for the
interrupt table, stack, variable data storage, and buff-
ers.

The three 8-bit ports on the 82C55A peripheral con-
troller can be used for control and/or data acquisition.
It powers-up with all port pins high. Similarly, all port
pins go high after warm resets as well. Because the pins
are high after a power-up/reset, an open collector in-
vertor was used to control the MOSPOWER switch
which in turn controls Vpp. You must drive the FET
switch to one rail or the other to guarantee its low on-
resistance. Vpp is turned off during power-up or reset
as a hardware write protection solution. The DC/DC
converter supplies Vpp.

The 82510 is a flexible single channel CHMOS UART
offering high integration. The device off-loads the sys-
tem and CPU of many tasks associated with asynchro-
nous serial communications.

intgl.

The part can be used as a basic serial port for the host
serial link, or can be configured to support high speed
modem applications. For more information on the
82510 see the 82510 data sheet and AP-401 “Designing
with the 82510 Asynchronous Serial Controller”.

Software was written to download code and data pa-
rameters (code updates) from a PC to the demo board
through the PC’s COM1 port (serial port). The system
also can upload data (remote data acquisition) to the
PC via the same link.

Once the download code and data has been pro-
grammed it can not be lost, even if power should fail.
This is because Intel’s ETOX II flash memory technol-
ogy is based on EPROM technology and does not need
power to retain data.

The end result: rugged, solid state, low power nonvola-
tile storage.

AP-316

6.0 SUMMARY

Intel’s flash memories offer designers cost-effective al-
ternatives for remote version updates or for reliable
data accumulation in the field or factory. Designers will
also benefit from time savings in any kind of code de-
velopment—no 15 minute waits for U.V. EPROM era-
sure.

This application note covers the basics of in-system
writing to flash memories and can be used as a check
list for systems other than the 80C186 design shown.
The basic concepts remain the same: a CPU controls
the reprogramming operations; a 12V supply must be
applied to the flash memory for erasure and program-
ming; and a communications link connects the host to
the remote system and supplies the code to be pro-
grammed.

15

intel o AP-316

APPENDIX A
ON-BOARD PROGRAMMING DESIGN
CONSIDERATIONS

A-1

AP-316

intgl.

® outlines the design considerations associated with
on-board programming, and the improvements af-
forded by Intel’s flash memory;

INTRODUCTION This appendix:
On-board programming! (OBP) with Intel’s flash
memory provides designers with cost reduction capabil-
ities for alterable code storage designs. When used in
conjunction with on-board programming, flash memo-
ry presents opportunities for savings in two areas:
greater testability in the factory, which translates to
improved outgoing quality and reduced return rate; and ® suggests some 16-bit flash design considerations;

quicker, more reliable field updates, which translates to and offers information on OBP equipment and ven-
decreased product support cost. dors.

e offers guidelines for converting current 64K
EPROM OBP designs;

® designs an 8-bit system for on-board programming;

1. With on-board programming, non-volatile memory is programmed while socketed or soldered on the application board,
rather than before hand as a discrete component. This programming method is also called in-module or in-circuit program-
ming, and has been practiced by some major corporations since 1981. See sidebar on following pages for more information

on U.V. EPROM OBP usage.

HOST APPLICATION
(Printer Shown Here)

f—e—a—a—01qA
AT,

printer ships to customer.

On-Board Programming Manufacturing Example—A printer is customized via OBP for international markets:
1. printer assembly completed, diagnostics code programmed and tested, and unit stored in inventory; 2. order
arrives for printer with foreign language font; 3. diagnostics code flash-erased, and desired font programmed; 4.

BOARD-PROGRAMMER

292046-29

INTEL’S FLASH MEMORY—DESIGNED
TO MEET YOUR OBP NEEDS

Intel’s flash memory simplifies OBP code updates by
offering designers the command register architecture.
As described in section 2.2, this architecture offers the
full reliability of EPROM off-board programming
without the hassles of elevating Vcc.

5 Volt Vcc Erasure and Programming
Verification

Unlike EPROM OBP, flash memory enables Vcc to
remain at 5.0V throughout all operations. Internal cir-
cuitry derives the erasure and programming verification
levels from the voltage on Vpp rather than from Vce.
These verify modes enable use of a single Vcc bus for
the entire board, as opposed to the two buses needed for
U.V. EPROM OBP. (See sidebar entitled EPROM
OBP).

EPROM OBP

EPROM OBP has been a proven manufacturing technique since 1981. Ingenuity and clever circuit design have
enabled manufacturers to overcome the hurdles associated with OBP and enjoy the benefits.

In many cases, Intel’s flash memory simplifies today’s solutions and offers new capabilities to advance the state of
OBP technology. The following paragraphs outline the hurdles and a few of the solutions in use today.

EPROMs require program verification at an elevated V¢ to insure long-term data retention. PROM program-
mers easily accommodate this requirement, and it is generally invisible to the end-user.

intgl.

REPLACING CURRENT EPROM OBP
DESIGNS WITH FLASH MEMORY

Hardware Considerations

A slight hardware modification is required to adapt
most of the current EPROM OBP designs for use with
Intel’s flash memory. Simply convert the EPROM
memory sites from 28 to 32 pins. All other board-de-
sign cirteria used for EPROM OBP apply to flash
memory as well. (For discussions of these criteria see
section entitled New OBP Designs).

Standard EPROM OBP requires the board designer to
bus PGM# to the edge connector. With flash memo-
ries’ command register architecture, this same trace en-
ables electrical erasure and programming, only now the
line is called Write Enable (WE#). The timing for
WE# is similar to that of read accesses, although that
is handled via software changes.

Another potential hardware change is on the board
programmer side of the design—the Vpp supply. Many
EPROMSs program with 12.5-13.0V Vpp supplies. In-
tel’s ETOX II flash memory requires 11.4-12.6V Vpp.
This change should not be an issue since the Vpp sup-
ply on many board programmers is programmable.

Mixed memory systems containing both conventional
U.V. EPROM and flash memories require special con-
sideration. This type of memory design requires separa-
tion of the Chip Enable (CE#) control lines between
the EPROM and flash devices to allow for independent
reprogramming control and access. The PGM# and

AP-316

WE# lines can be common if the board programmer
can give the appropriate timings to either type of de-
vice.

Software Considerations

Manufacturers who program EPROMs on-board today
will need new board-programmer software to take ad-
vantage of flash memory’s feature set, specifically soft-
ware for the Quick-Erase and Quick-Pulse Program-
ming algorithms.

Benefits of Converting Your EPROM OBP
Design to Flash

The most pressing reason to convert from a standard
EPROM to flash memory is the total cost savings. To
appreciate this, you must consider your way of doing
business at the board and system levels—from the fac-
tory to installation and repair in the field. In the facto-
ry, boards can be tested with a diagnostics program in
the flash memory and then erased and reconfigured for
shipment in the same step. Improved testing will de-
crease the probability of field failures and costly cus-
tomer returns. Simplified test and rework methods will
decrease your inventory holding costs. Also, if in the
process of converting to flash memory you include the
ability to OBP via a cable-connector, service calls for
code updates will be quicker, more reliable, and cost
less money. Your serviceman would simply connect the
programming equipment to the system without disman-
tling it to remove the EPROMs. (See section entitled
The System/Board-Programmer H/W Connection for
details.)

operate predictably.

increased costs of buffers and extra board space.

EPROM OBP (cont’d)

With OBP, the EPROM board-programmer handles the elevated-Vcc requirement easily as well. However,
when Ve is greater than 5V, logic devices populating the same board may draw excessive current and not

One solution to this issue involves running separate V¢ traces to the board’s edge connector—one for EPROM
programming, and one for powering up the rest of the board.
A second consideration when designing for EPROM OBP has been accessing manufacturer and device codes.

The identifier mode requires forcing A9 to 12V. This translates to adding extra isolation, which implies the

AP-316

NEW OBP DESIGNS

Design Considerations

As with EPROM in-circuit programming, flash memo-
ry board programming requires the use of a board-pro-
grammer. Unlike U.V. erasure for standard EPROM
OBP, electrical erasure enables flash memory OBP
without removing the board from the system.

We will look at designing a board that is to remain pow-
ered-up in the system during erasure and reprogram-
ming. The key concept is to design the board in such a
way that the programmer can take control of the system
during code updates. The implementation of such a de-
sign is straightforward, easy, and suited to automated
production assembly.

Taking Control

The board-programmer needs to take control of the
system’s address bus, data bus, control lines, etc. to
update the code without damaging the system. (See
Figure 2. System to Board-Programmer Interface.)
Taking control simply means isolating the rest of the
system from these lines.

Various methods of isolating the memory from the sys-
tem include using tristate buffers, latches, or even the
capabilities designed into microprocessors (uP) and mi-
crocontrollers (wC). For example, Intel’s 86-based uP
family has HLD/HLDA signals that were set-up for
multiprocessor system designs where bus control is a
major concern. The HLD signal, when acknowledged,
tristates the address, data, and control lines. Although
not designed for multiprocessor environments, Intel’s
MCS®-51 and MCS-96 microcontroller families have
Reset capabilities to help simplify this same task.

intgl.

One issue to be aware of when using a CPU’s reset
control function is that it may switch from the reset to
active condition at a non-standard logic level. This only
presents a problem if the address/data buffer takes
longer to activate than the CPU, and the CPU attempts
to fetch code from a memory device isolated from it.

One approach to insure successful programming take-
over (i.e. without bus contention) is to have the board-
programmer’s lines in a high impedance state during
connection to the system. Once connection to the sys-
tem has been secured, the serviceman could hit a button
on the board-programmer to start the system takeover
procedure. Then when total control has been estab-
lished, the programmer would commence with erasure
and reprogramming.

Aside from the flash device’s isolation from the system,
various CPU control lines (MEMRD#, WE#,
PSEN #, etc.) may need isolation as well. If active dur-
ing Reset, these lines may put the CPU into an unspeci-
fied state. When designing a board for OBP, check the
wC/uP data sheets carefully for any special reset con-
ditions.

Printed Circuit Board Guidelines for
Vce and Vpp

Programming conventional EPROM and flash memo-
ries takes 30 mA of current on Ve and Vpp, due to
the nature of hot-electron injection. Most of the charge
transfers to the memory cell’s floating gate in a short
current spike during the first pulse. You should design
both the Ve and Vpp traces with A.C. current spikes
in mind. Wherever possible, limit the inductance by
widening the two traces. Bypass capacitors (0.1 uF)
should be placed as close as possible to the memory
device’s Ve and GND pins, as well as the devices Vpp
and GND pins. The capacitor on Vcc decreases the
power supply droop. The capacitor on Vpp supplies
added charge, and filters and protects the memory from
high frequency over-voltage spikes2.

2. For a complete discussion of electrical noise, grounds, power supply distribution and decoupling see Ap-74—High Speed
Memory System Design Using the 2147H, and AP-125—Designing Microcontroller Systems for Electrically Noisy Environ-

ments.

algorithm only.

EPROM OBP (cont’d)

Some users of OBP get around this issue by programming all EPROMs with a common algorithm. However, this
practice compromises the device’s reliability, and should not be done.

A better solution than ignoring the identifier is to choose a qualified EPROM vendor and program with its

One subtle concern with EPROM OBP that designers often overlook is U.V. board erasure.

—> U.V. EPROM board erasure requires removal of the board from its host system. This incurs the hidden
costs of labor, lower yields due to handling, and the reliability risks of dismantling a system. Flash memory
decreases these costs by enabling a greater degree of factory automation, and increases the flexibility afforded by
OBP.

A-4

In ® AP-316

SYSTEM CARD BOARD-PROGRAMMER
___] High Order Address
[As Als ooy
A ine for Memory
ha AM Select
Ars 13
Az A2
Address Bus for o o
Chip Enables Device Address
and Flash Memory 0 <} Lines
Address Inputs
o 0
o o
~ A Ao
r Dy Dy
o 0
Data Bus for Data Lines
Input/Output
o 0
~ DO D0 <
RESET PSy
Sys. Interface | MEMWR PS;
Control Lines MEMEN# CE# - Decoder Enable Line
MEMRD# OE# - Read Control Line
WE# WE# - Erase/Program Lines
Vpp Vpp — Programming Power
GND GND

292046-30

NOTE:
During normal system read operation, all interface traces are left open-circuited. Some of the lines have pull-downs or
weak pull-ups to insure proper device operation.

Figure 2. System to Board-Programmer Interface

EPROM OBP (cont’d)

—> Special U.V. board erasers must be purchased, at significant costs and with limited throughput. A low-end
U.V. bulb costs $75-$100 each. A U.V. board eraser system could cost upwards of $10,000, with recurring costs
of light bulbs and energy. Thus, the cost of U.V. erasure is often under-estimated.

— Although portable board programmers are commercially available, U.V. lights by nature are not very
rugged, and are not suited for out-of-factory code updates. This complicates field service.

—> Erasure can be easily controlled in a lab environment; however, it is not as clear on the manufacturing floor
which label to remove for U.V. erasure, because parts other than EPROMs have windows (i.e. EPLD’s, micro-
controllers with embedded EPROM memory, etc.)

A-5

AP-316

The System/Board-Programmer Hardware
Connection

In most U.V. EPROM OBP applications, designers use
the board’s edge-connector as the programmer inter-
face. This approach is the lowest cost solution for stan-
dard EPROM technology because U.V. erasable devic-
es require system disassembly for erasure anyway. With
flash memory, you can eliminate the system disman-
tling and capitalize on the erase feature by adding a
cable connector to the board for reprogramming pur-
poses. The connector should extend from the board
through the system’s chassis, and should be easy to
reach by a serviceman.

Various types of cables exist on the market that could
be used to connect programming equipment to the sys-
tem. The key design consideration when choosing the
type of cable is elimination of all transient noise that
would interfere with the programming or erasure pro-
cess.

Three types of noise interference and methods to dimin-
ish the noise are as follows:

1. line to line cross-talk (due to board-programmer’s
drivers that drive sharp step functions on adjacent
address lines); solved with either ribbon cables, hav-
ing alternate lines grounded, or with braided twisted-
pairs that have a ground line for each active signal;

2. programmer line-driver-to-board impedance mis-
matches leading to transmission line effects of signal
reflection, and interference; solved by limiting cable
length, decreasing programmer switching speed (or
allowing longer settling time between address
switches) or by using matched line drivers on the
programmer and high impedance buffers on the
board end, or by using series termination resistors on
the driving end of the cable (i.e.—board-programmer
end, with the exception of the bi-directional data bus
which needs series resistors at both ends);

3. 1f pick-up in electrically noisy environments; use ei-
ther shielded cable such as coax, ribbon cable with
solid copper ground plane, or a new type that has
recently become available called Flex cable.

Braided twisted-pair cables when kept under three feet
in length generally reduce cross-talk to acceptable lev-
els. This type of cable offers the most cost-effective so-
lution which works well in most applications. Depend-
ing on the environment, the programmer and your de-
sign, you may need a combination of solutions, such as
braided twisted-pairs with series termination.

intgl.

At first all of these alternatives may seem expensive or
superfluous, but keep in mind that the cost of a single
cable and programmer gets amortized over the total
number of systems programmed.

AN 8-BIT BUS DESIGN EXAMPLE

An example of an in-circuit reprogrammable controller
board is an 80C31, two 28F256A’s and some glue
chips. (See Figure 3. for a system block diagram. See
Appendix A. for a detailed system schematic.)3 The
important issues for erasure and reprogramming are as
follows:

1. the board-programmer must have uncontested access
and control of the flash memory array; and

2. the microcontroller must be reset (un-active) during
the erasure and programming cycles.

SYSTEM DESIGN

Bus Control Circuitry

The 80C31 has an active-high reset pin, which tristates
the address and data bases. Route this line (RESET) to
the programming connector. Tie the OE# pins on the
low-order address latch (74HCT573), and the PSEN #
buffer-enable (74HCT125)4 together, and route that
line MEMWRS to another pin on the programmer-in-
terface connector.

During normal system operations when the wC reads
program code from the 28F256 devices, the pull-down
on MEMWR keeps the address latches and PSEN #
buffer active. During flash memory OBP, the board-
programmer drives MEMWR active-high, which dis-
ables these outputs, and isolates the address bus and
PSEN# from the programming signals.

The board-programmer must independently control the
RESET and MEMWR traces because they disable at
different Vyp, values (2.5V for RESET vs 0.8V for
MEMWR). If controlled by the same 5V supply, on
power-up or after a reset condition the uC would try to
execute code while still isolated from its code source—
specifically before the address latches and PSEN#
buffer activate.

Address Decode Circuitry

This design shows two 28F256A flash memories. Sys-
tems with more than one memory device typically de-
code the CPU’s high-order address to select a particu-
lar device.

3. Note that the flow-through latch on the data bus is not needed with the 80C31, but is drawn as an example for CPU’s that

can not tristate their data bus.

4. The isolation buffer is required on PSEN# in this design because the 80C31 goes into unspecified states when the Reset
and PSEN# lines are active simultaneously. To avoid any possible problems, buffer PSEN #.
5. MEMWR = > bus isolation control of PSEN# and the data bus.

A-6

AP-316

L€-9¥0262

aNo

£9-9q

J10308UUO0D

ebp3
Jswwoaboud

#30

#AANIN
¢Sd

UMNIN

ddy

#IM

vhy_Oy
SV

£0-9q
_ 8
Al V967482 yoyp 80D}JB}U|
P ddp ybnouay| 140
MO
a H
#IM Thy-Oy 7
st = 1 #30
#30 #30 M «
\\ H WA—_ #N3Sd
= — *—o _
— 1£008
_ #30
q| #30
dd
ddp L A “a-% 2 # 0 ‘av-Cay
» yoe IV
¢ #IM
#3IM ¢ Jod
V987487
1 Hod
/ ¥ly_0, Sly_8
v-Oy V-
51’ 51’ L’
#30
858,
- iy = ik
#NININ %
bd 1353

Figure 3. System Block Diagram

A-7

AP-316

This is accomplished as illustrated. When A15 is low,
the lower 32K bytes are selected. The output of the
inverter drives the other 28F256A’s chip enable. This
type of memory architecture promotes power savings
by disabling all memories but the one being addressed.

To accomplish this two-line memory control architec-
ture, route the inverter’s input A15 to the 80C31 and to
the programmer interface connector.8 The board-pro-
grammer controls the inverter’s output enable with
MEMEN #.9 The MEMEN # line performs the func-
tion normally performed by CE# in component pro-
gramming. When driven to a logic “1” level
MEMEN # pulls the inverter’s output high. This dese-
lects all memory devices controlled by that I.C. During
normal read and standby operations, the pull-down on
MEMEN # keeps the decoder enabled.

Erasure and Programming Control Circuitry

In this design, Vpp and WE# are active only during
reprogramming. At other times, the two inputs would
be inactive. Simply tie the WE# line to V¢ through a
pull-up resistor. The pull-up limits the current to the
board programmer during reprogramming. (Recall that
WE # is active low.) Flash memories allow Vpp to be at
12V, V¢ or ground for read operations. This design
ties Vpp to V¢ through a diode and resistor to allow
for EPROM OBP compatibility. If this option is not
required, simply tie Vpp to ground through a current-
limiting pull-down resistor.

Returning Control to the Host System

The board-programmer should return system-control
to the host processor in an organized manner. First it
should lower Vpp from 12V to 5V, or ground. Then the
board programmer should place its address and data

intgl.

buses into a high impedance state. Next PS2, which
controls MEMWR should be tristated thus disabling
the PSEN # /Address latch isolation. Finally the board-
programmer should switch PS1, which drives the RE-
SET line to reactivate the uC. This sequence guaran-
tees that the wC will begin operation at a known pro-
gram code location.

16-BIT BUS DESIGN
CONSIDERATIONS

An example of an On-Board programmable 16-bit sys-
tem board would be an 80C186 microprocessor, two
28F010 flash memories, RAM, and some glue chips.
The basic hardware design considerations would be the
same as those in the previously discussed 8-bit bus ex-
ample.

There are a few issues with 16-bit designs that do not
arise in 8-bit designs. For the programmer to take con-
trol of the system, it must tristate and reset the uP as
well as tristate the bus buffers and latches. The HOLD
and RESET lines of Intel’s 86-based family of micro-
processors have been designed with bus isolation in
mind for use in multiprocessor systems.

The designer has two options for erasing and program-
ming the high and low bytes of the flash memory array
independently.

1) The designer can route two WE# lines to the pro-
grammer connector—BYTE HIGH WE# and BYTE
LOW WE#.

2) The reprogramming software can follow the masking
procedure shown in section 4.4. This method allows a
common WE# line for the high and low bytes.

8. Note the lack of isolation buffers between the 80C31’s high order addresses (Port 2) and the board-programmer interface,
compared to the latch separating the low order addresses (Port 0) and the interface. In this design example, we make use of
the 80C31’s ability to tristate these ports, so no isolation is needed for any of the addresses. The latch on Port 0 is for the
time-multiplexed address/data architecture of this microcontroller, and not specifically for isolation.

9. MEMEN = memory enable, active low.

A-8

AP-316

2¢€-9v0c6e

YINAVIO0Nd

advos

YOLOINNOD
3003 —

[

T
o “yasay BULIND 31DiSLA} joU
B $20p N DYDQ $,07 SUY J1 PAPRA AU S1 CLSIOHYL Bul
3 .
e “sujd 99y
o
7, v - Sy
i — wioL - el sziioHvL - &
T ores - suswons - ®
P P
- -
aNg YI6NL - 'O S/SI0HYL \,.p
% D,« =7 e - 0% gelionrs - @
Ja M smor - osozhwzt -
q Am
P oy 3 fox
i w =
P P
q v
s Sy L o1
P
0 vsszi8z w #30 N9
1 o [Z I P
£ oy (92 L ff
., by 22 L1z o
3 o R
« i e 5 %
< L] o 9
- #30 #30 a1 R iy
T LRGN e
[[z _ 5| ©
| T £ — ERI
¢ L [-
o B L— #n3sd
62
27 2 M . .
T, ,_ oL Zayix |81
2l T o
%30 ON9 #30 QN9 61 2
o o o
g d) 2 [5T
% 2y ETH [ERE ¢
59 sy oL % <q It
g ry A (3
‘a Sy % S MM
% w« oo 53
7] ‘0 veszisz m« REGOI 7
o5, #3h < el
I z [L N
£ 2 3 o 90D}03U]|
[
5
¥ > " 140
v z i
5
{5y
v | =+~ _
oly =
— Ly 8
— z
= ' .
o, _ 51 ~_
<1} M 5 7 v 6
7 < 5 Sly 1esey |—o
7N B — .
= j3) = o ,
I/]
" el ;
—5] e 2op
3
= s K o
(B
#4
2y ¥

Figure 4. Detailed 8-Bit Bus Design Schematic

A-9

AP-316

OBP EQUIPMENT AND VENDORS

If you are considering OBP for your next design, and
have not used on-board programming before, you will
need to choose a board-programmer vendor. Various
suppliers offer OBP systems; therefore, it is well worth
it to send out requests for programming support bids. If
your production volume justifies the purchase of more
than one board-programmer, you may want to negoti-
ate a non-recurring engineering charge for development
cost, followed by variable costs for additional units.

Most vendors offer a variety of basic systems, designed
to easily adapt to your needs. Systems can be purchased
that program either single boards serially, or a number
of boards in parallel. Light-weight OBP equipment de-
signed for field reprogramming can also be obtained
from some of the vendors.

Most companies will work directly with you at the be-
ginning of your design phase to ensure OBP compati-
bility. If your design is beyond the definition stage, the
programmer manufacturer will request a copy of your
schematics or block diagrams under non-disclosure.
The vendor has an OBP design specialist that will
check the design for OBP compatibility. Any potential
problems will be located and corrected at this early
stage.

Every board’s architecture is different (i.e., based on
different central processing units (CPU), decoding
schemes, buffering methodologies, interface connectors,
and types and densities of memories). Vendors write
custom software modules for each application. Also,
the vendor or the board designer typically builds an
interface jig to connect the board’s edge connector to
the programmer. This choice is often left as a decision
for the designer.

intgl.

Partial List* of Companies Selling
Board-Programmers

Following are a few of the companies who offer on-
board programming solutions today:

Data I/0 Corp.

Digelec

Elan Digital Systems

Oliver Advanced Engineering, Inc.
Stag Microsystems, Inc.

*This list is intended for example only, and in no way
represents all companies that support on-board pro-
gramming. Intel Corporation assumes no responsibili-
ty for circuity other than circuitry embodied in an In-
tel product. No other circuit patent licenses are im-
plied.

SUMMARY

® On-board programming (OBP) has been around
since 1981.

® Designing a board for OBP can be easily done by
working with a board-programmer vendor’s OBP-
design-specialist during the initial design phase.

® In-circuit alterable code storage can be easily imple-
mented by using flash memory and it’s features.

® Time and money savings can be realized in a num-
ber of ways by taking advantage of flash memory
OBP:

<> Decreased board costs and improved reliability
from elimination of EPROM sockets;

<> Decreased manufacturing costs from elimination
of board eraser depreciation costs, recurring U.V.
light bulb and energy expenses;

<> Decreased inventory expense from simplified test
and rework methods (one-step diagnostics, era-
sure, and board configuration);

<> Decreased product costs based on decreased
board-handling loss;

<> Improved board diagnostics and testability leading
to higher quality and decreased customer returns;
and

<> Quicker, more reliable field code updates.

intgl.

APPENDIX B

Vpp GENERATION CIRCUITS

Circuit # 1—Regulation from a higher voltage
Circuit #2—Regulation from a higher voltage
Circuit #3—Regulation from a higher voltage
Circuit #4—5V to 12V Boost

Circuit #5—5V to 12V Boost

Circuit #6—Monolithic DC/DC Convertor

AP-316

For more detailed information on Vpp generation circuits, see AP-357 titled Power Supply Solutions for Flash

Memory (Order Number 292092).

Circuit #1

Down Conversion
(From 14.0V-26.0V to 12.00V)

NOTES:
—The LM2391 offers an enable pin for added data protection.

—The drop out voltage is 0.6V.
—R3 is NOT required if Vpp enable is driven by a CMOS device.
*Cost approximations assume 10,000 piece quantity.

vin fn Out Vout
Vee
LM2391CT o
R3
On/Off Gnd Adj
vpp c2
Enable
T c1 2
J_ H H
= | Vout = 1.20v (R1/R2 + 1) !
- J
COMPONENTS COST*
LM2391CT $0.75
R1 = 20 KQ, 1% 0.045
R2 = 180 KQ, 1% 0.045
R3 = 10 KQ 0.02
C1 = 0.1 uF 0.02
C2 = 100 uF 0.15
$1.03

292046-12

B-1

AP-316 |n‘te|
®
Circuit #2
Down Conversion
(From 16.00V-26.00V to 12.00V)
Vin In Vout
LM-317
Out
Voltage Regulator
Adj
[
‘vout = 1.25v (R2R1 + 1) =
292046-13
COMPONENTS COST*
LM-317 0.40
R1 = 1240,1% 0.045
R2 = 10700, 1% 0.045
C1 =0.1puF 0.02
C2 = 100 uF 0.15
$0.66
NOTES:
LM-317 requires a minimum V|y-VoyTt = 3.0V
*Cost approximations assume 10,000 piece quantity.
Circuit #3
Down Conversion
(From 15.0V-40.0V to 12.00V)
vie " LT1085 Vout
Out
Voltage Regulator
Adj
c1 c2
{Vout = 1.25v (RI/R2 + 1)} =
292046-14
COMPONENTS COST*
LT-1085 2.50
R1 = 1240,1% 0.045
R2 = 1070Q, 1% 0.045
C1 =10 pF 0.10
C2 =10 uF 0.10
$2.79
NOTES:

LT-1085 requires a minimum V|y-Vout = 1.5V
*Cost approximations assume 10,000 piece quantity.

B-2

L}
| n‘tel AP-316
®
Circuit #4
Up Conversion
(From 5V to 12.0V)
5v
+
10uF
| 150 uH
MUR120
ViN Vsw
INS919A=5.6V Vpp
C1
O OUTPUT
LT1072 1 #FJ_ < _L+ 200 mA MAX
SR 100 uF
T
COMMAND FB p—
s GND Srz T
<
3 270k |
< R3 -
Qt $ 1
2N3904 ch
120k TuF
= 292046-33
COMPONENTS COST*
LT1072 1.82
R1 = 10.7k, 1% 0.045 Resistor
R2 = 1.24k, 1% 0.045 VepOUT | R1 | R2 | 1 nce
R3 = 1k, 5% 0.02
R4 = 120k, 5% 0.02 12.0V [10.7k | 1.24k 1%
R5 = 270k, 5% 0.02
Cl=1puF 0.10
C2 =1pF 0.10
C3 = 10 uF 0.15
L1 = 150 pH 1.00
Q1 = 2N3904 0.10
$3.42
NOTES:
Drive Vpp COMMAND low to turn on the circuit.
*Cost approximations assume 10,000 piece quantity.

B-3

AP-316 in‘tel o

Circuit #5

Up Conversion Circuit
(From 5.0V to 12.0V)

sova W vepou
o et °
24| +5v 14
Valor v+ »
- PM7006 V-
GND GND v-
13
= 1 —D —
!
! Buzi1A
Vpp G '
Enable>_—‘. !
= 292046-16
COMPONENTS COST*
PM7006 $6.25
C1 = 0.1 pF 0.05
Buz11A 2.59

$8.89

NOTES:

1. The capacitor decreases output noise to 140 mV pk-pk.

2. We added the Buz11A Mospower nFET to enable/disable the converter. This control minimizes power consumption
which under full load can reach 600 mA.

3. The voltage drop across the switch is 0.1V. Due to this drop the PM7006 will not maintain the Vpp spec with 10%
fluctuations in Vg supply.

*Cost approximations assume 10,000 piece quantity.

B-4

intgl.

AP-316

APPENDIX C

LIST* OF DC-DC CONVERTER COMPANIES

AT&T MICROELECTRONICST
3000 Skyline Drive

Mesquite, TX 75149

Tel: (800) 526-7819

Fax: (214) 284-2317

BURR-BROWN CORP.T
P.O. Box 11400

Tucson, AZ 85734

Tel: (800) 548-6132

Fax: (602) 741-3895

LINEAR TECHNOLOGY CORP.A
1630 McCarthy Blvd.

Milpitas, CA 95035

Tel: (408) 432-1900

Fax: (408) 434-0507

MAXIM INTEGRATED PRODUCTSA
120 San Gabriel Drive

Sunnyvale, CA 94086

Tel: (408) 737-7600

Fax: (408) 737-7194

MOTOROLA INC.A
2100 E. Elliot Rd.
Tempe, AZ 85284
Tel: (800) 845-6686

NATIONAL SEMICONDUCTOR CORP.A
Mt. Prospect, IL 60056

Tel: (800) 628-7364

Fax: (800) 888-5113

SHINDENGEN AMERICA, INC.{
2649 Townsgate Rd., Suite 200
Westlake Village, CA 91361

Tel: (800) 634-3654

Fax: (805) 373-3710

SILICONIX INC.A
2201 Laurelwood Rd.
Santa Clara, CA 95056
Tel: (800) 554-5565
Fax: (408) 727-5414

TOKO AMERICA, INC.T
1250 Feehanville Drive
Mount Prospect, IL 60056
Tel: (708) 297-0070

Fax: (708) 699-7864

VALOR ELECTRONICSY
6275 Nancy Ridge Dr.

San Diego, CA 92121

Tel: (619) 458-1471

*This list is intended for reference only, and in no way represents all companies that support power conversion
products. Since this industry develops many new solutions each year, Intel recommends that the designer contacts
the vendors for the latest products. Intel will continue to work with the industry to develop optimum solutions for
power conversion. Intel Corporation assumes no responsibilities for circuitry other than circuitry embodied in Intel

products. No other circuit patent licenses are implied.

‘TMonolithic Solutions
ADiscrete DC to DC Converter Solutions

C-1

AP-316

APPENDIX D
PARALLEL ERASE FLOW CHART

START ERASURE
APPLY Vppy,

PROGRAM ALL DEVICES

!

INITIALIZE:
PLSCNT_HI=0
PLSCNT_LO=0
FLAG=0
ADRS = 0

E_COM = 2020H
V_COM = AOAOH

COMMENTS

Wait for Vpp to stabilize.

Use Quick-Pulse Programming
algorithm.
Initialize Variables:
PLSCNT__HI = HI Byte Pulse
Counter
PLSCNT__LO = Low Byte Pulse
Counter
FLAG = Erasure Error Flag
ADRS = Address
E_COM = Erase Command

WRITE ADRS/E_COM
WRITE ADRS/E_COM

TIME QUT 10 mS
WRITE ADRS/V_COM

DEVICE VERIFY &
MASK ROUTINE

F_DATA = FFFFH
2

INC ADRS,
LAST ADRS?

A 4

| WRITE READ_COM |

I WRITE READ COM I

!

| APPLY Voo |

| APPLY Vpp| |

(ERASURE COMPLETE)

(ERASURE ERROR)

V_COM = Verify Command

Erase Set-up Command

Start Erasing

Duration of Erase Operation.

Erase Verify Command stops
erasure.

See next page for subroutine.

When both devices at ADRS are
erased, F_DATA=FFFFH.

If not equal, increment the pulse
counter and check for last pulse.

Reset commands to default
(E_COM=2020H,
V_COM= AOAOH)
before verifying next ADRS.

Reset devices for read operation.

Turn off Vpp.

292046-34

D-1

AP-316

Device Erase Verify and Mask Subroutine

intgl.

NOTE:

START SUBROUTINE
READ ADRS/F_DATA

F_DATA =FFFFH
?
N

| Lo_BYTE = (F_DATA AND 00FFH]

COMMENTS

E_COM = (E_COM OR 00FFH)

LO_BYTE = FFH V_COM = (V_COM OR 0O0FFH)

?

N
INCREMENT PLSCNT_LO|

PLSCNT_LO = 3000d FLAG=FLAG + 1

v

E_COM = (E_COM OR FFOOH)
V_COM = (V_COM OR FFOQH)

PLSCNT_HI = 3000d FLAG=FLAG + 2
?

>
>

-~
-~

A4

‘ SUBROUTINE END ’

292046-35

*Masking can easily and efficiently be done in assembly languages. Simply load word registers with the incoming flash
data (F_DATA), the erase commands and the verify commands. Then manipulate the HI or LO register contents.

This subroutine reads the data word
(F_DATA). It then masks the HI or
LO Byte of the Erase and Verify
commands from executing during
the next operation.

If both HI and LO bytes verify, then
return.

Mask* the HI Byte with OOH.

If the LO Byte verifies erasure, then
mask* the next erase and verify
commands with FFH (Reset).

If the LO Byte does not verify,
increment its pulse counter and
check for max count. FLAG = 1
denotes a LO Byte error.

Repeat sequence for the HI Byte

FLAG = 2 denotes a HI Byte error.
FLAG = 3 denotes both Hl and LO
Byte errors.

D-2

in‘tel . AP-316

APPENDIX E
PARALLEL PROGRAMMING FLOW CHART

COMMENTS
(Start Program)
¥
Apply VppH 1 Wait for Vpp ramp to Vppy
i 4
\ Get ADRS/P_DAT l ADRS = address to program
3 P__DAT = data word to program
Initialize: Initialize Data Word Variables:
PLSCNT_HI =0 PLSCNT__HI = HI Byte Pulse
PLSCNT_LO =0 Counter
FLAG =0 (F;Iaﬁr?tg;l'_LO = LO Byte Pulse
V_DAT = P_DAT
— FLAG = Program Error Flag
P_COM = 4040H V_DAT = valid data
V_COM = COCOH P__COM = Program Command
A ¥ -t V_COM = Verify Command
LWrite xx/P_COM I Program Set-up Command
s A xx = Address don’t care
|Write ADRS/V_DAT]| program
(3
l Time Out 10uS I High/Low Byte See next page for subroutine
¥ Compare & Mask
lerte ADRS/V_COM] Subroutine Program Verify Command

!

[Time Out 6uS |
¥

| Read ADRS/F_DAT |

F_DAT = flash memory data

Compare flash memory data
to valid data (word compare). If not
equal, check for program error
flag. If flag not set, compare High
and Low Byte in subroutine.

F__DAT - P_DAT

Check buffer or 1/0 port for
more data to program.

More Data
?

N
| Write READ_COM | | Write READ_COM | , .
T T Reset device for read operation.
| AeolyVeer | [AeplyVee |
3 Turn off Vpp.
(Program Error) (Program Complete)
292046-19

AP-316

Program Verify and Mask Subroutine

intgl.

NOTE:

START SUBROUTINE

| Lo_BYTE = (F_DATA AND 00FFH)]

LO_BYTE=
(V_DATA AND O0OFFH)
?

P_COM = (P_COM OR OOFFH)
V_DAT = (V_DAT OR OOFFH)
V_COM = (V_COM OR 0OFFH)

INCREMENT PLSCNT_LO

PLSCNT_LO =257

<
<
A4
| H1_BYTE = (F_DATA AND FFooH)]

HI_BYTE =
(V_DATA AND FFOOH)
2

P_COM = (P_COM OR FFOOH)
V_DAT = (V_DAT OR FFOOH)
V_COM = (V_COM OR FFOOH)

INCREMENT PLSCNT_HI

PLSCNT_HI=25?

FLAG=FLAG + 2

F N

v

‘ SUBROUTINE END ’

292046-40

COMMENTS

To look at the LO Byte, mask*
the HI Byte with 00.

If the LO Byte Verifies, mask
the LO Byte commands with
the reset command (FFH).

If the LO Byte does not verify,
then increment its pulse
counter and check for max
count. FLAG = 1 denotes a
LO byte error.

Repeat the sequence for the
HI Byte.

FLAG = 2 denotes a HI Byte
error. FLAG = 3 denotes both
HI and LO Byte errors. FLAG
= 0 denotes no max count
errors; continue with algorithm.

*Masking can easily and efficiently be done in assembly languages. Simply load word registers with the incoming data
(F-DAT), the program commands and the verify commands. Then manipulate the HI or LO register contents.

E-2

AP-316

APPENDIX F
DETAILED SYSTEM SCHEMATICS

Vecl2o T 14
9lD7 Q7H2 1
8lD6 Q613 () e
7105 Q54 2
6 Q4f1s
Amoseles slpal a3l
A18/55[66 4lD2 Q2[i7
A17/S4[67 D1 Qf
A16/53[68 2|oo Qofis 6 WE#LOW
ALE OE# m
LE[61 11}LE GNDH
MNI =l 7
HOLD =
Vss WR#[63 -
Vss RD#|62 OE#,
A18
—_ A17
l_‘Vcc_aﬁ A16
AD15 alp7 Q7] Al5
AD14 A D6 Q§ Al4
AD13 Z] D5 Q5 A13
AD12 D4 A12
AD11 N 5|03 131 Q3 A1
AD10 02 2 A10
ADg DI Q1 A9
AD8 2|00 Qo A8
OE#

=
m
)
Zz
o
|||-||

LCS#[33 LCS#

925
l:sk,[e_:b

AD7[2 D7 Q7 A7
AD6[4 D6 A6
D1 ADS| D5 Q5 A5
AD4 D4 A4
R1 AD3[11 D3 [4] @3 A3
AD2 D2 Q2 A2
AD1[15 D1 Q1 Al
ADO[17 2|00 Qo

N
Y
G
=
m
{2}
=z
=]
_u:
1

¢ Mcso#| 38 MCS0#
CE MCS1#[a7 MCSi%
= %f
80C186 g 3
U] 1 D13
D12
swi D10
1 D9
DTR|40 08
= |Q-
RESET|57 o - RESET
oo
D7
D6
D5
D4
D3
B2fis D2
18 o
DEN#
1255 INTO gl
INT 1 =
pu—1 1
41JINT 3 PCS0#| 12:18
PCS1# 19:6
pPCS2#]
292046-21

F-1

AP-316 In
ucs#
Tzo 20
CE# yoolos CE# yeolos
Vpp| 1 Vpp|1
2|A12 PGM# |27 2|lAa12 PGM# (27
;EIAH 5] A11
21]A10 OE#|22 L—77]A10 OE# |22
23] A9 l—2a1A9
|~ 35]A8 D719 |- o01A8 37 19
g A7 D61 ;‘:1_ A7 6
A6 DS é 4]A6 D5[17
L~ TlAs D4 ;:AS D4[16
Y] D3 6]A4 D3[15
e o i i
A1 9]A1 Do [11
|~70]A0 [8U l—_10]a0 [8H)
L GND[14 - GND |14
OE#
Vep
WE HIGH#
WE LOW#
MCS0#
22 Tsz 22 Tsz
Vee # Vee
A18 A4 30 Ar7OE# 30 QWCE
A7 » A16 —_ 2]A16
A16 A 3]A15 WE#|31] h—__3]|A15 WE#|31
A15 A__29]|A14 29]A14
Al4 A 28|A13 Vpp |1 :g A13 Vep |1
A13 A _3|A12 N A12
At2 A__25|A11 OE#|24 N 25|A11 OE#|24
At A__23|A10 23]|A10
A10 A__25|A9 07 (21 N—__26]A9 o721
A9 271A8 D620 —_27]|A8 D620
A8 Tla7 D5 N T|A7 D519
A7 T1A6 D4 N 6]A6 D4
A6 71A5 D3 7]A5 D3
A5 A4 82 N—__8|Ad D2
Ad A3 1 9]A3 D1
A3 10]A2 DO [T3 ___10]A2 Do |73
A2 11]A1 [sL] T A1 [9H]
Al g 17]A0 GND |16 _12|A0 GND |16
L 1
Do
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
292046-22

L}
In AP-316
®
OE#
WE HIGH#
WE LOW#
LCS#
20 20

A CE* veelos I Ars CE* veoles I
Ass 1|A14 N1
ATZ’—A/_—ZG Avs WE#|27 56 213 WE#|27
A1z A 2]A12 2|2

A OE#|22 Ay #|2
Atz A 23]An 23] OE#|22

A A
Ay 21]A10 \n.” A
Ao A 27| A D719 N D7(19
Ag A 25]As De[18 \%Ae De[18
Ag A 3| A7 D577 N3] "7 Ds[17
A] A6 Dq[16 4] % Dy
As 5] As D375 N__5]"s D3 [15
As > Ag D2[13 6| A4 D [13
Aq 7] A3 D12 IN_Z]As Di[12
Az A 8| Ay Do[11 N8| A2 Do [T1
As 9] A4 9] A1
A, 10| Ao [1ou GND|14 10] Ao [(1oH) GNDl14
Do
Dy
D
D3
D4
Ds
Dg
Dy
Dsg
Do
D1g
D11
D12
D13
D14
Dis

292046-23

F-3

AP-316

RESET# 35 |RESET# PA;
127 1 (oS PAg
OE# S|RD# PAg [39
WRLOW# " 36|WR# PAj [40
PAz[1
417 A 8]A4 PAy
P — Ao PAT[3
PAo [4
D7 27)D7 82C55A
D6 28]D¢ [15] PB7 |25
D5 29|05 PBg [24
5 ——— o] [PBg IE
D3 31]03 PBy [22
D2 32|02 PBs [27
pt 3310 ;gz 0
D 1
DO 3]0 rBy 1o
PC; |10
PCq
i 26 |Vce PCsg
PCy
7|aND PC3
PC, [T6
= PCy [T5
PCo 17
1 24
Vee Vee
Vep 14] +v
11]+V
DC/DC
6/12.00%5%
w0]-v 18 Gnphe
GND|13 6
15)-v
4
— 3 R2
F1
— 14
— 1
s (17
5
. 7

292046-24

In AP-316
®

+12v
14
Vee+
1| josc-2) ﬁ 2l1a "Ctyv]s N2
2A 5
7 | anp Ve© [Slee t488 = ————J120
3a [12] 3v|s i
—_ Out 3B —
- 8 Vcc— GND
1 7
GND_ 17
~12v _
8 9
m Vce x2 X1TxD 6
DTR# T
1:25 18[Cs# RTS# [T6 14
To 77| RESET# Voo
gEﬁE RD# RxD# |13 3y 1A|1 913
WE LOW# WR# CTS#[1Z VTP e— 4
Ri# [10 M 3A[TD 22
Ag 24| Ap DSR« 11 Tijay 1131 4A[T3 J1:6
Ay 23| A1 —'
Ay Ao GNS
41D, l
37 31De —
e D
Ds bs
Dy D
B2 27] D; 14
D 75| D Vi
0o D:) DCO# (12 a1y % 1a|4 J18
Bl2Y 1480 A[T
1:45 S[INT 8|3y 3al10
’ 11]ay (141 aaf13
7|GND
I 82510 GND
- (11 |7
292046-25

F-5

AP-316

256K FLASH MEMORY DEMO PARTS LIST

intgl.

Device Component Pins Description

[1] 80C186 68 16-bit high integration CPU

[2,3,4] 74HC573 20 Latch

[5,6] 74HC245 20 Transceiver

[7] 74HC32 14 OR gate

[8L,8H] 27C64 28 16 Kbyte EPROM

[9L,9H] 28F256A 32 64 Kbyte flash memory

[10L,10H] 32K x 8 SRAM 28 64 Kbyte SRAM

[11] 82510 28 Asynchronous Serial Controller

[12] 14C88 14 RS-232 Line Driver

[13,14] 14C89 14 RS-232 Line Receiver

[15] 82C55A 40 Programmable Peripheral Controller

[16] PM7006 24 DC/DC Convertor (5V-12.00V)

[17] 7406 14 Invertor—Open Collector (0O.C.)

C1 20 uF 2 Capacitor for CPU reset

D1 1N914 2 Diode for CPU reset

F1 BUZ11A 3 MOSPOWER nFET

J1 DB-25 25 Connector (male)

0SC-1 20 MHz 14 CPU Oscillator

0OSC-2 18.432 MHz 14 Serial Controller Oscillator

R1 10 KQ 2 1aW, 10% Resistor for CPU reset

R2 1KQ 2 1/4W, 10% Resistor for O.C. pull-up

SWi1 3 Momentary Push Button for CPU reset
NOTES:

1. Place a 0.1 uF bypass capacitor at the Vg input of each IC.

2. Place a 0.1 uF bypass capacitor on the Vpp input of each 28F256 flash memory.

28F512 UPGRADE FOR THE 2. Change the MCS individual block-select size from

80C186/FLASH MEMORY DESIGN

To upgrade the 80C186/Flash memory design to han-
dle 28F512’s, the range of the CE# signal has to be
increased. There are a number of ways to generate a
CE# signal that will span the 128 Kbyte address range
of two 28F512 devices.

1. AND two of the current MCS lines together (defined
for 64 Kbytes each); or

F-6

64 Kbytes:
MMCS__VALUE = 41F8H,
MPCS__VALUE = 0AO0B8H

to 128 Kbytes:
MMCS_VALUE = 01FEH,
MPCS_VALUE = 0COBEH

Also, cut the CE# trace to the RAM sockets. Then
wire MCSO# to the RAM CE#. This eliminates the
MCSO0# and LMCS# range overlap caused by in-
creasing the MCS range to 128 Kbytes. See 80C186
Data Sheet page 21 and 22 (Order # 270354).

intgl.

28F010 UPGRADE TO THE
80C186/FLASH MEMORY DESIGN

To upgrade the 80C186/flash memory design to handle
28F010’s, a CE# signal has to be generated. There are
a number of ways to generate a CE# signal that will
span the 256 Kbyte address range of two 28F010 devic-
es.

1. AND two of the MCS lines together (defined for 128
Kbytes each as noted in the 28F512 modifications):

Cut the LMCS trace to the RAM sockets. Connect
MCS0# to CE# on the RAM sockets (U10L,UH).

Cut the MCS2 # trace to the flash memory. Add an
AND gate. Connect MCS2# (cut trace) and
MCS3# to the inputs of the AND gate. Then wire
the AND gate output to the CE# of the flash memo-
ries.

Also, change the onboard memory MCS register to:
MMCS_VALUE=01FEH, MPCS__
VALUE=0COBEH [128K blocks],

and delete:
LMCS__REG and LMCS__Value.

2. Add a decoder;
Add a decoder (74HC138). Connect address lines
A18 and A19 to the B and C inputs of the decoder.
Tie the A input of the decoder low, and enable all the
enables. By using outputs YO, Y2, Y4, and Y6, you
have four CE# lines decoding 256 Kbyte blocks
each.
Cut the MCS2# trace to the flash memories. Con-
nect the Y2 output from the decoder to the CE#
input of the flash memory.

AP-316

3. Replace the address latch (U2) with a PLD that
latches and decodes.

Program a 5C032 as an integrated latch and decoder.
Replace the upper address latch [U2] with the Intel
5C032 EPLD. Cut the CE# trace to the flash mem-
ories. Connect the flash memoriess CE# to the
5C032 pin 12. This maps the address space 40000H
to 7FFFFH. See Figures 1 and 2 for a comparison of
the 74HC573 (U2) and programmed 5C032 pin outs.
Figure 3 is the source code for the EPLD.

Also, change the value of the MMCS and MPCS
registers to 64 Kbyte blocks so that the MCSO#
range does not overlap the LMCS range.
MMCS_VALUE=41F8H, MPCS__
VALUE =0AO0BSH.

-/

RESET 1 20 (Ve
Mg]2 1900LA
A, 03 18 LA,
g4 17 LA

u2
ah= 74HC573 e el

BHE#] 6 15 1 LBHE#
so 7 14 LS,
s, Os 13ALs,
s, s 12Ls,
GND 10 11 ALE

292046-36

Figure 1. Latch Pinout

-/
RESET 1 20 Ve
a2 190LA
A5O3 18 LA,
Mg)4 17 LA
Ag 5 uz 16 LA g
BHE# [J6 EPLD 5C032 15[JLBHE#
s, d7 14 [CE# (40000H-0BFFFFH)
s, Os 131 CE# (80000H-0BFFFFH)
s, 9 12 CE# (40000H-7FFFFFH)
GND [J10 11 ALE
292046-37

Figure 2. Integrated Latch and Decoder

F-7

AP-316

Thom Bowns - PLFG Applications
Intel

January 13, 1989

EPLD HOTLINE: 1-800-323-EPLD
002

5C032

Custom Latched Decoder
OPTIONS: TURBO=ON

PART: 5C032

INPUTS: ALE@ll, RESET@l, Al9@5, Al8@4, Al7@3, Al6@2, nBHE@6

OUTPUTS: ©LAl18@l7, LAl17@l8, LAl6@l9, LnBHE@l5, nCE3@l4, LAl9@l6,
nCE2@l3, nCEl@l2

NETWORK :
ALE = IN (ALE)
RESET = INP (RESET)
nRESET = NOT (RESET)
Al19 = INP (Al9)
Al18 = INP (A18)
Al7 = INP (Al7)
Ale = INP (Als)
nBHE = INP (nBHE)
LA19, LA19 = COIF (LA19d, nRESET)
LA18, LA18 = COIF (LA18d, nRESET)
LAl7, LA17 = COIF (LA17d, nRESET)
LAl6, LAl6 = COIF (LAled, nRESET)
LnBHE, LnBHE = COIF (LnBHE, nRESET)
nCE3, nCE3 = COIF (nCE3, nRESET)
nCE2, nCE2 = COIF (nCE2, nRESET)
nCEl, nCEl = COIF (nCEl, nRESET)
EQUATIONS:
LA19d = Al9 * ALE + LA19 * !ALE;
LA18d = A18 * ALE + LA18 * IALE;
LA174 = Al7 * ALE + LA17 * !ALE;
LAl6d = Alé * ALE + LAl * !ALE;
LnBHEA = nBHE * ALE + LnBHE * !ALE;
nCE3d = nCE3EQN * ALE + nCE3 * !ALE;
nCE2d = nCE2EQN * ALE + nCE2 * !ALE;
nCEld = nCE1EQN * ALE + nCEl * !ALE;
nCE2EQN = !(Al9 * !A18);
nCELEQN = !(!A19 * Al8);
nCE3EQN = !(!A19 * A18 + Al19 * !A18);
END$

Figure 3. Source Code for the Integrated Latch and Decoder

F-8

	1.0 INTRODUCTION
	1.1 PROM Programmer vs System-Processor Controlled Programming
	1.2 Information Download and Upload
	Version Updates (Download)
	Data Acquisition (Upload)

	2.0 DEVICE FEATURES AND ISW APPLICATION CONSIDERATIONS
	2.1 Flash Memory Pinouts
	2.2 Command Register Architecture
	Simplified Processor Interface

	2.3 V PP Specifications

	3.0 HARDWARE DESIGN FOR ISW
	3.1 V PP Generation
	3.1.1 REGULATING DOWN FROM HIGHER VOLTAGE
	3.1.2 PUMPING 5V UP TO 12V
	3.1.3 ABSOLUTE DATA PROTECTION—V PP ON/OFF CONTROL
	3.1.4 WRITES AND READS DURING V PP TRANSITIONS
	3.1.5 OTHER V PP CONSIDERATIONS
	3.1.6 V PP CIRCUITRY AND TRACE LAYOUT

	3.2 Communications—Getting Data to and from the Flash Memory

	4.0 SOFTWARE DESIGN FOR ISW
	4.1 System Integration—Boot Code Requirements
	4.1.1 ISW FLAG CHECK

	4.2 Communication Protocols and Flash Memory ISW
	Status Check

	4.3 Data Accumulation Software Techniques
	4.4 Reprogramming Routines
	4.4.1 Quick-Erase Algorithm
	Algorithm Timing Delays
	High Performance Parallel Device Erasure

	4.4.2 Quick-Pulse Programming Algorithm
	Algorithm Timing Delays
	High Performance Parallel Device Programming

	4.4.3 Pulse Width Timing Techniques
	Software Methods and Examples
	Hardware Methods

	5.0 SYSTEM DESIGN EXAMPLE: AN 80C186 DESIGN
	6.0 SUMMARY
	APPENDIX A ON-BOARD PROGRAMMING DESIGN CONSIDERATIONS
	INTRODUCTION
	INTEL'S FLASH MEMORY—DESIGNED TO MEET YOUR OBP NEEDS
	5 Volt Vcc Erasure and Programming Verification

	REPLACING CURRENT EPROM OBP DESIGNS WITH FLASH MEMORY
	Hardware Considerations
	Software Considerations
	Benefits of Converting Your EPROM OBP Design to Flash

	NEW OBP DESIGNS
	Design Considerations
	Taking Control
	Printed Circuit Board Guidelines for V CC and V PP
	The System/Board-Programmer Hardware Connection

	AN 8-BIT BUS DESIGN EXAMPLE
	SYSTEM DESIGN
	Bus Control Circuitry
	Address Decode Circuitry
	Erasure and Programming Control Circuitry
	Returning Control to the Host System

	16-BIT BUS DESIGN CONSIDERATIONS
	OBP EQUIPMENT AND VENDORS
	Partial List* of Companies Selling Board-Programmers

	SUMMARY

	APPENDIX B V PP GENERATION CIRCUITS
	APPENDIX C LIST* OF DC-DC CONVERTER COMPANIES
	APPENDIX D PARALLEL ERASE FLOW CHART
	Device Erase Verify and Mask Subroutine

	APPENDIX E PARALLEL PROGRAMMING FLOW CHART
	Program Verify and Mask Subroutine

	APPENDIX F DETAILED SYSTEM SCHEMATICS
	256K FLASH MEMORY DEMO PARTS LIST
	28F512 UPGRADE FOR THE 80C186/FLASH MEMORY DESIGN
	28F010 UPGRADE TO THE 80C186/FLASH MEMORY DESIGN

	FIGURES
	Figure 1. These diagrams illustrate OBP and ISW. In OBP, a PROM programmer updates a system's
	Figure 2A. Flash Memory Pinouts
	Figure 2B. Flash Memory Pinouts
	Figure 3. System Block Diagram
	Figure 4
	Figure 5
	Figure 6. Example of ISW Integration to the Boot Sequence
	Figure 7. Sample System-Level ISW Instruction Set
	Figure 8. High Performance Parallel Erasure (Conceptual Overview)
	Figure 9. Parallel Programming Flow Chart (Conceptual Overview)
	Figure 10. 80C186 Memory Map
	Appendix Figure 1
	Appendix Figure 2. System to Board-Programmer Interface
	Appendix Figure 3. System Block Diagram
	Appendix Figure 4. Detailed 8-Bit Bus Design Schematic
	Appendix F Figure 1. Latch Pinout
	Appendix F Figure 2. Integrated Latch and Decoder
	Appendix F Figure 3. Source Code for the Integrated Latch and Decoder

	TABLES
	Table 1. Command Register Instructions
	Read Memory Command—00H
	Read Intelligent Identifier Command—90H
	Set-Up Erase/Erase Commands—20H
	Erase Verify Command—A0H
	Set-up Program/Program Commands—40H
	Program Verify Command—C0H
	Command Register Reset—FFH
	Data Protection on Power Transitions

	CIRCUITS
	Circuit #1—Down Conversion
	Circuit #2—Down Conversion
	Circuit #3—Down Conversion
	Circuit #4—Up Conversion
	Circuit #5—Up Conversion Circuit

