
E
TECHNICAL

PAPER

Improving Programming
Throughput of Automated
Flash Memories

Order Number: 297769-002

February 1997

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1997 CG-041493

E TECHNICAL PAPER

3

CONTENTS

PAGE PAGE

1.0 INTRODUCTION ... 5

2.0 PROGRAMMING IMPLEMENTATIONS 5

2.1 Key Considerations...................................... 5

2.2 Reducing Off-Line Programming Expenses . 5

2.3 Benefits of Integration into Manufacturing
Flow.. 6

3.0 REVIEW OF ON-CHIP AUTOMATION............ 6

3.1 Command User Interface............................. 6

3.2 Write State Machine..................................... 6

3.3 Data Comparator ... 7

3.4 Status Register .. 9

4.0 OBSOLETING EPROM LEGACY
PRACTICES–CHANGING THE PARADIGM . 9

4.1 Internal Program and Program Verification 10

5.0 ARRAY BLOCKING PROVIDES
FLEXIBILITY TO SPEED PRODUCTION
THROUGHPUT .. 11

5.1 Intel Array Blocking Options....................... 11

6.0 WAVEFORM, TIMING, VOLTAGE, BUS
WIDTH OPTIMIZATIONS............................. 12

6.1 Faster Programming at 12V VPP and
5V VCC.. 12

6.2 Hold CE# Low Throughout Programming
Cycle... 13

6.3 Command Sequence Length Affects
Programming Times.................................. 14

6.4 Timings and Address Cycling..................... 14

6.5 Programming Word Wide–2x Faster Than
Byte Mode .. 17

7.0 WSM READY/BUSY INDICATION MODES ..17

7.1 Monitor RY/BY# Output vs. Status Bit SR.7
Polling ...17

7.2 Check Full Status after Completing all
Program/Erase Operations........................17

8.0 IMPACT OF HARDWARE DESIGN ON
PROGRAMMING SPEED.............................19

8.1 "Intelligence" Proximity to Chip19

8.2 Pin Driver Proximity to Chip19

8.3 Buffer Proximity to Chip19

8.4 Communication Bandwidth.........................19

9.0 USING SUPERSET DEVICE WRITE-
PERFORMANCE FEATURES......................19

9.1 Command Queue.......................................21

9.2 Page Buffers ..21

9.3 Extended Status Registers.........................21

9.4 Erase Queue and Erase All Unlocked
Blocks Command......................................21

10.0 CONCLUSION...21

APPENDIX A: Additional Information...............22

TECHNICAL PAPER E

4

REVISION HISTORY
Number Description

-001 Original version

-002 Made corrections to Figure 1
Added Internal Program Verification Circuit Diagram (new Figure 2)
Updated Table, VCC = 5V ± 0.5V, 5V ± 0.25V, T A = 0°C to +70°C
Added Table, VCC = 3.3V ± 0.3V, TA = 0°C to +70°C

E TECHNICAL PAPER

5

1.0 INTRODUCTION

This paper sheds light on concepts that can be
employed to accelerate programming of write-
automated flash memories in manual/automated device
programmers, Automated Test Equipment (ATE; i.e.,
board testers), JTAG/HSS (High Speed Serial)
implementations, and in-system write applications.

Faster programming improves device throughput, an
especially important attribute in manufacturing
environments where the main thrust is to do things
“faster, better, cheaper.” Improved throughput
increments, by as small a factor as even 10%, are very
admirable when accumulated across large volume. By
achieving 20–40%, the production line manager/
programming supervisor is bestowed recognition as a
champion by the team. Greater than 50%, and that
person reigns as hero in the battle to cut costs.

In this report, we’ll examine many areas into which we
can inject improvement. The following topics are
covered:

• The two basic programming implementations, the
individual methods that can be employed, and key
considerations.

• On-chip program/erase automation.

• Obsoleting “EPROM legacy” practices.

• Internal program/erase verification.

• Programming subset of device array.

• Waveform, timing, voltage level, command
sequence length and bus width optimizations

• Hardware ready/busy monitoring vs. status register
polling.

• Full status check after a string of programs or block
erase operations.

• Impact of hardware design.

• Superset write enhancement features.

2.0 PROGRAMMING
IMPLEMENTATIONS

Several methods exist to program flash memories. Two
broad implementation categories cover all methods:
off-line and in-line.

An off-line implementation is any programming
method that’s performed outside the main
manufacturing flow. This can be accomplished via

gang, concurrent, or board-level programmers,
automated programming systems (handler), or
JTAG/HSS solutions. Off-line programming can be
performed in-house or off-site. It can even involve in-
system writes via the local processor; this usually
requires some pre-programming of boot code in a
previous step via any of the above methods or ATE.

In-line programming occurs in the main manufacturing
flow. This can involve ATE during board test,
component/automated programming equipment just
prior to or integrated into the pick-n-place system, or
some JTAG/HSS approach or board-level programmer
at some point past assembly.

2.1 Key Considerations

Important to link with any programming consideration
is the fact that, as flash densities increase, tightly-
leaded Small Outline Packages become standard chip
housings industry wide. And with this change, tape-
and-reel is becoming the choice shipping media
because of its cost advantages and because it
fits/integrates into pick-n-place systems better than
tray.

When production line managers ponder the issues
surrounding flash memory programming, packaging
and shipping media, two obvious questions arise:
Which is more efficient/economical for my
environment—programming off-line or in-line? Can
board-level programming resolve my concerns—
eliminate bent leads, facilitate tape-and-reel, reduce
costs?

A variety of paths are available to opt from; some point
to large-ticket items, e.g., utilization of existing ATE or
investment in a new programmer-handler, while others
involve less expensive solutions. Possessing in-depth
knowledge of the capabilities and flexibility of today’s
automated flash memories affords you the necessary
insight to make the best implementation choice for
your particular environment.

2.2 Reducing Off-Line
Programming Expenses

With off-line programming, whether in-house or
contracted out, expenses are directly proportional to
programming times. External expenses equate to
$$/hour for equipment usage and manpower spread
over units/hour. If units/hour increase, then cost/device
should decrease. Done in-house, there are direct

TECHNICAL PAPER E

6

(equipment, manpower, etc.) and hidden (software
updates, maintenance, etc.) costs, both being positively
influenced by greater throughput.

2.3 Benefits of Integrating
Programming into the
Manufacturing Flow

Fast programming times can facilitate integration into
the manufacturing flow, so long as the line’s beat rate
is not hindered.

Existing ATE can be used to program at board test.
This has several advantages:

• Eliminates capital expenditure for separate
programming systems and the costs associated with
keeping that equiment up-to-date.

• Reduces manpower requirements to operate and
maintain separate programming systems.

• Facilitates shipment of product in lower-cost tape-
and-reel media.

• Facilitates acceptance of product in a fine-pitch
package— reduces potential lead distortion.

• Facilitates just-in-time programming—eliminates
inventory of programmed units.

JTAG and High Speed Serial Programming (HSS)
share the same advantages as ATE. Implementing
JTAG/HSS, on the other hand, requires much less real
estate—typically only four or five contact points,
compared to an average of 48 for ATE.

3.0 REVIEW OF ON-CHIP
AUTOMATION

Today’s standard flash memory has on-chip program
and erase automation circuitry. See Figure 1 for an
example of the 28F800BV block diagram. This
automation performs all operations that required
external control on non-automated first-generation
flash technology via the following main functional
units:

• Command User Interface (CUI)

• Write State Machine (CUI)

• Data Comparator

• Status Register

It is this automation, included in second- and later-
generation flash devices, specifically steps performed

by the WSM and its support circuits, that allows us to
shift beyond the EPROM programming paradigm. This
paradigm being algorithm practices which were
standard in EPROM programming routines, but are
unnecessary for modern automated flash memories.

Before we move on, let’s explore the activities that
occur with and between the CUI, WSM, data
comparator and status register in greater detail.

3.1 Command User Interface

The CUI is the outside world’s request interface, its
basic job is to arbitrate between system processor and
internal device functions. The CUI serves this role via
a command register to hold the issued request, a
command decoder to interpret/translate that request,
and the control logic to initiate it. Activities include
CUI-WSM communications, read-path selection, and
status register checking and clearing.

The CUI resides on the internal data bus. Commands
are input on data pins DQ0–7 with CE# and WE# driven
low, then get latched and interpreted after WE# is
returned to VIH. Address information is captured in the
address latch and program data secures in the data
register when WE# is driven high in the second bus
cycle.

When the issued command is a read operation, e.g.,
from the ID or status registers or the memory array, the
CUI ensures the output multiplexer gates that data to
the output buffers.

3.2 Write State Machine

The WSM consists of an integrated oscillator and
control circuitry to carry out program and erase
operations. CUI-to-WSM signaling forwards translated
user requests for processing and control. The WSM
then generates signals that:

1. Initiate a strobe to bits requiring program or the
block to erase.

2. Supervise strobe pulsewidth and associated timings.

3. Control the data comparator.

4. Request feedback from the data comparator to
determine pulse repetition control and provide
update to the status register.

5. Initiate an address counter for erase preconditioning
or erase verify.

E TECHNICAL PAPER

7

DQ15/A-1
Input Buffer Output Buffer Input Buffer

O
ut

pu
t

M
ul

tip
le

xe
r

8-
K

by
te

P
ar

am
et

e
r

B
lo

ck

8-
K

by
te

P
ar

am
et

e
r

B
lo

ck

96
-K

by
te

M
a

in
 B

lo
ck

12
8-

K
by

te
M

a
in

 B
lo

ck

12
8-

K
by

te
M

a
in

 B
lo

ck

16
-K

by
te

M
a

in
 B

lo
ck

Y-Gating/Sensing Write State
Machine

Program/Erase
Voltage Switch

Data
Comparator

Status
Register

Identifier
Register

D
at

a
R

eg
is

te
r

I/O Logic

Address
Latch

Address
Counter

X-Decoder

Y-Decoder

Power
Reduction

Control

Input Buffer

Output Buffer

GND

VCC

VPP

CE#
WE#
OE#
RP#

BYTE#

Command
User

Interface

Input Buffer

A0/A18

DQ8-DQ15/A-1 DQ0/DQ7

7769_01

Figure 1. Automated Flash Memory Enhancements Enable Faster, Easier Programming

3.3 Data Comparator

The data comparator is controlled by the WSM. The
WSM employs the data comparator during program and
erase operations. The data comparator collates just-
programmed cells against data stored in the device data
register. See Figure 2 for expanded detail of 28F016SA
program verify functionality. For erase, it compares
erased locations against data value FF/FFFFh. Erased
locations are cycled through the data comparator via an
address counter circuit.

The data comparator reports the results of its collation to
the WSM, which in turn determines if pulse repetition is
required. If pulse repetition is not required, the WSM
sends a signal to update the status register program or
erase status bit.

Let’s examine the margining function that occurs just
ahead of the data comparator. This example is for a
program operation:

Current IPMRGN, derived from a program margin
bias read of the column containing the
programmed cell, is fed into a sense amplifier
with reference current IPREF (current from a
factory-set program reference circuit). If IPMRGN
< IPREF the sense amp outputs a zero. If IPMRGN >
IPREF the sense amp outputs a one. This
operation occurs 8 or 16 in parallel depending on
the bus width of the program operation. The 8
(16) output values are sent to the data comparator
for collation against data stored in the data
register.

TECHNICAL PAPER E

8

A0-20

Program Reference
CircuitsAddress

Queue
Latches

Column Decoding

Page Buffers

Data Queue RegistersData Comparator

Sense
Amp
15

Sense
Amp

0

to Output Buffer
through Output Multiplexer

Status
Registers

Data-In
Buffer

R
ow

 D
ec

od
in

g Just-
Programmed
Cells

Memory Array

B
itl

in
e

fo
r

I/O
 0

B
itl

in
e

 fo
r

I/O
 1

5

0V

VGPV

WSM CUI

DQ0-7

I P
M

rg
n

I P
R

ef

I P
R

ef

DQ0-7

DQ0-7/8-15

I/O
Logic

IPMrgn < IPRef
Output = 0

+VD +VD I P
M

rg
n

7769_13

Figure 2. Internal Program Reference Circuits Provide a More Finely-Tuned Verify
Than That Which Could Be Achieved Externally

E TECHNICAL PAPER

9

Table 1. 28F800BV Status Register Bit Definition

WSMS ESS ES PS VPPS R R R

7 6 5 4 3 2 1 0

NOTES

SR.7 = WRITE STATE MACHINE STATUS (WSMS)
1 = Ready
0 = Busy

Check WSMS to determine Word/Byte Program or
Block Erase completion before checking the
Program or Erase Status bits.

SR.6 = ERASE-SUSPEND STATUS (ESS)
1 = Erase Suspended
0 = Erase In Progress/Completed

When Erase Suspend is issued the WSM halts
execution and sets both WSMS and ESS to “1.” The
ESS bit remains set to “1” until an Erase Resume
command is issued.

SR.5 = ERASE STATUS (ES)
1 = Error In Block Erasure
0 = Successful Block Erase

When ES is set to “1” the WSM has applied the max
number of erase pulses to the block and is still
unable to verify successful erasure.

SR.4 = PROGRAM STATUS (PS)
1 = Error in Word/Byte Program
0 = Successful Word/Byte Program

When PS is set to “1” the WSM has attempted but
failed to program a word or byte.

SR.3 = VPP STATUS (VPPS)
1 = VPP Low Detect, Operation Abort
0 = VPP OK

VPPS does not provide continuous indication of VPP
level. The WSM interrogates VPP level only after the
Program or Erase command sequences have been
entered, and informs the system if VPP has not been
switched on. VPPS is not guaranteed to report
accurate feedback between VPPLK and VPPH.

SR.2–SR.0 = RESERVED FOR FUTURE
ENHANCEMENTS (R)

These bits are reserved for future use and should be
masked out when polling the Status Register.

3.4 Status Register

The status register is the automation circuitry’s other
interface to the outside world. The WSM receives
feedback from its support circuits, thereby allowing it to
keep the status register current and CUI abreast. Table 1
shows that status bits provide ready/busy, operation
success/error, and VPP/suspend status indications.

Status register contents are driven out on DQ0–7 at the
falling edge of CE# or OE#, whichever occurs last in the
read cycle. Either pin must be driven high, then low
again to send updated content to the output buffers.

4.0 OBSOLETING EPROM LEGACY
PRACTICES–CHANGING THE
PARADIGM

EPROM legacy practices, i.e., verification of each
location as it’s written and the final two-pass
comparison of all words to original data, should be
eliminated from the programming routines of automated
flash memories.

The WSM and its supporting circuits perform internally-
margined verification of all words as they’re written. As
such, it is redundant for a programming system to do the
same. In fact, internal device margin settings are much
more finely tuned for the sensing of program thresholds.

NOTE:

If any concerns exist over the programming
hardware’s buffer-to-flash data transfer integrity,
it’s suggested that a single-pass (nominal VCC)
post-program verify operation be performed.

Figure 3 compares an EPROM legacy algorithm to the
28F800BV automated flash memory flowchart. The
individual word verify step, the ±VCC post-program
compare operation, and the pulsecount incrementing and
checking functions have been removed. Section 4.1
provides the supporting text for these recommendations.

Blank check, an added step, is typically unnecessary in
production environments. Intel Flash chips ship erased,
so production programming systems need only erase
devices in instances when test code is replaced or
production code has recently been updated. Blank check
should be made an option that can be turned off by the
equipment operator.

TECHNICAL PAPER E

10

4.1 Internal Program and Program
Verification

After successful receipt and interpretation of the
requested program operation, the CUI forwards a
translated signal to the WSM. The WSM then supervises
internal program and verify-path support circuits to
perform the following tasks:

• program pulse control
• pulse-repetition control
• time-out control
• program verification
• status register update

Program verification occurs in two steps:

1. A margined-sensing scheme applies an elevated read
voltage to just-programmed cells, the resulting
bitline currents then feed individually into 16 sense
amplifiers. The output of factory-set program
reference circuits, adjusted to Vtp (program-threshold
voltage), also feeds into the sense amplifiers.

2. The output of the sense amplifiers then route into a
data comparator for collation. This collation
compares sense amp output to data register content.

X = 25?

Verify Word

Last Address?

Compare All
Words to Original

Data

Verify Word

Read Status Register

SR.7 = 1?

Last Address?

SR.4 = 0?

SR.3 = 0?

Program Error

Vpp Range Error

Device Passed

Device Passed

VPP = 12V

Start

Write Program Command,
Word Address

Write Word
Data/Address

Read Status Register

VCC = VPP = 5V

Increment Address

Device Failed

VCC = 6.25V
VPP = 12.75V

Address = First Location

X = 0

Program One 100 µs Pulse

Increment X

Start

Typical Word-Wide EPROM
Programming Routine

28F800BV Programming Routine

FAIL

FAIL

FAIL

PASS

PASSPASS

NO

NO

YES

NO

NO

NO

NO

YES

YES

YES

YES

YES

7769_02

Figure 3. Major Time Savings: Word-by-Word Verify and Post-Program Compare
Are Not Necessary for Automated Flash Memories

E TECHNICAL PAPER

11

5.0 ARRAY BLOCKING PROVIDES
FLEXIBILITY TO SPEED
PRODUCTION THROUGHPUT

Memory blocking allows customers to segment code and
data, and provides a means by which programming tool
vendors can offer flexible solutions.

For example, if requirement is to program a subset range
of the array, then it’s wasted time/effort to write null
data to remaining locations, worse yet if a post-program
verify operation compares null locations to buffer.
Additionally, full chip erase is wasted time/effort if only
a portion, e.g., one block, requires update. The other
blocks would then require re-write of the existing data.
The programming tool can take advantage of this
flexibility provided it has a user interface allowing
selection of a range to program or blocks to erase.

There’s a huge benefit to program the minimum amount
of memory (enough to boot application), where
afterwards in-system writes can take place. This may
make feasible, programming on an ATE system that has
a limited window of availability.

5.1 Intel Array Blocking Options

The high-integration boot block architecture has an
asymmetrical segmentation with specialized block sizes.
There’s a dedicated hardware-locked block available at
the top or bottom of the device memory map, two small
parameter blocks for parameter storage or EEPROM
emulation, and large main blocks, the count depending
on device density. See Figure 4 for the 28F800BV
memory map.

Intel high-density FlashFile and high-performance
Fast Flash memories have symmetrically-sized blocks.

128-Kbyte MAIN BLOCK

8-Kbyte PARAMETER BLOCK

16-Kbyte BOOT BLOCK

8-Kbyte PARAMETER BLOCK

96-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

7FFFFH

70000H
6FFFFH

60000H
5FFFFH

50000H
4FFFFH

40000H
3FFFFH

30000H
2FFFFH

20000H
1FFFFH

10000H
0FFFFH

04000H
03FFFH
03000H
02FFFH
02000H
01FFFH

00000H

28F800-B

128-Kbyte MAIN BLOCK

8-Kbyte PARAMETER BLOCK

16-Kbyte BOOT BLOCK

8-Kbyte PARAMETER BLOCK

96-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

00000H

0FFFFH
10000H

1FFFFH
20000H

2FFFFH
30000H

3FFFFH
40000H

4FFFFH
50000H

5FFFFH
60000H

6FFFFH
70000H

7BFFFH
7C000H
7CFFFH
7D000H
7DFFFH
7E000H

7FFFFH

28F800-T

7769_03

Figure 4. Flexibility to Program a Portion of the Device during Manufacturing,
Such as the Boot Block, Improves Throughput

TECHNICAL PAPER E

12

6.0 WAVEFORM, TIMING, VOLTAGE,
BUS WIDTH OPTIMIZATIONS

In this section, we’ll explore the advantages of higher
VCC and VPP levels, x16 data writes and holding the
CE# input low. Additionally, we’ll look at the affects of
command sequence length and system timing
capabilities.

6.1 Faster Programming at 12V VPP
and 5V VCC

Intel’s SmartVoltage technology produces extremely
versatile flash memories with a range of VCC and VPP
options. The new 28F008SC SmartVoltage FlashFile
memory, for example, includes 2.7V/3.3V/5V VCC read
and 3.3V/5V/12V VPP programming. SmartVoltage de-
vices are ideal for power-sensitive customer applica-

tions; they operate at lower voltage in-system, but are
capable of programming at 12V VPP for manufacturing.

As an example, the 28F008SC programs 64-Kbytes of
data in 0.3 seconds minimum with 12V VPP and 5V
VCC; block erase equals 0.3 seconds minimum at this
setting. These times are significantly faster than those at
lower voltages. Tables 2 and 3 show that 28F008SC
program and erase performance is best with 12V VPP
and 5V VCC.

Of course, the benefits of 12V VPP are lost when
software overhead hides them. This could be the case
when WSM RY/BY# status is determined by polling
status register bit SR.7. To take maximum advantage,
the programming system should, after the second WE#
rising edge, drive OE# low (to read SR.7) at the typical
datasheet value for that device’s program time (tWHQV1).

Table 2. VCC = 3.3V ± 0.3V, TA = 0°C to +70°C

3.3V VPP 5V VPP 12V VPP

Sym Parameter Notes Min Typ (1) Max Min Typ (1) Max Min Typ (1) Max Unit

tWHRH1,
tEHRH1

Program Time 2 15 17 TBD 8.2 9.3 TBD 6.7 7.6 TBD µs

Block Write Time 2 1 1.1 TBD 0.5 0.5 TBD 0.4 0.5 TBD sec

tWHRH2,
tEHRH2

Block Erase Time 2 1.5 1.8 TBD 1 1.2 TBD 0.8 1.1 TBD sec

Table 3. VCC = 5V ± 0.5V, 5V ± 0.25V, T A = 0°C to +70°C

VPP = 5V VPP = 12V

Sym Parameter Notes Min Typ (1) Max Min Typ (1) Max Unit

tWHRH1,
tEHRH1

Program Time 2 6.5 8 TBD 4.8 6 TBD µs

Block Write Time 2 0.4 0.5 TBD 0.3 0.4 TBD sec

tWHRH2,
tEHRH2

Block Erase Time 2 0.9 1.1 TBD 0.3 1.0 TBD sec

NOTES:
1. Typical values measured at TA = +25°C and nominal voltages. Assumes corresponding lock-bits are not set. Subject to

change based on device characterization.

2. Excludes system-level overhead.

3. These performance numbers are valid for all speed versions.

4. Sampled, but not 100% tested.

5. For more information, see the Byte-Wide SmartVoltage FlashFile™ Memory Family 4, 8, 16 Mbit Datasheet, literature
number 290600.

E TECHNICAL PAPER

13

6.2 Hold CE# Low Throughout
Programming Cycle

CE# can be held at VIL during all phases of the
programming operation—command in, data in (WE#
low) and status check (OE# low), throughout all address
transitions. See Figure 5 for a modified WE#-controlled
write waveform.
Eliminating needless CE#-to/from-WE#/OE# setup/hold
times removes a significant amount of programming
system overhead, the level of this factor determined by
the device programmer or ATE system signal transition
capability.

Note that 2–5 are the cycles that repeat for each location
to be written. Cycle 6 occurs after the last location gets
programmed, and could also be a power-down cycle.

Additionally, the address bus can be held constant
throughout a location’s programming cycle except in
instances when a specific address is required for status
register reads. This would be the case if a global or
block status register (see Section 9.3 concerning
Extended Status Registers) is requested or the status
register is mapped at a unique location. In this situation,
the waveforms would show either a read status register
command cycle occurring during the automated program
delay (cycle 4) and/or a specific AIN for cycle 5.

ADDRESSES (A)

CE# (E)

OE# (G)

WE# (W)

DATA (D/Q)

RP# (P)

IHV

ILV

IHV

ILV

IHV

ILV

IHV

ILV

HHV6.5V

ILV

ILV

IND

INA INA

WHEHt

WHWLt

Valid
SRDIND

WHQV1,2,3,4t

PHHWHt

IHV

PHWLt

High Z
WHDXt

IHV

ILV

V (V)
PP

1 2 3 4 65

PPHV

PPLKV
PPHV 1

2

WP#
ILV

IHV

AVAVt AVWHt WHAXt

DVWHt
WLWHt

QVPHt

QVVLt
VPWHt

IND

ELWLt

7769_04

NOTES:
The depicted cycles are:

1. VCC power-up and standby

2. Write Program command

3. Issue data to program

4. Automated program delay

5. Read status register data

6. Write Read Array command

Figure 5. CE# Does Not Have to Toggle, with Associated Set-Up and Hold Times,
around Every Write or Read Cycle

TECHNICAL PAPER E

14

6.3 Command Sequence Length
Affects Programming Times

Flash memory command sequence length (i.e., number
of bus cycles) has direct repercussions on the
performance capabilities of any programming system.
Parts which require long, drawn-out command
sequences negatively impact themselves in any
programming method by adding to the degree of
overhead that must be implemented to support that
device. The effect of this is especially felt in JTAG/HSS
serial-stream programming where each pin state must be
shifted in serially.

For example, if each address requires a two-cycle
sequence to unlock writes, in addition to the command
and data-in bus cycles, overhead doubles in JTAG/HSS
methodologies. Even systems that access device pins in
parallel are slowed.

Additionally, Intel Flash memories do not require
another command sequence to allow WSM ready/busy
status bit indication out of the device. They go directly
into status read mode after initiation of program or erase
operations, saving overhead.

6.4 Timings and Address Cycling

Programming equipment and implementations that can
achieve setup, hold, pulsewidth, delay and address cycle
times at or near device datasheet minimums will attain
device programming times close to theoretical.

Years back, when memory densities were small, lead
pitch was in the 50–100 mil range, and competition not
so fierce, device programmer support times were not an
issue. Today, with larger arrays, smaller packaging, and
the need cut costs, programming times become
increasingly important and now shift into the forefront
of awareness. Device programmer manufacturers lacked
sufficient motivation to optimize support to its fullest
potential. Besides, slower algorithms might require the
purchase of additional systems. An informed consumer
is much better prepared to make good choices, and to
work with their equipment supplier to meet their needs.

Towards this goal of supplying cost-effective solutions
to its customers, Intel is currently working with device
programmer manufacturers and vendors of other
solution types to optimize their algorithms.

In September 1996, benchmark experiments were
performed using the 28F200BV on three industry-
standard programmers. Erase, program, verify and total
time were recorded utilizing a stop watch. Figures 6
through 9 are provided as examples of the recorded
ranges.

 PROGRAMMER X PROGRAMMER Y PROGRAMMER Z
00:00

00:09

00:17

00:26

00:35

00:43

00:52

01:00

PROGRAMMER X PROGRAMMER Y PROGRAMMER Z

ERASE

PROGRAM

VERIFY

OVERALL

7769_05

Figure 6. Erase, Program, Verify Times Vary across Programmers

E TECHNICAL PAPER

15

Erase Seconds Program Seconds Verify Seconds Overall Minutes

Programmer X 4 14(1) 7 0:25

Programmer Y 6 19(1) 9 0:34

Programmer Z 4 49(1) 14 1:06

NOTE:
1. All memory cells were programmed to zero state.

7769_06

NOTE:
Horizontal time scale: 5 µs/Div.

Figure 7. Programmer X Has an Address Cycle Time of 47.40 µs

TECHNICAL PAPER E

16

7769_07

NOTE:
Horizontal time scale: 10 µs/Div.

Figure 8. Programmer Y Has an Address Cycle Time of 51.38 µs

Address Cycle
190.70 µs

WE#

OE#

A0

DQ 7

7769_08

NOTE:
Horizontal time scale: 25 µs/Div.

Figure 9. Programmer Z Has an Address Cycle Time of 190.70 µs

E TECHNICAL PAPER

17

We can see from the waveform plot of Programmer X
(Figure 7) that there’s a great deal of room for
improvement, 33–50% or more. If the first OE# low
transition was delayed 3 µs, there would be no need to
strobe OE# low a second time; this would shave 14 µs
from the displayed address cycle time (refer to last
sentence in Section 6.1). In addition, OE#’s pulsewidth
should be shortened, cut in half, or more.

Programmer Y (Figure 8) has been positively affected
by Intel’s algorithm optimization work with the vendor.
We see a long time from OE# high till the next address.
Unfortunately, that’s a function of system overhead that
cannot be improved upon. The small savings to push
OE# out a couple microseconds would be futile given
the strobes are 5 µs in duration. Programmer Z (Figure
9) is currently undergoing Intel scrutiny, and should
improve significantly.

6.5 Programming Word Wide–2×
Faster Than Byte Mode

Several Intel Flash memory devices contain user-
selectable bus width control. A dedicated input pin,
BYTE#, driven low places device in x8 mode. BYTE#
high puts the part in x16 operation.

This capability provides a means to program devices fast
in x16 mode, regardless of the application’s bus width.

7.0 WSM READY/BUSY INDICATION
MODES

Intel FlashFile and Fast Flash memories indicate WSM
status via a dedicated output pin, RY/BY#, and status
register bit SR.7. In the next section, we’ll discover why
RY/BY# provides faster status indication than SR.7, and
in Section 7.2 that the other status bits don’t require
checking each word/byte program or block erase
operation.

7.1 Monitor RY/BY# Output vs.
Status Bit SR.7 Polling

The RY/BY# pin was first introduced on Intel’s
28F008SA FlashFile memory in 1992. It enhanced the
performance capabilities of the first write-automated
flash memory, the Intel 28F001BX introduced the year

earlier, by providing fast hardware indication of internal
WSM operation.

RY/BY# is constantly driven by the device and not tri-
stated if CE# or OE# are brought to VIH. RY/BY#’s
default state after device power-up is VOH. It transitions
low to VOL when a program or erase sequence is
initiated, and RY/BY#’s rising edge (return to VOH)
alerts the system to operation completion.

RY/BY# is intended to interface the device to a system
microprocessor rising-edge-triggered interrupt input.
This type of indication, via hardware signaling of status,
is faster than status bit polling. The reason, unlike SR.7,
RY/BY# is not gated by the need to drive/toggle a
control pin (OE#). To put this directly in the context of a
programming system environment, RY/BY# signaling is
not hidden by OE# inactive or the need/time involved to
re-toggle OE# to get updated indication; as such,
software overhead is reduced, which also improves
performance.

NOTE

Depending on the configuration of a device’s
RY/BY# pin, a pull-up resistor may be required.
Check the datasheet for the particulars of the
device you’re working with.

7.2 Check Full Status after
Completing All Program/Erase
Operations

The programming system intelligence may program
several bytes, or erase several blocks back-to-back,
while monitoring RY/BY# or polling SR.7 to determine
when the next Program or Block Erase command can be
given. When all bytes are programmed, or all blocks
erased, the system can then poll the other status flags to
determine if all operations were successful. See Figure
10 for the 28F008SA automated byte programming
flowchart.

While other types of flash require the controlling
microprocessor to watch for non-completion of program
or erase within a specified time to indicate an error,
Intel’s implementation requires no external system
timers or software timing loops. As such, the system can
reduce its polling overhead while still identifying any
potential error conditions.

TECHNICAL PAPER E

18

SR.7 = 1
or RY/BY# = VIH

?

NO

YES

Start

Write 40H,
Byte Address

Write Data/Address

Full Status
Check if Desired

Program Complete

FULL STATUS CHECK PROCEDURE

1

0

Read Status Register
Data (See Above)

1

0

Read Status Register

VPP Range Error

Bus
Operation

Standby

Standby

Check SR.3
1 = VPP Low Detect

SR.3 MUST be cleared, if set during a program attempt, before
 further attempts are allowed by the Write State Machine.
SR.4 is only cleared by the Clear Status Register Command, in cases
 where multiple bytes are programmed before full status is checked.
If error is detected, clear the Status Register before attempting retry
 or other error recovery.

Bus
Operation Command Comments

Write

Write

Setup
Program

Data = Data to Program
Addr = Location to Program

Read

Data = 40H
Addr = Byte to Program

Check SR.7
1 = WSM Ready
0 = WSM Busy

Repeat for subsequent program operations.
SR Full Status Check can be done after each program operation, or
 after a sequence of program operations.
Write FFH after the last write operation to reset device to read array
 mode.

Standby

SR.3=

SR.4 = Program Error

Program Successful

Check SR.4
1 = Byte Program Error

Program

Status Register Data Toggle
CE# or OE# to Update SRD.

Command Comments

Monitor

or

RY/BY# Pin

7769_09

Figure 10. A Full Status Check Procedure Does Not Have to Occur
 after Each Byte Programmed or Block Erased

E TECHNICAL PAPER

19

8.0 IMPACT OF HARDWARE
DESIGN ON PROGRAMMING
SPEED

In the following sections, we’ll touch on a few hardware
design considerations that can provide a significant
performance boost to a programming system. We’ll
cover impact relating to the proximity of the
programming “intelligence,” pin drivers and buffer
memory to the DUT (Device Under Test) and review
communication bandwidth issues.

8.1 “Intelligence” Proximity to Chip

Moving the programming intelligence closer to the DUT
can improve programming performance of a system
design. Taking an algorithm from the many stored on
the PC, then dumping it into a reprogrammable logic
device to create a device-specific state machine
eliminates continual bus transfer of programming
instructions, all but the initial download that generates
the state machine.

8.2 Pin Driver Proximity to Chip

Having the pin driver electronics in close proximity to
the DUT improves signal integrity. A better signal may
negate the need to incorporate algorithm compensating
techniques because problems are avoided.

Strong, fast pin driver circuits and a robust system
power supply provide added benefit. It is important to
locate the power supply close to the DUT. Doing so
improves performance, especially when reading devices
with fast output buffers.

8.3 Buffer Proximity to Chip

Making the buffer memory resident in the programming
system increases the speed of writing to the DUT.
Having the program data stored inside the programmer
eliminates the need to transfer it from a host system.

Providing expansion capabilities for this buffer gives the
unit a longer service lifetime, as well as offers lower
price points for users that don’t initially need a large
capacity.

8.4 Communication Bandwidth

The bandwidth of the communication link and transfer
rate of hard/floppy disk drives are important factors for
the programming system designer to consider.

Movement of code/data traveling through slow ISA bus
bottlenecks then down a parallel or serial cable are
eliminated by stand-alone equipment that has its own
built-in interface to system-level software and device
support algorithms. Many gang programmers are
designed this way.

For data transfer rates, memory cards (PCMCIA or
custom) are far superior to hard or floppy disk drives.
Another method which would be even faster is to store
the code in a flash memory array directly on the
processors data bus for fast execution. Of course, some
interface would be required to get the code into that
array from the vendor’s distribution media.

9.0 USING SUPERSET DEVICE
WRITE-PERFORMANCE
FEATURES

New commands and hardware integration enhance write
performance on Intel’s 28F016SA/SV and 28F032SA.
At the core of this third-generation flash design is a
more sophisticated CUI with command queue, an
enhanced WSM, queueable data registers and address
latches, dual SRAM write buffers, global and block-
specific status registers, additional status feedback and
an erase tagging mechanism. See Figure 11 for the
28F016SA block diagram.

TECHNICAL PAPER E

20

Output
Buffer

Output
Buffer

Input
Buffer

Input
Buffer

I/O Logic

ID
Register

CSR

Data
Comparator

Y
Decoder

X
Decoder

64
-K

by
te

B
lo

ck
 0

64
-K

by
te

B
lo

ck
 1

64
-K

by
te

B
lo

ck
 3

0

64
-K

by
te

B
lo

ck
 3

1

Program/Erase
Voltage Switch

Address
Counter

Input
Buffer

Y Gating/Sensing

O
ut

pu
t M

ul
tip

le
xe

r

GND

DQ
8-15

DQ
0-7

3/5#

BYTE#

CE0#

CE1#

OE#

WE#

WP#

RP#

VCC

3/5#

RY/BY#

VPP

A
0-

20

Address
Queue

Latches

C
U

I

Data
Queue

Registers

Page
Buffers

W
S

M

ESRs

7769_10

Figure 11. Architectural Evolution Includes Page Buffers, Queue Registers for Address, Data and
Commands, and Extended Status Registers to Improve Write Performance

E TECHNICAL PAPER

21

9.1 Command Queue

Advanced CUI sophistication involves the ability to
queue multiple commands and enact new functions. For
queueable commands, three CUI registers are available
and the CUI control logic enhanced via a priority
resolver to determine execution order.

The command queue serves as a “holding tank” for
instructions requiring WSM activity. The 28F016SA
queue is three deep, allowing two additional commands
to be accepted while some other operation is current.
Data and address latching mechanisms are also three
deep to hold the information necessary for queued
commands.

WSM feedback informs the CUI when new requests are
allowed, and when previously latched ones can progress
through the command queue.

Queueing hides system overhead when successively
writing several words/bytes/pages to the array or
erasing/locking many blocks in series.

9.2 Page Buffers

The 28F016SA contains two uniquely-selectable, 256-
byte (or 128-word) SRAM page buffers to improve
system program performance by as much as 4.8× over
previous-generation flash devices. This gain is achieved
via an optimized data-write caching scheme. Internal
programming occurs x16, regardless of the data load
width.

A sequential load command is used to fill the page
buffer. The flash array is then written with the stored
data. Page buffer write operations are queued in the
same manner as other CUI commands. Therefore, the
user can load a page, issue a page buffer write
command, then load the second buffer, which
automatically becomes available. The second page
buffer write operation is then queued for execution. This
pipelining of page buffer write operations results in very
high write transfer rates to the flash array.

9.3 Extended Status Registers

To support this new architecture and the performance-
enhancement commands, a Global Status Register and a
set of 32 Block Status Registers are provided. These
Extended Status Registers, which are addressable in

each block memory space, convey status information at
the chip and block level. Incremental indications such as
queue status and page buffer availability are contained
within the ESRs.

9.4 Erase Queue and Erase All
Unlocked Blocks Command

The 28F016SA WSM contains its own queueing
mechanism for block-erase operations, and its CUI, a
new command to Erase All Unlocked Blocks. The erase
queue is used when full-chip erase is not practical, i.e.,
slows performance of the programming system because
it would be inefficient to reprogram data back into
blocks not requiring content update or because there are
locked blocks that do require a re-write. This queue is as
deep as the number of erase blocks within the device.

If a block erase operation is currently running, and a
second block erase is instructed, that new location is
communicated to the WSM, which in turn marks that
block in its tagging mechanism. This action is noted in
conjunction with the initial erase command, and when
that operation completes, the WSM looks at its tagged
blocks to continue erase at the next logical location. In
this manner, erase of many blocks does not tie up the
command queue.

10.0 CONCLUSION

Time is money, and ideas that get applied which
improve device throughput performance lower the costs
associated with programming. This could result in
significant reductions to off-line programming expenses,
regardless of whether that function occurs in-house or at
a distributor or independent programming center.

From the perspective of the in-line implementation,
programming expeditiously facilitates integration into
the manufacturing flow. This, in turn, accelerates
acceptance of product in fine-pitch packaging and
shipment in tape-and-reel media. Existing ATE can be
used to program at board test, or an inexpensive
JTAG/HSS solution can be deployed at the end of the
line.

Bottom line, fast programming saves money.

TECHNICAL PAPER E

22

APPENDIX A
ADDITIONAL INFORMATION(1,2)

Order Number Document

290600 Byte-Wide SmartVoltage FlashFile™ Memory Family 4, 8, 16 Mbit Datasheet

290429 28F008SA 8-Mbit FlashFile™ Memory Datasheet

290539 8-Mbit SmartVoltage Boot Block Flash Memory Family Datasheet

297372 16-Mbit Flash Product Family User's Manual

292094 AP-359 28F008SA Hardware Interfacing

292099 AP-364 28F008SA Automation and Algorithms

292179 AP-624 Introduction to On-Board Programming with Intel Flash Memory

292185 AP-629 Simplify Manufacturing by Using Automatic Test Equipment for On-Board
Programming

292186 AP-630 Desigining for On-Board Progammming Using the IEEE 1149.1 (JTAG) Access
Port

294016 ER-33 ETOX IV Flash Memory Technology: Insight to Intel’s Fourth-Generation Process
Innovation

NOTES:
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should

contact their local Intel or distribution sales office.

2. Visit Intel’s World Wide Web home page at http://www.intel.com for technical documentation and tools.

	TITLE PAGE
	CONTENTS
	1.0 INTRODUCTION
	2.0 PROGRAMMING IMPLEMENTATIONS
	2.1 Key Considerations
	2.2 Reducing Off-Line Programming Expenses
	2.3 Benefits of Integrating Manufacturing Flow

	3.0 REVIEW OF ON-CHIP AUTOMATIONS
	3.1 Command User Interface
	3.2 Write State Machine
	3.3 Data Comparator
	3.4 Status Register

	4.0 OBSOLETING EPROM LEGACY PRACTICES-CHANGING THE PARADIGM
	4.1 Internal Program and Program Verification

	5.0 ARRAY BLOCKING PROVIDES FLEXIBILITY TO SPEED PRODUCTION THROUGHPUT
	5.1 Intel Array Blocking Options

	6.0 WAVEFORM, TIMING, VOLTAGE, BUS WIDTH OPTIMIZATIONS
	6.1 Faster Programming at 12V VPP AND 5V VCC
	6.2 Hold CE# Low Throughout Programming Cycle
	6.3 Command Sequence Length Affects Programming Times
	6.4 Timings and Address Cycling
	6.5 Programming Word Wide–2x Faster Than Byte Mode

	7.0 WSM READY/BUSY INDICATION MODES
	7.1 Monitor RY/BY# Output vs. Status Bit SR.7 Polling
	7.2 Check Full Status after Completing All Program/Erase Operations

	8.0 IMPACT OF HARDWARE DESIGN ON PROGRAMMING SPEED
	8.1 “Intelligence” Proximity to Chip
	8.2 Pin Driver Proximity to Chip
	8.3 Buffer Proximity to Chip
	8.4 Communication Bandwidth

	9.0 USING SUPERSET DEVICE WRITE PERFORMANCE FEATURES
	9.1 Command Queue
	9.2 Page Buffers
	9.3 Extended Status Registers
	9.4 Erase Queue and Erase All Unlocked Blocks Command

	10.0 CONCLUSION
	APPENDIX A: Additional Information
	FIGURES
	Figure 1. Automated Flash Memory Enhancements Enable Faster, Easier Programming
	Figure 2. Internal Program Reference Circuits Provide a More Finely-Tuned Verify, etc.
	Figure 3. Major Time Savings, etc.
	Figure 4. Flexibility to Program a Portion of the Device during Manufacturing, etc.
	Figure 5. CE# Does Not Have to Toggle, with Associated Set-Up and Hold Times, etc.
	Figure 6. Erase, Program, Verify Times Vary across Programmers
	Figure 7. Programmer X Has an Address Cycle Time of 47.40 µs
	Figure 8. Programmer Y Has an Address Cycle Time of 51.38 µs
	Figure 9. Programmer Z Has an Address Cycle Time of 190.70 µs
	Figure 10. A Full Status Check Procedure Does Not Have to Occur
	Figure 11. Architectural Evolution Includes Page Buffers, Queue Registers for Address, Data, etc.

	TABLES
	Table 1. 28F800BV Status Register Bit Definition
	Table 2. VCC = 3.3V ± 0.3V, TA = 0°C to +70°C
	Table 3. VCC = 5V ± 0.5V, 5V ± 0.25V, TA = 0°C to +70°C

