
E
APPLICATION

NOTE

AP-619

FTL Logger
Exchanging Data with
FTL Systems

Order Number: 292174-001

KIRK BLUM
TECHNICAL MARKETING
ENGINEER

PETER LAM
SOFTWARE ENGINEER

August 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

E AP-619

1

1.0 INTRODUCTION

Recently, quite a few companies have developed
software that allows Intel Flash products to emulate the
functionality of disk drives. This allows flash to be used
for mass storage of both code and data in PC
applications. Several of the companies have “joined
forces” with Intel and PCMCIA to standardize the flash
media format used for this type of sector-based disk
emulation. This makes it easy for the OEM or end-user to
transfer data across a variety of PCs equipped with
PCMCIA slots. This flash media format was recently
approved by PCMCIA as the Flash Translation Layer
(FTL) format. The FTL specification is now available
from PCMCIA.

The flexibility of the Flash Translation Layer (FTL) data
structures makes it possible to arrange data in a
symmetric layout on an Intel Flash PCMCIA card and
still maintain FTL compatibility. Embedded applications
that would like to have the exchangeability of FTL
without the overhead of a FULL FTL flash media
manager on the embedded system can use this concept to
their advantage. The FTL Logger provides a method of
formatting a card to maintain FTL compatibility without
using FTL in the embedded system.

Symmetric Block Formatting (SBF) is a method used to
store data on a flash PCMCIA card by placing it on the
flash media so that standard FTL software will be able to
recognize it. This is accomplished by formatting a card
with FTL-type data structures for a predetermined
number of files. By rearranging and re-mapping of the
various file system structures and the virtual maps, we
can alter the data contained within that space without
upsetting the FTL format. The format operates on one
assumption: the number of files must be known before
formatting, and the size of a file is determined by that
number. This is where a Symmetric Block Format differs
from standard FTL software: after the card is formatted,
there can be no deviation from the size and number of
files that were created unless the card is erased and
reformatted. The files that will be logged onto the card
will become read-only files. No editing, deleting, or
addition of files are allowed from the embedded/target
system.

Symmetric Block Formatting fulfills the requirements of
many embedded applications by providing a way to store
data from an embedded system onto a removable flash
card, insert it into a PC running FTL, and be able to
retrieve the data as one or many standard DOS files
through FTL. The only variation, or implementation

specific detail is the format, which is derived from the
nature of the data.

Before explaining how SBF works, the following
sections will introduce a basic contrast between the
regular FTL format and the symmetrical block format,
and then explain how standard FTL manages the flash
media.

2.0 THE SYMMETRIC FORMAT

When a standard FTL format occurs, it puts all the file
management overhead such as Virtual Block Map
(VBM), FAT table, RootDirEntries, and any other
structures in the first two logical blocks of the flash
media. These first two blocks, therefore, have less space
than the rest of the blocks to store file data. When adding
or deleting a file, FTL looks for the available space on
the card and set up the pointers and maps to allocate this
space accordingly. Thus files can be scattered anywhere
on the card in this fashion. There is no way for the user to
know where the file is stored on the card, and, therefore,
no way to log data into specific locations. Furthermore,
the allocated space on the card cannot be immediately
reused even after the file has been deleted until a special
reclamation process called “clean-up” has been run. That
makes the files even more scattered around the card.

For the symmetrical block format, we will format the
card so that the file management overhead is laid out
evenly, or symmetrically, in each block. In other words,
the available space in each block for writing the data will
be the exactly same for each block and will be
maximized. Each block header will contain the
information needed for FTL to recognize the card and
find out where the files are on the card. A card formatted
to the above conditions is just a card with certain number
of files each block. However, also notice that the file
content is contiguous in each block, i.e., the content of
file 2 follows immediately after the content of file 1 and
so on. So if there are x files per block, all these x files
have their content contiguously stored on the card. The
content of file (x+1) starts at the same offset into the next
block as the first file into the first block. This is useful
when the logged data needs to be contiguous but will
span more than one file. The target/logging system only
needs to know where the file area starts and it can
immediately start to log the data. If we pop the card out
and put it into a PC with standard FTL loaded, the logged
data will show up in standard DOS files and can be
accessed using standard DOS tools.

AP-619 E

2

Erase Unit Header

Files Area
(random)

Block Allocation
Map (BAM)

Virtual Block Map
(VBM)

Erase Unit Header

Block Allocation
Map (BAM)

MBR, PBR, FAT
RootDirEntry

Erase Unit Header

Block Allocation
Map (BAM)

Files Area
(random)

Files Area
(random)

Erase Unit Header

Block Allocation
Map (BAM)

Files Area
(random)

2174_01

NOTE:
VBM in first block, FAT in second, and the files are stored randomly.

Figure 1. Normal FTL Formatting

Erase Unit Header

File 1

File 2

File 3

File...

Block Allocation
Map (BAM)

VBM, FAT,
RootDirEntry

Erase Unit Header

Block Allocation
Map (BAM)

VBM, FAT,
RootDirEntry

File...

File...

File...

File...

Erase Unit Header

Block Allocation
Map (BAM)

VBM, FAT,
RootDirEntry

File...

File...

File...

File...

Erase Unit Header

Block Allocation
Map (BAM)

VBM, FAT,
RootDirEntry

File...

File...

File...

File...

2174_02

NOTE:
Each block has same size for the files area and the files. The number of files can vary from one across the entire media, to the
maximum number of files per block allowed for the particular media.

Figure 2. Symmetrical Block Structure for FTL Pre-Formatting

E AP-619

3

3.0 FTL FUNDAMENTALS

Traditional block storage devices read and write data in
small blocks sized in power of two multiples of 128 bytes
(i.e., 200hx). In the case of traditional rotating media disk
drives, their blocks are typically 512 bytes. Today’s most
popular flash devices, such as Intel’s ETOX™ III
FlashFile™ memory parts, use a 64-KB erase block or
erase unit. This erase unit must be erased all at once
before data can be changed in the block. Thus, for flash,
the Erase Unit is typically 20000 hex in size. The Erase
Unit is the smallest area that can be reclaimed all at once.
Because of the different block size, and of this special
characteristic of flash, a translation layer is needed to
facilitate communication between the standard OS-level
software (such as DOS FAT file system) and flash
devices. From the perspective of higher level layers, a
block storage device is a contiguous array of blocks
which are writable at will, without any regard for the
need to first erase the media and certainly without any
need to erase an area that exceeds the size of the block
being written. The FTL delivers this capability to the
higher level software layers by re-mapping requests to
write blocks to unallocated or free areas of the media and
invalidating the area of the media previously containing
the block’s data. The FTL also records where the re-
mapped block is physically placed on the media to allow
subsequent read accesses to return the data written. In
effect, the FTL presents a virtual block storage device to
the higher level software layers that reliably manages the
logical to physical mapping of blocks or sectors.

3.1 Flash Characteristics

A unique characteristic of flash media is its data content
after erasure. If erased, flash media data bytes are all 1’s
or all 0’s. Once a flash bit has been set to a value other
than its erased state, an entire Erase Unit must be erased
to return the bit to its erased state. However, single bits
may be set from “erased” state to “programmed” state at
any time. FTL use this ability to modify fields in the
media control structures.

3.2 Erase Unit Header and Block
Allocation Information

For allocation purposes, an Erase Unit is evenly divided
into arrays of read/write blocks of equal size (see
Figure 3). The size of a read/write block is the same as a
virtual block viewed by FAT. At the beginning of each
Erase Unit is a Erase Unit Header (see Table 1) which

includes specific information about the Erase Unit and
global information about the format of the FTL partition.
Each Erase Unit also contains allocation information for
all of the read/write blocks within the unit.

For each read/write block, a 4-byte value tracks the
block’s current state. This is the case for all read/write
blocks in that Erase Unit. This section is located right
after the EUH and is called Block Allocation Map
(BAM). At any point in time, a read/write block in an
Erase Unit is either free, deleted, bad or allocated. (see
Table 2 and Figure 4). Allocated means the block is been
mapped by FTL to be used as virtual block data, VBM
pages or replacement pages.

Table 1. Erase Unit Header Fields

Offset Field

0 LinkTarget Tuple

5 DataOrganization Tuple

15 Number of Transfer Units

16 Erase Count

20 Logical EU Number

22 Read/Write (Sector) Size

23 Erase Unit Size (in Log2 Form)

24 First Physical EU Where Partition Starts

26 Number of Erase Units

28 Formatted Size

32 First Virtual Map Address on the Media

36 Number of Virtual Map Pages

38 Flags

39 Code

40 Serial Number

44 Alternate Erase Unit Header Offset

48 BAM Offset

52 Reserved

AP-619 E

4

Table 2. The Entries of BAM and Their Meaning

Value Meaning

FFFFFFFF Free

00000000 Deleted

00000070 Bad

00000030 Control

xxxxxx40 Data of Map Page

xxxxxx60 Replacement

The BAMs for VBM are negative numbered while the
BAMs for virtual block data are positive numbered. This
is the only way to distinguish between the two. For
example, 00000440 is virtual block data number 2 (each
block is 200hx) while FFFFFE40 is the last page of the
VBM.

The Control Units are read/write blocks used to store the
BAM. The number of Control Units depends on the size
of the BAM which depends on the ratio of Erase Unit
size to the read/write block size.

3.3 The Virtual Block Map

The FTL uses a data structure known as the Virtual Block
Map (VBM) to map requests for virtual blocks from
higher level software layers to logical addresses on the
media. The VBM is an array of 32-bit entries, each of
which represents a logical address on the media where a
virtual block’s data is stored. The virtual block number
requested by higher level software layers is used as an
index into this array (see Figure 5).

The VBM is subdivided into pages. Each page of the
VBM is the same size as a virtual sector of the FAT file
system. Since each entry of VBM is 4 bytes, each page
holds (virtual blocks/4 number of entries), and from that
we can figure out how much virtual space each map
represents and how many pages we need to map the
whole virtual space.

The flash media is divided into Erase Units. Each Erase
Unit is evenly divided into read/write blocks for
allocation purposes. Each of these read/write blocks is
the same size as the virtual blocks presented to FAT file
system.

Space is always reserved on the media to store a VBM
large enough to track the allocation of all the virtual
blocks on the card. However, when the card is formatted,
the FTL may choose to only keep a portion of VBM on
the media, and the rest of it can be stored in RAM. The
amount of VBM stored on the media is indicated by the
FirstVMAddress field of the Erase Unit Header. If the
first VMAddress is set to 0, the FTL maintains all of the
VBM entries on the media. If the FirstVMAddress
exceeds the FormattedSize, none of the VBM entries are
maintained on the media by the FTL.

When all or a portion of the VBM is not maintained on
the media, it has to be reconstructed in RAM every time a
card is re-inserted. It uses the BAM information to fill out
the entries of VBM in RAM. Although it uses more
system RAM to contain the VBM, this approach does
have two advantages. First, it uses less flash as it reduces
the virtual block management overhead on the flash
media. Second, it can tend to increase performance as the
first level virtual sector map lookup occurs from the fast
system RAM.

If a VBM entry is all ones, the virtual block does not
exist on the media. If it is all zeroes, the logical address
of the virtual block is described on a replacement page.

E AP-619

5

Erase Unit

Erase Unit

Erase Unit

Erase Unit

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

2174_03

Figure 3. Erase Unit Format

Erase Unit Header

Block Allocation Map

 Free Blocks,
Virtual Block Data,
Virtual Block Map

 Pages, and
Replacement Pages

00000000 Logical Address A0600

00000030

00000030

00000440

00000000

FFFFFE40

0002A440

FFFFFFFF

FFFFA60

FTL Control Structure

FTL Control Structure

Virtual Block 2

Superseded Data
(deleted)

Page -1 of VBM

Virtual Block 152h

Free

Page -3 of VBM

2174_04

Figure 4. Block Allocation Map Entries

AP-619 E

6

Erase Unit Header

Block Allocation Map

 Virtual Block Data,
Virtual Block Map

 Pages, and
Replacement Pages

00A0600

0000CC00

000C0800

00000000

Logical Address A0600

Use Replacement
Page Entry

Logical Address CC00

Logical Address C0800

2174_05

Figure 5. Virtual Block Map Entries

3.4 Replacement Pages

Each page of the VBM may have a replacement page.
Values in a replacement page override entries in the
original VBM pages. Replacement pages are allocated
from free read/write blocks in any Erase Unit. The FTL
locates allocated replacement pages by scanning the
block allocation information on the media. This scan may
be performed when the media is inserted in the host
system or when a VBM entry of zero is encountered.
Replacement pages cannot be replaced. The block
allocation information entry for a replacement page uses
the same virtual address as the original VBM page. FTL
distinguishes between the two by looking at the last byte
of the entry: 40H for VBM pages and 60H for
replacement pages.

3.5 Summary

Hopefully this provides a brief description of the
standard FTL format. FTL provides a translation layer
between a high-level file system such as DOS FAT and
flash media. The whole purpose of the mapping is to be
able to use a standard, sector-based file system with flash
media and not violate flash characteristics.

4.0 SYMMETRICAL BLOCK PRE-
FORMATTER

FTL Logger Pre-Formatter is a utility tool which formats
a flash card symmetrically so that data can be written to
the card at pre-determined addresses for all blocks. It
uses FTL to map between FAT and flash media. Map
structures are located evenly among the blocks so that
each block will be symmetrical.

4.1 The User Interface

The user will be prompted to determine if the card needs
to be erased after the utility gets the media information. If
the user decides to go ahead and erase the card, the
whole card will then be erased and cannot be recovered
to its original format. After erasing, the user will be able
to choose to either format the entire card as one file, or
input the number of files they want to put in each block.
If the entire card option is chosen, the utility will then
format the card as one file and display the size of the file
and where in each block the file pieces start. If the
second option is chosen, the user will then be notified the
size of each file after the number of files per block is
entered. The user can have the option of keeping this
number of files or change to another number. After the
user has confirmed the number of files per block, the
utility will then go ahead and pre-format the card and
display the size of each file, number of files per block
and where in each block the first file starts.

E AP-619

7

4.2 The Structure of the Format

As shown in Figure 2, the pre-formatter tries to allocate
all the structures as evenly as possible among the blocks.
The required structures are Erase Unit Header, Block
Allocation Map, Virtual Block Map, and FAT structures
which includes Master Boot Record, Partition Boot
Record, FAT tables and RootDirEntries. The rest of the
space will be used as the files area.

4.2.1 ERASE UNIT HEADER (EUH)

The EUH is identical for every Erase Unit except for the
logicalEUN field which assigns a logical counter to each
Erase Unit. For convenience, Pre-Formatter assigns each
logical unit in the order of its physical location. Also, the
NumTransferUnits (spare blocks) and the EraseCount is
assigned to one. The EUH still stays at the beginning of
each Erase Unit.

4.2.2 BLOCK ALLOCATION MAP (BAM

BAM still exists in each Erase Unit after the EUH. Since
the space BAM takes in each Erase Unit is identical,
there is no need to balance it among the blocks.

4.2.3 VIRTUAL BLOCK MAP (VBM)

For standard FTL, the VBM is normally put in the first
Erase Unit. However for FTL Logger, the VBM is spread
evenly among all the Erase Units. The number of pages
in each Erase Unit is calculated by dividing the total
VMPages by the number of Erase Units (excluding
transfer units). The corresponding entries in the BAM are
also updated to reflect this allocation.

4.2.4 MASTER BOOT RECORD (MBR)

The MBR is located in the first Erase Unit which has one
fewer VBM pages. Since the number of pages per Erase
Unit is mostly likely not an integer, there will be some
Erase Units with one more page than the others.
Therefore, the extra space in the other Erase Units can be
used for storing the MBR. In MBR, there is a field which
indicates where the FAT partition starts. The PBR is
located at the beginning of that partition.

4.2.5 PARTITION BOOT RECORD (PBR)

The PBR is placed on the card in the Erase Unit
following the Erase Unit containing the MBR at the same
offset. The NumFAT field in PBR is set to 1. Since the

user will not be updating the FAT, there is no danger of
destroying the FAT in the read/write process.

4.2.6 THE FAT TABLE

Unlike standard FTL which places the entire FAT table in
one Erase Unit, the FTL LOGGER spreads it evenly
among all the Erase Units. The number of sectors FAT
takes is defined in PBR and by dividing that number by
the number of Erase Units (excluding transfer units)
gives the number of sectors in each Erase Unit that would
be used to store FAT. The FAT entries are then updated
to point to the files area. Since all the files have the same
size and are stored consecutively in virtual memory, the
FAT entries can be very easily set up. All the entry
numbers in FAT should be consecutive and there should
be an equal number of entries in between each pair of
end-of-file sign (FFFF).

The remainder of the FAT table should be zeroed out
after all the file entries have been filled in.

4.2.7 ROOT DIRECTORY ENTRIES

The size of the Root Directory Entries (RootDirEntries)
field and the number of root directory entries is
dependent on the number of files chosen. Once this is
done, the RootDirEntries field will be divided evenly
among Erase Units. They are placed right after the FAT
sectors in each Erase Unit.

All the entries in this field are identical except for the
name field. The name is assigned as the number of the
file, e.g., 00000001.fil, 00000002.fil, etc. The time and
date fields are set to predetermined numbers.

After all the file entries are filled in, the rest of the
RootDirEntries field is then cleared.

4.2.8 THE FILES AREA

The File Area is maximized by evenly placing the above
structures. Since all the files must be the same size, some
of the file area may go unused. For example, if there are
200 sectors left in each Erase Unit and the user wants 15
files per block, each files will then be allocated 13 sectors
and there will be five unused sectors left in each unit. In
this case, the files area are allocated from bottom up, i.e.,
the last 15 × 13 = 195 sectors will be allocated for files
storage. The corresponding entries in the BAM are
updated to reflect the allocation of these files sectors.

AP-619 E

8

4.2.9 REPLACEMENT PAGES

There is no need to implement replacement pages for
FTL LOGGER since the files will be read-only on the
host afterwards and no updates are needed for VBM or
BAM entries.

4.3 Pre-Formatter Summary

Because of the nature of FTL mapping, we are able to
relocate the structures such as VBM, PBR, MBR, FAT
and RootDirEntries. We arrange them in such a way so
that the space leftover for file storage is maximized given
the number of files. After FTL Logger pre-formatting,
there is an equal amount of space left in each Erase Unit
where the file data can be written. The size to skip, the
size of each file and the number of files per block will be
displayed for the user after the formatting.

The reference code can be found in Appendix A.

5.0 EMBEDDED SYSTEM
REQUIREMENTS

The embedded system does not need to understand the
structures of FTL or FAT. All it needs to know is the
starting address at which to write and the data will be in
its proper place.

5.1 Writing to the Formatted Card

Since all of the overhead space created by the formatter
exists in a contiguous region of flash, the embedded
system needs to know how to avoid this forbidden
region. This can be done in two ways, depending on the
read/write mechanism of the embedded system.

5.1.1 BYTE-WRITE PROTECTION
ALGORITHM

The first way is to use a Byte-Write Protection Algorithm
which writes to the card byte by byte. Typically, a
generic write algorithm would look something like
Figure 6. When the embedded system decides to write a
byte, it obtains the current address, calls the flash
programming algorithm, shown in
Figure 7, and avoids the region of space at the top of the
block reserved for the overhead. If the current address is
less than the overhead size, skip over the overhead
region, if not, then just write the byte. This procedure
requires pre-defining the following variables: card size,
block size, overhead size. Of course, we always have to
subtract the address by the block base first in order to get
its relative position into each Erase Unit.

Write a Byte

Invoke Flash
Write Algorithm

Done

2174_06

Figure 6. Conventional Byte-Write Process

E AP-619

9

Write a Byte with
Protection Code

Invoke Flash
Write Algorithm

Done

Invoke Flash
Write Algorithm

Is the Address
inside the

Structure File
?

Yes

Adjust Address to
Next Block's Base

Invoke Flash Write
Algorithm

No

2174_07

Figure 7. Byte-Write Protection Algorithm

5.1.2 ALTERNATE WRITING METHOD

Another way to write to the formatted card is to set
certain bits on the card to tell the target system the
information that needs to be otherwise pre-defined. This
is the method currently used by FTL Logger. First, the
card size and block size can be determined from the
fields inside the EUH. From the FTL specifications, there
exists a reserved field at the end of the EUH which is
currently unused. This field is now used for storing file
size, number of files, and the overhead size. There is also
a byte that would indicate if the card has been formatted
as one entire file or certain number of files per block. The
exact location of these fields are as follows:

Files per block formatting:

34–37 H size to skip
38–39 H # of files/block
3A–3D H size of each file
3F H FF

One entire file formatting:

34-37 H size to skip
3F H F0

NOTE:

These fields are not used by FTL currently, but in
case FTL decides to use them later, we can still
set these fields after the reserved field and
increase the BAMOffset field in the EUH to
accommodate these fields.

Now the target system just has to look at these fields and
use these values in place of pre-defines. The advantage
with this method is that these fields are set at the time of
pre-formatting, so they exist for any card and there is no
need for the target system to pre-define card information
every time.

AP-619 E

10

;Values needed to be predefined

define Card_Size = Card Size;

define Block_Size = Block Size-1

define overhead = size of overhead

assume addr = address in the card about to be written to
 :
protection check:

addr1,addr ;grab the current address
addr1, block_Size ;get the offset of that adress in a block
overhead, addr1 ;subtract address by the overhead size
write_flash ;if the overhead is smaller, then we are safe
addr, overhead ;otherwise, set the address to after the overhead

write_flash

write_flash_byte
:
:

:

mov
and
sub
js
mov

call

2174_08

Figure 8. Protection Code for Byte-by-Byte Writing

5.2 Reading from the Formatted
Card

After the card has been formatted and the data has been
logged to the flash card, we can read the files with any
standard FTL-based PC. The file data will be contiguous,
i.e., the content of file 2 follows the content of file 1.

5.3 Erasing and Modifying Files

Since the card is pre-formatted and all the space on the
card has been allocated in a certain fashion, no erasing or
modifying of files on the card is allowed. The card does
not have the standard FTL format, it is just formatted in
such a way that FTL will understand and be able to
recognize the files. We can only use a logger to fill in the
data, but cannot use edit or any other file manipulating
functions besides just reading the data. Once the files
have been modified or new files have been saved onto
the card, the FTL Logger format will be lost.
6.0 REFERENCE CODE FOR FTL

LOGGER

The most important initial function upon program
execution is the compatibility module which checks if

the card is an Intel Flash product. It exits right away if it
is not. The next function is to obtain the card’s geometry:
size, number of blocks, size of block, Jedec, etc. This
information will be used later for calculating the
overhead. Then the program prompts the user that the
card is going to be erased and the user has the option of
escaping out or continuing. Next, the program will ask
the user for an option of formatting the entire card as one
file or number of files per block. If the latter option is
selected, the program asks for the number of files per
block and then calculates the overhead it would take to
accommodate these files and asks the user if he wants to
go ahead with this file size. Once the user has confirmed
his option, the program then goes ahead and formats the
card according to the user’s option. For both kinds of
formatting, the program writes the structures onto the
card in the following order: EUH, BAM, VBM, MBR,
PBR, FAT, RootDirEntries and Files Area. Every time a
structure is put onto card, the corresponding fields in the
BAM are also set.

After the formatting has been completed, the program
will display the file size, number of files and the range in
each block that data can be logged. As mentioned before,
the card and format geometry information will also be in

E AP-619

11

the reserved field of the EUH which would be useful for
the embedded side.

If the card is inserted into a system using a standard FTL
driver, a regular “dir” command will show that the card
has the number of files the user requested with the names
of the files in increasing order.

7.0 ADDITIONAL INFORMATION

7.1 Revision History

Number Description

-001 Original Version

AP-619 E

12

7.2 Glossary of Terms

Block Allocation Map (BAM)An FTL control structure that is used to store Erase Unit block allocation
information when hidden areas are not used to store this information.

Erase Unit ...The area of flash media that is handled as a single erasable unit by the FTL.
All Erase Units in an FTL partition are the same size.

Erase Unit Header (EUH)An FTL data structure that describes an Erase Unit.

FAT ...Acronym for File Allocation Table. It is the primary file system DOS uses.

FTL ...Abbreviation for Flash Translation Layer.

Logical Address ...An address based on accessing the media in Logical Erase Unit order.

Partition ..An integral number of contiguous flash erase components formatted in a
specific way.

Read/Write BlockA subdivision of an Erase Unit. Used by the FTL to track media allocation.
The FTL maintains the allocation state of each read/write block.

Replacement PageValues in a replacement page override values in the original page of the Virtual
Block Map or BAM. They are used whenever a file is added, deleted, or
modified.

Transfer Unit ..Also called spare block. An Erase Unit reserved for block/drive reclamation
process.

Virtual Address ..The address recorded in a read/write block’s allocation information
representing where the stored data appears in the virtual image presented to the
host system.

Virtual Block ..The unit of information used by the file system layer above the FTL to read and
write data to the media. It is also called a read/write block or a sector.

Virtual Block Map (VBM)An array of 32-bit entries used to map a virtual block number to a logical
address on the media. Space is always reserved on the media to store the entire
VBM. The FirstVMAddress field describes how much of the VBM is
maintained on the media by the FTL.

Filename: 292174_1.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WINDOWS\WINWORD6\TEMPLATE\ZAN____1.DOT
Title:E
Subject:
Author: Mary Ann Hooker
Keywords:
Comments:
Creation Date: 08/04/95 2:03 PM
Revision Number: 34
Last Saved On: 12/06/95 10:12 AM
Last Saved By: Ward McQueen
Total Editing Time: 378 Minutes
Last Printed On: 12/06/95 10:13 AM
As of Last Complete Printing

Number of Pages: 14
Number of Words: 4,231 (approx.)
Number of Characters: 24,119 (approx.)

	Title Page
	1.0 INTRODUCTION
	2.0 THE SYMMETRIC FORMAT
	3.0 FTL FUNDAMENTALS
	3.1 Flash Characteristics
	3.2 Erase Unit Header and Block Allocation Information
	3.3 The Virtual Block Map
	3.4 Replacement Pages
	3.5 Summary

	4.0 SYMMETRICAL BLOCK PRE-FORMATTER
	4.1 The User Interface
	4.2 The Structure of the Format
	4.2.1 ERASE UNIT HEADER (EUH)
	4.2.2 BLOCK ALLOCATION MAP (BAM)
	4.2.3 VIRTUAL BLOCK MAP (VBM)
	4.2.4 MASTER BOOT RECORD (MBR)
	4.2.5 PARTITION BOOT RECORD (PBR)
	4.2.6 THE FAT TABLE
	4.2.7 ROOT DIRECTORY ENTRIES
	4.2.8 THE FILES AREA
	4.2.9 REPLACEMENT PAGES

	4.3 Pre-Formatter Summary

	5.0 EMBEDDED SYSTEM REQUIREMENTS
	5.1 Writing to the Formatted Card
	5.1.1 BYTE-WRITE PROTECTION ALGORITHM
	5.1.2 ALTERNATE WRITING METHOD

	5.2 Reading from the Formatted Card
	5.3 Erasing and Modifying Files

	6.0 REFERENCE CODE FOR FTL LOGGER
	7.0 ADDITIONAL INFORMATION
	7.1 Revision History
	7.2 Glossary of Terms

