
ARCHITECTURAL
OVERVIEW

January 1996

82527
Serial Communications
Controller
Architectural Overview
Automotive

COPYRIGHT © INTEL CORPORATION, 1995

Order Number: 272410-003

1

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

2

82527 Serial Communications Controller

CONTENTS PAGE

1.0 GENERAL FEATURES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

1.1 Functional Overview ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

1.2 CAN Controller ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

1.3 RAM ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

1.4 CPU Interface Logic ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

1.5 Clockout ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

1.6 Two 8-Bit Ports ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

2.0 PACKAGE DIAGRAM/PIN OUT ÀÀÀÀÀÀÀ 4

3.0 PIN DESCRIPTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

3.1 Hardware Reset ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

3.2 Software Initialization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

4.0 FUNCTIONAL DESCRIPTION ÀÀÀÀÀÀÀÀÀ 8

4.1 82527 Address Map ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

4.2 Control Register (00H) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

4.3 Status Register (01H) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

4.4 CPU Interface Register (02H) ÀÀÀÀÀÀÀ 12

4.5 Clocking Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

4.6 High Speed Read Register
(04–05H) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

4.7 Global Mask - Standard Register
(06–07H) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

4.8 Global Mask - Extended Register
(08–0BH) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

4.9 Acceptance Filtering
Implications ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

4.10 Message 15 Mask Register
(0C–0FH) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

4.11 CLKOUT Register (1FH) ÀÀÀÀÀÀÀÀÀÀÀ 15

4.12 Bus Configuration Register
(2FH) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

4.13 Bit Timing Overview ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

4.14 Bit Timing Registers
(3FH, 4FH) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

4.15 Comparison of 82526 and 82527
Bit Timing Calculations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

4.16 Interrupt Register (5FH) ÀÀÀÀÀÀÀÀÀÀÀ 19

4.17 Serial Reset Address (FFH) ÀÀÀÀÀÀÀ 20

4.18 82527 Message Objects ÀÀÀÀÀÀÀÀÀÀÀ 20

4.19 Control 0 and Control 1
Registers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

4.20 Arbitration 0, 1, 2, 3 Registers ÀÀÀÀÀ 23

CONTENTS PAGE

4.21 Message Configuration
Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.22 Data Bytes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.23 Special Treatment of Message
Object 15 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

5.0 PORT REGISTERS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

6.0 SERIAL RESET ADDRESS (FFH) ÀÀÀÀÀ 26

7.0 FLOW DIAGRAMS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

7.1 82527 Handling of Message
Objects 1-14 (Direction e

Transmit) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

7.2 82527 Handling of Message
Objects 1-14 (Direction e

Receive) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

7.3 CPU Handling of Message Object
15 (Direction e Receive) ÀÀÀÀÀÀÀÀÀÀÀÀ 29

7.4 CPU Handling of Message Objects
1–14 (Direction e Transmit) ÀÀÀÀÀÀÀÀÀ 30

7.5 CPU Handling of Message Objects
1–14 (Direction e Receive) ÀÀÀÀÀÀÀÀÀÀ 31

8.0 CPU Interface Logic ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32

8.1 Serial Control Byte ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 34

9.0 82527 FRAME TYPES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 35

9.1 Data Frame ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 35

9.2 Remote Frame ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36

9.3 Error Frame ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36

9.4 Overload Frame ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37

9.5 Coding/Decoding ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 38

9.6 Arbitration ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 38

10.0 ERROR DETECTION AND
CONFINEMENT ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

10.1 Bit Error ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

10.2 Bit Stuffing Error ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

10.3 CRC Error ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

10.4 Form Error ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

10.5 Error Detection Capabilities ÀÀÀÀÀÀÀÀ 40

10.6 Error Confinement ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40

10.7 82527 States With Respect to the
Serial Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40

11.0 SAMPLE PROGRAM ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41

3

4

82527

1.0 GENERAL FEATURES

Supports CAN Specification 2.0

Ð Standard Data and Remote Frames

Ð Extended Data and Remote Frames

Programmable Global Mask

Ð Standard Message Identifier

Ð Extended Message Identifier

15 Message Objects of 8-byte Data Length

Ð 14 TX/RX Buffers

Ð 1 RX Buffer with Programmable Mask

Flexible CPU Interface

Ð 8-bit Multiplexed

Ð 16-bit Multiplexed

Ð 8-bit Synchronous Non-Multiplexed

Ð 8-bit Asynchronous Non-Multiplexed

Ð Serial Interface

Programmable Bit Rate

Programmable Clock Output

Flexible Interrupt Structure

Flexible Status Interface

Configurable Input Comparator

Two 8-bit Bidirectional l/O Ports

44-lead PLCC Package/44-Lead QFP Package

Pinout Compatibility with the 82526

The 82527 serial communications controller is a highly
integrated device that performs serial communication
according to the CAN protocol. The CAN protocol
uses a multi-master (contention based) bus configura-
tion for the transfer of ‘‘communication objects’’ be-
tween nodes of the network. This multi-master bus is
also referred to as CSMA/CR or Carrier Sense, Multi-
ple Access, with Collision Resolution. The 82527 per-
forms all serial communication functions such as trans-
mission and reception of messages, message filtering,
transmit search, and interrupt search with minimal in-
teraction from the host microcontroller, or CPU.

The 82527 is Intel’s first device to support the standard
and extended message frames in CAN Specification 2.0
part B. It has the capability to transmit, receive, and
perform message filtering on extended message frames
with a 29-bit message identifier. Due to the backwardly
compatible nature of CAN Specification 2.0, the 82527
also fully supports the standard message frames in
CAN Specification 2.0 part A.

A communication object consists of an identifier along
with control data segments. The control segment con-
tains all the information needed to transfer the message.
The data segment contains from 0 to 8 bytes in a single

message. All communication objects are stored in the
RAM of the corresponding CAN chip for each node. A
transmitting node broadcasts its message to all other
nodes on the network. An acceptance filter at each
node decides whether to receive that message. A mes-
sage is accepted only if a communication object with
the same message identifier has been set up in the CAN
RAM for that node.

CAN not only manages the transmission and reception
of messages but also the error handling, without any
burden on the CPU.

CAN features several error detection mechanisms.
These include Cyclical Redundancy Check (CRC) and
bit coding rules (‘‘bit stuffing/destuffing’’). The polyno-
mial of the CRC has been optimized for control appli-
cations with short messages. If a message was corrupt-
ed by noise during transmission, it is not accepted at
the receiving nodes. Current transmission status is
monitored in the control segment of the appropriate
communication object within the transmitting node,
automatically initiating a repeated transmission in the
case of errors. CAN also has built-in mechanisms to
locate error sources and to distinguish permanent hard-
ware failures from occasional soft errors. Defective
nodes are switched off the bus, implementing a fail-safe
behavior (thus, hardware errors will not let defective
nodes control the bus indefinitely).

The message storage is implemented in an intelligent
memory, or RAM, which can be addressed by the
CAN controller and the CPU. The CPU controls the
CAN controller by selectively modifying the various
registers and bit fields in the RAM. The content of the
various bit fields are used to perform the functions of
acceptance filtering, transmit search, interrupt search
and transfer completion.

In order to initiate a transfer, the transmission request
bit has to be written to the message object. The entire
transmission procedure and eventual error handling is
then done without any CPU involvement. If a commu-
nication object has been configured to receive messages,
the CPU easily reads its data registers using CPU read
instructions. The message object may be configured to
interrupt the CPU after every successful message trans-
mission or reception.

The 82527 features a powerful CPU interface that of-
fers flexibility to directly interface to many different
CPUs. It can be configured to interface with CPUs us-
ing an 8-bit multiplexed, 16-bit multiplexed, or 8-bit
non-multiplexed address/data bus for Intel and non-
Intel architectures. A flexible serial interface is also
available when a parallel CPU interface is not required.

The 82527 provides storage for 15 message objects of
8-byte data length. Each message object can be config-
ured as either transmit or receive except for the last

1

5

82527

message object. The last message object is a receive only
buffer with a special acceptance mask designed to allow
select groups of different message identifiers to be re-
ceived.

The 82527 also implements a global acceptance mask-
ing feature for message filtering. This feature allows the
user to globally mask any identifier bits of the incoming
message. The programmable global mask can be used
for both standard and extended messages.

The 82527 provides an improved set of network man-
agement and diagnostic functions including fault con-
finement and a built-in development tool. The built-in
development tool alerts the CPU when a global status
change occurs. Global status changes include message
transmission and reception, error frames, or sleep mode
wake-up. In addition, each message object offers full
flexibility in detecting when a data or remote frame has
been sent or received.

The 82527 offers hardware, or pinout, compatibility
with the 82526. It is pin-to-pin compatible with the
82526 except for pins 9, 30, and 44. These pins are used
as chip selects on the 82526 and are used as CPU inter-
face mode selection pins on the 82527.

The 82527 is fabricated in Intel’s reliable CHMOS III
5-V technology and is available in a 44-lead PLCC and
44-lead QFP for the automotive temperature range
(b40§C to a125§C ambient).

1.1 Functional Overview

The 82527 CAN controller consists of six functional
blocks. The CPU Interface logic manages the interface
between the CPU (host microcontroller) and the 82527
using an address/data bus. The CAN controller inter-
faces to the CAN bus and implements the protocol
rules of the CAN protocol for the transmission and
reception of messages. The RAM is the interface layer

between the CPU and the CAN bus. The two port
blocks provide 8-bit low speed I/O capability. The
clockout block allows the 82527 to drive other chips,
such as the host-CPU.

The 82527 RAM provides storage for 15 message ob-
jects of 8-byte data length. Each message object has a
unique identifier and can be configured to either trans-
mit or receive except for the last message object. The
last message object is a receive only buffer with a spe-
cial mask design to allow select groups of different mes-
sage identifiers to be received.

Each message object contains control and status bits. A
message object with the direction set as receive will
send a remote frame by requesting a message transmis-
sion. A message object with the direction set as trans-
mit will be configured to automatically send a data
frame whenever a remote frame with a matching identi-
fier is received over the CAN bus. All message objects
have separate transmit and receive interrupts and status
bits, allowing the CPU full flexibility in detecting when
a remote or data frame has been sent or received.

The 82527 also implements a global masking feature for
acceptance filtering. This feature allows the user to
globally mask, or ‘‘don’t care’’, any identifier bits of the
incoming message. This mask is programmable to allow
the user to design an application-specific message iden-
tification strategy. There are separate global masks for
standard and extended frames.

The incoming message first passes through the global
mask and is matched to the identifiers in message ob-
jects 1–14. If there is no identifier match then the mes-
sage passes through the local mask in message object
15. The local mask allows a large number of infrequent
messages to be received by the 82527. Message object
15 is also buffered to allow the CPU time to service a
message received.

2

6

82527

A block diagram of the 82527 is shown below.

272410–1

1.2 CAN Controller

The CAN controller controls the data stream between
the RAM (parallel data) and the CAN busline (serial
data). The CAN controller also manages the transceiv-
er logic (RX0, RX1, TX0, TX1), the error management
logic and the message objects.

1.3 RAM

The RAM is an interleaved access memory. This means
the access to the RAM is timeshared between the CPU
Interface Logic and the CAN bus (through the CAN
controller). The RAM is addressed from 00H to FFH.

1.4 CPU Interface Logic

The 82527 provides a flexible CPU interface capable of
interfacing to many commonly used microcontrollers.
Five modes are selected using two CPU interface mode
pins. Mode 0 (Mode1 pin e 0, Mode0 pin e 0) selects
an 8-bit Intel multiplexed address data bus. If the RDÝ
and WRÝ pins are tied low at reset in Mode 0, the

serial interface (SPI) mode is entered. Mode 1 (Mode1
pin e 0, Mode0 pin e 1) selects 16-bit Intel multi-
plexed address data bus. Mode 2 (Mode1 pin e 1,
Mode0 pin e 0) selects an 8-bit non-Intel multiplexed
address data bus. Lastly, Mode 3 (Mode1 pin e 1,
Mode0 pin e 1) selects an 8-bit non-multiplexed ad-
dress data bus for either synchronous or asynchronous
communication.

1.5 Clockout

The on-chip clock generator consists of an oscillator,
clock divider register and a driver circuit. The Clockout
output range is XTAL (external crystal frequency) to
XTAL/15. The Clockout output slew rate is program-
mable.

1.6 Two 8-Bit Ports

Two 8-bit low speed input/output (I/O) ports are avail-
able on-chip. Depending on the CPU interface selected,
at least 7 and up to 16 of these I/O pins are available
for system use.

3

7

82527

2.0 PACKAGE DIAGRAM/PIN OUT

44-Pin PLCC Package

272410–2

44-Pin QFP Package

272410–33

4

8

82527

3.0 PIN DESCRIPTION

Pin Description

VSSI Ground (0V) connection must be shorted externally to a VSS board plane to provide digital
ground.

VSS2 Ground (0V) connection must be shorted externally to a VSS board plane to provide ground
for analog comparator.

VCC Power connection must be shorted externally to a5V DC to provide power to the entire chip.

XTAL1 Input for an external clock. XTAL1 (along with XTAL2) are the crystal connection to an internal
oscillator.

XTAL2 Push-pull output from the internal oscillator. XTAL2 and XTAL1 are the crystal connections to
an internal oscillator. If an external oscillator is used, XTAL2 must be floated or not be
connected. XTAL2 must not be used as a clock output to drive other CPUs.

CLKOUT Programmable clock output. This push-pull output may be used to drive the oscillator of the
CPU.

RESETÝ Warm Reset: (VCC remains valid while RESETÝ is asserted), ResetÝ must be driven to a low
level for 1 ns minimum.

Cold Reset: (VCC is driven to a valid level while ResetÝ is asserted), ResetÝ must be driven
low for 1 ns minimum measured from a valid VCC level. No falling edge on the Reset pin is
required during a cold reset event.

CSÝ A low level on this pin enables the CPU to access the 82527.

INTÝ or The interrupt pin is an open collector output (requires external pullup resistor) to the CPU.
VCC/2 is the power supply for the ISO low speed physical layer. The function of this pin is(VCC/2)
determined by the MUX bit in the CPU Interface Register (Address 02H) when the DcR1 bit
(Address 2FH) is set:

when MUX e 1 and DcR1 e 1: then pin 24 e VCC/2, pin 11 e INTÝ

when MUX e 0: then pin 24 e INTÝ

RX0 Inputs from the CAN bus line(s) to the input comparator.

RX1 A recessive level is read when RX0 l RX1. A dominant level is read when RX1 l RX0. When
the CoBy bit (Bus Configuration register) is programmed as a ‘‘1’’, the input comparator is
bypassed and RX0 is the CAN bus line input.

TX0 Serial push-pull data output to the CAN bus line. During a recessive bit, TX0 is high and TX1 is
low. During a dominant bit, TX0 is low and TX1 is high.TX1

TX0/TX1 suggestion:

Unlike the Intel 82526, the 82527 TX0 and TX1 output drivers can not be individually
programmed to transmit either recessive or dominant bits; this is fixed as described in the
TX0/TX1 definition. If 82527 and 82526 devices are not communicating on a CAN bus, the
problem may be due to TX0/TX1 configuration differences. Reversing the TX0/TX1
connections for either device may allow these devices to communicate.

Ports1/2 Port1 and Port2 pins are weakly held high until the Port configuration registers have been
written (locations 9FH and AFH respectively).

5

9

82527

3.0 PIN DESCRIPTION (Continued)

Pin Description

AD0–AD15 The functions of these pins are defined below.

8-Bit 8-Bit 16-Bit 8-Bit
Serial

Intel Non-Intel Intel Non-
Interface

Multiplexed Multiplexed Multiplexed Multiplexed

AD0 AD0 AD0 AD0 A0 ICP

AD1 AD1 AD1 AD1 A1 CP

AD2 AD2 AD2 AD2 A2 CSAS

AD3 AD3 AD3 AD3 A3 STE

AD4 AD4 AD4 AD4 A4 MOSI

AD5 AD5 AD5 AD5 A5 Unused

AD6 AD6 AD6 AD6 A6 SCLK

AD7 AD7 AD7 AD7 A7 Unused

AD8 Port 1.0 Port 1.0 AD8 D0 Port 1.0

AD9 Port 1.1 Port 1.1 AD9 D1 Port 1.1

AD10 Port 1.2 Port 1.2 AD10 D2 Port 1.2

AD11 Port 1.3 Port 1.3 AD11 D3 Port 1.3

AD12 Port 1.4 Port 1.4 AD12 D4 Port 1.4

AD13 Port 1.5 Port 1.5 AD13 D5 Port 1.6

AD14 Port 1.6 Port 1.6 AD14 D6 Port 1.6

AD15 Port 1.7 Port 1.7 AD15 D7 Port 1.7

P2.0 Port 2 function in all CPU interface modes.

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6/INTÝ P2.6 is INTÝ when MUX e 1 in the CPU Interface register (02H).

P2.7/WRHÝ P2.7 is WRHÝ in 16-bit multiplexed mode (Mode1).

Mode0/ These pins select one of the four parallel interfaces:

Mode1 Mode1 Mode0

0 0* 8-bit multiplexed Intel

0 1 16-bit multiplexed Intel

1 0 8-bit multiplexed non-Intel

1 1 8-bit non-multiplexed

* Note: If upon reset, Mode0 e Mode1 e 0, RDÝ e 0 and WRÝ e 0, then the serial
interface mode is entered.

Mode0 and Mode1 pins are internally connected to weak pulldowns. These pins will be
pulled low during reset if unconnected. Following reset, these pins float.

ALE/ ALE used for Intel CPU Interface Modes 0 and 1.

AS AS used for non-Intel modes. Except Mode 3, this pin must be tied high.

6

10

82527

3.0 PIN DESCRIPTION (Continued)

Pin Description

RDÝ RDÝ used for CPU Interface Modes 0 and 1.

E E used for non-Intel modes. Except Mode 3 Asynchronous, this pin must be tied high.

WRÝ/WRLÝ WRÝ used for Intel CPU Interface Modes 0 and 1. (WRLÝ function in Mode1, 16-bit
Mode.) R/WÝ used for CPU Interface Mode3.R/WÝ

READY/ READY is an open-drain output to synchronize accesses from the CPU to the 82527 for
CPU Interface Modes 0 and 1. MISO is the serial data output for the serial interfaceMISO
mode.

DSACK0Ý DSACK0Ý is an open-drain output to synchronize accesses from the CPU to the 82527
for CPU Interface Mode3.

DSACK0Ý is often used as a pulldown output with a 3.3 kX pullup resistor and a 100 pF
load capacitance. An open-drain output is used because many peripherals may be
connected to the DSACK0Ý line.

The 82527 specifies a TCHKH timing (CSÝ high to DSACK0Ý high) equal to 55 ns,
however a 3.3 kX resistor will not sufficiently charge the line when DSACK0Ý is floated
by the 82527. To meet this timing, the 82527 has an active pullup that drives the
DSACK0Ý output until it is high, and then the pullup is turned off. Therefore, the pullup is
only active for a short time.

7

11

82527

3.1 Hardware Reset

During power up, the RESETÝ pin must be driven to a
valid low level (0.8V) for 1 ms measured from a valid
VCC level to ensure the oscillator is stable. The registers
of the 82527 have the following values after warm reset:

Register Reset Value

Control Register (00H) 01H

Status Register (01H) Undefined

CPU Interface Register (02H) 61H

High Speed Register (04–05H) Unchanged

Global Mask Short (06–07H) Unchanged

Global Mask Long (08–0BH) Unchanged

Mask Last Message (0C–0FH) Unchanged

Clockout Register (1FH) 00H or 01H

depending on

CPU Interface

Mode

Bus Configuration (2FH) 00H

Bit Timing Register 0 (3FH) Unchanged

Bit Timing Register 1 (4FH) Unchanged

Interrupt Register (5FH) 00H

P1 Configuration Register (9FH) 00H

P2 Configuration Register (AFH) 00H

P1 In (BFH) FFH

P2 In (CFH) FFH

PI Out (DFH) 00H

P2 Out (EFH) 00H

SPI Reset Address (FFH) Undefined

Messages 1–15 Unchanged

The error management counters and the busoff state
are reset by a hardware reset.

If a hardware reset occurs at power on, registers de-
fined as unchanged should be interpreted as undefined.

Pins have the following states after reset:

Pin Reset state

Mode 0/1 0 - while RESETÝ is active

(high impedance - after reset)

Port 1/2 1 - weakly pulled high

(following configuration, output

or high impedance input)

Clockout 0

TX0 1 - recessive state

TX1 0 - recessive state

INTÝ Float

DSACK0Ý Float

3.2 Software Initialization

Software initialization is started by setting the Init bit
in the Control Register, either by software, hardware
reset, or by going busoff. While Init is set, all message
transfers to and from the 82527 are stopped and the
TX0 and TX1 outputs are recessive. The error counters
are unchanged. Initialization is used to configure the
82527 RAM without risk of CAN bus receptions or
transmissions.

Resetting Init completes initialization and the 82527
synchronizes itself to the CAN bus by waiting for 11
consecutive recessive bits (called bus idle) before it will
take part in bus activities.

Note that busoff recovery cannot be hastened by setting
or resetting the Init bit. If the 82527 goes busoff, the
82527 will set the Init bit itself and thereby stopping its
bus activities. Once Init is cleared by the CPU, the
82527 will wait for 128 occurrences of bus idle before
resuming normal operation. During the initialization
sequence, each time eleven recessive bits are received, a
Bit0 Error code is written to the status register enabling
the CPU to readily check whether or not the CAN bus
is stuck in a dominant state.

Software initialization does not change configuration
register values.

4.0 FUNCTIONAL DESCRIPTION

This section discusses the functional operation of the
82527 by describing the registers used to configure the
chip and message objects. The 82527 address map is
shown in Section 4.1.

8

12

82527

4.1 82527 Address Map

00H Control Register

01H Status Register

02H CPU Interface Reg.

03H Reserved

04–05H High Speed Read

06–07H Global Mask - Standard

08–0BH Global Mask - Extended

0C–0FH Message 15 Mask

10–1EH Message 1

1FH CLKOUT Register Ý

20–2EH Message 2

2FH Bus Config. Reg. Ý

30–3EH Message 3

3FH Bit Timing Reg. 0 Ý

40–4EH Message 4

4FH Bit Timing Reg. 1 Ý

50–5EH Message 5

5FH Interrupt Register

60–6EH Message 6

6FH Reserved

70H–7EH Message 7

7FH Reserved

80–8EH Message 8

8FH Reserved

90–9EH Message 9

9FH P1CONF Ý

A0–AEH Message 10

AFH P2CONF Ý

B0–BEH Message 11

BFH P1IN

C0–CEH Message 12

CFH P2IN

D0–DEH Message 13

DFH P1OUT

E0–EEH Message 14

EFH P2OUT

F0–FEH Message 15

FFH Serial Reset Address

NOTE:
Ý denotes configuration registers. The CPU may write to
these registers if CCE bit e 1 (Control register).

4.2 Control Register (00H)

7 6 5 4 3 2 1 0

0 CCE 0 0 EIE SIE IE Init

rw rw r r rw rw rw rw
r e readable
w e writable

The default value of the Control Register after a hard-
ware reset is 01H.

CCE Change Configuration Enable

one The CPU has write access to configuration
registers.

zero The CPU has no write access to configuration
registers.

Configuration register addresses are 1FH,
2FH, 3FH, 4FH, 9FH, AFH. This bit is re-set
by the CPU to provide protection against un-
intentional re-writing of critical registers by
the CPU following the initialization sequence.

EIE Error Interrupt Enable

one Error interrupts enabled. A change in the er-
ror status of the 82527 will cause an interrupt
to be generated.

zero Error interrupts disabled. No error interrupt
will be generated.

Error interrupts are BOff and Warn in the
status register. Error Interrupt Enable is set
by the CPU to allow the 82527 to interrupt
CPU when an abnormal number of CAN bus
errors have been detected. It is recommended
to enable this interrupt during normal opera-
tion.

SIE Status Change Interrupt Enable

one Status Change interrupt enabled. An interrupt
will be generated when a CAN bus error is
detected in the Status Register or a transfer
(reception or transmission) is successfully
completed, independent of the interrupt en-
able bits in any message object.

zero Status Change interrupt disabled. No status
interrupt will be generated.

Status change interrupts are Wake, RXOK,
TXOK, and LEC0-2 in the status register and
this bit is set by the CPU. RXOK occurs upon
every successful message transmission on the
CAN bus, regardless of whether the message
is stored by the 82527.

9

13

82527

This interrupt is useful for hardware develop-
ment to detect bus errors caused by physical
layer issues such as noise. The LEC bits are
very helpful to indicate whether bit or form
errors are occurring. In normal operation it is
not advised to enable this interrupt for LEC
errors since the CAN protocol was designed
to handle these error conditions in hardware
by error frames and the automatic retransmis-
sion of messages. When cumulative LEC er-
rors result, the warning and busoff flags will
be set and the Error Interrupt should be en-
abled to detect these conditions.

In most applications, this bit should not be set.
Since this interrupt will occur for every mes-
sage, the CPU will be unnecessarily burdened.
Instead, interrupts should be implemented on
a message object basis so interrupts occur only
for messages that are used by the CPU.

If the Status Change Interrupts and message
object receive/transmit interrupts are enabled,
there will be two interrupts for each message
successfully received by a message object.

IE Interrupt Enable

one Global interrupts enabled. Applies to EIE,
SIE, and message object TX/RX interrupts.

zero Global interrupts disabled. The 82527 will
generate no interrupts although the interrupt
register (5FH) will still be updated. If the in-
terrupt contains some value other than zero
when this bit is set to one, an interrupt will be
generated. For example, no interrupt will be
lost because of periodic setting or resetting of
this bit.

The Interrupt Enable bit is set by the CPU.

Init Initialization

one Software initialization is enabled.

zero Software initialization is disabled.

Following a hardware reset, this bit will be set.
The Init bit is written by the CPU and is set
by the 82527 when it goes busoff. Initializa-
tion is a state which allows the user to config-
ure the 82527 RAM without the chip partici-
pating in any CAN bus transmissions. While
Init equals one, all message transfers to and
from the CAN bus are stopped, and the status
of the CAN bus outputs, TX0 and TX1 are
recessive.

Initialization will most often be used the first
time after power-up and when the 82527 has
removed itself from the CAN bus after going
busoff. Init should not be used in normal oper-
ation when the CPU is modifying transmit
data; the CPU Update bit in each message ob-
ject is used in this case.

Init set to one does not break a transmission
or reception of a message in process, but will
stop the 82527 from transmitting or receiving
the next message.

Please see section 3.2 for additional informa-
tion.

Reserved Bits 7, 5, and 4

one This value must not be programmed by the
user.

zero A zero must always be written to this bit.

4.3 Status Register (01H)
7 6 5 4 3 2 1 0

BOff Warn Wake RXOK TXOK LEC2 LEC1 LEC0

r r r rw rw rw rw rw

The default value of the Status Register after a hard-
ware reset is undefined.

BOff Bus Off Status

one There is an abnormal rate of occurrences of
errors on the CAN bus. This condition occurs
when an error counter in the 82527 has
reached the limit of 256. This results in the
82527 going busoff. During busoff, no mes-
sages can be received or transmitted. The only
way to exit this state is by resetting the Init bit
in the Control register (location 00H). When
this bit is reset, the busoff recovery sequence
begins. The busoff recovery sequence resets
the transmit and receive error counters. After
the 82527 counts 128 packets of 11 consecu-
tive recessive bits on the CAN bus, the busoff
state is exited.

zero The 82527 is not busoff.

The Bus Off Status bit is written by the 82527.

Warn Warning Status

one There is an abnormal rate of occurrences of
errors on the CAN bus. This condition occurs
when an error counter in the 82527 has
reached the limit of 96.

zero There is no abnormal occurrence of errors.

The Warning Status bit is written by the
82527. When this bit is set, an interrupt will
occur if the EIE and IE bits of the Control
Register (00H) are set. The Warning Status bit
is written by the 82527.

Wake Wake up Status

one This bit is set when the 82527 had been previ-
ously set into Sleep mode by the CPU, and bus
activity occurs. The Sleep bit or the Power-
down bit in the CPU Interface register is reset
(location 02H) by the CPU.

10

14

82527

zero The Wake Up interrupt is reset by reading the
Status Register.

Setting the SLEEP bit (bit 3, register 02H) to
a ‘‘1’’ will place the 82527 into SLEEP mode.
While in SLEEP mode, the WAKE bit is ‘‘0’’.
The WAKE bit will become ‘‘1’’ when bus ac-
tivity is detected or when the CPU writes the
SLEEP bit to ‘‘0’’. The WAKE bit will also be
set to ‘‘1’’ after the 82527 comes out of Power
Down mode. This bit is written by the 82527.

RXOK Receive Message Successfully

one Since this bit was last reset to zero by the
CPU, a message has been successfully re-
ceived.

zero Since this bit was last reset by the CPU, no
message has been successfully received. This
bit is never reset by the 82527.

A successfully received message may be any
CAN bus transmission that is error-free, re-
gardless of whether the 82527 has configured
a message object to receive that particular
message identifier. This bit may be cleared by
the CPU. The 82527 will set this bit, but will
not clear it.

TXOK Transmit Message Successfully

one Since this bit was last reset to zero by the
CPU, a message has been successfully trans-
mitted (error free and acknowledged by at
least one other node).

zero Since this bit was last reset by the CPU, no
message has been successfully transmitted.
This bit is never reset by the 82527.

This bit may be cleared by the CPU. The
82527 will set this bit, but will not clear it.

LEC 0–2 Last Error Code
This field contains a code which indicates the
type of the first error to occur in a frame on
the CAN bus. If a message is without error
the field will be cleared to 0. The code 7 is
unused and may be written by the CPU to
check for updates.

0 No error

1 Stuff Error

More than 5 equal bits in a sequence have occurred
in a part of a received message where this is not
allowed.

2 Form Error

The fixed format part of a received frame has the
wrong format.

3 Acknowledgment Error (AckError)

The message transmitted by this device was not ac-
knowledged by another node.

4 Bit 1 Error

During the transmission of a message (with the ex-
ception of the arbitration field), the 82527 wanted to
send a recessive level (bit of logical value 1), but the
monitored CAN bus value was dominant.

5 Bit 0 Error

During the transmission of a message (with the ex-
ception of the arbitration field), the 82527 wanted to
send a dominant level (bit of logical value 0), but the
monitored CAN bus value was recessive. During bu-
soff recovery, this status is set each time a recessive
bit is received (indicating the CAN bus is not stuck
dominant).

6 CRC Error

The CRC checksum was incorrect in the message
received. The CRC received for an incoming mes-
sage does not match with the CRC value calculated
by this device for the received data.

7 Unused

Status Interrupts

The status change interrupt has a value of 1. The Status
Register must be read if a status change interrupt oc-
curs. NOTE: Reading the status register will clear the
status change interrupt (value e 1) from the Interrupt
Register (5FH), if a status change interrupt is pending.
A status change interrupt will occur on every successful
reception or transmission, regardless of the state of the
RXOK and TXOK bits. Therefore, if TXOK is set and
a subsequent transmission occurs, an interrupt will oc-
cur (if enabled) even though TXOK was previously
equal to one.

There are two ways to implement receive and transmit
interrupts. The difference between these two methods is
one relies on the hardwired priority of the message ob-
jects and the other is suitable for polling. The first and
preferred method uses the TXIE and RXIE bits in the
message control register for each corresponding mes-
sage object. Whenever a message is transmitted or re-
ceived by this message object, the corresponding inter-
rupt is serviced in accordance with its priority (if the IE
bit of register 00H is set). This method uses the hard-
wired priority scheme of the 82527 which requires min-
imal CPU intervention.

The second method sets the SIE bit of the Control Reg-
ister to ‘‘1’’ which will force an interrupt whenever suc-
cessful message transmissions or receptions occur. The
RXOK and TXOK bits will be set when any of the
message objects transmits or receives a message. A suc-
cessfully received message may be any CAN bus trans-
mission that is error-free, regardless of whether the
82527 has configured a message object to receive that
particular message identifier. This method allows the
user to more easily define the interrupt priority of each
message object by polling the message objects following
an SIE interrupt.

11

15

82527

4.4 CPU Interface Register (02H)

7 6 5 4 3 2 1 0

RstST DSC DMC PwD Sleep MUX 0 CEn

r rw rw rw rw rw rw rw

The default value of the CPU Interface Register in
hardware reset is E1H. The default value of the CPU
Interface Register after hardware reset (RESETÝ is de-
activated) is 61H.

RstSt Hardware Reset Status

one The hardware reset of the 82527 is active (RE-
SETÝ is low). While reset is active, no access
to the 82527 is possible.

zero Normal operation. The CPU must ensure this
bit is zero before the first access to the 82527
after reset.

This bit is written by the 82527.

DSC Divide System Clock (SCLK). The SCLK may
not exceed 10 MHz. See section 4.5.

one The system clock, SCLK, is equal to
XTAL/2.

zero The system clock, SCLK, is equal to XTAL.

This bit is written by the CPU.

DMC Divide Memory Clock. The memory clock may
not exceed 8 MHz. See section 4.5.

one The memory clock, MCLK, is equal to
SCLK/2.

zero The memory clock, MCLK, is equal to SCLK.

This bit is written by the CPU.

PwD Power Down Mode enable

Sleep Sleep Mode enable

PwD Sleep

zero zero Both Power Down and Sleep
Modes are not active.

one zero Power Down Mode is active.

zero one Sleep Mode is active.

These bits are written by the CPU.

MUX Multiplex for ISO Low Speed Physical Layer.

If VCC/2 is used to implement the basic CAN
physical layer, pin 24 provides the voltage out-
put VCC/2, and pin 11 is the interrupt output
transmitted to the CPU. Otherwise, only the in-
terrupt is available on pin 24. VCC/2 is only
available during normal operation and during
Sleep Mode and not during Power Down Mode.

NOTE:

The DcR1 bit (Address 2FH) must be set to
enable VCC/2 on Pin 24.

one ISO low speed physical layer active: Pin 24 e

VCC/2, Pin 11 e INTÝ.

zero Normal operation: Pin 24 e INTÝ, Pin 11 e

P2.6.

This bit is written by the CPU.

Reserved Bit 1

one This value must not be programmed by the
user.

zero A zero must always be written to this bit.

CEn Clockout enable

one Clockout signal is enabled, (default after re-
set).

zero Clockout signal is disabled.

Low Current Modes

Power Down and Sleep Modes are activated by the
PwD and Sleep bits in the CPU Interface register (02H)
under the control of the programmer. This register is
accessible during reset and normal operation. In both
modes the oscillator and clockout output are not active
and no access to the message objects is possible. Access
to the CPU Interface register (02H) is allowed.

The 82527 exits from Power Down by either a hard-
ware reset or by resetting the PwD bit to ‘‘0’’. The CPU
must read the hardware reset bit, RstSt, (bit 7, register
02H) to ensure the 82527 has exited Power Down.

The 82527 enters Sleep Mode after the Sleep bit in the
CPU Interface register (bit 3, register 02H) is set. The
Sleep current is dependent on the MUX bit value of the
CPU Interface register (bit 2, register 02H). When the
VCC/2 feature is enabled, ICC is specified to be 700 mA
maximum and is 100 mA with the INTÝ feature en-
abled. Sleep mode is exited by resetting the Sleep bit or
when there is activity on the CAN bus. The 82527 re-
quires a minimum of 10 ms to come out of Sleep Mode
after bus activity occurs.

Power Down and Sleep Mode should not be entered
directly after RESET. The user program must perform
a minimum RAM configuration at any time (preferably
during the initialization) prior to entering these modes.
Programming the following registers satisfies the mini-
mum configuration requirement.

Control Register (00H) - set CCE bit to ‘‘1’’,
Bus Configuration Register (2FH)
Bit Timing Register 1 (4FH)
Control Register (00H) - Init bit reset to ‘‘0’’

Writing these registers will activate 82527 circuitry re-
quired to ensure minimum power consumption.

12

16

82527

4.5 Clocking Description

The clocking of the 82527 is dependent upon the oscil-
lator (XTAL), the system clock (SCLK) and the mem-
ory clock (MCLK). The SCLK and MCLK frequencies
are determined by the external oscillator (XTAL) and
the DSC and DMC bits in the CPU Interface register
(02H).

The 82527 is tested with XTAL set to 8 MHz and
16 MHz. Characterization data verifies the 82527 will
operate with XTAL equal to 4 MHz.

The SCLK may be equal to XTAL or XTAL/2 de-
pending upon the DSC bit value of the CPU Interface
register. The SCLK controls the processing functions of
the 82527 such as bit timing control and transceiver
control logic. The MCLK may be equal to SCLK/2 or
SCLK depending upon the value of the DMC bit. The
MCLK controls the CPU interface timings and has a
direct relationship to host CPU-to-82527 communica-
tions rate.

The SCLK is restricted to a 10 MHz maximum fre-
quency, and the MCLK is restricted to a 8 MHz maxi-
mum frequency. The SCLK is used to calculate tq
which is referenced in the Bit Timing Register 0 (3FH)
description. The MCLK is used to define AC timings’
specifications.

The maximum MCLK frequency for various oscillator
frequencies is shown below:

fXTAL SCLK (DSC bit) MCLK (DMC bit)

4 MHz 4 MHz (0) 4 MHz (0)

8 MHz 8 MHz (0) 8 MHz (0)

10 MHz 10 MHz (0) 5 MHz (1)

12 MHz 6 MHz (1) 6 MHz (0)

16 MHz 8 MHz (1) 8 MHz (0)

Frequency of SCLK e fXTAL/(1 a DSC bit)

Frequency of MCLK e fSCLK/(1 a DMC bit)

e fXTAL/[(1 a DSC bit) c

(1 a DMC bit)]

The SCLK (system clock) is used to control bit timings
and the transceiver circuitry or in other words, the
CAN bus. The MCLK (memory clock) is used to con-
trol the 82527 timings used for the 82527/CPU-host
interface.

4.6 High Speed Read Register
(04–05H)

04H
7 6 5 4 3 2 1 0

Low Byte

r

05H
7 6 5 4 3 2 1 0

High Byte

r

The High Speed Read register is a read only register
and is the output buffer for the CPU Interface Logic.
This register is part of the CPU Interface Logic and is
not located in the RAM. During a read to the RAM
(low speed registers) this register is loaded with the val-
ue of the low speed register being accessed.

The High Speed Read register is available to provide a
method to read the 82527 when the CPU (host micro-
controller) is unable to satisfy read cycle timings for
low speed 82527 registers. In other words, if the read
access time of the 82527 is too slow for the CPU and
the CPU cannot extend the read bus cycle, the follow-
ing method should be used.

The default value of the high speed read register after a
hardware reset is unchanged. ‘‘Unchanged’’ default val-
ues should be interpreted as undefined if a hardware
reset occurs during power on.

Double Read Operation

The CPU can execute double reads where the first read
addresses the low speed register and the second read
addresses the High Speed Read register. The first read
is a dummy read for the CPU, however the low speed
register value is stored in the High Speed Read register.
The second read to the High Speed Read register will
produce the data from the desired low speed register.

The advantage of double reads is both read operations
have fast access times. The first read of the low speed
register requires 40 ns (verify in current data sheet) to
load the High Speed Read Register (the data on the
address/data pins is not valid). The second read of the
High Speed Read register requires 45 ns (verify in cur-
rent data sheet) and the data on the address/data bus is
valid.

Therefore, if the access time of a low speed register is
too long for the CPU then a second read to the High
Speed Register will produce the correct data. Please
note low and High Speed Registers have different ac-
cess timing specifications in the 82527 data sheet.

13

17

82527

During a 16-bit read access the low and high byte will
contain the 16-bit value from the read access. For an
8-bit read access the low byte will contain the value
from the read access.

4.7 Global MaskÐStandard Register
(06–07H)

06H
7 6 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

rw rw rw rw rw rw rw rw

07H
7 6 5 4 3 2 1 0

ID20 ID19 ID18 Reserved

rw rw rw

Reserved bits read as 1

The default value of the Global Mask - standard after a
hardware reset is unchanged.

The Global Mask - standard register applies only to
messages using the standard CAN identifier, or for
message objects with the XTD bit set to ‘‘0’’. This fea-
ture, also called message acceptance filtering, allows
the user to Globally Mask, or ‘‘don’t care’’ any identifi-
er bits of the incoming message. This mask is program-
mable to allow the user to develop an application spe-
cific masking strategy.

A ‘‘0’’ value means ‘‘don’t care’’ or accept a ‘‘0’’ or ‘‘1’’
for that bit position. A ‘‘1’’ value means that the incom-
ing bit value ‘‘must-match’’ identically to the corre-
sponding bit in the message identifier.

When a remote frame is sent, an 82527 receiver node
will use the Global Mask registers to determine wheth-
er the remote frame matches any of its message objects.
If the 82527 is programmed to transmit a message in
response to a remote frame message identifier, the
82527 will transmit a message with the message identi-
fier of the 82527 message object. The result is the re-
mote message and the responding 82527 transmit mes-
sage may have different message identifiers because
some 82527 global mask register bits are ‘‘0’’.

NOTE:

Please see section 4.9, Acceptance Filtering Implica-
tions.

4.8 Global MaskÐExtended Register
(08–0BH)

08H
7 6 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

rw rw rw rw rw rw rw rw

09H
7 6 5 4 3 2 1 0

ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

rw rw rw rw rw rw rw rw

0AH
7 6 5 4 3 2 1 0

ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

rw rw rw rw rw rw rw rw

0BH
7 6 5 4 3 2 1 0

ID4 ID3 ID2 ID1 ID0 Reserved

rw rw rw rw rw rw

Reserved bits read as 000

The default value of the Global Mask - extended after a
hardware reset is unchanged.

The Global Mask - extended register applies only to
messages using the extended CAN identifier, or mes-
sage objects with the XTD bit set to ‘‘1’’. This feature
allows the user to Globally Mask, or ‘‘don’t care’’, any
identifier bits of the incoming message. This mask is
programmable to allow the user the develop an applica-
tion specific masking strategy. A ‘‘0’’ value means
‘‘don’t care’’ on that bit for acceptance filtering. A ‘‘1’’
value means that the 82527 will consider this bit for
acceptance filtering.

When a remote frame is sent, an 82527 receiver node
will use its Global Mask registers to determine whether
the remote frame matches any of its message objects. If
the 82527 is programmed to transmit a message in re-
sponse to a remote frame message identifier, the 82527
will transmit a message with the message identifier of
the 82527 message object. The result is the remote mes-
sage and the responding 82527 transmit message may
have different message identifiers because some 82527
Global Mask register bits are ‘‘0’’.

NOTE:

Please see section 4.9, Acceptance Filtering Implica-
tions.

14

18

82527

4.9 Acceptance Filtering Implications

The 82527 implements two acceptance masks which al-
low message objects to receive messages with a range of
message identifiers (IDs) instead of just a single mes-
sage ID. This provides the application the flexibility to
receive a wide assortment of messages from the bus.

The 82527 observes all messages on the CAN bus and
stores any message that matches a message’s ID pro-
grammed into an ‘‘active’’ message object. It is possible
to define which message ID bits must identically match
those programmed in the message objects to store the
message. Therefore, ID bits of incoming messages are
either ‘‘must-match’’ or ‘‘don’t-care’’. By selecting bits
to be ‘‘don’t-care’’, message objects will receive multi-
ple message IDs.

NOTE:

Message objects programmed to transmit are also ef-
fected by the Global Masks (standard and extended).
The 82527 uses the Global Mask registers to identify
which of its message objects transmitted a message. If
two 82527 transmit message objects have message IDs
that are non-distinct in all ‘‘must-match’’ bit locations,
a successful transmission of the higher numbered mes-
sage object will not be recognized by the 82527. The
lower numbered message object will be falsely identi-
fied as the transmit message object and its transmit re-
quest bit will be reset and its interrupt pending bit set.
The actual transmit message object will re-transmit
without end because its transmit request bit will not
be reset.

This could result in a catastrophic condition since the
higher numbered message object may dominate the
CAN bus by resending its message without end.

To avoid this condition, applications should require all
transmit message objects to use message IDs that are
unique with respect to the ‘‘must-match’’ bits. If this is
not possible, the application should disable lower num-
bered message objects with similar message IDs until
the higher numbered message object has transmitted
successfully.

Another configuration to avoid filtering issues is to
dedicate messages 1–14 for transmit and use message
15 for receive. The message 15 mask will have no im-
pact on messages 1–14.

The Acceptance Masks also apply to remote messages.
When the 82527 receives a remote message, and a
transmit message ID matches after taking into account
the global masks, the 82527 will respond by transmit-
ting a data message with its programmed message ID.

4.10 Message 15 Mask Register
(0C–0FH)

0CH
7 6 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

rw rw rw rw rw rw rw rw

0DH
7 6 5 4 3 2 1 0

ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

rw rw rw rw rw rw rw rw

0EH
7 6 5 4 3 2 1 0

ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

rw rw rw rw rw rw rw rw

0FH
7 6 5 4 3 2 1 0

ID4 ID3 ID2 ID1 ID0 Reserved

rw rw rw rw r

Reserved read as 000

The default value of the Message 15 Mask register after
a hardware reset is unchanged.

The Message 15 Mask register is a programmable local
mask. This feature allows the user to locally mask, or
‘‘don’t care’’, any identifier bits of the incoming mes-
sage for message object 15. Incoming messages are first
checked for an acceptance match in message objects 1–
14 before passing through to message object 15. Conse-
quently, the Global Mask and the local mask apply to
messages received in message object 15.

A ‘‘0’’ value means ‘‘don’t care’’ or accept a ‘‘0’’ or ‘‘1’’
for that bit position. A ‘‘1’’ value means that the incom-
ing bit value ‘‘must-match’’ identically to the corre-
sponding bit in the message identifier.

NOTE:

The Message 15 Mask is ‘‘ANDed’’ with the Global
Mask. This means that any bit defined as ‘‘don’t-care’’
in the Global Mask will automatically be a ‘‘don’t-
care’’ bit for message 15.

4.11 CLKOUT (Clockout) Register
(1FH)

1FH
7 6 5 4 3 2 1 0

0 0 SL1 SL0 CDV

r r rw rw rw

The CLKOUT register controls the frequency of the
CLKOUT signal as well as the slew rate. The default
frequency of CLKOUT depends on the CPU interface

15

19

82527

mode. For Modes 0, 1 and serial mode the default fre-
quency is XTAL. For Modes 2 and 3 the default fre-
quency is XTAL/2. The following are the programma-
ble CLKOUT frequencies and recommended slew
rates:

Table 2. Programming CLKOUT and Slew Rates

CDv
CLKOUT

Frequency

0 XTAL

1 XTAL/2

10 XTAL/3

11 XTAL/4

100 XTAL/5

101 XTAL/6

110 XTAL/7

111 XTAL/8

1000 XTAL/9

1001 XTAL/10

1010 XTAL/11

1011 XTAL/12

1100 XTAL/13

1101 XTAL/14

1110 XTAL/15

1111 Reserved

SL1 SL0 CLKOUT Conditions

0 0 CLKOUT l 24 MHz

0 1 16 MHz k CLKOUT s 24 MHz

1 0 8 MHz k CLKOUT s 16 MHz

1 1 CLKOUT k 8 MHz

The default value of the CLKOUT register after a
hardware reset is 00H (Modes 0 and 1 and serial mode)
or 01H (Modes 2 and 3). The slew rate bits enable one
to four pullup and pulldown resistors which allows the
clockout driver strength to be programmed.

4.12 Bus Configuration Register (2FH)

2FH
7 6 5 4 3 2 1 0

0 CoBy Pol 0 DcT1 0 DcR1 DcR0

rw rw rw rw rw rw rw rw

Reserved Bits 7, 4 and 2

one This value must not be programmed by the
user.

zero A zero must always be written to this bit.

CoBy Comparator Bypass

one The input comparator is bypassed and the
RX0 input is regarded as the valid bus input,
(DcR0 must be set to zero).

zero Normal operation: RX0 and RX1 are the in-
puts to the input comparator, (default after
hardware reset).

Pol Polarity

one If the input comparator is bypassed then a log-
ical one is interpreted as dominant and a logi-
cal zero is recessive on the RX0 input.

zero If the input comparator is bypassed then a log-
ical one is interpreted as recessive and a logi-
cal zero is dominant bit on the RX0 input,
(default after hardware reset).

DcT1 Disconnect TX1 output

one Disables the TX1 output driver. This mode is
for use with a single wire bus line, or in the
case of a differential bus when the two bus
lines are shorted together.

zero Enables the TX1 output driver, (default after
hardware reset).

DcR1 Disconnect RX1 input

one RX1 is disabled and the RX1 input is discon-
nected from the inverting comparator input
and is replaced by a VCC/2 reference voltage.

zero RX1 is enabled and the RX1 input is connect-
ed to the inverting input of the input compara-
tor, (default after hardware reset).

DcR0 Disconnect RX0 input

one RX0 is disabled and the RX0 input is discon-
nected from the non-inverting comparator in-
put and replaced by a VCC/2 reference volt-
age. The MUX bit in the CPU Interface regis-
ter (02H) must be set to one to activate the
VCC/2 reference voltage.

zero RX0 is enabled and the RX0 input is connect-
ed to the non-inverting input of the input com-
parator, (default after hardware reset).

The default value of the bus configuration register after
a hardware reset is 00H.

4.13 Bit Timing Overview

A CAN message consists of a series of bits that are
transmitted in consecutive bit times. A bit time ac-
counts for propagation delay of the bit, CAN chip in-
put and output delay, and synchronization tolerances.
This section describes components of a bit time from
the perspective of the CAN Specification and the
82527.

16

20

82527

CAN Specification Bit Timing
Definitions

The bit timing requirements of the CAN Specification
Version 2.0 (September 1991) are defined in section 8.
The nominal bit time is composed of four time seg-
ments: SYNCÐSEG, PROPÐSEG, PHASEÐSEG1,
and a PHASEÐSEG2. These time segments are sepa-
rate and non-overlapping as shown below.

272410–3

SYNCÐSEG: This part of the bit time is used to syn-
chronize the various nodes on the bus. An edge is ex-
pected to lie within this segment.

PROPÐSEG: This part of the bit time is used to com-
pensate for the physical delay times within the network.
It is twice the sum of the signal’s propagation time on
the bus line, the input comparator delay and the output
driver delay.

NOTE:

The factor of two accounts for error detection which
requires nodes to monitor all bus transmissions.

PHASEÐSEG1, PHASEÐSEG2: These phases are
used to compensate for edge phase errors. These seg-
ments can be lengthened or shortened by resynchroni-
zation.

SAMPLE POINT: The sample point is the point of
time at which the bus level is read and interpreted as
the value of that respective bit. Its location is at the end
of PHASEÐSEG1.

82527 Bit Timing Definitions

The 82527 represents SYNCÐSEG, PROPÐSEG,
PHASEÐSEG1, and PHASEÐSEG2 by dividing the
bit time into three time segments: tSYNCÐSEG, tTSEG1
and tTSEG2. The ‘‘t’’ prefix indicates the segment is a
length of time (i.e. nanoseconds, microseconds). These
three time segments are defined by register fields called
SYNCÐSEG, TSEG1 and TSEG2, respectively. These
register fields are digital values programmed into the
82527 Bit Timing Registers.

272410–4

17

21

82527

The preceding figure represents a bit time from the per-
spective of the 82527. A bit time is subdivided into time
quanta. One time quantum is derived from the oscilla-
tor (SCLK) and the baud rate prescaler (BRP). The
length of the bit time results from the addition of the
programmable segments: SYNCÐSEG, TSEG1 and
TSEG2.

TIME QUANTUM (tq): A fixed unit of time derived
from the system clock period (tSCLK) equal to tSCLK x
(baud rate prescaler a 1).

tSYNCÐSEG: Synchronizes the various nodes on the
bus and an edge from the transmitter is expected to lie
within this segment. The SYNCÐSEG is 1 time quan-
tum.

tTSEG1: The sum of PROPÐSEG and the
PHASEÐSEG1 as defined by the CAN Specification.
TSEG1 is a value programmed into the 82527 CAN
device to specify tTSEG1. In three sample mode, 2 time
quanta must be added to tTSEG1. This allows the 82527
to sample the bit two additional times prior to sample
point at the end of TSEG1.

tTSEG2: This time segment is equivalent to
PHASEÐSEG2 as defined by the CAN Specification.

Bit Timing Relationships

The following are relationships of the 82527 bit timing:

1. bittime e tSYNCÐSEG a tTSEG1 a tTSEG2
(see preceding figure)

2. tq e tSCLK c (BRP a 1) where tSCLK is the peri-
od of the system clock.

3. tSYNCÐSEG e 1 tq

4. tTSEG1 e (TSEG1 a 1) c tq
(the 82527 adds one to TSEG1 in hardware)

5. TSEG1 e [2 . . . 15]
(field in Bit Timing Register 1)

6. tTSEG2 e (TSEG2 a 1) c tq
(the 82527 adds one to TSEG2 in hardware)

7. TSEG2 e [1 . . . 7]
(field in Bit Timing Register 1)

8. tSJW e (SJW a 1) c tq
(the 82527 adds one to SJW in hardware)

9. SJW e [0 . . . 3]
(field in Bit Timing Register 0)

10. tprop e two times the maximum of the sum of the
delay of the physical bus delay, the output driver
delay and the input comparator delay rounded up
to the nearest multiple of tq.

11. The maximum oscillator tolerance equals
[3.84 x tSJW/tbittime].

The following conditions must be met to maintain syn-
chronization.

1. tTSEG2 t 2tq
(minimum tolerance for resynchronization)

2. tTSEG2 t tSJW
(If tSJW l tTSEG2, sampling may occur after the bit
time)

3. tTSEG1 t 3tq
(minimum tolerance for resynchronization with 1tq
propagation delay allowance)

4. tTSEG1 t tSJW a tprop

5. For three sample mode (SPL bit e 1, register 4Fh),
tTSEG1 t tSJW a tprop a 2tq

4.14 Bit Timing Registers (3FH, 4FH)

Bit timing registers are used to define the CAN bus
frequency, the sample point within a bit time, and the
mode of synchronization.

Bit Timing Register 0 (3FH)

3FH
7 6 5 4 3 2 1 0

SJW BRP

rw rw

SJW (Re)Synchronization Jump Width

The valid programmed values are 0–3. The SJW
defines the maximum number of time quanta a
bit time may be shortened or lengthened by one
resynchronization. The actual interpretation of
this value by the hardware is to use one more
than the programmed value.

BRP Baud Rate Prescaler

The valid programmed values are 0–63. The
baud rate prescaler programs the length of one
time quantum as follows:

tq e tSCLK c (BRP a 1) where tSCLK is the
period of the system clock (SCLK).

The default value of the bit timing register 0 after
a hardware reset is unchanged.

Bit Timing Register 1 (4FH)

4FH
7 6 5 4 3 2 1 0

Spl TSEG2 TSEG1

rw rw rw

18

22

82527

Spl Sampling Mode

Sampling mode e zero may result in faster bit
transmissions rates, while sampling mode e

one is more immune to noise spikes on the
CAN bus.

one Three samples are used for determining the
valid bit value using majority logic. The CAN
bus is sampled three times per bit time.

zero One sample is used for determining the valid
bit value. The CAN bus is sampled once per
bit time.

TSEG1 Time Segment 1

The valid programmed values are 2–15.
TSEG1 is the time segment before the sample
point. The actual interpretation of this value
by the hardware is one more than the value
programmed by the user.

TSEG2 Time Segment 2

The valid programmed values are 1–7.
TSEG2 is the time segment after the sample
point. The actual interpretation of this value
by the hardware is one more than the value
programmed by the user.

NOTE:

In order to achieve correct operation according to the
CAN protocol, the total bit length should be a mini-
mum of 8tq with (TSEG1 a TSEG2 t 5).

The default value of the bit timing register 1 after a
hardware reset is unchanged.

4.15 Comparison of 82526 and 82527
Bit Timings Calculations

82527

The 82527 timings calculations differ from the 82526
since the 82527 timing equation implicitly accounts for
synchronization jump widths.

CAN bus frequency e XTAL frequency/[(DSC a 1)
x (BRP a 1) x (3 a TSEG1 a TSEG2)] where the
DSC bit is found in the CPU interface register, location
02H.

Example: Reg 02H e 41H, Reg 3FH e 4AH,
Reg 4FH e 25H

with resulting bit timing parameters:

BRP e 10 DSC e 1
SJW e 2 XTAL e 16 MHz
TSEG1 e 5 TSEG2 e 2

CAN bus frequency e 16 MHz/[(1 a 1) x (10 a 1) x
(3 a 5 a 2)] e 72,727 bits/seconds

82526

CAN bus frequency e XTAL frequency/[(BRP a 1)
x 2 x (5 a TSEG1 a TSEG2 a 2 x SJW)]

Example: Reg 03H e C5H, Reg 04H e 25H

with resulting bit timing parameters

INSYNC e 1 BRP e 5

SJW e 3 XTAL e 16 MHz

TSEG1 e 5 TSEG2 e 2

CAN bus frequency e 16 MHz/[(5 a 1) x 2 x (5 a 5
a 2 a 2 x 3)] e 74,074 bits/seconds

4.16 Interrupt Register (5FH)

5FH
7 6 5 4 3 2 1 0

Intld

r

IntId Interrupt Identifier

The interrupt register is a read-only register. The value
in this register indicates the source of the interrupt.
When no interrupt is pending, this register holds the
value ‘‘0’’. If the SIE bit in the Control Register (00H)
is set and the 82527 has updated the Status Register,
the interrupt register will contain a ‘‘1’’. This indicates
an interrupt is pending due to a change in the status
register. The value 2 a message number indicates the
IntPnd bit in the corresponding message object is set.
There is an exception in that message object 15 will
have the value 2, giving message object 15 the highest
priority of all message objects. The default value of the
interrupt register after a hardware reset is undefined.

19

23

82527

Interrupt Register Value (hex)

none 0

Status Register 1

message object 15 2

message object 1 3

message object 2 4

message object 3 5

message object 4 6

message object 5 7

message object 6 8

message object 7 9

message object 8 AH

message object 9 BH

message object 10 CH

message object 11 DH

message object 12 EH

message object 13 FH

message object 14 10H

For example, a message is received by message object
13 with the IE (Control register) and RXIE (message
object 13 Control 0 register) bits set. The interrupt pin
will be pulled low and the value 15 (0FH) will be placed
in the interrupt register.

If the value of register 5FH equals ‘‘1’’, then the status
register at location 01H must be read to update this
interrupt register. The status change interrupt (SIE bit
in register 00H) has higher priority than interrupts
from message objects. Register 5FH is automatically set
to ‘‘0’’ or to the lowest value corresponding to a mes-
sage with IntPnd set. When the value of this register is
two or more, the IntPnd bit of the corresponding mes-
sage object control register is set.

The 82527 will respond to each status change event
independently and will not bundle interrupt events in a
single interrupt signal. However, if two status change
events occur before the first is acknowledged by the
CPU, the next event will not generate a separate inter-
rupt output. Therefore, when servicing status change
interrupts, the user code should check all useful status
bits upon each status change interrupt.

After resetting the INTPND bit in the Control 0 Regis-
ter of individual message objects, the minimum delay of
the 82527 resetting the interrupt pin and updating the
Interrupt Register (5FH) is 3 MCLK cycles and a max-
imum of 14 MCLK cycles (after the CPU write opera-
tion to this register is finished). When a status change

interrupt occurs, reading the Status Register (01H) will
reset the interrupt pin in a maximum of 4 MCLK cy-
cles a 145 ns. Clearing the INTPND bit of the mes-
sage object will de-activate the INTÝ pin.

4.17 Serial Reset Address (FFH)

FFH
7 6 5 4 3 2 1 0

Serial Reset Address

w

The serial reset address is used to synchronize accesses
between the 82527 and the CPU when the CPU cannot
provide a chip select. The CPU must write a string of
16 ‘‘FFH’’ bytes to achieve synchronization.

The default value of the serial reset address after a
hardware reset is undefined.

4.18 82527 Message Objects

The message object is the means of communication be-
tween the host microcontoller and the CAN controller
in the 82527. Message objects are configured to trans-
mit or receive messages.

There are 15 message objects located at fixed addresses
in the 82527. Each message object starts at a base ad-
dress that is a multiple of 16 bytes and uses 15 consecu-
tive bytes. For example, message object 1 starts at ad-
dress 10H and ends at address 1EH. The remaining
byte in the 16 byte field is used for other 82527 func-
tions. In the above example the byte at address 1FH is
used for the clockout register.

Message object 15 is a receive-only message object that
uses a local mask called the message 15 mask register.
This mask allows a large number of infrequent mes-
sages to be received by the 82527. In addition, message
object 15 is buffered to allow the CPU more time to
receive messages.

20

24

82527

Message Object Structure

Base Address a0 Control 0

a1 Control 1

a2 Arbitration 0

a3 Arbitration 1

a4 Arbitration 2

a5 Arbitration 3

a6 Mess. Conf.

a7 Data 0

a8 Data 1

a9 Data 2

a10 Data 3

a11 Data 4

a12 Data 5

a13 Data 6

a14 Data 7

4.19 Control 0 and Control 1
Registers
(Base Address a 0, Base Address a 1)

Control 0 Register

7 6 5 4 3 2 1 0

Base Address a 0

MsgVal TXIE RXIE IntPnd

rw rw rw rw

Control 1 Register

7 6 5 4 3 2 1 0

Base Address a 1

RmtPnd TxRqst
MsgLst

NewDat
CPUUpd

rw rw rw rw

Each bit in the Control 0 and Control 1 bytes occurs
twice; once in true form and once in complement form.
This bit representation makes testing and setting these
bits as efficient as possible. The advantage of this bit
representation is to allow write access to single bits of
the byte, leaving the other bits unchanged without the

need to perform a read/modify/write cycle. The repre-
sentation of these two bits is described below:

MSB LSB Meaning

Write 0 0 Not allowed

(indeterminate)

0 1 reset

1 0 set

1 1 unchanged

Read 0 1 reset

1 0 set

These bit pairs eliminate the need to execute a ‘‘read-
modify-write’’ operation used to set or reset a bit. The
bit pairs allow the software to set or reset any bit with-
out disrupting the other bits using a single write opera-
tion.

For example, a CPU would set the TxRqst bit of the
Control 1 byte with the following instructions:

LDB Dummy, Ý0EFH ;load 11101111 into
;accumulator
;register

STB Dummy, CTR1 ;write 11101111 to
;Control 1,
;setting TXRqst

MsgVal Message Valid

The MsgVal bit is an individual halt bit for
each message object. While this bit is reset the
82527 will not access this message object for
any reason.

one The message object is valid.

zero The message object is invalid.

The Message Valid bit is set to indicate the
message object is configured and is ready for
communications transactions. This bit may be
reset at any time if the message is no longer
required, or if the identifier is being changed.
If a message identifier is changed, the message
object must be made invalid first, and it is not
necessary to reset the chip following this mod-
ification. The CPU must reset the MsgVal bit
of all unused messages during initialization of
the 82527 before the Init bit of the Control
Register (00H) is reset. The contents of mes-
sage objects may be reconfigured dynamically
during operation and the MsgVal bit assists
reconfiguration in many cases. This bit is writ-
ten by the CPU.

Two or more message objects may not have
the same message identifier and also be valid
at the same time.

21

25

82527

TXIE Transmit Interrupt Enable

one An interrupt will be generated after a success-
ful transmission of a frame.

zero No interrupt will be generated after a success-
ful transmission of a frame.

The Transmit Interrupt Enable bit enables the
82527 to initiate an interrupt after the success-
ful transmission by the corresponding message
object. This bit is written by the CPU.

RXIE Receive Interrupt Enable

one An interrupt will be generated after a success-
ful reception of a frame.

zero No interrupt will be generated after a success-
ful reception of a frame.

This bit enables the 82527 to initiate an inter-
rupt after the successful reception by the cor-
responding message object. This bit is written
by the CPU.

NOTE:

In order for TXIE or RXIE to generate an interrupt,
IE in the Control Register must be set.

IntPnd Interrupt Pending

one This message object has generated an inter-
rupt.

zero No interrupt was generated by this message
object since the last time the CPU cleared this
bit.

This bit is set by the 82527 following a suc-
cessful transmission or reception as controlled
by the RXIE and TXIE bits. The CPU must
clear this bit when servicing the interrupt.

RmtPnd Remote Frame Pending

one The transmission of this message object has
been requested by a remote node and is not yet
done.

zero There is no waiting remote request for the
message object.

This bit is only used by message objects with
direction e transmit. This bit is set by the
82527 after receiving a remote frame which
matches its message identifier, taking into ac-
count the global mask register. The corre-
sponding message object will respond by
transmitting a message, if the CPUUpd bit e

zero. Following this transmission, the 82527
will clear the RmtPnd bit. In other words,
when this bit is set it indicates a remote node
has requested data and this request is still
pending because the data has not yet been
transmitted.

NOTE:

Setting RmtPnd will not cause a remote
frame to be transmitted. The TxRqst bit is
used to send a remote frame from a receive
message object.

TxRqst Transmit Request

one The transmission of this message object has
been requested and has not been completed.

zero This message object is not waiting to be trans-
mitted.

This bit is set by the CPU to indicate the mes-
sage object data should be transmitted.

Conditions required to transmit a data frame:

1) Init bit e 0
2) MsgVal bit e 1
3) direction e transmit
4) NewDat bit e 1
5) TxRqst e 1

If direction e receive, (Init e 0 and MsgVal
e 1) then a remote frame is sent to request a
remote node to send the corresponding data.
TxRqst is also set by the 82527 (at the same
time as RmtPnd in message objects whose di-
rection e transmit) when it receives a remote
frame from another node requesting this data.
This bit is cleared by the 82527 along with
RmtPnd when the message has been success-
fully transmitted, if the NewDat bit has not
been set.

NOTE:
Setting TxRqst will send a data frame for a
transmit message object and a remote frame
for a receive message object.

MsgLst Message Lost

This definition is only valid for message ob-
jects with direction e receive. For message
objects with direction e transmit, the defini-
tion is replaced by CPUUpd.

one The 82527 has stored a new message in this
message object when NewDat was still set.

zero No message was lost since the last time this bit
was reset by the CPU.

This bit is used to signal that the 82527 stored
a new message into this message object when
the NewDat bit was still set. Therefore, this
bit is set if the CPU did not process the con-
tents of this message object since the last time
the 82527 set the NewDat bit; this indicates
the last message received by this message ob-
ject overwrote the previous message which
was not read and is lost.

CPUUpd CPU Updating

Only valid for message objects with direction
e transmit. For message objects with direc-
tion e receive it is replaced by MsgLst.

22

26

82527

one This message object may not be transmitted.

zero This message object may be transmitted, if di-
rection e transmit.

The CPU sets this bit to indicate it is updating
the data contents of the message object and
the message should not be transmitted until
this bit has been reset. The CPU indicates
message updating has been completed by re-
setting this bit (it is not necessary to use the
MsgVal bit to update the message object’s
data contents). The purpose of this bit is to
prevent a remote frame from triggering a
transmission of invalid data.

NewDat New Data (This bit has different meanings
for receive and transmit message objects.)

one The 82527 or CPU has written new data into
the data section of this message object.

zero No new data has been written into the data
section of this message object since the last
time this bit was cleared by the CPU.

For message objects with direction e receive,
the 82527 sets this bit whenever new data has
been written into the message object.

For message objects 1–14 please note: When
new data is written into message objects, the
unused data bytes will be overwritten with
non-specified values. The CPU should clear
this bit before reading the received data and
then check if the bit remained cleared when
all bytes have been read. If the NewDat bit is
set, the CPU should re-read the received data
to prevent working with a combination of old
and new data.

For message object 15, new data is written
into the shadow register. The foreground reg-
ister is not over-written with new data. For
message object 15 messages, the data should
be read first, the IntPnd reset, and then the
NewDat and RmtPnd bits are reset. Resetting
the NewDat and RmtPnd bits before reset-
ting the IntPnd bit will result in the interrupt
line remaining active.

For message objects with direction e trans-
mit, the CPU must set this bit to indicate it
has updated the message contents. This is
done at the same time the CPU clears the
CPUUpd bit. This will ensure that if the mes-
sage is actually being transmitted during the
time the message was being updated by the
CPU, the 82527 will not reset the TxRqst bit.
In this way, the TxRqst bit is reset only after
the actual data has been transferred.

Each bit in the Control 0 and Control 1 regis-
ters may be set and reset by the CPU as re-
quired.

The default values of the Control 0 and Con-
trol 1 registers after a hardware reset are un-
changed.

The control registers have been configured
with two bits per function to allow software to
reduce costly read/modify/write operations.
It is possible to modify bits individually by
using only write operations.

To program a transfer request, the Control 1
register of the message object should have the
TxRqst and NewDat bits set to ‘‘1’’. There-
fore, this register may be written with the val-
ue 066H to initiate a transmission.

A remote frame may be received, an interrupt
flag set, and no transmit sent in response by
configuring a message object in the following
manner. Set the CPUUpd and RXIE bits in
the message object control register to ‘‘1’’. Set
the Dir bit in the message configuration regis-
ter to ‘‘1’’. A remote frame will be received by
this message object, the IntPnd bit will be set
to ‘‘1’’ and no transmit message will be sent.

Message Object Priority

If multiple message objects are waiting to transmit, the
82527 will first transmit the message from the lowest
numbered message object, regardless of message identi-
fier priority.

If two message objects are capable of receiving the same
message (possibly due to message filtering strategies),
the message will be received by the lowest numbered
message object. For example, if all acceptance mask
bits were set as ‘‘don’t care’’, message object 1 will re-
ceive all messages.

4.20 Arbitration 0, 1, 2, 3 Registers
(Base Address a 2–Base Address a 5)

Arbitration 0 Base a 2
7 6 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

rw rw rw rw rw rw rw rw

Arbitration 1 Base a 3

ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

rw rw rw rw rw rw rw rw

Arbitration 2 Base a 4

ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

rw rw rw rw rw rw rw rw

23

27

82527

Arbitration 3 Base a 5

ID4 ID3 ID2 ID1 ID0 Reserved

rw rw rw rw rw r

Reserved read as 000

ID0–ID28 Message Identifier

ID0–ID28 is the identifier for an extended
frame.

ID18–ID28 is the identifier for a standard
frame.

NOTE:

When the 82527 receives a message, the entire mes-
sage identifier, the data length code (DLC) and the
Direction bit are stored into the corresponding mes-
sage object.

4.21 Message Configuration Register
(Base Address a 6)

Base a 6
7 6 5 4 3 2 1 0

DLC Dir Xtd Reserved

rw rw rw r

DLC Data Length Code

The valid programmed values are 0–8. The data
length code of a message object is written with
the value corresponding to the data length.

Dir Direction

one Direction e transmit. When TXRqst is set,
the message object will be transmitted.

zero Direction e receive. When TXRqst is set, a
remote frame will be transmitted. When a
message is received with a matching identifier,
the message will be stored in the message ob-
ject.

Xtd Extended or standard identifier

one This message object will use an extended 29-
bit message identifier.

zero This message object will use a standard 11-bit
message identifier.

The default value of the message configuration
register after a hardware reset is unchanged.

If an extended frame message identifier is used
(arbitration bits 0–17) and the message con-
figuration register Xtd bit is ‘‘0’’ to specify a
standard frame, the 82527 will reset the ex-
tended bits in the arbitration registers to ‘‘0’’.

An extended receive message object (XTD e

‘‘1’’) will not receive standard messages.

If a message object receives a message from
the bus, the entire message identifier will be
stored in the message object. Therefore, if ac-
ceptance filtering (masking register) is used,
the masked-off ‘‘don’t care’’ bits will be re-
written corresponding to the message ID of
the incoming message.

4.22 Data Bytes
(Base Address a 7–Base Address a14)

When the 82527 stores a message all 8 data bytes will
be written into the message object.

The default value of the data bytes 0–7 after a hard-
ware reset is unchanged. The values of unused data
bytes are random and change during operation.

4.23 Special Treatment of Message
Object 15

Message object 15 is a receive-only message object with
a programmable local mask called the Message 15
Mask Register. Since this message object is a receive-
only message object, the TXRqst bit and the TXIE
have been hardwired inactive and the CPUUpd bit has
no meaning.

The incoming messages for message object 15 will be
written into a two-message alternating buffers to avoid
the loss of a message if a second message is received
before the CPU has read the first message. Once mes-
sage object 15 is read, it is necessary to reset the
NewDat and the RmtPnd bits to allow the CPU to read
the shadow message buffer which will receive the next
message or which may already contain a new message.

If two messages have been received by message object
15, the first will be accessible to the CPU. The alternate
buffer will be overwritten if a subsequent (third receive)
receive message is received. Once again, after reading
message 15, the user program should reset the IntPnd
bit followed by a reset of the NewDat and RmtPnd bits
in the Control 1 Register.

The Xtd bit in the message configuration register deter-
mines whether a standard or an extended frame will be
received by this message object.

24

28

82527

5.0 PORT REGISTERS

PORT 1 Registers

P1CONF (9FH)

9FH
7 6 5 4 3 2 1 0

P1CONF 0–7

rw

P1CONF 0–7

Port 1 Input/Output Configuration bits

one Port pin configured as a push-pull output.

zero Port pin configured as a high-impedance in-
put.

The default value of the P1CONF register af-
ter a hardware reset is 00H.

P1IN (BFH)

BFH
7 6 5 4 3 2 1 0

P1IN 0–7

rw

P1IN 0–7

Port 1 Data In

one A one (high voltage) is read from the pin.

zero A zero (low voltage) is read from the pin.

The default value of the P1IN register after a
hardware reset is FFH.

P1OUT (DFH)

DFH
7 6 5 4 3 2 1 0

P1OUT 0–7

rw

P1OUT 0–7

Port 1 Data Out

one A logical one (high voltage) is written to the
pin.

zero A logical zero (low voltage) is written to the
pin.

The default value of the P1OUT register after
a hardware reset is 00H.

PORT 2 Registers

P2CONF (AFH)

AFH
7 6 5 4 3 2 1 0

P2CONF 0–7

rw

P2CONF 0–7

Port 2 Input/Output Configuration bits

one Port pin configured as a push-pull output.

zero Port pin configured as a high-impedance in-
put.

The default value of the P2CONF register af-
ter a hardware reset is 00H.

P2IN (CFH)

CFH
7 6 5 4 3 2 1 0

P2IN 0–7

rw

P2IN 0–7

Port 2 Data In

one A one (high voltage) is read from the pin.

zero A zero (low voltage) is read from the pin.

The default value of the P2IN register after a
hardware reset is FFH.

P2 OUT (EFH)

EFH
7 6 5 4 3 2 1 0

P2OUT 0–7

rw

P2OUT 0–7

Port 2 Data Out

one A logical one (high voltage) is written to the
pin.

zero A logical zero (low voltage) is written to the
pin.

The default value of the P2OUT register after
a hardware reset is 00H.

25

29

82527

6.0 SERIAL RESET ADDRESS (FFH)

FFH
7 6 5 4 3 2 1 0

Serial Reset Address

w

The serial reset address is used to synchronize accesses
between the 82527 and the CPU when the CPU cannot
provide a chip select. The CPU must write a string of
16 ‘‘FFH’’ bytes to achieve synchronization.

The default value of the serial reset address after a
hardware reset is undefined.

7.0 PROGRAM FLOWS

The following flowcharts describe the operation of the
82527 and suggested flows for the host-CPU.

26

30

82527

7.1 82527 Handling of Message Objects 1–14 (Direction e Transmit)

These are the operations the 82527 executes to transmit messages. This diagram is useful to identify when the 82527
sets bits in the control registers.

272410–6

27

31

82527

7.2 82527 Handling of Message Objects 1–14 (Direction e Receive)

These are the operations the 82527 executes to receive messages. This diagram is useful to identify when the 82527
sets bits in the control registers.

272410–7

28

32

82527

7.3 Host-CPU Handling of Message Object 15 (Direction e Receive)

These are the operations the host-CPU executes to receive message object 15.

272410–8

29

33

82527

7.4 Host-CPU Handling of Message Objects 1–14 (Direction e Transmit)

These are the operations the host-CPU executes to transmit message objects 1–14.

272410–9

30

34

82527

7.5 Host-CPU Handling of Message Objects 1–14 (Direction e Receive)

These are the operations the host-CPU executes to receive message objects 1–14.

272410–10

31

35

82527

8.0 CPU INTERFACE LOGIC

The CIL (CPU Interface Logic) is a flexible interface
between the CPU and the 82527 RAM. The CIL allows
a direct serial interface or parallel interface connection
to the 82527 for most commonly used CPUs.

The CIL converts address/data/control signals from
the CPU to the internal memory bus. The internal
memory bus is a 16-bit non-multiplexed bus that is used
by both the CPU and the CAN Controller to read and
write to the RAM.

CPU Interface Description

There are five CPU interface modes used to interface a
CPU to the 82527. These include four parallel interface
modes and one serial interface mode.

Two mode pins (MODE0, MODE1) select one of the
following parallel interface modes:

Mode1 Mode0 Interface Mode

0 0 Mode 0: 8-bit multiplexedÐ

Intel architecture

0 1 Mode 1: 16-bit multiplexedÐ

Intel architecture

1 0 Mode 2: 8-bit multiplexedÐ

non-Intel architecture

1 1 Mode 3: 8-bit non-multiplexedÐ

non-Intel architecture

The serial interface mode is entered by selecting paral-
lel interface Mode 0 (MODE0 e 0, MODE1 e 0) and
connecting RDÝ and WRÝ to VSS.

The state of MODE0 and MODE1 as well as RDÝ and
WRÝ are latched on the rising edge of RESETÝ. In an
application only one of the five CPU interface modes
may be entered. Since the CPU interface mode is
latched on the rising edge of RESETÝ it is necessary to
enter a hardware reset (RESETÝe0) in order to
change CPU interface modes.

Parallel Interfacing Techniques

Mode 0 is intended to interface to Intel architectures
(ALE, RDÝ, WRÝ) using an 8-bit multiplexed
address/data bus. A READY output is provided to
force wait states in the CPU.

Mode 1 is intended to interface to Intel architectures
(ALE, RDÝ, WRÝ) using a 16-bit multiplexed
address/data bus. A READY output is provided to
force wait states in the CPU.

Mode 2 is intended to interface to non-Intel architec-
tures (AS, E, R/WÝ) using an 8-bit multiplexed
address/data bus.

Mode 3 is intended to interface to non-Intel architec-
tures using an 8-bit non-multiplexed address/data bus.
The asynchronous mode uses R/WÝ, CSÝ, and
DSACK0Ý (Ee1). The synchronous mode uses
R/WÝ, CSÝ, and E. Mode 3 uses the address/data
bus as the address bus and Port 1 as the data bus.

For CPUs which do not provide a READY or
DSACK0Ý input and do not meet the address/data
bus timing restrictions, a double read mechanism must
be used. When writing to the 82527 the programmer
must ensure that the time between two consecutive
write accesses is not less than two memory clock
(MCLK) cycles. When reading the 82527, a double
read is programmed. The first read will be to the mes-
sage object memory address and the second read will be
to the High Speed Read register (04H, 05H). After the
first CPU read access, the 82527 stores the data con-
tents to the High Speed Read register for the second
read.

Serial Interface Techniques

The serial interface on 82527 is fully compatible to the
SPI protocol of Motorola and will interface to most
commonly used serial interfaces. The serial interface is
implemented in slave mode only, and responds to the
master using the specially designed serial interface pro-
tocol. This serial interface allows an interconnection of
several CPU’s and peripherals on the same circuit
board.

272410–24

32

36

82527

MOSI: Master Out Slave In

The MOSI pin is the data output of the master
(CPU) device and the data input of the slave
(82527) device. Data is transferred serially
from the master to the slave on the signal line,
with the most significant bit first and least sig-
nificant bit last.

MISO: Master In Slave Out

The MISO pin is the data output of the slave
(82527) device and the input of the master
(CPU) device.

CSÝ: Chip Select (used as Slave Select for the SPI
interface)

An asserted state on the slave select input
(CSÝ) enables the 82527 to accept data on the
MOSI pin. The CSÝ must not toggle between
each transmitted byte. The 82527 will only
drive data to the serial data register if this pin
is asserted.

SCLK: Serial Clock

The master device provides the serial clock for
the slave device. Data is transferred synchro-
nously to this clock in both directions. The
master and the slave devices exchange a data
byte during a sequence of eight clock pulses.

Serial Interface Protocol

The general format of the data exchange from the
82527 to the master is a bit-for-bit exchange on each

SCLK clock pulse. Data is read on the rising edge of
the SCLK, and is changed on the falling edge of SCLK.

Data is arrranged in the 82527 such that the signifi-
cance of a bit is determined by its position from the
start for output and from the end for input, most signif-
icant bit is sent first. The order is such that bit exchang-
es in multiples of 8 bits and up to 15 bytes of data are
allowed. A maximum of 17 bytes can be sent to the
82527-SPI including one address byte, one SPI Control
Byte and 15 data bytes.

At the beginning of a transmission over the serial inter-
face, the first byte will be the address of the 82527 spe-
cial function register or the 82527 RAM to be accessed.
The next byte transmitted is a Control Byte, which con-
tains the number of bytes to be transmitted and wheth-
er this is to be a read or write access to the 82527. The
first two bytes are followed by the data bytes (1 to 15).

To ensure the 82527 device is not out of synchroniza-
tion, the 82527 will transmit the values ‘‘AAH’’ and
then ‘‘55H’’ through the MISO pin while the master
transmits the Address and Control Byte. This can be
enabled and disabled depending on the state of the AD3
pin. This allows the master to know whether the 82527
is synchronized.

If the 82527 is out of sync, the master SPI device can
re-sync by transmitting a string of 16 FFH bytes. When
the SPI receives a command byte with the value FFH,
it will assume the next byte is an address. If it receives
an address of FFH (the SPI Reset Address), it will
assume that the next byte is also an address.

The states of the pins AD0–AD3 are sampled on the
rising edge of RESETÝ. They have the following func-
tions:

Pin Function

AD0 (ICP) Idle Clock Polarity

zero SCLK is idle low.

one SCLK is idle high.

AD1 (CP) Clock Phase

zero Data is sampled on the
rising edge of SCLK (ICP e

0) or data is sampled on the
falling edge of SCLK (ICP e

1).

one Data sampled on the falling
edge of SCLK (ICP e 0) or
data is sampled on the
rising edge of SCLK (ICP e

1).

AD2 (CSAS) Chip select active state

zero Asserted state of CSÝ is
logic low.

one Asserted state of CSÝ is
logic high.

AD3 (STE) Synchronization Transmission
Enable

Enables the transmission of the
synchronization bytes, while the
Address and Control Bytes are
transferred.

zero The first two bytes which will
be sent to the CPU after
CSÝ is asserted are 00H
and 00H.

one The first two bytes which will
be sent to the CPU after
CSÝ is asserted are AAH
and 55H.

33

37

82527

272410–11

8.1 Serial Control Byte

The Serial Control Byte is transmitted by the CPU to
the 82527 as follows:

7 6 5 4 3 2 1 0

Dir 0 0 0 Serial data length code

Dir Serial transmission direction

zero The data bytes or SPI Configuration Register
will be read, so the 82527 will transfer infor-
mation to the CPU.

one The SPI Configuration Register or the data
bytes will be sent from the CPU to the 82527.

SDLC Serial Data Length Code

The first data byte (third byte of the SPI pro-
tocol) will be written to or read from the
82527 address (first byte of the SPI protocol).
After this, the address is incremented by the
SPI logic and the next data byte is written or
read from this address. In one data stream, a
maximum of 15 data bytes can be transferred.
A DLC of zero is not allowed. After a DLC of
zero is received, the SPI must be resynchroniz-
ed.

The serial interface is configured from the
states of AD0-AD3 on the rising edge of RE-
SETÝ.

When the CPU conducts a READ, the CPU
sends an address byte and a serial ontrol byte.
When the 82527 responds back with data, the
82527 ignores the MOSI pin (transmission
from the CPU). The CPU may transmit an
address and serial control byte after CSÝ is
de-activated and then re-activated. This means
the chip select should be activated and de-acti-
vated for each read or write transmission.

Synchronization bytes must be monitored
carefully. For example, if the 82527 does not
transmit the AAH and 55H synchronization
bytes correctly, then the previous transmission
may be incorrect too.

The MISO pin is tri-stated if CSÝ is inactive.

82527 SPI Interface Schematic

272410–32

34

38

82527

9.0 82527 FRAME TYPES

The 82527 communications controller supports four
different frame types:

Ð data frame
Ð remote frame
Ð error frame
Ð overload frame

9.1 Data Frame

A data frame is composed of seven different fields:

Ð start bit

Ð arbitration field

Ð control (identifier) field

Ð data field

Ð CRC field

Ð acknowledge field

Ð end of frame

The following describes the standard and extended
message formats for data and remote frames shown
above.

SOF: Start Of Frame (dominant bit) marks the
beginning of a data/remote frame.

Arbitration: One or two fields which contain the mes-
sage identifier bits. The standard format
has one 11-bit field and the extended for-
mat has two fields, 11- and 18-bits wide.

RTR: Remote Transmission Request bit is
dominant for data frames and recessive
for remote frames. This bit is in the arbi-
tration field.

SRR: Substitute Remote Request bit is used in
extended messages and is recessive. This
bit is a substitute for the RTR bit in the
standard format. This bit is in the arbitra-
tion field of the extended format.

IDE: Identifier Extension bit is dominant for
standard format and recessive for extend-
ed format. This bit is in the arbitration
field of the extended format and in the
control field of the standard format.

Control Reserved bits r0 and r1 are sent as domi-
Field: nant bits. The 4-bit Data Length Code

(DLC) indicates the number of bytes in
the data field.

Data Field: The data bytes are located in the data
frame (0–8 bytes). A remote frame con-
tains zero data bytes.

CRC Field: This field is composed of a 15-bit Cyclical
Redundancy Code error code and a reces-
sive CRC delimiter bit.

ACK Field: Acknowledge is a dominant bit sent by
nodes receiving the data/remote frame
and is followed by a recessive ACK del-
imiter bit.

End of Seven recessive bits ending the frame.
Frame:

INT: Intermission is the three recessive bits
which separate data and remote frames.

The minimum message lengths of standard and extend-
ed message formats are summarized for data and re-
mote frames. The actual lengths of these messages may
differ because ‘‘stuff’’ bits are added to the message.
Stuff bits assist synchronization by adding transitions
to the message. A stuff bit is inserted in the bit stream
after five consecutive-equal value bits are transmitted;
the stuff bit is the opposite polarity of the five consecu-
tive bits. All message fields are stuffed except the CRC
delimiter, the ACK field and the End of Frame.

Standard Format

272410–12

35

39

82527

Extended Format

272410–13

CAN Message Formats

Standard Format

Message Field Number of Bits

SOF 1

Arbitration (ID) 11

RTR 1

IDE 1

r0 1

DLC 4

Data Field 0–64

CRC Field 16

ACK Field 2

End of Frame 7

Total 44–108 bits

Extended Format

Message Field Number of Bits

SOF 1

Arbiration (ID) 11

SRR 1

IDE 1

Arbitration (ID) 18

RTR 1

r1 1

r0 1

DLC 4

Data Field 0–64

CRC Field 16

ACK Field 2

End of Frame 7

Total 64–128 bits

9.2 Remote Frame

A data frame is composed of six different fields:

Ð start bit

Ð arbitration field

Ð control (identifier) field

Ð data field

Ð CRC field

Ð acknowledge field

Ð end of frame

Contrary to the Data Frame, the RTR-bit of the Re-
mote Frame is ‘‘recessive’’ and no data segment is
transmitted independent of the Data Length Code set
by the Descriptor of the corresponding Communication
Object.

The RTR-bit allows Remote Transmission Requests
from any node to the system. This provides the capabil-
ity to request information in addition to the standard
broadcast characteristics. It also supports powerful di-
agnostic capability by being able to determine if the
primary transmitter (data source) of a specific parame-
ter(s) is on the bus and functional.

9.3 Error Frame

The Error Frame contains a sequence of variable length
dominant bits as a result of error flags being transmit-
ted by different system-nodes. This is an important as-
pect of the 82527 communication protocol with regards
to data consistency within a communication network.
The error frame is followed by an error delimiter.

272410–14

Figure 1. Error Frame Format

ERROR FLAG consists of six consecutive dominant
bits. Since this ‘‘violates’’ bit stuffing rules, it is used as
an error indicator to the system (see Coding/Decod-
ing).

36

40

82527

An Error Flag is transmitted if an 82527 operates as an
error active node and has detected an error condition
during or after a message transfer. If an Error Flag is
generated by a transmitter, or a receiver, all other
nodes interpret the Error Flag as a bit stuffing rule
violation. As a consequence, they, in turn, transmit an
error flag. A variable sequence of dominant bits result
from the superposition of the different Error Flags
transmitted by individual nodes. The total length of the
Error Flag sequence varies between six bits minimum
to twelve bits maximum.

An error condition is signaled by the transmission of
six recessive bits while in the error passive operation
mode. This way an error passive node with a temporary
local receiver problem will not destroy messages re-
ceived correctly by other nodes. The recessive bits may
be overwritten by an Error Flag generated by one or
more error active system nodes, but the error passive
82527 waits for at least six bits of equal polarity before
entering into the next internal receive or transmit
mode. (See Error Handling for error active/passive
mode.)

NOTE:

The 82527 will not perform storage of a message (pos-
itive acceptance filtering) into the communication
buffer, if reception of the message was followed by an
Error Flag on the serial bus.

The error-delimiter consists of eight recessive bits gen-
erated by the 82527 after the end of an Error Flag on
the serial bus line. This is monitored by detection of a
transition from the dominant to recessive bit level.

Detected errors during the transmission of a data or
remote frame can be signaled within the transmission
time of the respective frame. This procedure associates
an Error Flag to the corresponding frame, and initiates
a retransmission of the frame. As the 82527 monitors,
any deviation of its error frame will start retransmitting
an error frame. If this occurs several times in a se-
quence the 82527 will become error passive.

9.4 Overload Frame

The overload frame consists of two bit fields, the over-
load flag and the overload delimiter.

There are two cases of overload conditions which result
in the transmission of an overload flag:

1. Internal conditions of the receiver circuitry of a
CAN chip which require a delay time before receiv-
ing the next frame (receiver not ready). The 82527
will not generate overload frames when CAN bus
transmission rates are 1 Mbit/sec or less.

2. Detection of a ‘‘dominant’’ bit during Interframe
Space.

The overload frame consists of six dominant bits that
correspond to the Error Flag and destroy the fixed
form of the Interframe Space Field. As a consequence,
all other nodes see the dominant bit during the Inter-
frame Space time and interpret the recessive to domi-
nant edge as a start of frame and transmit an overload
flag because of the overload condition.

The overload delimiter consists of seven recessive bits
generated by the CAN chip.

After transmission of an overload frame, each 82527
within the system monitors the bus line until a tran-
sition from a dominant to a recessive level occurs. This
indicates to each 82527 the end of overload frames and
each node simultaneously starts the transmission of six
more recessive bits.

NOTE:

The earliest time an overload frame can be transmitted
is at the first bit time of the Interframe Space Field.
This is contrary to the Error Frame and allows the
82527 to differentiate between the Error Frame and
Overload Frame.

272410–15

Figure 2. Overload Frame Format

37

41

82527

Interframe-Space

Data Frame and Remote Frame are separated from
preceding frames by an Interframe Space consisting of
the Intermission bit field and a possible Bus Idle time.
An error frame is not preceded by an Interframe Space.

272410–16

Figure 3. Interframe Space Format

INTERMISSION consists of three recessive bits. Dur-
ing Intermission time the 82527 will not start transmis-
sion of a frame. Intermission is a fixed time period for
the 82527 to execute internal processes prior to the next
receive or transmit task.

Data received within a data frame will be stored in the
communication buffer and the control bits are updated
if no error condition has occurred through the last bit
of the end of frame field.

The bus idle time may be of arbitrary length. After the
Interframe Space period, the 82527 looks for bus idle
before initiating transmission, if requested by a CPU.
The detection of a dominant bit after Intermission or
bus idle is interpreted by the 82527 as Start of Frame.

9.5 Coding/Decoding

Coding

The frame segments (start of frame, arbitration field,
control field, data field and CRC sequence) are coded
using bit stuffing. Whenever the transmit logic of the
82527 detects five consecutive bits of identical levels to
be transmitted, the logic inserts a complement bit in the
transmitted bit stream.

Bit stuffing is used to guarantee enough edges in the
NRZ Bit Stream to maintain synchronization.

Decoding

Whenever the 82527 has received five identical consec-
utive bit levels in the received bit stream the logic auto-
matically deletes the next bit from the data stream (de-
stuffing). Some field formats do not use bit stuffing. In
these cases the bit stuffing and destuffing logic is turned
off.

9.6 Arbitration

In the case when two or more 82527s start transmission
concurrently, the bus access conflict is solved by a bit-
wise arbitration method during transmission of the ar-
bitration field.

The transmit logic compares the bit level transmitted to
the level monitored on the serial bus. Both the trans-
mitter and receiver are on the bus at the same time. The
transmit logic stops message transfer if a recessive bit
was sent but a dominant bit was monitored. This meth-
od guarantees transmission of the message with the
highest priority even if there is a collision during the
arbitration field of one or more message Identifier(s).

The 82527 protocol architecture requires each message
used in the communication network to have a unique
Identifier characterizing the type of data within the
data field. Using this method, the Identifier assigns a
name to the data frame and automatically implies the
priority of the message.

As a result, the Identifier during bus access represents
not only the message name but, more important, the
priority of each specific message. Since the most signifi-
cant bit (MSB) of an Identifier is transmitted first, the
Identifier with the smallest digital value has the highest
priority for bus access.

An Identifier should not be used for more than one
specific message to ensure that two or more nodes nev-
er simultaneously start a transmission of a data frame
with the same message priority. Following this rule, bus
access conflicts are resolved during the transmission of
the Identifier.

One exception would be the simultaneous transmitter
and receiver initiated frame transfer for the same mes-
sage. If one 82527 generates a request for actual data of
a certain type by transmitting a remote frame and
simultaneously, the 82527 responsible for this type of
data starts the transmission, arbitration can not be
solved by the Identifier itself and actually is not re-
quired.

To deal with this exception, the RTR-bit is included in
the arbitration field. The RTR-bit of the transmitter is
always set dominant and, therefore, has a higher priori-
ty than the requesting 82527 (RTR-bit recessive). This
way the remote frame request by the receiver gets an
immediate response by the transmitter.

38

42

82527

Example: Non-Destructive prioritized bitwise arbitra-
tion

272410–17

NOTES:
Node 1 wins the arbitration with the lowest identifier
(0B1H)
Zero is the dominant bit on the bus
*Node detected the loss of the arbitration and stopped
transmitting but continues to receive the message.

The CAN protocol architecture defines that each Com-
munication Object used must have a unique Identifier
characterizing the priority of the message. This allows
bitwise arbitration of the bus if a conflict arises. The
transmit logic compares the level monitored on the seri-
al bus with that transmitted. The transmit logic imme-
diately stops transmission if there is a conflict. This
guarantees the data transfer of the Communication Ob-
ject with the highest priority even if there is a collision.

10.0 ERROR DETECTION AND
CONFINEMENT

The Error Detection mechanism is implemented in
hardware for efficiency.

10.1 Bit Error

During a transmit operation, the 82527 monitors the
bus on a bit-by-bit basis. If the bit level monitored is
different from the transmitted bit, a bit error is sig-
naled.

Exceptions: Arbitration and ACK-SLOT. During arbi-
tration, a recessive bit can be overwritten by a domi-
nant bit. In this case, the 82527 interprets a bit error as
an arbitration loss. During the ACK-SLOT, a transmit-
ter may detect a falsified bit (recessive to dominant)
meaning that at least one receiver has received the mes-
sage correctly.

NOTE:

Except during transmission of the arbitration field and
during the time window of the ACK-SLOT, all global
and local errors at the transmitter are detected.

10.2 Bit Stuffing Error

As described earlier, the frame segments are coded by a
method of bit stuffing.

There are two possibilities where bit stuffing errors may
occur:

1. A disturbance generates more consecutive bits of
equal level than allowed by the rule of bit stuffing.
These errors are detected by all nodes.

2. A disturbance falsifies one or more of the five bits
preceeding the stuff bit. This error is not recognized
by a receiver; however, if the error also appears at
the transmitter, it will be detected as a bit error
(transmitter monitors bus as it transmits).

In any case, the error is detected by a receiver either by
the bit stuffing mechanism (the stuff bit of the transmit-
ter is not dropped but taken as an information bit) or
by the CRC check.

10.3 CRC Error

To ensure the validity of a transmitted message, all re-
ceivers perform a CRC check. In addition to the infor-
mation bits, the CRC includes control bits used for er-
ror detection.

Description of the CRC Code

The code used for the 82527 is a (shortened) BCH
Code, extended by a parity check and the following
attributes:

Ð 127 bits as maximum length of the code word

Ð length of the CRC sequence is 15 bits

Ð Hamming distance d e 6
d e min A (x EXOR y) / x, y different code words
A(x) e number of ‘‘recessive’’ bits in the code

word x

f(x) e (x14 a x9 a x8 a x6 a x5 a x4 a x2 a x a 1) (x a 1)

f(x) e 1100 0101 1001 1001

f(x) e C599 Hex

Burst errors are detected up to a length of 15 (degree of
f(x)). Multiple errors (number of disturbed bits at least
de6) are not detected with a residual error probability
of 3c10b5.

10.4 Form Error

Form Errors result from the violation of the fixed form
of the following bit fields:

Ð end of frame
Ð interframe space

39

43

82527

Ð ACK delimiter
Ð CRC delimiter

During the transmission of these bit fields, an error
condition is recognized if a ‘‘dominant’’ bit level is de-
tected.

10.5 Error Detection Capabilities

Global errors, which occur at all fully functional nodes,
are 100% detectable.

For local errors, e.g. errors which may appear at some
nodes only, the shortened BCH Code extended by the
parity check has the following error detection capabili-
ties:

Ð Up to 5 single bit errors are detected 100% even if
those errors are being distributed randomly within
the code word.

Ð All single bit errors are detected if their total num-
ber within the code word is odd.

Ð The residual error probability of the CRC check is
2b15 e 3 c 10b5. As an error may be detected by
the CRC check, and/or by additional implemented
error detection mechanism, the residual error prob-
ability is significantly less than 3 c 10b5.

10.6 Error Confinement

Error Confinement is implemented on the 82527 as a
self-checking mechanism for distinguishing ‘‘temporary
errors’’ from ‘‘permanent failures’’. A permanent fail-
ure is noted when an average of one in eight messages is
corrupted. This type of error condition can be caused
by a defective connector, transmitter, receiver or a long
lasting disturbance from outside the network. If the
node continues to observe a failure over a period of
time the node will be removed from the bus. A discon-
nected node is not placed again on the serial bus until
the CPU has issued a software reset to the 82527, and
an 82527 internal delay time has elapsed.

The implementation of the error confinement consists
of two counters (RECEIVE-ERROR-COUNT and
TRANSMIT-ERROR-COUNT) and some control log-
ic. These counters are modified according to a number
of rules, which may be considered as the core of the
error confinement. If a message is transmitted or re-
ceived without an error the error-counter is decrement-
ed by a fixed number, if it is not already 0. The error-
counter is increased by a fixed number, if an error is
detected on the serial bus. No access is provided to the
ERROR-COUNTERS; however, two flags are provid-
ed (Error Status and Bus Status) as a summary of error
events.

The count added to the error-counter depends on the
type of the error detected. For instance, whenever a
node detects and reports an error condition (error flag),
all system nodes will also detect an error condition due
to that error flag, even if the information up to that
time was received error-free.

NOTE:

In case an error condition is not detected by all nodes
at the exact same bit time, the node reporting the er-
ror first is more likely to be responsible for such an
error condition compared to those nodes reacting to
the error flag. Therefore, a node that is often responsi-
ble for error conditions, as mentioned above, is the or-
igin of the error as a result of a defect.

In general, a defective node exchanges information for
a short time so as to prevent it from loading the bus and
slowing down other nodes on the bus.

Three error states are flagged in the STATUS-
REGISTER as follows:

An 82527 in the busoff state will neither transmit nor
receive messages. In order to restart the 82527 it is
necessary to reset the init bit in the control register
(00H).

NOTE:

After this sequence, the CAN node will be active on
the serial bus after 128 x 11 consecutive recessive bits.

10.7 82527 States with Respect to the
Serial Bus

The 82527 may be in one of the three following states:

Ð Error Active

Ð Error Passive

Ð Bus Off

Error-Active is the normal mode of operation, it is
characterized by the 82527 transmitting an ERROR-
FLAG of 6 dominant bits in case a receive or a trans-
mit error is detected.

An ‘‘Error Passive’’ 82527 does not send an ACTIVE
ERROR FLAG (6 dominant bits). In this mode, the
82527 communicates on the bus but on detecting a re-
ceive or a transmit error, it sends a PASSIVE ERROR
FRAME (6 recessive bits). After transmitting a mes-
sage, an ‘‘Error Passive’’ 82527 does not initiate anoth-
er transmission immediately; instead, after the INTER-
FRAME SPACE, it transmits 7 ‘‘recessive bits’’. If
during this time period (7 recessive bits), another 82527
starts transmission on the bus, the ‘‘error passive’’
82527 becomes the receiver.

40

44

82527

A busoff 82527 does not transmit or receive any infor-
mation; its output drivers are put in a float state. This
state is indicated to the user by the BOff bit in the
Status Register (01H).

For Error Confinement two error counters are imple-
mented in the 82527 architecture:

1. TRANSMIT AND RECEIVE ERROR COUNTER

These counters are modified by the 82527 with no read
or write access to the user.

At the system start-up, there may be only one 82527
active on the bus. If this node transmits a message, it
will not get an acknowledgement and hence detect an
error; it will correspondingly repeat the message. Be-
cause of repeated transmissions, 82527 will become
‘‘Error Passive’’ but not busoff.

Similarly, an 82527 sending a wake-up message may
become ‘‘Error Passive.’’

11.0 SAMPLE PROGRAM

The following pages contain a software program writ-
ten for the Intel 87C196KR microcontroller which is
used in the Intel EV82527 Evaluation Kit for the 82527
chip. This code may serve as a guide to configure the
82527. This code configures a transmit, receive, and
remote messages. Interrupts are used to receive mes-
sages. The program uses Ports 1 and 2 extensively to
read dip switches and the control an LED display. For
illustrative purposes, the dip switch control features are
shown below and these functions are all implemented in
the following code.

The DIP Switch Definitions:

272410–18

Switch 1

0 standard format message objects (11-bit ID)

1 extended format message objects (29-bit ID)

Switch 2

0 display transmitted data

1 display received data

Switch 3/4

0 0 receive message on ID 0 (switch 8 e 0) or ID
2048 (switch 8 e 1)

0 1 receive message on ID 1 (switch 8 e 0) or ID
2049 (switch 8 e 1)

1 0 receive message on ID 2 (switch 8 e 0) or ID
2050 (switch 8 e 1)

1 1 receive message on lD 3 (switch 8 e 0) or lD
2051 (switch 8 e 1)

Switch 5/6

0 0 transmit message on ID 0 (switch 8 e 0) or ID
2048 (switch 8 e 1)

0 1 transmit message on ID 1 (switch 8 e 0) or ID
2049 (switch 8 e 1)

1 0 transmit message on ID 2 (switch 8 e 0) or ID
2050 (switch 8 e 1)

1 1 transmit message on ID 3 (switch 8 e 0) or ID
2051 (switch 8 e 1)

Switch 7

0 receive message using receive message object

1 send remote message from receive message object

Switch 8

0 transmit slow counter values

1 transmit value currently on DIP switches

41

45

82527

272410–25

42

46

82527

272410–26

43

47

82527

272410–27

44

48

82527

272410–28

45

49

82527

272410–29

46

50

82527

272410–30

47

51

82527

272410–31

48

52

	1.0 GENERAL FEATURES
	1.1 Functional Overview
	1.2 CAN Controller
	1.3 RAM
	1.4 CPU Interface Logic
	1.5 Clockout
	1.6 Two 8-Bit Ports

	2.0 PACKAGE DIAGRAM/PIN OUT
	3.0 PIN DESCRIPTION
	3.1 Hardware Reset
	3.2 Software Initialization

	4.0 FUNCTIONAL DESCRIPTION
	4.1 82527 Address Map
	4.2 Control Register (00H)
	4.3 Status Register (01H)
	4.4 CPU Interface Register (02H)
	4.5 Clocking Description
	4.6 High Speed Read Register (04—05H)
	4.7 Global Mask—Standard Register (06—07H)
	4.8 Global Mask—Extended Register (08—0BH)
	4.9 Acceptance Filtering Implications
	4.10 Message 15 Mask Register (0C—0FH)
	4.11 CLKOUT (Clockout) Register (1FH)
	4.12 Bus Configuration Register (2FH)
	4.13 Bit Timing Overview
	4.14 Bit Timing Registers (3FH, 4FH)
	4.15 Comparison of 82526 and 82527 Bit Timings Calculations
	4.16 Interrupt Register (5FH)
	4.17 Serial Reset Address (FFH)
	4.18 82527 Message Objects
	4.19 Control 0 and Control 1 Registers
	4.20 Arbitration 0, 1, 2, 3 Registers
	4.21 Message Configuration Register
	4.22 Data Bytes
	4.23 Special Treatment of Message Object 15

	5.0 PORT REGISTERS
	6.0 SERIAL RESET ADDRESS (FFH)
	7.0 PROGRAM FLOWS
	7.1 82527 Handling of Message Objects 1—14 (Direction = Transmit)
	7.2 82527 Handling of Message Objects 1—14 (Direction — Receive)
	7.3 Host-CPU Handling of Message Object 15 (Direction = Receive)
	7.4 Host-CPU Handling of Message Objects 1—14 (Direction — Transmit)
	7.5 Host-CPU Handling of Message Objects 1—14 (Direction = Receive)

	8.0 CPU INTERFACE LOGIC
	8.1 Serial Control Byte

	9.0 82527 FRAME TYPES
	9.1 Data Frame
	9.2 Remote Frame
	9.3 Error Frame
	9.4 Overload Frame
	9.5 Coding/Decoding
	9.6 Arbitration

	10.0 ERROR DETECTION AND CONFINEMENT
	10.1 Bit Error
	10.2 Bit Stuffing Error
	10.3 CRC Error
	10.4 Form Error
	10.5 Error Detection Capabilities
	10.6 Error Confinement
	10.7 82527 States with Respect to the Serial Bus

	11.0 SAMPLE PROGRAM
	FIGURES
	Figure 1. Error Frame Format
	Figure 2. Overload Frame Format

	TABLE
	Table 2. Programming CLKOUT and Slew Rates

